Science.gov

Sample records for enhanced wellbore stabilization

  1. Wellbore stability analysis during the production of a carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Alves, J.-L.; Coehlo, L.; Baud, P.; Guevara Junior, N.

    2009-04-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling on the wellbore stability, based on new experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel limestones of respective porosity 17 and 16%. The wet samples were deformed in drained conditions with 10 MPa pore pressure. The initial yield stresses were identified as the critical stresses at the onset of shear-enhanced compaction, subsequent yield stresses were considered to depend on hardening given by the plastic volumetric strain. For both limestones

  2. Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour

    NASA Astrophysics Data System (ADS)

    Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick

    2010-05-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel

  3. On the mechanical stability of inclined wellbores

    SciTech Connect

    Zhou, S.; Hillis, R.R.; Sandiford, M.

    1996-06-01

    Consideration of the stress field around an arbitrarily oriented borehole shows that in an extensional stress regime ({sigma}{sub v} > {sigma}{sub H} > {sigma}{sub h}), wellbores parallel to the direction of minimum horizontal principal stress are the least prone to compressive shear failure (breakout). The most stable deviation angle (from the vertical) depends on the ratio of the horizontal principal stresses to the vertical stresses, and the higher the ratio {sigma}{sub H}/{sigma}{sub v}, the higher the deviation angle for minimizing breakout. In a strike-slip stress regime ({sigma}{sub H} > {sigma}{sub v} > {sigma}{sub h}), horizontal wells are the least prone to breakout, and the higher the ratio {sigma}{sub H}/{sigma}{sub v}, the closer the drilling direction should be to the azimuth of {sigma}{sub H}. A new compressive shear failure criterion, which is a combination of the effective strength concept and the Drucker-Prager criterion, is proposed for quantifying the stresses at which borehole breakout occurs. The lowest mud weight, at and below which breakout will occur, can be predicted by combining this criterion with the stress field around an arbitrarily oriented borehole. The highest mud weight at and above which a tensional or hydraulic fracture is induced can be predicted by combining the tensile strength of the rocks of the wellbore wall with the stress field around an arbitrarily oriented borehole. For the in-situ stress environments considered, the optimally oriented inclined wellbore is less prone to breakout (i.e., allows a lower mud weight) and tensional or hydraulic fracture (i.e., supports a higher mud weight) than a vertical well.

  4. Horizontal wellbore stability and sand production in weakly consolidated sandstones

    SciTech Connect

    Kooijman, A.P.; Kenter, C.J.; Zheng, Z.

    1996-12-31

    Long-term stability of horizontal wellbore completions with uncemented liners in weakly consolidated to unconsolidated sandstone formations (e.g. Gulf of Mexico, Nigeria) remains an area of concern. This paper presents the results of dedicated polyaxial cell laboratory experiments addressing this issue. In addition, the influence of rock failure in the near-wellbore region on well productivity was studied. Large blocks of a weak artificial sandstone were prepared. A hole was drilled in these blocks, and production conditions at various values of in-situ stress, drawdown and watercut, both in the absence and presence of a liner, were simulated. During testing, the hole was kept at a horizontal position in order to realistically simulate the influence of gravity forces on the movement of sand debris. The process of hole failure and restabilization was continuously monitored by an endoscope coupled to a video camera. The experimental results show that in the presence of a slotted liner, and in the absence of watercut, rock failure leads to a gradual annulus fill-up with loose sand, eventually resulting in a stable configuration in which only a small fraction of the far-field stresses is transferred to the liner. These results are further supported by elasto-plastic calculations. Rock failure around the liner is shown to have only a minor effect on productivity. This result implies that rock failure around uncemented liner completions will generally not be noticed at the wellhead. The introduction of a small (<5%) watercut resulted in massive sand production and subsequent liner collapse. This can be explained by the fact that watercut destroys capillary cohesion, thereby destabilising sand arches over the slots.

  5. A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Jin, Yan; Lu, Yunhu; Chen, Mian; Hou, Bing; Chen, Wenyi; Wen, Xin; Yu, Xiaoning

    2016-09-01

    To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.

  6. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    NASA Astrophysics Data System (ADS)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  7. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  8. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  9. Application of in situ stress estimation methods in wellbore stability analysis under isotropic and anisotropic conditions

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Aadnoy, Bernt; Mohammadi, Ramin

    2015-08-01

    Estimation of in situ stresses is a key step in many petroleum engineering applications, ranging from wellbore stability to sanding analysis and hydraulic fracturing design. Direct techniques conventionally used to determine in situ stresses are indeed very time consuming and expensive. These measurements would also be restricted as to the depth of acquisition, and generalization of the results to entire rock masses may not yield representative results. In this paper, applications of three indirect methods-Zoback’s polygon, shear moduli, and poroelastic-are studied to assess their applicability in providing reliable stress estimation under isotropic and anisotropic conditions. Determination of elastic, strength, and in situ stress parameters according to the assumption of each method for one of the vertical wells drilled in south Iran indicated that the shear moduli method is an appropriate approach for prediction of maximum horizontal stress within an interval where sufficient field data including leak-off tests are acquired. However, the poroelastic method seems to be a better method in prediction of in situ stresses under anisotropic conditions. This might be due to the presence of excessive shale formations in subsurface layers, causing structural or intrinsic anisotropy-based methods such as poroelastic equations to deliver more accurate results. However, making general conclusions based on studying a single vertical wellbore may not be sufficient, and therefore further studies are required.

  10. Optimization of Integrated Reservoir, Wellbore, and Power Plant Models for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Peluchette, Jason

    Geothermal energy has the potential to become a substantially greater contributor to the U.S. energy market. An adequate investment in Enhanced Geothermal Systems (EGS) technology will be necessary in order to realize the potential of geothermal energy. This study presents an optimization of a waterbased Enhanced Geothermal System (EGS) modeled for AltaRock Energy's Newberry EGS Demonstration location. The optimization successfully integrates all three components of the geothermal system: (1) the present wellbore design, (2) the reservoir design, and (3) the surface plant design. Since the Newberry EGS Demonstration will use an existing well (NWG 55-29), there is no optimization of the wellbore design, and the aim of the study for this component is to replicate the present wellbore conditions and design. An in-house wellbore model is used to accurately reflect the temperature and pressure changes that occur in the wellbore fluid and the surrounding casing, cement, and earth during injection and production. For the reservoir design, the existing conditions, such as temperature and pressure at depth and rock density, are incorporated into the model, and several design variables are investigated. The engineered reservoir is modeled using the reservoir simulator TOUGH2 while using the graphical interface PetraSim for visualization. Several fracture networks are investigated with the goal of determining which fracture network yields the greatest electrical output when optimized jointly with the surface plant. A topological optimization of the surface is completed to determine what type of power plant is best suited for this location, and a parametric optimization of the surface plant is completed to determine the optimal operating conditions. The conditions present at the Newberry, Oregon EGS project site are the basis for this optimization. The subsurface conditions are favorable for the production of electricity from geothermal energy with rock temperatures exceeding

  11. Laboratory measurements of seismic velocity anisotropy of salt diapirs: Implications for wellbore stability and seismic processing

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David

    2013-04-01

    A set of ten evaporite samples collected from outcrops in a single diapiric province in Cape Breton Island (Canada) have been tested for seismic velocity anisotropy using three methods: 1) conventional ultrasonic pulse transmission method, where velocities are found from the travel times and the known dimensions of the samples. In order to obtain the entire suite of elastic constants, both P- and S-wave velocity measurements were taken in three different directions of cuboid rock samples. Velocities have been measured under dry, ambient conditions of temperature and pressure in halite-, gypsum- and anhydrite-dominated samples; 2) optical microscopy and scanning electron microscopy on thin sections to define the spatial distribution of minerals, their crystallographic preferred orientations (CPO); and 3) a numerical 'rock-recipe' approach based on Tatham et al. (2008) to calculate seismic velocity anisotropy using arbitrary composites of evaporite minerals and different CPOs. These three methods are then compared to understand the controlling factors of the anisotropic elastic properties. The elasticity data are used to guide geomechanical modeling for wellbore stability and to provide insights for the seismic data processing and seismic imaging of salt diapirs. Reference Tatham, D.J., Lloyd, G.E., Butler, R.W.H. and Casey, M, 2008, Amphibole and lower crustal seismic properties: Earth and Planetary Science Letters, 267, 118-128.

  12. Implementation of Bounding Surface Model into ABAQUS and Its Application to Wellbore Stability Analysis

    NASA Astrophysics Data System (ADS)

    Chen, S.; Al-Muntasheri, G.; Abousleiman, Y. N.

    2014-12-01

    The critical state concept based bounding surface model is one of the most widely used elastoplastic constitutive models for geomaterials, attributed mainly to its essential feature of allowing plastic deformation to occur for stress points within the bounding surface and thus the capability to represent the realistic non-recoverable behaviour of soils and rocks observed under the cyclic loading. This paper develops an implicit integration algorithm for the bounding surface model, using the standard return mapping approach (elastic predictor-plastic corrector), to obtain the updated stresses for the given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, i.e., the ratio between the image stress and the current stress quantities. It is essentially an extension of the integration scheme presented in an earlier work used for the simple bounding surface version of modified Cam Clay associated with a substantially simplified hardening rule. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of wellbore stability problem. The predictions from the ABAQUS simulations are generally in excellent agreement with the available analytical solutions, thus demonstrating the accuracy and robustness of the proposed integration scheme.

  13. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  14. Wellbore fluid

    SciTech Connect

    Dorsey, D.L.; Corley, W.T.

    1983-12-27

    A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.

  15. Nitrogen stimulation of a potassium hydroxide wellbore treatment

    SciTech Connect

    Sloat, B.F.

    1989-07-04

    This patent describes a process for stabilizing permeable consolidated rock in a near wellbore area of a hydrocarbon-bearing subterranean sandstone formation penetrated by a wellbore of a well in fluid communication therewith.

  16. Wellbore simulation - case studies

    SciTech Connect

    Freeston, Derek; Gunn, Calum

    1993-01-28

    The use of a wellbore simulator, WELLSIM, to characterise the effects of multi-feed inflow on wellbore pressure-temperature characteristics, and diameter changes to a well on the deliverability curve, is discussed. Matching analyses are performed with the simulator on a well which has a number of two-phase and liquid infeeds, and it is demonstrated that good matches to both pressure and temperature profiles can be achieved. The significance of the reservoir/feed response curve for a steam well is illustrated, and the optimisation of wellbore diameter is shown to be related to whether the discharge is wellbore or reservoir controlled.

  17. Wellbore Integrity Network

    SciTech Connect

    Carey, James W.; Bachu, Stefan

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  18. Closure of open wellbores in creeping salt sheets

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; Jackson, M. P. A.; van Harmelen, A.

    2014-01-01

    Safe exploration and production of pre-salt (or subsalt) hydrocarbons require that drilling operations be optimized. We introduce analytical models of wellbore closure, accounting for variations in both the wellbore net pressure and far-field flow rate of an autochthonous or allochthonous salt sheet penetrated by the wellbore. We demonstrate how closure rates of such a wellbore evolve for increasingly stronger Rankine flow. For high viscosity salt (˜1018 Pa s) the wellbore closes by a pure sink flow without any Rankine shift from its vertical trajectory path. For low viscosity salt (˜1016 Pa s) Rankine flow dominates. Wellbore closure in salt sheets may vary within the same wellbore due to differential tectonic creep rates at different depths. Mitigation of wellbore closure by, for example, reaming, jarring, brine solution and thermal control, is most effective if spatial variation in closure rates is understood and quantified. Evaluation of wellbore closure rates due to salt creep should be customarily included in wellbore stability analyses before drilling and during well monitoring.

  19. Wellbore Seal Repair Using Nanocomposite Materials

    SciTech Connect

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheath cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus

  20. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Fred Growcock

    2004-03-31

    During this second Quarter of the Project, the first four tasks of Phase I--all focusing on the behavior of aphrons--were continued: (a) Aphron Visualization--evaluate and utilize various methods of monitoring and measuring aphron size distribution at elevated pressure; (b) Fluid Density--investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity--determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility--determine whether aphron bridges created in fractures and pore throats reduce fracture propagation. The project team expanded the laboratory facilities and purchased a high-pressure system to measure bubble size distribution, a dissolved oxygen (DO) probe and computers for data acquisition. Although MASI Technologies LLC is not explicitly ISO-certified, all procedures are being documented in a manner commensurate with ISO 9001 certification, including equipment inventory and calibration, data gathering and reporting, chemical inventory and supplier data base, waste management procedures and emergency response plan. Several opportunities presented themselves to share the latest aphron drilling fluid technology with potential clients, including presentation of papers and working exhibit booths at the IADC/SPE Drilling Conference and the SPE Coiled Tubing Conference & Exhibition. In addition, a brief trip to the Formation Damage Symposium resulted in contacts for possible collaboration with ActiSystems, the University of Alberta and TUDRP/ACTS at the University of Tulsa. Preliminary results indicate that the Aphron Visualization and Pressure Transmissibility tasks should be completed on time. Although the Aphron Air Diffusivity task has been impeded by the lack of a suitable DO probe, it is hoped to be completed on time, too. The Fluid Density task, on the other hand, has had significant delays caused by faulty equipment and will likely require an additional month of work. Meanwhile, an assessment of potential methodologies for the Aphron Hydrophobicity project has been initiated and is now focused on measuring wettability of the aphron surface rather than interfacial tension.

  1. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Fred Growcock

    2003-12-31

    During this first Quarter of the Project, a team of five individuals was formed to characterize aphron drilling fluids, with the ultimate objectives to gain acceptance for this novel technology and decrease the costs of drilling mature and multiple-pressure formations in oil and gas wells. Aphron drilling fluids are very high low-shear-rate viscosity fluids laden with specially designed microbubbles, or ''aphrons.'' The focus of the Project is to develop some understanding of the aphron structure and how aphrons and base fluid behave under downhole conditions. Four tasks were begun during this Quarter. All of these focus on the behavior of aphrons: (a) Aphron Visualization - to evaluate various methods of measuring bubble size distribution, especially Acoustic Bubble Spectroscopy (ABS), in aphron drilling fluids at elevated pressure; (b) Fluid Density - to investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity - to determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility - to determine whether aphron networks (similar to foams) in fractures and pore networks reduce fracture propagation. The project team installed laboratory facilities and purchased most of the equipment required to carry out the tasks described above. Then work areas were combined to permit centralized data acquisition and communication with internal and external file servers, and electronic and hard copy filing systems were set up to be compatible with ISO 9001 guidelines. Initial feasibility tests for all four tasks were conducted, which led to some modification of the experimental designs so as to enable measurements with the required accuracy and precision. Preliminary results indicate that the Aphron Visualization, Aphron Air Diffusivity and Pressure Transmissibility tasks should be completed on time. The Fluid Density task, on the other hand, has some fundamental problems that may preclude realization of its objectives; alternative experimental approaches and methods of analysis will be explored during the next Quarter.

  2. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Arkadiy Belkin; Fred Growcock

    2004-07-31

    The rate and amplitude of pressure transmission of various drilling fluids--particularly aphron drilling fluids--are measured in a long conduit and in sand packs to determine how pressure transmissibility can affect fluid invasion.

  3. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Tatiana Hoff; Fred Growcock

    2004-12-30

    Core Leak-off tests are commonly used to ascertain the ability of a drilling fluid to seal permeable rock under downhole conditions. Unfortunately, these tests are expensive and require a long time to set up. To monitor fluid invasion trends and to evaluate potential treatments for reducing fluid invasion on location, a simpler screening test is highly desirable. The Capillary Suction Time (CST) Test has been used since the 1970's as a fast, yet reliable, method for characterizing fluid filterability and the condition of colloidal materials in water treatment facilities and drilling fluids. For the latter, it has usually been applied to determine the state of flocculation of clay-bearing fluids and to screen potential shale inhibitors. In this work, the CST method was evaluated as a screening tool for predicting relative invasion rates of drilling fluids in permeable cores. However, the drilling fluids examined--DRILPLEX, FLOPRO, and APHRON ICS--are all designed to generate low fluid loss and give CST values that are so high that fluid invasion comes to be dominated by experimental artifacts, such as fluid evaporation. As described in this work, the CST procedure was modified so as to minimize such artifacts and permit differentiation of the fluids under investigation.

  4. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Maribella Irving; Fred Growcock

    2004-11-30

    A method is developed to monitor the rate of loss of air from aphrons at elevated pressures. This technique is used to study the effects of pressure, fluid composition and rates of pressurization and depressurization on the kinetics of air loss from aphrons in APHRON ICS{trademark} drilling fluids.

  5. Analysis of the Wellbore Seal at Well 49-6 in the SACROC CO2 Enhanced Oil Recovery Field, West Texas

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Wigand, M.; Chipera, S.; Woldegabriel, G.; Pawar, R.; Lichtner, P. C.; Wehner, S.; Raines, M.; Guthrie, G. D.

    2005-12-01

    Long-term integrity of wellbore cements is one of the major concerns for geologic sequestration of CO2. This paper presents analyses of cement core recovered from a well used in a long-term CO2 enhanced oil recovery operation. A sidetrack system was used to obtain core from a 55 year-old well with 30 years of CO2 exposure as both an injector and a producer at the SACROC unit (Permian Basin, Texas). The mineralogy, chemistry, and hydrologic properties were evaluated for evidence of degradation by CO2. The recovered samples were located ~ 3 m above the contact with the reservoir. The recovered cement had permeabilities in the milliDarcy range and thus retained its capacity to prevent significant flow of CO2. There was evidence for CO2 migration along the casing-cement and cement-shale interfaces. The casing interface had a 1-2 mm thick rind of calcite-aragonite-halite. The CO2 producing this rind may have traveled up the casing wall or may have infiltrated through the casing threads. The cement in contact with the shale (within 1 cm) was heavily carbonated to an assemblage of calcite, aragonite, vaterite and amorphous alumino-silica residue and was transformed to a distinctive orange color. The heavily carbonated region is separated from less altered cement by a narrow, dense zone of silica and carbonate deposition. The CO2 for this carbonation process migrated from the cement-shale interface where the presence of shale fragments (wall cake) may have provided a fluid pathway. The carbonation reaction was associated with only small changes in the original cement chemistry including an increase in Na2O and decrease in CaO and MgO with a slight enrichment in SiO2. The carbonated zone also has a distinct carbon and oxygen stable isotope signature. Although the observed carbonation was intense, the measured hydrologic properties of the carbonated zone were not significantly different from those of relatively unaltered cement in adjacent parts of the core. Textural

  6. Enhanced colloidal stability of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Borum, La Rhonda Terese

    Hydroxyapatite, Ca10(PO4)6(OH) 2 is the most thermodynamically stable calcium phosphate in physiological environments. Hence, it is the main inorganic mineral found in bone and teeth. Its colloidal stability, however, is poor because hydroxyapatite (HAp) particles exhibit sediment formation upon standing at short time periods, where agglomerates form and lead to non-homogeneous suspensions. Surface modification is a promising method to tailor the colloidal stability of hydroxyapatite for biomaterial applications. Three techniques to modify the HAp surface and enhance the colloidal stability of HAp were investigated. Modified particles were characterized by methods sensitive to surface chemistry changes, such as sedimentation studies, diffuse reflectance Fourier transform infrared spectroscopy (DRIFT), Brunauer-Emmett-Teller (BET) surface area, and electrophoresis. Sedimentation studies demonstrated how effective each technique was in improving the colloidal stability of hydroxyapatite particles. Electrophoresis provided information on electrostatic interactions within each system. The first technique entailed an esterification reaction of the HAp surface with dodecyl alcohol at elevated temperatures. DRIFT results showed that dodecyl groups from the alcohol replaced acidic hydroxyl and phosphate sites on the HAp surface, giving rise to enhanced colloidal stability through steric interactions in ethanol suspensions. TGA curves gave insight to the degree of esterification for the esterified particles. Higher reaction temperatures give rise to a higher degree of esterification resulting in better colloidal stability. The second technique applied a silica coating on the HAp surface by the hydrolysis of tetraethyl orthosilicate in ethanol. Silica was coated onto the HAp surface at 5--75 wt% loading amounts. A combination of acid dissolution and x-ray diffraction (XRD), along with BET showed that the silica coating is complete at 50 wt% silica loading. The silica coating

  7. Ranging methods for developing wellbores in subsurface formations

    DOEpatents

    MacDonald, Duncan

    2011-09-06

    A method for forming two or more wellbores in a subsurface formation includes forming a first wellbore in the formation. A second wellbore is directionally drilled in a selected relationship relative to the first wellbore. At least one magnetic field is provided in the second wellbore using one or more magnets in the second wellbore located on a drilling string used to drill the second wellbore. At least one magnetic field is sensed in the first wellbore using at least two sensors in the first wellbore as the magnetic field passes by the at least two sensors while the second wellbore is being drilled. A position of the second wellbore is continuously assessed relative to the first wellbore using the sensed magnetic field. The direction of drilling of the second wellbore is adjusted so that the second wellbore remains in the selected relationship relative to the first wellbore.

  8. A wellbore inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-02-01

    A prototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimballed inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of 100 to 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also, this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  9. Heating production fluids in a wellbore

    DOEpatents

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  10. Methods for forming wellbores in heated formations

    DOEpatents

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  11. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  12. Development of a Standalone Thermal Wellbore Simulator

    NASA Astrophysics Data System (ADS)

    Xiong, Wanqiang

    With continuous developments of various different sophisticated wells in the petroleum industry, wellbore modeling and simulation have increasingly received more attention. Especially in unconventional oil and gas recovery processes, there is a growing demand for more accurate wellbore modeling. Despite notable advancements made in wellbore modeling, none of the existing wellbore simulators has been as successful as reservoir simulators such as Eclipse and CMG's and further research works on handling issues such as accurate heat loss modeling and multi-tubing wellbore modeling are really necessary. A series of mathematical equations including main governing equations, auxiliary equations, PVT equations, thermodynamic equations, drift-flux model equations, and wellbore heat loss calculation equations are collected and screened from publications. Based on these modeling equations, workflows for wellbore simulation and software development are proposed. Research works are conducted in key steps for developing a wellbore simulator: discretization, a grid system, a solution method, a linear equation solver, and computer language. A standalone thermal wellbore simulator is developed by using standard C++ language. This wellbore simulator can simulate single-phase injection and production, two-phase steam injection and two-phase oil and water production. By implementing a multi-part scheme which divides a wellbore with sophisticated configuration into several relative simple simulation running units, this simulator can handle different complex wellbores: wellbore with multistage casings, horizontal wells, multilateral wells and double tubing. In pursuance of improved accuracy of heat loss calculations to surrounding formations, a semi-numerical method is proposed and a series of FLUENT simulations have been conducted in this study. This semi-numerical method involves extending the 2D formation heat transfer simulation to include a casing wall and cement and adopting new

  13. General single phase wellbore flow model

    SciTech Connect

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

    1997-02-05

    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  14. Hydraulic wellbore erosion while drilling

    SciTech Connect

    Chemerinski, B.; Robinson, L.

    1996-12-01

    This article is the first to identify nozzle hydraulic effects in a field evaluation of hole erosion. Common practice normally identifies annular velocity as the culprit for excessive hole washout. But field tests in this article clearly identify excessive nozzle hydraulics as the cause for hole erosion. Both oil-based and water-based drilling fluids were used during the field test. The primary contribution of this study is a simple guideline to assist drillers in preventing excessive hole erosion. This article describes drilling conditions and caliper logs, and discusses sequences of events that could explain the observations. Some preliminary guidelines are presented so that drillers can prevent erosion of the wellbore from high shear rates at bit nozzles.

  15. Rational Design of Biobetters with Enhanced Stability.

    PubMed

    Courtois, Fabienne; Schneider, Curtiss P; Agrawal, Neeraj J; Trout, Bernhardt L

    2015-08-01

    Biotherapeutics are the fastest growing class of pharmaceutical with a rapidly evolving market facing the rise of biosimilar and biobetter products. In contrast to a biosimilar, which is derived from the same gene sequence as the innovator product, a biobetter has enhanced properties, such as enhanced efficacy or reduced immunogenicity. Little work has been carried out so far to increase the intrinsic stability of biotherapeutics via sequence changes, even though, aggregation, the primary degradation pathway of proteins, leads to issues ranging from manufacturing failure to immunological response and to loss of therapeutic activity. Using our spatial aggregation propensity tool as a first step to a rational design approach to identify aggregation-prone regions, biobetters of rituximab have been produced with enhanced stability by introducing site-specific mutations. Significant stabilization against aggregation was achieved for rituximab with no decrease in its binding affinity to the antigen.

  16. Thermal stability enhancement of rubbery ormosils

    SciTech Connect

    Kramer, S.J.; Mackenzie, J.D.

    1994-12-31

    Thermal stability of a novel rubbery ORMOSIL of condensed tetraethoxysilane (TEOS) and polydimethylsiloxane (PDMS) was investigated along with methods by which to improve this stability. Based upon literature review of siloxane systems, modifications of the base ORMOSIL system was made which included substitution of polydimethyldiphenylsiloxane (PDMDPS) for PDMS, adding antioxidant, and adding iron compounds. Relative enhancement was investigated in terms of resilience measurements, and was also analyzed with thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA).

  17. Design, implementation, and completion of a horizontal tight gas wellbore - case study: Green River Basin, Wyoming

    SciTech Connect

    Billingsley, R.L.; Evans, L.W.; Anderson, T.M.

    1995-06-01

    In September, 1993 Amoco Production Company began drilling the Champlin 254B No. 2H, a horizontal well test located near the Wamsutter Arch, southwestem Wyoming. The Champlin 254B No. 2H was designed to confirm a fractured reservoir concept and to test the economic viability of a horizontal wellbore in the Almond fm.. The wellbore was designed to determine real-time, the fracture direction and the optimum horizontal leg direction within the confines of the drilling permit. A deviated pilot hole was drilled to optimize our ability to cross vertical natural fractures. MWD gamma-ray, oriented core, a vertical seismic profile, Formation Microimager, and a robust suite of electric logs were obtained to gain information on the presence and orientation of fractures before kickoff for the horizontal leg. Electromagnetic goniometry was used onsite to orient fractures in core. Log and core data were consistent and a wellbore trajectory of due South was chosen. A two thousand foot horizontal wellbore was drilled, 1700 feet of which is in the upper Almond formation productive zone. MWD gamma-ray, three 30` cores, Formation Microscanner logs, and a density-neutron log were obtained in the horizontal hole. This wellbore was completed open-hole with a stabilized gas rate of 1 mmcfd. In May, 1994 a portion of the original wellbore collapsed and a replacement horizontal leg was drilled. Oil-based mud and rotary BOP`s were utilized to minimize damage and invasion to the reservoir. Reservoir pressures encountered in the redrill indicate that depletion along the original wellbore had begun. The redrill was completed open-hole with a pre-perforated (every third joint) 5 1/2 inches liner and also stabilized at a rate of 1 mmcfd.

  18. The effect of wellbore curvature on tubular buckling and lockup

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1995-09-01

    This paper studies tubular buckling in curved wellbores (such as the build section of horizontal wells) and its effect on tubular ``lockup`` in horizontal or extended-reach wells. New buckling load equations are derived to properly predict tubular sinusoidal and helical buckling in such wellbores. The results show that the buckling loads to initiate sinusoidal and helical buckling to tubulars in curved wellbores are usually much larger than those in straight wellbores. This is because the curved wellbore tends to hold the axially compressed tubular against the outer-curve side of the wellbore. The tubular becomes less easy to buckle until higher axial compressive loads are applied. Less tubular lockup risk is then predicted for tubulars in horizontal or extended-reach wells by using the new buckling load equations. The new buckling loads in curved wellbores agree with those in straight wellbores when wellbore curvature approaches zero. Small-scale laboratory experiments also confirmed these theoretically derived buckling loads.

  19. Stability and enhancement of berry juice color.

    PubMed

    Rein, Maarit J; Heinonen, Marina

    2004-05-19

    Attractive color is one of the main sensory characteristics of fruit and berry products. Unfortunately, the color of red juices is unstable and easily susceptible to degradation, leading to a dull and weak juice color. This study was designed to investigate the color stability and copigmentation of four different berry juices enhanced by phenolic acids and commercial color enhancers. Phenolic acid enrichment improved and stabilized the color of the berry juices during storage. The commercial color enhancers immediately produced an intensive color to the juices, which, however, was not very stable. The color enhancement was intensive in strawberry and raspberry juices and effective in lingonberry and cranberry juices. Sinapic acid induced the strongest color in strawberry juice. Ferulic and sinapic acids improved raspberry juice color equally. Rosmarinic acid enhanced the color of lingonberry and cranberry juices the most. The addition of the simple cinnamic acids produced novel peaks to the end of the high-performance liquid chromatography chromatogram, indicating a formation of new compounds. It can be assumed that sinapic and ferulic acids formed new intramolecular copigmentation compounds with berry anthocyanins whereas rosmarinic acid stabilized anthocyanins intermolecularly.

  20. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  1. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  2. Enhanced stability of freestanding lipid bilayer and its stability criteria

    NASA Astrophysics Data System (ADS)

    Jeong, Dae-Woong; Jang, Hyunwoo; Choi, Siyoung Q.; Choi, Myung Chul

    2016-12-01

    We present a new strategy to dramatically enhance the stability of freestanding lipid bilayers. We found that an addition of a water in oil emulsion stabilizer, SPAN 80 to a solvent phase guarantees nearly millimeter-scale stable freestanding lipid bilayers. The water permeability, bilayer area, contact angle, and interfacial tension were measured as a function of time and SPAN 80-to-lipid weight ratio (ΦSPAN 80) with several different solvents. Surprisingly, the SPAN 80, instead of remaining in the bilayer, was moved out of the bilayer during the bilayer formation. Also we studied the effect of solvent on freestanding bilayer formation, and found that squalene was the only solvent that was not incorporated into the bilayer. The regime of stable bilayer formation was experimentally determined to be 3/1 < ΦSPAN 80 < 15/1, and we suggest general stability criteria for bilayer formation. This technique and the suggested stability criteria can be potentially helpful to many model membrane-based researches in life sciences, physical sciences and biomedical engineering fields.

