Science.gov

Sample records for enhanced uwb radio

  1. IR-UWB radio-over-fiber system components development

    NASA Astrophysics Data System (ADS)

    Sultanov, Albert K.; Vinogradova, Irina L.; Meshkov, Ivan K.; Grakhova, Elizaveta P.; Shmidt, Svyatoslav P.; Abdrakhmanova, Guzel I.; Tafur Monroy, Idelfonso

    2016-03-01

    The paper describes the application of IR-UWB technology for organizing the radio part of Radio-over-Fiber system. Four physical layer components are proposed and designed in the paper: three microstrip filters and UWB antenna. Firstly the effective SCRF mask was calculated to ensure electromagnetic compatibility with existing radio services. Then this mask was considered as a cost function for filters design. The simulation was made with Agilent Genesys™ and CST Microwave Studio. All the devices have shown good performance and could be implemented on one circuit board for reducing losses.

  2. UWB EMI To Aircraft Radios: Field Evaluation on Operational Commercial Transport Airplanes. Volume 1

    NASA Technical Reports Server (NTRS)

    Oria, A. J. (Editor); Ely, Jay J.; Martin, Warren L.; Shaver, Timothy W.; Fuller, Gerald L.; Zimmerman, John; Fuschino, Robert L.; Larsen, William E.

    2005-01-01

    Ultrawideband (UWB) transmitters may soon be integrated into a wide variety of portable electronic devices (PEDs) that passengers routinely carry on board commercial airplanes. Airlines and the FAA will have difficulty controlling passenger use of UWB transmitters during flights with current airline policies and existing wireless product standards. The aeronautical community is concerned as to whether evolving FCC UWB rules are adequate to protect legacy and emerging aeronautical radio systems from electromagnetic interference (EMI) from emerging UWB products. To address these concerns, the NASA Office of Space Communications and Chief Spectrum Managers assembled a multidisciplinary team from NASA LaRC, NASA JPL, NASA ARC, FAA, United Airlines, Sky West Airlines, and Eagles Wings Inc. to carry out a comprehensive series of tests aimed at determining the nature and extent of any EMI to aeronautical communication and navigation systems from UWB devices meeting FCCapproved and proposed levels for unlicensed handheld transmitters.

  3. Indoor coverage improvement of MB-OFDM UWB signals with radio over POF system

    NASA Astrophysics Data System (ADS)

    Lethien, Christophe; Loyez, Christophe; Vilcot, Jean-Pierre; Clavier, Laurent; Bocquet, Michael; Rolland, Paul Alain

    2009-12-01

    A radio over fiber system using the fluorinated based polymer multimode fibers (PMMF) is presented in this paper for the enhancement of the indoor coverage of the multiband orthogonal frequency division multiplexing ultra-wideband standard (MB-OFDM UWB) inside a building. A preliminary part related the cost analysis owing to glass and polymer multimode fiber deployment inside a fiber network is reported. The study of the physical properties of the polymer optical fibers (core diameter, numerical aperture, differential mode delays, modal bandwidth…) is firstly performed in order to effectively exhibit the potentialities and the robustness of such fibers to be used in a low cost radio over fiber system. The DMD measurements of four fluorinated based polymer optical fiber are reported. The designed system operates at 850 nm with commercial off the shelf (COTS) devices combined to the intensity modulation/direct detection technique. The opportunity of using polymer fibers and COTS components to improve the indoor coverage of the MB-OFDM UWB standard is so reported by the measurement of the Error Vector Magnitude or the Relative Constellation Error variation as a function of the system parameters (RF power, optical attenuation, fiber length…) as well as the compliance of the eye diagram with the mask testing. By the way, the transmission performance of both 200 and 480 Mbps signals is demonstrated over up to 200 m link length of polymer multimode fibers: transmission penalties are quantified by relative constellation error with values under the standard requirements. A comparative study with classical OM2 50 μm based glass multimode fiber having the same bandwidth/length product than the PMMF is done.

  4. Tightly-coupled GPS/UWB Integration

    NASA Astrophysics Data System (ADS)

    Macgougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    Ultra-wideband (UWB) ranging radios, an emerging technology that offers precise, short distance range measurements are investigated as a method to augment carrier-phase GPS positioning. A commercially available UWB ranging system is used in a tightly-coupled GPS and UWB real-time kinematic (RTK) system. The performance of the tightly-coupled system is evaluated in static and kinematic testing. This work demonstrates that UWB errors can be successfully estimated in a real-time filter. The results of static testing show that the integrated solution provides better accuracy, better ability to resolve integer ambiguities and enhanced fixed ambiguity solution availability compared with GPS alone. In kinematic testing in a degraded GPS environment, sub-decimetre accuracy was maintained.

  5. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    NASA Astrophysics Data System (ADS)

    Perez, J.; Llorente, R.

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with -31 dBm WiMAX EVM.

  6. Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Gaurav Kumar; Singh, Hari Shankar; Meshram, Manoj Kumar

    2016-02-01

    An inhomogeneous anisotropic (IA) artificial material (AM) is proposed having epsilon-near-zero (ENZ) characteristics and effective refractive index >1, simultaneously, in the same direction. Further, the proposed IA-AM is utilized for the gain enhancement of Vivaldi antenna for ultra-wideband (UWB) applications. The IA-AM consists of two types of compact meandered line-based anisotropic artificial material with ENZ characteristics in two adjacent narrow bands of 5.5-8.5 and 8-11.5 GHz. However, the non-resonant behavior of the artificial material in other direction appears with high refractive index property in broadband region. The combination of both the unit cells with broadband ENZ and high refractive index property is used to improve the gain of the Vivaldi antenna in broadband. The proposed IA-AM-loaded Vivaldi antenna exhibits a gain enhancement of up to 2 dBi compared to the original antenna in the operating frequency band of 3.1-12 GHz with | S 11| < -10 dB. The proposed antenna shows nearly stable unidirectional radiation patterns with high directivity and nearly flat group delay.

  7. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  8. 480 Mbit/s UWB bi-directional radio over fiber CWDM PON using ultra-low cost and power VCSELs.

    PubMed

    Quinlan, Terence; Morant, Maria; Dudley, Sandra; Llorente, Roberto; Walker, Stuart

    2011-12-12

    Radio-over-fiber (RoF) schemes offer the possibility of permitting direct access to native format services for the domestic user. A low power requirement and cost effectiveness are crucial to both the service provider and the end user. Here, we present an ultra-low cost and power RoF scheme using direct modulation of commercially-available 1344 nm and 1547 nm VCSELs by band-group 1 UWB wireless signals (ECMA-368) at near broadcast power levels. As a result, greatly simplified electrical-optical-electrical conversion is accomplished. A successful demonstration over a transmission distance of 20.1 km is described using a SSMF, CWDM optical network. EVMs of better than -18.3 dB were achieved. PMID:22274019

  9. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  10. UWB transmitter

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-01-15

    An ultra-wideband (UWB) dual impulse transmitter is made up of a trigger edge selection circuit actuated by a single trigger input pulse; a first step recovery diode (SRD) based pulser connected to the trigger edge selection circuit to generate a first impulse output; and a second step recovery diode (SRD) based pulser connected to the trigger edge selection circuit in parallel to the first pulser to generate a second impulse output having a selected delay from the first impulse output.

  11. UWB Technology and Applications on Space Exploration

    NASA Technical Reports Server (NTRS)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  12. UWB technology for safety-oriented vehicular communications

    NASA Astrophysics Data System (ADS)

    Llorente, Roberto; Morant, Maria

    2016-03-01

    Ultra-Wide Band (UWB) technology for wireless multiple access communications are receiving great interest for the last five years due to its unique features such as spectrum coexistence with other wireless services, RF front-end simplicity (enabling potential low cost terminals), good radio wave propagation (robust against multi-path fading, material penetration) and high bitrate. Low-cost UWB technology can be employed to provide simultaneous communications and vehicular radar capabilities. In this paper, the application of vehicle-to-vehicle (C2C), infrastructure-to-vehicle (I2C), communication and vehicular radar (VRAD) based on UWB technology are proposed altogether the required fiber-optics infrastructure, with the advantage of being flexible, cost-effective, reliable, fast and secure. The experimental validation and comparison for the optical generation of UWB signals combined with radio-over-fiber transmission is also reported in this work applied to vehicular communications. Both impulse-radio (IR-UWB) and orthogonal frequency division multiplexing (OFDM-UWB) signals are generated and their performance are evaluated experimentally in the 3.1-10.6 GHz frequency range. Up-conversion in the 60 GHz wireless band is also herein reported.

  13. Intruder detection and tracking using UWB technology

    NASA Astrophysics Data System (ADS)

    Schiavone, Guy A.; Wahid, Parveen; Palaniappan, Ravishankar; Tracy, Judd; Vandoorn, Eric; Micikevicius, Paulis; Hughes, Charles

    2004-08-01

    UWB communication is essentially the transmission and receiving of ultra short electromagnetic energy pulses. Short pulses mean wide bandwidths, often greatly exceeding 25% of the nominal center frequency. Modern UWB radio is characterized by very low power transmission (in the range of tens of microwatts) and wide bandwidths (greater than a gigahertz). One of the major applications of Ultra-wide band technology has been for detection and tracking of intruders in different environments. Based on some of our previous work [1,2] we developed a hybrid Ray-tracing/FDTD technique to study the indoor and outdoor propagation of UWB signals. The basic goal of this paper is to describe the experimental and simulation studies that were conducted to locate and track an intruder inside a UWB sensor web system. The sensor was developed using the Time Domain P-200 device and the software was developed using MATLAB. Return scans from UWB devices are analyzed to determine the noise floor and the signal strength. Using the noise floor level a threshold level is set above which the alarm will be triggered to determine the presence of an intruder. The probability of false alarm (PFA) is also determined using the Signal-to-Noise ratio and the threshold. We vary the PFA to lower the false alarm to a minimum level. We also determine the noise statistics of the system using Non-parametric Kolmogorov-Smirnov (KS) test. Using this basic UWB sensor web system we will try to determine the physical dimensions of the intruder and also track multiple intruders on the system.

  14. Performance comparison between UWB-IR and MB-OFDM with transmit diversity in implant communications.

    PubMed

    Shimizu, Yuto; Furukawa, Tomofumi; Anzai, Daisuke; Wang, Jianqing

    2015-01-01

    An ultra wideband (UWB) technology is a potential candidate for implant body area networks (BANs), where wireless communications are established between inside and outside of a human body. The UWB can accomplish higher data rate than the other frequency band for the implant communication. However, due to its high frequencies, the UWB signals suffer from quite large attenuation in the implant communication link, which makes it difficult to achieve reliable communications. For achieving reliable communication, it is well known that a spatial diversity technique is efficient without any frequency extension. In our previous works, we developed a transmit polarization diversity antenna for the UWB implant communication. However, optimal UWB modulation scheme for transmit diversity were rarely discussed. In this paper, in order to investigate the optimal UWB modulation schemes for implant communication with transmit diversity, we compare the communication performances of UWB-impulse radio (UWB-IR) and multiband-orthogonal frequency division multiplexing (MB-OFDM). For this purpose, we first analyze the propagation characteristics in the implant UWB channel, which ranges from 3.4 GHz to 4.8 GHz, using a finite difference time domain (FDTD) numerical analysis technique. Then, we evaluate and discuss the communication performances of both modulation schemes for the transmit polarization diversity from the viewpoint of the BER and the required transmit power. PMID:26737529

  15. Performance comparison between UWB-IR and MB-OFDM with transmit diversity in implant communications.

    PubMed

    Shimizu, Yuto; Furukawa, Tomofumi; Anzai, Daisuke; Wang, Jianqing

    2015-01-01

    An ultra wideband (UWB) technology is a potential candidate for implant body area networks (BANs), where wireless communications are established between inside and outside of a human body. The UWB can accomplish higher data rate than the other frequency band for the implant communication. However, due to its high frequencies, the UWB signals suffer from quite large attenuation in the implant communication link, which makes it difficult to achieve reliable communications. For achieving reliable communication, it is well known that a spatial diversity technique is efficient without any frequency extension. In our previous works, we developed a transmit polarization diversity antenna for the UWB implant communication. However, optimal UWB modulation scheme for transmit diversity were rarely discussed. In this paper, in order to investigate the optimal UWB modulation schemes for implant communication with transmit diversity, we compare the communication performances of UWB-impulse radio (UWB-IR) and multiband-orthogonal frequency division multiplexing (MB-OFDM). For this purpose, we first analyze the propagation characteristics in the implant UWB channel, which ranges from 3.4 GHz to 4.8 GHz, using a finite difference time domain (FDTD) numerical analysis technique. Then, we evaluate and discuss the communication performances of both modulation schemes for the transmit polarization diversity from the viewpoint of the BER and the required transmit power.

  16. Enhancing GLAST Science Through Complementary Radio Observations

    NASA Astrophysics Data System (ADS)

    Ulvestad, James S.

    2006-12-01

    Radio astronomical observations with state-of-the-art instrumentation will be critical for achieving the maximum science return from the GLAST mission. Radio nterferometers with baselines of thousands of kilometers, such as the Very Long Baseline Array (VLBA), will provide sub-milliarcsecond imaging of GLAST blazars. High-frequency VLBA imaging, repeatable at intervals of days to weeks, will image the region where gamma-ray flares occur in blazars and help determine the location of the gamma-ray emission. Multi-frequency arcsecond-scale imaging with interferometers having baselines of one to tens of kilometers, particularly the Very Large Array, will provide efficient discrimination among the candidates for unidentified gamma-ray sources. Pulsar timing with single-dish radio telescopes such as the Green Bank Telescope will enable accurate registration of gamma-ray photons with pulsar ephemerides for studies of the pulsar emission mechanisms. Along with these contemporaneous radio/GLAST observing programs, we will discuss briefly some of the recent radio programs that have been conducted in preparation for GLAST launch. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  17. Method of remote powering and detecting multiple UWB passive tags in an RFID system

    DOEpatents

    Dowla, Farid U.; Nekoogar, Faranak; Benzel, David M.; Dallum, Gregory E.; Spiridon, Alex

    2012-05-29

    A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.

  18. A UWB wireless capsule endoscopy device.

    PubMed

    Thotahewa, Kasun M S; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Wireless capsule endoscopy (WCE) presents many advantages over traditional wired endoscopic methods. The performance of WCE devices can be improved using high-frequency communication systems such as Impulse Radio-Ultra-Wideband (IR-UWB) to enable a high data rate transmission with low-power consumption. This paper presents the hardware implementation and experimental evaluation of a WCE device that uses IR-UWB signals in the frequency range of 3.5 GHz to 4.5 GHz to transmit image data from inside the body to a receiver placed outside the body. Key components of the IR-UWB transmitter, such as the narrow pulse generator and up-conversion based RF section are described in detail. This design employs a narrowband receiver in the WCE device to receive a control signal externally in order to control and improve the data transmission from the device in the body. The design and performance of a wideband implantable antenna that operates in the aforementioned frequency range is also described. The operation of the WCE device is demonstrated through a proof-of-concept experiment using meat. PMID:25571601

  19. UWB Tracking System Design for Lunar/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia

    2006-01-01

    This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.

  20. Metals as radio-enhancers in oncology: The industry perspective.

    PubMed

    Pottier, Agnés; Borghi, Elsa; Levy, Laurent

    2015-12-18

    Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is 'on', while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is 'off'. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology. PMID:26362175

  1. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  2. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  3. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  4. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  5. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.

    PubMed

    Thotahewa, Kasun M S; Redouté, Jean-Michel; Yuce, Mehmet R

    2013-01-01

    The usage of implanted wireless transmitting devices inside the human body has become widely popular in recent years. Applications such as multi-channel neural recording systems require high data rates in the wireless transmission link. Because of the inherent advantages provided by Impulse-Radio Ultra Wide Band (IR-UWB) such as high data rate capability, low power consumption and small form factor, there has been an increased research interest in using IR-UWB for bio-medical implant applications. Hence it has become imperative to analyze the electromagnetic effects caused by the use of IR-UWB when it is operated in or near the human body. This paper reports the electromagnetic effects of head implantable transmitting devices operating based on Impulse Radio Ultra Wide Band (IR-UWB) wireless technology. Simulations illustrate the performance of an implantable UWB antenna tuned to operate at 4 GHz with an -10 dB bandwidth of approximately 1 GHz when it is implanted in a human head model. Specific Absorption Rate (SAR), Specific Absorption (SA) and temperature increase are analyzed to compare the compliance of the transmitting device with international safety regulations. PMID:24110902

  6. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  7. Protein adsorption enhanced radio-frequency heating of silica nanoparticles

    PubMed Central

    Wosik, Jarek; Pande, Rohit; Xie, Leiming; Ketharnath, Dhivya; Srinivasan, Srimeenakshi; Godin, Biana

    2013-01-01

    Measurements of specific-absorption-rate (SAR) of silica 30, 50, and 100 nm nanoparticles (NP) suspended in water were carried out at 30 MHz in 7 kV/m radio-frequency (rf) electric field. Size dependent, NP-suspension interface related heating of silica NP was observed. To investigate a possible mechanism of heating, bovine serum albumin was adsorbed on the surface of silica NPs in suspension. It resulted in significant enhancement of SAR when compared to bare silica NPs. A calorimetric and rf loss model was used to calculate effective conductivity of silica NP with/without adsorbed albumin as a function of silica size and albumin concentration. PMID:23964135

  8. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations. PMID:19163907

  9. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations.

  10. A framework for UWB-based communication and location tracking systems for wireless sensor networks.

    PubMed

    Chóliz, Juan; Hernández, Angela; Valdovinos, Antonio

    2011-01-01

    Ultra wideband (UWB) radio technology is nowadays one of the most promising technologies for medium-short range communications. It has a wide range of applications including wireless sensor networks (WSN) with simultaneous data transmission and location tracking. The combination of location and data transmission is important in order to increase flexibility and reduce the cost and complexity of the system deployment. In this scenario, accuracy is not the only evaluation criteria, but also the amount of resources associated to the location service, as it has an impact not only on the location capacity of the system but also on the sensor data transmission capacity. Although several studies can be found in the literature addressing UWB-based localization, these studies mainly focus on distance estimation and position calculation algorithms. Practical aspects such as the design of the functional architecture, the procedure for the transmission of the associated information between the different elements of the system, and the need of tracking multiple terminals simultaneously in various application scenarios, are generally omitted. This paper provides a complete system level evaluation of a UWB-based communication and location system for Wireless Sensor Networks, including aspects such as UWB-based ranging, tracking algorithms, latency, target mobility and MAC layer design. With this purpose, a custom simulator has been developed, and results with real UWB equipment are presented too. PMID:22164120

  11. System development and performance evaluation on detection schemes for UWB-IR implant communications.

    PubMed

    Katsu, Kenta; Anzai, Daisuke; Wang, Jianqing

    2013-01-01

    Ultra wideband-impulse radio (UWB-IR) transmission is one of promising transmission technologies in implant body area networks (BANs). Although some studies have investigated the channel model and communication architecture in implant BANs, no study quantitatively shows the feasibility of UWB-IR communication in the human body with actual developed transceivers at a high data rate. In this paper, we focus on experimental evaluation of the correlation detection (coherent detection) and the energy detection (non-coherent detection) for UWB-IR transmission with multi-pulse position modulation (MPPM). For this purpose, we develop a UWB-IR communication system with MPPM scheme, and experimentally evaluate the transmission performance of the developed systems with the two different detection schemes. In addition to the experimental evaluation, we also theoretically analyze the bit error rate (BER) performance by using Gaussian approximation. From the experimental results, the developed system has achieved a BER of 10(-2) at the propagation loss of 75 dB with a data rate of 2 Mbps in the correlation detection. This result shows the feasibility of reliable UWB-IR communication in actual implant BANs. PMID:24109917

  12. A framework for UWB-based communication and location tracking systems for wireless sensor networks.

    PubMed

    Chóliz, Juan; Hernández, Angela; Valdovinos, Antonio

    2011-01-01

    Ultra wideband (UWB) radio technology is nowadays one of the most promising technologies for medium-short range communications. It has a wide range of applications including wireless sensor networks (WSN) with simultaneous data transmission and location tracking. The combination of location and data transmission is important in order to increase flexibility and reduce the cost and complexity of the system deployment. In this scenario, accuracy is not the only evaluation criteria, but also the amount of resources associated to the location service, as it has an impact not only on the location capacity of the system but also on the sensor data transmission capacity. Although several studies can be found in the literature addressing UWB-based localization, these studies mainly focus on distance estimation and position calculation algorithms. Practical aspects such as the design of the functional architecture, the procedure for the transmission of the associated information between the different elements of the system, and the need of tracking multiple terminals simultaneously in various application scenarios, are generally omitted. This paper provides a complete system level evaluation of a UWB-based communication and location system for Wireless Sensor Networks, including aspects such as UWB-based ranging, tracking algorithms, latency, target mobility and MAC layer design. With this purpose, a custom simulator has been developed, and results with real UWB equipment are presented too.

  13. A Framework for UWB-Based Communication and Location Tracking Systems for Wireless Sensor Networks

    PubMed Central

    Chóliz, Juan; Hernández, Ángela; Valdovinos, Antonio

    2011-01-01

    Ultra wideband (UWB) radio technology is nowadays one of the most promising technologies for medium-short range communications. It has a wide range of applications including Wireless Sensor Networks (WSN) with simultaneous data transmission and location tracking. The combination of location and data transmission is important in order to increase flexibility and reduce the cost and complexity of the system deployment. In this scenario, accuracy is not the only evaluation criteria, but also the amount of resources associated to the location service, as it has an impact not only on the location capacity of the system but also on the sensor data transmission capacity. Although several studies can be found in the literature addressing UWB-based localization, these studies mainly focus on distance estimation and position calculation algorithms. Practical aspects such as the design of the functional architecture, the procedure for the transmission of the associated information between the different elements of the system, and the need of tracking multiple terminals simultaneously in various application scenarios, are generally omitted. This paper provides a complete system level evaluation of a UWB-based communication and location system for Wireless Sensor Networks, including aspects such as UWB-based ranging, tracking algorithms, latency, target mobility and MAC layer design. With this purpose, a custom simulator has been developed, and results with real UWB equipment are presented too. PMID:22164120

  14. Matched filter design optimisation for UWB receiver for sensor network application

    NASA Astrophysics Data System (ADS)

    Naik, Rohit; Singh, Jugdutt; Veljanovski, Ronny

    2005-12-01

    Ultra Wideband (UWB) communications is one of the possible solutions for future wireless personal area network (WPAN) applications. The Federal Communications Commission (FCC), in the USA, allocated 7.5 GHz of unlicensed frequency bandwidth from 3.1 GHz to 10.6 GHz for UWB communication. It is an available spectrum which can be utilised for data communication using different technologies complying with FCC regulations. This paper presents a brief overview of the world wide regulations and Institute of Electrical and Electronic Engineers (IEEE) standardisation updates for UWB. It also focuses on the wireless sensor network application and the use of UWB communications in biomedical sensor networks. The paper aims at the design and implementation of an optimised pulsed matched filter (OPMF) used in the digital backend of a UWB radio. The optimisations are performed at the architectural and circuit level in order to reduce hardware complexity and reduced power. The OPMF is successfully implemented using the application specific integrated circuit (ASIC) design methodology and the results are compared with those obtained in previous implementation. The OPMF implementation presented in this paper yields improved characteristics such as reduction in area, almost 25% power reduction and better timing.

  15. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  16. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  17. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  18. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  19. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  20. Interference Mitigation in Transmitted-Reference UWB Receivers

    SciTech Connect

    Spiridon, A; Nekoogar, F; Dowla, F

    2004-01-14

    The transmitted-reference (TR) ultra-wideband transceivers [4] have recently become increasingly popular for their simplicity, capability to reduce the stringent UWB timing requirements, and robust performance in multipath channels. However, the performance of TR receivers is considerably limited by the severity of noise-on-noise component introduced by various types of channel noise such as additive white Gaussian noise (AWGN) or narrowband interference (NBI) on the transmitted signal [6]. It is expected that such receivers will perform poorly at low signal-to-noise ratio links, or in the presence of strong narrowband interferers. In this paper we propose a novel technique that maximizes the extraction of information from reference pulses for UWB-TR receivers. The scheme efficiently processes the incoming signal to suppress different types of interference prior to signal detection. The method described introduces a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. The performance of a conventional TR receiver and a feedback loop TR receiver in the presence of AWGN and strong narrowband interference is investigated by analysis and computer simulations. Our studies show that the reference enhancing feedback loop mechanism greatly improves the robustness of the link performance of TR receivers in the presence of non-UWB interferes with modest increase in complexity.

  1. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  2. FDTD simulation tools for UWB antenna analysis.

    SciTech Connect

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  3. FDTD simulation tools for UWB antenna analysis.

    SciTech Connect

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  4. On IEEE 802.15.6 IR-UWB receivers - simulations for DBPSK modulation.

    PubMed

    Niemelä, Ville; Hämäläinen, Matti; Iinatti, Jari

    2013-01-01

    In 2002, Federal Communications Commission (FCC) was the first in defining regulations for ultra wideband (UWB) communications followed by Europe and Japan some years later. Focusing on impulse radio (IR) UWB, in 2007 was the time for the first published standard targeting in personal area networks, released by the IEEE. The second IEEE released standard including UWB definitions is targeted for wireless body area networks (WBAN) and was published in 2012. As the wireless communications has been and will be passing through almost any levels in society, the natural step with WBAN is using it in different medical, healthcare and wellbeing applications. The arguments for these are related to the modern lifestyle, in which people have increasingly more free time and are more interested in taking care of their health and wellbeing. Another challenge is the population composition, i.e., aging in developed countries which call for new solutions and procedures, particularly from cost wise. In this paper, we are evaluating UWB receivers based on the IEEE 802.15.6 physical layer definitions and capable of detecting differentially encoded modulation. The evaluation is performed using two different WBAN channel models.

  5. ASIC Implementation of Highly Reliable IR-UWB Transceiver for Industrial Automation

    NASA Astrophysics Data System (ADS)

    Olonbayar, Sonom; Fischer, Gunter; Kreiser, Dan; Martynenko, Denys; Klymenko, Oleksiy; Kraemer, Rolf; Grass, Eckhard

    2016-07-01

    An in-depth treatment of impulse an radio ultra-wideband (IR-UWB) wireless system is provided reviewing theoretical background, proceeding with detailed implementation procedure, and finally giving simulation and test results. This is the first research and prototyping work to be published in the field of IR-UWB that operates in the 6-8 GHz band. The aim of this work is to implement an IR-UWB wireless system for industrial automation that is robust and reliable. To achieve this, an analogue bandwidth of 250 MHz and digital baseband processing at the clock frequency 499.2 MHz were realized in a 250 nm BiCMOS process, integrating the complete system into a single chip. Simulation and measurement results confirm that the implemented IR-UWB transceiver is operational across four frequency channels in the band 6-8 GHz each supporting three data rates 850 kb/s, 6.81 Mb/s and 27.24 Mb/s.

  6. UWB delay and multiply receiver

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  7. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  8. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  9. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication.

    PubMed

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M

    2016-01-01

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm. PMID:27355947

  10. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication.

    PubMed

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M

    2016-06-27

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm.

  11. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication

    PubMed Central

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M.

    2016-01-01

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm. PMID:27355947

  12. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission.

    PubMed

    Sapienza, Stefano; Crepaldi, Marco; Motto Ros, Paolo; Bonanno, Alberto; Demarchi, Danilo

    2016-04-01

    The thresholding of Surface ElectroMyoGraphic (sEMG) signals, i.e., Average Threshold Crossing (ATC) technique, reduces the amount of data to be processed enabling circuit complexity reduction and low power consumption. This paper investigates the lowest level of complexity reachable by an ATC system through measurements and in-vivo experiments with an embedded prototype for wireless force transmission, based on asynchronous Impulse-Radio Ultra Wide Band (IR-UWB). The prototype is composed by the acquisition unit, a wearable PCB 23 × 34 mm, which includes a full custom IC integrating a UWB transmitter (chip active silicon area 0.016 mm(2), 1 mW power consumption), and the receiver. The system is completely asynchronous, it acquires a differential sEMG signal, generates the ATC events and triggers a 3.3 GHz IR-UWB transmission. ATC robustness relaxes filters constraints: two passive first order filters have been implemented, bandwidth from 10 Hz up to 1 kHz. Energy needed for the single pulse generation is 30 pJ while the whole PCB consumes 5.65 mW. The pulses radiated by the acquisition unit TX are received by a short-range and low complexity threshold-based 130 nm CMOS IR-UWB receiver with an Ultra Low Power (ULP) baseband unit capable of robustly receiving generic quasi-digital pulse sequences. The acquisition unit have been tested with 10 series of in vivo isometric and isotonic contractions, while the transmission channel with over-the-air and cable measurements obtained with a couple of planar monopole antennas and an integrated 0.004 mm(2) transmitter, the same used for the acquisition unit, with realistic channel conditions. The entire system, acquisition unit and receiver, consumes 15.49 mW. PMID:26011867

  13. A Wireless FSCV Monitoring IC With Analog Background Subtraction and UWB Telemetry.

    PubMed

    Dorta-Quiñones, Carlos I; Wang, Xiao Y; Dokania, Rajeev K; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B

    2016-04-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983

  14. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  15. A Wireless FSCV Monitoring IC with Analog Background Subtraction and UWB Telemetry

    PubMed Central

    Dorta-Quiñones, Carlos I.; Wang, Xiao Y.; Dokania, Rajeev K.; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B.

    2015-01-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5-mm2 chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pArms and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm2, weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983

  16. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  17. Wearable system-on-a-chip UWB radar for health care and its application to the safety improvement of emergency operators.

    PubMed

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; De Rossi, Danilo; Lanatà, Antonio; Tognetti, Alessandro; Scilingo, Enzo Pasquale

    2007-01-01

    A new wearable system-on-a-chip UWB radar for health care systems is presented. The idea and its applications to the safety improvement of emergency operators are discussed. The system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is explained hereinafter. The results obtained by the feasibility study regarding its implementation on a modern standard silicon technology (CMOS 90 nm) are reported, demonstrating (at simulation level) the effectiveness of such an approach and enabling the standard silicon technology for new generations of wireless sensors for heath care and safeguard wearable systems.

  18. Performance evaluation on FPGA-implemented UWB-IR receiver for in-body to out-of-body communication systems.

    PubMed

    Shimizu, Yuto; Anzai, Daisuke; Jianqing Wang

    2014-01-01

    In order to design an optimized transceiver structure of ultra wideband (UWB) transmission in in-body to out-of-body communications, it is necessary to make the transceiver structure be easily adjustable in order to realize a good communication performance in an experimental environment. For this purpose, we first implement our develop UWB-impulse radio (IR) receiver structure for the in-body to out-of-body communication in a field programmable gate array (FPGA) board, and evaluate the fundamental communication performance of the FPGA-implemented UWB-IR receiver by a biological-equivalent liquid phantom experiment. The FPGA configuration results indicate that our FPGA realization of the UWB-IR receiver has accomplished good communication performance with few FPGA slices. Moreover, the evaluation results in the liquid phantom experiment show that the FPGA-implemented UWB-IR receiver can achieve a bit error rate (BER) of 10(-3) up to a communication distance of 70 mm with ensuring a high data rate of 2 Mbps.