  3. Enhanced stability of freestanding lipid bilayer and its stability criteria

    PubMed Central

    Jeong, Dae-Woong; Jang, Hyunwoo; Choi, Siyoung Q.; Choi, Myung Chul

    2016-01-01

    We present a new strategy to dramatically enhance the stability of freestanding lipid bilayers. We found that an addition of a water in oil emulsion stabilizer, SPAN 80 to a solvent phase guarantees nearly millimeter-scale stable freestanding lipid bilayers. The water permeability, bilayer area, contact angle, and interfacial tension were measured as a function of time and SPAN 80-to-lipid weight ratio (ΦSPAN 80) with several different solvents. Surprisingly, the SPAN 80, instead of remaining in the bilayer, was moved out of the bilayer during the bilayer formation. Also we studied the effect of solvent on freestanding bilayer formation, and found that squalene was the only solvent that was not incorporated into the bilayer. The regime of stable bilayer formation was experimentally determined to be 3/1 < ΦSPAN 80 < 15/1, and we suggest general stability criteria for bilayer formation. This technique and the suggested stability criteria can be potentially helpful to many model membrane-based researches in life sciences, physical sciences and biomedical engineering fields. PMID:27982049

  4. Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery Pilot Project, Canada: Implications for Detection of Wellbore Leakage

    PubMed Central

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-01-01

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

  5. Microseismic monitoring of CO2 injection at the Penn West Enhanced Oil Recovery pilot project, Canada: implications for detection of wellbore leakage.

    PubMed

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-09-02

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.

  6. Enhanced Product Stability in the Hammerhead Ribozyme†

    PubMed Central

    Shepotinovskaya, Irina; Uhlenbeck, Olke C.

    2010-01-01

    The rate of dissociation of P1, the 5′ product of hammerhead cleavage, is 100–300-fold slower in full-length hammerheads than in hammerheads that either lack or have disrupting mutations in the loop-loop tertiary interaction. The added stability requires the presence of residue 17 at the 3′ terminus of P1 but not the 2′, 3′ terminal phosphate. Since residue 17 is buried within the catalytic core of the hammerhead in the x-ray structure, we propose that the enhanced P1 stability is the result of the cooperative folding of the hammerhead around this residue. However, since the P1 is fully stabilized above 2.5 mM MgCl2 while hammerhead activity continues to increase with increasing MgCl2, it is clear that the hammerhead structure in the transition state must differ from that of the product complex. The product stabilization assay is used to test our earlier proposal that different tertiary interactions modulate the cleavage rate by differentially stabilizing the core. PMID:20423112

  7. Optimal wellbore planning for deviated drilling

    SciTech Connect

    Wu, H.C.; Kuehn, J.L.; Ziaja, M.B.; Patten, W.N.

    1994-12-31

    The paper describes a rigorous and systematic analytical planning procedure that produces an optimal trajectory for a drilled wellbore in R{sup 3}. The investigation assumes that the `steering` is accomplished by changing the angular orientation of the drill bit in the wellbore. The steering angle change at any point is assumed to be bounded. (This reflects the limited bending that can be induced in the drill string when in the wellbore). A system of nonlinear differential equations is first posed to describe the path parameterized wellbore trajectory. The work assumes that the objective of planning is to discover a path of lest length that connects a given kickoff point in the vertical wellbore to a specified pay zone location. The problem is treated using the calculus of variations. The optimal control policy is determined by solving a system of coupled first order necessary conditions, and Pontryagin`s Minimum Principle. Because the solution is non-unique, then all feasible arcs are identified. The minimizing trajectory is shown to consist of an assembly of optimal subarcs. The continuity requirements at the connection between subarcs is established using transversality conditions. The analytical treatment is followed by a numerical case study. This paper demonstrates a rigorous method for wellbore planning that can be implemented in a straightforward manner. Unlike ad hoc methods, the procedure produces an optimal trajectory that requires (as a general rule) no more than two course corrections (alterations of a fixed bent sub) after kickoff to reach any point (with an specificized orientation). The technique produces a smooth trajectory free of doglegs.

  8. Factors Controlling Wellbore Imaging of Fractures

    NASA Astrophysics Data System (ADS)

    Al-Fahmi, M. M.; Cartwright, J. A.

    2015-12-01

    There are many scientific and engineering methods in petroleum industry for collecting data about small fractures in subsurface. The acquired data is predominantly indirect, and constrained by the bounds of technology and the subtle nature of small fractures. Among the various data types, cores and wellbore images reliably provide the data to observe small fractures, and help characterize important fracture properties such as density, geometry and aperture. There is, however, a major uncertainty about how thorough is the illustration of the small fractures in the wellbore electrical images which are widely used instead of cutting core for practical and economical grounds. We present novel results to help with understanding the potential and limits of wellbore electrical imagers to detect small fractures. We compare and discuss observations from high-quality microresistivity images and their equivalent core samples that are obtained from sub-horizontal wells drilled into carbonate hydrocarbon reservoirs in eastern Arabia. We observed that the wellbore images give limited and inconsistent fracture sampling. The reduction in fracture sampling is related to the fracture nature that defies the imager-resolution capacity. We propose that the imaging capacity is constrained by: 1) degree of fracture roughness, 2) contrast between resistivity and conductivity of the geologic features, 3) effective stress action that is increasing and decreasing fracture aperture, and 4) fracture intake of drilling fluids under a variable fluid pressure balancing between wellbore and reservoir. The wellbore imaging outcomes influence fracture studies, particularly the areas of measuring static and dynamic properties of reservoir fractures and estimating trends and magnitudes of in situ stress.

  9. Enhanced stabilization of collagen by furfural.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications.

  10. Ceramic membranes with enhanced thermal stability

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin; Bischoff, Brian L.

    1993-01-01

    A method of creating a ceramic membrane with enhanced thermal stability is disclosed. The method involves combining quantities of a first metal alkoxide with a second metal, the quantities selected to give a preselected metal ratio in the resultant membrane. A limited amount of water and acid is added to the combination and stirred until a colloidal suspension is formed. The colloid is dried to a gel, and the gel is fired at a temperature greater than approximately 400.degree. C. The porosity and surface area of ceramic membranes formed by this method are not adversely affected by this high temperature firing.

  11. Proceedings of the wellbore sampling workshop

    SciTech Connect

    Traeger, R.K.; Harding, B.W.

    1987-11-01

    Representatives from academia, industry and research laboratories participated in an intensive two-day review to identify major technological limitations in obtaining solid and fluid samples from wellbores. Top priorities identified for further development include: coring of hard and unconsolidated materials; flow through fluid samplers with borehole measurements T, P and pH; and nonintrusive interrogation of pressure cores.

  12. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  13. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  14. Superamphiphobic cotton fabrics with enhanced stability

    NASA Astrophysics Data System (ADS)

    Xu, Bi; Ding, Yinyan; Qu, Shaobo; Cai, Zaisheng

    2015-11-01

    Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H2SO4. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  15. Photovoltaic panel having enhanced conversion efficiency stability

    SciTech Connect

    Cannella, V. D.

    1985-10-01

    A photovoltaic panel for converting light into electrical energy has enhanced energy conversion efficiency stability. The panel includes a photovoltaic device having an active region formed from a semiconductor material which exhibits an energy conversion efficiency stability directly related to the operating temperature of the device. The panel also includes means for maintaining the operating temperature of the device upon exposure to light at an elevated temperature above the ambient temperature external to the device. The active region semiconductor material is preferably an amorphous semiconductor alloy such as, for example, an amorphous silicon alloy. The operating temperature elevating means can include a thermal insulating material such as glass wool, styrofoam, or cork applied to the back side of the device to minimize heat conduction from the device. The panel can also include an enclosure for enclosing the device having a transparent cover overlying the device to seal the enclosure and provide a still air space adjacent the device. The panel is thereby arranged to maintain the operating temperature of the device at a temperature which is from about twenty degrees Centigrade to about one hundred and fifty degrees Centigrade above the ambient temperature external to the device.

  16. The effect of wellbore curvature on tubular buckling and lockup

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1994-12-31

    This paper describes sinusoidal and helical buckling of tubulars in curved wellbores (such as the build section of horizontal wells) and the effect on `lockup` of tubulars when drilling horizontal or extended-reach wells. New buckling load equations are derived to properly predict sinusoidal and helical buckling of tubulars in such wellbores. The results show that the buckling loads to ultimate sinusoidal and helical buckling of tubulars in curved wellbores are usually much larger than those in straight wellbores. This is because the curved wellbore tends to hold the axially compressed tubular against the outer-curve side of the wellbore. It is difficult to buckle a tubular into a sinusoidal or helical shape in curved wellbores, unless a very high axial compressive load is applied. The risk of tubular lockup when chilling horizontal or extended-reach wells is therefore reduced, because there is likely to be very little, if any, tubular buckling in the curved wellbore. The buckling loads derived in this paper also agree with those in straight wellbores when wellbore curvature approaches zero. Small scale laboratory experiments confirmed the theoretically derived buckling loads.

  17. Geomechanical Modeling to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Gomez, S. P.; Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Taha, M. R.; Stormont, J. C.

    2013-12-01

    A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. For the DOE-NETL project 'Wellbore Seal Repair Using Nanocomposite Materials,' we are especially interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Building on existing thermo-hydro-mechanical (THM) finite element modeling of wellbore casings subject to significant tensile and shear loads, we advance a conceptual and numerical methodology to assess responses of annulus cement and casing. Bench-scale models complement bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. Field scale models use the stratigraphy from a pilot CO2 injection operation to estimate the necessary mechanical properties needed for a successful repair material. We report on approaches used for adapting existing wellbore models and share preliminary results of field scale models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6241A.

  18. A study of horizontal-wellbore failure

    SciTech Connect

    Hsiao, C. )

    1988-11-01

    A theoretical model of horizontal-wellbore failure has been developed based on maximum-normal-stress theory (for tensile fracturing) and Drucker-Prager failure theory (for compressive failure) under openhole conditions. This model may be used to help determine the permissible borehole operating-pressure range, providing a convenient scheme for selecting borehole pressure to minimize the risk of borehole failure during drilling and production.

  19. A multi-feedzone wellbore simulator

    SciTech Connect

    Bjornsson, G.; Bodvarsson, G.S.

    1987-06-01

    A multi-feedzone wellbore simulator has been developed. This computer code is quite general as it enables one to compute downhole conditions in wells with an arbitrary number of feedzones during discharge or injection. The simulator is applied to flowing pressure and temperature surveys from various wells in Mexico, Iceland and Kenya. It is demonstrated that such a model can be used to estimate flow rates and enthalpies of individual feedzones.

  20. Isomers and Enhanced Stability of Superheavy Elements

    NASA Astrophysics Data System (ADS)

    Kondev, Filip; Anl, Lbnl, Anu, Csnsm, Llnl, Usna, U. Of Edinburgh, U. Of Jyväskylä, U. Of Massachusetts, Lowell Collaboration

    2014-09-01

    There has been continuing activity addressing the complex question of whether excited isomeric states would lead to enhanced stability of superheavy nuclei, given changes in the fission barriers, α-decay probabilities and the effects of nuclear structure (such as K-hindrance). Recently, we have carried out new studies of the 254Rf isotope using the 50Ti + 206Pb reaction at Argonne National Laboratory and Lawrence Berkeley National Laboratory. A digital data acquisition system was deployed in both experiments, which allowed the identification of implant and decay events that were separated by time as short as hundreds of nanoseconds. Two isomeric states were discovered in 254Rf with half-lives of ~4 μs and ~300 μs, the latter being an order of magnitude longer lived than the ground state. In addition, K-isomers in 244Cm and 246Cm were also studied following β- decays of 244Am (Kπ = 6+) and 246Am (Kπ = 7-) mass-separated sources, respectively. The emphasis was on elucidating details of the level schemes, which allowed reliable values for the strength of the K-forbidden transitions to be determined and compared with systematics in other regions of the nuclear chart. There has been continuing activity addressing the complex question of whether excited isomeric states would lead to enhanced stability of superheavy nuclei, given changes in the fission barriers, α-decay probabilities and the effects of nuclear structure (such as K-hindrance). Recently, we have carried out new studies of the 254Rf isotope using the 50Ti + 206Pb reaction at Argonne National Laboratory and Lawrence Berkeley National Laboratory. A digital data acquisition system was deployed in both experiments, which allowed the identification of implant and decay events that were separated by time as short as hundreds of nanoseconds. Two isomeric states were discovered in 254Rf with half-lives of ~4 μs and ~300 μs, the latter being an order of magnitude longer lived than the ground state. In

  1. Method of repairing a wellbore liner for sand control

    SciTech Connect

    Dees, J.M.

    1992-10-13

    This patent describes a method of repairing a damaged wellbore liner for controlling sand and other fine materials. It comprises: positioning a quantity of fluid resin material in alignment with the portion of the wellbore liner to be repaired; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the damaged area of the wellbore liner; and subsequently polymerizing the resin material to form a consolidated, porous permeable matrix that allows the flow of production fluid into the well while preventing the flow of sand, or other fine materials into the well through the previously damaged area of the wellbore liner.

  2. Passive Endwall Treatments for Enhancing Stability

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2007-01-01

    These lecture notes were presented at the von Karman Institutes lecture series on Advances in Axial Compressor Aerodynamics, May 2006. They provide a fairly extensive overview of what's been learned from numerous investigations of various passive casing endwall technologies that have been proposed for alleviating the stall limiting physics associated with the compressor endwall flow field. The lecture notes are organized to give an appreciation for the inventiveness and understanding of the earliest compressor technologists and to provide a coherent thread of understanding that has arisen out of the early investigations. As such the lecture notes begin with a historical overview of casing treatments from their infancy through the earliest proposed concepts involving blowing, suction and flow recirculation. A summary of lessons learned from these early investigations is provided at the end of this section. The lecture notes then provide a somewhat more in-depth overview of recent advancements in the development of passive casing treatments from the late 1990's through 2006, including advancements in understanding the flow mechanism of circumferential groove casing treatments, and the development of discrete tip injection and self-recirculating casing treatments. At the conclusion of the lecture notes a final summary of lessons learned throughout the history of the development of passive casing treatments is provided. Finally, a list of future needs is given. It is hoped that these lecture notes will be a useful reference for future research endeavors to improve our understanding of the fluid physics of passive casing treatments and how they act to enhance compressor stability, and that they will perhaps provide a springboard for future research activities in this area of interest

  3. A multi-feedzone geothermal wellbore simulator

    SciTech Connect

    Bjornsson, G.

    1987-05-01

    The main objective of this work is to develop a multiple feedzone wellbore model for single- or two-phase flow in vertical wells. It has been demonstrated in various fields (e.g., oil and gas and geothermal) that multiple feedzones with different pressure potentials can significantly effect the well performance in the long run. Very little work in this subject has been done to date, but the importance of the subject is becoming more and more evident. 55 refs., 33 figs., 4 tabs.

  4. Buckling and lockup of tubulars in inclined wellbores

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1994-12-31

    This paper describes sinusoidal and helical buckling of tubulars in inclined wellbores and the ``lockup`` of tubulars due to buckling. The results show that tubular buckling starts from the tubular bottom in low-inclination wellbores, where axial compressive load is largest due to tubular weight. In high inclination wellbores it may start from the top portion of the tubular, where axial compressive load is largest due to frictional drag. This clarifies the confusion about whether or not tubulars buckle all at once, in the entire inclined wellbore. New sinusoidal and helical buckling load equations are presented to give better tubular buckling prediction in inclined wellbores (0--90 degrees). They show that the lower the wellbore inclination angle, the smaller the axial compressive load to initiate tubular buckling. But a certain non-zero axial compressive load is still needed to buckle the tubulars in vertical wellbores. When tubulars buckle helically, a large wall contact force will be generated. The `slack-off` weight at the surface will not be fully transmitted to the bottom of the tubulars due to the large resultant frictional drag. The ``lockup`` of tubulars, where the bottom load (bit weight) cannot be increased by slacking-off weight at the surface, usually is approached when a large portion of the tubular buckles helically in the wellbore.

  5. Physical stability enhancement of theophylline via cocrystallization.

    PubMed

    Trask, Andrew V; Motherwell, W D Sam; Jones, William

    2006-08-31

    The crystal form adopted by the respiratory drug theophylline was modified using a crystal engineering strategy in order to search for a solid material with improved physical stability. Cocrystals, also referred to as crystalline molecular complexes, were prepared with theophylline and one of several dicarboxylic acids. Four cocrystals of theophylline are reported, one each with oxalic, malonic, maleic and glutaric acids. Crystal structures were obtained for each cocrystal material, allowing an examination of the hydrogen bonding and crystal packing features. The cocrystal design scheme was partly based upon a series of recently reported cocrystals of the molecular analogue, caffeine, and comparisons in packing features are drawn between the two cocrystal series. The theophylline cocrystals were subjected to relative humidity challenges in order to assess their stability in relation to crystalline theophylline anhydrate and the equivalent caffeine cocrystals. None of the cocrystals in this study converted into a hydrated cocrystal upon storage at high relative humidity. Furthermore, the theophylline:oxalic acid cocrystal demonstrated superior humidity stability to theophylline anhydrate under the conditions examined, while the other cocrystals appeared to offer comparable stability to that of theophylline anhydrate. The results demonstrate the feasibility of pharmaceutical cocrystal design based upon the crystallization preferences of a molecular analogue, and furthermore show that avoidance of hydrate formation and improvement in physical stability is possible via pharmaceutical cocrystallization.

  6. Analysis of Pore Pressure and Stress Distribution around a Wellbore Drilled in Chemically Active Elastoplastic Formations

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Rahman, S. S.

    2011-09-01

    Drilling in low-permeable reactive shale formations with water-based drilling mud presents significant challenges, particularly in high-pressure and high-temperature environments. In previous studies, several models were proposed to describe the thermodynamic behaviour of shale. Most shale formations under high pressure are expected to undergo plastic deformation. An innovative algorithm including work hardening is proposed in the framework of thermo-chemo-poroelasticity to investigate the effect of plasticity on stresses around the wellbore. For this purpose a finite-element model of coupled thermo-chemo-poro-elastoplasticity is developed. The governing equations are based on the concept of thermodynamics of irreversible processes in discontinuous systems. In order to solve the plastic problem, a single-step backward Euler algorithm containing a yield surface-correction scheme is used to integrate the plastic stress-strain relation. An initial stress method is employed to solve the non-linearity of the plastic equation. In addition, super convergent patch recovery is used to accurately evaluate the time-dependent stress tensor from nodal displacement. The results of this study reveal that thermal and chemical osmosis can significantly affect the fluid flow in low-permeable shale formations. When the salinity of drilling mud is higher than that of pore fluid, fluid is pulled out of the formation by chemical osmotic back flow. Similar results are observed when the temperature of drilling mud is lower than that of the formation fluid. It is found that linear elastic approaches to wellbore stability analysis appear to overestimate the tangential stress around the wellbore and produce more conservative stresses compared to the results of field observation. Therefore, the drilling mud properties obtained from the elastoplastic wellbore stability in shales provide a safer mud weight window and reduce drilling cost.

  7. Buckling and lockup of tubulars in inclined wellbores

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1995-09-01

    This paper studies sinusoidal and helical buckling of tubulars in inclined wellbores and the ``lockup`` of tubulars due to buckling. The results show that tubular buckling starts from the tubular bottom in low-inclination wellbores, where the axial compressive load is largest due to tubular weight. In high-inclination wellbores it may start from the top portion of the tubular, where the axial compressive load is largest due to frictional drag. This clarifies the confusion on whether or not the tubular buckles at once on it entire length in inclined wellbores. New sinusoidal and helical buckling load equations are presented to better predict tubular buckling in inclined wellbores (0--90 deg). The lower the wellbore inclination angle, the smaller the axial compressive load required to initiate tubular buckling. However, a certain nonzero axial compressive load is still needed to buckle the tubulars in vertical wellbores. When tubulars buckle helically, a large wall contact force will be generated, and the ``slack-off`` weight at the surface will not be fully transmitted to the tubular bottom due to large resultant frictional drag. The ``lockup`` of tubulars may even occur, where the tubular bottom load cannot be increased by slacking-off weight at the surface.

  8. Geomechanics of fracture caging in wellbores

    NASA Astrophysics Data System (ADS)

    Weijermars, Ruud; Zhang, Xi; Schultz-Ela, Dan

    2013-06-01

    This study highlights the occurrence of so-called `fracture cages' around underbalanced wellbores, where fractures cannot propagate outwards due to unfavourable principal stress orientations. The existence of such cages is demonstrated here by independent analytical and numerical methods. We explain the fracture caging mechanism and pinpoint the physical parameters and conditions for its control. This new insight has great practical relevance for the effectiveness and safety of drilling operations in general, and hydraulic fracturing in particular. Fracture caging runaway poses a hazard for drilling operations in overpressured formations. Recognition of the fracture caging mechanism also opens up new opportunities for controlled engineering of its effects by the manipulation of the Frac number in wells in order to bring more precision in the fracking process of tight formations.

  9. Enhancing protein stability with extended disulfide bonds

    DOE PAGES

    Liu, Tao; Wang, Yan; Luo, Xiaozhou; ...

    2016-05-09

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. In this paper, we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a librarymore » of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ~9 °C was identified. Finally, this result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.« less

  10. Advanced wellbore thermal simulator GEOTEMP2 research report

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  11. Chemical effect on wellbore instability of Nahr Umr Shale.

    PubMed

    Yu, Baohua; Yan, Chuanliang; Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.

  12. Chemical Effect on Wellbore Instability of Nahr Umr Shale

    PubMed Central

    Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391

  13. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  14. Advanced wellbore thermal simulator: GEOTEMP2 user manual

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    GEOTEMP2 is a wellbore thermal simulator designed for geothermal well drilling and production problems. GEOTEMP2 includes the following features: fully transient heat conduction, wellbore fluid flow options, well completion options, and drilling-production histories. The data input format is given, along with input examples and comments on special features of the input. Ten examples that illustrate all of the flowing options and input options in GEOTEMP2 are included.

  15. Optimized Design and Use of Induced Complex Fractures in Horizontal Wellbores of Tight Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Zeng, F. H.; Guo, J. C.

    2016-04-01

    Multistage hydraulic fracturing is being increasing use in the establishment of horizontal wells in tight gas reservoirs. Connecting hydraulic fractures to natural and stress-induced fractures can further improve well productivity. This paper investigates the fracture treatment design issues involved in the establishment of horizontal wellbores, including the effects of geologic heterogeneity, perforation parameters, fracturing patterns, and construction parameters on stress anisotropy during hydraulic fracturing and on natural fractures during hydraulic fracture propagation. The extent of stress reversal and reorientation was calculated for fractures induced by the creation of one or more propped fractures. The effects of stress on alternate and sequential fracturing horizontal well and on the reservoir's mechanical properties, including the spatial extent of stress reorientation caused by the opening of fractures, were assessed and quantified. Alternate sequencing of transverse fractures was found to be an effective means of enhancing natural fracture stimulation by allowing fractures to undergo less stress contrast during propagation. The goal of this paper was to present a new approach to design that optimizes fracturing in a horizontal wellbore from the perspectives of both rock mechanics and fluid production. The new design is a modified version of alternate fracturing, where the fracture-initiation sequence was controlled by perforation parameters with a staggered pattern within a horizontal wellbore. Results demonstrated that the modified alternate fracturing performed better than original sequence fracturing and that this was because it increased the contact area and promoted more gas production in completed wells.

  16. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  17. Experimental and Computational Studies of Coupled Geomechanical and Hydrologic Processes in Wellbore Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.

    2013-12-01

    cement, the cement-rock interface, caprock, and reservoir rock. We used a model that is 1 m in radius, and extends 5 m along the wellbore. The model consisted of a lower storage aquifer, a caprock and an upper aquifer that received leaking fluids. We coupled flow and geomechanics using a shear-failure model that represents shear-induced damage and is similar to a Mohr-Coulomb slip mechanism. In this model, damage occurs for any excess shear stress with permeability enhancement a function of stress with a maximum magnitude set by the user. Stresses were induced by application of an elevated constant pressure within the injection reservoir representing a far-field injection process. The initial permeability of the cement was 1 mD and stress-enhanced permeability was limited to an increase by a factor of 10-100. The simulations show that shear-failure modes lead to enhanced permeability of the wellbore system. Continuing work will examine sensitivity of the results to mechanical properties and initial permeability distributions, the impact of relative permeability models, and the development of permeability-stress models including an aperture-opening tensile-failure model.

  18. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements

    USGS Publications Warehouse

    Clemo, T.; Barrash, W.; Reboulet, E.C.; Johnson, T.C.; Leven, C.

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. ?? 2009 National Ground Water Association.

  19. Thermal analysis of pseudo-steady circulating wellbores

    SciTech Connect

    Cline, D.D.

    1981-03-01

    A mathematical model for the fluid temperature distribution inside a wellbore undergoing circulation is developed. The formulation assumes that the heat transfer processes between the formation and the circulating fluid in the wellbore occur in a pseudo-steady manner. A closed form solution to the counterflow energy equations is developed in a manner which allows for arbitrary temperature distributions in the formation. Results are presented for both linear as well as bilinear formation temperatures. It is concluded that the outlet fluid temperature is a nonunique function of the geothermal gradient. In addition, for a specified wellbore configuration, an optimum set of circulation conditions may be identified for which the outlet fluid temperature is a maximum for a given inlet fluid temperature.

  20. Controls of wellbore flow regimes on pump effluent composition.

    PubMed

    Martin-Hayden, James M; Plummer, Mitchell; Britt, Sanford L

    2014-01-01

    Where well water and formation water are compositionally different or heterogeneous, pump effluent composition will vary due to partial mixing and transport induced by pumping. Investigating influences of purging and sampling methodology on composition variability requires quantification of wellbore flow regimes and mixing. As a basis for this quantification, analytical models simulating Poiseuille flow were developed to calculate flow paths and travel times. Finite element modeling was used to incorporate influences of mixing. Parabolic velocity distributions within the screened interval accelerate with cumulative inflow approaching the pump intake while an annulus of inflowing formation water contracts uniformly to displace an axial cylinder of pre-pumping well water as pumping proceeds. Increased dispersive mixing forms a more diffuse formation water annulus and the contribution of formation water to pump effluent increases more rapidly. Models incorporating viscous flow and diffusion scale mixing show that initially pump effluent is predominantly pre-pumping well water and compositions vary most rapidly. After two screen volumes of pumping, 94% of pump effluent is inflowing formation water. Where the composition of formation water and pre-pumping well water are likely to be similar, pump effluent compositions will not vary significantly and may be collected during early purging or with passive sampling. However, where these compositions are expected to be considerably different or heterogeneous, compositions would be most variable during early pumping, that is, when samples are collected during low-flow sampling. Purging of two screen volumes would be required to stabilize the content and collect a sample consisting of 94% formation water.

  1. Controls of Wellbore Flow Regimes on Pump Effluent Composition

    SciTech Connect

    James Martin-Hayden; plummer; Sanford Britt

    2014-01-01

    Where well water and formation water are compositionally different or heterogeneous, pump effluent composition will vary due to partial mixing and transport induced by pumping. Investigating influences of purging and sampling methodology on composition variability requires quantification of wellbore flow regimes and mixing. As a basis for this quantification, analytical models simulating Poiseuille flow were developed to calculate flow paths and travel times. Finite element modeling was used to incorporate influences of mixing. Parabolic velocity distributions within the screened interval accelerate with cumulative inflow approaching the pump intake while an annulus of inflowing formation water contracts uniformly to displace an axial cylinder of pre-pumping well water as pumping proceeds. Increased dispersive mixing forms a more diffuse formation water annulus and the contribution of formation water to pump effluent increases more rapidly. Models incorporating viscous flow and diffusion scale mixing show that initially pump effluent is predominantly pre-pumping well water and compositions vary most rapidly. After two screen volumes of pumping, 94% of pump effluent is inflowing formation water. Where the composition of formation water and pre-pumping well water are likely to be similar, pump effluent compositions will not vary significantly and may be collected during early purging or with passive sampling. However, where these compositions are expected to be considerably different or heterogeneous, compositions would be most variable during early pumping, that is, when samples are collected during low-flow sampling. Purging of two screen volumes would be required to stabilize the content and collect a sample consisting of 94% formation water.

  2. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  3. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    PubMed Central

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-01-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864

  4. Polarization-enhanced absorption spectroscopy for laser stabilization.

    PubMed

    Kunz, Paul D; Heavner, Thomas P; Jefferts, Steven R

    2013-11-20

    We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

  5. Enhancing stability of industrial turbines using adjustable partial arc bearings

    NASA Astrophysics Data System (ADS)

    Chasalevris, Athanasios; Dohnal, Fadi

    2016-09-01

    The paper presents the principal of operation, the simulation and the characteristics of two partial-arc journal bearings of variable geometry and adjustable/controllable stiffness and damping properties. The proposed journals are supposed to consist of a scheme that enables the periodical variation of bearing properties. Recent achievements of suppressing rotor vibrations using plain circular journal bearings of variable geometry motivate the further extension of the principle to bearings of applicable geometry for industrial turbines. The paper describes the application of a partial-arc journal bearing to enhance stability of high speed industrial turbines. The proposed partial-arc bearings with adjustable/controllable properties enhance stability and they introduce stable margins in speeds much higher than the 1st critical.

  6. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  7. Stability of focal adhesion enhanced by its inner force fluctuation

    NASA Astrophysics Data System (ADS)

    Mao, Zhi-Xiu; Chen, Xiao-Feng; Chen, Bin

    2015-08-01

    Cells actively sense and respond to mechanical signals from the extracellular matrix through focal adhesions. By representing a single focal adhesion as a cluster of slip bonds, it has been demonstrated that the cluster often became unstable under fluctuated forces. However, an unusual case was also reported, where the stability of the cluster might be substantially enhanced by a fluctuated force with a relatively low fluctuation frequency and high fluctuation amplitude. Such an observation cannot be explained by the conventional fracture theory of fatigue. Here, we intensively investigate this intriguing observation by carrying out systematic parametric studies. Our intensive simulation results indicate that stability enhancement of this kind is in fact quite robust, which can be affected by the stochastic features of a single bond and the profile of the fluctuated forces such as the average value of bond force. We then suggest that the fluctuation of traction force within a focal adhesion might enhance its stability in a certain way. Project supported by the National Natural Science Foundation of China (Grant No.*11372279).

  8. Dispersive Elements for Enhanced Laser Gyroscopy and Cavity Stabilization

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Diels, J. C.

    2007-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. We find an enhancement in the sensitivity of a laser gyroscope to rotation for normal dispersion, while anomalous dispersion can be used to self-stabilize an optical cavity. Our results indicate that atomic media, even coherent superpositions in multilevel atoms, are of limited use for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice-versa. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together. We find that for over-coupled resonators, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Under-coupled resonators can be used to stabilize the frequency of a laser cavity, but result in a concomitant increase in amplitude fluctuations. As a more ideal solution we propose the use of a variety of coupled-resonator-induced transparency that is accompanied by anomalous dispersion.

  9. Advanced anaerobic processes to enhance waste activated sludge stabilization.

    PubMed

    Braguglia, C M; Carozza, N; Gagliano, M C; Gallipoli, A; Gianico, A; Rossetti, S; Suschka, J; Tomei, M C; Mininni, G

    2014-01-01

    The requirement for enhanced stabilization processes to obtain a more stable, pathogen-free sludge for agricultural use is an increasing challenge to comply with in the waste hierarchy. With this in mind, the Routes European project ('Novel processing routes for effective sewage sludge management') is addressed to assess innovative solutions with the aim of maximizing sludge quality and biological stability. In order to increase anaerobic stabilization performances, the sequential anerobic/aerobic process and the thermophilic digestion process, with or without integration of the thermal hydrolysis pre-treatment, were investigated as regards the effect on sludge stabilization, dewaterability and digestion performances. Thermal pre-treatment improved anaerobic digestion in terms of volatile solids reduction and biogas production, but digestate dewaterability worsened. Fluorescence in situ hybridization (FISH) quantification showed an increase of methanogens consistent with the increase of biogas produced. The aerobic post-treatment after mesophilic digestion had a beneficial effect on dewaterability and stability of the digested sludge even if was with a reduction of the potential energy recovery.

  10. Enhanced structural stability of nanoporous zirconia under irradiation of He

    SciTech Connect

    Yang, Tengfei; Huang, Xuejun; Wang, Chenxu; Zhang, Yanwen; Xue, Jianming; Yan, Sha; Wang, Yuguang

    2012-01-01

    This work reports a greatly enhanced tolerance for He irradiation-induced swelling in nanocrystalline zirconia film with interconnected nanoporous structure (hereinafter referred as to NC-C). Compared to bulk yttria-stabilized zirconia (YSZ) and another nanocrystalline zirconia film only with discrete nano voids (hereinafter referred as to NC-V), the NC-C film reveals good tolerance for irradiation of high-fluence He. No appreciable surface blistering can be found even at the highest fluence of 6 1017 cm2 in NCC film. From TEM analysis of as-irradiated samples, the enhanced tolerance for volume swelling in NCC film is attributed to the enhanced diffusion mechanism of deposited He via widely distributed nano channels. Furthermore, the growth of grain size is quite small for both nanocrystalline zirconia films after irradiation, which is ascribed to the decreasing of area of grain boundary due to loose structure and low energy of primary knock-on atoms for He ions.

  11. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  12. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  13. Controlling the pressure within an annular volume of a wellbore

    SciTech Connect

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  14. Controlling the pressure within an annular volume of a wellbore

    SciTech Connect

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  15. Method of placing magnetic markers on collarless cased wellbores

    SciTech Connect

    Wilson, J.G.; Crawford, G.J.

    1986-02-25

    This patent describes a method of marking a wellbore casing in a manner such that the mark can be subsequently detected by a casing collar locator comprising placing a horseshoe-shaped electromagnet adjacent to the casing and energizing the electromagnet producing a magnetic marker at a location between the poles of the electromagnet.

  16. Wellbore Models GWELL, GWNACL, and HOLA User's Guide

    SciTech Connect

    Aunzo, Z.P.; Bjornsson, G.; Bodvarsson, G.S.

    1991-10-01

    This report describes three multi-component, multi-feedzone geothermal wellbore simulators developed. These simulators reproduce the measured flowing temperature and pressure profiles in flowing wells and determine the relative contribution, fluid properties (e.g. enthalpy, temperature) and fluid composition (e.g. CO{sub 2}, NaCl) of each feedzone for a given discharge condition. The three related wellbore simulators that will be discussed here are HOLA, GWELL and GWNACL. HOLA is a multi-feedzone geothermal wellbore simulator for pure water, modified after the wellbore simulator developed by Bjornsson, 1987 and can now handle deviated wells. The other two simulators GWELL (see also Aunzo, 1990) and GWNACL are modified versions of HOLA that can handle H{sub 2}O-CO{sub 2} and H{sub 2}O-NaCl systems, respectively. These simulators can handle both single and two-phase flows in vertical and inclined pipes and calculate the flowing temperature and pressure profiles in the well. The simulators solve numerically the differential equations that describe the steady-state energy, mass and momentum flow in a pipe. The codes allow for multiple feedzones, variable grid spacing and well radius. These codes were developed using FORTRAN language on the UNIX system.

  17. Wellbore models GWELL, GWNACL, and HOLA: User's guide

    SciTech Connect

    Aunzo, Z.P. . Geothermal Div.); Bjornsson, G. ); Bodvarsson, G.S. )

    1991-10-01

    This report describes three multi-component, multi-feedzone geothermal wellbore simulators developed. These simulators reproduce the measured flowing temperature and pressure profiles in flowing wells and determine the relative contribution, fluid properties (e.g., enthalpy, temperature) and fluid composition (e.g. CO{sub 2}, NaCl) of each feedzone for a given discharge condition. The three related wellbore simulators that will be discussed here are HOLA, GWELL and GWNACL. HOLA is a multi-feedzone geothermal wellbore simulator for pure water, modified after the wellbore simulator developed by Bjornsson, 1987 and can now handle deviated wells. The other two simulators GWELL and GWNACL are modified versions of HOLO that can handle H{sub 2}O CO{sub 2} and H{sub 2}O-NaCl systems, respectively. These simulators can handle both single and two-phase flows in vertical and inclined pipes and calculate the flowing temperature and pressure profiles in the well. The simulators solve numerically the differential equations that describe the steady-state energy, mass and momentum flow in a pipe. The codes allow for multiple feedzones, variable grid spacing and well radius. Theses codes were developed using FORTRAN language on the UNIX system.

  18. Modeling CaCO{sub 3} deposition in geothermal wellbores

    SciTech Connect

    Michels, Donald E.

    1992-01-01

    The capacity of a geothermal liquid to carry calcium varies mainly with the concentrations of CO{sub 2} and HCO{sub 3}, temperature and ionic strength, of which the CO{sub 2} concentration (pressure) changes most in the wellbore. Wellbore models that carry accurate computations for CO{sub 2} and other gas pressures might be adapted to compute profile thicknesses of CaCO{sub 3} scale. A general model for carbonate scale deposition in a wellbore must make a simultaneous accounting for pressures of H{sub 2}O, CO{sub 2}, and two or three other gases plus salt effects on those pressures. In addition, the elevation of flash initiation must be accurately identified and combined with profiles of temperature, etc., in the 2-phase zone. Such a model has been developed and its principle features are described here, including calibration of some factors with measured scale deposits. The model provides insight about the scale deposition processes through parametric studies. Tactics and strategies for confronting the effects of CaCO{sub 3} deposition in wells and wellfields can be explored with the model. Modeling of specific wellbores/wellfluids can help quantify risks and benefits concerning scale inhibition, wellfluid monitoring, timing of consequences relating to failure of scale inhibiting apparatus, urgency of remedial actions, and other aspects.

  19. Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs.

    PubMed

    Downing, Amy L; Brown, Bryan L; Leibold, Mathew A

    2014-01-01

    Biodiversity has been shown to increase the temporal stability of community and ecosystem attributes through multiple mechanisms, but these same mechanisms make less consistent predictions about the effects of richness on population stability. The overall effects of biodiversity on population and community stability will therefore depend on the dominant mechanisms that are likely to vary with the nature of biodiversity loss and the degree of environmental variability. We conducted a mesocosm experiment in which we generated a gradient in zooplankton species richness by directly manipulating dominant species and by allowing/preventing immigration from a metacommunity. The mesocosms were maintained under either constant or variable nutrient environments. Population, community, and ecosystem data were collected for five months. We found that zooplankton population and community stability is enhanced in species-rich communities in both constant and variable environments. Species richness increased primarily through the addition of species with low abundance. The communities that were connected to a metacommunity via immigration were the most diverse and the most stable, indicating the importance of both metacommunity dynamics and rare species for stability. We found little evidence for selection effects or overyielding as stabilizing forces. We did find support for asynchronous dynamics and statistical averaging, both of which predict destabilizing effects at the population level. We also found support for weak interactions, which predicts that both populations and communities will become more stable as richness increases. In order to understand the effects of biodiversity loss on stability, we will need to understand when different stabilizing mechanisms tend to operate but also how multiple mechanisms interact.

  20. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min).

  1. Enhanced thermal stability of phosphate capped magnetite nanoparticles

    SciTech Connect

    Muthukumaran, T.; Philip, John

    2014-06-14

    We have studied the effect of phosphate capping on the high temperature thermal stability and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized through a single-step co-precipitation method. The prepared magnetic nanoparticles are characterized using various techniques. When annealed in air, the phosphate capped nanoparticle undergoes a magnetic to non-magnetic phase transition at a temperature of 689 °C as compared to 580 °C in the uncoated nanoparticle of similar size. The observed high temperature phase stability of phosphate capped nanoparticle is attributed to the formation of a phosphocarbonaceous shell over the nanoparticles, which acts as a covalently attached protective layer and improves the thermal stability of the core material by increasing the activation energy. The phosphocarbonaceous shell prevents the intrusion of heat, oxygen, volatiles, and mass into the magnetic core. At higher temperatures, the coalescence of nanoparticles occurs along with the restructuring of the phosphocarbonaceous shell into a vitreous semisolid layer on the nanoparticles, which is confirmed from the small angle X-ray scattering, Fourier transform infra red spectroscopy, and transmission electron microscopy measurements. The probable mechanism for the enhancement of thermal stability of phosphocarbonaceous capped nanoparticles is discussed.

  2. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement

    NASA Astrophysics Data System (ADS)

    Wolterbeek, Timotheus; Hangx, Suzanne; Spiers, Christopher

    2016-04-01

    Geomechanical damage, such as fracturing of wellbore cement, can severely impact well integrity in CO2 storage fields. Chemical reactions between the cement and CO2-bearing fluids may subsequently alter the cement's mechanical properties, either enhancing or inhibiting damage accumulation during ongoing changes in wellbore temperature and stress-state. To evaluate the potential for such effects, we performed triaxial compression tests on Class G Portland cement, conducted at down-hole temperature (80 ° C) and effective confining pressures ranging from 1 to 25 MPa. After deformation, samples displaying failure on localised shear fractures were reacted with CO2-H2O, and then subjected to a second triaxial test to assess changes in mechanical properties. Using results from the first phase of deformation, baseline yield and failure criteria were constructed for virgin cement. These delineate stress conditions where unreacted cement is most prone to dilatational (permeability-enhancing) failure. Once shear-fractures formed, later reaction with CO2 did not produce further geomechanical weakening. Instead, after six weeks of reaction, we observed up to 83% recovery of peak-strength and increased frictional strength (15-40%) in the post-failure regime, due to calcium carbonate precipitation in the fractures. As such, our results suggest more or less complete mechanical healing on timescales of the order of months.

  3. Dramatic pressure-driven enhancement of bulk skyrmion stability

    PubMed Central

    Levatić, I.; Popčević, P.; Šurija, V.; Kruchkov, A.; Berger, H.; Magrez, A.; White, J. S.; Rønnow, H. M.; Živković, I.

    2016-01-01

    The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables control of the skyrmion lattice via electric fields, promising a dissipation-less route towards novel spintronic devices. One of the outstanding fundamental issues is related to the thermodynamic stability of the skyrmion lattice. To date, the skyrmion lattice in bulk materials has been found only in a narrow temperature region just below the order-disorder transition. If this narrow stability is unavoidable, it would severely limit applications. Here we present the discovery that applying just moderate pressure on Cu2OSeO3 substantially increases the absolute size of the skyrmion pocket. This insight demonstrates directly that tuning the electronic structure can lead to a significant enhancement of the skyrmion lattice stability. We interpret the discovery by extending the previously employed Ginzburg-Landau approach and conclude that change in the anisotropy is the main driver for control of the size of the skyrmion pocket. PMID:26892190

  4. Method for enhancing stability in multi-beam microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Yujia; Wang, Yifan; Kuang, Cuifang; Liu, Xu

    2016-10-01

    A method based on close loop control of four degrees of freedom (4DF) is proposed to enhance angular and translational stability of beams in multi-beam microscopy including STED, RESOLFT and CARS, etc. Deviations of multi-beams can be measured and corrected by our module, which is composed of four degrees of freedom position sensitive detectors (4DF PSD) and two actuator mirrors (AM) with motor and piezo servos. An output crosslink matrix obtained by a self-learning process is used to control four actuators to compensate for 4DF independently in beam deviations. We realize a standard deviation within about 2 µm at the entrance pupil plane (a spatial optical path of 180 cm for the whole system) using a compact stabilization system, which is equivalent to around 3 nm at the sample plane under the 100×  objective lens with a focal length of 2 mm, corresponding to an improvement of stability by an order of magnitude. Our method can react fast in real time and compensate for large disturbances caused by air agitation or temperature variation.

  5. Intraspecific functional diversity of common species enhances community stability.

    PubMed

    Wood, Connor M; McKinney, Shawn T; Loftin, Cynthia S

    2017-03-01

    Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among-habitat and within-habitat iFD (i.e., among- and within-plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short-term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red-backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their "primary habitat"). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within-habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within-habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.

  6. Method and composition for cementing in a wellbore

    SciTech Connect

    Carpenter, R.B.; Jones, R.R.

    1990-11-06

    This patent describes a method of cementing in a wellbore penetrating subterranean formations. It comprises: mixing a predetermined quantity of Portland cement containing at least 2 percent by weight of the predetermined quantity of Portland cement of tricalcium aluminate; at least 2 percent by weight of the predetermined quantity of the Portland cement of gypsum; and 0.3--2.0 percent by weight of the predetermined Portland cement of polyvinyl alcohol that is formed by less than 92 percent hydrolysis of the acetate moieties of polyvinyl acetate to polyvinyl alcohol; and sufficient water to form a pumpable cement slurry; and pumping the slurry to a desired location in the wellbore; and allowing the slurry to harden to a solid mass.

  7. A comprehensive mathematical model for estimating oil drainage rate in SAGD process considering wellbore/formation coupling effect

    NASA Astrophysics Data System (ADS)

    Cheng, Linsong; Gu, Hao; Huang, Shijun

    2017-05-01

    The aim of this work is to present a comprehensive mathematical model for estimating oil drainage rate in Steam-assisted gravity drainage (SAGD) process, more importantly, wellbore/formation coupling effect is considered. Firstly, mass and heat transfer in vertical and horizontal wellbores are described briefly. Then, a function of steam chamber height is introduced and the expressions for oil drainage rate in rising and expanding steam chamber stages are derived in detail. Next, a calculation flowchart is provided and an example is given to introduce how to use the proposed method. Finally, after the mathematical model is validated, the effects of wellhead steam injection rate on simulated results are further analyzed. The results indicate that heat injection power per meter reduces gradually along the horizontal wellbore, which affects both steam chamber height and oil drainage rate in the SAGD process. In addition, when production time is the same, the calculated oil drainage rate from the new method is lower than that from Butler's method. Moreover, the paper shows that when wellhead steam injection rate is low enough, the steam chamber is not formed at the horizontal well's toe position and enhancing the wellhead steam injection rate can increase the oil drainage rate.

  8. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  9. Quantifying drag on wellbore casings in moving salt sheets

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  10. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    NASA Astrophysics Data System (ADS)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R.; Gajić, Radoš

    2016-02-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication.

  11. Wellbore-wall compression effects on monitored groundwater levels and qualities.

    PubMed

    Eguchi, S; Sawamoto, M; Shiba, M; Iiyama, I; Hasegawa, S

    2013-01-01

    The effects of wellbore-wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6-m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15-month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore-wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering-derived wellbores. Our results suggest that the wellbore-wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore-wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  12. Hydraulic fracturing model featuring initiation beyond the wellbore wall for directional well in coal bed

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Jia, Dan; Wang, Meng; Liu, Jia; Fu, Chunkai; Yang, Xinliang; Ai, Chi

    2016-08-01

    In developing internal fracture systems in coal beds, the initiation mechanism differs greatly from that of conventional ones and initiations may be produced beyond the wellbore wall. This paper describes the features of the internal structure of coal beds and RFPA2D simulation is used to attest the possible occurrence of initiation beyond the wellbore wall in coal bed hydraulic fracturing. Using the theory of elasticity and fracture mechanics, we analyse the stress distribution in the vicinal coal rock. Then by taking into consideration the effects of the spatial relationship between coal bed cleats and the wellbore, we establish a model for calculating both tensile and shear initiation pressure that occur along cleats beyond the wellbore wall. The simulation in this paper indicates that for shear initiations that happen along coal cleats, the pressure required to initiate fracture for cleats beyond the wellbore wall is evidently lower than that on the wellbore wall, thus it is easier to initiate shear fractures for cleats beyond the wellbore wall. For tensile failure, the pressure required to initiate tensile fracture for cleats beyond the wellbore wall is obviously higher than that for cleats at the wellbore wall, thus it is easier to initiate tensile fractures for cleats at the wellbore wall. On the one hand, this paper has proved the possible occurrence of initiations beyond the wellbore wall and has changed the current assumption that hydraulic fractures can only occur at the wellbore wall. On the other hand, the established theoretical model provides a new approach to calculating the initiation pressure in hydraulic fracturing.

  13. Enhanced leaf nitrogen status stabilizes omnivore population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2017-01-01

    Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g(-1). We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.

  14. Unique logging tool 'sees' into wellbore

    SciTech Connect

    Rambow, F.H.K.

    1985-07-01

    The borehole televiewer, an acoustic imaging device similar to sidescan sonar, was once limited to casing inspection and fracture detection. Recent improvements, including automatic gain control and computer-enhanced imaging, enable the televiewer to function as a high-resolution dipmeter and borehole geometry tool. It can easily differentiate between bedding planes and fractures and is able to detect small features, such as burrowing and vugs. The televiewer discriminates lithology and has been used to observe induced fracture growth during overpressurization. Images, even those made through heavy, oil-based muds and in extremely soft formations, rival core sample photographs for clarity and resolution.

  15. Adaptive forward-inverse modeling of reservoir fluids away from wellbores

    SciTech Connect

    Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G

    1999-07-30

    This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques [Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by

  16. Response surfaces for CO2 leakage from geologic storage along abandoned wellbores

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Carey, J. W.; Pawar, R. J.; Stauffer, P. H.

    2011-12-01

    The storage of carbon dioxide (CO2) in geologic reservoirs that have previously been drilled for oil and gas exploration is under investigation worldwide as an option for reducing the amount of anthropogenic carbon introduced to the atmosphere. Reservoirs that have already been tapped for hydrocarbon production have several benefits over development of new sites: they tend to be geologically well-understood, with existing wellbore data to help further characterize the local geologic framework; are known to be conducive to trapping buoyant or pressurized fluids; may have infrastructure in place; and are likely to be already impacted ecologically as compared to pristine sites. One downside to using depleted hydrocarbon reservoirs is the potential for CO2 leakage along pre-existing wellbores that were either not designed for CO2 sequestration or have been improperly plugged and abandoned. The primary goal of this study is to develop estimates of possible wellbore leakage rates of CO2 from storage reservoirs to the surface and/or into overlaying aquifers, as a function of wellbore properties and the surrounding geologic framework. The Finite Element Heat and Mass transfer code (FEHM) was used to perform Monte Carlo simulations of multiphase flow along wellbores across a wide range of geologic and wellbore parameters. Several wellbore scenarios were studied, including a simple wellbore between the CO2 storage reservoir and the surface; a wellbore intersecting a saline aquifer ("thief zone"); and a wellbore intersecting both a thief zone and a freshwater aquifer. The Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE) software was used to analyze results and produce response surfaces for the estimation of wellbore flow rate as a function of the primary factors that influence leakage. These results will be used to develop abstractions for leakage rates to be incorporated in performance assessments of geologic CO2 storage, which will help

  17. Enhanced photoacoustic stability of gold nanorods by silica matrix confinement.

    PubMed

    Chen, Leng-Chun; Wei, Chen-Wei; Souris, Jeffrey S; Cheng, Shih-Hsun; Chen, Chin-Tu; Yang, Chung-Shi; Li, Pai-Chi; Lo, Leu-Wei

    2010-01-01

    Photoacoustic tomography (PAT) has garnered much attention for its high contrast and excellent spatial resolution of perfused tissues. Gold nanorods (GNRs) have been employed to further enhance the imaging contrast of PAT. However, the photon fluences typically needed for PA wave induction often also result in GNR shape changes that significantly reduce the efficiency of acoustic wave generation. In this work, we propose, synthesize, and evaluate amorphous silica-coated gold nanorods (GNR-Si) in an effort to improve contrast agent stability and ameliorate efficiency loss during photoacoustic (PA) wave induction. TEM and optical absorption spectra measurements of GNR and GNR-Si show that encasing GNRs within amorphous silica provides substantial protection of nanorod conformation from thermal deformation. PA signals generated by GNR-Si demonstrate considerably greater resistance to degradation of signal intensity with repetitive pulsing than do uncoated GNRs, thereby enabling much longer, high-contrast imaging sessions than previously possible. The prolongation of high-contrast imaging, and biocompatibility and easy surface functionalization for targeting ligands afforded by amorphous silica, suggest GNR-Si to be potentially significant for the clinical translation of PAT.

  18. Birefringence and Enhanced Stability in Stable Organic Glasses

    NASA Astrophysics Data System (ADS)

    Liu, Tianyi; Exarhos, Annemarie; Cheng, Kevin; Jia, Tiezheng; Walsh, Patrick; Kikkawa, Jay; Fakhraai, Zahra

    Stable glasses can be prepared by physical vapor depositing organic molecules onto a cold substrate at slow rates. These glasses have many exceptional properties such as high thermal stability, high density, and birefringence. Regardless of the molecular shape or intermolecular interactions, birefringence has been observed in various stable glasses produced at low temperatures (below 80% of the molecule's glass transition temperature, Tg) . Here we prepare stable glasses of an organic molecule, 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene, that possesses a nearly isotropic shape and intrinsic fluorescence. Ellipsometry is used to show that all stable glasses prepared in the temperature range from 73% Tg to 97% Tgshow positive birefringence. Angle- and polarization- dependent photoluminescence measurements show isotropic molecular orientation in these optically birefringent glasses. Furthermore, the values of birefringence are strongly correlated with the enhanced density, implying a general origin of the observed anisotropy in stable glasses. This correlation can elucidate the role of packing in the formation of such high-density glasses. The authors would like to acknowledge Ethan Alguire and Joe Subotnik for simulation. Z.F. acknowledges funding from NSF CAREER (DMR-1350044). P.J.W. acknowledges funding from NSF (CHE-1152488). J.M.K acknowledges funding from NSF (DMR-1206270).

  19. Enhanced Hydrate Nucleation Near the Limit of Stability.

    PubMed

    Jimenez-Angeles, Felipe; Firoozabadi, Abbas

    2015-03-30

    Clathrate hydrates are crystalline structures composed of small guest molecules trapped into cages formed by hydrogen-bonded water molecules. In hydrate nucleation, water and the guest molecules may stay in a metastable fluid mixture for a long period. Metastability is broken if the concentration of the guest is above certain limit. We perform molecular dynamics (MD) simulations of supersaturated water-propane solutions close to the limit of stability. We show that hydrate nucleation can be very fast in a very narrow range of composition at moderate temperatures. Propane density fluctuations near the fluid-fluid demixing are coupled with crystallization producing en- hanced nucleation rates. This is the first report of propane-hydrate nucleation by MD simulations. We observe motifs of the crystalline structure II in line with experiments and new hydrate cages not reported in the literature. Our study relates nucleation to the fluid-fluid spinodal decomposition and demonstration that the enhanced nucleation phenomenon is more general than short range attractive interactions as suggested in nucleation of proteins.

  20. Encapsulation enhancement and stabilization of insulin in cationic liposomes.

    PubMed

    Park, Se-Jin; Choi, Soon Gil; Davaa, Enkhzaya; Park, Jeong-Sook

    2011-08-30

    The purpose of this study was to enhance encapsulation efficiency and sustained-release delivery for parenteral administration of a protein drug. To reduce the administration frequency of protein drugs, it is necessary to develop sustained delivery systems. In this study, protein drug-loaded cationic liposomes were formulated with dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), dioleoyl-3-trimethylammonium-propane (DOTAP), and cholesterol (CH) at a molar ratio of DOPE/DOTAP/CH of 2/1.5/2. Five mol% of distearoylphosphatidyl ethanolamine polyethylene glycol (DSPE-PEG) was added prior to encapsulation of the drug into liposomes. Insulin was chosen as a model protein drug and encapsulation efficiency was evaluated in various liposomes with and without DSPE-PEG. Scanning electron microscopy was used to examine the insulin-loaded cationic liposomes. Structural analysis was performed using spectropolarimetry. Additionally, the stability and cytotoxicity of insulin-loaded cationic liposomes were evaluated. Liposomes coated with DSPE-PEG showed higher insulin encapsulation efficiency than did those without DSPE-PEG, but not significantly. Moreover, among the liposomes coated with DSPE-PEG, those hydrated with 10% sucrose showed higher encapsulation efficiency than did liposomes hydrated in either phosphate-buffered saline or 5% dextrose. In vitro release of insulin was prolonged by cationic liposomes. Our findings suggest that cationic liposomes may be a potential sustained-release delivery system for parenteral administration of protein and peptide drugs to prolong efficacy and improve bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Solar enhanced wastewater treatment in waste stabilization ponds.

    PubMed

    Agunwamba, J C; Utsev, J T; Okonkwo, W I

    2009-05-01

    One of the most popular off-site wastewater treatment plants used in the tropics is the waste stabilization pond (WSP). Although it has several advantages, its use in urban areas is limited because of its large land area requirement. Hence, this research is aimed at investigating if a solar-enhanced WSP (SEWSP) can increase treatment efficiency and consequently reduce the land area requirement. The SEWSPs of varying sizes, made of a metallic tank with inlet and outlet valves and a solar reflector, were constructed to increase the incident sunlight intensity. Wastewater samples collected from the inlet and outlet of the SEWSPs were examined for physio-chemical and biological characteristics for a period of 2 months. The parameters examined were total suspended solids, dissolved oxygen, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), coliform, and Escherichia coli. The efficiencies of the SEWSPs, with respect to these parameters, fluctuated with temperature variation, with the shallowest SEWSP giving the highest treatment efficiency. The research revealed that the cost of treating wastewater using SEWSPs was approximately 2 times lower than the conventional WSP for the same treatment efficiencies.

  2. Wellbore inertial navigation system (WINS) software development and test results

    SciTech Connect

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  3. Mechanical Expansion of Steel Tubing as a Solution to Leaky Wellbores

    PubMed Central

    Radonjic, Mileva; Kupresan, Darko

    2014-01-01

    Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP)1. The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments. PMID:25490436

  4. Geomechanical analyses to investigate wellbore/mine interactions in the Potash Enclave of Southeastern New Mexico.

    SciTech Connect

    Ehgartner, Brian L.; Bean, James E.; Arguello, Jose Guadalupe, Jr.; Stone, Charles Michael

    2010-04-01

    Geomechanical analyses have been performed to investigate potential mine interactions with wellbores that could occur in the Potash Enclave of Southeastern New Mexico. Two basic models were used in the study; (1) a global model that simulates the mechanics associated with mining and subsidence and (2) a wellbore model that examines the resulting interaction impacts on the wellbore casing. The first model is a 2D approximation of a potash mine using a plane strain idealization for mine depths of 304.8 m (1000 ft) and 609.6 m (2000 ft). A 3D wellbore model then considers the impact of bedding plane slippage across single and double cased wells cemented through the Salado formation. The wellbore model establishes allowable slippage to prevent casing yield.

  5. Investigation of wellbore microannulus permeability under stress via experimental wellbore mock-up and finite element modeling

    DOE PAGES

    Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.; ...

    2016-11-16

    This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.

  6. Investigation of wellbore microannulus permeability under stress via experimental wellbore mock-up and finite element modeling

    SciTech Connect

    Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.; Reda Taha, Mahmoud; Stormont, John C.

    2016-11-16

    This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.

  7. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, and provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.

  8. Wellbore pressure differential control for gravel pack screen

    SciTech Connect

    Cornette, H.M.

    1993-08-10

    A method is described for minimizing cross-flow of fluid in a wellbore in an earth formation and fitted with a gravel packing and an auger-type gravel pack screen, comprising the steps of: providing an auger-type gravel pack screen having a generally tubular liner member defining a space therewithin; providing a quantity of wellbore fluid loss control material comprising a graded particulate salt disposed in said space which will provide a substantially impermeable barrier to the flow of fluid out of said space through said liner into said gravel packing and said earth formation; filling at least a portion of said space with said material; installing said screen in said gravel packing; removing said material from said space after installation of said screen in said gravel packing by entraining said material in a carrier fluid while allowing at least some of said material to flow out of said space through said screen to form a filter cake on at least one of said gravel packing and said earth formation to minimize said cross-flow of fluid into said earth formation.

  9. Stress State Analysis in Aspect of Wellbore Drilling Direction

    NASA Astrophysics Data System (ADS)

    Knez, Dariusz

    2014-03-01

    Drilling directional wells challenges designers. Apart from known problems until now they face exact description of stress distribution in near wellbore region issue. Paper presents analysis of stress state taking into account drilling direction. The transposed in-situ stress state relative to the borehole coordinate system (Cartesian borehole coordinate system) and the total stress component at the borehole wall (cylindrical coordinate system) exhibits cyclic behaviour with respect to drilling direction of borehole. It allows to find optimal wellbore path Wiercenie otworów kierunkowych stanowi duże wyzwanie dla projektantów. Poza problemami typowymi obecnie staja oni w obliczu zagadnienia dokładnego opisu rozkładu naprężeń w strefie przyotworowej. Artykuł przedstawia analizę stanu naprężeń w aspekcie kierunku wiercenia. Rozkład naprężeń transponowany do układu odniesienia związanego z otworem wiertniczym (kartezjański układ współrzędnych zgodny z kierunkiem otworu wiertniczego) oraz składowe naprężenia na ścianie otworu wiertniczego (w cylindrycznym układzie odniesienia) wykazują cykliczną zmienność zależną od kierunku wiercenia. Pozwala to na określenie optymalnej trajektorii osi otworu wiertniczego

  10. Steps to take to enhance gait stability: the effect of stride frequency, stride length, and walking speed on local dynamic stability and margins of stability.

    PubMed

    Hak, Laura; Houdijk, Han; Beek, Peter J; van Dieën, Jaap H

    2013-01-01

    The purpose of the current study was to investigate whether adaptations of stride length, stride frequency, and walking speed, independently influence local dynamic stability and the size of the medio-lateral and backward margins of stability during walking. Nine healthy subjects walked 25 trials on a treadmill at different combinations of stride frequency, stride length, and consequently at different walking speeds. Visual feedback about the required and the actual combination of stride frequency and stride length was given during the trials. Generalized Estimating Equations were used to investigate the independent contribution of stride length, stride frequency, and walking speed on the measures of gait stability. Increasing stride frequency was found to enhance medio-lateral margins of stability. Backward margins of stability became larger as stride length decreased or walking speed increased. For local dynamic stability no significant effects of stride frequency, stride length or walking speed were found. We conclude that adaptations in stride frequency, stride length and/or walking speed can result in an increase of the medio-lateral and backward margins of stability, while these adaptations do not seem to affect local dynamic stability. Gait training focusing on the observed stepping strategies to enhance margins of stability might be a useful contribution to programs aimed at fall prevention.