  19. In-situ demonstration of radio-frequency enhanced chlorinated hydrocarbon remediation

    SciTech Connect

    Kasevich, R.S.; Price, S.L.; Faust, D.L.; Jarosch, T.R.

    1994-06-01

    This paper discusses the results of a successful demonstration of radio frequency (RF) heating for enhanced chlorinated hydrocarbon remediation at the M-Area Seepage Basin of the Department of Energy`s Savannah River Site. RF heating was integrated with soil vapor extraction (SVE) to enhance the release of residual volatile chlorinated hydrocarbons which are concentrated in low permeable clay lenses in the unsaturated zone. Participants in this effort consisted of the Westinghouse Savannah River Technology Center; the Westinghouse Science and Technology Center (Pittsburgh, PA); and KAI Technologies, Inc. which provided the RF technology. Additionally, a better understanding of RF heating technology is gained through a description of the RF heating system.

  20. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  1. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  2. RadioAstron as a target and as an instrument: Enhancing the Space VLBI mission's scientific output

    NASA Astrophysics Data System (ADS)

    Duev, D. A.; Zakhvatkin, M. V.; Stepanyants, V. A.; Molera Calvés, G.; Pogrebenko, S. V.; Gurvits, L. I.; Cimò, G.; Bocanegra Bahamón, T. M.

    2015-01-01

    Context. The accuracy of orbit determination has a strong impact on the scientific output of the Space VLBI mission RadioAstron. Aims: The aim of this work is to improve the RadioAstron orbit reconstruction by means of sophisticated dynamical modelling of its motion in combination with multi-station Doppler tracking of the RadioAstron spacecraft. Methods: The improved orbital solution is demonstrated using Doppler measurements of the RadioAstron downlink signal and by correlating VLBI observations made by RadioAstron with ground-based telescopes using the enhanced orbit determination data. Results: Orbit determination accuracy has been significantly improved from ~600 m in 3D position and ~2 cm/s in 3D velocity to several tens of metres and mm/s, respectively.

  3. Band-notched reconfigurable CPW-fed UWB antenna

    NASA Astrophysics Data System (ADS)

    Majid, H. A.; Rahim, M. K. A.; Hamid, M. R.; Murad, N. A.; Samsuri, N. A.; Yusof, M. F. M.; Kamarudin, M. R.

    2016-04-01

    A reconfigurable band-notched CPW-fed UWB antenna using electromagnetic bandgap (EBG) structure is proposed. Two structures are positioned adjacent to the transmission line of the UWB antenna. The band-notched characteristic can be disabled by switching the state of switch place at the strip line. The EBG structure produces reconfigurable band notched at 4.0 GHz, which covers C-band satellite communication (3.625-4.2 GHz) systems. The proposed antenna is suitable for UWB systems, which requires reconfigurable band reject function.

  4. Body Area Networks performance analysis using UWB.

    PubMed

    Fatehy, Mohammed; Kohno, Ryuji

    2013-01-01

    The successful realization of a Wireless Body Area Network (WBAN) using Ultra Wideband (UWB) technology supports different medical and consumer electronics (CE) applications but stand in a need for an innovative solution to meet the different requirements of these applications. Previously, we proposed to use adaptive processing gain (PG) to fulfill the different QoS requirements of these WBAN applications. In this paper, interference occurred between two different BANs in a UWB-based system has been analyzed in terms of acceptable ratio of overlapping between these BANs' PG providing the required QoS for each BAN. The first BAN employed for a healthcare device (e.g. EEG, ECG, etc.) with a relatively longer spreading sequence is used and the second customized for entertainment application (e.g. wireless headset, wireless game pad, etc.) where a shorter spreading code is assigned. Considering bandwidth utilization and difference in the employed spreading sequence, the acceptable ratio of overlapping between these BANs should fall between 0.05 and 0.5 in order to optimize the used spreading sequence and in the meantime satisfying the required QoS for these applications.

  5. Body Area Networks performance analysis using UWB.

    PubMed

    Fatehy, Mohammed; Kohno, Ryuji

    2013-01-01

    The successful realization of a Wireless Body Area Network (WBAN) using Ultra Wideband (UWB) technology supports different medical and consumer electronics (CE) applications but stand in a need for an innovative solution to meet the different requirements of these applications. Previously, we proposed to use adaptive processing gain (PG) to fulfill the different QoS requirements of these WBAN applications. In this paper, interference occurred between two different BANs in a UWB-based system has been analyzed in terms of acceptable ratio of overlapping between these BANs' PG providing the required QoS for each BAN. The first BAN employed for a healthcare device (e.g. EEG, ECG, etc.) with a relatively longer spreading sequence is used and the second customized for entertainment application (e.g. wireless headset, wireless game pad, etc.) where a shorter spreading code is assigned. Considering bandwidth utilization and difference in the employed spreading sequence, the acceptable ratio of overlapping between these BANs should fall between 0.05 and 0.5 in order to optimize the used spreading sequence and in the meantime satisfying the required QoS for these applications. PMID:24109913

  6. Ultrawideband Electromagnetic Interference to Aircraft Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  7. Optimum Pulse Shape Design for UWB Systems with Timing Jitter

    NASA Astrophysics Data System (ADS)

    Lee, Wilaiporn; Kunaruttanapruk, Suwich; Jitapunkul, Somchai

    This paper proposes a novel technique in designing the optimum pulse shape for ultra wideband (UWB) systems under the presence of timing jitter. In the UWB systems, pulse transmission power and timing jitter tolerance are crucial keys to communications success. While there is a strong desire to maximize both of them, one must be traded off against the other. In the literature, much effort has been devoted to separately optimize each of them without considering the drawback to the other. In this paper, both factors are jointly considered. The proposed pulse attains the adequate power to survive the noise floor and at the same time provides good resistance to the timing jitter. The proposed pulse also meets the power spectral mask restriction as prescribed by the Federal Communications Commission (FCC) for indoor UWB systems. Simulation results confirm the advantages of the proposed pulse over other previously known UWB pulses. Parameters of the proposed optimization algorithm are also investigated in this paper.

  8. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  9. Electron acceleration in connection with radio noise storm onsets or enhancements

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Trottet, G.

    2008-11-01

    Radio noise storms are generated by suprathermal (≃ 10 keV) electrons accelerated continuously over time scales of hours or days in active region magnetic fields. They are related to emerging magnetic loops interacting with overlying loops and leading to magnetic coronal reconfiguration (e.g. Bentley et al. 2000). Noise storm onsets or enhancements have been sometimes observed in association with a flare-like sudden energy release in the active region producing a localized microwave (Raulin et al. 1991) or soft X-ray brightening (Raulin & Klein 1994). A few cases have also been reported in which 10-30 keV emission from a superhot plasma or from non-thermal electrons have been observed at the onset of noise storms (Crosby et al. 1996) confirming that a flare-like energy release in the lower corona could be a necessary condition for noise storms to start. No spatially resolved hard X-ray observations were however available in the case of the latter analysis, allowing to check that the flare-like emission and the noise storm were originating from the same active region. We present here an event for which both radio and hard X-ray (HXR) spatially resolved observations are available.

  10. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.

    PubMed

    Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil

    2016-06-01

    The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system.

  11. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.

    PubMed

    Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil

    2016-06-01

    The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system. PMID:27382482

  12. Software-Defined Ultra-wideband Radio Communications: A New RF Technology for Emergency Response Applications

    SciTech Connect

    Nekoogar, F; Dowla, F

    2009-10-19

    Reliable wireless communication links for local-area (short-range) and regional (long-range) reach capabilities are crucial for emergency response to disasters. Lack of a dependable communication system can result in disruptions in the situational awareness between the local responders in the field and the emergency command and control centers. To date, all wireless communications systems such as cell phones and walkie-talkies use narrowband radio frequency (RF) signaling for data communication. However, the hostile radio propagation environment caused by collapsed structures and rubble in various disaster sites results in significant degradation and attenuation of narrowband RF signals, which ends up in frequent communication breakdowns. To address the challenges of reliable radio communication in disaster fields, we propose an approach to use ultra-wideband (UWB) or wideband RF waveforms for implementation on Software Defined Radio (SDR) platforms. Ultra-wideband communications has been proven by many research groups to be effective in addressing many of the limitations faced by conventional narrowband radio technologies. In addition, LLNL's radio and wireless team have shown significant success in field deployment of various UWB communications system for harsh environments based on LLNL's patented UWB modulation and equalization techniques. Furthermore, using software defined radio platform for UWB communications offers a great deal of flexibility in operational parameters and helps the radio system to dynamically adapt itself to its environment for optimal performance.

  13. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Zheng, W. T.; Zheng, X. H.; Wang, X.; Tian, H. W.

    2011-05-01

    We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO 2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH 4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.

  14. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-01-01

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme. PMID:21970578

  15. Joint estimation of TOA and DOA in IR-UWB system using a successive propagator method

    NASA Astrophysics Data System (ADS)

    Wang, Fangqiu; Zhang, Xiaofei; Wang, Chenghua; Zhou, Shengkui

    2015-10-01

    Impulse radio ultra-wideband (IR-UWB) ranging and positioning require accurate estimation of time-of-arrival (TOA) and direction-of-arrival (DOA). With receiver of two antennas, both of the TOA and DOA parameters can be estimated via two-dimensional (2D) propagator method (PM), in which the 2D spectral peak searching, however, renders much higher computational complexity. This paper proposes a successive PM algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak searching. The proposed algorithm firstly gets the initial TOA estimates in the two antennas from the propagation matrix, then utilises successively one-dimensional (1D) local searches to achieve the estimation of TOAs in the two antennas, and finally obtains the DOA estimates via the difference in the TOAs between the two antennas. The proposed algorithm, which only requires 1D local searches, can avoid the high computational cost in 2D-PM algorithm. Furthermore, the proposed algorithm can obtain automatically paired parameters and has better joint TOA and DOA estimation performance than conventional PM algorithm, estimation of signal parameters via rotational invariance techniques algorithm and matrix pencil algorithm. Meanwhile, it has very close parameter estimation to that of 2D-PM algorithm. We have also derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer-Rao bound of TOA and DOA estimation in this paper. The simulation results verify the usefulness of the proposed algorithm.

  16. Waveform Analysis of UWB GPR Antennas

    PubMed Central

    Rial, Fernando I.; Lorenzo, Henrique; Pereira, Manuel; Armesto, Julia

    2009-01-01

    Ground Penetrating Radar (GPR) systems fall into the category of ultra-wideband (UWB) devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium) plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency. PMID:22573965

  17. Waveform Analysis of UWB GPR Antennas.

    PubMed

    Rial, Fernando I; Lorenzo, Henrique; Pereira, Manuel; Armesto, Julia

    2009-01-01

    Ground Penetrating Radar (GPR) systems fall into the category of ultra-wideband (UWB) devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium) plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  18. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds... received. An acknowledgment of reception must continue to be received by the UWB intentional radiator...

  19. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds... received. An acknowledgment of reception must continue to be received by the UWB intentional radiator...

  20. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds... received. An acknowledgment of reception must continue to be received by the UWB intentional radiator...

  1. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds... received. An acknowledgment of reception must continue to be received by the UWB intentional radiator...

  2. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...

  3. Performance Enhancement of Multi-Cyclic Detector for Cognitive Radios with an OFDM Primary System

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Po, Kimtho; Takada, Jun-Ichi

    Spectrum sensing, a key technical challenge in cognitive radios (CR) technology, is a technique that enables the spectrum of licensed systems to be accessed without causing undue interference. It is well known that cyclostationarity detectors have great advantages over energy detectors in terms of the robustness to noise uncertainty that significantly degrades the performance as well as the capability to distinguish the signal of interest from the other interferences and noise. The generalized likelihood ratio test (GLRT) is a recognized sensing technique that utilizes the inherent cyclostationarity of the signal and has been intensively studied. However, no comprehensive evaluation on its performance enhancement has been published to date. Moreover high computational complexity is still a significant problem for its realization. This paper proposes a maximum ratio combining multi-cyclic detector which uses multiple cyclic frequencies for performance enhancement with reduced computational complexity. An orthogonal frequency-division multiplexing (OFDM) signal based on the ISDB-T (integrated services digital broadcasting terrestrial), a Japanese digital television broadcasting standard, was used in the evaluation assuming this as a primary system in WRAN (wireless regional area network) applications like IEEE 802.22.

  4. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    SciTech Connect

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  5. Ultra Wideband (UWB) communication vulnerability for security applications.

    SciTech Connect

    Cooley, H. Timothy

    2010-07-01

    RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages over conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.

  6. Optical channel impact over the PSD of UWB over FSO links

    NASA Astrophysics Data System (ADS)

    Arvizu-Mondragón, A.; Villarreal-Reyes, S.; Pérez-Ramos, A. E.; Santos-Aguilar, J.; Muller, M.; Abib, G. I.; Lepers, C.

    2015-03-01

    The power restrictions limit the communication range of UWB devices to just a few meters, which produce UWB wireless networks operating in stand-alone mode. With the purpose of increasing the coverage area and achieving seamless communications between stand-alone networks UWBoF technology has been proposed. However, the deployment of fiber connecting stand-alone UWB networks is not always feasible. We propose and implement a UWB over free space optic (FSO) horizontal link. Initial results presenting the effects of the optical wireless channel over the UWB signal PSD are demonstrated. These results are analyzed and implementation recommendations are provided based on them.

  7. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks.

    PubMed

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-01

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. PMID:26840312

  8. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    PubMed Central

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-01

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. PMID:26840312

  9. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks.

    PubMed

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-29

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  10. A Novel UWB Antenna with Dual Band-Notched Characteristics

    NASA Astrophysics Data System (ADS)

    Lin, Yongfan; Liang, Jiangang; Wu, Goucheng; Xu, Zhiyong; Niu, Xuebin

    2015-11-01

    In this article, started from analyzing the basic principle of band-notched characteristics, a feasibly method used for band-notched antenna is demonstrated and the equivalent circuit for this method is designed. A novel UWB antenna is designed. Based on this method, two stubs which can be equivalent to shorted stubs in parallel configuration are added to realize dual band-notched characteristics. Simulated and measured results all show that the UWB antenna yields an impendence bandwidth of 2.0-10.6 GHz by defining VSWR ≦ 2, and two obvious band-notched functions (3.27-3.83 GHz, 4.60-5.90 GHz) occur at the working bandwidth of WIMAX (3.3-3.7 GHz) and HiperLAN/2 (5.15-5.35 GHz, 5.47-5.725 GHz), so the electromagnetic interference between UWB application and WIMAX, HiperLAN/2 can be suppressed.

  11. Optimal waveforms design for ultra-wideband impulse radio sensors.

    PubMed

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  12. Enhanced Radio Frequency Biosensor for Food Quality Detection Using Functionalized Carbon Nanofillers.

    PubMed

    Tanguy, Nicolas R; Fiddes, Lindsey K; Yan, Ning

    2015-06-10

    This paper outlines an improved design of inexpensive, wireless and battery free biosensors for in situ monitoring of food quality. This type of device has an additional advantage of being operated remotely. To make the device, a portion of an antenna of a passive 13.56 MHz radio frequency identification (RFID) tag was altered with a sensing element composed of conductive nanofillers/particles, a binding agent, and a polymer matrix. These novel RFID tags were exposed to biogenic amine putrescine, commonly used as a marker for food spoilage, and their response was monitored over time using a general-purpose network analyzer. The effect of conductive filler properties, including conductivity and morphology, and filler functionalization was investigated by preparing sensing composites containing carbon particles (CPs), multiwall carbon nanotubes (MWCNTs), and binding agent grafted-multiwall carbon nanotubes (g-MWCNTs), respectively. During exposure to putrescine, the amount of reflected waves, frequency at resonance, and quality factor of the novel RFID tags decreased in response. The use of MWCNTs reduced tag cutoff time (i.e., faster response time) as compared with the use of CPs, which highlighted the effectiveness of the conductive nanofiller morphology, while the addition of g-MWCNTs further accelerated the sensor response time as a result of localized binding on the conductive nanofiller surface. Microstructural investigation of the film morphology indicated a better dispersion of g-MWCNTs in the sensing composite as compared to MWCNTs and CPs, as well as a smoother texture of the surface of the resulting coating. These results demonstrated that grafting of the binding agent onto the conductive particles in the sensing composite is an effective way to further enhance the detection sensitivity of the RFID tag based sensor. PMID:25993041

  13. Enhanced Radio Frequency Biosensor for Food Quality Detection Using Functionalized Carbon Nanofillers.

    PubMed

    Tanguy, Nicolas R; Fiddes, Lindsey K; Yan, Ning

    2015-06-10

    This paper outlines an improved design of inexpensive, wireless and battery free biosensors for in situ monitoring of food quality. This type of device has an additional advantage of being operated remotely. To make the device, a portion of an antenna of a passive 13.56 MHz radio frequency identification (RFID) tag was altered with a sensing element composed of conductive nanofillers/particles, a binding agent, and a polymer matrix. These novel RFID tags were exposed to biogenic amine putrescine, commonly used as a marker for food spoilage, and their response was monitored over time using a general-purpose network analyzer. The effect of conductive filler properties, including conductivity and morphology, and filler functionalization was investigated by preparing sensing composites containing carbon particles (CPs), multiwall carbon nanotubes (MWCNTs), and binding agent grafted-multiwall carbon nanotubes (g-MWCNTs), respectively. During exposure to putrescine, the amount of reflected waves, frequency at resonance, and quality factor of the novel RFID tags decreased in response. The use of MWCNTs reduced tag cutoff time (i.e., faster response time) as compared with the use of CPs, which highlighted the effectiveness of the conductive nanofiller morphology, while the addition of g-MWCNTs further accelerated the sensor response time as a result of localized binding on the conductive nanofiller surface. Microstructural investigation of the film morphology indicated a better dispersion of g-MWCNTs in the sensing composite as compared to MWCNTs and CPs, as well as a smoother texture of the surface of the resulting coating. These results demonstrated that grafting of the binding agent onto the conductive particles in the sensing composite is an effective way to further enhance the detection sensitivity of the RFID tag based sensor.

  14. Enhanced pulsar and single pulse detection via automated radio frequency interference detection in multipixel feeds

    NASA Astrophysics Data System (ADS)

    Kocz, J.; Bailes, M.; Barnes, D.; Burke-Spolaor, S.; Levin, L.

    2012-02-01

    Single pixel feeds on large aperture radio telescopes have the ability to detect weak (˜10 mJy) impulsive bursts of radio emission and sub-mJy radio pulsars. Unfortunately, in large-scale blind surveys, radio frequency interference (RFI) mimics both radio bursts and radio pulsars, greatly reducing the sensitivity to new discoveries as real signals of astronomical origin get lost among the millions of false candidates. In this paper a technique that takes advantage of multipixel feeds to use eigenvector decomposition of common signals is used to greatly facilitate radio burst and pulsar discovery. Since the majority of RFI occurs with zero dispersion, the method was tested on the total power present in the 13 beams of the Parkes multibeam receiver using data from archival intermediate-latitude surveys. The implementation of this method greatly reduced the number of false candidates and led to the discovery of one new rotating radio transient or RRAT, six new pulsars and five new pulses that shared the swept-frequency characteristics similar in nature to the `Lorimer burst'. These five new signals occurred within minutes of 11 previous detections of a similar type. When viewed together, they display temporal characteristics related to integer seconds, with non-random distributions and characteristic 'gaps' between them, suggesting they are not from a naturally occurring source. Despite the success in removing RFI, false candidates present in the data that are only visible after integrating in time or at non-zero dispersion remained. It is demonstrated that with some computational penalty, the method can be applied iteratively at all trial dispersions and time resolutions to remove the vast majority of spurious candidates.

  15. UWB radar technique for arc detection in coaxial cables and waveguides

    SciTech Connect

    Maggiora, R.; Salvador, S.

    2009-11-26

    As spread spectrum technology has revolutionized the communications industry, Ultra Wide Band (UWB) technology is dramatically improving radar performances. These advanced signal processing techniques have been adapted to coaxial cables and waveguides to provide new features and enhanced performance on arc detection. UWB signals constituted by a sequence of chips (properly chosen to reduce side lobes and to improve detection accuracy) are transmitted along the transmission lines at a specified Pulse Repetition Frequency (PRF) and their echoes are received by means of directional couplers. The core of the receiver is an ultra high-speed correlator implemented in a Digital Signal Processor (DSP). When a target (arc) is detected, its position and its 'radar cross section' are calculated to be able to provide the arc position along the transmission line and to be able to classify the type of detected arc. The 'background scattering' is routinely extracted from the received signal at any pulse. This permits to be resilient to the background structure of transmission lines (bends, junctions, windows, etc.). Thanks to the localization feature, segmentation is also possible for creating sensed and non-sensed zones (for example, to be insensitive to antenna load variations)

  16. Enhanced tissue integration of implantable electrodes for sensing, and stimulation, via radio frequency glow discharge

    NASA Astrophysics Data System (ADS)

    O'Connor, Laurie M.

    Biopotential electrodes are conductive materials that convert electronic currents to or from ionic currents for sensing, and stimulating specific tissue sites for medical applications. Implanted electrodes become "walled off" by the foreign body tissue reactions producing poorly attached scar capsules dominated by surrounding dense collagenous lamellae and source fibroblasts which are electrically resistive. The conductive interstitial fluid that is typical between an electrode and the resistive capsule allows spurious current paths. The insulating layer increases the distance between the electrode and the target sites and poor attachment often results in electrode migration within the host tissue. This investigation tested the hypothesis that surface-energy modulation of electrodes, via Radio Frequency Glow Discharge Treatment (RFGDT), can improve the performance of tissue-implantable electrodes by reducing the foreign body tissue reaction and enhancing interfacial bonding between the tissue and electrode material. Previously published findings were reproduced in a pilot study of explanted reference grade medical-grade methyl silicone (PDMS) and commercially pure titanium (cpTi) materials and their tissue capsules from 30-day subcutaneous exposures in Balb/C mice. The low-critical surface tension PDMS produced thick, dense, poorly attached scar capsules while the higher-surface-energy commercially pure titanium (cpTi) produced more cellular and strongly attached tissue layers difficult to delaminate from the biomaterial. For the main body of work, cpTi, capacitor-grade Tantalum (Ta), and synthetic heart valve-quality Pyrolytic Carbon (PyC) were evaluated, representative of potential high-surface-energy implant electrode materials. Their surface characteristics were determined as-manufactured and after Radio Frequency Glow Discharge Treatment (RFGDT) by Critical Surface Tension (CST) measurement, Scanning Electron Microscopy (SEM), Energy Dispersive X

  17. Self organization of wireless sensor networks using ultra-wideband radios

    DOEpatents

    Dowla, Farid U.; Nekoogar, Franak; Spiridon, Alex

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  18. Trends in ultracool dwarf magnetism. I. X-ray suppression and radio enhancement

    SciTech Connect

    Williams, P. K. G.; Berger, E.; Cook, B. A.

    2014-04-10

    Although ultracool dwarfs (UCDs) are now known to generate and dissipate strong magnetic fields, a clear understanding of the underlying dynamo is still lacking. We have performed X-ray and radio observations of seven UCDs in a narrow range of spectral type (M6.5-M9.5) but spanning a wide range of projected rotational velocities (vsin i ≈ 3-40 km s{sup –1}). We have also analyzed unpublished archival Chandra observations of four additional objects. All of the newly observed targets are detected in the X-ray, while only one is detected in the radio, with the remainder having sensitive upper limits. We present a database of UCDs with both radio and X-ray measurements and consider the data in light of the so-called Güdel-Benz relation (GBR) between magnetic activity in these bands. Some UCDs have very bright radio emission and faint X-ray emission compared to what would be expected for rapid rotators, while others show the opposite behavior. We show that UCDs would still be radio-overluminous relative to the GBR even if their X-ray emission were at standard rapid-rotator 'saturation' levels. Recent results from Zeeman-Doppler imaging and geodynamo simulations suggest that rapidly rotating UCDs may harbor a bistable dynamo that supports either a stronger, axisymmetric magnetic field or a weaker, non-axisymmetric field. We suggest that the data can be explained in a scenario in which strong-field objects obey the GBR while weak-field objects are radio-overluminous and X-ray-underluminous, possibly because of a population of gyrosynchrotron-emitting coronal electrons that is continuously replenished by low-energy reconnection events.

  19. DC-offset effect cancelation method using mean-padding FFT for automotive UWB radar sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yeonghwan; Kim, Sang-Dong; Lee, Jong-Hun

    2011-06-01

    To improve road safety and realize intelligent transportation, Ultra-Wideband (UWB) radars sensor in the 24 GHz domain are currently under development for many automotive applications. Automotive UWB radar sensor must be small, require low power and inexpensive. By employing a direct conversion receiver, automotive UWB radar sensor is able to meet size and cost reduction requirements. We developed Automotive UWB radar sensor for automotive applications. The developed receiver of the automotive radar sensor is direct conversion architecture. Direct conversion architecture poses a dc-offset problem. In automotive UWB radar, Doppler frequency is used to extract velocity. The Doppler frequency of a vehicle can be detected using zero-padding Fast Fourier Transform (FFT). However, a zero-padding FFT error is occurs due to DC-offset problem in automotive UWB radar sensor using a direct conversion receiver. Therefore, dc-offset problem corrupts velocity ambiguity. In this paper we proposed a mean-padding method to reduce zero-padding FFT error due to DC-offset in automotive UWB radar using direct conversion receiver, and verify our proposed method with computer simulation and experiment using developed automotive UWB radar sensor. We present the simulation results and experiment result to compare velocity measurement probability of the zero-padding FFT and the mean-padding FFT. The proposed algorithm simulated using Matlab and experimented using designed the automotive UWB radar sensor in a real road environment. The proposed method improved velocity measurement probability.

  20. Spectrum-averaged Harmonic Path (SHAPA) algorithm for non-contact vital sign monitoring with ultra-wideband (UWB) radar.

    PubMed

    Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann

    2014-01-01

    We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.

  1. A Hybrid TOA-Fingerprinting Based Localization of Mobile Nodes Using UWB Signaling for Non Line-Of-Sight Conditions

    PubMed Central

    Kabir, Md. Humayun; Kohno, Ryuji

    2012-01-01

    Recently, Impulse Radio Ultra Wideband (IR-UWB) signaling has become popular for providing precise location accuracy for mobile and wireless sensor node localization in the indoor environment due to its large bandwidth and high time resolution while providing ultra-high transmission capacity. However, the Non-line-of-sight (NLOS) error mitigation has considerable importance in localization of wireless nodes. In order to mitigate NLOS errors in indoor localization this paper proposes and investigates a novel approach which creates a hybrid combination of channel impulse response (CIR)-based fingerprinting (FP) positioning and an iterative Time of Arrival (TOA) real time positioning method using Ultra Wideband (UWB) signaling. Besides, to reduce the calculation complexities in FP method, this paper also introduces a unique idea for the arrangement of reference nodes (or tags) to create a fingerprinting database. The simulation results confirm that the proposed hybrid method yields better positioning accuracies and is much more robust in NLOS error mitigation than TOA only and FP only and a conventional iterative positioning method. PMID:23112651

  2. Comparison between Coherent and Noncoherent Receivers for UWB Communications

    NASA Astrophysics Data System (ADS)

    Durisi, Giuseppe; Benedetto, Sergio

    2005-12-01

    We present a comparison between coherent and noncoherent UWB receivers, under a realistic propagation environment, that takes into account also the effect of path-dependent pulse distortion. As far as coherent receivers are concerned, both maximal ratio combining (MRC) and equal gain combining (EGC) techniques are analyzed, considering a limited number of estimated paths. Furthermore, two classical noncoherent schemes, a differential detector, and a transmitted-reference receiver, together with two iterative solutions, recently proposed in the literature, are considered. Finally, we extend the multisymbol approach to the UWB case and we propose a decision-feedback receiver that reduces the complexity of the previous strategy, thus still maintaining good performance. While traditional noncoherent receivers exhibit performance loss, if compared to coherent detectors, the iterative and the decision-feedback ones are able to guarantee error probability close to the one obtained employing an ideal RAKE, without requiring channel estimation, in the presence of static indoor channel and limited multiuser interference.

  3. UWB-Based Tracking of Autonomous Vehicles with Multiple Receivers

    NASA Astrophysics Data System (ADS)

    Busanelli, Stefano; Ferrari, Gianluigi

    In this paper, we consider real-time tracking of an Autonomous Guided Vehicle (AGV) in an indoor industrial scenario. An on-board odometer provides information about the dynamic state of the AGV, allowing to predict its pose (position and orientation). At the same time, an external Ultra Wide Band (UWB) wireless network provides the information necessary to compensate the error drift accumulated by the odometer. Two novel alternative solutions for real-time tracking are proposed: (i) a classical Time Differences of Arrivals (TDOA) approach with a single receiver; (ii) a "Twin-receiver" TDOA (TTDOA) approach, that requires the presence of two independent receivers on the AGV. The performance of the two proposed algorithms is evaluated in realistic conditions. The obtained results clearly show the tradeoff existing between the frequency of UWB measurements and their quality.

  4. UWB channel estimation using new generating TR transceivers

    DOEpatents

    Nekoogar, Faranak; Dowla, Farid U.; Spiridon, Alex; Haugen, Peter C.; Benzel, Dave M.

    2011-06-28

    The present invention presents a simple and novel channel estimation scheme for UWB communication systems. As disclosed herein, the present invention maximizes the extraction of information by incorporating a new generation of transmitted-reference (Tr) transceivers that utilize a single reference pulse(s) or a preamble of reference pulses to provide improved channel estimation while offering higher Bit Error Rate (BER) performance and data rates without diluting the transmitter power.

  5. On the Performance of Multiple Pulse Multiple Delay UWB Modulation

    SciTech Connect

    Nekoogar, F; Dowla, F U

    2003-05-23

    Multiple access (MA) in UWB communication is an area of active research. In this paper we introduce and study the performance of a new MA scheme in the context of multiple transmitted-reference short duration (nsec) chirp pulses in the presence of additive white Gaussian noise (AWGN). The transmitted-reference (T-R) receiver is extended using multiple orthogonal pulses. The proposed UWB receiver samples the receiver autocorrelation function (ACF) at both zero- and non-zero lags, thus sampling and matching the shape of ACFs rather than just the shape of the received pulses. Sampling of non-zero ACF lags is a significant new approach. The scheme proposed in this paper is a step towards combining the multi-pulse approach and T-R modulation in a multiple access ultra wideband (MA-UWB) communications system. Improved bit error rate performance over a conventional zero-lag receiver (i.e. energy detection receiver) is demonstrated by simulation. Analytical expressions for the system BER are also derived and confirmed through simulations for the system.

  6. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  7. Determination of the Path Loss from Passenger Electronic Devices to Radio Altimeter with Additional EMI Test

    NASA Astrophysics Data System (ADS)

    Schüür, J.; Nunes, R. R.

    2012-05-01

    Emitters of current and future wireless ultra wideband technology (UWB) inside the cabin should not interfere with any aircraft system. Especially the radio altimeter (RA) system using antennas mounted outside the fuselage is potentially sensitive to UWB devices in the frequency range between 4.1 and 4.8 GHz. The measurement of the interference path loss (IPL) to the RA is therefore of interest and is presented for different aircraft. The need of a high dynamic setup with low parasitic coupling in the IPL measurement is stressed. In addition, electromagnetic interference (EMI) tests with different transmitted signals are made, showing that the susceptibility of the RA system actually increases with UWB modulation.