  11. Steps to Take to Enhance Gait Stability: The Effect of Stride Frequency, Stride Length, and Walking Speed on Local Dynamic Stability and Margins of Stability

    PubMed Central

    Hak, Laura; Houdijk, Han; Beek, Peter J.; van Dieën, Jaap H.

    2013-01-01

    The purpose of the current study was to investigate whether adaptations of stride length, stride frequency, and walking speed, independently influence local dynamic stability and the size of the medio-lateral and backward margins of stability during walking. Nine healthy subjects walked 25 trials on a treadmill at different combinations of stride frequency, stride length, and consequently at different walking speeds. Visual feedback about the required and the actual combination of stride frequency and stride length was given during the trials. Generalized Estimating Equations were used to investigate the independent contribution of stride length, stride frequency, and walking speed on the measures of gait stability. Increasing stride frequency was found to enhance medio-lateral margins of stability. Backward margins of stability became larger as stride length decreased or walking speed increased. For local dynamic stability no significant effects of stride frequency, stride length or walking speed were found. We conclude that adaptations in stride frequency, stride length and/or walking speed can result in an increase of the medio-lateral and backward margins of stability, while these adaptations do not seem to affect local dynamic stability. Gait training focusing on the observed stepping strategies to enhance margins of stability might be a useful contribution to programs aimed at fall prevention. PMID:24349379

  12. Mechanism study on stability enhancement of adefovir dipivoxil by cocrystallization: Degradation kinetics and structure-stability correlation.

    PubMed

    Lin, Rui-Zhen; Sun, Peng-Jie; Tao, Qian; Yao, Jia; Chen, Jia-Mei; Lu, Tong-Bu

    2016-03-31

    The purpose of this study is to determine the mechanism by which cocrystallization can enhance the stability of adefovir dipivoxil (AD), a diester prodrug of adefovir with known chemical stability problem. Three multi-component crystals of AD with biologically safe coformers, including gallic acid cocrystal hydrate (1:1:1), salicylate salt (1:1), and maleate salt (1:1) were prepared and characterized by thermal analysis, infrared spectroscopy, powder and single crystal X-ray diffraction. DVS measurements and stability tests were applied to evaluate the stability. The new crystalline phases exhibit improved stability compared to pure drug in the order AD gallic acid cocrystal>AD maleate>AD salicylate>AD form I. Degradation kinetics and structure-stability correlation studies demonstrate that the stability enhancement mechanism by cocrystallization involves (1) inhibition of hydrolysis of AD by replacement of drug-drug homosynthons by stronger drug-coformer heterosynthons at adenine fragments; (2) suppression of dimerization of AD by separation of adenine fragments by inserting coformers in crystal lattices; (3) further reducing rates of hydrolysis by forming hydrogen bonds with hydrate water at phosphoryl fragments. This study has important implications for use of cocrystallization approach to some easily degradable drugs in pharmaceutical.

  13. Integrity of Pre-existing Wellbores in Geological Sequestration of CO2 – Assessment Using a Coupled Geomechanics-fluid Flow Model

    DOE PAGES

    Kelkar, Sharad; Carey, J. William; Dempsey, David; ...

    2014-12-31

    Assessment of potential CO2 and brine leakage from wellbores is central to any consideration of the viability of geological CO2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance. This studymore » focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO2 injection operations. The majority of the operational scenarios for CO2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi-phase fluid flow and deformation in

  14. Integrity of Pre-existing Wellbores in Geological Sequestration of CO2 – Assessment Using a Coupled Geomechanics-fluid Flow Model

    SciTech Connect

    Kelkar, Sharad; Carey, J. William; Dempsey, David; Lewis, Kayla

    2014-12-31

    Assessment of potential CO2 and brine leakage from wellbores is central to any consideration of the viability of geological CO2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance. This study focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO2 injection operations. The majority of the operational scenarios for CO2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi

  15. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much

  16. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  17. Enhancing the stability of the synchronization of multivariable coupled oscillators

    NASA Astrophysics Data System (ADS)

    Sevilla-Escoboza, R.; Gutiérrez, R.; Huerta-Cuellar, G.; Boccaletti, S.; Gómez-Gardeñes, J.; Arenas, A.; Buldú, J. M.

    2015-09-01

    Synchronization processes in populations of identical networked oscillators are the focus of intense studies in physical, biological, technological, and social systems. Here we analyze the stability of the synchronization of a network of oscillators coupled through different variables. Under the assumption of an equal topology of connections for all variables, the master stability function formalism allows assessing and quantifying the stability properties of the synchronization manifold when the coupling is transferred from one variable to another. We report on the existence of an optimal coupling transference that maximizes the stability of the synchronous state in a network of Rössler-like oscillators. Finally, we design an experimental implementation (using nonlinear electronic circuits) which grounds the robustness of the theoretical predictions against parameter mismatches, as well as against intrinsic noise of the system.

  18. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  19. Enhancing recombinant protein quality and yield by protein stability profiling.

    PubMed

    Mezzasalma, Tara M; Kranz, James K; Chan, Winnie; Struble, Geoffrey T; Schalk-Hihi, Céline; Deckman, Ingrid C; Springer, Barry A; Todd, Matthew J

    2007-04-01

    The reliable production of large amounts of stable, high-quality proteins is a major challenge facing pharmaceutical protein biochemists, necessary for fulfilling demands from structural biology, for high-throughput screening, and for assay purposes throughout early discovery. One strategy for bypassing purification challenges in problematic systems is to engineer multiple forms of a particular protein to optimize expression, purification, and stability, often resulting in a nonphysiological sub-domain. An alternative strategy is to alter process conditions to maximize wild-type construct stability, based on a specific protein stability profile (PSP). ThermoFluor, a miniaturized 384-well thermal stability assay, has been implemented as a means of monitoring solution-dependent changes in protein stability, complementing the protein engineering and purification processes. A systematic analysis of pH, buffer or salt identity and concentration, biological metals, surfactants, and common excipients in terms of an effect on protein stability rapidly identifies conditions that might be used (or avoided) during protein production. Two PSPs are presented for the kinase catalytic domains of Akt-3 and cFMS, in which information derived from a ThermoFluor PSP led to an altered purification strategy, improving the yield and quality of the protein using the primary sequences of the catalytic domains.

  20. Enhancing synchronization stability in a multi-area power grid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  1. Enhancing synchronization stability in a multi-area power grid.

    PubMed

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-26

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  2. An assessment of the mechanical stability of wells offshore Nigeria

    SciTech Connect

    Lowrey, J.P.; Ottesen, S.

    1995-03-01

    In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommend well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.

  3. A Graph Theoretic Approach for Hydraulic Fracturing and Wellbore Leakage Risk Modeling

    NASA Astrophysics Data System (ADS)

    Glosser, D.; Rose, K.; Bauer, J. R.; Warner, T.

    2016-12-01

    Recent large scale development of unconventional formations for fossil energy has raised concerns over the potential for fluid leakage between subsurface systems and wellbores. This is particularly true in regions with extensive drilling history, where spatial densities of wellbores are higher, and where significant uncertainties in the location and mechanical integrity of such wellbores exist. The generation of induced fracture networks during hydraulic fracturing may increase subsurface connectivity, and create the potential for unwanted fluid migration between operational and legacy wellbores and subsurface fracture networks. We present a graph theoretic approach for identifying geospatial regions and wellbores at increased risk for subsurface connectivity based on wellbore proximity and local geologic characteristics. The algorithm transforms user inputted geospatial data (geologic and wellbore x,y,z) to graph structure, where wellbores are represented as nodes, and where potential overlapping fracture network zones are represented as edges. The algorithm can be used to complement existing fracture models to better account for the reach of induced fractures, and to identify spatial extents at increased risk for unwanted subsurface connectivity. Additionally, the model can be used to identify regions in need of geophysical detection methods for locating undocumented wells. As a result, the method can be part of a cumulative strategy to reduce uncertainty inherent to combined geologic and engineered systems. The algorithm has been successfully tested against a known leakage scenario in Pennsylvania. In addition to identifying wells associated with the leakage event, the algorithm identified two other higher risk networks in the region. The algorithm output provides valuable information for industry to develop environmentally safe drilling and injection plans; and for regulators to identify specific wellbores at greater risk for leakage, and to develop targeted

  4. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  5. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  6. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  7. Enhanced dissolution of particle-stabilized bubbles by cooling

    NASA Astrophysics Data System (ADS)

    Poulichet, Vincent; Garbin, Valeria

    2015-11-01

    Foams and emulsions that are durable and stable under varying environmental conditions (e.g. temperature, humidity) are central in the food and personal care industry. Small bubbles (< 100 μ m) need to be stabilized against dissolution even in a gas-saturated liquid, because the Laplace pressure drives diffusion across the curved gas-liquid interface. Solid particles adsorbed at the interface of microbubbles have been shown to prevent coalescence and also arrest bubble dissolution. We studied the effect of changes in temperature on the lifetime of particle-stabilized microbubbles. We report a mechanism of destabilization beyond dissolution arrest, driven by the cooling of the external liquid. We show that the dominant mechanism of destabilization is the increase in solubility of the gas in the liquid, leading to a condition of undersaturation, which drives gas diffusion. Control experiments show that indeed, at constant temperature and pressure, undersaturation alone is sufficient to cause particle-stabilized bubbles to dissolve.

  8. Image segmentation and edge enhancement with stabilized inverse diffusion equations.

    PubMed

    Pollak, I; Willsky, A S; Krim, H

    2000-01-01

    We introduce a family of first-order multidimensional ordinary differential equations (ODEs) with discontinuous right-hand sides and demonstrate their applicability in image processing. An equation belonging to this family is an inverse diffusion everywhere except at local extrema, where some stabilization is introduced. For this reason, we call these equations "stabilized inverse diffusion equations" (SIDEs). Existence and uniqueness of solutions, as well as stability, are proven for SIDEs. A SIDE in one spatial dimension may be interpreted as a limiting case of a semi-discretized Perona-Malik equation. In an experiment, SIDE's are shown to suppress noise while sharpening edges present in the input signal. Their application to image segmentation is also demonstrated.

  9. Enhanced stability of hillslopes and channel beds to mass failure

    NASA Astrophysics Data System (ADS)

    Prancevic, Jeff; Lamb, Michael; Palucis, Marisa; Venditti, Jeremy

    2016-04-01

    The stability of inclined, unconsolidated sediments subjected to groundwater flow on hillslopes and steep channel beds is important for both landscape evolution and natural hazards. Force-balance models have been used for seven decades to predict the stability of slopes, but they generally underpredict the degree of saturation required to destabilize the sediment. Researchers often appeal to heightened stabilizing forces from root and mineral cohesion, and friction acting on the margins of the failure to explain this underprediction. Surprisingly, infinite-slope stability models in their simplest form have never been tested under controlled laboratory conditions. To address this gap in data, we perform a set of controlled laboratory experiments with slope-parallel seepage in the simplest possible configuration. We performed 47 experiments in a 5 m laboratory flume with 4 grain sizes (D50 = 0.7, 2, 5, and 15 mm) and a wide range in bed angles (20° to 43°), spanning both Darcian and turbulent subsurface flow regimes. Our experiments show that granular slopes were more stable than predicted by simple force balance models in experiments that lack root or mineral cohesion. Despite the smooth plastic walls and the long aspect ratio of our flume, we calculate wall and toe friction to be important. Including these additional resistance terms in the model reduces the model misfit with our experimental results. However, there is considerable remaining misfit (up to 50% underestimation of the saturation level required for failure). We investigate two explanations of this heightened stability: 1) standard frictional resistance terms are underestimated, and 2) seepage stresses are overestimated. Both explanations require that we modify the models used to predict slope stability.

  10. New Insight into Cataract Formation: Enhanced Stability through Mutual Attraction

    SciTech Connect

    Stradner, A.; Schurtenberger, P.; Foffi, G.; Dorsaz, N.; Thurston, G.

    2007-11-09

    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and nonmonotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.

  11. TV is established method for guidelineless reentry of ocean-floor wellbore

    SciTech Connect

    Warriner, R.A.; Mace, W.D.

    1984-05-28

    This article discusses the equipment and procedures used in deepwater drilling operations for reentering an ocean-floor wellbore with bits, casing, or other tools and connecting or reconnecting a BOP stack to the wellhead. All of these will be referred to as reentry operations. Reentry with dynamically positioned drilling vessels utilizes guidelineless equipment and procedures in contrast to the conventional wire-rope guide lines used with moored vessels. Guide lines are not used with DP vessels because of the difficulties in reestablishing the guide lines in the event of a drive-off causing lines to be broken or dropped. Guidelineless reentry operations generally involve using TV or sonar (or a combination) to locate the wellbore on the seafloor, followed by maneuvering the vessel with the DP system to position the equipment directly over the wellbore, then lowering the equipment into the wellbore. Actual reentry is usually observed with TV.

  12. Numerical simulation on open wellbore shrinkage and casing equivalent stress in bedded salt rock stratum.

    PubMed

    Liu, Jianjun; Zhang, Linzhi; Zhao, Jinzhou

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  13. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    PubMed Central

    Liu, Jianjun

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength. PMID:24198726

  14. Development of New Geothermal Wellbore Holdup Correlations Using Flowing Well Data

    SciTech Connect

    Sabodh K. Garg; John W. Pritchett; James H. Alexander; Joel Renner

    2004-03-01

    Geothermal well performances depend primarily on four factors: reservoir pressure, permeability, temperature and wellbore size. The ability to predict both the quantity of fluid that can be produced and its thermodynamic state (pressure, temperature, enthalpy, gas content, salinity, etc.) is essential for estimating the total usable energy of a geothermal resource. Numerical reservoir simulators can be utilized to calculate the thermodynamic state of the fluid in the reservoir when it enters the wellbore. To compute the fluid properties as it travels up the wellbore to the well-head given certain reservoir conditions the use of a wellbore simulator is needed. This report contains new correlations for flowing geothermal wells to accurately estimate produced fluid properties.

  15. A comparison of analytical approaches for wellbore heat transmission in layered formations

    SciTech Connect

    Wu, Yu-Shu.

    1988-08-01

    This report presents an analytical method for determining wellbore heat transmission during liquid or gas flow along the tubing. The mathematical model describes the heat transfer between the flowing fluid in the wellbore and in the surrounding formation as one whole physical system. The transient heat transfer equations in the two regions with coupling at the sandface are solved simultaneously. Non-homogeneous formations are treated which consist of several layers with different physical properties and arbitrary initial temperature distributions in the vertical direction. Closed form analytical solutions are obtained in real space and in Laplace space, which can be used to calculate the temperature distribution along the wellbore and in the formation, and to evaluate heat transfer rate and cumulative heat exchange between wellbore and formation. A more accurate formula is given for the widely-used transient heat conduction function f(t{sub D}) of thermal resistance. 14 refs., 12 figs., 1 tab.

  16. Optimal mistuning for enhanced aeroelastic stability of transonic fans

    NASA Technical Reports Server (NTRS)

    Hall, K. C.; Crawley, E. F.

    1983-01-01

    An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.

  17. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    DOEpatents

    Nutt, Gerald L.

    1991-01-01

    The stability of porous solid high explosives, for purposes of transport or storage, is enhanced by reducing the sensitivity to shock initiation of a reaction that leads to detonation. The pores of the explosive down to a certain size are filled under pressure with a stable, low melt temperature material in liquid form, and the combined material is cooled so the pore filling material solidifies. The stability can be increased to progressively higher levels by filling smaller pores. The pore filling material can be removed, at least partially, by reheating above its melt temperature and drained off so that the explosive is once more suitable for detonation.

  18. Designing an extracellular matrix protein with enhanced mechanical stability

    PubMed Central

    Ng, Sean P.; Billings, Kate S.; Ohashi, Tomoo; Allen, Mark D.; Best, Robert B.; Randles, Lucy G.; Erickson, Harold P.; Clarke, Jane

    2007-01-01

    The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by ≈20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions. PMID:17535921

  19. Rational design of rabies vaccine formulation for enhanced stability.

    PubMed

    Kayser, Veysel; Françon, Alain; Pinton, Hervé; Saluzzo, Jean-François; Trout, Bernhardt L

    2017-06-12

    Vaccines are often lyophilized in order to retain their stability and efficacy for a longer period of time. However, the same lyophilization process may also cause a major degradation of the vaccine, especially during early phases of manufacturing, leading to a loss of potency of the product. Many viral diseases, such as rabies, are acute and fatal unless the vaccine is administered prior to exposure or the onset of symptoms in the case of postexposure treatment. We investigated the effect of lyophilization on the stability of the virus structure during rabies vaccine manufacturing using dynamic light scattering and transmission electron microscopy. Our results indicate that some viruses lose their stability and efficacy in the course of lyophilization if the pH of the cell culture medium is controlled by solvated CO2 because the structure of the rabies virus is very sensitive to the solution pH: the virus either aggregates or its shape is deformed at low solution pH, whereas at high pH empty capsid shells are formed. Based on our findings, we developed a new formulation for the rabies vaccine that is stable in different buffers owing to the prevention of pH upshift upon lyophilization.

  20. Enhancement of Edge Stability with Lithium Wall Coatings in NSTX

    NASA Astrophysics Data System (ADS)

    Maingi, R.; Bell, R. E.; Leblanc, B. P.; Kaita, R.; Kaye, S. M.; Kugel, H. W.; Mansfield, D. K.; Osborne, T. H.

    2008-11-01

    ELM reduction or elimination while maintaining high confinement is essential for ITER, which has been designed for H-mode operation. Large ELMs are thought to be triggered by exceeding either edge current density and/or pressure gradient limits (peeling, ballooning modes). Stability calculations show that spherical tori should have access to higher pressure gradients and pedestal heights than higher R/a tokamaks, owing to access to second stability regimes[...1]. An ELM-free regime was recently observed in the NSTX following the application of lithium onto the graphite plasma facing components[......2]. ELMs were eliminated in phases[.....3], with the resulting pressure gradients and pedestal widths increasing substantially. Calculations with TRANSP have shown that the edge bootstrap current increased substantially, consistent with second stability access. These ELM-free discharges have a substantial improvement in energy confinement, up to the global βN˜ 5.5 limit. * Supported by US DOE DE-FG02-04ER54520, DE-AC-76CH03073, and DE-FC02-04ER54698. [.1] P. B. Snyder, et. al., Plasma Phys. Contr. Fusion 46 (2004) A131. [2] H. W. Kugel, et. al., Phys. Plasma 15 (2008) #056118. [3] D. M. Mansfield, et. al., J. Nucl. Materials (2009) submitted.

  1. Enhanced stability and mechanical strength of sodium alginate composite films.

    PubMed

    Liu, Sijun; Li, Yong; Li, Lin

    2017-03-15

    This work aims to study how three kinds of nanofillers: graphene oxide (GO), ammonia functionalized graphene oxide (AGO), and triethoxylpropylaminosilane functionalized silica, can affect stability and mechanical strength of sodium alginate (SA) composite films. The filler/sodium alginate (SA) solutions were first studied by rheology to reveal effects of various fillers on zero shear viscosity η0. SA composite films were then prepared by a solution mixing-evaporation method. The structure, morphology and properties of SA composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), contact angle and mechanical testing. Compared to GO and silica, the presence of AGO significantly improved the interaction between AGO and SA, which led to the increase in stability and mechanical strength of the resulting SA composite films. The tensile strength and elongation at break of AGO/SA composite film at 3wt% AGO loading were increased by 114.9% and 194.4%, respectively, in contrast to pure SA film. Furthermore, the stability of AGO/SA composite films at high temperatures and in a wet environment were better than that of silica/SA and GO/SA composite films.

  2. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    SciTech Connect

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.

  3. The effect of intra-wellbore head losses in a vertical well

    NASA Astrophysics Data System (ADS)

    Wang, Quanrong; Zhan, Hongbin

    2017-05-01

    Flow to a partially penetrating vertical well is made more complex by intra-wellbore losses. These are caused not only by the frictional effect, but also by the kinematic effect, which consists of the accelerational and fluid inflow effects inside a wellbore. Existing models of flow to a partially penetrating vertical well assume either a uniform-flux boundary condition (UFBC) or a uniform-head boundary condition (UHBC) for treating the flow into the wellbore. Neither approach considers intra-wellbore losses. In this study a new general solution, named the mixed-type boundary condition (MTBC) solution, is introduced to include intra-wellbore losses. It is developed from the existing solutions using a hybrid analytical-numerical method. The MTBC solution is capable of modeling various types of aquifer tests (constant-head tests, constant-rate tests, and slug tests) for partially or fully penetrating vertical wells in confined aquifers. Results show that intra-wellbore losses (both frictional and kinematic) can be significant in the early pumping stage. At later pumping times the UHBC solution is adequate because the difference between the MTBC and UHBC solutions becomes negligible.

  4. Microwave axial free-electron laser with enhanced phase stability

    SciTech Connect

    Carlsten, B.; Fazio, M.; Haynes, W.

    1995-12-31

    Free-electron laser (FEL) amplifiers have demonstrated high efficiencies and high output power at microwave wavelengths. However, measurements and simulations have indicated that the present level of phase stability for these devices is not sufficient for driving linear accelerators. Fluctuations in the diode voltage, which is needed to accelerate the electron beam, are the largest cause of the shifts in the phase of the output power. Pulse-power technology cannot keep the voltage fluctuations less than 1/4%. However, we have found a scheme that will make the output phase much less sensitive to these fluctuations by exploiting the traveling wave nature of the FEL interaction. In this paper we study the phase stability issue by analyzing the dispersion relation for an axial FEL, in which the rf field is transversely wiggled and the electron trajectories are purely longitudinal. The advantage of using the axial FEL interaction instead of the common transverse FEL interaction is that (1) the dispersion relation is not additionally complicated by how the transverse electron motion depends on the diode voltage and (2) such a device is simpler and less expensive to construct than a transverse-coupling FEL because there is no wiggler. The axial FEL interaction is with a fast wave and does involve axial bunching of the electron beam, so the results found for this device also apply to transverse-coupling FELs. By examination of the dispersion relation it is found that the effect of the phase dependency on the beam`s velocity can be cancelled by the effect of the phase dependency on the beam`s plasma wave, for an annular electron beam. By changing the annulus radius, exact cancellation can be found for a variety of beam voltages and currents in the ranges of 0.5-1.0 MV and 1-5 kA. This cancellation leads to first-order phase stability, which is not possible for standing-wave devices, such as klystrons.

  5. Enhanced Lamb dip for absolute laser frequency stabilization

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Byer, R. L.; Wang, S. C.

    1972-01-01

    Enhanced Lamb dip width is 5 MHz and total depth is 10 percent of peak power. Present configuration is useful as frequency standard in near infrared. Technique extends to other lasers, for which low pressure narrow linewidth gain tubes can be constructed.

  6. Synthesis and Characterization of Processable Polyimides with Enhanced Thermal Stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    The following is a summary report of the research carried out under NASA Grant NAG-1-448. The work was divided into four major areas: 1) Enhanced polyimide processing through the use of reactive plasticizers 2) Development of processable polyhenylquinoxalines 3) Synthesis and characterization of perfluorovinylether-terminated imide oligomers and 4) Fluorosilicones containing perfuorocyclobutane rings.

  7. Enhancing the stability of silicon nanosheets electrodes by fluoroethylene carbonate

    NASA Astrophysics Data System (ADS)

    Park, Jeong Min; Kim, Sujin; Ha, Jung Hoon; Kim, Sung Wook; Lee, Jaejun; Park, Sangwon; Cho, Byung-Won; Choi, Heon-Jin

    2017-09-01

    Stabilization of the SEI layer that is formed by consuming active lithium in electrolytes is a critical issue for improving the cyclability of lithium ion batteries. We used SiNSs as anodes and investigated the effect of fluoroethylene carbonate (FEC) additives on the SEI layer. Our XPS, EIS and TEM analysis of Csbnd O and Cdbnd O bonds, interfacial resistance and thickness of SEl layer, respectively, shows that the FEC produces electrochemically and mechanically stable SEI layer. The SiNSs with FEC showed the capacity of over 1500 mA h g-1 with 95% efficiency after 200 cycles.

  8. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles

    PubMed Central

    Honda, Satoshi; Yamamoto, Takuya; Tezuka, Yasuyuki

    2013-01-01

    Cyclic molecules provide better stability for their aggregates. Typically in nature, the unique cyclic cell membrane lipids allow thermophilic archaea to inhabit extreme conditions. By mimicking the biological design, the robustness of self-assembled synthetic nanostructures is expected to be improved. Here we report topology effects by cyclized polymeric amphiphiles against their linear counterparts, demonstrating a drastic enhancement in the thermal, as well as salt stability of self-assembled micelles. Furthermore, through coassembly of the linear and cyclic amphiphiles, the stability was successfully tuned for a wide range of temperatures and salt concentrations. The enhanced thermal/salt stability was exploited in a halogen exchange reaction to stimulate the catalytic activity. The mechanism for the enhancement was also investigated. These topology effects by the cyclic amphiphiles offer unprecedented opportunities in polymer materials design unattainable by traditional means. PMID:23481382

  9. ATC Enhancement Considering Transient Stability by Optimal Power Flow Control Using UPFC

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Motoki, Hiroaki; Yokoyama, Akihiko

    With recent development of power electronics technology, power system stability enhancement and optimal power flow control by using Flexible AC Transmission System (FACTS) devices have so far been studied. The FACTS devices to relieve multiple constraints can also make it possible to enhance Available Transfer Capability (ATC) without construction of new transmission lines. In this paper, a new method for improving transient stability by Unified Power Flow Controller (UPFC) is proposed. Then the proposed method is applied to an OPF control method by using UPFC for relieving multiple constraints. The new OPF method is used for enhancement of ATC taking into account Transient stability constraints as well as overload and steady-state stability constraints. The OPF problem is formulated to minimize total capacity of inverters of UPFC. Effectiveness of the proposed method is shown by numerical examples for IEEJ East-10-machine test system.

  10. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    PubMed

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration.

  11. Enhanced Thermal Stability of Polylactide by Terminal Conjugation Groups

    NASA Astrophysics Data System (ADS)

    Tran, Hang Thi; Matsusaki, Michiya; Akashi, Mitsuru; Vu, Ngo Dinh

    2016-05-01

    Various acids such as aliphatic or carbocyclic fatty or aromatic acids were successfully conjugated into the ending hydroxyl group of poly( l-lactide) (PLLA). The chemical structures of various acid-PLLAs were confirmed by Fourier transform infrared and proton nuclear magnetic resonance analysis. The crystallinity and solubility of the original PLLA were maintained after the terminal conjugation of various acids. The thermal properties were significantly improved, especially the 10% weight-loss temperature that showed an increase of over 80°C for conjugation of aliphatic or aromatic acids as compared to that of the corresponding original PLLA. In addition, more than 60 wt.% of the aliphatic acid-PLLAs was pyrolyzed, and aromatic acid-PLLAs degraded only about 10 wt.% for 150 min, although the original PLLA was pyrolyzed completely at 250°C for 7 min. The thermal stability of PLLA was controlled by the conjugation of aliphatic or aromatic acids into a chain end. These acid-PLLAs may be useful as materials with high thermal stability for various application fields.

  12. Enhanced stability of hydrogen peroxide in the presence of subsurface solids

    NASA Astrophysics Data System (ADS)

    Watts, Richard J.; Finn, Dennis D.; Cutler, Lynn M.; Schmidt, Jeremy T.; Teel, Amy L.

    2007-05-01

    The stabilization of hydrogen peroxide was investigated as a basis for enhancing its downgradient transport and contact with contaminants during catalyzed H 2O 2 propagations (CHP) in situ chemical oxidation (ISCO). Stabilization of hydrogen peroxide was investigated in slurries containing four characterized subsurface solids using phytate, citrate, and malonate as stabilizing agents after screening ten potential stabilizers. The extent of hydrogen peroxide stabilization and the most effective stabilizer were solid-specific; however, phytate was usually the most effective stabilizer, increasing the hydrogen peroxide half-life to as much as 50 times. The degree of stabilization was nearly as effective at 10 mM concentrations as at 250 mM or 1 M concentrations. The effect of stabilization on relative rates of hydroxyl radical activity varied between the subsurface solids, but citrate and malonate generally had a greater positive effect than phytate. The effect of phytate, citrate, and malonate on the relative rates of superoxide generation was minimal to somewhat negative, depending on the solid. The results of this research demonstrate that the stabilizers phytate, citrate, and malonate can significantly increase the half-life of hydrogen peroxide in the presence of subsurface solids during CHP reactions while maintaining a significant portion of the reactive oxygen species activity. Use of these stabilizers in the field will likely improve the delivery of hydrogen peroxide and downgradient treatment during CHP ISCO.

  13. Enhancing screw stability in osteosynthesis with hydroxyapatite granules.

    PubMed

    Hasegawa, K; Yamamura, S; Dohmae, Y

    1998-01-01

    We employed hydroxyapatite (HA) granules to enhance screw fixation in revision surgery of failed osteosynthesis with a compression hip screw system in an 83-year-old woman. After reduction of the fracture, the fracture site with a large bone defect was filled with HA granules, and osteosynthesis was accomplished with a double cannulated lag screw and plate system. We feel that this HA granule augmentation method may also be suitable for osteosynthesis in other osteoporotic fractures.

  14. Vertical Wellbore Flow Monitoring for Assessing Spatial and Temporal Flow Relationships with a Dynamic River Boundary

    SciTech Connect

    Newcomer, Darrell R.; Bjornstad, Bruce N.; Vermeul, Vincent R.

    2010-10-01

    A useful tool for identifying the temporal and spatial ambient wellbore flow relationships near a dynamic river boundary is to continuously monitor ambient vertical wellbore flow with an electromagnetic borehole flowmeter (EBF). This is important because the presence of the wellbore can result in significant mixing or exchange of groundwater vertically across the aquifer. Mixing or exchanging groundwater within the well-screen section can have significant impacts on the distribution of contaminants within the aquifer and adverse effects on the representativeness of groundwater samples collected from the monitoring well. EBF monitoring data collected from long, fully screened wells at Hanford’s 300-Area Integrated Field Research Challenge (IFRC) site, located ~260 to 290 m from the Columbia River, demonstrate that ambient vertical wellbore flow exhibits both a positive (direct) and inverse temporal relationship with periodic river-stage fluctuations over short distances. The ambient flow monitoring wells fully penetrate a highly transmissive unconfined aquifer that consists of unconsolidated coarse sediments of the Hanford formation. The spatial distribution of ambient vertical wellbore flows across the IFRC’s ~2,200 m2 well-field size indicates two general regions of inverse ambient wellbore flow behavior. The western region of the IFRC site is characterized by ambient vertical wellbore flows that are positively related to river-stage fluctuations. In contrast, the eastern region of the site exhibits ambient wellbore flows that are inversely related to river-stage fluctuations. The cause of this opposite relationship between ambient wellbore flows and river-stage changes is not completely understood; however, the positive relationships appear to be associated with high-energy Hanford formation flood deposits. These flood deposits have a well-defined northwest-southeast trend and are believed to coincide with a local paleochannel. This local paleochannel bisects

  15. Synthesis and characterization of processable polyimides with enhanced thermal stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1987-01-01

    Many of the emerging applications of polymers on space vehicles require materials with outstanding thermal stability. These polymers must also be readily processable in order to facilitate their use. The syntheses and polymerization of a cardo dianhydride were investigated. This monomer was prepared via the reaction of N-methyl 4-nitrophthalimide with a cardo diol. Polyimides containing oxyalkylene linkages were studied. The effects of two additional structural modifications on the polymers' properties were investigated. The effects of carrying out the preparation of poly(amic acid)s under non-equilibrium conditions were examined. Approaches that were investigated included the in-situ neutralization of the generated amic acid and its in-situ esterification.

  16. Enhancing Cycling Stability of Aqueous Polyaniline Electrochemical Capacitors.

    PubMed

    Santino, Luciano M; Lu, Yang; Acharya, Shinjita; Bloom, Liana; Cotton, Daniel; Wayne, Aly; D'Arcy, Julio M

    2016-11-02

    Electrochemical capacitors fabricated with polyaniline nanofibers are cycled 150 000 times with 98% capacitance retention. These devices maintain an energy density of 11.41 Wh/kg at a power density of 4000 W/kg, 64 times greater than that of an identically fabricated device based on activated carbon (0.177 Wh/kg at 4600 W/kg). For applications requiring a higher specific energy, 33.39 Wh/kg at a specific power of 600 W/kg is obtained by widening the voltage window; this device retains 93% capacitance after 10 000 cycles. We achieve a high cycling stability through careful device engineering paired with a renewed focus on the electrochemical processes occurring at the positive and negative electrodes during cycling.

  17. Soy protein polymers: Enhancing the water stability property

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    Soy protein based plastics have been processed in the past by researchers for various short-term applications; however a common issue is the high water sensitivity of these plastics. This work concentrates on resolving this water sensitivity issue of soy protein polymers by employing chemical and mechanical interaction at the molecular level during extrusion. The primary chemical interactions employed were anhydride chemistries such as maleic anhydride (MA), phthalic anhydride (PTA), and butylated hydroxyanisole (BHA). These were respectively used in conjunction with glycerol as a plasticizer to produce relatively water stable soy protein based plastics. Formulations with varying additive levels of the chemistries were extruded and injection molded to form the samples for characterization. The additive levels of anhydrides were varied between 3-10% tw/tw (total mass). Results indicated that phthalic anhydride formulations resulted in highest water stability. Plastic formulations with concentration up to 10% phthalic anhydride were observed to have water absorption as low as 21.5% after 24 hrs of exposure to water with respect to 250% for the control formulation. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize and confirm the fundamental mechanisms of water stability achieved by phthalic and maleic anhydride chemistries. In addition, the anhydride formulations were modified by inclusion of cotton fibers and pretreated cotton powder in order to improve mechanical properties. The incorporation of cotton fibers improved the dry strength by 18%, but did not significantly improve the wet state strength of the plastics. It was also observed that the butylated-hydroxy anisole (BHA) formulation exhibited high extension values in the dry state and had inferior water absorption properties in comparison with anhydride formulations.

  18. Kinetic analysis of enhanced thermal stability of an alkaline protease with engineered twin disulfide bridges and calcium-dependent stability.

    PubMed

    Ikegaya, Kazuo; Sugio, Shigetoshi; Murakami, Kohji; Yamanouchi, Kouichi

    2003-01-20

    The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.

  19. Application of inertial navigation to wellbore positional surveying

    SciTech Connect

    Watts, A.C.

    1982-06-01

    There is an increasing need for higher accuracy in wellbore directional and positional surveying than is currently available using conventional techniques. Among the factors contributing to this need are closed interspacing of wells particularly from offshore platforms, deeper and more highly deviated wells, smaller target formations and the requirement for rapid drilling of relief wells in the case of blowouts. The application of inertial navigation system (INS) of suitable size and cost for this type of application is not inherently accurate enough to offer significant improvements in well-surveying accuracy. Techniques to improve accuracy are, in general, based on the fact that the dynamics associated with the propagation of the navigator errors are very well known. Inertial systems are routinely aided using external data from a number of sources. Such aiding may take the form of an external position or velocity measurement which is compared to the position or velocity indicated by the navigator. Kalman filter theory provides a convenient formulation for generation of a minimum variance estimate of the state vector of a linear system. The theory may be extended to the nonlinear case through the use of linearization about a state trajectory. This approach is currently seeing wide use in aiding of inertial navigation systems. The approach proposed here would use the Kalman filter formulation for estimation of the INS errors and updating of the navigator. This formulation also provides a structure for estimation of various instrument parameters which should improve system performance.

  20. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    SciTech Connect

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  1. A Quasi-Steady Flexible Launch Vehicle Stability Analysis Using Steady CFD with Unsteady Aerodynamic Enhancement

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2011-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

  2. Enhancement of stability following anterior cervical corpectomy: a biomechanical study.

    PubMed

    Singh, Kern; Vaccaro, Alexander R; Kim, Jesse; Lorenz, Eric P; Lim, Tae-Hong; An, Howard S

    2004-04-15

    An in vitro biomechanical study of various reconstructive techniques following decompression of the spondylotic cervical spine. OBJECTIVE.: To evaluate the biomechanical stability of anterior cervical plate fixation following three strategies of decompression for multilevel cervical spondylosis (three levels) of the cervical spine: three level discectomy, single corpectomy and discectomy, and a two-level corpectomy. The main goals of surgical treatment for cervical myelopathy include adequate decompression and stabilization while maintaining or restoring cervical lordosis. Cervical decompression is often performed through a corpectomy followed by strut-graft reconstruction. An anterior cervical plate with end-fixation (two points of fixation) is then used to span the construct. The authors propose an alternative to multilevel corpectomy and long-segment end construct plate fixation. Often times, the cervical stenosis is confined to the area of the degenerative discs. As a result, the authors feel that either multilevel discectomy or a corpectomy combined with discectomy followed by segmental plate fixation may provide adequate decompression with increased biomechanical rigidity as compared to cervical plate-constructs with end-fixation only. Seven human cadaveric fresh-frozen cervical spines from C1-T1 were utilized. Three-dimensional motion analysis with an optical tracking device was used to determine motion following various reconstruction methods. All seven cervical spines underwent testing in a randomized order. The end construct model consisted of a corpectomy at C4 and C5 with a polymethyl methacrylate strut graft and an anterior cervical PEAK (DePuy-AcroMed) plate. The two segmental constructs also utilized the PEAK plate with one construct undergoing discectomies at C3-C4, C4-C5, and C5-C6 with polymethyl methacrylate interbody grafts and the other segmental construct undergoing a discectomy at C3-C4 and a corpectomy of C5. All specimens underwent a pure

  3. Calculations of Gas-liquid Equilibrium in Wellbore with High Carbon dioxide Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaming; Wu, Xiaodong; Wang, Bo; Liu, Kai; Gao, Yue

    2014-05-01

    Carbon dioxide injection not only enhances the oil recovery dramatically, but also it will reduce the greenhouse effect, therefore, Carbon dioxide injection technique is applied extensively. During the process of carbon dioxide displacement, when carbon dioxide breaks though into oil production wells, carbon dioxide content will impacts the phase state and physical properties of the mixed liquor in the wellbore, as a result, it will affect the calculation of temperature and pressure in oil production wells. Applying the conventional black-oil model to calculate the phase state of the miscible fluids is unacceptable. To tackle the problem, this paper uses the gas-liquid flash theory and component model to program software, so that the phase state (gas, liquid or gas-liquid) and physical properties of the mixed liquor (including hydrogen sulfide, carbon dioxide and hydrocarbon) under initial conditions is calculated, moreover, the impact of carbon dioxide content on the physical properties(mainly including density, viscosity, specific heat at const pressure, surface tension, etc) of mixed liquor in oil production wells is analyzed in this paper. The comparison of the results shows that this model can meet the engineering needs with high accuracy.

  4. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  5. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    NASA Astrophysics Data System (ADS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  6. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  7. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts.

    PubMed

    Price, Joshua L; Powers, David L; Powers, Evan T; Kelly, Jeffery W

    2011-08-23

    Cotranslational N-glycosylation can accelerate protein folding, slow protein unfolding, and increase protein stability, but the molecular basis for these energetic effects is incompletely understood. N-glycosylation of proteins at naïve sites could be a useful strategy for stabilizing proteins in therapeutic and research applications, but without engineering guidelines, often results in unpredictable changes to protein energetics. We recently introduced the enhanced aromatic sequon as a family of portable structural motifs that are stabilized upon glycosylation in specific reverse turn contexts: a five-residue type I β-turn harboring a G1 β-bulge (using a Phe-Yyy-Asn-Xxx-Thr sequon) and a type II β-turn within a six-residue loop (using a Phe-Yyy-Zzz-Asn-Xxx-Thr sequon) [Culyba EK, et al. (2011) Science 331:571-575]. Here we show that glycosylating a new enhanced aromatic sequon, Phe-Asn-Xxx-Thr, in a type I' β-turn stabilizes the Pin 1 WW domain. Comparing the energetic effects of glycosylating these three enhanced aromatic sequons in the same host WW domain revealed that the glycosylation-mediated stabilization is greatest for the enhanced aromatic sequon complementary to the type I β-turn with a G1 β-bulge. However, the portion of the stabilization from the tripartite interaction between Phe, Asn(GlcNAc), and Thr is similar for each enhanced aromatic sequon in its respective reverse turn context. Adding the Phe-Asn-Xxx-Thr motif (in a type I' β-turn) to the enhanced aromatic sequon family doubles the number of proteins that can be stabilized by glycosylation without having to alter the native reverse turn type.

  8. Enhancement of stability of various nZVI suspensions used in groundwater remediation with environmentally friendly organic stabilizers

    NASA Astrophysics Data System (ADS)

    Schmid, Doris; Wagner, Stephan; Velimirović, Milica; Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-05-01

    The use of nanoscale zero-valent iron (nZVI) particles for in situ remediation of polluted soil and groundwater has been shown as one of the most promising techniques [1]. The success of this technology depends on the mobility, reactivity, and longevity of nZVI particles. The mobility of nZVI particles depends on the properties of the single particles, stability of the particle suspension, and the aquifer material [1,2]. In order to enhance the mobility of nZVI, the mobility-decisive properties of the nZVI particles in suspension such as concentration, size distribution, surface charge, and sedimentation rate have to be investigated and optimized. Previous studies showed that pristine nZVI particles aggregate rapidly in water, reducing the particles radius of influence after injection [3]. In order to prevent aggregation and sedimentation of the nZVI particles, and consequently improve the stability of nZVI suspension and therefore the mobility of the nZVI particles, surface stabilizers can be used to provide electrostatic repulsion and steric or electrosteric stabilization [3,4]. The objective of this lab-scale study is to investigate the potential for enhancing the stability of different nZVI suspensions by means of environmentally friendly organic stabilizers, including carboxymethyl cellulose, pectin, alginate, xanthan, and guar gum. The different nZVI particles used included pristine and polyacrylic acid-coated nZVI particles provided in suspension (Nanofer 25 and Nanofer 25S, respectively, NANOIRON s.r.o., Czech Republic), air-stable nZVI particles (Nanofer Star, (NANOIRON s.r.o., Czech Republic), and milled iron flakes (UVR-FIA, Germany). In order to study the enhancement of nZVI stability (1 g L-1 total iron) different concentrations of organic stabilizers (1-20 wt.%) were applied in these nZVI suspensions. Each nZVI suspension was freshly prepared and treated for 10 minutes with Ultra-Turrax (15 000 rpm) and 10 minutes ultrasonic bath prior to

  9. Enhancement of the vibration stability of a microdiffraction goniometer.

    SciTech Connect

    Lee, S. H.; Preissner, C.; Lai, B.; Cai, Z.; Shu, D.

    2002-07-02

    High-precision instrumentation, such as that for x-ray diffraction, electron microscopy, scanning probe microscopy, and other optical micropositioning systems, requires the stability that comes from vibration-isolated support structures. Structure-born vibrations impede the acquisition of accurate experimental data through such high-precision instruments. At the Advanced Photon Source, a multiaxis goniometer is installed in the 2-ID-D station for synchrotron microdiffraction investigations. However, ground vibration can excite the kinematic movements of the goniometer linkages, resulting in critically contaminated experimental data. In this paper, the vibration behavior of the goniometer has been considered. Experimental vibration measurements were conducted to define the present vibration levels and determine the threshold sensitivity of the equipment. In addition, experimental modal tests were conducted and used to guide an analytical finite element analysis. Both results were used for finding the best way to reduce the vibration levels and to develop a vibration damping/isolation structure for the 2-ID-D goniometer. The device that was designed and tested could be used to reduce local vibration levels for the vibration isolation of similar high-precision instruments.

  10. Zirconia coating for enhanced thermal stability of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boé, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R.

    2016-01-01

    This paper describes a rapid, simple and one-step method for the preparation of 2-4 nm diameter zirconia-coated gold nanoparticles at room temperature. These nanoparticles were synthesized by two simultaneous processes: the chemical reduction of tetrachloroauric acid with sodium borohydride and the formation of zirconia sol-gel matrices. All the gold nanoparticle sols were characterized by UV-visible absorption and transmission electron microscopy to determine the nanoparticle size and shape. The synthesis method is a combination of a polymeric structure of the amorphous zirconia and the use of a strong reducing agent, and it yields to very small quasi-spherical gold nanoparticles at room temperature. The thermal stability up to 1200 °C of the coated nanoparticles was studied by x-ray diffraction. The metastable tetragonal phase of the zirconia coating was obtained at 400 °C, and a progressive transformation from tetragonal to monoclinic phases of the zirconia coating was observed up to 1100 °C. After the heat treatment at 400 °C, the crystallite size of the gold nanoparticles was about 29 nm, and it remained unchanged from 400 °C to 1200 °C. These results are promising for the development of such materials as doping elements for optical fiber applications.

  11. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Newell, P.; Gomez, S. P.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the University of New Mexico and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  12. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2015-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  13. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  14. Enhanced Power Stability for Proton Conducting Solid Oxides Fuel Cells

    SciTech Connect

    Boris Merinov; William A. Goddard III; Sossina Haile; Adri van Duin; Peter Babilo; Sang Soo Han

    2005-12-29

    , which both theory and experiment agree is the cause of the low conductivity of multi-granular systems. Our plan for a future project is to use the theory to optimize the additives and processing conditions and following this with experiment on the most promising systems. The experimental part of this project focused on improving the synthetic techniques for controlling the grain size and making measurements on the properties of these systems as a function of doping of impurities and of process conditions. A significant attention was paid to screening potential cathode materials (transition metal perovskites) and anode electrocatalysts (metals) for reactivity with Y-doped BaZrO{sub 3}, fabrication compatibility, and chemical stability in fuel cell environment. A robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have been successfully developed. Our Pt|BYZ|Pt fuel cell, with a 100 {micro}m thick Y-doped BaZrO{sub 3} electrolyte layer, demonstrates the peak power density and short circuit current density of 28 mW/cm{sup 2} and 130mA/cm{sup 2}, respectively. These are the highest values of this type of fuel cell. All of these provide the basis for a future project in which theory and computation are combined to develop modified ceramic electrolytes capable of both high proton conductivity and excellent mechanical and chemical stability.

  15. Vastly enhancing the chemical stability of phosphorene by employing an electric field.

    PubMed

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2017-03-23

    Currently, a major hurdle preventing phosphorene from various electronic applications is its rapid oxidation under ambient conditions. Thus how to enhance its chemical stability by suppressing oxidation becomes an urgent task. Here, we reveal a highly effective procedure to suppress the oxidation of phosphorene by employing a suitable van der Waals (vdW) substrate and a vertical electric field. Our first-principles study shows that the phosphorene-MoSe2 vdW heterostructure is able to reverse the stability of physisorption and chemisorption of molecular O2 on phosphorene. With further application of a vertical electric field of -0.6 V Å(-1), the energy barrier for oxidation is able to further increase to 0.91 eV, leading to a 10(5) times enhancement in its lifetime compared with that without using the procedure at room temperature. Our work presents a viable strategy to vastly enhance the chemical stability of phosphorene in air.

  16. Fluorinated ethylene propylene copolymer coating for the stability enhancement of electroactive and photoactive systems

    NASA Astrophysics Data System (ADS)

    Zhao, Luping; Neoh, K. G.; Zhang, Yan; Kang, E. T.

    2003-11-01

    The effectiveness of radio frequency sputtered fluorinated ethylene propylene copolymer (FEP) for the stability enhancement of electroactive and photoactive systems was investigated. Two kinds of electroactive polymer systems, polyaniline (PANI) coated low density polyethylene (LDPE) film and PANI-viologen assembly, were tested. In both cases, a sputtered FEP coating of <10 nm in thickness significantly enhanced the electrical stability of the films in water. The enhancement of the electrical stability of the PANI-LDPE film was also achieved in basic aqueous solution of pH up to 12 with a FEP coating of 40-50 nm in thickness. The deposition of a FEP coating on the photoactive viologen system (viologen grafted on LDPE film) prolonged its photochromic effect by inhibiting the diffusion of oxygen, and hence the reoxidation of the highly colored viologen radical cations to the dication state.

  17. Biopolyester-based systems containing naturally occurring compounds with enhanced thermo-oxidative stability.

    PubMed

    Arrigo, Rossella; Morici, Elisabetta; Dintcheva, Nadka Tzankova

    2016-11-02

    This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material. The study of the thermo-oxidative behavior of neat PLA and PLA/natural compound systems, performed by spectrometric and thermal analyses, indicated that all stabilizers considered were able to exert a remarkable antioxidant action against thermo-oxidative phenomena. All natural compounds considered are thus proposed as ecofriendly stabilizers, to get fully bio-based polymer systems with enhanced thermo-oxidative stability, suitable for biomedical applications.

  18. Bulky Dehydroamino Acids Enhance Proteolytic Stability and Folding in β-Hairpin Peptides.

    PubMed

    Jalan, Ankur; Kastner, David W; Webber, Kei G I; Smith, Mason S; Price, Joshua L; Castle, Steven L

    2017-10-06

    The bulky dehydroamino acids dehydrovaline (ΔVal) and dehydroethylnorvaline (ΔEnv) can be inserted into the turn regions of β-hairpin peptides without altering their secondary structures. These residues increase proteolytic stability, with ΔVal at the (i + 1) position having the most substantial impact. Additionally, a bulky dehydroamino acid can be paired with a d-amino acid (i.e., d-Pro) to synergistically enhance resistance to proteolysis. A link between proteolytic stability and peptide structure is established by the finding that a stabilized ΔVal-containing β-hairpin is more highly folded than its Asn-containing congener.

  19. Subsurface fracture mapping from geothermal wellbores. Final report

    SciTech Connect

    Hartenbaum, B.A.; Rawson, G.

    1983-08-01

    To advance the state-of-the-art in Hot Dry Rock technology, and evaluation is made of (1) the use of both electromagnetic and acoustic radar to map far-field fractures, (2) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, (3) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone, (4) the use of passive microseismic methods to determine the orientation and extent of hydraulic fractures, and (5) the application of signal processing techniques to fracture mapping including tomography, holography, synthetic aperture, image reconstruction, and the relative importance of phase and amplitude information. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. The range of acoustic radar is five to seven times greater than that of VHF radar when compared on the basis of equal resolution, i.e., equal wavelengths. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. A new model of hydraulic fracturing is presented which indicates that a hydraulic fracture is dynamically unstable; consequently, improvements in locating the crack tip may be possible. The importance of phase in signal processing is stressed and those techniques which employ phase data are emphasized for field use.

  20. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  1. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  2. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  3. The Fatal Five? Five Factors That Enhance Effectiveness of Stability Operations

    DTIC Science & Technology

    2014-05-22

    Approved for Public Release; Distribution is Unlimited THE FATAL FIVE? FIVE FACTORS THAT ENHANCE EFFECTIVENESS OF STABILITY OPERATIONS A...2014 2. REPORT TYPE SAMS Monograph 3. DATES COVERED (From - To) June 2013 – May 2014 4. TITLE AND SUBTITLE The Fatal Five? Five Factors That...Z39.18 ii MONOGRAPH APPROVAL Name of Candidate: Major Ralph D. Heaton Monograph Title: The Fatal Five? Five Factors That Enhance Effectiveness of

  4. Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms.

    PubMed

    Karlický, Václav; Kurasová, Irena; Ptáčková, Božena; Večeřová, Kristýna; Urban, Otmar; Špunda, Vladimír

    2016-12-01

    Recently, we have found that thermal stability of photosystem II (PSII) photochemistry in spruce needles is higher than in other plants (barley, beech) cultivated under the same temperatures. In this work, temperature dependences of various characteristics of PSII organization were studied in order to obtain complex information on the thermal stability of PSII function and organization in spruce. Temperature dependency of circular dichroism spectra revealed by about 6 °C higher thermal stability of macrodomain organization in spruce thylakoid membranes in comparison with Arabidopsis and barley ones; however, thermal disintegration of light-harvesting complex of PSII did not significantly differ among the species studied. These results thus indicate that thermal stability of PSII macro-organization in spruce thylakoid membranes is enhanced to a similar extent as thermal stability of PSII photochemistry. Clear-native polyacrylamide gel electrophoresis of preheated thylakoids demonstrated that among the separated pigment-protein complexes, only PSII supercomplexes (SCs) revealed considerably higher thermal stability in spruce thylakoids as compared to Arabidopsis and barley ones. Hence we suggest that higher thermal stability of PSII macro-organization of spruce is influenced by the maintenance of PSII SCs in the thylakoid membrane. In addition, we discuss possible effects of different PSII organizations and lipid compositions on the thermal stability of spruce thylakoid membranes.

  5. Pressure losses in fracture-dominated reservoirs: the wellbore constriction effect

    SciTech Connect

    Murphy, H.

    1980-01-01

    Improved energy production from many types of energy reservoirs such as hot dry rock geothermal as well as hydraulically fractured oil, gas, and other geothermal reservoirs requires a better understanding of the fluid mechanics in the vicinity of the fracture-wellbore intersection. Typically, the aperture (smallest dimension) of a hydraulic fracture is only of the order of 1 mm (0.04 in.) so that reasonable energy production rates from geothermal systems require fairly large flow velocities within the fractures, particularly so as the wellbore-fracture intersection is approached. The high velocities and accelerations result in non-Darcian, often turbulent, flow and increased pressure losses. These flow phenomena were investigated experimentally for the simple case where the fracture plane and the wellbore drilling axis are orthogonal and the implication of these experimental results are examined by investigating the pressure losses in a hot dry rock reservoir.

  6. A TEMPERATURE DROP MODEL FOR TWO-PHASE FLOW IN GEOTHERMAL WELLBORES

    SciTech Connect

    Michels, D.E.

    1985-01-22

    This temperature-drop model is formulated as an answer to the question, ''How much further up the wellbore will a unit mass of fluid be when its temperature is exactly one-degree cooler than at its current position''. The repeated calculation yields a temperature profile extending upwardly from the bubble point. This approach is based on a paradigm that emphasizes temperature and volume for a system that is dominated by one component. It has only a small overlap with the more popular paradigm for this topic which involves mechanical pressures and energy balances. A set of plots is given which shows the effects on temperature and pressure profiles due to changes of single factors when all other factors are held constant. The factors include common wellbore and reservoir parameters. These latter plots give considerable insight into wellbore processes and the nature of constraints on two-phase flow for an essentially one-component substance.

  7. Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake.

    PubMed

    Hong, Bong Jin; Compton, Owen C; An, Zhi; Eryazici, Ibrahim; Nguyen, SonBinh T

    2012-01-24

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.1) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a noncovalently bound surfactant to minimize the aggregate-inducing nanosheet-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily taken up by cells, demonstrating their excellent performance as potential drug-delivery vehicles.

  8. Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Bio-functionalization and Cellular Uptake

    PubMed Central

    Hong, Bong Jin; Compton, Owen C.; An, Zhi; Eryzazici, Ibrahim; Nguyen, SonBinh T.

    2013-01-01

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.03) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a non-covalently bound surfactant to minimize the aggregate-induced nanosheets-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily uptake by cells, demonstrating their excellent performance as potential drug delivery vehicles. PMID:22017285

  9. Enhancing Economic Stability Utilizing the High Technologies in Community Colleges: A Case Study.

    ERIC Educational Resources Information Center

    Mehnert, Barbara H.; Kurki, Allan W.

    Strategies to enhance the economic stability of community colleges through high technology approaches are discussed in this paper. First, general economic problems facing higher education are identified, and the ways in which they influence community colleges are described. Next, 10 strategies to aid in the economic recovery of community colleges…

  10. Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance.

    PubMed

    Kumar, Amrit; Hua, Carol; Madden, David G; O'Nolan, Daniel; Chen, Kai-Jie; Keane, Lee-Ann J; Perry, John J; Zaworotko, Michael J

    2017-05-30

    Fine-tuning of HUMs through pillar substitution can significantly enhance trace CO2 sorption performance and stability. The resulting materials, exemplified by the new material TIFSIX-3-Ni, [Ni(pyrazine)2(TiF6)]n, are shown through temperature programmed desorption experiments to remove trace quantities of CO2 from moist gas mixtures.

  11. Origin of Activity and Stability Enhancement for Ag3PO4 Photocatalyst after Calcination

    PubMed Central

    Dong, Pengyu; Hou, Guihua; Liu, Chao; Zhang, Xinjiang; Tian, Hao; Xu, Fenghua; Xi, Xinguo; Shao, Rong

    2016-01-01

    Pristine Ag3PO4 microspheres were synthesized by a co-precipitation method, followed by being calcined at different temperatures to obtain a series of calcined Ag3PO4 photocatalysts. This work aims to investigate the origin of activity and stability enhancement for Ag3PO4 photocatalyst after calcination based on the systematical analyses of the structures, morphologies, chemical states of elements, oxygen defects, optical absorption properties, separation and transfer of photogenerated electron-hole pairs, and active species. The results indicate that oxygen vacancies (VO˙˙) are created and metallic silver nanoparticles (Ag NPs) are formed by the reaction of partial Ag+ in Ag3PO4 semiconductor with the thermally excited electrons from Ag3PO4 and then deposited on the surface of Ag3PO4 microspheres during the calcination process. Among the calcined Ag3PO4 samples, the Ag3PO4-200 sample exhibits the best photocatalytic activity and greatly enhanced photocatalytic stability for photodegradation of methylene blue (MB) solution under visible light irradiation. Oxygen vacancies play a significantly positive role in the enhancement of photocatalytic activity, while metallic Ag has a very important effect on improving the photocatalytic stability. Overall, the present work provides some powerful evidences and a deep understanding on the origin of activity and stability enhancement for the Ag3PO4 photocatalyst after calcination. PMID:28774088

  12. Enhancing Economic Stability Utilizing the High Technologies in Community Colleges: A Case Study.

    ERIC Educational Resources Information Center

    Mehnert, Barbara H.; Kurki, Allan W.

    Strategies to enhance the economic stability of community colleges through high technology approaches are discussed in this paper. First, general economic problems facing higher education are identified, and the ways in which they influence community colleges are described. Next, 10 strategies to aid in the economic recovery of community colleges…

  13. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus.

    PubMed

    Robinson, Christopher M; Jesudhasan, Palmy R; Pfeiffer, Julie K

    2014-01-15

    Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication, and pathogenesis in mice are equivalent, VP1-T99K poliovirus was unstable in feces following peroral inoculation of mice. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host.

  14. Deformation-enhanced thermal stability of an amorphous Fe80B20 alloy

    NASA Astrophysics Data System (ADS)

    Fan, G. J.; Quan, M. X.; Hu, Z. Q.

    1996-11-01

    By means of differential scanning calorimeter (DSC) measurements, the thermal stability of an amorphous Fe80B20 alloy after various periods of low-energy ball milling has been studied. The results indicate that the thermal stability of the amorphous Fe80B20 ribbons can be enhanced upon mechanical deformation with a low milling intensity. The crystallization temperature Tp, the crystallization enthalpy ΔH, and the crystallization activation energy Ex increase with milling time. The above observations will be compared with our previous findings that extensive mechanical deformation with a high milling intensity can otherwise induce a structural relaxation in an amorphous Fe80B20 alloy. Based on conventional thermodynamic and kinetic arguments, a reasonable interpretation will be made to explain the enhanced thermal stability of the amorphous Fe80B20 alloy after mechanical deformation.

  15. Salts Enhance Both Protein Stability and Amyloid Formation of an Immunoglobulin Light Chain

    PubMed Central

    Sikkink, Laura A.; Ramirez-Alvarado, Marina

    2008-01-01

    Amyloid fibrils are associated with sulfated glycosaminoglycans in the extracellular matrix. The presence of sulfated glycosaminoglycans is known to promote amyloid formation in vitro and in vivo, with the sulfate groups playing a role in this process. In order to understand the role that sulfate plays in amyloid formation, we have studied the effect of salts from the Hofmeister series on the protein structure, stability and amyloid formation of an amyloidogenic light chain protein, AL-12. We have been able to show for the first time a direct correlation between protein stability and amyloid formation enhancement by salts from the Hofmeister series, where SO42−conferred the most protein stability and enhancement of amyloid formation. Our study emphasizes the importance of the effect of ions in the protein bound water properties and downplays the role of specific interactions between the protein and ions. PMID:18395318

  16. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    NASA Astrophysics Data System (ADS)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of

  17. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors.

    PubMed

    Torres, Francesc; Uranga, Arantxa; Riverola, Martí; Sobreviela, Guillermo; Barniol, Núria

    2016-10-13

    Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system) that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time) for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm).

  18. Enhanced toroidal flow stabilization of edge localized modes with increased plasma density

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2017-09-01

    Toroidal flow alone is generally thought to have an important influence on tokamak edge pedestal stability, even though theoretical analysis often predicts merely a weak stabilizing effect of toroidal flow on the edge localized modes (ELMs) in experimental parameter regimes. For the first time, we find from two-fluid MHD calculations that such a stabilization, however, can be significantly enhanced by increasing the edge plasma density. Our finding resolves a long-standing mystery whether or how toroidal rotation can indeed have an effective influence on ELMs, and explains why the ELM mitigation and suppression by toroidal rotation are more favorably achieved in higher collisionality regime in recent experiments. The finding suggests a new control scheme on modulating toroidal flow stabilization of ELMs with plasma density, along with a new additional constraint on the optimal level of plasma density for the desired edge plasma conditions.