  8. Influence of large signal modulation on photonic UWB generation based on electro-optic modulator.

    PubMed

    Gu, Rong; Pan, Shilong; Chen, Xiangfei; Pan, Minghai; Ben, De

    2011-07-01

    Various schemes based on electro-optic modulators have been reported to generate ultra-wideband (UWB) signals in the optical domain, but the availability of these methods always relies on small signal modulation. In this paper, the influence of large signal modulation on two typical schemes, representing two major categories of external-modulator-based photonic UWB generation schemes, is analytically and numerically studied. While the quasi single-sideband UWB (QSSB-UWB) pulse can maintain its shape, the Gaussian UWB (GUWB) generation scheme suffers serious modulation distortion when the phase modulation index is greater than π/6. The modulation distortion would have negative impact on the receiver sensitivity when the signal is sent to a correlation receiver.

  9. Photonic Generation of Dual-Band Power-Efficient Millimeter-Wave UWB Signals

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhou, Hua

    2015-05-01

    Ultra-wideband (UWB) technology has attracted great interest because it can provide a promising solution of future radar and short-range broadband wireless communications. The generation of millimeter-wave UWB signals using photonic approaches can reduce the high cost of the millimeter-wave electrical circuits. Moreover, it is well compatible with fiber transmission, which can effectively extend its signal coverage. In this paper, a novel approach to the photonic generation of millimeter-wave UWB signals with dual-band operation consideration is proposed. The proposed scheme can simultaneously generate millimeter-wave UWB signals in both 24 GHz and 60 GHz millimeter band, and can efficiently exploit the spectrum limit allowed by the FCC mask by using the linear combination pulse design concept. A model describing the proposed system is developed and the generation of 24/60 GHz millimeter-wave UWB signals is demonstrated via computer simulations.

  10. UWB doublet signal generation and modulation based on DFB laser under optical pulses injection

    NASA Astrophysics Data System (ADS)

    Chen, Dalei; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zhou, Hua; Zhao, Jiyong; Huang, Long; Zhu, Huatao; Wang, Peng

    2016-05-01

    In this paper, a novel scheme to generate ultra-wideband (UWB) doublet signals based on the cross-gain modulation (XGM) effect in the DFB lasers is proposed and experimentally demonstrated, the modulation and transmission of the generated UWB doublet signals are also researched. In the proposed system, a gain-switched laser (GSL) is used as a master laser (ML) and the optical pulses from the ML are optically injected into two paralleled DFB lasers, which are used as slave lasers (SL). Then the outputs from the SLs are detected by a balanced photodiode (BPD) to generate the Bi-phased UWB signals. By properly setting the system parameters, UWB signals with various modulation formats such as on-off keying (OOK), pulse amplitude modulation (PAM) as well as the phase-shift keying (PSK) can be generated. In addition, fiber transmission of the modulated UWB signals is also experimentally investigated.

  11. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    PubMed

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz. PMID:25134088

  12. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    PubMed

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  13. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  14. Study of the Pre-Reversal Enhancement at the Jicamarca Radio Observatory using the ASPEN-TIMEGCM

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Crowley, G.; Kelley, M. C.; Nicolls, M. J.; Kudeki, E.; Chau, J. L.

    2003-12-01

    The Advanced Space Environment Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (ASPEN-TIMEGCM) has been run to simulate the global ionosphere for three days in April 2002 and five days in June 2002. The April period was a time of quiet geomagnetic activity preceding an intense storm while the June period was a time of quiet to moderate activity. These periods were chosen as data from the Jicamarca Radio Observatory were available. Here, we concentrate on the eastward electric field (vertical ion drift) at the location of Jicamarca, as this is one of the most important parameters in setting up the low-latitude ionosphere. We find that the model properly captures the variations of the eastward equatorial electric field. In particular, it correctly models the timing and magnitude of the pre-reversal enhancement, both on nights when it is present and those when it is not.

  15. Enhancing Community Knowledge and Health Behaviors to Eliminate Blinding Trachoma in Mali Using Radio Messaging as a Strategy

    ERIC Educational Resources Information Center

    Bamani, Sanoussi; Toubali, Emily; Diarra, Sadio; Goita, Seydou; Berte, Zana; Coulibaly, Famolo; Sangare, Hama; Tuinsma, Marjon; Zhang, Yaobi; Dembele, Benoit; Melvin, Palesa; MacArthur, Chad

    2013-01-01

    The National Blindness Prevention Program in Mali has broadcast messages on the radio about trachoma as part of the country's trachoma elimination strategy since 2008. In 2011, a radio impact survey using multi-stage cluster sampling was conducted in the regions of Kayes and Segou to assess radio listening habits, coverage of the broadcasts,…

  16. Enhancing the Electronic Sandbox: A Plan for Improving the Educational Value of Student-Operated Radio Stations.

    ERIC Educational Resources Information Center

    Thompsen, Philip A.

    Many colleges and universities have student-operated radio stations, but in some instances these stations have deteriorated, becoming "electronic sandboxes" where students "play radio." This paper suggests that the educational value of student-operated radio stations can and should be improved. The broadcast industry traditionally has a low…

  17. Radio frequency (13.56 MHz) energy enhances recovery from mild hypothermia.

    PubMed

    Hesslink, R L; Pepper, S; Olsen, R G; Lewis, S B; Homer, L D

    1989-09-01

    The rate of warming after hypothermia depends on the method of rewarming. This study compared the effectiveness of radio frequency (RF) energy against hot (41 degrees C) water immersion (HW) and an insulated cocoon (IC) for rewarming hypothermic men. Six men fasted overnight and were rewarmed for 1 h after attaining a 0.5 degree C reduction in rectal temperature (Tre). Tre and esophageal (Tes) temperature were recorded every 5 min with nonmetallic thermal probes. The base-line value for Tre and Tes just before rewarming was subtracted from each 5 min Tre and Tes during rewarming to give delta Tre and delta Tes. The 12 delta Tes values were averaged for each individual and were compared using analysis of variance. The average delta Tes for RF (1.15 +/- 0.22 degrees C/h) was faster (P less than 0.001) than either IC (0.37 +/- 0.16 degrees C/h) or HW (0.18 +/- 0.09 degree C/h). The present study shows the superiority of RF energy for rewarming mildly hypothermic men.

  18. Hybrid simulation of a dc-enhanced radio-frequency capacitive discharge in hydrogen

    NASA Astrophysics Data System (ADS)

    Diomede, P.; Longo, S.; Economou, D. J.; Capitelli, M.

    2012-05-01

    A PIC-MCC/fluid hybrid model was employed to study a parallel-plate capacitively coupled radio-frequency discharge in hydrogen, under the application of a dc bias voltage. When a negative dc voltage was applied to one of the electrodes of a continuous wave (cw) plasma, a ‘beam’ of secondary electrons was formed that struck the substrate counter-electrode at nearly normal incidence. The energy distribution of the electrons striking the substrate extended all the way to VRF + |Vdc|, the sum of the peak RF voltage and the absolute value of the applied dc bias. Such directional, energetic electrons may be useful for ameliorating charging damage in etching of high aspect ratio nano-features. The vibrational distribution function of molecular hydrogen was calculated self-consistently, and was found to have a characteristic plateau for intermediate values of the vibrational quantum number, v. When a positive dc bias voltage was applied synchronously during a specified time window in the afterglow of a pulsed plasma, the ion energy distributions (IEDs) of positive ions acquired an extra peak at an energy equivalent of the applied dc voltage. The electron energy distribution function was slightly and temporarily heated during the application of the dc bias pulse. The calculated IEDs of H_3^+ and H_2^+ ions in a cw plasma without dc bias were found to be in good agreement with published experimental data.

  19. Hex-Sided Rounded Dipole Antenna (HSRDA) For UWB Applications

    NASA Astrophysics Data System (ADS)

    Singhal, Sarthak; Verma, Nand Kishor; Singh, Amit Kumar

    2016-03-01

    A hex-sided rounded dipole antenna (HSRDA) for UWB applications is presented. It is designed by the addition of semi-elliptical patch sections at the edges of a square bow-tie antenna. The antenna structure is fed by a modified microstrip feedline for better impedance matching. An impedance bandwidth of 2.9-11.4 GHz is achieved. The antenna structure has quasi omnidirectional radiation patterns and reasonable gain over the same frequency range. A good agreement between the experimental and simulation results is observed. The proposed antenna structure has miniaturized size for the same bandwidth as compared to already reported antenna structures.

  20. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications

    PubMed Central

    Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  1. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    PubMed

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-05-20

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.

  2. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.

  3. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (1) Indoor UWB devices, by the nature of their design, must be capable of operation only indoors. The... system shall transmit only when the intentional radiator is sending information to an associated...

  4. 79 GHz UWB automotive short range radar - Spectrum allocation and technology trends

    NASA Astrophysics Data System (ADS)

    Bloecher, H.-L.; Sailer, A.; Rollmann, G.; Dickmann, J.

    2009-05-01

    Automotive UWB (Ultra-Wideband) short range radar (SSR) is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.

  5. Magnetic zenith enhancement of HF radio-induced airglow production at HAARP

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; McCarrick, M.; Gerken, E.; Selcher, C.; Sentman, D.; Carlson, H. C.; Gurevich, A.

    2003-02-01

    Airglow production at various beam positions relative to the magnetic field was investigated as part of an optics campaign at HAARP in February 2002. Strong emissions up to several hundred Rayleigh at 630.0 nm and more than 50 R at 557.7 nm were produced in a small spot approximately 6° in diameter located near the magnetic zenith when the transmitter beam was directed up the magnetic field. This effect was observed hundreds of times over a wide range of frequencies and ionospheric conditions. The spot at HAARP appears on average just equatorward of the nominal magnetic field direction, deflects somewhat toward the beam center when the beam is scanned, and varies slightly in size with transmitter frequency. Red-to-green ratios as low as 3 were observed, with both wavelengths showing significant onset delay. Identifiable enhancements in red-line emission were produced down to 2 MW ERP in a power ramp experiment.

  6. Inter-BSs virtual private network for privacy and security enhanced 60 GHz radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Chen, Chen; Zhang, Wei; Jin, Wei; Qiu, Kun; Li, Changchun; Jiang, Ning

    2013-06-01

    A novel inter-basestations (inter-BSs) based virtual private network (VPN) for the privacy and security enhanced 60 GHz radio-over-fiber (RoF) system using optical code-division multiplexing (OCDM) is proposed and demonstrated experimentally. By establishing inter-BSs VPN overlaying the network structure of a 60 GHz RoF system, the express and private paths for the communication of end-users under different BSs can be offered. In order to effectively establish the inter-BSs VPN, the OCDM encoding/decoding technology is employed in the RoF system. In each BS, a 58 GHz millimeter-wave (MMW) is used as the inter-BSs VPN channel, while a 60 GHz MMW is used as the common central station (CS)-BSs communication channel. The optical carriers used for the downlink, uplink and VPN link transmissions are all simultaneously generated in a lightwave-centralized CS, by utilizing four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA). The obtained results properly verify the feasibility of our proposed configuration of the inter-BSs VPN in the 60 GHz RoF system.

  7. Enhancing community knowledge and health behaviors to eliminate blinding trachoma in Mali using radio messaging as a strategy.

    PubMed

    Bamani, Sanoussi; Toubali, Emily; Diarra, Sadio; Goita, Seydou; Berté, Zana; Coulibaly, Famolo; Sangaré, Hama; Tuinsma, Marjon; Zhang, Yaobi; Dembelé, Benoit; Melvin, Palesa; MacArthur, Chad

    2013-04-01

    The National Blindness Prevention Program in Mali has broadcast messages on the radio about trachoma as part of the country's trachoma elimination strategy since 2008. In 2011, a radio impact survey using multi-stage cluster sampling was conducted in the regions of Kayes and Segou to assess radio listening habits, coverage of the broadcasts, community knowledge and behavior specific to trachoma and facial cleanliness of children. Radio access and listening were high, with 60% of respondents having heard a message on the radio about trachoma. The majority of respondents knew about trachoma, its root causes, its impact on health and prevention measures. Additionally, 66% reported washing their children's faces more than or equal to twice/day and 94% reported latrine disposal of feces. A high percentage of persons who gave a positive response to knowledge and behavior questions reported hearing the trachoma messages on the radio with 60% reporting that the radio is where they learned about trachoma. There was no significant difference in facial cleanliness when comparing children whose primary caregiver had/had not heard the trachoma messages. Next steps include revising the current messages to include more focused behavior change messaging and to engage in a more robust use of community radios.

  8. Deceptive jamming for countering UWB-SAR based on Doppler frequency phase template of false target

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Tang, Bin

    2016-04-01

    A false target deceptive jamming method for countering ultra-wideband synthetic aperture radar (UWB-SAR) is proposed in this paper, which is based on dechirp processing to intercepted UWB-SAR signal and inverse dechirp to jamming signal. The jammer quadrature down-converts and dechirps the intercepted UWB-SAR signal using a linear frequency modulation (LFM) signal oscillator, which could reduce the bandwidth and sample rate of analog-to-digital converter. Then, the jammer utilises the azimuth direction Doppler frequency phase between the false target and the jammer, and backward reflection coefficient template to modulate the phase of the intercepted UWB-SAR signal, and then delayed the modulated phase and also modulated the range direction Doppler frequency phase to the that. Finally, the jammer uses LFM signal oscillator to up-convert the narrowband jamming signal in order to recover the bandwidth of the signal. Parameter errors analysis and simulation results have shown that the detected parameters and motion characteristic errors reduce the resolution and offset the expected position of the false target, but it still could obtain an expected false target image. Theoretical analysis and simulation results indicated that the jamming signal proposed in this paper could produce a false target in the UWB-SAR image, which provide a feasible method for countering UWB-SAR in real time.

  9. Enhanced MUF propagation of HF radio waves in the auroral zone

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Jones, T. B.; Warrington, E. M.

    1997-01-01

    Four high frequency propagation paths were monitored from a transmitter located within the polar cap by four receivers located variously within the polar cap and at sub-auroral latitudes. Of these paths, one was contained entirely within the polar cap at all times, two were trans-auroral at all times, and one varied from trans-auroral during the day to polar cap during the night. Fourteen frequencies within the HF band were transmitted each hour for the duration of two 24 day experimental campaigns during the summer of 1988 and the winter of 1989. From an analysis of the received signals the confidence of signal recognition and signal strength were determined. During geomagnetically undisturbed periods the propagation behaviour resembled that of mid-latitude paths. During geomagnetically disturbed times, however, night-time propagation occurred on frequencies up to and sometimes over 10 MHz above the undisturbed night-time MUF, for periods of 2 to 6 h. These features appeared on the trans-auroral paths only and were attributed to E region (and occasionally F region) enhancement by auroral precipitation. APEs (auroral E propagation events) occurred on over 50% of nights. The occurrence of APEs also coincided with ionospheric storm periods when the HF band available for propagation was otherwise significantly narrowed due to a depletion of the F region electron density.

  10. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Tong Wang

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  11. Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2005-01-01

    be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.

  12. Non-invasive UWB sensing of astronauts' breathing activity.

    PubMed

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2014-12-30

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed.

  13. A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot

    NASA Astrophysics Data System (ADS)

    Shahu, Babu Lal; Pal, Srikanta; Chattoraj, Neela

    2016-03-01

    The article presents the design of triangular shaped fractal based antenna with circular slot for ultra wideband (UWB) application. The antenna is fed using microstrip line and has overall dimension of 24×24×1.6 mm3. The proposed antenna is covering the wide frequency bandwidth of 2.99-11.16 GHz and is achieved using simple fractal based triangular-circular geometries and asymmetrical ground plane. The antenna is designed and parametrical studies are performed using method of moment (MOM) based Full Wave Electromagnetic (EM) software Simulator Zeland IE3D. The prototype of proposed antenna is fabricated and tested to compare the simulated and measured results of various antenna parameters. The antenna has good impedance bandwidth, nearly constant gain and stable radiation pattern. Measured return loss shows fair agreement with simulated one. Also measured group delay variation obtained is less than 1.0 ns, which proves good time domain behavior of the proposed antenna.

  14. Non-Invasive UWB Sensing of Astronauts' Breathing Activity

    PubMed Central

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2015-01-01

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed. PMID:25558995

  15. All-optical UWB doublet pulses generation by using a delay interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, En-Ming

    2013-06-01

    We demonstrated a simple scheme to generate ultra wideband (UWB) doublet pulses by inputting a dark return-to-zero (RZ) signal into a fiber delay interferometer (FDI). An 0.625-Gbit/s dark-RZ pulse train where the pulse width is 120 ps was inputted into a FDI where the free spectral range (FSR) is 0.16 nm (˜20 GHz, according time delay is ˜50 ps) and the extinction ratio (ER) is 9 dB, and the phase difference of the two fiber arms was changed and controlled by adjusting the operation temperature of the FDI, by do so, UWB doublet pulses were directly generated at an output port of the FDI. The system parameter effects on the output UWB pulses were discussed. Moreover, we also numerically demonstrated that the UWB quadruplet pulses can be generated in the same set by optimizing system parameters. This scheme has some distinct advantages including easy integration, convenient tuning, good stability, and so on. Presented method also accords with the general features in future applied UWB-Over-Fiber communication system, such as, single optical source input, simple configuration and passive device.

  16. Performance Evaluation of a UWB-RFID System for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Phan, Chan T.; Arndt, D.; Ngo, P.; Gross, J.; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation of a commercially available UWB-RFID system. There are many RFID systems available today, but many provide just basic identification for auditing and inventory tracking. For applications that require high precision real time tracking, UWB technology has been shown to be a viable solution. The use of extremely short bursts of RF pulses offers high immunity to interference from other RF systems, precise tracking due to sub-nanosecond time resolution, and robust performance in multipath environments. The UWB-RFID system Sapphire DART (Digital Active RFID & Tracking) will be introduced in this talk. Laboratory testing using Sapphire DART is performed to evaluate its capability such as coverage area, accuracy, ease of operation, and robustness. Performance evaluation of this system in an operational environment (a receiving warehouse) for inventory tracking is also conducted. Concepts of using the UWB-RFID technology to track astronauts and assets are being proposed for space exploration.

  17. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  18. Smart container UWB sensor system for situational awareness of intrusion alarms

    DOEpatents

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  19. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  20. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    DOE PAGES

    Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; Fathy, Aly

    2013-01-01

    Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less

  1. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Li, Yanyan; Fathy, Aly

    2013-01-01

    In this paper, stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and non-resolvable multipath received signals are considered and represented as small-scaled Nakagami fading. The proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method s viability and the results are presented.

  2. e-POP Radio Science Using Amateur Radio Transmissions

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Perry, G. W.; Miller, E. S.; Shovkoplyas, A.; Moses, M. L.; James, H. G.; Yau, A. W.

    2015-12-01

    A major component of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) mission is to utilize artificially generated radio emissions to study High Frequency (HF) radio wave propagation in the ionosphere. In the North American and European sectors, communications between amateur radio operators are a persistent and abundant source source of HF transmissions. We present the results of HF radio wave propagation experiments using amateur radio transmissions as an HF source for e-POP RRI. We detail how a distributed and autonomously operated amateur radio network can be leveraged to study HF radio wave propagation as well as the structuring and dynamics of the ionosphere over a large geographic region. In one case, the sudden disappearance of nearly two-dozen amateur radio HF sources located in the midwestern United States was used to detect a enhancement in foF2 in that same region. We compare our results to those from other more conventional radio instruments and models of the ionosphere to demonstrate the scientific merit of incorporating amateur radio networks for radio science at HF.

  3. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  4. Breakdown Behavior of a Wireless Communication Network Under UWB Impact

    NASA Astrophysics Data System (ADS)

    Rohe, M.; Koch, M.

    Systems with high priority to safety and reliability such as monitoring systems on airports have to work properly. Fast information transmission, continuous access to databases, as well as the management of air traffic are most important for effective and safe operation. Sources of Intentional Electromagnetic Interference can be manufactured relatively easy using commercially available components by civilian persons with relevant expertise and can be used for sabotage or blackmail purposes. For analyzing the weak points of a system existing on airports, it is necessary to reproduce its setup. In this investigation a UHF transmitter of a wireless communication device is developed and its breakdown behavior to unipolar fast rise pulses (UWB) is determined. A breakdown is a non-permanent damage, but includes a type of upset, that requires manual reset or at least stops communications for some period of time. The transmitter consists of three main components connected by data cables: power supply, microcontroller, and loop antenna. The immunity tests are accomplished as a function of the electromagnetic field direction to the device using an open TEM waveguide.

  5. Breast tumor detection using UWB circular-SAR tomographic microwave imaging.

    PubMed

    Oloumi, Daniel; Boulanger, Pierre; Kordzadeh, Atefeh; Rambabu, Karumudi

    2015-01-01

    This paper describes the possibility of detecting tumors in human breast using ultra-wideband (UWB) circular synthetic aperture radar (CSAR). CSAR is a subset of SAR which is a radar imaging technique using a circular data acquisition pattern. Tomographic image reconstruction is done using a time domain global back projection technique adapted to CSAR. Experiments are conducted on a breast phantoms made of pork fat emulating normal and cancerous conditions. Preliminary experimental results show that microwave imaging of a breast phantom using UWB-CSAR is a simple and low-cost method, efficiently capable of detecting the presence of tumors.

  6. Comparison between UWB and CW radar sensors for breath activity monitoring

    NASA Astrophysics Data System (ADS)

    Pisa, Stefano; Bernardi, Paolo; Cicchetti, Renato; Giusto, Roberto; Pittella, Erika; Piuzzi, Emanuele; Testa, Orlandino

    2014-05-01

    In this paper the ability of four radar sensors in detecting breath activity has been tested. In particular, range gating UWB, CMOS UWB, CW phase detecting, and FMCW radars have taken into account. Considering a realistic scenario, the radar antenna has been pointed towards the thorax of a breathing subject and the recorded signals have been compared with those of a piezoelectric belt placed around the thorax. Then the ability of the radars in detecting small movements has been tested by means of an oscillating copper plate placed at various distances from the radar antenna. All the considered radars were able to detect the plate movements with a distance-dependent resolution.

  7. Ultrawideband Electromagnetic Interference to Aircraft Radios: Results of Limited Functional Testing With United Airlines and Eagles Wings Incorporated, in Victorville, California

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Shaver, Timothy W.; Fuller, Gerald L.

    2002-01-01

    On February 14, 2002, the FCC adopted a FIRST REPORT AND ORDER, released it on April 22, 2002, and on May 16, 2002 published in the Federal Register a Final Rule, permitting marketing and operation of new products incorporating UWB technology. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This report provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  8. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz. PMID:26737929

  9. Ultra-wideband radios for time-of-flight-ranging and network position estimation

    DOEpatents

    Hertzog, Claudia A.; Dowla, Farid U.; Dallum, Gregory E.; Romero, Carlos E.

    2011-06-14

    This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

  10. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emission limit, following the procedures described in § 15.521. (f) UWB systems operating under the... necessity to operate with a fixed indoor infrastructure, e.g., a transmitter that must be connected to the... considered to operate indoors provided the emissions are directed towards the ground. (5) A...

  11. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions... investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  12. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions... investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  13. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions... investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  14. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions... investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  15. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions... investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  16. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection.

    PubMed

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-09-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method.

  17. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection

    PubMed Central

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  18. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection.

    PubMed

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  19. The enhanced locating performance of an integrated cross-correlation and genetic algorithm for radio monitoring systems.

    PubMed

    Chang, Yao-Tang; Wu, Chi-Lin; Cheng, Hsu-Chih

    2014-01-01

    The rapid development of wireless broadband communication technology has affected the location accuracy of worldwide radio monitoring stations that employ time-difference-of-arrival (TDOA) location technology. In this study, TDOA-based location technology was implemented in Taiwan for the first time according to International Telecommunications Union Radiocommunication (ITU-R) recommendations regarding monitoring and location applications. To improve location accuracy, various scenarios, such as a three-dimensional environment (considering an unequal locating antenna configuration), were investigated. Subsequently, the proposed integrated cross-correlation and genetic algorithm was evaluated in the metropolitan area of Tainan. The results indicated that the location accuracy at a circular error probability of 50% was less than 60 m when a multipath effect was present in the area. Moreover, compared with hyperbolic algorithms that have been applied in conventional TDOA-based location systems, the proposed algorithm yielded 17-fold and 19-fold improvements in the mean difference when the location position of the interference station was favorable and unfavorable, respectively. Hence, the various forms of radio interference, such as low transmission power, burst and weak signals, and metropolitan interference, was proved to be easily identified, located, and removed. PMID:24763254

  20. The Enhanced Locating Performance of an Integrated Cross-Correlation and Genetic Algorithm for Radio Monitoring Systems

    PubMed Central

    Chang, Yao-Tang; Wu, Chi-Lin; Cheng, Hsu-Chih

    2014-01-01

    The rapid development of wireless broadband communication technology has affected the location accuracy of worldwide radio monitoring stations that employ time-difference-of-arrival (TDOA) location technology. In this study, TDOA-based location technology was implemented in Taiwan for the first time according to International Telecommunications Union Radiocommunication (ITU-R) recommendations regarding monitoring and location applications. To improve location accuracy, various scenarios, such as a three-dimensional environment (considering an unequal locating antenna configuration), were investigated. Subsequently, the proposed integrated cross-correlation and genetic algorithm was evaluated in the metropolitan area of Tainan. The results indicated that the location accuracy at a circular error probability of 50% was less than 60 m when a multipath effect was present in the area. Moreover, compared with hyperbolic algorithms that have been applied in conventional TDOA-based location systems, the proposed algorithm yielded 17-fold and 19-fold improvements in the mean difference when the location position of the interference station was favorable and unfavorable, respectively. Hence, the various forms of radio interference, such as low transmission power, burst and weak signals, and metropolitan interference, was proved to be easily identified, located, and removed. PMID:24763254

  1. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.

    1994-04-01

    Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  2. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations.

  3. A reconfigurable software defined ultra-wideband impulse radio transceiver

    NASA Astrophysics Data System (ADS)

    Blech, M. D.; Ott, A. T.; Neumeier, P.; Möller, M.; Eibert, T. F.

    2010-09-01

    An ultra-wideband (UWB) software defined radio (SDR) implementation is presented. The developed impulse radio (IR) transceiver employs first order bandpass (BP) sampling at a conversion frequency which is four times the channel bandwidth. The subsampling architecture directly provides the RF signal avoiding any non-ideal mixer stages and reduces the requirements of digital signal processing implemented in a field programmable gate array (FPGA). The transmitter consists basically of a multi-Nyquist digital to analog converter (DAC), whereas the implemented matched filter (MF) receiver prototype employs a standard digitizing oscilloscope. This design can be adaptively reconfigured in terms of modulation, data rate, and channel equalization. The reconfigurable design is used for an extensive performance analysis of the quadrature phase shift keying (QPSK) modulation scheme investigating the influence of different antennas, amplifiers, narrowband interferers as well as different equalizer lengths. Even for distances up to 7 m in a multipath environment robust communication was achieved.

  4. Radio sociology

    NASA Astrophysics Data System (ADS)

    Swenson, George W., Jr.

    1996-04-01

    A work was conducted, using radio telemetry, to locate a migrating, radio-tagged, sharp-shinned hawk. The hawk was monitored through the noise radiation it created. The hawk was found. During this study, it was found that the concentration of population corresponds with areas of increased noise temperature. Through this study, a bigger study was planned. The study would involved the relationship between a place's radiation signature and its other attributes, such as economic type, population, geographic concentration. The method of radio sociology would be used to track the sources of radio noise.

  5. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    SciTech Connect

    Li Jing; Gong Chunzhi; Yang Shiqin; Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-15

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  6. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  7. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  8. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  9. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  10. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  11. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  12. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  13. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  14. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces.

    PubMed

    Ando, H; Takizawa, K; Yoshida, T; Matsushita, K; Hirata, M; Suzuki, T

    2015-01-01

    To realize a low-invasive and high accuracy BMI (Brain-machine interface) system, we have already developed a fully-implantable wireless BMI system which consists of ECoG neural electrode arrays, neural recording ASICs, a Wi-Fi based wireless data transmitter and a wireless power receiver with a rechargeable battery. For accurate estimation of movement intentions, it is important for a BMI system to have a large number of recording channels. In this paper, we report a new multi-channel BMI system which is able to record up to 4096-ch ECoG data by multiple connections of 64-ch ASICs and time division multiplexing of recorded data. This system has an ultra-wide-band (UWB) wireless unit for transmitting the recorded neural signals to outside the body. By preliminary experiments with a human body equivalent liquid phantom, we confirmed 4096-ch UWB wireless data transmission at 128 Mbps mode below 20 mm distance.

  15. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  16. Simulation and signal processing of through wall UWB radar for human being's periodic motions detection

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Fengshan; Xu, Penglong; Zeng, Zhaofa

    2013-05-01

    The human's Micro-Doppler signatures resulting from breathing, arm, foot and other periodic motion can provide valuable information about the structure of the moving parts and may be used for identification and classification purposes. In this paper, we carry out simulate with FDTD method and through wall experiment with UWB radar for human being's periodic motion detection. In addition, Advancements signal processing methods are presented to classify and to extract the human's periodic motion characteristic information, such as Micro-Doppler shift and motion frequency. Firstly, we apply the Principal Component Analysis (PCA) with singular value decomposition (SVD) to denoise and extract the human motion signal. Then, we present the results base on the Hilbert-Huang transform (HHT) and the S transform to classify and to identify the human's micro-Doppler shift characteristics. The results demonstrate that the combination of UWB radar and various processing methods has potential to detect human's Doppler signatures effectively.

  17. Novel Dual-band Slot Antenna Design for Bluetooth and UWB Applications

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Yan; Shao, Wei; Wang, Bing-Zhong; Ma, Xiao-Liang

    2014-05-01

    A novel technique to introduce an additional low frequency band to compact ultra wideband (UWB) slot antennas is proposed in this paper. To get an additional Bluetooth band, a parasitic strip is mounted on the back side of the slot edge. Because of the interaction of the strip and the slot edge, the Bluetooth band can be obtained while a notch band between the Bluetooth band and UWB band also appears. Two types of feeding, coplanar waveguide and microstrip line, are investigated. The proposed antennas are both fabricated on a low-cost FR4 substrate and have compact size (24 mm × 28 mm × 1 mm). The good agreement between measured and simulated results verifies our design.

  18. Investigation of the State and Uses of Ultra-Wide-Band Radio-Frequency Identification Technology

    SciTech Connect

    Hickerson, Jonathan W; Younkin, James R

    2010-01-01

    Radio-frequency identification (RFID) technology has revolutionized the concept of asset tracking. By affixing an RFID tag to a valued asset, one can track the item throughout any facility where RIFD readers are in place, thereby alerting inspectors to theft, misuse, and misplacement of the tracked item. While not yet implemented for tracking very high value assets, RFID technology is already widely used in many industries as the standard for asset tracking. A subset of RFID technology exists called Ultra-Wide-Band (UWB) RFID. While traditional (sometimes called narrow-band) RFID technology transmits a continuous sine-wave signal of a narrow frequency range, UWB technology works by transmitting signals as short pulses of a broad frequency range. This improves performance in several areas, namely, range, precision, and accuracy of motion detection. Because of the nature of the technology, it also performs well in close proximity to metal, which sets it apart from traditional RFID. The purpose of this paper is to investigate the current state of UWB RFID technology and research the areas where it already is being used. This is accomplished through study of publicly known uses of the technology as well as personal exploration of RFID hardware and software. This paper presents the findings in a general manner to facilitate their usefulness for diverse applications.

  19. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    NASA Astrophysics Data System (ADS)

    Djidel, S.; Bouamar, M.; Khedrouche, D.

    2016-04-01

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  20. Radiated Emission of Breath Monitoring System Based on UWB Pulses in Spacecraft Modules

    NASA Astrophysics Data System (ADS)

    Russo, P.; Mariani Primiani, V.; De Leo, A.; Cerri, G.

    2012-05-01

    The paper describes some EMC aspects related to a UWB radar for monitoring astronauts breathing activity. Compliance to EMC space standards forces some design aspects, in particular the peak voltage and the pulse waveform. Moreover some simulations were carried out to consider realistic operating condition. In the first case the interference towards a victim wifi circuit was analyzed, in the second case the effect of the environment on the radiated pulse was studied.

  1. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  2. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    PubMed

    Surmeneva, M A; Tyurin, A I; Mukhametkaliyev, T M; Pirozhkova, T S; Shuvarin, I A; Syrtanov, M S; Surmenev, R A

    2015-06-01

    The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias applied during the deposition of the HA coating resulted in a decrease in the grain and crystallite size of the film having a crucial role in enhancing the mechanical properties of the fabricated biocomposites. A maximum hardness of 9.04 GPa was found for the HA coating, which was prepared using a bias of -50 V. The hardness of the HA film deposited on the grounded substrate (GS) was found to be 4.9 GPa. The elastic strain to failure (H/E) and the plastic deformation resistance (H(3)/E(2)) for an indentation depth of 50 nm for the HA coating fabricated at a bias of -50 V was found to increase by ~30% and ~74%, respectively, compared with the coating deposited at the GS holder. The nanoindentation tests demonstrated that all of the HA coatings increased the surface hardness on both the microscale and the nanoscale. Therefore, the results revealed that the films deposited on the surface of the AZ31 magnesium alloy at a negative substrate bias can significantly enhance the wear resistance of this resorbable alloy.

  3. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    PubMed Central

    Syed, Avez; Aldhaheri, Rabah W.

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125

  4. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection.

    PubMed

    Syed, Avez; Aldhaheri, Rabah W

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1-5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125

  5. A novel through-wall respiration detection algorithm using UWB radar.

    PubMed

    Li, Xin; Qiao, Dengyu; Li, Ye; Dai, Huhe

    2013-01-01

    Through-wall respiration detection using Ultra-wideband (UWB) impulse radar can be applied to the post-disaster rescue, e.g., searching living persons trapped in ruined buildings after an earthquake. Since strong interference signals always exist in the real-life scenarios, such as static clutter, noise, etc., while the respiratory signal is very weak, the signal to noise and clutter ratio (SNCR) is quite low. Therefore, through-wall respiration detection using UWB impulse radar under low SNCR is a challenging work in the research field of searching survivors after disaster. In this paper, an improved UWB respiratory signal model is built up based on an even power of cosine function for the first time. This model is used to reveal the harmonic structure of respiratory signal, based on which a novel high-performance respiration detection algorithm is proposed. This novel algorithm is assessed by experimental verification and simulation and shows about a 1.5dB improvement of SNR and SNCR.

  6. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  7. A comprehensive study of channel estimation for WBAN-based healthcare systems: feasibility of using multiband UWB.

    PubMed

    Islam, S M Riazul; Kwak, Kyung Sup

    2012-06-01

    Wireless personal area network (WPAN) is an emerging in wireless technology for short range indoor and outdoor communication applications. A more specific category of WPAN is the wireless body area network (WBAN) used for health monitoring. On the other hand, multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) comes with a number of desirable features at the physical layer for wireless communications, for example, very high data rate. One big challenge in adoption of multiband UWB in WBAN is the fact that channel estimation becomes difficult under the constraint of extremely low transmission power. Moreover, the heterogeneous environment of WBAN causes a dense multipath wireless channel. Therefore, effective channel estimation is required in the receiver of WBAN-based healthcare system that uses multiband UWB. In this paper, we first outline the MB-OFDM UWB system. Then, we present an overview of channel estimation techniques proposed/investigated for multiband UWB communications with emphasis on their strengths and weaknesses. Useful suggestions are given to overcome the weaknesses so that these methods can be particularly useful for WBAN channels. Also, we analyze the comparative performances of the techniques using computer simulation in order to find the energy-efficient channel estimation methods for WBAN-based healthcare systems.

  8. Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber.

    PubMed

    Zhang, Fangzheng; Wu, Jian; Fu, Songnian; Xu, Kun; Li, Yan; Hong, Xiaobin; Shum, Ping; Lin, Jintong

    2010-07-19

    We propose and experimentally demonstrate a scheme to simultaneously realize multi-channel centimeter wave (CMW) band and millimeter wave (MMW) band ultra-wideband (UWB) monocycle pulse generation using four wave mixing (FWM) effect in a highly nonlinear photonic crystal fiber (HNL-PCF). Two lightwaves carrying polarity-reversed optical Gaussian pulses with appropriate time delay and another lightwave carrying a 20 GHz clock signal are launched into the HNL-PCF together. By filtering out the FWM idlers, two CMW-band UWB monocycle signals and two MMW-band UWB monocycle signals at 20 GHz are obtained simultaneously. Experimental measurements of the generated UWB monocycle pulses at individual wavelength, which comply with the FCC regulations, verify the feasibility and flexibility of proposed scheme for use in practical UWB communication systems.

  9. Electrical and Optical Properties of Si-Incorporated a-C:H Films via the Radio Frequency Plasma-Enhanced Chemical Vapor Deposition Method.

    PubMed

    Kim, In Jun; Choi, Won Seok; Hong, Byungyou

    2016-05-01

    The optical and electrical properties of silicon-incorporated hydrogenated amorphous carbon (a-C:H:Si) films deposited via the radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method using a mixture of CH4, H2, and SiH4 were observed. The silane gas whose ranged from 0 to 25 vol.% [SiH4/(SiH4 + CH4) was fed into the reactor while the other deposition parameters were kept constant. The basic properties of these films were investigated via Raman spectroscopy, UV-visible spectrometry, I-V measurement, and surface profiling. The experiment results showed that the film thickness increased from 300 nm to 800 nm for the same deposition time as the silane gas increased. The Raman spectrum obtained from the silicon-incorporated a-C:H films suggested that the film property changed from graphitic-like to more diamond-like. As the silane gas increased, the optical gap, E04, slightly increased from 1.98 eV to 2.62 eV. It was shown that the Si atoms incorporated into the a-C:H films reduced the size of the sp2 clusters. As for the I-V characteristics, the Si-incorporated a-C:H films had a lower leakage current than the a-C:H films without Si. PMID:27483937

  10. Narrowband interference mitigation in body surface to external communication in UWB body area networks using first-order Hermite pulse

    NASA Astrophysics Data System (ADS)

    Rout, Deepak Kumar; Das, Susmita

    2016-06-01

    Ultra wideband (UWB) is the most preferred candidate for body area networks (BAN). The higher data rate and lower multipath fading makes it highly suitable for the design of BAN. However, narrowband interference (NBI) may significantly degrade the performance of UWB. The paper presents an effective method of NBI mitigation for UWB BAN. The method uses modified Hermite pulse (MHP) in lieu of Gaussian and other pulse shapes. The spectral characteristics of the MHP make them immune to interference. The performance has been tested in various body postures in the CM4 channel model of the BAN, and further validated by transmitting medical signals like electrocardiography and MRI. The results show that MHP pulse is highly immune to NBI.

  11. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  12. Model of human breathing reflected signal received by PN-UWB radar.

    PubMed

    Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Batkin, Izmail; Dajani, Hilmi R; Groza, Voicu Z

    2014-01-01

    Human detection is an integral component of civilian and military rescue operations, military surveillance and combat operations. Human detection can be achieved through monitoring of vital signs. In this article, a mathematical model of human breathing reflected signal received in PN-UWB radar is proposed. Unlike earlier published works, both chest and abdomen movements are considered for modeling the radar return signal along with the contributions of fundamental breathing frequency and its harmonics. Analyses of recorded reflected signals from three subjects in different postures and at different ranges from the radar indicate that ratios of the amplitudes of the harmonics contain information about posture and posture change.

  13. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  14. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  15. Planar UWB Filter with Multiple Notched Band and Stopband with Improved Rejection Level

    NASA Astrophysics Data System (ADS)

    Ghazali, Abu Nasar; Pal, Srikanta

    2015-05-01

    Analysis and realization of a microstrip-based planar ultra-wideband (UWB) filter with integrated multiple notch elimination property and simultaneously extended upper stopband is proposed. Initially, a UWB filter based on back-to-back microstrip-to-CPW technology is designed. Later, multiple spiral defected ground structures (DGS) are embedded to obtain multiple passband notches. Further, double equilateral U (DEU)-type DGS are used to improve upon the rejection level in upper stopband. The multiple passband notches are results of embedded spiral-shaped DGS (SDGS), while extended upper stopband is the outcome of suppressed higher-order spurious harmonics. The flexible dual-attenuation poles of DEU-shaped DGS suppress the stopband harmonics and widen the stopband. An approximate lumped equivalent circuit model of the proposed filter is modelled. The filter is compact and its layout measures 25.26 mm × 11.01 mm. The measured result is in good agreement with the full-wave electromagnetic (EM) simulation and circuit simulation.

  16. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  17. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2016-08-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  18. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.

  19. A Novel Compact UWB Monopole Antenna with Bluetooth and Triple Notch Band

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhou, Zhi-Li; Hong, Jing-Song

    2013-01-01

    A novel technique to add an extra Bluetooth band and triple notch bands simultaneously to a compact ultra-wideband (UWB) monopole antenna is presented. This scissors-shaped UWB antenna, covering 2.9 GHz-12.5 GHz, is fed by a special microstrip line. To create an extra Bluetooth band centered at 2.45 GHz, an arc-shaped stub is attached to the high concentrated current area right of the feed line and a rectangular slot is etched in the radiation patch. Besides, a notch band for WLAN (5.6 GHz-6.15 GHz) is also obtained. In addition, by connecting two asymmetric stubs to the feed line, two other notch bands in 3.28 GHz-3.8 GHz for WiMAX and 7.1 GHz-7.76 GHz for downlink of X-band satellite communication systems are achieved. The proposed antenna with compact size of 20 mm × 26 mm is fabricated and measured, showing stable antenna gain and good omni-directional radiation patterns in H-plane.

  20. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    NASA Astrophysics Data System (ADS)

    Jiangwei, Yin; Ning, Li; Renliang, Zheng; Wei, Li; Junyan, Ren

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 × 0.28 mm2. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  1. UWB micro-doppler radar for human gait analysis using joint range-time-frequency representation

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Fathy, Aly E.

    2013-05-01

    In this paper, we present a novel, standalone ultra wideband (UWB) micro-Doppler radar sensor that goes beyond simple range or micro-Doppler detection to combined range-time-Doppler frequency analysis. Moreover, it can monitor more than one human object in both line-of-sight (LOS) and through wall scenarios, thus have full human objects tracking capabilities. The unique radar design is based on narrow pulse transceiver, high speed data acquisition module, and wideband antenna array. For advanced radar post-data processing, joint range-time-frequency representation has been performed. Characteristics of human walking activity have been analyzed using the radar sensor by precisely tracking the radar object and acquiring range-time-Doppler information simultaneously. The UWB micro-Doppler radar prototype is capable of detecting Doppler frequency range from -180 Hz to +180 Hz, which allows a maximum target velocity of 9 m/s. The developed radar sensor can also be extended for many other applications, such as respiration and heartbeat detection of trapped survivors under building debris.

  2. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  3. Photonic generation of bipolar direct-sequence UWB signals based on optical spectral shaping and incoherent frequency-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Ye, Jun; Jian, Shuisheng

    2016-06-01

    A novel technology to obtain binary phase-coded ultrawideband (UWB) signals for direct-sequence spread-spectrum communication systems is investigated by using a cost-effective incoherent source. The bipolar encoding is performed based on an all-fiber spectrum shaper composed of two FBG arrays to tailor the optical spectrum, and a section of single-mode fiber to achieve incoherent frequency-to-time conversion. We demonstrate a 1.325-Gb/s UWB encoding system by the use of binary spreading codes of 4-chip length via computer simulations. The proposed bipolar UWB encoding technology can be applied to high-speed UWB-over-fiber communication systems.

  4. High-Quality Amorphous-Crystalline Silicon Heterostructures Using the Grid-Based Triode Radio-Frequency Plasma Enhanced Chemical Vapour Deposition Method

    NASA Astrophysics Data System (ADS)

    Mahtani, Pratish

    The amorphous-crystalline silicon heterojunction (SHJ) represents a new paradigm in crystalline silicon (c-Si) photovoltaics (PV). To achieve the 27% efficiency target for SHJ PV, defects in the silicon heterointerface must be minimized by growing high-quality hydrogenated amorphous silicon (a-Si:H) onto the c-Si surfaces without deposition-related damage. Typically, a-Si:H is deposited using radio-frequency (RF) plasma enhanced chemical vapour deposition (PECVD), which in its conventional configuration directly exposes the c-Si growth surface to the ignited plasma. In this thesis, silicon heterostructures prepared by the grid-based triode RF PECVD method is investigated for the first time. The triode method allows for high-quality a-Si:H growth with the c-Si surfaces shielded from any potential plasma damage. Using a custom-built configurable PECVD facility, a systematic study was conducted and it was demonstrated that the triode method affords the preparation of a-Si:H with excellent bulk film quality and state-of-the-art passivation for c-Si surfaces. Using the triode method, an effective minority carrier lifetime (taueff) of 8.1 ms and an Auger-corrected surface recombination velocity (S) of 2.4 cm/s at an excess carrier density of 1015 cm-3 have been achieved for 1-2 ohm-cm n-type c-Si passivated with intrinsic a-Si:H. Further, using the triode method to deposit thin-layers of intrinsic and doped a-Si:H, a conventional SHJ solar cell structure was prepared and was found to exhibit an excellent implied Voc of 710 mV. Under all conditions scanned, samples prepared in the triode configuration showed improved passivation compared with samples prepared in the conventional diode configuration with the best triode prepared sample showing a nearly threefold increase in taueff and a twofold decrease in S compared with the best diode prepared sample. Furthermore, a-Si:H deposited using the triode method showed significantly improved bulk properties compared to diode

  5. New VLA Observations for the HH 1-2 Region: Evidence for Density Enhancements Moving Along the Axis of the VLA 1 Radio Jet

    NASA Technical Reports Server (NTRS)

    Noriega-Crespo, A.; Rodriguez, L.; Delgado, V.; Gomez, Y.; Reipurth, B.; Torrelles, J.; Raga, A.; Canto, J.

    1999-01-01

    Using the Very Large Array, we have carried out new, sensitive radio continuum observations at 6 and 3.6 cm of the HH 1-2 region. The comparison between the 6 cm maps made from data taken in 1986.2 and 1992.9 indicates that VLA 1, the exciting source of the HH 1-2 flow, has suffered a morphological change that is attributed to the motion of a symmetric pair of knots along the axis of the radio jet.

  6. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  7. RADIO ALTIMETERS

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A radio ranging device is described which utilizes a superregenerative oscillator having alternate sending and receiving phases with an intervening ranging interval between said phases, means for varying said ranging interval, means responsive to an on-range noise reduction condition for stopping said means for varying the ranging interval and indicating means coupled to the ranging interval varying means and calibrated in accordance with one-half the product of the ranging interval times the velocity of light whereby the range is indicated.

  8. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  9. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.

    PubMed

    Zihajehzadeh, Shaghayegh; Yoon, Paul K; Park, Edward J

    2015-01-01

    The magnetic distortions in indoor environment affects the accuracy of yaw angle estimation using magnetometer. Thus, the accuracy of indoor localization based on inertial-magnetic sensors will be affected as well. To address this issue, this paper proposes a magnetometer-free solution for indoor human localization and yaw angle estimation. The proposed algorithm fuses a wearable inertial sensor consisting of MEMS-based accelerometer and gyroscope with a portable ultra-wideband (UWB) localization system in a cascaded two-step filter consisting of a tilt Kalman filter and a localization Kalman filter. By benchmarking against an optical motion capture system, the experimental results show that the proposed algorithm can accurately track position and velocity as well as the yaw angle without using magnetometer. PMID:26736958

  10. Standardization on body area network and a prototype system based on UWB.

    PubMed

    Li, Huan-Bang; Kohno, Ryuji

    2011-10-01

    Body area network (BAN) is a promising wireless technology that realizes wireless connectivity among vital signal sensors deployed on human body. Monitoring various vital signals collected through BAN provides an efficient way to lower disease occurrence rate and reduce medical expenditure. Task Group 6 (TG6) within the IEEE 802 Local and Metropolitan Area Network Standards Committee is developing a BAN standard, i.e., IEEE 802.15.6. In which, specifications of three physical layers (PHYs) and a single common medium access control (MAC) are being drafted. The standardization process has been continuing for several years in the Task Group 6 (TG6) under Working Group 15 (WG). In this paper, we describe the up-to-date status of IEEE 802.15.6 standardization. Some main specifications under drafting are presented. Moreover, as an effort of implementing a BAN model, a prototype BAN system based on the high band of ultra-wideband (UWB) is demonstrated. PMID:21365254

  11. Design of CPW fed printed slot antenna with circular polarization for UWB application

    NASA Astrophysics Data System (ADS)

    Choudhary, N.; Tiwari, A.; Jangid, K. G.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper reports the design and performance of a CPW-fed circularized polarized elliptical slot antenna for UWB (ultra wide band) applications. The circular polarization is achieved by applying triangular stubs in the ground plane. The overall volume of this antenna is 40mm × 40 mm × 1.59 mm. The proposed antenna is simulated by applying CST Microwave Studio simulator. This elliptical patch slot antenna provides broad impedance bandwidth (3.1GHz to 10.6 GHz) with maximum gain 4.31dB at 4.45GHz. The simulated 3-dB axial ratio bandwidth is close to 2.51GHz (from 4.76GHz to 7.27GHz) which is 41.76% with respect to the central frequency 6.01GHz.

  12. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    PubMed Central

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  13. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.

    PubMed

    Zihajehzadeh, Shaghayegh; Yoon, Paul K; Park, Edward J

    2015-01-01

    The magnetic distortions in indoor environment affects the accuracy of yaw angle estimation using magnetometer. Thus, the accuracy of indoor localization based on inertial-magnetic sensors will be affected as well. To address this issue, this paper proposes a magnetometer-free solution for indoor human localization and yaw angle estimation. The proposed algorithm fuses a wearable inertial sensor consisting of MEMS-based accelerometer and gyroscope with a portable ultra-wideband (UWB) localization system in a cascaded two-step filter consisting of a tilt Kalman filter and a localization Kalman filter. By benchmarking against an optical motion capture system, the experimental results show that the proposed algorithm can accurately track position and velocity as well as the yaw angle without using magnetometer.

  14. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    PubMed

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  15. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  16. High speed Radix-4 soft-decision Viterbi decoder for MB-OFDM UWB system

    NASA Astrophysics Data System (ADS)

    Liang, Guixuan; Portilla, Jorge; Riesgo, Teresa

    2013-05-01

    In this paper, a 64 state soft decision Viterbi Decoder (VD) system by using a high speed radix-4 Add Compare Select (ACS) architecture is presented. The proposed VD system can support different data rate (from 53.5 Mbps to 480 Mbps) for Multiband Orthogonal Frequency-division Multiplexing (MB-OFDM) Ultra-Wideband (UWB) system when implemented onto the FPGA board. The proposed VD employs efficient two steps Radix 4 architecture, which is responsible of calculating two steps of 64 state Radix 4 Branch Metrics (BM) within one clock cycle. The branch metrics are calculated using a uniform distance measurement algorithm, which equals to the symbol itself when compared to logic-0 and equal to its one's complement when compared to logic-1. By employing the modified Modulo Normalization algorithm, it is possible to use only a 10- bit memory block to restore each of the 64 state metrics, with the advantage of avoiding errors caused by overflow during the updating process for state metrics, and simplifying the comparator circuit of the ACS unit. The Two Pointer Even Algorithm, which is considered to be very simple and more hardware-efficient than the register exchange algorithm, is used for tracing back the survivor sequence and output the decoded data stream. 3-bit soft decision input sequences are used for gathering the experimental results. The sampling frequency of the MBOFDM UWB system is 528 MHz, by using the proposed two steps Radix 4 VD architecture we can process 4 input signals in parallel within one clock cycle, therefore only 132 MHz operating frequency is needed for the proposed VD system. This will dramatically reduce the dynamic power consumption for hardware implementation. Final results of the implementation show that the proposed VD architecture can support a maximum working frequency of 152.5 MHz on Xilinx XUPV5-LX110T Evaluation Platform.

  17. DSS 15, 45, and 65 34-meter high efficiency antenna radio frequency performance enhancement by tilt added to the subreflector during elevation angle changes

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1990-01-01

    The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.

  18. Sensing through the wall imaging using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Ressler, Marc; Sichina, Jeffrey

    2008-04-01

    The U.S. Army Research Laboratory (ARL), as part of a mission and customer funded exploratory program, has developed a new low-frequency, ultra-wideband (UWB) synthetic aperture radar (SAR). The radar is capable of penetrating enclosed areas (buildings) and generating SAR imagery. This supports the U.S. Army's need for intelligence on the configuration, content, and human presence inside these enclosed areas. The radar system is mounted on a ground based vehicle traveling along the road and is configured with an array of antennas pointing toward the enclosed areas of interest. This paper will describe an experiment conducted recently at Aberdeen Proving Ground (APG), Maryland. In this paper we briefly describe the UWB SIRE radar and the test setup in the experiment. We will also describe the signal processing and the image techniques used to produce the SAR imagery. Finally, we will present SAR imagery of the building and its internal structure from different viewing directions.

  19. A 10.6mm3 Fully-Integrated, Wireless Sensor Node with 8GHz UWB Transmitter

    PubMed Central

    Kim, Hyeongseok; Kim, Gyouho; Lee, Yoonmyung; Foo, Zhiyoong; Sylvester, Dennis; Blaauw, David; Wentzloff, David

    2015-01-01

    This paper presents a complete, autonomous, wireless temperature sensor, fully encapsulated in a 10.6mm3 volume. The sensor includes solar energy harvesting with an integrated 2 μAh battery, optical receiver for programming, microcontroller and memory, 8GHz UWB transmitter, and miniaturized custom antennas with a wireless range of 7 meters. Full, stand-alone operation was demonstrated for the first time for a system of this size and functionality. PMID:26855848

  20. The Radio JOVE Project - An Inexpensive Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C.

    2004-12-01

    The Radio JOVE project began over six years ago as an education-centered program to inspire secondary school students' interest in space science through hands-on radio astronomy. The project was begun on small grants from the Goddard Space Flight Center Director's Discretionary Fund, the Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, and the American Astronomical Society. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. More than 600 of these kits have been distributed to students and interested observers (ages 10 through adult) in over 30 countries. For those who are not comfortable building their own kit, the Radio JOVE project has made it possible to monitor real-time data and streaming audio online from professional radio telescopes in Florida (http://jupiter.kochi-ct.jp) and Hawaii http://jupiter.wcc.hawaii.edu/newradiojove/main.html). Freely downloadable software called Radio-Skypipe (http://radiosky.com) emulates a chart recorder to monitor ones own radio telescope or the telescopes of other observers worldwide who send out their data over the Internet. Inexpensive spectrographs have been developed for the professional telescopes in Hawaii and Florida and freely downloadable spectrograph display software is available to receive this research-quality data. We believe the amateur network data to be of value to the research community and would like to have students more directly connected to ongoing research projects to enhance their interest in participating. Results of the project and plans for the future will be highlighted.

  1. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  2. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  3. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  4. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  5. A multiuser detector based on artificial bee colony algorithm for DS-UWB systems.

    PubMed

    Yin, Zhendong; Liu, Xiaohui; Wu, Zhilu

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  6. M-Sequence-Based Single-Chip UWB-Radar Sensor

    NASA Astrophysics Data System (ADS)

    Kmec, M.; Helbig, M.; Herrmann, R.; Rauschenbach, P.; Sachs, J.; Schilling, K.

    The article deals with a fully monolithically integrated single-chip M-sequence-based UWB-radar sensor, its architecture, selected design aspects and first measurement results performed on wafer and with packaged IC modules. The discussed chip is equipped with one transmitter and two receivers. The IC was designed and manufactured in commercially available high-performance 0.25 μm SiGe BiCMOS technology (f t = 110 GHz). Due to the combination of fast digital and broadband analogue system blocks in one chip, special emphasis has been placed on the electrical isolation of these functional structures. The manufactured IC is enclosed in a low-cost QFN (quad flat-pack no-leads) package and mounted on a PCB permitting the creation of MIMO-sensor arrays by cascading a number of modules. In spite of its relatively high complexity, the sensor head features a compact design (chip size of 2 × 1 mm2, QFN package size 5 × 5 mm2) and moderate power consumption (below 1 W at -3 V supply). The assembled transceiver chip can handle signals in the frequency range from near DC up to 18 GHz. This leads to an impulse response (IRF) of FWHD ≈ 50 ps (full width at half duration).

  7. Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

    PubMed

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Ameli, Reza; Rusch, Leslie A; Gosselin, Benoit

    2016-02-01

    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity.

  8. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems

    PubMed Central

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726

  9. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  10. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  11. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems.

    PubMed

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches.

  12. Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats

    NASA Astrophysics Data System (ADS)

    Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik

    2014-05-01

    Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.

  13. SEMICONDUCTOR INTEGRATED CIRCUITS: A low-spurious fast-hopping MB-OFDM UWB synthesizer

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Wei, Li; Ning, Li; Junyan, Ren

    2010-06-01

    A frequency synthesizer for the ultra-wide band (UWB) group #1 is proposed. The synthesizer uses a phase-locked loop (PLL) and single-sideband (SSB) mixers to generate the three center frequencies of the first band group by mixing 4224 MHz with ±264 MHz and 792 MHz, respectively. A novel multi-QSSB mixer is designed to combine the function of frequency selection and frequency conversion for low power and high linearity. The synthesizer is fabricated in Jazz 0.18-μm RF CMOS technology. The measured reference spur is as low as -69 dBc and the maximum spur is the LO leakage of -32 dBc. A low phase noise of -110 dBc/Hz @ 1 MHz offset and an integrated phase noise of 1.86° are achieved. The hopping time between different bands is less than 1.8 ns. The synthesizer consumes 30 mA from a 1.8 V supply.

  14. Hybrid ARQ Error-Controlling Scheme for Robust and Efficient Transmission of UWB Body Area Networks

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Hernandez, Marco; Kohno, Ryuji

    This paper presents hybrid type-II automatic repeat request (H-ARQ) for wireless wearable body area networks (BANs) based on ultra wideband (UWB) technology. The proposed model is based on three schemes, namely, high rate optimized rate compatible punctured convolutional codes (HRO-RCPC), Reed Solomon (RS) invertible codes and their concatenation. Forward error correction (FEC) coding is combined with simple cyclic redundancy check (CRC) error detection. The performance is investigated for two channels: CM3 (on-body to on-body) and CM4 (on-body to a gateway) scenarios of the IEEE802.15.6 BAN channel models for BANs. It is shown that the improvement in performance in terms of throughput and error protection robustness is very significant. Thus, the proposed H-ARQ schemes can be employed and optimized to suit medical and non-medical applications. In particular we propose the use of FEC coding for non-medical applications as those require less stringent quality of service (QoS), while the incremental redundancy and ARQ configuration is utilized only for medical applications. Thus, higher QoS is guaranteed for medical application of BANs while allowing coexistence with non-medical applications.

  15. Resonance and Radio

    ERIC Educational Resources Information Center

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  16. Radio Astronomical studies of microquasars with RATAN-600 radio telescope

    NASA Astrophysics Data System (ADS)

    Trushkin, Sergei; Nizhelskij, Nikolaj; Tsybulev, Peter; Bursov, Nikolaj

    Relativistic outflows of accreted matter in the collimated two opposite side jets, ejected from polar regions of accretion disks around black holes or neutron stars in microquasars, are the intensive sources of variable synchrotron radio emission and even TeV energy gamma-ray emission. The ballistic tracks of the clouds (blobs) are directly visible as radio jets in VLA and VLBI maps of SS433, GRS 1915+105, Cyg X-3. The temporal and frequency changes in the measured light curves are a key for deep understanding and a good probe test for physical models of of cosmic jets in mQSO and AGNs. A comparison the radio, optical, X-ray and now high energy gamma-ray intensities allows us to provide detailed studies. We have carried out the long-time monitoring (as a rule 200-250 daily measurements per year) Cyg X-3, GRS1915+10, SS433, Cyg X-1, LSI+61d303, LS5039 with RATAN-600 at 4.8, 7.7, 11.2, 21.7, and 30 GHz during last four years. While Cyg X-3 was in quiet state, we have detected clear radio-X-ray (RATAN-Swift) correlation. We have detected a lot of very bright flares (more than 1.5 Jy at 4.8 GHz) from SS433. In quiet state the radio emission of SS433 is modulated by a half of orbit period near 6.5d, probably being the geometric effect of precessing (164d) and nodding (6.1d) jets. GRS1915+105 have shown the clear correlation of flaring radio emission with X-ray flux from MAXI (Punsly et al., 2014 ApJ, in press). We have detected the enhanced absorption due to the rising hydrogen column density. We continue to study the super-orbital modulation (1666 days) of the flaring radio emission from LSI+61d303. The moments of maxima of the periodically flaring radio emission from it correlated with phase of this super-orbital period. The studies were supported by the grant 12-02-00812 from Russian Foundation of Basic Research.

  17. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  18. Interface broadening due to ion mixing during thin film growth at the radio-frequency-biased electrode in a plasma-enhanced chemical vapor deposition environment

    SciTech Connect

    Amassian, A.; Svec, M.; Desjardins, P.; Martinu, L.

    2006-11-15

    The authors show that ion bombardment in the range of tens to a few hundreds of eV, used in ion- and plasma-assisted deposition processes, can lead to thin film growth dominated by subsurface deposition due to subplantation (shallow implantation). This can cause significant interface broadening during the initial stages of film deposition as a result of ion mixing. First, by studying the modifications of a c-Si(100) target exposed to an O{sub 2} plasma at the radio-frequency (rf)-biased electrode using in situ real-time spectroscopic ellipsometry (RTSE), the authors detect implantation, damage, and oxidation to a depth of up to {approx}10 nm. They validate these results using high resolution transmission electron microscopy and simulate the effects of ion-surface interactions at the rf-biased electrode by using Monte Carlo TRIDYN simulations. The simulation code, which was modified specifically to consider a broadband ion energy source, enabled the authors to reproduce depth and time relevant experimental results with good agreement. In situ RTSE was then used to monitor TiO{sub 2} deposition on SiO{sub 2} under similar ion bombardment conditions. The authors observed the formation of a 2- to 4-nm-thick interfacial layer, depending on the ion-to-neutral flux ratio ({phi}{sub i}/{phi}{sub n}), which was controlled by varying the deposition rate. TRIDYN simulations revealed that oxygen subplantation causes interfacial broadening during the growth through ballistic mixing of Ti and Si atoms at the interface; the interface width scales as {approx}({phi}{sub i}/{phi}{sub n}){sup 12.} Intensive ion mixing at {phi}{sub i}/{phi}{sub n}>1 is also shown to be responsible for the ballistic displacement of the majority of surface-deposited Ti atoms into the bulk, so that the growth appears to be dominated by subsurface deposition under conditions of intense ion bombardment.