  19. A Nonlinear Excitation Controller Design Method for Terminal Voltage Regulation and Transient Stability Enhancement

    NASA Astrophysics Data System (ADS)

    Huang, Chongxin; Zhang, Kaifeng; Dai, Xianzhong; Zang, Qiang

    2014-06-01

    This paper proposes a cascade control method to design a nonlinear excitation controller to guarantee the terminal voltage regulation and the transient stability. Firstly, a nonlinear automatic voltage regulator (NAVR) in the inner loop is designed to control the terminal voltage exactly. Secondly, the generator model including the NAVR is transformed to be a reduced one. Subsequently, based on the reduced generator model, the nonlinear power system stabilizer in the external loop is designed to enhance the transient stability of the power systems. Furthermore, a coordination strategy is presented to improve the performances of the terminal voltage regulation in the steady state and the stability in the transient state. Finally, the proposed method is verified by numerous simulation results.

  20. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors

    PubMed Central

    Torres, Francesc; Uranga, Arantxa; Riverola, Martí; Sobreviela, Guillermo; Barniol, Núria

    2016-01-01

    Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system) that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time) for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm). PMID:27754377

  1. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  2. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-06-15

    This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients.

  3. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    PubMed Central

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the meteoric development of hybrid organic–inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies. PMID:27457130

  4. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    NASA Astrophysics Data System (ADS)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-07-01

    In the past few years, the meteoric development of hybrid organic-inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies.

  5. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast

    PubMed Central

    Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu

    2015-01-01

    Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member’s departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution. PMID:26562152

  6. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling.

    PubMed

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H

    2016-07-26

    In the past few years, the meteoric development of hybrid organic-inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3(+)) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials' constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3(+), CH3SH2(+), and SH3(+) cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies.

  7. PEGylation enhancement of pH stability of uricase via inhibitive tetramer dissociation.

    PubMed

    Tian, Hong; Guo, Yuan; Gao, Xiangdong; Yao, Wenbing

    2013-01-01

    Previously, PEGylated uricase was demonstrated to maintain catalytic activity at pH 5.8, the isoelectric point of uricase, where native uricase ceases to function. To find out whether PEGylation could enhance pH stability of uricase, the enzyme activity to pH curve was completely characterized. Complete characterization of the enzyme activity to pH curve, indicating an inverted bell-shaped relationship not previously documented, is presented. PEGylation enhancement of uricase stability at a pH lower than that commonly found in the liver, can be explored by dynamic dissociation of uricase using ultrafiltration and size-exclusion chromatography. The results suggest the role of PEGylation in enhanced pH stability is via inhibition of subunit disintegration. The mechanism of this effect is characterized by the wrapping of PEG chains around uricase, providing a flexible shell preventing subunit disintegration. The presence of notable PEGylation-induced changes in uricase supports this mechanism and include improved enzyme-substrate affinity and elevated thermal stability. Characterization of PEGylated uricase provides a basis for the rational design of therapeutic PEGylated proteins. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  8. Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2015-10-01

    Anthocyanins are often used in functional foods and beverages as colorants and nutraceuticals. However, these natural compounds may undergo chemical degradation during storage leading to color fading and loss of bioactivity. In particular, vitamin C (l-ascorbic acid) is known to accelerate anthocyanin degradation. In this study, the influence of various food-grade biopolymers on the physical and chemical stability of model beverages containing anthocyanin (0.025%), ascorbic acid (0 or 0.05%), and calcium salt (0 or 0.01%) was examined under accelerated conditions (40°C for 7days). Four biopolymers (1%) were examined for their potential to inhibit anthocyanin degradation: native whey protein; denatured whey protein; citrus pectin; and beet pectin. The physical stability was determined by measuring changes in absorbance, color, and visual appearance. Solutions containing anthocyanin and calcium salt (0 or 0.01%) were stable throughout storage, while those with added ascorbic acid were the least stable. The addition of biopolymers, particularly heat denatured whey protein, significantly enhanced the stability of the anthocyanin during storage. Fluorescence quenching studies showed that the anthocyanin may have formed complexes with the whey protein through hydrogen bonding that resulted in their enhanced stability in the presence of ascorbic acid. This study provides information that may improve the stability of anthocyanins in food and beverage systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents.

    PubMed

    Wang, Yonggang; Li, Yusong; Costanza, Jed; Abriola, Linda M; Pennell, Kurt D

    2012-11-06

    Experimental and mathematical modeling studies were performed to examine the effects of stabilizing agents on the transport and retention of fullerene nanoparticles (nC(60)) in water-saturated quartz sand. Three stabilizing systems were considered: naturally occurring compounds known to stabilize nanoparticles (Suwannee river humic acid (SRHA) and fulvic acid (SRFA)), synthetic additives used to enhance nanoparticle stability (Tween 80, a nonionic surfactant), and residual contaminants resulting from the manufacturing process (tetrahydrofuran (THF)). The results of column experiments demonstrated that the presence of THF, at concentrations up to 44.5 mg/L, did not alter nC(60) transport and retention behavior, whereas addition of SRHA (20 mg C/L), SRFA (20 mg C/L), or Tween 80 (1000 mg/L) to the influent nC(60) suspensions dramatically increased the mobility of nC(60), as demonstrated by coincidental nanoparticle and nonreactive tracer effluent breakthrough curves (BTCs) and minimal nC(60) retention. When columns were preflushed with surfactant, nC(60) transport was significantly enhanced compared to that in the absence of a stabilizing agent. The presence of adsorbed Tween 80 resulted in nC(60) BTCs characterized by a declining plateau and retention profiles that exhibited hyperexponential decay. The observed nC(60) transport and retention behavior was accurately captured by a mathematical model that accounted for coupled surfactant adsorption-desorption dynamics, surfactant-nanoparticle interactions, and particle attachment kinetics.

  10. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  11. Computational studies of two-phase cement-CO2-brine interaction in wellbore environments

    SciTech Connect

    Carey, James William; Lichtner, Peter C

    2009-01-01

    Wellbore integrity is essential to ensuring long-term isolation of buoyant supercritical CO{sub 2} during geologic sequestration of CO{sub 2}. In this report, we summarize recent progress in numerical simulations of cement-brine-CO{sub 2} interactions with respect to migration of CO{sub 2} outside of casing. Using typical values for the hydrologic properties of cement, caprock (shale) and reservoir materials, we show that the capillary properties of good quality cement will prevent flow of CO{sub 2} into and through cement. Rather, CO{sub 2}, if present, is likely to be confined to the casing-cement or cement-formation interfaces. CO{sub 2} does react with the cement by diffusion from the interface into the cement, in which case it produces distinct carbonation fronts within the cement. This is consistent with observations of cement performance at the CO{sub 2}-enhanced oil recovery SACROC Unit in West Texas (Carey et al. 2007). For poor quality cement, flow through cement may occur and would produce a pattern of uniform carbonation without reaction fronts. We also consider an alternative explanation for cement carbonation reactions as due to CO{sub 2} derived from caprock. We show that carbonation reactions in cement are limited to surficial reactions when CO{sub 2} pressure is low (< 10 bars) as might be expected in many caprock environments. For the case of caprock overlying natural CO{sub 2} reservoirs for millions of years, we consider Scherer and Huet's (2009) hypothesis of diffusive steady-state between CO{sub 2} in the reservoir and in the caprock. We find that in this case, the aqueous CO{sub 2} concentration would differ little from the reservoir and would be expected to produce carbonation reaction fronts in cements that are relatively uniform as a function of depth.

  12. Investigation of effects of terpene skin penetration enhancers on stability and biological activity of lysozyme.

    PubMed

    Varman, Rahul M; Singh, Somnath

    2012-12-01

    The transport of proteins through skin can be facilitated potentially by using terpenes as chemical enhancers. However, we do not know about the effects of these enhancers on the stability and biological activity of proteins which is crucial for the development of safe and efficient formulations. Therefore, this project investigated the effects of terpene-based skin penetration enhancers which are reported as nontoxic to the skin (e.g., limonene, p-cymene, geraniol, farnesol, eugenol, menthol, terpineol, carveol, carvone, fenchone, and verbenone), on the conformational stability and biological activity of a model protein lysozyme. Terpene (5% v/v) was added to lysozyme solution and kept for 24 h (the time normally a transdermal patch remains) for investigating conformational stability profiles and biological activity. Fourier transform infrared spectrophotometer was used to analyze different secondary structures, e.g., α-helix, β-sheet, β-turn, and random coil. Conformational changes were also monitored by differential scanning calorimeter by determining midpoint transition temperature (Tm) and calorimetric enthalpy (ΔH). Biological activity of lysozyme was determined by measuring decrease in A (450) when it was added to a suspension of Micrococcus lysodeikticus. The results of this study indicate that terpenes 9, 10, and 11 (carvone, L-fenchone, and L-verbenone) decreased conformational stability and biological activity of lysozyme significantly (p < 0.05) less than other terpenes used in this study. It is concluded that smaller terpenes containing ketones with low lipophilicity (log K (ow) ∼2.00) would be optimal for preserving conformational stability and biological activity of lysozyme in a transdermal formulation containing terpene as permeation enhancer.

  13. Textured (100) yttria-stabilized zirconia thin films deposited by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Holzschuh, H.; Suhr, H.

    1991-07-01

    Thin films of yttria-stabilized zirconia were deposited by plasma-enhanced chemical vapor deposition on quartz Si(100), Si(111), Ni, and the steels V2A and Hastelloy at substrate temperatures (Ts): 673-873 K. The metal beta-diketonates Y (thd)3 and Zr(thd)4 were used as precursors. The fully stabilized fluorite-type cubic structure was obtained over a wide range of yttria contents from 3.5 to 80 mol pct (Ts = 773 K). The quality of the films depended on the match of the thermal expansion coefficients of substrate and deposit.

  14. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells.

    PubMed

    Cao, Jing; Yin, Jun; Yuan, Shangfu; Zhao, Yun; Li, Jing; Zheng, Nanfeng

    2015-06-07

    Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability.

  15. Hamular frenum modification: a removable denture prosthesis retention and stability enhancement.

    PubMed

    Massad, J J; Anderson, J F

    2001-04-01

    A removable denture prosthesis, whether partial or complete, often requires preprosthetic surgery to achieve optimum stabilization and retention. While the hamular frenum may produce significant dynamic dislodging forces, a literature review did not reveal any reports dealing with this problem. A hamular frenum reduction surgical procedure using the free autogenous gingival graft procedure is described. Prosthetic function may be enhanced by eliminating the dynamic disrupting force of the hamular frenum along with improving posterior maxillary tuberosity contour and, as necessary, premaxillary form, allowing these contours to work in concert to develop a "cupping" stabilizing and retentive complex.

  16. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent.

    PubMed

    Cardinale, Bradley J; Gross, Kevin; Fritschie, Keith; Flombaum, Pedro; Fox, Jeremy W; Rixen, Christian; van Ruijven, Jasper; Reich, Peter B; Scherer-Lorenzen, Michael; Wilsey, Brian J

    2013-08-01

    To predict the ecological consequences of biodiversity loss, researchers have spent much time and effort quantifying how biological variation affects the magnitude and stability of ecological processes that underlie the functioning of ecosystems. Here we add to this work by looking at how biodiversity jointly impacts two aspects of ecosystem functioning at once: (1) the production of biomass at any single point in time (biomass/area or biomass/ volume), and (2) the stability of biomass production through time (the CV of changes in total community biomass through time). While it is often assumed that biodiversity simultaneously enhances both of these aspects of ecosystem functioning, the joint distribution of data describing how species richness regulates productivity and stability has yet to be quantified. Furthermore, analyses have yet to examine how diversity effects on production covary with diversity effects on stability. To overcome these two gaps, we reanalyzed the data from 34 experiments that have manipulated the richness of terrestrial plants or aquatic algae and measured how this aspect of biodiversity affects community biomass at multiple time points. Our reanalysis confirms that biodiversity does indeed simultaneously enhance both the production and stability of biomass in experimental systems, and this is broadly true for terrestrial and aquatic primary producers. However, the strength of diversity effects on biomass production is independent of diversity effects on temporal stability. The independence of effect sizes leads to two important conclusions. First, while it may be generally true that biodiversity enhances both productivity and stability, it is also true that the highest levels of productivity in a diverse community are not associated with the highest levels of stability. Thus, on average, diversity does not maximize the various aspects of ecosystem functioning we might wish to achieve in conservation and management. Second, knowing how

  17. Development of New Geothermal Wellbore Holdup Correlations Using Flowing Well Data

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Alexander, J.H.

    2004-03-01

    An ability to predict both the quantity of fluid that can be produced and its thermodynamic state (pressure, temperature, enthalpy, gas content, salinity, etc.) is essential for estimating the total usable energy of a geothermal resource. Numerical reservoir simulators can be utilized to calculate the thermodynamic state of the fluid at the underground feed-zone(s) at which the fluid enters the wellbore. The computation of the well-head fluid properties from a given underground state (or vice-versa) requires the use of a wellbore simulator. The fluid flow in the wellbore is not amenable to strict analytical treatment. Depending upon the relative amounts of gas and liquid, a variety of flow patterns can occur in the pipe. At small gas loadings, bubble flow takes place. An increase in gas flow rate can result in slug, churn or annular flow. Existing methods for treating two-phase flow in a wellbore require use of empirical correlations for action factor and for liquid hold-up.

  18. Parametric Sensivity Study of Operating and Design Variables in Wellbore Heat Exchangers

    SciTech Connect

    G. Michael Shook; Gopi Nalla; Gregory L. Mines; K. Kit Bloomfield

    2004-05-01

    This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h).

  19. Parametric Sensitivity Study of Operating and Design Variables in Wellbore Heat Exchangers

    SciTech Connect

    Nalla, G.; Shook, G.M.; Mines, G.L.; Bloomfield, K.K.

    2004-05-01

    This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h).

  20. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation

    PubMed Central

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2017-01-01

    Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems. PMID:28835923

  1. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation.

    PubMed

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2017-08-01

    Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.

  2. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  3. Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.

    PubMed

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E

    2017-02-01

    Robotic instruments based on concentric tube technology are well suited to minimally invasive surgery since they are slender, can navigate inside small cavities and can reach around sensitive tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when rotating one precurved tube inside another. In contrast to prior work that considered only tubes of piecewise constant precurvature, we allow precurvature to vary along the tube's arc length. Stability conditions for a planar tube pair are derived and used to formulate an optimal design problem. An analytic formulation of the optimal precurvature function is derived that achieves a desired tip orientation range while maximizing stability and respecting bending strain limits. This formulation also includes straight transmission segments at the proximal ends of the tubes. The result, confirmed by both numerical and physical experiment, enables designs with enhanced stability in comparison to designs of constant precurvature.

  4. A structural model for surface-enhanced stabilization in some metallic glass formers

    NASA Astrophysics Data System (ADS)

    Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.

    2013-01-01

    A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.

  5. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  6. Enhanced tunability of thermodynamic stability of complex hydrides by the incorporation of H- anions

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Humphries, Terry D.; Miwa, Kazutoshi; Orimo, Shin-ichi

    2014-05-01

    First-principles calculations were employed to investigate hypothetical complex hydrides (M,M')4FeH8 (M = Na, Li; M'=Mg, Zn, Y, Al). Besides complex anion [FeH6]4-, these materials contain two H- anions, which raise the total anionic charge state from tetravalent to hexavalent, and thereby significantly increasing the number of combinations of countercations. We have determined that similar to complex hydrides (M,M')2FeH6 containing only [FeH6]4-, the thermodynamic stability is tuned by the average cation electronegativity. Thus, the chemical flexibility provided by incorporating H- enhances the tunability of thermodynamic stability, which will be beneficial in obtaining optimal stability for hydrogen storage materials.

  7. Power Supply Reliability Assessment in UPFC-installed Transmission System for ATC Enhancement Considering Transient Stability

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Yokoyama, Akihiko

    With recent development of power electronics technology, power system stability enhancement and optimal power flow control by using Flexible AC Transmission System (FACTS) devices have so far been studied. The FACTS devices to relieve multiple constraints can also make it possible to enhance Available Transfer Capability (ATC) without construction of new transmission lines. The previous research revealed that ATC is expanded by avoiding multiple constraints in OPF using Unified Power Flow Controller (UPFC). For long-term operation of such ATC-expanded power system, it is necessary to evaluate power system reliability. In this paper, the evaluation method of supply reliability for UPFC-installed power system is proposed. Both thermal capacity and transient stability constraints are considered. The effectiveness of the proposed method is shown by numerical examples for IEEJ East10-machine test system.

  8. Alloy development for the enhanced stability of Omega precipitates in aluminum-copper-magnesium-(silver) alloys

    NASA Astrophysics Data System (ADS)

    Gable, Brian M.

    This research involved a combined analytical and experimental approach to the design of an age-hardenable Al-Cu-Mg-Ag alloy for moderate temperature application. The applied methodology involved the complimentary techniques of thermal analysis, calculated phase diagrams, analytical microscopy and quantitative microstructural characterization. The objective of this research was to exploit several avenues for enhancing the coarsening resistance and thermal stability of the O phase through careful control of the alloy chemistry and processing. Differential thermal analysis (DTA) coupled with conventional and analytical transmission electron microscopy (TEM) techniques were implemented to refine the calculation of the Al-rich corner of the quaternary Al-Cu-Mg-Ag phase diagram for subsequent alloy development. Quantitative energy dispersive spectroscopy (EDS) demonstrated that Ag preferentially partitioned to S-phase for all conditions investigated, which ultimately led to a concomitant loss of O precipitates. The elimination of S-phase precipitation and limiting the alloy Si content proved to enhance the nucleation and thermal stability of the O phase. Several O-dominated microstructures were manipulated through various thermo-mechanical processing techniques in order to evaluate the O nucleation density, particle size and thermal stability as a function of alloy composition and processing conditions. The long-term stability of O plates was found to coincide with high levels of Ag and moderate Mg additions, with the latter limiting the competition with S-phase precipitation. Several alloys were found to be dominated by O precipitation, which remained stable through long-term isothermal and double-aging heat treatments. This enhanced thermal stability of O plates is a significant improvement over the previous generation of Al-Cu-Mg-Ag alloys in which O plates dissolved sacrificially at long aging times for moderate aging temperatures. The competitive microstructural

  9. Improved Modeling of Naturally Fractured Reservoirs by Quantitatively Handling Flow Convergence into the Wellbore

    NASA Astrophysics Data System (ADS)

    Stadelman, M.; Crandall, D.; Sams, W. N.; Bromhal, G. S.

    2015-12-01

    Complex fractured networks in the subsurface control the flow of fluids in many applications, and accurately modeling their interaction with wells is critical to understanding their behavior. For tight sand and shale formations, fluid flow is primarily restricted to fractures within each rock layer. NFFLOW was designed by the Department of Energy to model gas well production from naturally fractured reservoirs. NFFLOW is a discrete fracture simulator, with every fracture and rock matrix in the domain handled individually. One-dimensional models are used calculate the flow through connected fractures and flow from the surrounding rocks into fractures. Flow into wellbores are determined from the combined flux from connecting fractures and adjacent rock matrices. One-dimensional fluid flow equations are used because they are extremely fast to solve and represent a reasonable approximation of the physical behavior of fluids in most of the reservoir. However, near the wellbore those models become inaccurate due to gas flow convergence, which is a multidimensional situation. We present a method to correct the one-dimensional models, using data from two-dimensional fluid flow models, while maintaining the original simulator speed. By applying corrections from the two-dimensional model, the one-dimensional models can better account for gas flow convergence into the wellbore as well as the location of the wellbore within the rock strata. Corrections were successful in scaling the one-dimensional flow rates to match the two dimensional values over a wide range of parameters for both fracture flow and porous media flow into the wellbore. This is shown to increase the accuracy of history matching to production data for a wide range of wells, allowing for better modeling and prediction of future productivity. With an accurate history match established, NFFLOW can then be used to investigate issues such as the ability of the formation to sequester carbon dioxide or the effects

  10. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    SciTech Connect

    Hubler, T.

    1996-10-01

    The purpose of this work is to develop modified resorcinol-formaldehyde (R-F) resin with enhanced chemical/oxidative stability in conditions typically encountered in the remediation of radioactive waste tanks. R-F resin is a regenerable organic ion-exchanger developed at Savannah River Technology Center that is being considered for use in the selective removal of radioactive cesium from alkaline waste tank supernates at both the Hanford and Savannah River sites.

  11. Enhancement of gene silencing potency and nuclease stability by chemically modified duplex RNA.

    PubMed

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2007-01-01

    In this study, we describe a development of chemically modified dsRNAs with improved biological properties. These dsRNAs possess an enhanced RNAi activity and a dramatically increased stability in cell cultured medium (containing 10% serum) in comparison with widely used 21nt siRNA. The chemically modified dsRNAs manifested a high longterm gene suppression after one week post-transfection, whereas 21nt siRNA showed a high RNAi activity only after 48 h cell transfection.

  12. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  13. Augmented Performance Environment for Enhancing Interagency Coordination in Stability, Security, Transition, and Reconstruction (SSTR) Operations

    DTIC Science & Technology

    2009-02-01

    1997; DiStefano & Maznevski, 2000; Rubinstein, 2003). In cases where cross-cultural interaction involves a history of exchange across groups, the...cross-cultural knowledge (e.g., DiStefano & Maznevski, 2000), but it is insufficient for enhancing multicultural collective task performance (e.g...Department of Defense. Directive 3000.05: Military Support for Stability, Security, Transition, and Reconstruction Operations, Nov 2005. DiStefano

  14. Chemical modification with orthophosphoric acid enhances surface-charge stability on polypropylene electrets

    NASA Astrophysics Data System (ADS)

    Wang, Jingwen; Rychkov, Dmitry; Gerhard, Reimund

    2017-05-01

    The low surface-charge stability of polypropylene (PP) frequently limits its application as an electret material. In this paper, we demonstrate how the treatment of PP-film surfaces with orthophosphoric acid (H3PO4) enhances their charge stability. To discriminate between the effects of chemical modification and thermal treatment, as-received and annealed PP films are used as reference samples. The electret properties of treated and non-treated PP films are characterized with thermally stimulated discharge (TSD) and isothermal surface-potential decay (ISPD) experiments, from which considerable improvement in thermal and temporal charge stability is observed for samples modified with H3PO4. The half-value temperature (T1/2) observed on TSD curves of chemically treated PP increases to 131 and 145 °C for positive and negative charges, respectively. The enhancement might be attributed to the phosphoric compounds detected on the H3PO4-modified surfaces via attenuated-total-reflection infrared spectroscopy. Deeper surface traps formed at the "foreign" phosphorus-containing structures are able to capture the charges over longer time periods and at higher temperatures, thus leading to significant improvements in the temporal and thermal surface-charge stabilities of PP electrets.

  15. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

    2015-04-01

    This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

  16. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  17. Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization.

    PubMed

    Misson, Mailin; Jin, Bo; Chen, Binghui; Zhang, Hu

    2015-10-01

    A functionalized polystyrene nanofiber (PSNF) immobilized β-galactosidase assembly (PSNF-Gal) was synthesized as a nanobiocatalyst aiming to enhance the biocatalyst stability and functional ability. The PSNF fabricated by electrospinning was functionalized through a chemical oxidation method for enzyme binding. The bioengineering performance of the enzyme carriers was further evaluated for bioconversion of lactose to galacto-oligosaccharides (GOS). The modified PSNF-Gal demonstrated distinguished performances to preserve the same activity as the free β-galactosidase at the optimum pH of 7.0, and to enhance the enzyme stability of PSNF-Gal in an alkaline condition up to pH 10. The PSNF assembly demonstrated improved thermal stability from 37 to 60 °C. The nanobiocatalyst was able to retain 30 % of its initial activity after ninth operation cycles comparing to four cycles with the unmodified counterpart. In contrast with free β-galactosidase, the modified PSNF-Gal enhanced the GOS yield from 14 to 28 %. These findings show the chemically modified PSNF-based nanobiocatalyst may be pertinent for various enzyme-catalysed bioprocessing applications.

  18. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  19. Enhancement of the Stability of a Prolipase from Rhizopus oryzae toward Aldehydes by Saturation Mutagenesis▿

    PubMed Central

    Di Lorenzo, Mirella; Hidalgo, Aurelio; Molina, Rafael; Hermoso, Juan A.; Pirozzi, Domenico; Bornscheuer, Uwe T.

    2007-01-01

    A prolipase from Rhizopus oryzae (proROL) was engineered in order to increase its stability toward lipid oxidation products such as aldehydes with the aim of improving its performance in oleochemical industries. Out of 22 amino acid residues (15 Lys and 7 His) prone to react with aldehydes, 6 Lys and all His residues (except for the catalytic histidine) were chosen and subjected to saturation mutagenesis. In order to quickly and reliably identify stability mutants within the resulting libraries, active variants were prescreened by an activity staining method on agar plates. Active mutants were expressed in Escherichia coli Origami in a 96-well microtiterplate format, and a stability test using octanal as a model deactivating agent was performed. The most stable histidine mutant (H201S) conferred a stability increase of 60%, which was further enhanced to 100% by combination with a lysine mutant (H201S/K168I). This increase in stability was also confirmed for other aldehydes. Interestingly, the mutations did not affect specific activity, as this was still similar to the wild-type enzyme. PMID:17890336

  20. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches

    PubMed Central

    Chu, Leonard Y.; Ye, Ling; Dong, Ke; Compans, Richard W.; Yang, Chinglai; Prausnitz, Mark R.

    2015-01-01

    Purpose This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Methods Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. Results While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1–2 weeks outside of refrigeration, vaccine in microneedle patches lost 40–50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. Conclusions These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures. PMID:26620313

  1. Facile Synthesis of Phosphatidyl Saccharides for Preparation of Anionic Nanoliposomes with Enhanced Stability

    PubMed Central

    Song, Shuang; Cheong, Ling-Zhi; Falkeborg, Mia; Liu, Lei; Dong, Mingdong; Jensen, Henrik Max; Bertelsen, Kresten; Thorsen, Michael; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2013-01-01

    Physical stability during storage and against processing such as dehyration/rehydration are the cornerstone in designing delivery vehicles. In this work, mono-, di- and tri-saccharides were enzymatically conjugated to phosphatidyl group through a facile approach namely phospholipase D (PLD) mediated transphosphatidylation in a biphasic reaction system. The purified products were structurally identified and the connectivities of carbohydrate to phosphatidyl moiety precisely mapped by 1H, 31P, 13C NMR pulse sequences and LC-ESI-FTMS. The synthetic phosphatidyl saccharides were employed as the sole biomimetic component for preparation of nanoliposomes. It was found that the critical micelle concentration (CMC) of phosphatidyl saccharides increases as more bulky sugar moiety (mono- to tri-) is introduced. Phosphatidyl di-saccharide had the largest membrane curvature. In comparison to the zwitterionic phosphatidylcholine liposome, all phosphatidyl saccharides liposomes are anionic and demonstrated significantly enhanced stability during storage. According to the confocal laser scan microscopy (CLSM) and atom force microscopy (AFM) analyses, the nanoliposomes formed by the synthetic phosphatidyl saccharides also show excellent stability against dehydration/rehydration process in which most of the liposomal structures remained intact. The abundance hydroxyl groups in the saccharide moieties might provide sufficient H-bondings for stabilization. This work demonstrated the synthesized phosphatidyl saccharides are capable of functioning as enzymatically liable materials which can form stable nanoliposomes without addition of stabilizing excipients. PMID:24069243

  2. Enhancing Activity and Stability of Uricase from Lactobacillus plantarum by Zeolite immobilization

    NASA Astrophysics Data System (ADS)

    Iswantini, D.; Nurhidayat, N.; Sarah

    2017-03-01

    Lactobacillus plantarum has been known be able to produce uricase for uric acid biosensor. Durability and stability of L. plantarum in generating uricase enzyme was low. Hence, we tried to enhance its durability and stability by immobilizing it onto activated 250 mg zeolite at room temperature using 100 μL L.plantarum suspension and 2.87 mM uric acid, while Michaelis-Menten constant (KM) and Vmax were obtained at 6.7431 mM and 0.9171 µA consecutively, and the linearity range was 0.1-3.3 mM (R2 = 0.9667). Limit of detection (LOD) and limit of quantification (LOQ) value of the measurement were 0.4827 mM and 1.6092 mM respectively. Biosensor stability treatment was carried out in two different treatments, using the same electrode and using disposable electrode. The disposable electrode stability showed better result based on repeated measurements, but stability was still need improvement.

  3. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    PubMed

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals.

  4. Apparent Tradeoff of Higher Activity in MMP-12 for Enhanced Stability and Flexibility in MMP-3

    PubMed Central

    Liang, Xiangyang; Arunima, A.; Zhao, Yingchu; Bhaskaran, Rajagopalan; Shende, Anuradha; Byrne, Todd S.; Fleeks, Jeremy; Palmier, Mark O.; Van Doren, Steven R.

    2010-01-01

    Abstract The greater activity of MMP-12 than MMP-3 toward substrates from protein fibrils has been quantified. Why is MMP-12 the more active protease? We looked for behaviors associated with the higher activity of MMP-12 than MMP-3, using nuclear magnetic resonance to monitor backbone dynamics and residue-specific stabilities of their catalytic domain. The proteolytic activities are likely to play important roles in inflammatory diseases of arteries, lungs, joints, and intestines. Nuclear magnetic resonance line broadening indicates that regions surrounding the active sites of both proteases sample conformational substates within milliseconds. The more extensive line broadening in MMP-3 suggests greater sampling of conformational substates, affecting the full length of helix B and β-strand IV forming the active site, and more remote sites. This could suggest more excursions to functionally incompetent substates. MMP-3 also has enhanced subnanosecond fluctuations in helix A, in the β-hairpin of strands IV and V, and before and including helix C. Hydrogen exchange protection in the EX2 regime suggests that MMP-3 possesses 2.8 kcal/mol higher folding stability than MMP-12(E219A). The β-sheet of MMP-3 appears to be stabilized still more. The higher stability of MMP-3 relative to MMP-12 coincides with the former's considerably lower proteolytic activity. This relationship is consistent with the hypothesis that enzymes often trade stability for higher activity. PMID:20655856

  5. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

    PubMed

    Zhu, Zhengxi

    2014-03-03

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen.