  19. The Future of Radio astronomy

    NASA Astrophysics Data System (ADS)

    Ekers, R. D.

    2001-12-01

    Five decades ago, astronomers finally broke free of the boundaries of light when a new science, radio astronomy, was born. This new way of "seeing" rapidly uncovered a range of unexpected objects in the cosmos. This was our first view of the non-thermal universe, and our first unobscured view of the universe. In its short life, radio astronomy has had an unequalled record of discovery, including four Nobel prizes: Big-Bang radiation, neutron stars, aperture synthesis and gravitational radiation. Radio telescopes have followed the pattern of exponential growth generally seen in flourishing areas of science and technology and there is no technical reason for this not to continue, but to do so will require a shift in technology that will set new challenges. New technologies have made it possible to construct an affordable radio telescope with collecting area of one square km the SKA. Such a telescope would be so powerful that we could expand our knowledge of the universe from the earliest stages of its formation through to planetary exploration with greatly enhanced spacecraft communications. The SKA will join the new generation of telescopes at other wavebands with the sensitivity and resolution to image the earliest phases of galaxy formation, as well as greatly extending the range of unique science accessible at radio wavelengths. We already know how to build an SKA, the issue is how to build the most cost effective SKA, and how to maximize the science we can do with it. The path we have chosen to achieve this vision is through international collaboration. Following the pattern of other successful international collaborations in science we have started this process early, and we are already benefiting from the level of innovation generated by our international interactions.

  20. UWB and 60-GHz RF generation and transmission over WDM-PON based on bidirectional asymmetric polarization modulation and frequency multiplication

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Yao, Jianping

    2013-10-01

    A novel scheme to simultaneously provide UWB, 60-GHz millimeter-wave (mmW), and baseband services over a wavelength division multiplexing (WDM) passive optical network (PON) is proposed and demonstrated. In the proposed system, an OOK Gaussian pulse signal is modulated on the optical carrier and then converted to an OOK UWB impulse signal at an edge filter, a baseband signal and a 30-GHz signal are then modulated on the same optical carrier. By employing polarization multiplex technique, the UWB and baseband signal will have orthogonal polarization directions and the spectrum interference between the two signals is avoided. By suppressing the optical carrier, a frequencydoubled mmW signal at 60 GHz is generated by beating the two 1st order sidebands at a photodetector (PD). Error-free transmission of a UWB signal at 2.5 Gbps and a wired baseband signal at 2.5 and 5 Gbps over a 25-km single-mode fiber (SMF) is achieved. A frequency-doubled mmW signal at 60 GHz is also obtained.

  1. MnTnBuOE-2-PyP protects normal colorectal fibroblasts from radiation damage and simultaneously enhances radio/chemotherapeutic killing of colorectal cancer cells

    PubMed Central

    Kosmacek, Elizabeth A.; Chatterjee, Arpita; Tong, Qiang; Lin, Chi; Oberley, Rebecca E.

    2016-01-01

    Manganese porphyrins have been shown to be potent radioprotectors in a variety of cancer models. However, the mechanism as to how these porphyrins protect normal tissues from radiation damage still remains largely unknown. In the current study, we determine the effects of the manganese porphyrin, MnTnBuOE-2-PyP, on primary colorectal fibroblasts exposed to irradiation. We found that 2 Gy of radiation enhances the fibroblasts' ability to contract a collagen matrix, increases cell size and promotes cellular senesence. Treating fibroblasts with MnTnBuOE-2-PyP significantly inhibited radiation-induced collagen contraction, preserved cell morphology and also inhibited cellular senescence. We further showed that MnTnBuOE-2-PyP enhanced the overall viability of the fibroblasts following exposure to radiation but did not protect colorectal cancer cell viability. Specifically, MnTnBuOE-2-PyP in combination with irradiation, caused a significant decrease in tumor clonogenicity. Since locally advanced rectal cancers are treated with chemoradiation therapy followed by surgery and non-metastatic anal cancers are treated with chemoradiation therapy, we also investigated the effects of MnTnBuOE-2-PyP in combination with radiation, 5-fluorouracil with and without Mitomycin C. We found that MnTnBuOE-2-PyP in combination with Mitomycin C or 5-fluorouracil further enhances those compounds' ability to suppress tumor cell growth. When MnTnBuOE-2-PyP was combined with the two chemotherapeutics and radiation, we observed the greatest reduction in tumor cell growth. Therefore, these studies indicate that MnTnBuOE-2-PyP could be used as a potent radioprotector for normal tissue, while at the same time enhancing radiation and chemotherapy treatment for rectal and anal cancers. PMID:27119354

  2. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  3. Uranus as a radio source

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.; Zarka, P.; Lecacheux, A.; Leblanc, Y.; Aubier, M.; Ortega-Molina, A.

    1991-01-01

    The complex nature of the Uranus radio emissions, both magnetospheric and atmospheric, is reviewed, with emphasis on the identification of distinct components and the determination of their source locations. Seven radii components were discovered in addition to the RF signature of lightning in the planet's atmosphere. Six of the seven magnetospheric components are freely propagating emissions; one component, the nonthermal continuum, is trapped in the density cavity between the magnetopause and the dense inner magnetosphere. The radio components are divided into two types according to their emission signature: bursty emission and smooth emission. The inferred source location for the dominant nightside emission is above the nightside magnetic pole, largely overlapping the UV auroral region and the magnetic polar cap. The N-burst component appears to be associated with solar-wind enhancements at Uranus, consistent with the idea that the solar wind was triggering magnetospheric substormlike activity during the encounter.

  4. Sprite Luminosity and Radio Noise

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Evans, A.; Mezentsev, A.; van der Velde, O.; Soula, S.

    2013-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into streamer tips (McHarg et al., 2010) with diameters 50-100 m at 60-80 km height (Kanmae et al., 2012). The sprite luminosity coincides in time and space with extremely low frequency electromagnetic radiation <3 kHz in excellent agreement with theory (Cummer and Fullekrug, 2001). This theory is based on current flowing in the body of sprites at 70-80 km height associated with large streamer densities (Pasko et al., 1998). A more detailed study shows specifically that the exponential growth and splitting of streamers at 70-80 km height results in an electron multiplication associated with the acceleration of electrons to a few eV. The accelerated electrons radiate a small amount of electromagnetic energy and the incoherent superposition of many streamers causes the observed electromagnetic radiation (Qin et al., 2012). It has been predicted that this newly recognized physical mechanism might also result in low frequency ( 30-300 kHz) electromagnetic radiation emanating from sprite streamers near 40 km height in the stratosphere, albeit with very small magnetic fields 10^{-17}-10^{-12} T from a single streamer (Qin et al., 2012). The presence of this predicted radiation was promptly confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). Specifically, it was found that the sprite luminosity coincides with sudden enhancements of the radio noise. These initial observations are extended here with a more detailed analysis to study the spatial coherence of the radio noise recorded with a novel network of sensitive radio receivers deployed during field work in the summer 2013. This network of radio receivers is used to study the relationship between the radio noise and the sprite luminosity observed with video cameras. The sprite luminosity is inferred from video recordings by use of sophisticated image

  5. MRI-aided tissues interface characterization: An accurate signal propagation time calculation method for UWB breast tumor imaging

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Xiao, Xia; Kikkawa, Takamaro

    2016-12-01

    Radar-based ultrawideband (UWB) microwave imaging is expected to be a safe, low-cost tool for breast cancer detection. However, since radar wave travels at different speeds in different tissues, propagation time is hard to be estimated in heterogeneous breast. Wrongly estimated propagation time leads to error of tumor location in resulting image, aka imaging error. In this paper, we develop a magnetic resonance imaging-aided (MRI-aided) propagation time calculation technique which is independent from radar imaging system but can help decrease the imaging error. The technique can eliminate the influence of the rough interface between fat layer and gland layer in breast and get relative accurate thicknesses of two layers. The propagation time in each layer is calculated and summed. The summed propagation time is used in Confocal imaging algorithm to increase the accuracy of resulting image. 25 patients' breast models with glands of varying size are classified into four categories for imaging simulation tests. Imaging accuracy in terms of tumor location along x-direction has been improved for 21 among 25 cases, as a result, overall around 50% improvement compared to conventional UWB imaging.

  6. A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands

    PubMed Central

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733

  7. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  8. Radio source evolution

    NASA Astrophysics Data System (ADS)

    Perucho, M.

    2016-02-01

    Baldwin (1982) wrote that {``the distribution of sources in the radio luminosity, P, overall physical size, D, diagram''} could be considered as {``the radio astronomer's H-R diagram''}. However, unlike the case of stars, not only the intrinsic properties of the jets, but also those of the host galaxy and the intergalactic medium are relevant to explain the evolutionary tracks of radio radio sources. In this contribution I review the current status of our understanding of the evolution of radio sources from a theoretical and numerical perspective, using the P-D diagram as a framework. An excess of compact (linear size {≤ 10} kpc) sources could be explained by low-power jets being decelerated within the host galaxy, as shown by recent numerical simulations. Finally, I discuss the possible tracks that radio sources may follow within this diagram, and the physical processes that can explain the different tracks.

  9. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grueff, G.; Alvito, G.; Ambrosini, R.; Bolli, P.; D'Amico, N.; Maccaferri, A.; Maccaferri, G.; Morsiani, M.; Mureddu, L.; Natale, V.; Olmi, L.; Orfei, A.; Pernechele, C.; Poma, A.; Porceddu, I.; Rossi, L.; Zacchiroli, G.

    We describe the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia). With its large aperture (64m diameter) and its active surface, SRT is capable of operations up to ˜100GHz, it will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and standing wave. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  10. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    SciTech Connect

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi; Maeda, Daisuke; Hirai, Takahisa; Poetsch, Anna R.; Harada, Hiromi; Yoshida, Tomoko; Sasai, Keisuke; Okayasu, Ryuichi; Masutani, Mitsuko

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  11. Estimation Using an Enhancement Factor on Non Local Thermodynamic Equilibrium Behavior of High-lying Energy Levels of Neutral Atom in Argon Radio-Frequency Inductively-Coupled Plasma.

    PubMed

    Wagatsuma, Kazuaki; Satoh, Kozue

    2016-01-01

    This paper describes a plasma-diagnostic method using an enhancement factor on the Boltzmann distribution among emission lines of iron atom in an argon radio-frequency inductively-coupled plasma (ICP). It indicated that Boltzmann plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from a linear relationship. This observation could be explained by the fact that ICP is not in a complete thermodynamic equilibrium between direct excitation to energy levels of iron atom, ionization of iron atom, and radiative decay processes to the ground state. Especially, the recombination of iron ion with captured electron should accompany cascade de-excitations between closely-spaced excited levels just below the ionization limit, the rates of which become slower as a whole; as a result, these high-lying levels might be more populated than the low-lying levels as if a different LTE condition coexists on the high energy side. This overpopulation could be quantitatively estimated using an enhancement factor (EF), which was a ratio of the observed intensity to the expected value extrapolated from the normal distribution on the low energy side. The EFs were generally small (less than 3); therefore, the cascade de-excitation process would slightly contribute to the population of these excited levels. It could be considered from variations of the EF that the overpopulation proceeded to a larger extent at lower radio-frequency forward powers, at higher flow rates of the carrier gas, or at higher observation heights. The reason for this is that the kinetic energy of energetic particles, such as electrons, becomes reduced under all of these plasma conditions, thus enabling the high-lying levels to be more populated by cascade de-excitation processes from iron ion rather than by collisional excitation processes with the energetic particles. A similar Boltzmann analysis using the EF

  12. Estimation Using an Enhancement Factor on Non Local Thermodynamic Equilibrium Behavior of High-lying Energy Levels of Neutral Atom in Argon Radio-Frequency Inductively-Coupled Plasma.

    PubMed

    Wagatsuma, Kazuaki; Satoh, Kozue

    2016-01-01

    This paper describes a plasma-diagnostic method using an enhancement factor on the Boltzmann distribution among emission lines of iron atom in an argon radio-frequency inductively-coupled plasma (ICP). It indicated that Boltzmann plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from a linear relationship. This observation could be explained by the fact that ICP is not in a complete thermodynamic equilibrium between direct excitation to energy levels of iron atom, ionization of iron atom, and radiative decay processes to the ground state. Especially, the recombination of iron ion with captured electron should accompany cascade de-excitations between closely-spaced excited levels just below the ionization limit, the rates of which become slower as a whole; as a result, these high-lying levels might be more populated than the low-lying levels as if a different LTE condition coexists on the high energy side. This overpopulation could be quantitatively estimated using an enhancement factor (EF), which was a ratio of the observed intensity to the expected value extrapolated from the normal distribution on the low energy side. The EFs were generally small (less than 3); therefore, the cascade de-excitation process would slightly contribute to the population of these excited levels. It could be considered from variations of the EF that the overpopulation proceeded to a larger extent at lower radio-frequency forward powers, at higher flow rates of the carrier gas, or at higher observation heights. The reason for this is that the kinetic energy of energetic particles, such as electrons, becomes reduced under all of these plasma conditions, thus enabling the high-lying levels to be more populated by cascade de-excitation processes from iron ion rather than by collisional excitation processes with the energetic particles. A similar Boltzmann analysis using the EF

  13. STEM on the radio

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    Looking for an Internet radio station focusing on programing about science, technology, engineering, and math (STEM)? The U.S. National Science Foundation (NSF) announced on 26 September the launch of Science360 Radio, which it says is the first Internet radio stream dedicated to STEM programing. Science360 includes more than 100 radio shows and podcasts that are available on the Web as well as on iPhone and Android devices. The shows originate from a variety of sources, including NSF, other U.S. government agencies, science organizations, universities, and media outlets. For more information, see http://science360.gov/files/.

  14. Radio data transmission for SCADA

    SciTech Connect

    Frasier, W.E. )

    1989-09-01

    Enron has used such wireless systems as meteor burst radio, 952 MHz multiple address radio, VSAT and L-band satellite, cellular radio and ACSB radio. The company's experience with meteor burst radio communications is discussed in this paper. It indicates good system reliability and consequently all back-up telephone lines have been removed from sites using this system.

  15. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  16. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...

  17. Effect of low-frequency radio frequency on plasma-enhanced chemical vapor deposited ultra low-κ dielectric films for very large-scale integrated interconnects

    NASA Astrophysics Data System (ADS)

    Todd Ryan, E.; Gates, Stephen M.; Cohen, Stephan A.; Ostrovski, Yuri; Adams, Ed; Virwani, Kumar; Grill, Alfred

    2014-04-01

    The addition of a low frequency RF (LFRF) component during plasma-enhanced chemical vapor deposition of porous SiCOH ultra low-κ films allowed for the incorporation of higher carbon content without lowering the Young's modulus or increasing the dielectric constant. The porous SiCOH films typically contain carbon bonded into the silica matrix primarily as Si(CH3)x species. The low frequency RF increased the total carbon content by adding CH2 and -CH = CH- species with some reduction of Si(CH3)x species. It also altered the SiOx bonding structure by increasing network SiOx bonding at the expense of the suboxide, indicating an increase in SiOx crosslink density. Although higher carbon content usually lowers the modulus of porous SiCOH films, the modulus of the higher carbon films generated by LFRF did not decrease because of their increased network SiOx bonding.

  18. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  19. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  20. Writing for Radio.

    ERIC Educational Resources Information Center

    Tupper, Marianna S.

    1995-01-01

    Describes a 24-hour commercial radio station simulation class project for eighth-grade language arts. Students wrote their own scripts, chose music and were disc jockeys on their own music and talk shows, and prepared news and traffic reports. Guest speakers from actual commercial radio came in to discuss issues such as advertising, censorship,…

  1. Frequencies for radio astronomy.

    PubMed

    Smith, F G

    1970-10-31

    At present the scope of research in radio astronomy is limited by the allocation of frequencies, some of which have to be shared with other radio services. When the International Telecommunications Union reconsiders all frequency allocations next year, astronomers are hoping for an improvement.

  2. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  3. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  4. Realistic Radio Communications in Pilot Simulator Training

    NASA Technical Reports Server (NTRS)

    Burki-Cohen, Judith; Kendra, Andrew J.; Kanki, Barbara G.; Lee, Alfred T.

    2000-01-01

    Simulators used for total training and evaluation of airline pilots must satisfy stringent criteria in order to assure their adequacy for training and checking maneuvers. Air traffic control and company radio communications simulation, however, may still be left to role-play by the already taxed instructor/evaluators in spite of their central importance in every aspect of the flight environment. The underlying premise of this research is that providing a realistic radio communications environment would increase safety by enhancing pilot training and evaluation. This report summarizes the first-year efforts of assessing the requirement and feasibility of simulating radio communications automatically. A review of the training and crew resource/task management literature showed both practical and theoretical support for the need for realistic radio communications simulation. A survey of 29 instructor/evaluators from 14 airlines revealed that radio communications are mainly role-played by the instructor/evaluators. This increases instructor/evaluators' own workload while unrealistically lowering pilot communications load compared to actual operations, with a concomitant loss in training/evaluation effectiveness. A technology review searching for an automated means of providing radio communications to and from aircraft with minimal human effort showed that while promising, the technology is still immature. Further research and the need for establishing a proof-of-concept are also discussed.

  5. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  6. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    SciTech Connect

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  7. The infrared properties of the GPS and CSS radio sources

    NASA Astrophysics Data System (ADS)

    O'Dea, C. P.

    2016-02-01

    I review the results of three Spitzer studies of GHz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio galaxies. The luminosity of the IR continuum and the high ionization lines confirm that some GPS/CSS can have central engines which are similar to those of the extended powerful radio sources. This is consistent with the hypothesis that some GPS/CSS can evolve to become the large-scale sources. Warm H_2 is common in the GPS/CSS sources consistent with feedback via jet-ISM interaction. The GPS/CSS seem to have higher star formation rates than typical (2JY + 3CRR) radio sources. This should be confirmed with a larger sample. If compact sources interact with dense, clumpy star forming clouds and if the interaction with the dense medium sufficiently enhances the radio power, these star forming galaxies with enhanced radio emission will be selected for the current bright samples of GPS and CSS sources. This will increase the number of GPS and CSS sources which are observed to be forming stars. If radio sources have longer lives and/or star formation is more common in large radio galaxies, the need for a new population of star forming compact sources with enhanced radio emission is reduced.

  8. Radio-frequency heating of emission-line gas near compact extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Mckee, C. F.; Tarter, C. B.

    1978-01-01

    High-brightness-temperature radio sources significantly heat by free-free absorption any nearby gas that has properties similar to those inferred for QSO emission-line gas. As a result, the outer layers of the gas clouds expand, and their visible line emission decreases. Moderate heating enhances the collisionally excited ultraviolet line of O VI at 1034 A. Stronger heating penetrates the entire cloud and extinguishes all lines. Strong enough radio fluxes cause a thermal instability by stimulated Compton heating that is only saturated by Compton cooling at very high temperatures. It is speculated that BL Lac objects differ from quasars by having higher radio turnover frequencies, lower gas pressures, or more violent variability, all of which make radio heating more effective.

  9. Radio broadcasting via satellite

    NASA Astrophysics Data System (ADS)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  10. Eratosthenes via Ham Radio

    ERIC Educational Resources Information Center

    Koser, John F.

    1975-01-01

    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  11. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  12. Conceptual Background to Radio

    NASA Astrophysics Data System (ADS)

    Ponsonby, J. E. B.

    2004-06-01

    The International Telecommunications Union (ITU) conceives the radio spectrum as primarily a resource for telecommunications. Indeed most applications of radio are for communications and other radio services, particularly the Radio Astronomy Service, are deemed to be `pretend'communication serviceas for spectrum amnagement purposes. The language of Radio Spectrum Management is permeated by the terminology ofcommunications, some derived from the physics of radio and some from aspects of information theory. This contribution touches on all the essential concepts of radiocommunications which the author thinks should be the common mental equipment of the Spectrum Manager. The fundamental capacity of a communication channel is discussed in terms of the degrees of freedom and bandwidth of a signal, and the signal to noise ratio. It is emphasized that an information bearing signal is inherently unpredictable, and must, at some level, be discontinuous. This has important consequences for the form of its power spectrum. The effect of inserting filters is discussed particularly with regard to constant amplitude signals and, in the context of non-linear power amplifiers, the phenomenon of`sideband recovery'. All the common generic forms of modulation are discussed including the very different case of `no-modulation' which applies in all forms of passive remote sensing. Whilst all are agreed that the radio spectrum should be used `efficiently', there is no quantitative measure of spectral efficiency which embraces all relevant aspects of spectral usage. These various aspects are dicussed. Finally a brief outline of some aspects of antennae are reviewed. It is pointed out that the recent introduction of so-called `active antennnae', which have properties unlike traditional passive antennae, has confused the interpretation of those ITU Radio Regulations which refer to antennae.

  13. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  14. Computational Techniques in Radio Neutrino Event Reconstruction

    NASA Astrophysics Data System (ADS)

    Beydler, M.; ARA Collaboration

    2016-03-01

    The Askaryan Radio Array (ARA) is a high-energy cosmic neutrino detector constructed with stations of radio antennas buried in the ice at the South Pole. Event reconstruction relies on the analysis of the arrival times of the transient radio signals generated by neutrinos interacting within a few kilometers of the detector. Because of its depth dependence, the index of refraction in the ice complicates the interferometric directional reconstruction of possible neutrino events. Currently, there is an ongoing endeavor to enhance the programs used for the time-consuming computations of the curved paths of the transient wave signals in the ice as well as the interferometric beamforming. We have implemented a fast, multi-dimensional spline table lookup of the wave arrival times in order to enable raytrace-based directional reconstructions. Additionally, we have applied parallel computing across multiple Graphics Processing Units (GPUs) in order to perform the beamforming calculations quickly.

  15. Astrometry of southern radio sources.

    PubMed

    White, G L; Jauncey, D L; Harvey, B R; Savage, A; Gulkis, S; Preston, R A; Peterson, B A; Reynolds, J E; Nicolson, G D; Malin, D F

    1991-01-01

    An overview is presented of a number of astrometry and astrophysics programs based on radio sources from the Parkes 2.7 GHz catalogues. The programs cover the optical identification and spectroscopy of flat-spectrum Parkes sources and the determination of their milliarc-second radio structures and positions. Work is also in progress to tie together the radio and Hipparcos positional reference frames. A parallel program of radio and optical astrometry of southern radio stars is also under way.

  16. Cognitive Radio will revolutionize American transportation

    ScienceCinema

    None

    2016-07-12

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  17. Cognitive Radio will revolutionize American transportation

    SciTech Connect

    2013-07-22

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  18. Self Organization of Wireless Sensor Networks Using Ultra-Wideband Radios

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2004-07-19

    Ultra-wideband (UWB) technology has proven to be useful in short range, high data rate, robust, and low power communications. These features can make UWB systems ideal candidates for reliable data communications between nodes of a wireless sensor network (WSN). However, the low powered UWB pulses can be significantly degraded by channel noise, inter-node interference, and intentional jamming. In this paper we present a novel interference suppression technique for UWB based WSNs that promises self-organization in terms of power conservation, scalability, and channel estimation for the entire distributed network.

  19. Remnant radio galaxies in the LOFAR Lockman Hole

    NASA Astrophysics Data System (ADS)

    Brienza, Marisa; Godfrey, Leith; Morganti, Raffaella

    2016-08-01

    I will present recent 150-MHz deep observations performed with the Low-frequency Array (LOFAR) of the well-known extragalactic region of the Lockman Hole. Thanks to its high sensitivity and resolution this data allows us to perform new studies of the radio loud AGN population at low radio frequencies. In particular, we conducted a systematic search of remnant radio galaxies, which represent the final "dying" phase of the radio galaxy evolution, when the jets have switched off. This class of sources is best to investigate the life-cycle of radio loud AGN as well as to quantify the role of radio AGN feedback. Indeed, the modelling of their radio spectrum provides constraints on the time-scales of activity and quiescence of the radio source and on its energy output. For a long time there have been claims that deep low-frequency surveys would have enhanced the detection of this class of sources, which are usually rare in flux limited samples.With our search, we thus intend to provide good statistics on the detection and properties of remnant radio galaxies. To avoid selection biases towards any specific class of objects we used both morphological and spectral selection criteria. To do this we combined the LOFAR data with publicly available surveys at other frequencies as well as dedicated deep observations. We find that the fraction of candidate remnant sources is < 6-8% of the entire radio source population and is dominated by steep spectrum sources. To better understand the observed fraction we developed mock catalogues of the radio sky population based on radio galaxy evolution models. These models are used to constrain the main mechanisms contributing to the source luminosity evolution i.e. adiabatic expansion, radiative losses, as well as to make predictions on their fraction in flux limited samples.

  20. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  1. An Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Burke, Bernard F.; Graham-Smith, Francis

    2009-09-01

    Preface; 1. Introduction; 2. The nature of the radio signal; 3. Signals, noise, radiometers and spectrometers; 4. Single-aperture radio telescopes; 5. The two-element interferometer; 6. Aperture synthesis; 7. Radiation, propagation and absorption of radio waves; 8. The local universe; 9. The interstellar medium; 10. Galactic dynamics; 11. Stars; 12. Pulsars; 13. Radio galaxies and quasars; 14. Cosmology fundamentals; 15. The angular structure of the CMB; 16. Cosmology: discrete radio sources and gravitational lensing; 17. The future of radio astronomy; Appendixes; References; Index.

  2. An Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Burke, Bernard F.; Graham-Smith, Francis

    2014-02-01

    Preface; 1. Introduction; 2. The nature of the radio signal; 3. Signals, noise, radiometers and spectrometers; 4. Single-aperture radio telescopes; 5. The two-element interferometer; 6. Aperture synthesis; 7. Radiation, propagation and absorption of radio waves; 8. The local universe; 9. The interstellar medium; 10. Galactic dynamics; 11. Stars; 12. Pulsars; 13. Radio galaxies and quasars; 14. Cosmology fundamentals; 15. The angular structure of the CMB; 16. Cosmology: discrete radio sources and gravitational lensing; 17. The future of radio astronomy; Appendixes; References; Index.

  3. Saturn's variable radio period

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Lecacheux, A.; Zarka, P.; Gurnett, D. A.; Cecconi, B.

    Temporal modulations in radio emissions are often used to determine the rotation rate of the emitting body. The rotation period (presumably) of Jupiter's interior was established in this way [Burke et al., 1962] and has recently been refined by Higgins et al. [1997]. Rotation periods for the remainder of the outer planet gas giants were determined from Voyager planetary radio astronomy observations. Similar techniques have been applied to astrophysical objects, including pulsars, for which the radio period is assumed to be the rotation period of the neutron star. In 2001, however, this simple relation between the radio period and rotation period became suspect, at least for the case of Saturn. Galopeau and Lecacheux [2001] reported that the radio period of Saturn had changed by as much as 1% from that determined by Voyager and, further, exhibited variations on time scales of years. More recently, Cassini observations indicate that the Saturn kilometric radiation is modulated with a period longer than that observed by Voyager and that this period is variable on a time scale of a year or less. The recent Higgins et al. result suggests that Jupiter's period is steady, within measurement accuracy. There are no additional measurements from Uranus or Neptune with which to look for time variations in their radio periods. For conservation of energy and angular momentum reasons, true variations of the rotation period of Saturn's deep interior are not believed to be a viable explanation for the variation in radio period, hence, it would appear that there is some disconnection of the radio period from the rotation period in the case of Saturn. One possible contributing factor may be that since Saturn's magnetic field is very accurately aligned with its rotational axis, there is no first-order beaming effect caused by the wobbling of the magnetic field, contrary to the situation at the other magnetized planets. Another explanation suggested by Galopeau and Lecacheux [2001] and

  4. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  5. Comets at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Crovisier, Jacques; Bockelée-Morvan, Dominique; Colom, Pierre; Biver, Nicolas

    2016-11-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe. xml:lang="fr"

  6. Radio coverage statistics.

    PubMed

    Lynn, W

    1984-01-01

    The Clearinghouse on Development Communication surveyed 135 countries in Asia, Africa, Europe, North and South America, for U.S.A.I.D., to determine the number of radio and television broadcast stations and receivers. Some of the data were obtained from the World Factbook, the World Radio and TV Handbook, and the World Radio and T.V. Facts and Figures, from 1979 to 1981. In those countries where stations are privately owned, audience surveys are often available. In 2 out of 3 developing countries, however, stations are government owned, and no such information is available. Numbers of receivers can sometimes be ascertained from receiver license applications. There is a need for more complete information on broadcast demographics, listening and viewing patterns by the community of world development program personnel.

  7. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  8. Sensors Locate Radio Interference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.

  9. Radio astronomy with microspacecraft

    NASA Technical Reports Server (NTRS)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  10. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  11. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  12. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  13. 75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Order 1. On March 17, 2005, the Commission adopted the Cognitive Radio Report and Order, 70 FR 23032... Memorandum Opinion and Order (MO&O), 72 FR 31190, June 6, 2007, which responded to two petitions filed in... COMMISSION 47 CFR Part 2 Cognitive Radio Technologies and Software Defined Radios AGENCY:...

  14. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer.

  15. Industrial WSN Based on IR-UWB and a Low-Latency MAC Protocol

    NASA Astrophysics Data System (ADS)

    Reinhold, Rafael; Underberg, Lisa; Wulf, Armin; Kays, Ruediger

    2016-07-01

    Wireless sensor networks for industrial communication require high reliability and low latency. As current wireless sensor networks do not entirely meet these requirements, novel system approaches need to be developed. Since ultra wideband communication systems seem to be a promising approach, this paper evaluates the performance of the IEEE 802.15.4 impulse-radio ultra-wideband physical layer and the IEEE 802.15.4 Low Latency Deterministic Network (LLDN) MAC for industrial applications. Novel approaches and system adaptions are proposed to meet the application requirements. In this regard, a synchronization approach based on circular average magnitude difference functions (CAMDF) and on a clean template (CT) is presented for the correlation receiver. An adapted MAC protocol titled aggregated low latency (ALL) MAC is proposed to significantly reduce the resulting latency. Based on the system proposals, a hardware prototype has been developed, which proves the feasibility of the system and visualizes the real-time performance of the MAC protocol.

  16. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    NASA Technical Reports Server (NTRS)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  17. Community Radio in Canada.

    ERIC Educational Resources Information Center

    Canadian Broadcasting Corp., Ottawa (Ontario).

    Results are presented of a survey of 20 community radio organizations operating in Canada. For each of the 20 agencies, information is provided relating to: (1) the name and address of the organization; (2) the name and population of the community served; (3) the station's call letters, frequency, and power; (4) the date of the station's license;…

  18. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  19. Educational Broadcasting--Radio.

    ERIC Educational Resources Information Center

    Ahamed, Uvais; Grimmett, George

    This manual is intended for those who must conduct educational radio broadcasting training courses in Asia-Pacific countries without the resources of experienced personnel, as well as for individuals to use in self-learning situations. The selection of material has been influenced by the need to use broadcasting resources effectively in programs…

  20. Radio Channel Simulator (RCSM)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  1. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  2. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  3. Telling It by Radio

    ERIC Educational Resources Information Center

    Milander, Henry M.

    1975-01-01

    Olympic College purchased eight one-minute advertising spots per day for use seven days a week at a local independent radio station. Ten sample spots are presented. This economical approach was successful in increasing over-all enrollment and the number of FTE students; it also attracted many adults to the college. (DC)

  4. A Radio Station Project.

    ERIC Educational Resources Information Center

    Geva, Edna

    2002-01-01

    Describes a radio program in an English-as-a-Foreign-Language classroom in Israel. Classrooms of English students listen carefully to daily broadcasts, waiting to solve the brain teaser. Personal messages and catchy music follow the program. The project has encouraged students to use English actively and purposefully. Evaluation of the broadcasts…

  5. Japanese Radio Exercises. Revised.

    ERIC Educational Resources Information Center

    Young, Jocelyn

    This unit focuses on Japanese radio exercises which became popular in Japan just after World War II and are still used among students and workers in companies to help raise morale and form group unity. The exercises reflect the general role of exercise in Japanese culture--to serve as a symbol of unity and cooperation among the Japanese, as well…

  6. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  7. The Applications of Decision-Level Data Fusion Techniques in the Field of Multiuser Detection for DS-UWB Systems

    PubMed Central

    Gu, Yebo; Yang, Minglei; Shi, Zhenguo; Wu, Zhilu

    2015-01-01

    In this paper, the decision-level data fusion techniques are extended to the multiuser detection (MUD) field. Then two novel MUD algorithms, that is the chairman arbitrating decision-level fusion criterion (CA-DFC) based MUD algorithm and the veto logic decision-level fusion criterion (VL-DFC) based MUD algorithm, are proposed for DS-UWB communication systems. In CA-DFC based method, the chairman can make his arbitration among the preliminary decisions from sub-optimal detectors by his own rule. In the VL-DFC based method, the undetermined bits in these preliminary decisions are considered to construct a simplified solution space, and then the chairman can make his final decision within this space. Simulation results demonstrate that the performances of CA-DFC and VL-DFC based MUD algorithms are superior to those of other sub-optimal MUD algorithms, and even close to that of OMD. Moreover, both of these proposed algorithms have lower computational complexity than OMD, which reveals their efficiency. Compared with CA-DFC, VL-DFC based algorithm achieves a little improvement in its performance, at the cost of the increment in its computational complexity. Thus, they can be applied to different practical situations. PMID:26404273

  8. The Nicaragua Radio Mathematics Project.

    ERIC Educational Resources Information Center

    Searle, Barbara

    The Radio Mathematics Project was funded by the Agency for International Development to design, implement, and evaluate, in conjunction with personnel of a developing country, a system for teaching primary-grade mathematics by radio. In July 1974, a project in Nicaragua began with a series of radio presentations, each followed by 20 minutes of…

  9. Ham Radio is Mir Magic.

    ERIC Educational Resources Information Center

    Evans, Gary

    1997-01-01

    Presents a classroom activity in which students communicated with U.S. and Russian astronauts via ham radio while they were in orbit on the space station Mir. Gives suggestions for other ham radio classroom activities as well as names of organizations, publications, and grant programs that teachers can access to help in bring ham radio into their…

  10. Writing the Instructional Radio Script.

    ERIC Educational Resources Information Center

    de Fossard, Esta

    This guide was developed for script writers on the Radio Language Arts Project, which was designed to develop, implement, and test the effectiveness of an instructional radio system to teach English as a second language at the primary school level in Kenya. The project was planned to produce a radio-based, English language program with…

  11. Collaborative Beamfocusing Radio (COBRA)

    NASA Astrophysics Data System (ADS)

    Rode, Jeremy P.; Hsu, Mark J.; Smith, David; Husain, Anis

    2013-05-01

    A Ziva team has recently demonstrated a novel technique called Collaborative Beamfocusing Radios (COBRA) which enables an ad-hoc collection of distributed commercial off-the-shelf software defined radios to coherently align and beamform to a remote radio. COBRA promises to operate even in high multipath and non-line-of-sight environments as well as mobile applications without resorting to computationally expensive closed loop techniques that are currently unable to operate with significant movement. COBRA exploits two key technologies to achieve coherent beamforming. The first is Time Reversal (TR) which compensates for multipath and automatically discovers the optimal spatio-temporal matched filter to enable peak signal gains (up to 20 dB) and diffraction-limited focusing at the intended receiver in NLOS and severe multipath environments. The second is time-aligned buffering which enables TR to synchronize distributed transmitters into a collaborative array. This time alignment algorithm avoids causality violations through the use of reciprocal buffering. Preserving spatio-temporal reciprocity through the TR capture and retransmission process achieves coherent alignment across multiple radios at ~GHz carriers using only standard quartz-oscillators. COBRA has been demonstrated in the lab, aligning two off-the-shelf software defined radios over-the-air to an accuracy of better than 2 degrees of carrier alignment at 450 MHz. The COBRA algorithms are lightweight, with computation in 5 ms on a smartphone class microprocessor. COBRA also has low start-up latency, achieving high accuracy from a cold-start in 30 ms. The COBRA technique opens up a large number of new capabilities in communications, and electronic warfare including selective spatial jamming, geolocation and anti-geolocation.

  12. The LOFAR radio environment

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; de Bruyn, A. G.; Zaroubi, S.; van Diepen, G.; Martinez-Ruby, O.; Labropoulos, P.; Brentjens, M. A.; Ciardi, B.; Daiboo, S.; Harker, G.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Mellema, G.; Pandey, V. N.; Pizzo, R. F.; Schaye, J.; Vedantham, H.; Veligatla, V.; Wijnholds, S. J.; Yatawatta, S.; Zarka, P.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, M.; Beck, R.; Bell, M.; Bell, M. R.; Bentum, M.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H.; Conway, J.; de Vos, M.; Dettmar, R. J.; Eisloeffel, J.; Falcke, H.; Fender, R.; Frieswijk, W.; Gerbers, M.; Griessmeier, J. M.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hessels, J.; Hoeft, M.; Horneffer, A.; Karastergiou, A.; Kondratiev, V.; Koopman, Y.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McKean, J.; Meulman, H.; Mevius, M.; Mol, J. D.; Nijboer, R.; Noordam, J.; Norden, M.; Paas, H.; Pandey, M.; Pizzo, R.; Polatidis, A.; Rafferty, D.; Rawlings, S.; Reich, W.; Röttgering, H. J. A.; Schoenmakers, A. P.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; van Ardenne, A.; van Cappellen, W.; van Duin, A. P.; van Haarlem, M.; van Leeuwen, J.; van Weeren, R. J.; Vermeulen, R.; Vocks, C.; Wijers, R. A. M. J.; Wise, M.; Wucknitz, O.

    2013-01-01

    Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.

  13. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  14. Accurate radio and optical positions for southern radio sources

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce R.; Jauncey, David L.; White, Graeme L.; Nothnagel, Axel; Nicolson, George D.; Reynolds, John E.; Morabito, David D.; Bartel, Norbert

    1992-01-01

    Accurate radio positions with a precision of about 0.01 arcsec are reported for eight compact extragalactic radio sources south of -45-deg declination. The radio positions were determined using VLBI at 8.4 GHz on the 9589 km Tidbinbilla (Australia) to Hartebeesthoek (South Africa) baseline. The sources were selected from the Parkes Catalogue to be strong, flat-spectrum radio sources with bright optical QSO counterparts. Optical positions of the QSOs were also measured from the ESO B Sky Survey plates with respect to stars from the Perth 70 Catalogue, to an accuracy of about 0.19 arcsec rms. These radio and optical positions are as precise as any presently available in the far southern sky. A comparison of the radio and optical positions confirms the estimated optical position errors and shows that there is overall agreement at the 0.1-arcsec level between the radio and Perth 70 optical reference frames in the far south.

  15. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  16. Obstacle avoidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) forward imaging radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Wong, David; Ressler, Marc; Koenig, Francois; Stanton, Brian; Smith, Gregory; Sichina, Jeffrey; Kappra, Karl

    2007-04-01

    The U.S. Army Research Laboratory (ARL), as part of a mission and customer funded exploratory program, has developed a new low-frequency, ultra-wideband (UWB) synthetic aperture radar (SAR) for forward imaging to support the Army's vision of an autonomous navigation system for robotic ground vehicles. These unmanned vehicles, equipped with an array of imaging sensors, will be tasked to help detect man-made obstacles such as concealed targets, enemy minefields, and booby traps, as well as other natural obstacles such as ditches, and bodies of water. The ability of UWB radar technology to help detect concealed objects has been documented in the past and could provide an important obstacle avoidance capability for autonomous navigation systems, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U. S. forces on the battlefield. One of the primary features of the radar is the ability to collect and process data at combat pace in an affordable, compact, and lightweight package. To achieve this, the radar is based on the synchronous impulse reconstruction (SIRE) technique where several relatively slow and inexpensive analog-to-digital (A/D) converters are used to sample the wide bandwidth of the radar signals. We conducted an experiment this winter at Aberdeen Proving Ground (APG) to support the phenomenological studies of the backscatter from positive and negative obstacles for autonomous robotic vehicle navigation, as well as the detection of concealed targets of interest to the Army. In this paper, we briefly describe the UWB SIRE radar and the test setup in the experiment. We will also describe the signal processing and the forward imaging techniques used in the experiment. Finally, we will present imagery of man-made obstacles such as barriers, concertina wires, and mines.

  17. High stability radio links

    NASA Technical Reports Server (NTRS)

    Kursinski, E. Robert

    1989-01-01

    Radio telecommunication links are used for communication with deep space probes. These links consist of sinusoidal carrier signals at radio frequencies (RF) modulated with information sent between the spacecraft and the earth. This carrier signal is a very pure and stable sinusoid, typically derived from an atomic frequency standard whose frequency and phase are used to measure the radial velocity of the probe and from this and other data types derive its trajectory. This same observable can be used to search for space-time distortions cased by low frequency (0.1 to 100 MHz) gravitation radiation. How such a system works, what its sensitivity limitations are, and what potential future improvements can be made are discussed.

  18. Radio emissions from RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrey; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Cummer, Steven

    2016-04-01

    The discovery of bursts of energetic photons coming out to space from the Earth's atmosphere, referred to as terrsetrial gamma-ray flashes (TGFs), has stimulated research activity investigating different aspects of the TGF generation and accompanying processes. Two models of the TGF production are nowadays competing to explain the observations of the TGFs and related phenomena. One of the models involves the feedback mechanism enhancing the production rate of the runaway electrons in the ambient electric field of a thundercloud. Another model considers runaway electrons accelerated in the strong local electric field in front of the upward propagating negative leader of the +IC. We performed a detailed analysis of RHESSI TGFs detected between August 2004 and September 2015. It was reported that the RHESSI satellite clock has a systematic error of ˜ 1.8 ms, but the exact value remained unknown, also it was unclear if this systematic clock error is changing with time or not. We compared RHESSI TGFs with the world wide lightning location network (WWLLN) database and found the distribution of the time delays between the TGF peak times and associated WWLLN detections. This distribution allowed us to find the value of the RHESSI systematic clock offset with the microsecond accuracy level. Also we found that this offset experienced two changes: in August 2005 and in October 2013, which was confirmed by two independent ways. We found that in case of double TGFs WWLLN detection corresponds to the second TGF of the pair. VLF magnetic field recordings from the Duke University also attribute radio sferics to the second TGF, exhibiting no detectable radio emission during the first TGFs of the TGF pairs. We have proposed a possible scenario that is consistent with the observations. This scenario supports the leader-based model of the TGF generation. Spectral characteristics of 77 sferics recorded by the Duke University VLF sensors and related to the RHEESI TGFs show that maximal

  19. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1976-01-01

    The paper reviews the current status of research on solar radio continuum emissions from metric to hectometric wave frequencies, emphasizing the role of energetic electrons in the 10-100 keV range in these emissions. It is seen that keV-energy electrons generated in active sunspot groups must be the sources of radio continuum storm emissions for wide frequency bands. These electrons excite plasma oscillations in the medium, which in turn are converted to electromagnetic radiation. The radio noise continuum sources are usually associated with type III burst activity observed above these sources. Although the mechanism for the release of the energetic electrons is not known, it seems they are ejected from storm source regions in association with rapid variation of associated sunspot magnetic fields due to their growth into complex types. To explain some of the observed characteristics, the importance of two-stream instability and the scattering of ambient plasma ions on energetic electron streams is pointed out.

  20. Workshop on Radio Transients

    NASA Astrophysics Data System (ADS)

    Croft, Steve; Gaensler, Bryan

    2012-04-01

    abstract-type="normal">SummaryWe are entering a new era in the study of variable and transient radio sources. This workshop discussed the instruments and the strategies employed to study those sources, how they are identified and classified, how results from different surveys can be compared, and how radio observations tie in with those at other wavelengths. The emphasis was on learning what common ground there is between the plethora of on-going projects, how methods and code can be shared, and how best practices regarding survey strategy could be adopted. The workshop featured the four topics below. Each topic commenced with a fairly brief introductory talk, which then developed into discussion. By way of preparation, participants had been invited to upload and discuss one slide per topic to a wiki ahead of the workshop. 1. Telescopes, instrumentation and survey strategy. New radio facilities and on-going projects (including upgrades) are both studying the variability of the radio sky, and searching for transients. The discussion first centred on the status of those facilities, and on projects with a time-domain focus, both ongoing and planned, before turning to factors driving choices of instrumentation, such as phased array versus single pixel feeds, the field of view, spatial and time resolution, frequency and bandwidth, depth, area, and cadence of the surveys. 2. Detection, pipelines, and classification. The workshop debated (a) the factors that influence decisions to study variability in the (u,v) plane, in images, or in catalogues, (b) whether, and how much, pipeline code could potentially be shared between one project and another, and which software packages are best for different approaches, (c) how data are stored and later accessed, and (d) how transients and variables are defined and classified. 3. Statistics, interpretation, and synthesis. It then discussed how (i) the choice of facility and strategy and (ii) detection and classification schemes

  1. Accuracy of an UWB-based position tracking system used for time-motion analyses in game sports.

    PubMed

    Leser, Roland; Schleindlhuber, Armin; Lyons, Keith; Baca, Arnold

    2014-01-01

    The main aim of this study was to determine the accuracy of the ultra-wideband (UWB)-based positioning system Ubisense, which is used for time-motion analysis in sports. Furthermore, some alternatives for positioning the system's transponders on the atheletes, as well as the accuracy depending on the location of measurement, were tested. Therefore, in a pre-study, some basic issues were examined (measurement assumptions and consistency and location of the system's transponder used for position detection), and position measurements at the borders and in the centre of a basketball field were performed. In the main study, 13 male basketball players (15.8 years ± 0.6; 187.9 height ± 3.4; 77.5 weight ± 3.7), equipped with a Ubisense transponder mounted on top of their heads, handled a trundle wheel during simulated match play. The players with the trundle wheel participated passively in the match by following one of the ten competing players. The distance measurements of the trundle wheel were used as reference values and compared to the Ubisense distance estimations. Best results were found with the measurements of a single mounted transponder on top of the athlete's heads. No differences were detectable in the accuracy between measurements in the centre and at the borders of the basketball field. The (Ubisense) system's difference to the (trundle wheel) reference was 3.45 ± 1.99%, resulting in 95% limits of agreement of -0.46-7.35%. The study indicates the examined system's sufficient accuracy for time-motion analysis in basketball. PMID:24512176

  2. Accuracy of an UWB-based position tracking system used for time-motion analyses in game sports.

    PubMed

    Leser, Roland; Schleindlhuber, Armin; Lyons, Keith; Baca, Arnold

    2014-01-01

    The main aim of this study was to determine the accuracy of the ultra-wideband (UWB)-based positioning system Ubisense, which is used for time-motion analysis in sports. Furthermore, some alternatives for positioning the system's transponders on the atheletes, as well as the accuracy depending on the location of measurement, were tested. Therefore, in a pre-study, some basic issues were examined (measurement assumptions and consistency and location of the system's transponder used for position detection), and position measurements at the borders and in the centre of a basketball field were performed. In the main study, 13 male basketball players (15.8 years ± 0.6; 187.9 height ± 3.4; 77.5 weight ± 3.7), equipped with a Ubisense transponder mounted on top of their heads, handled a trundle wheel during simulated match play. The players with the trundle wheel participated passively in the match by following one of the ten competing players. The distance measurements of the trundle wheel were used as reference values and compared to the Ubisense distance estimations. Best results were found with the measurements of a single mounted transponder on top of the athlete's heads. No differences were detectable in the accuracy between measurements in the centre and at the borders of the basketball field. The (Ubisense) system's difference to the (trundle wheel) reference was 3.45 ± 1.99%, resulting in 95% limits of agreement of -0.46-7.35%. The study indicates the examined system's sufficient accuracy for time-motion analysis in basketball.

  3. Updates to the NASA Space Telecommunications Radio System (STRS) Architecture

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Handler, Louis M.; Briones, Janette; Hall, Charles S.

    2008-01-01

    This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios. The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API, configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and enhancements to the specialized signal processing abstraction.

  4. Radio emision from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, G.

    2016-06-01

    The vast majority of supernova remnants (SNRs) in our Galaxy and nearby galaxies have been discovered through radio observations, and only a very small number of the SNRs catalogued in the Milky Way have not been detected in the radio band, or are poorly defined by current radio observations. The study of the radio emission from SNRs is an excellent tool to investigate morphological characteristics, marking the location of shock fronts and contact discontinuities; the presence, orientation and intensity of the magnetic field; the energy spectrum of the emitting particles; and the dynamical consequences of the interaction with the circumstellar and interstellar medium. I will review the present knowledge of different important aspects of radio remnants and their impact on the interstellar gas. Also, new radio studies of the Crab Nebula carried out with the Karl Jansky Very Large Array (JVLA) at 3 GHz and with ALMA at 100 GHz, will be presented.

  5. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  6. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  7. Origins of Canadian Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Covington, A. E.

    1988-08-01

    Radar technology after World War II was rapidly applied to the radio astronomy founded by Jansky and Reber. The first post-war discoveries in various countries from 1945 to 1950 were made with instruments built from surplus parts, and quickly led to the design of specialized equipment. The development in Ottawa at the Laboratories of the National Research Council is outlined, initially for solar radio observations and then for the early galactic observations at the Goth Hill Radio Observatory, near Ottawa.

  8. Decimetric radio dot emissions

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Karlický, M.; Sawant, H. S.; Fernandes, F. C. R.; Cecatto, J. R.; de Andrade, M. C.

    2008-11-01

    Context: We study a rare type of solar radio bursts called decimetric dot emissions. Aims: In the period 1999-2001, 20 events of decimetric dot emissions observed by the Brazilian Solar Spectroscope (BSS) in the frequency range 950-2640 MHz are investigated statistically and compared with radio fine structures of zebras and fibers. Methods: For the study of the spectral characteristics of the dot emissions we use specially developed Interactive Data Language (IDL) software called BSSView and basic statistical methods. Results: We have found that the dm dot emissions, contrary to the fine structures of the type IV bursts (i.e. zebras, fibers, lace bursts, spikes), are not superimposed on any background burst emission. In the radio spectrum, in most cases the dot emissions form chains that appear to be arranged in zebra patterns or fibers. Because some zebras and fibers, especially those observed with high time and high spectral resolutions, also show emission dots (but superimposed on the background burst emission), we compared the spectral parameters of the dot emissions with the dots being the fine structure of zebras and fibers. For both these dots, similar spectral characteristics were found. Some similarities of the dot emissions can be found also with the lace bursts and spikes. For some events the dot emissions show structural evolution from patterns resembling fibers to patterns resembling zebras and vice versa, or they evolve into fully chaotic patterns. Conclusions: For the first time, we present decimetric dot emissions that appear to be arranged in zebra patterns or fibers. We propose that these emissions are generated by the plasma emission mechanism at the locations in the solar atmosphere where the double resonance condition is fulfilled.

  9. Observations of Solar Radio Transients

    NASA Astrophysics Data System (ADS)

    Paige, Giorla

    2011-05-01

    A low frequency radio telescope has been recently been constructed on the campus of the The College of New Jersey (TCNJ) and has begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of solar radio emission including strong prompt radio emission associated with solar burst events. We will discuss solar observations conducted with this instrument as well as an effort to conduct coincident observations with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  10. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)-BH mergers play a major role in spinning up the central SMBHs in these objects.

  11. Internet Resources for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  12. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  13. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  14. Lunar Farside Radio Lab

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2005-03-01

    It is proposed that the Farside of the Moon should be protected legally against man-made radio pollution and uncontrolled exploitation. In fact, only by establishing a radiotelescope on the Farside of the Moon it will finally be possible to cope with the Radio Frequency Interference (RFI) that is now increasingly plaguing all of Radioastronomy, Bioastronomy and Search for Extraterrestrial Intelligence (SETI) Searches done from the surface of the Earth. It is suggested to partition the Farside into 3 sectors, each 60°wide, to ensurethe creation of a future “Lunar Farside Radio Lab” inside crater Daedalus (at 180°E) with our planned Radiotelescope (in practice a Phased Array),complete freedom to exploit the Nearside as well as the four Lagrangian points L1, L3, L4 and L5 of the Earth Moon system by allowing even some International Space Stations to be located there. It is also claimed, however, thatthe “opposite” Lagrangian point L2 should possibly be kept free of spacecrafts that would flood the Farside by the RFI they produce. Realistically, it might be difficult to comply with the latter request in view of the far-future development of a Space Base located there in order to depart towards the Asteroids and the Outer Planets at very reduced fuel consumption. A more reasonable request about any future space station located at the Earth Moon L2 point is thus that this future space station should be shielded to prevent its RFI from reaching the Farside of the Moon.A number of further astrophysical, astronautical and technical issues could just be highlighted in this study and deserve much more elaboration. To mention a few:the precise size of the “Quiet Cone” extending into space above the Farside of the Moon. Also, the experimental measurement of how quiet this Cone actually is by letting a radiometer orbit the Moon (see the web site www.rli.it);the mathematical modelling of the weak ionosphere of the Moon and its possible diffraction effects at very

  15. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  16. The Transient Radio Sky

    NASA Astrophysics Data System (ADS)

    Keane, E. F.

    2010-11-01

    The high time-resolution radio sky represents unexplored astronomical territory where the discovery potential is high. In this thesis I have studied the transient radio sky, focusing on millisecond scales. As such, this work is concerned primarily with neutron stars, the mostpopulous member of the radio transient parameter space. In particular, I have studied the well known radio pulsars and the recently identified group of neutron stars which show erratic radio emission, known as RRATs, which show radio bursts every few minutes to every few hours. When RRATs burst onto the scene in 2006, it was thought that they represented a previously unknown, distinct class of sporadically emitting sources. The difficulty in their identification implies a large underlying population, perhaps larger than the radio pulsars. The first question investigated in this thesis was whether the large projected population of RRATs posed a problem, i.e. could the observed supernova rate account for so many sources. In addition to pulsars and RRATs, the various other known neutron star manifestations were considered, leading to the conclusion that distinct populations would result in a `birthrate problem'. Evolution between the classes could solve this problem -- the RRATs are not a distinct population ofneutron stars.Alternatively, perhaps the large projected population of RRATs is an overestimate. To obtain an improved estimate, the best approach is to find more sources. The Parkes Multi-beam Pulsar Survey, wherein the RRATs were initially identified, offered an opportunity to do just this. Abouthalf of the RRATs showing bursts during the survey were thought to have been missed, due to the deleterious effects of impulsive terrestrial interference signals. To remove these unwanted signals, so that we could identify the previously shrouded RRATs, we developed newinterference mitigation software and processing techniques. Having done this, the survey was completely re-processed, resulting in

  17. The Extragalactic Radio Background

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2011-01-01

    The existence of an isotropic component of the high-latitude radio sky has been recognized for nearly fifty years, but has typically been assumed to be Galactic in origin. We use recent radio observations to test whether the observed high-latitude component could originate within either an extended Galactic halo or a more local "bubble" structure. The lack of significant polarization from the isotropic component, combined with the lack of significant correlation with the Galactic far-infrared emission, rule out an origin within the Galaxy. We conclude that an extragalactic origin is the only viable alternative for the bulk of the isotropic high-latitude emission. The extragalactic component is 2-3 times brighter than local (Galactic) emission towards the Galactic poles and is consistent with a power law in frequency with amplitude T(sub r) = 24.1 plus or minus 2.1 K and spectral index beta = -2.599 plus or minus 0.036 evaluated at reference frequency 310 MHz.

  18. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  19. Virtual Observatory tools and Amateur Radio Observations Supporting Scientific Analysis of Jupiter Radio Emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S. L. G.; Le Sidaner, P.; Savalle, R.; Erard, S.; Coffre, A.; Thétas, E.; André, N.; Génot, V.; Thieman, J.; Typinski, D.; Sky, J.; Higgins, C.

    2015-10-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol. Amateur radio data from the RadioJOVE project is also available. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets. A preliminary study based on January-February 2014 data will also be presented

  20. Electron Acceleration and Radio Noise Storms

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Trottet, G.

    2008-05-01

    Radio noise storms are radiated by suprathermal electrons accelerated continuously over time scales of hours to days in the vicinity of active regions. Such long-duration electron acceleration may be related to emerging magnetic loops interacting with overlying loops leading to magnetic reconfiguration in the corona. A close spatial and temporal relationship is also sometimes observed between noise storm onsets or enhancements and white light transient activity. For a few cases, noise storm enhancements were found to be associated with flare like sudden energy release in the active region, either as a fully developed flare or, more often as a microwave or soft X-ray brightening without Halpha signature. A few cases have also been reported in which 10-30 keV X-rays from a superhot flaring plasma or from non-thermal electrons have been observed at the onset of the noise storm confirming that a flare-like signature in the low corona could be a necessary condition for noise storms to start. Most of these results were however obtained with no spatial resolution at X-ray wavelengths allowing us to confirm that the flare-like signature was indeed related to the radio noise storm onset. We shall present here some results of a search of X-ray counterparts (observed by RHESSI) at the onset or enhancements of a few radio noise storms observed with the Nançay Radioheliograph. We shall investigate whether X-ray flare-like signatures are seen in close temporal and spatial association with the appearance of the noise storm and briefly discuss the thermal or non thermal nature of the emission as well as its energy content.

  1. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  2. The future for radio astronomy

    NASA Astrophysics Data System (ADS)

    Breton, Rene P.; Hassall, Tom

    2013-12-01

    THE TRANSIENT UNIVERSE Rene P Breton and Tom Hassall argue that, while radio astronomy has always involved transient phenomena, exploration of this part of the electromagnetic spectrum has been falling behind because of the lack of data. But the advent of a new generation of radio telescopes such as LOFAR, could change that.

  3. Safety and Special Radio Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    Numerous radio stations across the nation perform nonbroadcast services in areas ranging from aviation, forestry protection, and telephone maintenance to amateur and citizen radio. These services can be grouped in four general categories: (1) safety, (2) industry, (3) land transportation, and (4) miscellaneous purposes. This bulletin briefly…

  4. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  5. Space Telecommunications Radio Architecture (STRS)

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  6. SETI radio spectrum surveillance system

    NASA Technical Reports Server (NTRS)

    Crow, B.; Lokshin, A.; Marina, M.; Ching, L.

    1985-01-01

    The SETI Radio Spectrum Surveillance System (SRSSS) will provide a data base for assessing the radio frequency interference (RFI) environment for SETI and minimizing RFI disruptions during the search. The system's hardware and software are described and the sensitivity of the system is discussed.

  7. Audiences for Contemporary Radio Formats.

    ERIC Educational Resources Information Center

    Lull, James T.; And Others

    A radio audience survey of 110 sample geographic clusters in the Santa Barbara, California, area served a twofold purpose: the construction of a demographic profile of audience types according to radio format choices, and the identification and analysis of various audience subgroups. A skip interval technique of these geographic clusters resulted…

  8. Report on ''European Radio Interferometry School 2015''

    NASA Astrophysics Data System (ADS)

    Laing, R.; Richards, A.

    2016-03-01

    The sixth European Interferometry School (ERIS2015) was held at ESO for the first time. As usual the school was aimed at graduate students and early-career postdocs, but this year the emphasis was on enhanced wide-bandwidth interferometers covering metre to submillimetre wavebands. More than 100 participants attended ERIS2015. The topics of the school are briefly described here. They covered a wide range, from an introduction to radio interferometric techniques through packages for data reduction and analysis to hands-on workshop sessions and proposal writing.

  9. Planetary radio astronomy from Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1983-01-01

    The technique of radio astronomy makes it possible for a remote observer to detect the presence of magnetic fields and plasmas in planetary environments. Prior to the flights of the Voyager spacecraft, radio astronomical studies of Jupiter from earth and from earth orbit had correctly predicted the strength and orientation of Jupiter's magnetic field and trapped radiation belts. The Voyager Planetary Radio Astronomy investigations have now provided measurements of the complete spectrum of low frequency radio emissions from both planets. Each Voyager instrument consists of a pair of orthogonal, 10-m, electric monopole antennas which are connected to a step-tuned, superheterodyne receiver operating over the frequency range from 1.2 kHz to 40.5 MHz. The Voyager trajectory provided observations from above both the sunlit and nightside hemispheres of Jupiter. Saturn's nonthermal radio emission has been observed at frequencies as low as 3 kHz and as high as 1.2 MHz.

  10. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Lazarus, P.; Kaspi, V. M.; Dib, R.; Champion, D. J.; Hessels, J. W. T.

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  11. Radio outburst of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.; Giroletti, M.; Orienti, M.; Raiteri, C. M.; Villata, M.; Bach, U.

    2013-04-01

    We report on extremely high radio flux of BL Lacertae at 43 and 8 GHz. Observations at 43 GHz with the 32 m radio telescope in Noto (Italy) revealed a flux density of 10.5 +/- 0.2 Jy on 2013 April 10.65, while observations at 8 GHz with the 32 m radio telescope in Medicina (Italy) detected a flux density of 8.2 +/- 0.7 Jy on April 12.22. These extremely high radio fluxes show that the radio activity likely correlated to the strong optical, near-infrared, and gamma-ray activity of 2011-2012 (see ATels #4028, #4031, #4155, #4271, #4277, #4349, #4565, #4600), and X-ray activity of late 2012 (ATels #4557, #4627), is far to be exhausted.

  12. Low Frequency Radio Signals from Sprite Streamers

    NASA Astrophysics Data System (ADS)

    Qin, J.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Sprites are mesospheric discharges that carry significant electrical currents and produce radio signals observed typically in the extremely low (ELF) to very low (VLF) frequency bands [Cummer et al., GRL, 25, 1281, 1998]. Recently, Low-Frequency (LF) radio observations of sprite-producing lightning discharges have shown the existence of consecutive broadband pulses exhibiting EM radiation that spans in the LF range, and it has been suggested that this LF radio signals may stem from non-luminous relativistic electron beams above thunderstorms [Fullekrug et al., JGR, 115, A00E09, 2010]. In this talk, we present the first theoretical estimates of the radio signals produced by individual sprite streamers using simulation results from a plasma fluid model. It is demonstrated that the spectral content of the radiation produced by sprite streamers is a function of the air density N and the lightning-induced quasi-static ambient electric field E in the regions of space where the sprite streamers are propagating. We demonstrate that the exponential growth of the current in sprite streamers at 75 km would be preferentially associated with electromagnetic radiation in the frequency range from 0 and up to ˜3 kHz, whereas the growth of the streamer current at 40 km could produce radiation with frequencies up to ˜300 kHz, consistently with the scaling of atmospheric air density [Kosar et al., JGR, 117, A08328, 2012]. We further conjecture that the periodic branching of streamers may lead to a radiation spectrum enhancement in the VLF to LF range. The present study shows that sprite streamers could be responsible for at least part of the LF radiation associated with sprite-producing lightning discharges that was detected recently by Fullekrug et al. [2010].