  6. Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure

    PubMed Central

    2015-01-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼12, nanoparticles have good stability; with ∼2 < ACDLogP < ∼9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  7. The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant.

    PubMed

    Wang, Aiqin; Li, Yiming; Yang, Xiaolong; Bao, Mutai; Cheng, Hua

    2017-03-07

    It is necessary for chemical dispersant to disperse oil effectively and maintain the stability of oil droplets. In this work, Xanthan Gum (XG) was used as an environmentally friendly additive in oil dispersant formulation to enhance the stability and biodegradation of dispersed crude oil droplets. When XG was used together with chemical dispersant 9500A, the dispersion effectiveness of crude oil in artificial sea water (ASW) and the oil droplet stability were both greatly enhanced. In the presence of XG, lower concentration of 9500A was needed to achieve the effective dispersion and stabilization. In addition to the enhancement of dispersion and stabilization, it was found that the biodegradation rate of crude oil by bacteria was dramatically enhanced when a mixture of 9500A and XG was used as a dispersant. Because of the low environmental impact of XG, this would be a potential way to formulate the dispersant with lower toxicity.

  8. Effect of pH and penetration enhancers on cysteamine stability and trans-corneal transport.

    PubMed

    Pescina, Silvia; Carra, Federica; Padula, Cristina; Santi, Patrizia; Nicoli, Sara

    2016-10-01

    Ocular cystinosis is a rare metabolic disorder characterized by the presence of insoluble cystine crystals inside the corneal stroma, with consequent photophobia, keratopathies and frequent corneal erosions. The current therapy consists in the lifetime ophthalmic administration of cysteamine, drug characterized by extremely high hydrophilicity, low molecular weight (77g/mol), and easy oxidization to disulfide. Ocular delivery of cysteamine is very challenging, for its poor permeability and stability in solution. The purpose of the present paper was to study the impact of formulation pH and composition on (1) the trans-corneal delivery and (2) the stability in solution of cysteamine, with particular focus on the use of alpha-cyclodextrin (α-CD), benzalkonium chloride (BAC) and disodium edetate (EDTA). Permeation experiments were performed ex vivo through freshly excised porcine cornea; stability was evaluated for six months at -20°, +4° and +25°C; irritation potential was evaluated using HET-CAM assay. The results showed that cysteamine trans-corneal diffusion is strictly dependent on both pH (7.4 preferred to 4.2) and buffering capacity, that negatively impact on the permeation; EDTA did not enhance the trans-corneal diffusion of cysteamine neither at pH 7.4 nor at pH 4.2, while benzalkonium chloride (BAC), antimicrobial agent present within commercial eye-drops, significantly enhanced it. Notably, α-CD was able to promote the trans-corneal diffusion of cysteamine and, at a 5.5%, a 4-fold higher penetration compared to the BAC-containing formulation was obtained. EDTA and acidic pH demonstrated to be essential for cysteamine stability. The formulation obtained by combining α-CD and EDTA was characterized by significant permeation, good stability profile, and no irritation potential, even if the tolerability should be further confirmed by in vivo test.

  9. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to

  10. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    PubMed Central

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  11. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    NASA Astrophysics Data System (ADS)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-06-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.

  12. Preparation of valnemulin hydrogen fumarate and its enhanced stability compared with valnemulin hydrochloride.

    PubMed

    Zhu, Xinle; Xu, Shixin; Xu, Qian

    2016-01-01

    It is necessary to develop a new salt of valnemulin to replace the veterinary antibiotic, e.g. valnemulin hydrochloride, in order to overcome its instability during storage and preparation. The objective of this study was to prepare a novel organic acid salt, valnemulin hydrogen fumarate, and to investigate its stability compared with valnemulin hydrochloride. The crystal of valnemulin hydrogen fumarate was prepared by modified crystallization method; the enhanced stabilities of valnemulin hydrogen fumarate were conducted under irradiation and humid conditions, and the experimental results were simulated at AM1 level of calculations. Valnemulin hydrogen fumarate was more stable than valnemulin hydrochloride. After irradiation for 180 days, the content of valnemulin hydrogen fumarate decreased slightly 2.7%, whereas the content of valnemulin hydrochloride had an obvious decrease of 32.8%. Meanwhile, valnemulin hydrogen fumarate showed better anti-RH (relative humidity) ability than valnemulin hydrochloride. Under conditions of 65% and 85% RH, the absorption values of valnemulin hydrogen fumarate towards water were 0.75% and 1.20% at 48 h, whereas those of valnemulin hydrochloride were 4.50% and 9.71%, respectively. The enhanced stability of valnemulin hydrogen fumarate could be attributed to its good crystallinity in comparison with the amorphous valnemulin hydrochloride.

  13. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  14. Enhanced dissolution and stability of artemisinin by nano-confinement in ordered mesoporous SBA-15 particles.

    PubMed

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Tan, Reginald B H

    2015-01-01

    Dissolution of poorly water-soluble drug, Artemisinin (ART), was enhanced by encapsulating the drug particles inside pore channels of ordered mesoporous silica, SBA-15, via co-spray drying. The drug release profiles of ART were investigated by using flow-through cell (USP IV) and in vitro dissolution tester (USP II). The co-spray-dried ART/SBA-15 samples demonstrated significantly improved dissolution rates and supersaturation compared to the untreated ART. The low cytotoxicity effect of ART and SBA-15 on Caco-2 cells after 24 h incubation demonstrated the biocompatibility of ART/SBA-15. Finally, the storage stability of the samples was investigated for 6 months under five different storage conditions. Overall, the solid dispersions exhibited excellent physical stability; however, their chemical stability was affected by humidity regardless of storage temperatures. The formulation of solid dispersions of ART/SBA-15 is potentially safe and an effective approach to enhance the solubility of poorly water-soluble ART.

  15. Chemical stability of plasmon-active silver tips for tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalbacova, Jana; Rodriguez, Raul D.; Desale, Vivek; Schneider, Maximilian; Amin, Ihsan; Jordan, Rainer; Zahn, Dietrich R. T.

    2015-01-01

    Silver nanostructures are used in tip- and surface-enhanced Raman spectroscopy due to their high electric field enhancement over almost the entire visible spectral range. However, the low chemical stability of silver, compared to other noble metals, promotes silver sulfide and sulfate formation which decreases its plasmonic activity. This is why silver tips are usually prepared on the same day of the experiments or are disregarded in favour of gold that is chemically more stable. Since silver degradation cannot be avoided, we hypothesized that a protection layer may be able to minimize or control degradation. In this contribution, we report the successful preparation of 4-biphenylthiol and 4'-nitro-4-biphenylthiol self-assembled monolayers on silver tips in order to protect them against tarnishing and to investigate the effect on the life-time of the plasmonic activity. The electrochemically etched wire surface was probed via Raman spectroscopy and scanning electron microscopy. The best long term stability and resistance against corrosion was shown by a monolayer of 4-biphenylthiol formed from dimethylformamide which did not display any degradation of the metallic tip during the observed period. Here, we demonstrate an easy and straightforward approach towards increasing the chemical stability of silver TERS-active probes.

  16. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating.

    PubMed

    Sun, B A; Chen, S H; Lu, Y M; Zhu, Z G; Zhao, Y L; Yang, Y; Chan, K C; Liu, C T

    2016-06-08

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.

  17. Silica Cladding of Ag Nanoparticles for High Stability and Surface-Enhanced Raman Spectroscopy Performance

    NASA Astrophysics Data System (ADS)

    Zhao, Miaomiao; Guo, Hao; Liu, Wenyao; Tang, Jun; Wang, Lei; Zhang, Binzhen; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2016-09-01

    For high-precision biochemical sensing, surface-enhanced Raman spectroscopy (SERS) has been demonstrated to be a highly sensitive spectroscopic analytical method and Ag is considered to be the best material for SERS performance. Due to the high surface activity of Ag nanoparticles, the high stability of Ag nanostructures, especially in moist environments, is one of the key issues that need to be solved. A method for silica (SiO2) cladding of Ag nanoparticles (NPs) is demonstrated here for high sensitivity and long-term stability when putted in aqueous solution. The chemically inert, transparent, hydrophilic, and bio-compatible SiO2 surface acts as the protection layer for the Ag nanoparticles, which can also enhance the Raman intensity to a certain extent. In our study, the Ag@SiO2 core-shell substrate can detect crystal violet solutions with molar concentrations down to 10-12 M. After 24 h of immersion, the reduction in Raman scattering intensity is about 85 % for sole Ag NP films, compared to 12 % for the Ag coated with a 10-nm SiO2 layer. This thickness was found to be optimum for Ag@SiO2 core-shell substrates with long-term stability and high SERS activity.

  18. Risks to Drinking Water from Oil and Gas Wellbore Construction and Integrity: Case Studies and Lessons Learned

    EPA Pesticide Factsheets

    This presentation examines various published reports from two drinking water contamination cases, and discuss the potential roles of wellbore construction and integrity and hydraulic fracturing in the resultant drinking water contamination.

  19. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Zhang, Zhengjun; Huang, Hanchen

    2017-10-01

    The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.

  20. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering.

    PubMed

    Ma, Lingwei; Zhang, Zhengjun; Huang, Hanchen

    2017-10-06

    The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.

  1. Conjugation of α-amylase with dextran for enhanced stability: process details, kinetics and structural analysis.

    PubMed

    Jadhav, Swati B; Singhal, Rekha S

    2012-11-06

    The influence of enzyme polysaccharide interaction on enzyme stability and activity was elucidated by covalently binding dextran to a model enzyme, α-amylase. The conjugation process was optimized with respect to concentration of oxidizing agent, pH of enzyme solution, ratio of dextran to enzyme concentration, temperature and time of conjugate formation, and was found to affect the stability of α-amylase. α-Amylase conjugated under optimized conditions showed 5% loss of activity but with enhanced thermal and pH stability. Lower inactivation rate constant of conjugated α-amylase within the temperature range of 60-80 °C implied its better stability. Activation energy for denaturation of α-amylase increased by 8.81 kJ/mol on conjugation with dextran. Analysis of secondary structure of α-amylase after covalent binding with dextran showed helix to turn conversion without loss of functional properties of α-amylase. Covalent bonding was found to be mandatory for the formation of conjugate.

  2. Enhancing stability of poly(1,3-cyclohexadiene)-based materials by bromination and dehydrobromination

    SciTech Connect

    Huang, Tianzi; Wang, Xiaojun; Malmgren, Thomas W; Mays, Jimmy

    2012-01-01

    In order to improve their thermal stability, poly(1,3-cyclohexadiene) (PCHD) homopolymer, diblock copolymer of PCHD with styrene (PCHD-b-PS), and crosslinked PCHD membranes were dehydrogenated by addition of bromine to the polymer in solution, followed by dehydrobromination using an isothermal treatment at elevated temperature. The brominated PCHD materials thus obtained were characterized via FT-IR and thermogravimetric analysis (TGA) before and after dehydrobromination. Dehydrobromination was performed inside a TGA instrument, allowing insight into thermal stability of the analytes to be obtained. The dehydrobrominated PCHD samples were characterized using elemental analysis, and it was found the dehydrogenation of PCHD to polyphenylene was not complete. Nevertheless, some aromatization did occur, and the thermal stability of the treated polymer was greatly enhanced as compared to its PCHD precursor. Such materials may thus be of interest as high carbon content, graphene-like films. Crosslinked PCHD membranes and PCHD-b-PS diblock copolymers were treated via the same bromination/pyrolysis process, which resulted in markedly improved thermal stabilities for these materials as well.

  3. Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study.

    PubMed

    Oates, Thomas W; Valderrama, Pilar; Bischof, Mark; Nedir, Rabah; Jones, Archie; Simpson, James; Toutenburg, Helge; Cochran, David L

    2007-01-01

    Chemical modification to a sandblasted, large-grit, acid-etched (SLA) implant surface has been shown to enhance the rate of osseointegration. The goal of the present study was to examine changes in stability for implants with a chemically modified SLA surface and to compare their outcomes to those of control implants. A randomized controlled trial was conducted with 31 patients. Each patient received 2 implants with the same physical properties but with surfaces that were chemically different. The control implants had a standard SLA surface, while the test implants had a chemically modified surface. Resonance frequency analysis was assessed weekly over the first 6 weeks following implant placement. All implants proved clinically successful, allowing for restoration. Most implants were placed in the mandible (50 of 62). A shift in implant stability from decreasing stability to increasing stability (P < .001), occurred after 2 weeks for the test implants and after 4 weeks for the control implants. The findings from this pilot study provide clinical support for the potential for chemical modification of the SLA surface to alter biologic events during the osseointegration process and demonstrate levels of short-term clinical success similar to those observed for implants with an SLA surface.

  4. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    SciTech Connect

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63–1.27 W m⁻¹ K⁻¹), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings. - Graphical abstract: There are many tiny pores and grain boundaries in the multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders,which greatly decrease the thermal conductivities of the YSZ powders. - Highlights: • Multi-hierarchical structured YSZ powders were successfully prepared. • The prepared YSZ powders had a low thermal conductivity (0.63–1.27 W m⁻¹ K⁻¹). • Improved high-temperature stability had been achieved for the prepared YSZ powders. • The influence of the morphology on their thermophysical properties was explored.

  5. Fabrication of protective over layer for enhanced thermal stability of zinc oxide based TCO films

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Ravikumar, P.; Sakthivel, B.

    2013-12-01

    To prevent the loss of oxygen vacancies in aluminium doped zinc oxide (AZO) thin films at high temperature process, and to enhance the thermal stability a protective tin oxide (TO) over layer has been realized. To investigate the protective nature of doped tin oxide layer, fluorine doped tin oxide (FTO) and antimony doped tin oxide (ATO) layers have also been coated on AZO layer. Then, to confirm its stability of opto-electrical properties under high temperature process, structural, optical and electrical studies of AZO single layer, TO/AZO, FTO/AZO and ATO/AZO double layered films were carried out before and after annealing and the results are reported. The XRD results showed that the crystalline nature of double layered films remains unchanged, even after the heat treatment. The UV results depicted that, in all the double layer films the transmission spectra remain unchanged or changed negligibly after annealing, indicating the thermal stability of double layered films. The photoluminescence results also strongly supported the improvement in the thermal stability of double layered films. The electrical studies suggested that the double layered films exhibited better electrical resistivity with bare AZO films.

  6. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    SciTech Connect

    Seo, Youngsang; Ha, Jeonghong; Kim, Dongsik; Choi, Tae-Youl; Jeong, Dae-Yong; Lee, Seung Yong

    2015-09-21

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of the clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.

  7. Single-Walled Carbon Nanotubes Enhance the Efficiency and Stability of Mesoscopic Perovskite Solar Cells.

    PubMed

    Batmunkh, Munkhbayar; Shearer, Cameron J; Bat-Erdene, Munkhjargal; Biggs, Mark J; Shapter, Joseph G

    2017-06-14

    Carbon nanotubes are 1D nanocarbons with excellent properties and have been extensively used in various electronic and optoelectronic device applications including solar cells. Herein, we report a significant enhancement in the efficiency and stability of perovskite solar cells (PSCs) by employing single-walled carbon nanotubes (SWCNTs) in the mesoporous photoelectrode. It was found that SWCNTs provide both rapid electron transfer and advantageously shifts the conduction band minimum of the TiO2 photoelectrode and thus enhances all photovoltaic parameters of PSCs. The TiO2-SWCNTs photoelectrode based PSC device exhibited a power conversion efficiency (PCE) of up to 16.11%, while the device fabricated without SWCNTs displayed an efficiency of 13.53%. More importantly, we found that the SWCNTs in the TiO2 nanoparticles (TiO2 NPs) based photoelectrode suppress the hysteresis behavior and significantly enhance both the light and long-term storage stability of the PSC devices. The present work provides important guidance for future investigations in utilizing carbonaceous materials for solar cells.

  8. Engineering bright solitons to enhance the stability of two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Radha, R.; Vinayagam, P. S.; Sudharsan, J. B.; Liu, Wu-Ming; Malomed, Boris A.

    2015-12-01

    We consider a system of coupled Gross-Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose-Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons.

  9. Substrate and head group modifications for enhanced stability in molecular electronic devices

    NASA Astrophysics Data System (ADS)

    Ferrato, Michael-Anthony

    Poor Self-Assembled Monolayer (SAM) stability is a barrier which impedes the incorporation of molecular layers as functional components in electronic device architectures. Here we investigate the molecular electronic characteristics of two well established approaches to enhancing SAM stability. In Chapter 2 we investigate the electrochemical modification of Au substrates by the underpotential deposition of silver monolayers (AgUPD). In Chapter 3 we study chelating dithiophosphinic acid (DTPA) head groups to anchor SAM molecules to substrates. Based on molecular electronic characterization using EGaIn Tip testbeds, we observed that AgUPD substrates maintained the inherent electronic character of n-alkanethiolate SAMs, but reduced charge transport by almost 1 order of magnitude as compared with the same SAMs on bulk Au substrates. Similar molecular electronic characterization of (diphenyl)dithiophosphinic acid SAMs on Au substrates revealed that the DTPA head group induced a ~3 order of magnitude drop in charge transport as compared with analogous thiophenol SAMs.

  10. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    PubMed

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  11. Enhancing stability and photocatalytic activity of ZnO nanoparticles by surface modification of graphene oxide.

    PubMed

    Wang, Yinjie; Liu, Jincheng; Liu, Lei; Sun, Darren D

    2012-05-01

    This work reports a simple method for the preparation of high-quality GO-ZnO nanocomposite materials. Transmission electron microscopy (TEM) revealed that the ZnO nanoparticles are uniformly distributed on the GO sheets and the diameter of the ZnO nanoparticles falls in 5-8 nm. Further experimental results imply that involving GO sheets into the system could remarkably prevent the aggregation of ZnO nanoparticles compared to pure ZnO. The photocatalytic activity and stability of the prepared GO-ZnO composite for the degradation of Acid Orange 7 (AO 7) under UV light irradiation is significantly enhanced in comparison to the as-synthesized pristine ZnO nanoparticles. Considering the high photocatalytic acitivity and relative stability, this high-quality GO-ZnO nanocomposite is beneficial for the applications in environmental engineering and other fields.

  12. Screening of polysaccharides for preparation of α-amylase conjugate to enhance stability and storage life.

    PubMed

    Jadhav, Swati B; Singhal, Rekha S

    2013-02-15

    Nine polysaccharides differing in structure and chemical nature were screened for their ability to conjugate with α-amylase by covalent binding for enhancing the thermal and pH stability of α-amylase. Among these polysaccharides, agar, dextran, pectin and xanthan showed better results but dextran stood out among all the polysaccharide for providing both thermal and pH stability to α-amylase. α-Amylase conjugated with agar, dextran, pectin and xanthan showed antimicrobial property with added preservative (0.2% sodium benzoate) in liquid formulation of α-amylase challenged with Bacillus subtilis and Escherichia coli. Dextran was the only polysaccharide which showed significant reduction of microbial growth of challenged organisms and aerobic flora without any preservative added. Aerobic flora could flourish well in the liquid α-amylase, but low temperature (4 °C), dextran, and preservative showed synergistic effect in efficiently increasing the storage life of liquid α-amylase.

  13. Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoxu; Rui, Xianhong; Zhou, WenWen; Tan, Liping; Yan, Qingyu; Lu, Ziyang; Hng, Huey Hoon

    2014-03-01

    Si nanowires are successfully grown in porous carbon by supercritical fluid-liquid-solid (SFLS) process, which show high specific capacities and charge-discharge cycling stability as anode materials for Li-ion storage. The enhancement capacity and cycling stability of the Si nanowires/porous carbon composite nanostructures is attributed to the porous carbon serving as a highly conductive framework and absorption of volume changes of Si nanowires during the lithiation/delithiation process. At optimized condition, the Si nanowires/porous carbon electrodes maintain reversible capacities of 1678 mAh g-1 for the 100th cycle at a current density of 420 mA g-1, which is much better as compared to that of pure Si nanowires.

  14. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.

    PubMed

    Ohba, Tomonori

    2014-02-24

    An understanding of the structure and behavior of electrolyte solutions in nanoenvironements is crucial not only for a wide variety of applications, but also for the development of physical, chemical, and biological processes. We demonstrate the structure and stability of electrolyte in carbon nanotubes using hybrid reverse Monte Carlo simulations of X-ray diffraction patterns. Hydrogen bonds between water are adequately formed in carbon nanotubes, although some hydrogen bonds are restricted by the interfaces of carbon nanotubes. The hydrogen bonding network of water in electrolyte in the carbon nanotubes is further weakened. On the other hand, formation of the ion hydration shell is significantly enhanced in the electrolyte in the carbon nanotubes in comparison to ion hydration in bulk electrolyte. The significant hydrogen bond and hydration shell formation are a result of gaining stability in the hydrophobic nanoenvironment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced intracellular stability of dextran-horse radish peroxidase conjugate: an approach to enzyme replacement therapy.

    PubMed

    Mumtaz, S; Bachhawat, B K

    1992-09-15

    Horse radish peroxidase (HRP), a mannose-containing glycoprotein was covalently modified by conjugation with dextran. The rapid uptake of HRP by the liver is markedly inhibited by mannan. The uptake of dextran-HRP conjugate by the liver, though lower compared to that of the free enzyme, is also partially inhibited by mannan. Liposomes were therefore used as carriers for delivering the free and the modified HRP to the liver. The dextran-HRP conjugate showed greater stability intracellularly as compared to the free enzyme. The enhanced stability of enzymes upon their extensive glycosylation with nondegradable sugar polymers would be of importance in extending the catalytic life of therapeutically active enzymes and thereby improve their therapeutic potential for the treatment of certain enzyme deficiency disorders.

  16. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  17. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Gao, Hainan; Zhao, Ziguang; Cai, Yudong; Zhou, Jiajia; Hua, Wenda; Chen, Lie; Wang, Li; Zhang, Jianqi; Han, Dong; Liu, Mingjie; Jiang, Lei

    2017-06-01

    Many biological organisms with exceptional freezing tolerance can resist the damages to cells from extra-/intracellular ice crystals and thus maintain their mechanical stability at subzero temperatures. Inspired by the freezing tolerance mechanisms found in nature, here we report a strategy of combining hydrophilic/oleophilic heteronetworks to produce self-adaptive, freeze-tolerant and mechanically stable organohydrogels. The organohydrogels can simultaneously use water and oil as a dispersion medium, and quickly switch between hydrogel- and organogel-like behaviours in response to the nature of the surrounding phase. Accordingly, their surfaces display unusual adaptive dual superlyophobic in oil/water system (that is, they are superhydrophobic under oil and superoleophobic under water). Moreover, the organogel component can inhibit the ice crystallization of the hydrogel component, thus enhancing the mechanical stability of organohydrogel over a wide temperature range (-78 to 80 °C). The organohydrogels may have promising applications in complex and harsh environments.

  18. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  19. Apoferritin Nanoparticle: A Novel and Biocompatible Carrier for Enzyme Immobilization with Enhanced Activity and Stability

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong J.; Lin, Chiann Tso; Lin, Yuehe

    2011-11-01

    Apoferritin is a nanostructured material with a uniform size and spherical structure, and it has excellent bio-compatibility. In this work, we report the use of apoferritin as a novel and biocompatible carrier for stabilizing enzymes and their activities. We used glucose oxidase (GOx) as a model enzyme. GOx was immobilized on the surface of the apoferritin through a green synthetic approach taking advantage of bioaffinity binding between streptavidin and biotin. As a result, a glucose oxidase-biotin/streptavidin/biotin-apoferritin conjugate (Apo-GOx) was prepared using streptavidin as a bridge. The synthesized Apo-GOx was characterized with transmission electron microscopy, ultraviolet, and fluorescence spectroscopy. The activity and stability of GOx on the surface of the apoferritin were studied in different environments, such as temperature, chemicals, and pH, in comparison with the biotinylated GOx (B-GOx). The results showed that the activity of GOx on the apoferritin surface was significantly enhanced. The thermal and chemical stability of the GOx on the apoferritin was also greatly improved compared to free B-GOx in a solution. It was found that the activity of the GOx on the apoferritin only lost 30% in comparison to a 70% loss of free B-GOx after a 2 h incubation at 50oC. There was almost no decrease in activity for the GOx on the apoferritin as compared to an 80% activity decrease for free B-GOx after 30 min incubation in a 5 M urea solution. Glucose detection was used as a model application for the enzyme immobilization method developed in this work. The GOx immobilized apoferritin nanoparticles exhibited high sensitivity for glucose detection with a detection limit of 3 nM glucose. This work offers a novel approach for immobilizing enzymes with enhanced stability and activity, and this method may find a number of applications, such as in enzyme catalysis, DNA assays and immunoassays.

  20. Wellbore enlargement investigation: Potential analogs to the Waste Isolation Pilot Plant during inadvertent intrusion of the repository

    SciTech Connect

    Boak, D.M.; Dotson, L.; Aguilar, R.

    1997-01-01

    This study involved the evaluation and documentation of cases in which petroleum wellbores were enlarged beyond the nominal hole diameter as a consequence of erosion during exploratory drilling, particularly as a function of gas flow into the wellbore during blowout conditions. A primary objective was to identify analogs to potential wellbore enlargement at the Waste Isolation Pilot Plant (WIPP) during inadvertent human intrusion. Secondary objectives were to identify drilling scenarios associated with enlargement, determine the physical extent of enlargement, and establish the physical properties of the formation in which the enlargement occurred. No analogs of sufficient quality to establish quantitative limits on wellbore enlargement at the WIPP disposal system were identified. However, some information was obtained regarding the frequency of petroleum well blowouts and the likelihood that such blowouts would bridge downhole, self-limiting the surface release of disposal-system material. Further work would be necessary, however, to determine the conditions under which bridging could occur and the extent to which the bridging might be applicable to WIPP. In addition, data on casing sizes of petroleum boreholes in the WIPP vicinity support the use of a 12-{1/4} inch borehole size in WIPP performance assessment calculations. Finally, although data are limited, there was no evidence of significant wellbore enlargement in any of three blowouts that occur-red in wellbores in the Delaware Basin (South Culebra Bluff Unit No. 1, Energy Research and Development Administration (ERDA) 6, and WIPP 12).

  1. Coupling of the reservoir simulator TOUGH and the wellbore simulator WFSA

    SciTech Connect

    Hadgu, T.; Zimmerman, R.W.; Bodvarsson

    1995-03-01

    The reservoir simulator TOUGH and the wellbore simulator WFSA have been coupled, so as to allow simultaneous modeling of the flow of geothermal brine in the reservoir as well as in the wellbore. A new module, COUPLE, allows WFSA to be called as a subroutine by TOUGH. The mass flowrate computed by WFSA now serves as a source/sink term for the TOUGH wellblocks. Sample problems are given to illustrate the use of the coupled codes. One of these problems compares the results of the new simulation method to those obtained using the deliverability option in TOUGH. The coupled computing procedure is shown to simulate more accurately the behavior of a geothermal reservoir under exploitation.

  2. U.S. Geological Survey Combined Well-Bore Flow and Depth-Dependent Water Sampler

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Hanson, Randall T.; Martin, Peter; Crawford, Steven M.; Smith, Gregory A.

    1999-01-01

    The U.S. Geological Survey has developed a combined well-bore flow and depth-dependent sample collection tool. It is suitable for use in existing production wells having limited access and clearances as small as 1 inch. The combination of well-bore flow and depth-dependent water-quality data is especially effective in assessing changes in aquifer properties and water quality with depth. These are direct measures of changes in well yield and ground-water quality with depth under actual operating conditions. Combinations of other geophysical tools capable of making these measurements, such as vertical-axis current meters used with wire-line samplers, are commercially available but these tools are large and can not easily enter existing production wells.

  3. Supplement to wellbore models GWELL, GWNACL, and HOLA User`s Guide

    SciTech Connect

    Hadgu, T.; Bodvarsson, G.S.

    1992-09-01

    A study was made on improving the applicability and ease of usage of the wellbore simulators HOLA, GWELL and GWNACL (Bjornsson, 1987; Aunzo et al., 1991). The study concentrated mainly on the usage of Option 2 (please refer to the User`s Guide; Aunzo et al., 1991) and modeling flow of superheated steam when using these computer codes. Amendments were made to the simulators to allow implementation of a variety of input data. A wide range of input data was used to test the modifications to the codes. The study did not attempt to modify or improve the physics or formulations which were used in the models. It showed that a careful check of the input data is required. This report addresses these two areas of interest: usage of Option 2, and simulation of wellbore flow of superheated steam.

  4. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  5. Enhancement by reproterol of the ability of disodium cromoglycate to stabilize rat mastocytes.

    PubMed

    Eleno, N; Gajate, E; Macias, J; Garay, R P

    1999-01-01

    The beta2-adrenoceptor agonist reproterol and disodium cromoglycate (DSCG) are used in fixed combination for the treatment of asthma, because they act on bronchial smooth muscle and inflammatory cells, respectively. Here, we investigated if reproterol can also act in rat mast cells in vitro to facilitate the inhibitory action of disodium cromoglycate (DSCG) on histamine secretion induced by compound 48/80. Reproterol was as potent as DSCG to inhibit histamine release in rat mast cells (32.8+/-6.0 vs. 36.7+/-6.2% at 1 microM of each compound, n=10 and n=8 respectively). Mast cell stabilization by DSCG (1-100 microM) was strongly and significantly enhanced in the presence of a fixed saturating concentration of reproterol (100 microM). Conversely, the combination of DSCG (1-100 microM) with the beta2-agonist used as reference compound, salbutamol (100 microM) did not inhibit histamine release more than DSCG alone. In combination with a saturating concentration of DSCG (100 microM), reproterol inhibited histamine release more than reproterol alone. The potent adenylate cyclase stimulator forskolin (50 microM) was able to inhibit histamine release to a similar extent as DSCG and significantly (P<0.05) enhanced the inhibition of histamine release by DSCG. Finally, the phosphodiesterase inhibitor theophylline (100 microM) was equipotent to reproterol and DSCG in stabilizing rat mast cells. In conclusion, reproterol enhances the ability of disodium cromoglycate to stabilize rat mast cells. This effect is not shared by salbutamol and can be, at least in part, independent of beta2-adrenoceptor stimulation. Copyright 1999 Academic Press.