  13. Exploring the Dynamic Radio Sky

    NASA Astrophysics Data System (ADS)

    Mooley, Kunal P.; Hallinan, Gregg; Frail, Dale A.; Myers, Steven T.; Kulkarni, Shrinivas R.; Bourke, Stephen; Horesh, Assaf

    2015-01-01

    Most of what is currently known about slow radio transients (supernovae, gamma-ray bursts, tidal disruption events, stellar flares, etc.) has come via radio follow-up of objects identified by synoptic telescopes at optical, X-ray or gamma-ray wavelengths. However, with the ability to capture obscured, unbeamed and magnetically-driven phenomena, radio surveys offer unique discovery strong diagnostic for cosmic transients. For the first time, we are systematically exploring the dynamic radio sky on timescales between one day to several years using multi-epoch large surveys with the Karl G. Jansky Array (VLA). We have carried out surveys in the COSMOS deep field as well as wide fields like Stripe 82. I have developed a unique infrastructure for near-real-time calibration, imaging, transient search, transient vetting, rapid multiwavelength follow-up, and contemporaneous optical surveys to better characterize radio transient phenomena. A large part of my thesis includes the commissioning of a new observing mode at the VLA: On-The-Fly Mosaicking. This mode has significantly improved the survey efficiency of the VLA, and it is a driver for VLASS, the future all-sky survey planned with this telescope. Through our radio surveys we have discovered several fascinating transients that are unique to the radio. These surveys have established the VLA as an efficient transient discovery machine. My thesis has enormous implications for how to design efficient transient surveys for the next generation of radio interferometer facilities like ASKAP, MeerKAT, WSRT/Apertif and LOFAR. My work has also provided answers to key problems such as the rates of transients, demographics of variability of radio sources including AGN, and false-positive foreground for future searches for the radio counterparts of gravitational-wave (GW) sources.

  14. The faint radio sky: radio astronomy becomes mainstream

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    2016-09-01

    Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall "big picture" astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.

  15. The Radio Language Arts Project: adapting the radio mathematics model.

    PubMed

    Christensen, P R

    1985-01-01

    Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.

  16. Division X: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval

    2010-05-01

    The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: “Historic Radio Astronomy WG” by Wayne Orchiston, “Astrophysically Important Lines WG” by Masatoshi Ohishi, and “Global VLBI WG” by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of “Interference Mitigation WG” was located in the third session.

  17. Radio frequency distribution assembly

    NASA Astrophysics Data System (ADS)

    Culley, K. M.

    The Naval Research Laboratory (NRL) Radio Frequency Distribution Assembly (RFDA) is an interface between the Sperry four-channel, fast-switching synthesizer and the EF-111 jamming system antenna ports. The RFDS is a sophisticated, high-speed RF interface designed to convert the banded outputs of the four-channel synthesizer (16 ports) to 36 ports which represent six ordinal directions of arrival (DOA) for the EF-111 jamming system. The RFDS will distribute the RF signals while providing controlled RF amplitudes to simulate the antenna patterns of the EF-111 Electronic Warfare (EW) system. The simulation of the arrival angles which appear between the ordinal directions is performed by controlling the amplitude of the RF signal from the DOA channels. The RFDA is capable of operating over the frequency range of 500MHz to 18GHz, and can rapidly switch between varying frequencies and attenuation levels.

  18. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  19. An Imaging Study of a Complex Solar Coronal Radio Eruption

    NASA Astrophysics Data System (ADS)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L.

    2016-08-01

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ˜0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  20. Radio halos in future surveys in the radio continuum

    NASA Astrophysics Data System (ADS)

    Cassano, R.; Brunetti, G.; Norris, R. P.; Röttgering, H. J. A.; Johnston-Hollitt, M.; Trasatti, M.

    2012-12-01

    Aims: Giant radio halos are Mpc-scale synchrotron sources detected in a significant fraction of massive and merging galaxy clusters. The statistical properties of radio halos can be used to discriminate among various models for the origin of non-thermal particles in galaxy clusters. Therefore, theoretical predictions are important as new radio telescopes are about to begin to survey the sky at low and high frequencies with unprecedented sensitivity. Methods: We carry out Monte Carlo simulations to model the formation and evolution of radio halos in a cosmological framework and extend previous calculations based on the hypothesis of turbulent-acceleration. We adopt a phenomenological approach by assuming that radio halos are either generated in turbulent merging clusters, or are purely hadronic sources generated in more relaxed clusters, "off-state" halos. Results: The models predict that the luminosity function of radio halos at high radio luminosities is dominated by the contribution of halos generated in turbulent clusters. The generation of these halos becomes less efficient in less massive systems causing a flattening of the luminosity function at lower radio luminosities, as also pointed out in previous studies. However, we find that potentially this can be more than compensated for by the intervening contribution of "off-state" halos that dominate at lower radio luminosities. We derive the expected number of halos to explore the potential of the EMU+WODAN surveys that will be carried out with ASKAP and Aperitif, respectively, in the near future. By restricting to clusters at redshifts ≤ 0.6, we show that the planned EMU+WODAN surveys at 1.4 GHz have the potential to detect up to about 200 new radio halos, increasing their number by one order of magnitude. A fraction of these sources will be "off-state" halos that should be found at flux level f1.4 ≤ 10 mJy, presently accessible only to deep pointed observations. We also explore the synergy between surveys

  1. Radio studies of extragalactic supernovae.

    PubMed

    Weiler, K W; Sramek, R A; Panagia, N

    1986-03-14

    Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.

  2. Radio emission in Mercury magnetosphere

    NASA Astrophysics Data System (ADS)

    Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.

    2016-10-01

    Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.

  3. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  4. Recurrent Activity in Radio Galaxies

    SciTech Connect

    Jamrozy, Marek; Konar, Chiranjib; Machalski, Jerzy; Mack, Karl-Heinz; Saikia, Dhruba; Siemiginowska, Aneta; Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U.

    2007-10-15

    One of the outstanding issues concerning extragalactic radio sources is the total duration of their active phase and the possible existence of duty cycles of their nuclear activity. A duty cycle can be recognized if there is a mechanism which preserves the information of past activity for a sufficiently long time after a new activity has started up. If a new cycle starts before the radio lobes created during a former activity period have faded, we can recognize this by the observations of a young radio source embedded in an old relic structure.

  5. The Helios radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Kayser, S.; Stone, R.

    1984-01-01

    Radio bursts traveling between the Sun and the Earth were tracked by radio astronomy experiments on Helios 1 and 2. A relatively short dipole antenna with a well-defined toroidal reception pattern was flown. The antenna spins in the ecliptic at 60.3 rpm and 2 frequencies are measured in each revolution. The signal analysis determines the strength of the signal, the direction of the source in the ecliptic, and the degree of modulation, and estimates source size. The experiments provide three-dimensional direction finding in space. They extend the radio frequency window beyond what is observable on Earth, and offer a long triangulation baseline.

  6. 46 CFR 15.830 - Radio officers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radio officers. 15.830 Section 15.830 Shipping COAST... Computations § 15.830 Radio officers. Radio officers are required on certain merchant vessels of the United States. The determination of when a radio officer is required is based on the Federal...

  7. PARTNeR: Radio astromony for students

    NASA Astrophysics Data System (ADS)

    Blasco, C.; Vaquerizo, J. A.

    2008-06-01

    PARTNeR stands for Proyecto Academico con el Radiotelescopio de NASA en Robledo (the Academic Project with NASA's radio telescope at Robledo), and allows students to perform radio astronomy observations. High school and university students can access the PARTNeR radio telescope via the internet. The students can operate the antenna from their own school or university and perform radio astronomy observations.

  8. 46 CFR 15.830 - Radio officers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radio officers. 15.830 Section 15.830 Shipping COAST... Computations § 15.830 Radio officers. Radio officers are required on certain merchant vessels of the United States. The determination of when a radio officer is required is based on the Federal...

  9. 46 CFR 15.830 - Radio officers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radio officers. 15.830 Section 15.830 Shipping COAST... Computations § 15.830 Radio officers. Radio officers are required on certain merchant vessels of the United States. The determination of when a radio officer is required is based on the Federal...

  10. 46 CFR 15.830 - Radio officers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radio officers. 15.830 Section 15.830 Shipping COAST... Computations § 15.830 Radio officers. Radio officers are required on certain merchant vessels of the United States. The determination of when a radio officer is required is based on the Federal...

  11. Radio astronomy - The next decade

    SciTech Connect

    Kellermann, K.I. )

    1991-09-01

    Discoveries made over the past several decades by radio astronomers include radio galaxies, quasars, pulsars, gravitational lenses, energetic bursts from the sun and Jupiter, the greenhouse effect on Venus, the rotation of Mercury, giant molecular clouds, violent activity in galactic nuclei, and cosmic background radiation. This paper discusses the development of ever more powerful radio telescopes, which include the VLA operated by NRAO near Socorro (New Mexico); the new NRAO's 100-m Green Bank Telescope being constructed in Green Bank (West Virginia); and the proposed Millimeter Array, which will consist of 40 antennas, each 8-m across, arranged in any of four different ways depending on the size of the region under study. Consideration is also given to methods for increasing the resolving power and image quality of radio telescopes, with special attention given to very-long-baseline interferometry.

  12. Radio: The Other Public Medium.

    ERIC Educational Resources Information Center

    Mullally, Donald P.

    1980-01-01

    Four problems affecting the growth of public radio are discussed: the inability to pay the salaries to attract the talent required to produce quality programing; programing directed to limited audiences; the use of block programing; and poor promotional campaigns. (JMF)

  13. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  14. SETI and International Radio Law

    NASA Astrophysics Data System (ADS)

    Lyall, F.

    2010-04-01

    The use of radio in SETI is subject to international rules agreed through the International Telecommunication Union. These are summarised. An opportunity for their revision will arise in 2012. Suggestions may be made.

  15. A zero-power radio receiver.

    SciTech Connect

    Brocato, Robert Wesley

    2004-09-01

    This report describes both a general methodology and some specific examples of passive radio receivers. A passive radio receiver uses no direct electrical power but makes sole use of the power available in the radio spectrum. These radio receivers are suitable as low data-rate receivers or passive alerting devices for standard, high power radio receivers. Some zero-power radio architectures exhibit significant improvements in range with the addition of very low power amplifiers or signal processing electronics. These ultra-low power radios are also discussed and compared to the purely zero-power approaches.

  16. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  17. Radio astronomy. [principles and observations

    NASA Technical Reports Server (NTRS)

    Alexander, J.; Clark, T.

    1974-01-01

    The origins, generation, detection, and interpretation of radio signals are discussed for signals with an assumed random polarization. After defining the basic parameters, the discussion moves to such topics as synchrotron radiation, plasma effects, changes in the electron energy spectrum in the radiating regions, energy loss to ionization, bremsstrahlung, radio astronomical observations of high-energy particles, emission by energetic particles, observation of supernova remnants and pulsars, galactic background continuum radiation, and others.

  18. Radio astrometry from the Moon

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.

    1992-01-01

    An array of three radio telescopes on the Moon, separated by 100-1000 km, could measure the positions of compact radio sources 50-100 times more accurately than can be done on Earth. These measurements would form an all-sky reference frame of extreme precision (5-10 micro-arcsec) and stability, with applications to the dynamics of the solar system, our galaxy, and nearby galaxies.

  19. Mathematical modeling of radio systems and devices

    NASA Astrophysics Data System (ADS)

    Borisov, Iu. P.; Tsvetnov, V. V.

    Methods for developing mathematical models of radio systems and devices are presented with emphasis on the functional approach to the modeling of radio systems. In particular, attention is given to the formal description of radio systems, computer-aided modeling of radio systems, a classification of methods of radio system modeling, and methods of mathematical description of signals and noise. Specific methods discussed include the carrier method, the complex envelope method, the method of statistical equivalents, and the information parameter method.

  20. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  1. Reconciling CME Kinematics using Radio and White-light Observations from STEREO and SOHO

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Akiyama, Sachiko; Reiner, Michael; MacDowall, Robert

    2014-05-01

    We study the characteristics of nonthermal radio emission associated with coronal mass ejections (CMEs) observed by STEREO, SOHO, and Wind spacecraft. In particular, we examine three backside CMEs associated with type II radio bursts at frequencies below 16 MHz. These bursts are known to be excellent indicators of solar energetic particle events. We use the universal drift rate spectrum of type II radio bursts and the inferred density scale heights in the corona and interplanetary medium o estimate the speed of the shock waves that produce the type II radio bursts. We find that the radio bursts can provide an accurate estimate of the CME speeds. We consider three backside events and a cannibalism event to show the usefulness of radio dynamic spectrum in inferring CME kinematics. We use radio direction finding technique to show that CME-CME interaction results in enhanced nonthermal radio emission. The radio data also provide constraints on the particle acceleration mechanisms and the reason for the energetic particles observed at wide-ranging longitudes. Finally we infer the shape and extent of the shock associated with one of the biggest solar energetic particle events in the space era.

  2. Real-time kinematic surveying using tightly-coupled GPS and ultra-wideband ranging

    NASA Astrophysics Data System (ADS)

    Macgougan, Glenn D.

    Ultra-wideband (UWB) ranging radios, an emerging technology that offers precise, short distance, range measurements are investigated as a method to augment carrier-phase GPS positioning. This thesis begins with a discussion of radio-frequency based methods of augmenting high precision GPS and proposes to utilize UWB ranging technology in a tightly-coupled GPS and UWB position estimation filter. This thesis then provides an overview of UWB in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing in benign signal conditions and in outdoor testing with line-of-sight obstructions and strong reflection sources. A tightly-coupled GPS and UWB real-time kinematic (RTK) estimation method is developed and the performance of the system is evaluated in static and kinematic testing. The results of static testing show that the integrated solution provides better accuracy, better ability to resolve integer ambiguities and enhanced fixed ambiguity solution availability compared with GPS alone. The results of kinematic testing demonstrate that UWB errors can be successfully estimated in a real-time filter. In static and kinematic testing in a degraded GPS environment created by artificially inducing a 40° satellite elevation mask, subdecimetre accuracy was maintained. The tightly-coupled system is also tested to survey several external corner points of an eight story building. The tightly-coupled solution is compared to GPS-only, UWB-only, and loosely-coupled solutions. Sub-metre level solutions are maintained using tight-coupling in conditions where the solutions from the other three approaches are either unavailable or unreliable. The thesis also provides a novel and efficient method for deploying UWB

  3. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  4. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  5. Rosetta Radio Science Investigations (RSI)

    NASA Astrophysics Data System (ADS)

    Pätzold, Martin; Häusler, Bernd; Aksnes, Kaare; Anderson, John D.; Asmar, Sami W.; Barriot, Jean-Pierre; Bird, Michael K.; Boehnhardt, Hermann; Eidel, Werner; Grün, Eberhardt; Ip, Wing H.; Marouf, Essam; Morley, Trevor; Neubauer, Fritz M.; Rickman, Hans; Thomas, Nicolas; Tsurutani, Bruce T.; Wallis, Max K.; Wickramasinghe, N. C.; Mysen, Eirik; Olson, Oystein; Remus, Stefan; Tellmann, Silvia; Andert, Thomas; Carone, Ludmila; Fels, Markus; Stanzel, Christina; Audenrieth-Kersten, Iris; Gahr, Alexander; Müller, Anna-Liane; Stupar, Dusan; Walter, Christina

    2007-02-01

    The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and

  6. Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support.

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Savalle, R.; Zarka, P. M.; Anderson, M.; Andre, N.; Coffre, A.; Clarke, T.; Denis, L.; Ebert, R. W.; Erard, S.; Genot, V. N.; Girard, J. N.; Griessmeier, J. M.; Hess, S. L.; Higgins, C. A.; Hobara, Y.; Imai, K.; Imai, M.; Kasaba, Y.; Konovalenko, A. A.; Kumamoto, A.; Kurth, W. S.; Lamy, L.; Le Sidaner, P.; Misawa, H.; Nakajo, T.; Orton, G. S.; Ryabov, V. B.; Sky, J.; Thieman, J.; Tsuchiya, F.; Typinski, D.

    2015-12-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  7. IA-Regional-Radio - Social Network for Radio Recommendation

    NASA Astrophysics Data System (ADS)

    Dziczkowski, Grzegorz; Bougueroua, Lamine; Wegrzyn-Wolska, Katarzyna

    This chapter describes the functions of a system proposed for the music hit recommendation from social network data base. This system carries out the automatic collection, evaluation and rating of music reviewers and the possibility for listeners to rate musical hits and recommendations deduced from auditor's profiles in the form of regional Internet radio. First, the system searches and retrieves probable music reviews from the Internet. Subsequently, the system carries out an evaluation and rating of those reviews. From this list of music hits, the system directly allows notation from our application. Finally, the system automatically creates the record list diffused each day depending on the region, the year season, the day hours and the age of listeners. Our system uses linguistics and statistic methods for classifying music opinions and data mining techniques for recommendation part needed for recorded list creation. The principal task is the creation of popular intelligent radio adaptive on auditor's age and region - IA-Regional-Radio.

  8. Video via radio testbed

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Hsu, Charles C.

    2002-03-01

    to enable us to transmit live video via the SINGARS radio at a narrow bandwidth of 16 K bps.

  9. Peculiar galaxies and radio sources.

    PubMed

    Arp, H

    1966-03-11

    Pairs of radio sources which are separated by from 2 degrees to 6 degrees on the sky have been investigated. In a number of cases peculiar galaxies have been found approximately midway along a line joining the two radio sources. The central peculiar galaxies belong mainly to a certain class in the recently compiled Atlas of Peculiar Galaxies. Among the radio sources so far associated with the peculiar galaxies are at least five known quasars. These quasars are indicated to be not at cosmological distances (that is, red shifts not caused by expansion of the universe) because the central peculiar galaxies are only at distances of 10 to 100 megaparsecs. The absolute magnitudes of these quasars are indicated to be in the range of brightness of normal galaxies and downward. Some of the radio sources which have been found to be associated with peculiar galaxies are galaxies themselves. It is therefore implied that ejection of material took place within or near the parent peculiar galaxies with speeds between 10(2) and 10(4) kilometers per second. After traveling for times of the order of 10(7) to 10(9) years, the luminous matter (galaxies) and radio sources (plasma) have reached their observed separations from the central peculiar galaxy. The large red shifts measured for the quasars would seem to be either (i) gravitational, (ii) collapse velocities of clouds of material falling toward the center of these compact galaxies, or (iii) some as yet unknown cause.

  10. Polarization Imaging of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1991-07-01

    Spectropolarimetry of the narrow line radio galaxy 3C234 was used to show in 1982 that there is a hidden broad line region occulted by an opaque torus oriented perpendicular to the radio structure axis. Given the luminosity of the reflected light, it follows that 3C234 would be called a quasar if its orientation with respect to the line of sight were different. Since then similar results were found for five Seyfert 2's. If many NLRG's are occulted quasars in the sky plane, several statistical anomalies in the beam model for superluminal motion are understandable. However, further optical spectropolarimetry has been disappointing in this regard, at least partially because of severe dilution of reflected light by starlight, sometimes polarized, from the host galaxies. We can solve this problem by observing in the UV. Furthermore, recent observations of two NLRGs have revealed OFF- NUCLEAR dust clouds reflecting and strongly "bluening" nuclear light in two NLRG's. Such dust clouds, abundant in the merger debris surrounding many luminous radio galaxies, should show up spectacularly in UV polarization images, providing information on the beam pattern and time history of nuclear emission. We request FOC polarization images of a sample of radio galaxies. We will also get for free and with high efficiency total flux images, suitable for studying the nuclei and the anomalous young stellar populations seen in merging radio galaxies from the ground.

  11. Polarization Imaging of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1996-07-01

    Spectropolarimetry of the narrow line radio galaxy 3C234 was used to show in 1982 that there is a hidden broad line region occulted by an opaque torus oriented perpendicular to the radio structure axis. Given the luminosity of the reflected light, it follows that 3C234 would be called a quasar if its orientation with respect to the line of sight were different. Since then similar results were found for five Seyfert 2's. If many NLRG's are occulted quasars in the sky plane, several statistical anomalies in the beam model for superluminal motion are understandable. However, further optical spectropolarimetry has been disappointing in this regard, at least partially because of severe dilution of reflected light by starlight, sometimes polarized, from the host galaxies. We can solve this problem by observing in the UV. Furthermore, recent observations of two NLRGs have revealed OFF- NUCLEAR dust clouds reflecting and strongly "bluening" nuclear light in two NLRG's. Such dust clouds, abundant in the merger debris surrounding many luminous radio galaxies, should show up spectacularly in UV polarization images, providing information on the beam pattern and time history of nuclear emission. We request FOC polarization images of a sample of radio galaxies. We will also get for free and with high efficiency total flux images, suitable for studying the nuclei and the anomalous young stellar populations seen in merging radio galaxies from the ground.

  12. Jovian longitudinal control of Io-related radio emissions

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Hill, T. W.

    1979-01-01

    A theoretical model is proposed to explain the control of Io-related radio emissions by Jupiter's rotational phase. The model is based on the hypothesis that the radio emissions are generated by Birkeland currents flowing between Io and the Jovian ionosphere. Specifically, it is suggested that the precipitation of radiation-belt electrons within a certain range of Jovian longitudes produces a restricted region of enhanced ionization and correspondingly enhanced conductivity in Jupiter's ionosphere and that the Io-Jupiter Birkeland current and the associated radio emissions are dramatically increased when Io's flux tube encounters this sector of enhanced ionization in Jupiter's ionosphere. The magnitude of the current is found to be about 100,000 A at most Jovian longitudes because of ionospheric resistance. It is estimated that within the favored longitudinal sector electron precipitation produces an enhancement of this current by one to three orders of magnitude. The model predictions are compared with observations made during the Pioneer 10 and 11 flybys, and satisfactory agreement is obtained.

  13. Crystalline surfactant dispersions by radio frequency absorption

    SciTech Connect

    Tedder, S.H.

    1986-03-01

    Recently interest has increased in the use of liquid crystalline surfactant dispersions for enhanced oil recovery. The object of the work described in the report was to develop a method of measuring the electrical properties of colloidal surfactant particles, which control the structure and stability of the surfactant dispersion. A further object was to find how these electrical properties are affected by the method used to mix the components of the dispersion. The results may be useful in solving several practical problems, including the identification of optimally performing liquid crystalline surfactant formulations for oil recovery use. Another possible use is to identify and categorize effects of the method of mixing surfactants on the final product. This information would provide guidelines for field handling of chemical recovery agents. The absorption of radio frequency energy, a process which is mediated by the surface electrical properties of the surfactant particles, was used to measure several electrical parameters of the surfactant mixtures. Two commercial petroleum sulfonate surfactants were tested by the radio frequency absorption method, and a model of their electrical properties was developed and used to fit the data. The strength of the layer of electric charges surrounding the surfactant particles was found to be related to the stability of the solution. 10 refs., 4 figs., 3 tabs.

  14. An Update on Radio Supernovae

    NASA Astrophysics Data System (ADS)

    van Dyk, Schuyler D.; Sramek, Richard A.; Weiler, Kurt W.; Montes, Marcos J.; Panagia, Nino

    The radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a ``turn-on'' delay at longer wavelengths, power-law decline after maximum with index beta, and spectral index alpha asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) ``mini-shell'' model, with modifications by Weiler \\etal\\ (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

  15. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  16. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  17. Mobile radio interferometric geodetic systems

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Niell, A. E.; Ong, K. M.; Resch, G. M.; Morabito, D. D.; Claflin, E. S.; Lockhart, T. G.

    1978-01-01

    Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed.

  18. Integrated modeling of submillimeter radio telescopes

    NASA Astrophysics Data System (ADS)

    Moraru, Dan; Andersen, Torben

    2002-07-01

    Integrated models are inherently complex and often obscure to any but those who write them. Their usefulness can be greatly enhanced through well-structured, object-oriented design. A robust and computationally efficient Simulink/C++ library of optics, control, finite-element, and visualization routines for modeling radio telescope performance under various operating conditions is being developed and is described. The library is being developed in conjunction with an end-to-end model of the Atacama Large Millimeter Array (ALMA) antennas. The model includes the mechanical structure, optics, servos, and potential laser gyros, and can be used to investigate such issues as tracking performance, compliance with error budgets, wind sensitivity, and effectiveness of an internal metrology system. It will also be a good tool for comparison of different antenna designs.

  19. Final report: In situ radio frequency heating demonstration

    SciTech Connect

    Jarosch, T.R.; Beleski, R.J.; Faust, D.

    1994-01-05

    A field demonstration of in situ radio frequency heating was performed at the Savannah River Site (SRS) as part of the US Department of Energy-Office of Technology Development`s Integrated Demonstration. The objective of the demonstration was to investigate the effectiveness of in situ radio frequency (RF) heating as an enhancement to vacuum extraction of residual solvents (primarily trichloroethylene and perchloroethylene) held in vadose zone clay deposits. Conventional soil vacuum extraction techniques are mass transfer limited because of the low permeabilities of the clays. By selectively heating the clays to temperatures at or above 100{degrees}C, the release or transport of the solvent vapors will be enhanced as a result of several factors including an increase in the contaminant vapor pressure and diffusivity and an increase in the effective permeability of the formation with the release of water vapor.

  20. Constraints on Accretion Disk Physics in Low Luminosity Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Baum, Stefi; Noel-Storr, Jacob; O'Dea, Christopher

    2008-03-01

    It is currently believed that essentially all galaxies harbor a massive black hole in their nuclei. If this is true, then it becomes hard to understand why we do not see the luminosity released by the inevitable accretion of the galaxy ISM onto the black hole in all galaxies. The differences in AGN output between the two classes of narrow-line radio galaxies (FRI and FRII) may hold the vital clue. High radio luminosity FRIIs generally show strong high-excitation narrow lines and are believed to be the obscured counterparts of radio loud quasars. Low radio luminosity FRIs by contrast have weaker, low-ionization lines and low ratios of optical to radio luminosities. A large difference in accretion rate and radiative efficiency between FRI and FRIIs would explain the difference in the optical properties and also provide a new unification between different classes of active galaxies in which the dominant parameter is accretion rate. Spitzer IRAC and MIPS observations already exist for most of a well defined sample of FRIs. However, the previously observed objects are the 'famous' ones, e.g., M87, M84, NGC315, 3C264, 3C31. Thus, the existing datasets are highly selected. Here we propose a very small request to complete the sample. We propose IRAC observations in all 4 bands, and MIPS photometry at 24 and 70 microns of 8, and 7 sources, respectively, for a total request of 1.7 hrs. These observations will complete the sample at very little cost in observing time. The large amount of existing complmentary data at multiple wavebands will greatly enhance the legacy value of the proposed observations. By completing the sample, the proposed IRAC and MIPS observations will produce a well defined and very well studied sample of nearby low luminosity radio galaxies. We will use the completed sample to investigate the properties of the accretion disk radiation, and the circumnuclear obscuring material.

  1. Ionosphere Transient Response To Solar Flares: Hf Radio Monitoring Observations

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Telljohann, U.; Witasse, O.; Sanderson, T. R.

    We use a simple and low cost method to monitor the ionospheric reflection of commer- cial HF radio transmissions. It only requires a standard HF radio receiver with Single Side Band capability, a computer with a sound card, and appropriate audio signal spectral analysis software. We tune the radio receiver such that the carrier frequency of the transmission appears as a ~ 1kHz tone at the output of the radio receiver. The output signal of the radio receiver is processed with appropriate software that allows real time recording of high frequency resolution dynamic spectrograms of the audio spectrum in the 0-5 kHz range. Voice modulation is also present in the audio spectrum and appears as both upper and lower side bands but it is not considered in this study. HF radio signals reach the receiving station after being reflected by ionospheric layers. Any change in the ionospheric layers that affects HF wave reflection is detectable. In this paper, we particularly discuss our observations related to the transient response of the ionosphere to solar flare ionizing radiation. Enhanced ionization due to EUV and soft X-rays may produce a transient perturbation of the ionosphere which lasts typically one to few minutes. The signature of the transient response depends upon local time, solar flare intensity and the rise time of the solar flare ionizing radiation. We discuss both a few typical examples and a preliminary analysis of our 1-year sta- tistical analysis of observed events at 17.640 MHz. The method is easily accessible to amateur scientists. Possible use of the method for spaceweather-related research and outreach and educational activities is discussed.

  2. Modulated spectral activity (MSA) - Implications for planetary radio sources

    NASA Technical Reports Server (NTRS)

    Thieman, James R.; Alexander, Joseph K.; Staelin, David H.

    1988-01-01

    The properties of the Jovian and Saturnian MSA, modulation patterns within the normally diffuse nonthermal radio emission that are characterized by distinctive banded structures of enhanced intensity fluctuations in frequency over time scales of minutes to tens of minutes, are discussed. Although Jovian and Saturnian MSA are both normally observed in the 0.2-1.3-MHz frequency range, similar pattern have been noted in Jovian decametric emission above 30 MHz. The MSA properties are used to constrain the possible source mechanism.

  3. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  4. Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.

    2012-01-01

    This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.

  5. 14 CFR 105.13 - Radio equipment and use requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The aircraft is equipped with a functioning two-way radio communication system appropriate to the air... aircraft's radio communications system from the time radio communications are first established between the... radio communications system is or becomes inoperative....

  6. 14 CFR 105.13 - Radio equipment and use requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The aircraft is equipped with a functioning two-way radio communication system appropriate to the air... aircraft's radio communications system from the time radio communications are first established between the... radio communications system is or becomes inoperative....

  7. 14 CFR 105.13 - Radio equipment and use requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The aircraft is equipped with a functioning two-way radio communication system appropriate to the air... aircraft's radio communications system from the time radio communications are first established between the... radio communications system is or becomes inoperative....

  8. 14 CFR 105.13 - Radio equipment and use requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) The aircraft is equipped with a functioning two-way radio communication system appropriate to the air... aircraft's radio communications system from the time radio communications are first established between the... radio communications system is or becomes inoperative....

  9. Radio loud far-infrared galaxies

    NASA Technical Reports Server (NTRS)

    Dey, Arjun; Vanbreugel, Wil; Shields, Joseph C.

    1990-01-01

    The first results are presented of a multiwavelength study of Infrared Astronomy Satellite (IRAS) galaxies with excess radio emission. The sample was selected by cross correlating the IRAS Faint Source Survey, and the Point Source Catalogue with the Texas radio survey. Recent optical (imaging and spectroscopic) and radio (VLA) observations are discussed. These observations will be used to investigate possible connections between radio galaxy activity, star formation and galaxy interactions.

  10. New vistas in planetary radio astronomy

    NASA Technical Reports Server (NTRS)

    Alexander, J. K., Jr.

    1976-01-01

    Recent progress in planetary radio astronomy is reviewed, where the most significant advances have come from spacecraft observations. The low-frequency radio spectra of the earth, Jupiter, and Saturn are compared, and the striking similarity in shapes is noted. New radio data are examined which provide a way to compare the magnetic field strengths of the planets. More detailed information on the radio structures of Jupiter and Saturn, and possibly on Uranus, is expected from the 1977 Mariner Jupiter-Saturn mission.

  11. Dictionary of Radio and Television.

    ERIC Educational Resources Information Center

    Pannett, W. E.

    This dictionary presents definitions of both the well-established terms and many new ones that have come into use with the advances that have taken place in the fields of radio and television. In many cases extended definitions are given in order to describe briefly elementary principles and circuits, while newer and more complex devices and…

  12. Counselor Effectiveness Through Radio Communication.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    This study determined the effectiveness of the use of radio as a means of providing immediate feedback on student counselors in a practicum setting. Using a non-equivalent group experimental design, 10 experimental subjects were compared to 10 control subjects with respect to counselor effectiveness. The experimental subjects were given immediate…

  13. Young Radio Amateurs Speak English.

    ERIC Educational Resources Information Center

    Freund, Bilha

    1997-01-01

    In an Israeli elementary school program to stimulate students' development of oral English skills, students write dialogs and conversation themes in areas of interest, then practice and conduct the conversations with amateur radio operators around the world. Challenges and successes are detailed. (MSE)

  14. Radio Days in the Classroom

    ERIC Educational Resources Information Center

    Schuchat, Dan

    2005-01-01

    What social studies project challenges students with interdisciplinary learning, engages their various abilities and learning styles, offers them the opportunity for collaborative work-and encourages them to speak in strange voices? The answer is an eighth grade radio drama project. For most of the month of March 2004, the entire eighth grade at…

  15. The isotropic radio background revisited

    SciTech Connect

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  16. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  17. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226

  18. Moon exploration: lunar radio observatory

    NASA Astrophysics Data System (ADS)

    Skalsky, Alexandre; Zelenyi, Lev; Rothkaehl, Hanna; Gurvits, Leonid; Sadovski, Andrei; Mogilevsky, Mikhail; Gotlib, Vladimir

    The Moon is an attractive base for fundamental scientific studies. The conducting ionosphere of Earth prevents propagation of radio emission coming from the outer space to the Earth’s surface at frequencies below a few MHz. In contrast, the Moon surrounded by a very thin atmosphere and ionosphere is a perfect site for an ultra-long-wavelength (ULW) facility for studies of cosmic radio emission at frequencies below the Earth’s ionosphere cut-off. This range of frequencies is the last unexplored window in the spectrum of the universe’s electromagnetic emission, The radio facility deployed on the Moon’s surface will be a multidisciplinary tool for addressing a wide range of scientific disciplines from cosmology to astrophysics to planetology, solar-terrestrial physics and geophysics. The Moon-based ULW observatory will be an experimental and observational facility for transformational science. One of the most intriguing objectives for the ULW science is a search for terrestrial-like planets in the exosolar systems, i.e. extra-solar planets possessing an intrinsic magnetic field and magnetospheres interacting with a stellar wind. Such the interaction generates radio emission similar to the Auroral Kilometric Radiation (AKR) of the terrestrial magnetosphere. The intrinsic magnetic field shielding the planetary surface from the cosmic radiation is one of the strong indicators of possible habitability of an exoplanet. ACKNOWLEDGMENTS: This work was supported by the PP RAS 22 grant.

  19. Radio emissions from planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Gurnett, Donald A.

    2012-03-01

    Since the discovery of intense radio emissions from Jupiter by Burke and Franklin in 1955, it is now known that the magnetospheres of all the strongly magnetized planets emit intense non-thermal radio emissions. This talk will review the progress that has been made in understanding these radio emissions during the more than fifty years since their discovery. It is now known that two basic radio emission processes are involved: cyclotron maser radiation from precipitating auroral electrons, and mode conversion from electrostatic waves driven by the anisotropy of magnetically trapped magnetospheric electrons. Of these, the cyclotron maser radiation is by far the most intense. Since the gaseous outer planets have no visible surface and since the magnetic field which controls the motion of the electrons is linked to the deep interior, the rotational modulation of cyclotron maser radiation provides the primary method of determining the rotation rates of these planets. Cyclotron maser radiation has also been detected from certain strongly magnetized stars, and serious efforts are now underway to try to detect cyclotron maser radiation from extra-solar system planets.

  20. International Radio Broadcasting: Who Listens?

    ERIC Educational Resources Information Center

    Browne, Donald R.

    It is difficult to obtain reliable data on the nature of the audience for international broadcast programs in Asia (e.g., those beamed by the Voice of America or Radio Japan). However, analysis of listener mail and some survey research have provided a fairly clear profile of the audience: young (ages 15-34), well educated, urban, male (but with a…

  1. Workplace Training at SBS Radio.

    ERIC Educational Resources Information Center

    Simons, Lynette

    2001-01-01

    Notes that at Australia's Special Broadcasting Services Radio, workplace training is an essential requirement for on-air staff but a degree in journalism or communications is an enormous advantage. Describes several in-house accredited competency-based modules in journalism and broadcasting. (RS)

  2. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  3. A Medley of Radio Winners.

    ERIC Educational Resources Information Center

    Raley, Nancy

    1984-01-01

    The potential for college use and development of radio stations is explored, and innovative and effective ideas from colleges' current efforts are presented. Topics covered include news services, phone-in features, student staff, college program highlights, foreign language programs, paid advertising, and public service announcements. (MSE)

  4. Radio's role in popular education.

    PubMed

    Valderrama, M

    1988-01-01

    Many theorists in the 1950's and 1960's thought that mass communications media would be a major factor in integrating and modernizing developing countries. International organizations and Western governments supported educational programs on sanitation and agriculture technology for developing countries. However, Western technology did not suit the rural areas of the developing world. The programs often did not reach the people who needed them the most, but only the educated few. The Catholic church has developed a radio network in Colombia that combines commercial and cultural or religious programs. In addition, 42 church organizations are producing radio programs in Latin America. Most of these programs have not been successful in formal education in history, health care, and agriculture technology. This indicates that radio may not be a good medium for scientific information; audiences don't listen often enough and concentrate adequately to gain from this kind of teaching. It can, however, be effective in spreading cultural information and voicing opinions and views. Educational radio programming is useful when the subject matter is closely linked to specific problems in the community. It must be expressed in the terms of the local audience, as in the rural areas of Latin America. Presentations should not be in the teacher format but in forums, dramas, and documentary reports, and delivered in the local language. PMID:12282828

  5. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  6. The Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Fuchs, Benjamin

    2012-11-01

    High and ultra-high energy cosmic rays hitting the Earth's atmosphere cause extensive air showers (EAS). In recent years, these cosmic rays have been extensively studied at the Pierre Auger Observatory in Argentina. The EAS mainly consist of charged particles, especially electrons and positrons, which cause electro-magnetic emission in the MHz range by interaction with the Earth's magnetic field. To measure this radio emission, AERA, the Auger Engineering Radio Array, was deployed in October 2010 and commenced regular data acquisition in April 2011. AERA was designed as an engineering array for technology and methodology development towards future large-scale radio arrays. It will allow studies on the radio emission mechanism and the physics capabilities of the detection technique. AERA's unique site within the surface detector array (SD) of the Pierre Auger Observatory provides the possibility of coincident hybrid and super-hybrid EAS detection especially in overlap with the fluorescence telescopes Coihueco and HEAT. Besides a description of the setup, we present an overview of analyses of commissioning data taken between November 2010 and April 2011. Also, we show the first hybrid and self-triggered events detected with AERA in April 2011.

  7. Radio's role in popular education.

    PubMed

    Valderrama, M

    1988-01-01

    Many theorists in the 1950's and 1960's thought that mass communications media would be a major factor in integrating and modernizing developing countries. International organizations and Western governments supported educational programs on sanitation and agriculture technology for developing countries. However, Western technology did not suit the rural areas of the developing world. The programs often did not reach the people who needed them the most, but only the educated few. The Catholic church has developed a radio network in Colombia that combines commercial and cultural or religious programs. In addition, 42 church organizations are producing radio programs in Latin America. Most of these programs have not been successful in formal education in history, health care, and agriculture technology. This indicates that radio may not be a good medium for scientific information; audiences don't listen often enough and concentrate adequately to gain from this kind of teaching. It can, however, be effective in spreading cultural information and voicing opinions and views. Educational radio programming is useful when the subject matter is closely linked to specific problems in the community. It must be expressed in the terms of the local audience, as in the rural areas of Latin America. Presentations should not be in the teacher format but in forums, dramas, and documentary reports, and delivered in the local language.

  8. RadioActive101 Practices

    ERIC Educational Resources Information Center

    Brites, Maria José; Ravenscroft, Andrew; Dellow, James; Rainey, Colin; Jorge, Ana; Santos, Sílvio Correia; Rees, Angela; Auwärter, Andreas; Catalão, Daniel; Balica, Magda; Camilleri, Anthony F.

    2014-01-01

    In keeping with the overarching RadioActive101 (RA101) spirit and ethos, this report is the product of collaborative and joined-up thinking from within the European consortium spread across five countries. As such, it is not simply a single voice reporting on the experiences and knowledge gained during the project. Rather it is a range of…

  9. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  10. Epsiodic Activity in Radio Galaxies

    SciTech Connect

    Saikia, D.J.; Konar, C.; Jamrozy, M.; Machalski, J.; Gupta, Neeraj; Stawarz, L.; Mack, K.-H.; Siemiginowska, A.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-10-15

    One of the interesting issues in our understanding of active galactic nuclei is the duration of their active phase and whether such activity is episodic. In this paper we summarize our recent results on episodic activity in radio galaxies obtained with the GMRT and the VLA.

  11. 47 CFR 90.185 - Multiple licensing of radio transmitting equipment in the mobile radio service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Multiple licensing of radio transmitting equipment in the mobile radio service. 90.185 Section 90.185 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES...

  12. 47 CFR 90.185 - Multiple licensing of radio transmitting equipment in the mobile radio service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Multiple licensing of radio transmitting equipment in the mobile radio service. 90.185 Section 90.185 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES...

  13. 47 CFR 90.185 - Multiple licensing of radio transmitting equipment in the mobile radio service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Multiple licensing of radio transmitting equipment in the mobile radio service. 90.185 Section 90.185 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES...

  14. 47 CFR 90.185 - Multiple licensing of radio transmitting equipment in the mobile radio service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Multiple licensing of radio transmitting equipment in the mobile radio service. 90.185 Section 90.185 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES...

  15. 47 CFR 90.185 - Multiple licensing of radio transmitting equipment in the mobile radio service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Multiple licensing of radio transmitting equipment in the mobile radio service. 90.185 Section 90.185 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES...

  16. A Select Survey of Campus Radio Stations.

    ERIC Educational Resources Information Center

    Drake, H.

    To ascertain the continued need for a campus radio station at 10 watts and to justify a subsequent increase in power, the student radio station at Auburn University (Alabama) conducted surveys of college radio stations, emphasizing facilities in the southeast United States. Some of the findings of the surveys indicated that in the southeast and…

  17. 14 CFR 99.9 - Radio requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Radio requirements. 99.9 Section 99.9... AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.9 Radio requirements. (a) A person who operates a civil aircraft into an ADIZ must have a functioning two-way radio, and the...

  18. 62. The Return of Educational Radio?

    ERIC Educational Resources Information Center

    Berman, Sally D.

    2008-01-01

    This paper examines one of the traditional technologies of distance education, radio, and presents examples of educational and community radio usage in Asia and Africa. Instead of merely transposing western approaches to distance education in developing countries, it is suggested that the developed world can learn from uses of radio in developing…

  19. 14 CFR 121.345 - Radio equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Radio equipment. 121.345 Section 121.345..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.345 Radio equipment. (a) No person may operate an airplane unless it is equipped with radio equipment required for the kind...

  20. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radio installations. 129.395 Section 129.395 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with overcurrent protection at the switchboard, must be provided for at least one radio installation....

  1. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  2. International Radio Regulations Resulting from WARC 1979.

    ERIC Educational Resources Information Center

    Berrada, Abderrazak

    The main features of international regulations on radio communications of the International Telecommunication Union are summarized and the possible effects on these regulations of the World Administrative Radio Conference of 1979 (WARC-79) are discussed in this paper. It is noted that while the international radio regulations are regarded as…

  3. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  4. Very large radio surveys of the sky.

    PubMed

    Condon, J J

    1999-04-27

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys.

  5. Very large radio surveys of the sky

    PubMed Central

    Condon, J. J.

    1999-01-01

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys. PMID:10220365

  6. 46 CFR 15.830 - Radio officers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Commission requirements as found in 47 CFR part 13 and 47 CFR part 80. ... 46 Shipping 1 2014-10-01 2014-10-01 false Radio officers. 15.830 Section 15.830 Shipping COAST... Computations § 15.830 Radio officers. Radio officers are required on certain merchant vessels of the...

  7. 46 CFR 169.715 - Radio.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radio. 169.715 Section 169.715 Shipping COAST GUARD..., Miscellaneous Systems, and Equipment § 169.715 Radio. (a) Radiotelegraph and radiotelephone installations are... Regulations, part 83. (b) A valid certificate issued by the FCC is evidence that the radio installation is...

  8. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radio installations. 129.395 Section 129.395 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with overcurrent protection at the switchboard, must be provided for at least one radio installation....

  9. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  10. 14 CFR 99.9 - Radio requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Radio requirements. 99.9 Section 99.9... AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.9 Radio requirements. (a) A person who operates a civil aircraft into an ADIZ must have a functioning two-way radio, and the...

  11. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems. (a) This account shall include the original cost of ownership of radio transmitters and receivers....

  12. Making Waves: Pirate Radio and Popular Music.

    ERIC Educational Resources Information Center

    Jones, Steve

    The history of pirate radio--radio broadcasts offered by unlicensed broadcasters as alternatives to licensed, commercial radio programming--is difficult to trace, both in America and the United Kingdom (UK) since mention of pirate broadcasts of a less-then-thrilling nature are rarely found. Also, until 1927, the U.S. government did not formally…

  13. New trends in meteor radio receivers

    NASA Astrophysics Data System (ADS)

    Rault, Jean-Louis

    2014-01-01

    Recent progresses in low cost—but performing—SDR (software defined radio) technology presents a major breakthrough in the domain of meteor radio observations. Their performances are now good enough for meteor work and should therefore encourage newcomers to join the meteor radio community.

  14. 14 CFR 99.9 - Radio requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Radio requirements. 99.9 Section 99.9... AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.9 Radio requirements. (a) A person who operates a civil aircraft into an ADIZ must have a functioning two-way radio, and the...

  15. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radio installations. 129.395 Section 129.395 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with overcurrent protection at the switchboard, must be provided for at least one radio installation....

  16. 46 CFR 169.715 - Radio.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radio. 169.715 Section 169.715 Shipping COAST GUARD..., Miscellaneous Systems, and Equipment § 169.715 Radio. (a) Radiotelegraph and radiotelephone installations are... Regulations, part 83. (b) A valid certificate issued by the FCC is evidence that the radio installation is...

  17. 14 CFR 121.345 - Radio equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Radio equipment. 121.345 Section 121.345..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.345 Radio equipment. (a) No person may operate an airplane unless it is equipped with radio equipment required for the kind...

  18. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  19. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radio installations. 129.395 Section 129.395 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with overcurrent protection at the switchboard, must be provided for at least one radio installation....

  20. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  1. 14 CFR 121.345 - Radio equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Radio equipment. 121.345 Section 121.345..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.345 Radio equipment. (a) No person may operate an airplane unless it is equipped with radio equipment required for the kind...

  2. 14 CFR 99.9 - Radio requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Radio requirements. 99.9 Section 99.9... AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.9 Radio requirements. (a) A person who operates a civil aircraft into an ADIZ must have a functioning two-way radio, and the...

  3. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems. (a) This account shall include the original cost of ownership of radio transmitters and receivers....

  4. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radio installations. 129.395 Section 129.395 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with overcurrent protection at the switchboard, must be provided for at least one radio installation....

  5. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems. (a) This account shall include the original cost of ownership of radio transmitters and receivers....

  6. 14 CFR 99.9 - Radio requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Radio requirements. 99.9 Section 99.9... AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.9 Radio requirements. (a) A person who operates a civil aircraft into an ADIZ must have a functioning two-way radio, and the...

  7. 46 CFR 169.715 - Radio.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radio. 169.715 Section 169.715 Shipping COAST GUARD..., Miscellaneous Systems, and Equipment § 169.715 Radio. (a) Radiotelegraph and radiotelephone installations are... Regulations, part 83. (b) A valid certificate issued by the FCC is evidence that the radio installation is...

  8. 14 CFR 121.345 - Radio equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Radio equipment. 121.345 Section 121.345..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.345 Radio equipment. (a) No person may operate an airplane unless it is equipped with radio equipment required for the kind...

  9. 46 CFR 169.715 - Radio.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radio. 169.715 Section 169.715 Shipping COAST GUARD..., Miscellaneous Systems, and Equipment § 169.715 Radio. (a) Radiotelegraph and radiotelephone installations are... Regulations, part 83. (b) A valid certificate issued by the FCC is evidence that the radio installation is...

  10. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  11. Radio properties of Compact Steep Spectrum and GHz-Peaked Spectrum radio sources

    NASA Astrophysics Data System (ADS)

    Orienti, M.

    2016-02-01

    Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.

  12. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  13. The Role of Alternative Programming in College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    College radio is quite often viewed as the true alternative to commercial radio. However, what is alternative radio and how does college radio factor into the ideal? To further understand this concept, this paper focuses on the role of alternative programming in college radio. Areas discussed include alternative radio as a non-mainstream form of…

  14. Radios in the Classroom: Curriculum Integration and Communication Skills.

    ERIC Educational Resources Information Center

    Ninno, Anton

    2000-01-01

    Describes radio applications for education and summarizes radio activities for elementary and secondary school classrooms. Discusses teaching the history of radio communications; AM-FM radio; international shortwave broadcasts; NOAA (National Oceanic and Atmospheric Administration) weather service broadcasts; scanner radios; and amateur radios.…

  15. Survival of radio-marked mallard ducklings in northeastern California

    USGS Publications Warehouse

    Mauser, D.M.; Jarvis, R.L.; Gilmer, D.S.

    1994-01-01

    Estimates of duckling survival are necessary to accurately assess recruitment of mallards (Anas platyrhynchos), yet few reliable estimates exist. During 1988-90, we estimated survival rates for 127 radio-marked mallard ducklings from 64 broods on Lower Klamath National Wildlife Refuge, California. In 1988, we restricted the survival estimate to the first 10 days post-hatch (S = 0.18, SE = 0.07). Survival from hatching to 50 days was 0.37 (SE = 0.09) in 1989 and 0.34 (SE = 0.07) in 1990. Total brood loss differed among years (P < 0.05); 81.2% in 1988 (n = 16), 36.8% in 1989 (n = 19), and 37.5% in 1990 (n = 24). Ninety-three percent of mortality occurred during the first 10 days of life. We detected no differences in the proportion of radio-marked ducklings fledged from early-hatched versus late-hatched nests (P = 0.74). During 1989-90, 16 females appeared to lose their entire brood; however, 3 radio-marked ducklings from 2 of these broods were fledged by other brood hens. Of 29 radio-marked ducklings that reached 44 days of life, 6 (20.7%) joined other broods. Habitat enhancement is the key to improving duckling survival because the large number of predator species that consume ducklings makes predator control difficult.

  16. Low Frequency Radio Data in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sébastien L. G.; Le Sidaner, Pierre; Erard, Stéphane; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinsky, Dave; Sky, Jim; Higgins, Chuck

    2015-08-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol. Amateur radio data from the RadioJOVE project is also available. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  17. Space situational awareness applications for radio astronomy assets

    NASA Astrophysics Data System (ADS)

    Watts, Galen; Ford, John M.; Ford, H. Alyson

    2015-05-01

    The National Radio Astronomy Observatory (NRAO) builds, operates, and maintains a suite of premier radio antennas, including the 100m aperture Green Bank Telescope, the largest fully-steerable antenna in the world. For more than five decades the NRAO has focused on astrophysics, providing researchers with the most advanced instruments possible: large apertures, extremely low-noise receivers, and signal processors with high frequency and time resolution. These instruments are adaptable to Space Situational Awareness (SSA) tasks such as radar detection of objects in near-Earth and cis-Lunar space, high accuracy orbit determination, object surveillance with passive methods, and uplink and downlink communications. We present the capabilities of antennas and infrastructure at the NRAO Green Bank Observatory in the context of SSA tasks, and discuss what additions and modifications would be necessary to achieve SSA goals while preserving existing radio astronomy performance. We also discuss how the Green Bank Observatory's surrounding topography and location within the National Radio Quiet Zone will enhance SSA endeavors.

  18. Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by UWB.

    PubMed

    Li, Qinwei; Xiao, Xia; Wang, Liang; Song, Hang; Kono, Hayato; Liu, Peifang; Lu, Hong; Kikkawa, Takamaro

    2015-10-01

    A direct extraction method of tumor response based on ensemble empirical mode decomposition (EEMD) is proposed for early breast cancer detection by ultra-wide band (UWB) microwave imaging. With this approach, the image reconstruction for the tumor detection can be realized with only extracted signals from as-detected waveforms. The calibration process executed in the previous research for obtaining reference waveforms which stand for signals detected from the tumor-free model is not required. The correctness of the method is testified by successfully detecting a 4 mm tumor located inside the glandular region in one breast model and by the model located at the interface between the gland and the fat, respectively. The reliability of the method is checked by distinguishing a tumor buried in the glandular tissue whose dielectric constant is 35. The feasibility of the method is confirmed by showing the correct tumor information in both simulation results and experimental results for the realistic 3-D printed breast phantom.

  19. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  20. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  1. EARS, MARS combined radio observations - 2014

    NASA Astrophysics Data System (ADS)

    Tomezzoli, Giancarlo

    2014-02-01

    The Lyrid meteor shower was generated on 21-22 April 2014 by the passage of the Earth through the path of the debris of the comet C/1861 G1 (Thatcher). The Camelopardalids meteor shower was generated on 23-24 May 2014 by the passage of the Earth through the path of the debris of the comet 209P/Linear. The EurAstro Radio Station (EARS) and the Malta Astro Radio Station (MARS) were operated in parallel for two combined radio observation campaigns. The campaigns revealed that further combined radio observation campaigns are necessary to solve the problem of estimating the number of lost radio meteor echoes.

  2. 47 CFR 95.201 - (R/C Rule 1) What is the Radio Control (R/C) Radio Service?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rule 1) What is the Radio Control (R/C) Radio Service? 95.201 Section 95.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service...

  3. 47 CFR 95.201 - (R/C Rule 1) What is the Radio Control (R/C) Radio Service?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (R/C Rule 1) What is the Radio Control (R/C) Radio Service? 95.201 Section 95.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service...

  4. 47 CFR 95.201 - (R/C Rule 1) What is the Radio Control (R/C) Radio Service?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (R/C Rule 1) What is the Radio Control (R/C) Radio Service? 95.201 Section 95.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service...

  5. 47 CFR 95.201 - (R/C Rule 1) What is the Radio Control (R/C) Radio Service?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (R/C Rule 1) What is the Radio Control (R/C) Radio Service? 95.201 Section 95.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service...

  6. 47 CFR 95.201 - (R/C Rule 1) What is the Radio Control (R/C) Radio Service?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (R/C Rule 1) What is the Radio Control (R/C) Radio Service? 95.201 Section 95.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service...

  7. International Agreement Will Advance Radio Astronomy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous

  8. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  9. Radio-quiet Fast Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Aguilar-Rodriguez, E.; Kaiser, M. L.; Howard, R. A.

    2004-12-01

    Coronal mass ejections (CMEs) drive shocks in the interplanetary medium that produce type II radio emission. These CMEs are faster and wider on the average, than the general population of CMEs. However, when we start from fast (speed > 900 km/s) and wide (angular width > 60 degrees), more than half of them are not associated with radio bursts. In order to understand why these CMEs are radio quiet, we collected all the fast and wide (FW) CMEs detected by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) and isolated those without associated type II radio bursts. The radio bursts were identified in the dynamic spectra of the Radio and Plasma Wave (WAVES) Experiment on board the Wind spacecraft. We also checked the list against metric type II radio bursts reported in Solar Geophysical Data and isolated those without any radio emission. This exercise resulted in about 140 radio-quiet FW CMEs. We identified the source regions of these CMEs using the Solar Geophysical Data listings, cross-checked against the eruption regions in the SOHO/EIT movies. We explored a number of possibilities for the radio-quietness: (i) Source region being too far behind the limb, (ii) flare size, (iii) brightness of the CME, and (iv) the density of the ambient medium. We suggest that a combination of CME energy and the Alfven speed profile of the ambient medium is primarily responsible for the radio-quietness of these FW CMEs.

  10. Radio detections of southern ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.

    2016-04-01

    We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.

  11. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  12. Precision Geodesy via Radio Interferometry.

    PubMed

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  13. The radio telescope RATAN 600

    NASA Technical Reports Server (NTRS)

    Schwartz, R.

    1978-01-01

    A six-meter radio antenna having 900 reflector elements arranged on a 579 -meter diameter circle and located in the northern part of the Caucasian Mountains is described. The elements are about 7.4 m by 2 m resulting in a total reflector surface of about 10,000 sq m. Individual elements can be adjusted by changing 260 screws and can be rotated both horizontally and vertically as well as being moved translationally in the radial direction. The circular area is equipped with a grid of tracks where four asymmetric cylindrical paraboloids serving as subreflectors are located. The directional profile or observational direction of the antenna is achieved by shifting the subreflectors and changing the position of the reflecting elements with respect to the subreflectors. Different radio sources can be observed at the same time by using different subreflectors and their associated reflector sectors. Each subreflector is connected to a receiving station. Capabilities for spectroscopic observation are discussed.

  14. The Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Nityananda, R.

    2003-05-01

    The Giant Metrewave Radio Telescope (GMRT) of the National Centre of Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR) at Khodad, India, has been operational in the band 0.2 to 2 metres for the last two and a half years. The system characteristics and performance and recent results from the group will be presented. Details of use over the last six months by scientists from other observatories under the GMRT Time Allocation Committee (GTAC) and future plans will be also be reviewed in this paper. Areas which have been studied include observations made in the GMRT band of neutral hydrogen, nearby galaxies, supernova remnants, the Galactic Centre, pulsars, the Sun and others.

  15. SDR - radio meteor affordable approach

    NASA Astrophysics Data System (ADS)

    Lesanu, C.; Dragoiu, A.

    2012-01-01

    A software-defined radio system, or SDR, is a radio communication system where components that have been typically implemented in hardware (e.g., mixers, filters, amplifiers, modulators/ demodulators, detectors, etc.) are instead implemented by means of software on an embedded computing device or a personal computer. While the concept of SDR is not new, the rapidly evolving capabilities of digital electronics render practical many processes which used to be only theoretically possible. A basic SDR system may consist of a personal computer equipped with a sound card, or other analog-to-digital converter, preceded by some form of RF front end. Significant amounts of signal processing are handed over to the general-purpose processor, rather than being done in special-purpose hardware.

  16. Exploration of the Radio-Loud/Radio Quiet Dichotomy for QSO: Using Radio Morphology and 4D Eigenvector 1

    NASA Astrophysics Data System (ADS)

    Zamfir, Sebastian; Sulentic, J. W.; Marziani, P.; Dultzin, D.

    2007-12-01

    The reality of a RL/RQ Dichotomy for QSO remains an open problem. Recent studies not only provide us with contradictory results, but also display the confusion of comparing conclusions drawn on the basis of different views on "what means radio-loud"? We propose a definition of radio loudness based on three criteria (simultaneously applied): radio morphology, radio luminosity and radio-optical flux density ratio. Fanaroff-Riley II radio sources (FRIIs) are assumed to be the parent population of RL quasars, while the core dominated RL quasars are assumed to be preferentially aligned FRIIs. Orientation-unification then suggests the RQ-RL boundary is set by the least radio luminous FRII and by the lowest radio-optical ratio for an FRII. We also consider RL and RQ quasars in the context of a 4D Eigenvector 1 (4DE1) Parameter Space that is defined independently of any radio measure. Using Sloan Digital Sky Survey (SDSS) spectroscopic data for 400+ QSO (z<0.7 and brighter than psf g =17.5), coupled with FIRST and NVSS radio surveys (1.4GHz), we show that classical RL sources distribute very differently from the RQ majority of QSO.

  17. Rosetta Radio Science Investigations (RSI)

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Pätzold, M.; Häusler, B.; Bird, M. K.

    2006-09-01

    In March 2004 the ROSETTA spacecraft started its journey to the comet P/Churyumov-Gerasimenko. The very ambitious mission will escort the comet for several months in 2015 as it heads towards the sun. The ROSETTA Radio Science Experiment (RSI) uses the radio carrier links of the spacecraft Telemetry, Tracking and Command subsystem at X-band and S-band. The spacecraft is specially equipped with an Ultra-Stable Oscillator (USO) that stabilizes the radio links for a significant improvement of the sensitivity and accuracy of the measurement. RSI is interested in dispersive frequency shifts due to the propagation of the radio signals through ionized media as well as non-dispersive frequency shifts caused by other perturbing forces acting on the spacecraft (gravity field, gas and dust mass flux from the comet). These observations will allow the investigation of the comet's nucleus, its size and shape and the lower harmonics of its gravity field, and the dielectric properties of its surface. In addition the electron content of the cometary coma and the abundance of large dust grains can be determined. The mass and bulk density of the asteroid will be determined during the flyby at asteroid Lutetia in 2010 First results from the commissioning phase and regularly performed measurements allow to assess the sensitivity of the experiment and the ageing of the USO quartz oscillator. These results are compared with the coherent two-way-measurements also recorded during commissioning. Between March and May 2006 ROSETTA moved into superior conjunction with the Sun. This allowed the investigation of the solar corona to derive electron density profiles in the structured corona, solar wind speed and to detect, identify and describe the spatial and temporal evolution of the shockfronts of coronal mass ejections.

  18. Radio frequency coaxial feedthrough device

    DOEpatents

    Owens, Thomas L.; Baity, Frederick W.; Hoffman, Daniel J.; Whealton, John H.

    1987-01-01

    A radio frequency coaxial vacuum feedthrough is provided which utilizes a cylindrical ceramic vacuum break formed of an alumina ceramic. The cylinder is coaxially disposed and brazed between tapered coaxial conductors to form a vacuum sealed connection between a pressurized upstream coaxial transmission line and a utilization device located within a vacuum container. The feedthrough provides 50 ohm matched impedance RF feedthrough up to about 500 MHz at power levels in the multimegawatt range.

  19. The Parkes radio telescope - 1986

    NASA Astrophysics Data System (ADS)

    Ables, J. G.; Jacka, C. E.; McConnell, D.; Schinckel, A. E.; Hunt, A. J.

    The Parkes radio telescope has been refurbished 25 years after its commisioning in 1961, with complete replacement of its drive and control systems. The new computer system distributes computing tasks among a loosely coupled network of minicomputers which communicate via full duplex serial lines. Central to the control system is the 'CLOCK' element, which relates all positioning of the telescope to absolute time and synchronizes the logging of astronomical data. Two completely independent servo loops furnish telescope positioning functions.

  20. Advances in solar radio astronomy

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.