  6. Spray-On Polyaniline/Poly(acrylic acid) Electrodes with Enhanced Electrochemical Stability.

    PubMed

    Jeon, Ju-Won; Kwon, Se Ra; Li, Fei; Lutkenhaus, Jodie L

    2015-11-04

    Polyaniline (PANI)-based electrodes are promising candidates for energy storage, but their cycle life remains poor. Recent work suggests that secondary interactions may enhance polyaniline's electrochemical stability and cycle life, but evidence to date is not conclusive. Here, we investigate spray-assisted layer-by-layer assemblies containing polyaniline nanofibers (PANI NFs) or conventional PANI and poly(acrylic acid) (PAA), which provides hydrogen bonding and electrostatic interactions. This spray-on approach may be suitable for the deposition of PANI onto a variety of surfaces. The effects of PANI type, PAA pH, and PAA molecular weight on the growth behavior, conductivity, and electrochemical performance are examined. It is shown that LbL films with PANI NFs, higher molecular weight PAA, and lower PAA pH yield the thickest films, whereas the thinnest films come from conventional PANI assembled under similar conditions. Electron microscopy imaging and density measurements show that LbL films containing PANI NFs are very porous, whereas those containing conventional PANI are very dense (0.28 vs 1.33 g/cm(3), respectively). The difference in density dramatically affects the electrochemical properties in terms of capacity and long-term cycling behavior. Upon extended cycling, PANI NFs alone rapidly lose their electrochemical activity. On the other hand, PANI NF-based LbL films exhibited somewhat enhanced stability, and PANI-based LbL films were exceptionally stable, maintaining 94.7% of their capacity after 1000 cycles when cycled up to 4.2 V vs Li/Li(+). These results show that secondary interactions from PAA enhance stability, as does the selection of PANI type and the electrode's density.

  7. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon.

    PubMed

    Chen, Wentao; Kong, Leopold; Connelly, Stephen; Dendle, Julia M; Liu, Yu; Wilson, Ian A; Powers, Evan T; Kelly, Jeffery W

    2016-07-15

    Monoclonal antibodies (mAbs) exhibiting highly selective binding to a protein target constitute a large and growing proportion of the therapeutics market. Aggregation of mAbs results in the loss of their therapeutic efficacy and can result in deleterious immune responses. The CH2 domain comprising part of the Fc portion of Immunoglobulin G (IgG) is typically the least stable domain in IgG-type antibodies and therefore influences their aggregation propensity. We stabilized the CH2 domain by engineering an enhanced aromatic sequon (EAS) into the N-glycosylated C'E loop and observed a 4.8 °C increase in the melting temperature of the purified IgG1 Fc fragment. This EAS-stabilized CH2 domain also conferred enhanced stability against thermal and low pH induced aggregation in the context of a full-length monoclonal IgG1 antibody. The crystal structure of the EAS-stabilized (Q295F/Y296A) IgG1 Fc fragment confirms the design principle, i.e., the importance of the GlcNAc1•F295 interaction, and surprisingly reveals that the core fucose attached to GlcNAc1 also engages in an interaction with F295. Inhibition of core fucosylation confirms the contribution of the fucose-Phe interaction to the stabilization. The Q295F/Y296A mutations also modulate the binding affinity of the full-length antibody to Fc receptors by decreasing the binding to low affinity Fc gamma receptors (FcγRIIa, FcγRIIIa, and FcγRIIIb), while maintaining wild-type binding affinity to FcRn and FcγRI. Our results demonstrate that engineering an EAS into the N-glycosylated reverse turn on the C'E loop leads to stabilizing N-glycan-protein interactions in antibodies and that this modification modulates antibody-Fc receptor binding.

  8. An analysis of helical buckling of tubulars subjected to axial and torsional loading in inclined wellbores

    SciTech Connect

    Miska, S.; Cunha, J.C.

    1995-12-31

    This paper describes new theoretical results for prediction of buckling behavior of tubulars in inclined wellbores. Using conservation of energy and the principle of virtual work improved equations for buckling and post-buckling conditions are derived. The effect of torque on the buckling process is considered. Practical examples are provided showing the influence of torque on the critical buckling force. The equations for critical buckling force reduce to those previously derived when torque is set to zero and weightless strings are considered.

  9. Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities

    PubMed Central

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-01-01

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation. PMID:24264725

  10. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1.

    PubMed

    Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2012-09-01

    Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy.

  11. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  12. Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Judkins, Roddie R.; Armstrong, Timothy R.; Adcock, Kenneth D.

    2010-11-09

    A method for treating a porous item constructed of metal powder, such as a powder made of Series 400 stainless steel, involves a step of preheating the porous item to a temperature of between about 700 and 900.degree. C. degrees in an oxidizing atmosphere and then sintering the body in an inert or reducing atmosphere at a temperature which is slightly below the melting temperature of the metal which comprises the porous item. The thermal stability of the resulting item is enhanced by this method so that the item retains its porosity and metallic characteristics, such as ductility, at higher (e.g. near-melting) temperatures.

  13. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating

    SciTech Connect

    Zhang, Hongbo; Lei, Yu; Kropf, A. Jeremy; Zhang, Guanghui; Elam, Jeffrey W.; Miller, Jeffrey T.; Sollberger, Fred; Ribeiro, Fabio; Akatay, Cem M.; Stach, Eric A.; Dumesic, James A; Marshall, Christopher L.

    2014-08-01

    The stability of a gas-phase furfural hydrogenation catalyst (CuCr2O4 center dot CuO) was enhanced by depositing a thin Al2O3 layer using atomic layer deposition (ALD). Based on temperature-programed reduction (TPR) measurements, the reduction temperature of Cu was raised significantly, and the activation energy for furfural reduction was decreased following the ALD treatment. Thinner ALD layers yielded higher furfural hydrogenation activities. X-ray absorption fine structure (XAFS) spectroscopy studies indicated that Cu1+/Cu-0 are the active species for furfural reduction.

  14. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian; Bievenue, Thomas J.; Burdett, John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  15. Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system

    PubMed Central

    Sun, Wenjie; Qu, Ding; Ma, Yihua; Chen, Yan; Liu, Congyan; Zhou, Jing

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used as antibacterial products in various fields. Recent studies have suggested that AgNPs need an appropriate stabilizer to improve their stability. Some antibacterial traditional Chinese medicines (TCMs) contain various reductive components, which can not only stabilize AgNPs but also enhance their antimicrobial activity. In this study, we developed a series of novel AgNPs using a TCM extract as a stabilizer, reducing agent, and antimicrobial agent (TCM-AgNPs). A storage stability investigation of the TCM-AgNPs suggested a significant improvement when compared with bare AgNPs. Further, conjugation of TCMs onto the AgNP surface resulted in stronger antimicrobial potency on antibacterial evaluation using Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus with minimum inhibitory concentration 50% (MIC50) ratios (and minimum bactericidal concentration 90% [MBC90] ratios) of AgNPs to respective TCM-AgNPs as assessment indices. Among these, P. cuspidatum Sieb. et-conjugated AgNPs (P.C.-AgNPs) had the advantage of a combination of TCMs and AgNPs and was studied in detail with regard to its synthesis and characterization. The extraction time, reaction temperature, and concentrations of AgNO3 and Polygonum cuspidatum Sieb. et extract were critical factors in the preparation of P.C.-AgNPs. Further, the results of X-ray diffraction and Fourier transform infrared spectroscopy indicated successful preparation of P.C.-AgNPs. In representative studies, P.C.-AgNPs showed a well-defined spherical shape, a homogeneous small particle size (36.78 nm), a narrow polydispersity index (0.105), and a highly negative zeta potential (−23.6 mV) on transmission electron microscopy and dynamic light scattering. These results indicate that TCM-AgNPs have a potential role as antibacterial agents in the clinic setting. PMID:25473286

  16. Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system.

    PubMed

    Sun, Wenjie; Qu, Ding; Ma, Yihua; Chen, Yan; Liu, Congyan; Zhou, Jing

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used as antibacterial products in various fields. Recent studies have suggested that AgNPs need an appropriate stabilizer to improve their stability. Some antibacterial traditional Chinese medicines (TCMs) contain various reductive components, which can not only stabilize AgNPs but also enhance their antimicrobial activity. In this study, we developed a series of novel AgNPs using a TCM extract as a stabilizer, reducing agent, and antimicrobial agent (TCM-AgNPs). A storage stability investigation of the TCM-AgNPs suggested a significant improvement when compared with bare AgNPs. Further, conjugation of TCMs onto the AgNP surface resulted in stronger antimicrobial potency on antibacterial evaluation using Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus with minimum inhibitory concentration 50% (MIC50) ratios (and minimum bactericidal concentration 90% [MBC90] ratios) of AgNPs to respective TCM-AgNPs as assessment indices. Among these, P. cuspidatum Sieb. et-conjugated AgNPs (P.C.-AgNPs) had the advantage of a combination of TCMs and AgNPs and was studied in detail with regard to its synthesis and characterization. The extraction time, reaction temperature, and concentrations of AgNO3 and Polygonum cuspidatum Sieb. et extract were critical factors in the preparation of P.C.-AgNPs. Further, the results of X-ray diffraction and Fourier transform infrared spectroscopy indicated successful preparation of P.C.-AgNPs. In representative studies, P.C.-AgNPs showed a well-defined spherical shape, a homogeneous small particle size (36.78 nm), a narrow polydispersity index (0.105), and a highly negative zeta potential (-23.6 mV) on transmission electron microscopy and dynamic light scattering. These results indicate that TCM-AgNPs have a potential role as antibacterial agents in the clinic setting.

  17. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview

    PubMed Central

    Goldman, Ellen R.; Liu, Jinny L.; Zabetakis, Dan; Anderson, George P.

    2017-01-01

    Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications. PMID:28791022

  18. A new polymer nanocomposite repair material for restoring wellbore seal integrity

    DOE PAGES

    Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...

    2017-03-01

    Seal integrity of functional oil wells and abandoned wellbores used for CO2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, and 1.0%more » Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less

  19. Distribution of sulfur deposition near a wellbore in a sour gas reservoir

    NASA Astrophysics Data System (ADS)

    Hu, Jinghong; Yang, Xuefeng; He, ShunLi; Zhao, Jinzhou

    2013-02-01

    Elemental sulfur precipitates from sour gas when reservoir pressure and temperature decrease. Sulfur deposition in a formation may significantly reduce the inflow performance of sour gas wells. This paper develops a micro-mechanical migration model and experiments which describe the law of sulfur precipitation, plugging and distribution near a wellbore. Based on the analysis of the sulfur deposition law and micro-mechanical migration theory, elemental sulfur mechanical models in pores are presented. The critical velocity of sulfur is calculated and the rule of precipitated sulfur distribution near a wellbore is deduced. Reservoir cores and supersaturated sour gas are utilized to observe sulfur precipitation and plugging in sulfur damage experiments, and the main influential factor is analysed. According to the models and experimental results, precipitated sulfur can decrease reservoir permeability. The liquid bridge force is the most important factor to affect reservoir permeability due to sulfur deposition. Precipitated sulfur cannot be carried away from pores if the liquid bridge force is considered; the critical velocity increases as the diameter of the sulfur particles increases, which may cause serious formation damage. Moreover, it can be seen from the results that the biggest volume of sulfur deposition does not occur at the bottom but near the bottom of a borehole. These results can be used to describe the profile of dynamic sulfur deposition and help a reservoir engineer to develop a plan for removing the sulfur near a wellbore.

  20. A new polymer nanocomposite repair material for restoring wellbore seal integrity

    SciTech Connect

    Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; Stormont, John; Reda Taha, Mahmoud M.

    2016-10-21

    Seal integrity of functional oil wells and abandoned wellbores used for CO2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, and 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.

  1. Interbed Modeling to Predict Wellbore Damage for Big Hill Strategic Petroleum Reserve

    NASA Astrophysics Data System (ADS)

    Park, Byoung Yoon

    2014-09-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three-dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate horizontal and vertical displacements in each well as it crosses the various interbeds. The model contains interfaces between each lithology and a shear zone (fault) to examine the interbed behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed, respectively, from shear stress that exceeded the casing shear strength due to the horizontal movement of the salt top relative to the caprock and tensile stress due to the downward movement of the salt top from the caprock. The wellbores of Caverns 114 and 104, located at the far end of the field and near the fault, respectively, are predicted to fail by shear stress in the near future. The wellbores of inmost Caverns 107 and 108 are predicted to fail by tensile stress in the near future. The salt top subsides because the volumes of caverns in the salt dome decrease with time due to salt creep closure, while the caprock does not subside at the same rate as the salt top because the caprock is thick and stiff. This discrepancy yields deformation of the well.

  2. Development of a computer wellbore simulator for coiled-tube operations

    SciTech Connect

    Gu, H.; Walton, I.C.; Dowell, S.

    1994-12-31

    This paper describes a computer wellbore simulator developed for coiled tubing operations of fill cleanout and unloading of oil and gas wells. The simulator models the transient, multiphase fluid flow and mass transport process that occur in these operations. Unique features of the simulator include a sand bed that may form during fill cleanout in deviated and horizontal wells, particle transport with multiphase compressible fluids, and the transient unloading process of oil and gas wells. The requirements for a computer wellbore simulator for coiled tubing operations are discussed and it is demonstrated that the developed simulator is suitable for modeling these operations. The simulator structure and the incorporation of submodules for gas/liquid two-phase flow, reservoir and choke models, and coiled tubing movement are addressed. Simulation examples are presented to show the sand bed formed in cleanout in a deviated well and the transient unloading results of oil and gas wells. The wellbore simulator developed in this work can assist a field engineer with the design of coiled tubing operations. By using the simulator to predict the pressure, flow rates, sand concentration and bed depth, the engineer will be able to select the coiled tubing, fluid and schedule of an optimum design for particular well and reservoir conditions.

  3. Analytical solution for two-phase flow in a wellbore using the drift-flux model

    SciTech Connect

    Pan, L.; Webb, S.W.; Oldenburg, C.M.

    2011-11-01

    This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.

  4. Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores

    SciTech Connect

    Blackwell, B.F.; Ortega, A.

    1983-01-01

    A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

  5. Dynamic alterations in wellbore cement integrity due to geochemical reactions in CO2-rich environments

    NASA Astrophysics Data System (ADS)

    Cao, Peilin; Karpyn, Zuleima T.; Li, Li

    2013-07-01

    The interaction between wellbore cement and CO2 has the potential to alter cement properties and form preferential leakage pathways during geological carbon sequestration. This work investigates changes in wellbore cement integrity during continuous flooding of CO2-saturated brine. We created composite cement-sandstone core samples with a continuous gap in the cement zone in order to represent defects such as fractures and voids in wellbore cement. Volumetric and structural changes in the cement zone were monitored and quantified using X-ray Micro-Computed Tomography imaging. During an 8 day dynamic flow-through period, the fracture/void aperture increased significantly, whereas the host sandstone remained unaltered. The void volume increased at a faster rate in the early stage of the flow-through period than it did toward the end of the period. Compared to the apertures close to the core outlet, those located near the core inlet experienced more severe cement degradation, accompanied by a decrease in specific surface area, constituting evidence of a smoothing effect. Contrary to previous observations of the self-healing behavior of cement fractures, the in situ permeability on a parallel experiment increased by a factor of 8 after 10 days of flooding. Findings from this work will provide valuable insights applicable to the development of predictive models and for risk assessment under conditions relevant to CO2 sequestration.

  6. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2017-05-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  7. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle.

    PubMed

    Pal, Indrani; Brahmkhatri, Varsha P; Bera, Swapna; Bhattacharyya, Dipita; Quirishi, Yasrib; Bhunia, Anirban; Atreya, Hanudatta S

    2016-12-01

    The conjugation of nanoparticles with antimicrobial peptides (AMP) is emerging as a promising route to achieve superior antimicrobial activity. However, the nature of peptide-nanoparticle interactions in these systems remains unclear. This study describes a system consisting of a cysteine containing antimicrobial peptide conjugated with silver nanoparticles, in which the two components exhibit a dynamic interaction resulting in a significantly enhanced stability and biological activity compared to that of the individual components. This was investigated using NMR spectroscopy in conjunction with other biophysical techniques. Using fluorescence assisted cell sorting and membrane mimics we carried out a quantitative comparison of the activity of the AMP-nanoparticle system and the free peptide. Taken together, the study provides new insights into nanoparticle-AMP interactions at a molecular level and brings out the factors that will be useful for consideration while designing new conjugates with enhanced functionality. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding

    SciTech Connect

    Li, Shunfang; Li, Haisheng; Xue, Xinlian; Jia, Yu; Guo, Zheng Xiao; Zhang, Zhenyu; Gong, Xingao

    2010-01-01

    First-principles total energy calculations within density functional theory have been performed to study the geometric and electronic structures of Ru{sub n} nanoclusters of varying size n (14{<=}n{<=}42). Strikingly, for the size range of n=14 to 38, the clusters always prefer a hexagonal bilayer structure with A-A stacking, rather than some of the more closely packed forms, or bilayer with A-B stacking. Such an intriguing 'molecular double-wheel' form is stabilized by substantially enhanced interlayer covalent bonding associated with strong s-d hybridization. Similar A-A stacking is also observed in the ground states or low-lying isomers of the clusters composed of other hcp elements, such as Os, Tc, Re, and Co. Note that these 'molecular double-wheels' show enhanced chemical activity toward H{sub 2}O splitting relative to their bulk counterpart, implying its potential applications as nanocatalysts.

  9. Enhancement and Stabilization of Pulsed Streamer Discharge in Water by Adding Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Imasaka, Kiminobu; Sun, Wei; Tomita, Hironari; Kato, Yuki; Khaled, Usama; Suehiro, Junya

    2010-08-01

    Effects of adding single-walled carbon nanotubes (SWCNTs) on pulsed streamer discharge characteristics in water were investigated. Adding a small amount of SWCNTs to deionized water generated stable streamer discharge. The number of streamer onset positions on a high-voltage wire electrode and the length of the streamer channels dramatically increased, in which the particles are larger than SWCNTs. The emission of the streamers became intense, and their propagation velocity increased rapidly in the SWCNT suspension. The SWCNTs' effects on the streamer discharge are discussed on the basis of a numerical calculation of the electric field around an SWCNT and a graphite powder particle. The electric field strength at the tip of a vertically standing SWCNT was strongly enhanced. The results suggested that adding SWCNTs to water could enhance and stabilize streamer discharge onset and its propagation.

  10. Enhancing stability of octahedral PtNi nanoparticles for oxygen reduction reaction by halide treatment

    NASA Astrophysics Data System (ADS)

    Choi, Juhyuk; Lee, Youhan; Kim, Jihan; Lee, Hyunjoo

    2016-03-01

    Because a reduction in the amount of Pt catalysts is essential for the commercialization of fuel cells, various approaches have been tested to maximize the mass activity of Pt-based catalysts. Among these, the most successful results so far were obtained using shaped PtNi alloy nanoparticles, preferably with PtNi(111) facets. However, these nanoparticles typically suffer from much lower activity after the durability tests due to the leaching out of the surface Ni during the oxygen reduction reaction (ORR), which leads to the disappearance of the activity-enhancing effect caused by electronic structure modification. Here, we showed that halide treatment of the octahedral PtNi nanoparticles could significantly enhance their durability. Halides are adsorbed on surface Ni more strongly than on surface Pt, and the surface halides are found to preserve the surface Ni that induces the ORR activity enhancement. Especially, Br can preserve the surface Ni effectively. Durability testing by repeating cyclic voltammetry 10,000 times in the 0.6-1.1 V range showed that the mass activity decreased by 52.6% for the as-prepared PtNi octahedral nanoparticles, whereas the mass activity decreased by only 15.0% for the Br-treated PtNi nanoparticles. The simple treatment significantly enhanced the long-term stability of the highly active PtNi alloy nano-octahedra.

  11. ITO/ATO bilayer transparent electrodes with enhanced light scattering, thermal stability and electrical conductance

    NASA Astrophysics Data System (ADS)

    Guillén, C.; Montero, J.; Herrero, J.

    2016-10-01

    Transparent electrodes based on In2O3:Sn (ITO) and SnO2:Sb (ATO) thin films have been deposited by sputtering at room temperature on soda lime glass (SLG) substrates. The preparation conditions were adjusted to obtain 250 nm-thick ITO layers with high conductivity and textured ATO coatings with various thicknesses from 80 to 200 nm. These ITO and ATO films have been combined to enhance the optical scattering and the electrical conductivity of the bilayer electrodes. Besides, a suitable ATO coating can prevent the oxidation of the ITO underlayer, thus increasing the stability of the overall electrical performance. With this purpose the structure, morphology, optical and electrical properties have been analysed comparatively for SLG/ITO, SLG/ATO and SLG/ITO/ATO samples after heating in air at 500 °C, studying the influence of the ATO layer thickness on the light scattering and thermal stability of the electrodes. In this way, a minimum sheet resistance of 8 Ω/sq has been achieved with a 120 nm-thick ATO film deposited on the 250 nm-thick ITO layer; such stacked electrode has visible transmittance near 80% and average haze HT = 10%, showing superior stability, light scattering and electrical performance than the isolated ITO and ATO films.

  12. Vibration-enhanced posture stabilization achieved by tactile supplementation: may blind individuals get extra benefits?

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-08-01

    Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e., additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g., applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g., canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  14. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  15. Stability optimization of microbial surface-enhanced Raman spectroscopy detection with immunomagnetic separation beads

    NASA Astrophysics Data System (ADS)

    Uusitalo, Sanna; Kögler, Martin; Välimaa, Anna-Liisa; Petäjä, Jarno; Kontturi, Ville; Siitonen, Samuli; Laitinen, Riitta; Kinnunen, Matti; Viitala, Tapani; Hiltunen, Jussi

    2017-03-01

    Immunomagnetic separation (IMS) beads with antibody coating are an interesting option for biosensing applications for the identification of biomolecules and biological cells, such as bacteria. The paramagnetic properties of the beads can be utilized with optical sensing by migrating and accumulating the beads and the bound analytes toward the focus depth of the detection system by an external magnetic field. The stability of microbial detection with IMS beads was studied by combining a flexible, inexpensive, and mass producible surface-enhanced Raman spectroscopy (SERS) platform with gold nanoparticle detection and antibody recognition by the IMS beads. Listeria innocua ATCC 33090 was used as a model sample and the effect of the IMS beads on the detected Raman signal was studied. The IMS beads were deposited into a hydrophobic sample well and accumulated toward the detection plane by a neodymium magnet. For the first time, it was shown that the spatial stability of the detection could be improved up to 35% by using IMS bead capture and sample well placing. The effect of a neodymium magnet under the SERS chip improved the temporal detection and significantly reduced the necessary time for sample stabilization for advanced laboratory testing.

  16. Encapsulation of Sesbania grandiflora extract in polymeric micelles to enhance its solubility, stability, and antibacterial activity.

    PubMed

    Anantaworasakul, Pimporn; Okonogi, Siriporn

    2017-02-01

    Clinical applications of Sesbania grandiflora bark extract (SGE) are limited because of its poor water solubility and stability. SGE was loaded in micelles of Pluronics. In vitro and in vivo antibacterial and toxicity tests were investigated using broth dilution and silkworm model. Aqueous solubility of SGE was improved by these micelles. Activity and toxicity of SGE loaded micelles were dependent on type and concentration of Pluronics. The micelles composed of 1:3 SGE to Pluronic F68 (SGE-PF68-13) showed small size (24.95 ± 0.34 nm), narrow PdI (<0.2), high entrapment efficiency (99.63 ± 0.19%) and negative zeta potential (-41.53 ± 0.15 mV). Stability of SGE in SGE-PF68-13 was 10 times higher than the unentrapped SGE. SGE-PF68-13 showed a dose dependent activity and significantly higher therapeutic effect than the unentrapped SGE. It is concluded that encapsulation of SGE in Pluronic micelles can enhance SGE solubility, stability, and antibacterial activity. SGE-PF68-13 is suitable for further study in mammalian animals.

  17. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic–organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru–C and a few Ru–O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  18. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide.

    PubMed

    Li, Na; Fan, Xialian; Tang, Keyong; Zheng, Xuejing; Liu, Jie; Wang, Baoshi

    2016-04-01

    In this study, three-dimensional (3D) nanocomposite scaffolds, as potential substrates for skin tissue engineering, were fabricated by freeze drying the mixture of type I collagen extracted from porcine skin and polyvinyl pyrrolidone (PVP)-coated titanium dioxide (TiO2) nanoparticles. This procedure was performed without any cross-linker or toxic reagents to generate porosity in the scaffold. Both morphology and thermal stability of the nanocomposite scaffold were examined. The swelling behavior, mechanical properties and hydrolytic degradation of the composite scaffolds were carefully investigated. Our results revealed that collagen, PVP and TiO2 are bonded together by four main hydrogen bonds, which is an essential action for the formation of nanocomposite scaffold. Using Coasts-Redfern model, we were able to calculate the thermal degradation apparent activation energy and demonstrated that the thermal stability of nanocomposites is dependent on amount of PVP incorporated. Furthermore, SEM images showed that the collagen fibers are wrapped and stabilized on scaffolds by PVP molecules, which improve the ultimate tensile strength (UTS). The UTS of PVP-contained scaffold is four times higher than that of scaffold without PVP, whereas ultimate percentage of elongation (UPE) is decreased, and PVP can enhance the degradation resistance.

  19. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    PubMed

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.

  20. Lasic -Cavity-enhanced molecular iodine laser frequency stabilization for space projects

    NASA Astrophysics Data System (ADS)

    Turazza, Oscar; Acef, O.; Auger, G.; Halloin, H.; Duburck, F.; Plagnol, E.; Holleville, D.; Dimarcq, N.; Binetruy, P.; Brillet, A.; Lemonde, P.; Devismes, E.; Prat, P.; Lours, M.; Tuckey, P.; Argence, B.

    We present work in progress at SYRTE, APC and ARTEMIS aiming at stabilizing the frequency of a Nd:YAG laser using saturated absorption spectroscopy of molecular iodine 127I2. The novel design of the LASIC project allows for robustness and compacity while achieving high-performance phase noise suppression. The project is a follow-up of the laser stabilization work started at Artemis and continued at APC. The use of a low-finesse bow-tie optical cavity around the iodine absorber, combined with an adapted high-frequency modulation of the laser phase -NICE-OHMS technique-yields shot-noise limited saturated absorption signals with cavity-enhanced signal-to-noise ratios. Residual fractional frequency instability in terms of Allan Std. Deviation is expected below 10-14 @1s integration time and down to 10-15 over several hours. The compact iodine / cavity design, and performance well above LISA requirements make this project an interesting candidate for the space-based Gravitational Waves detector. We discuss the scientific background and outline of this project within the LISA framework, as well as its potential impact on other stringent technical requirements of the LISA project (e.g. U.S.O. clock-stability, arm-length measurements. . . ). We also present other possible applications for space projects involving interferometry, laser ranging or onboard ultrastable oscillators.

  1. A computational study on the enhanced stabilization of aminophenol derivatives by internal hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Gomes, José R. B.; Ribeiro da Silva, Manuel A. V.

    2006-05-01

    The stabilization of aminophenol derivatives and their radicals due to internal hydrogen bonding has been analyzed by means of density functional theory and by topological electron density analysis. The calculations have been carried out at the B3LYP level of theory, using several basis sets, and by means of the CBS-4M composite approach. A strong O-H⋯NH 2 hydrogen bond is found to stabilize the aminophenol with the lone-pair of the nitrogen atom co-planar with the aromatic ring, contrasting with the optimized structure found for aniline. The effect of electron donors and electron acceptors on the strength of the internal hydrogen bond is also analyzed. For one of the species studied, 2,6-diaminophenol, the computed O-H bond dissociation enthalpy is only 300 kJ/mol, the lowest value found so far for phenol and other compounds containing the O-H bond, almost 25 kJ/mol lower than those found experimentally for pyrogallol and for vitamin E. The explanation for such a small value comes from the enhanced stabilization of the corresponding radical species by internal hydrogen bonding, combined with a decrease of the steric effects caused by rotation of the amino groups.

  2. Towards passive and active laser stabilization using cavity-enhanced atomic interaction

    NASA Astrophysics Data System (ADS)

    Schäffer, S. A.; Christensen, B. T. R.; Rathmann, S. M.; Appel, M. H.; Henriksen, M. R.; Thomsen, J. W.

    2017-02-01

    Ultra stable frequency references such as the ones used in optical atomic clocks and for quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time. State-of-the-art frequency references are constructed in this way, but their stabilities are currently limited by thermally induced length fluctuations in the reference cavity. Several alternative approaches using the potential for frequency discriminating of highly forbidden narrow atomic transitions have been proposed in, e.g., [1] and [2]. In this proceeding we will present some of the ongoing experimental efforts derived from these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for laser stabilization. Such systems can be realized using both passive and active approaches where either the atomic phase response is used as an error signal, or the narrow atomic transition itself is used as a source for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2].

  3. Iridium-Tin oxide solid-solution nanocatalysts with enhanced activity and stability for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Li, Guangfu; Yu, Hongmei; Yang, Donglei; Chi, Jun; Wang, Xunying; Sun, Shucheng; Shao, Zhigang; Yi, Baolian

    2016-09-01

    Addressing major challenges from the material cost, efficiency and stability, it is highly desirable to develop high-performance catalysts for oxygen evolution reaction (OER). Herein we explore a facile surfactant-assisted approach for fabricating Irsbnd Sn (Ir/Sn = 0.6/0.4, by mol.) nano-oxide catalysts with good morphology control. Direct proofs from XRD and X-ray photoelectron spectra indicate hydrophilic triblock polymer (TBP, like Pluronic® F108) surfactant can boost the formation of stable solid-solution structure. With the TBP hydrophilic and block-length increase, the fabricated Irsbnd Sn oxides undergoing the rod-to-sphere transition obtain the relatively lower crystallization, decreased crystallite size, Ir-enriched surface and incremental available active sites, all of which can bolster the OER activity and stability. Meanwhile, it is observed that the coupled Ir oxidative etching takes a crucial role in determining the material structure and performance. Compared with commercial Ir black, half-cell tests confirm F108-assistant catalysts with over 40 wt% Ir loading reduction show 2-fold activity enhancement as well as significant stability improvement. The lowest cell voltage using 0.88 mg cm-2 Ir loading is only 1.621 V at 1000 mA cm-2 and 80 °C with a concomitant energy efficiency of 75.8% which is beyond the DOE 2017 efficiency target of 74%.

  4. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management.

    PubMed

    Zhang, Xiaopei; Xu, Duo; Jin, Xin; Liu, Gan; Liang, Sheng; Wang, Hui; Chen, Wei; Zhu, Xinyuan; Lu, Yunfeng

    2017-06-10

    Among a broad spectrum of medical treatments, protein therapeutics holds tremendous opportunities for the treatment of metabolic disorders, cancer, autoimmune diseases and etc. Broad adaption of protein therapeutics, however, still remain challenging, not only because of poor protein stability, but they also experience fast clearance after administrated and elicit immune responses, resulting in undesirable biodistribution and short blood residence time. In this study, we demonstrate a novel protein delivery method via encapsulating therapeutic proteins within thin shells of poly(N-vinylpyrrolidone) (PVP), which leads to significantly improved protein stability, reduced macrophage uptake, prolonged circulation time and reduced immunogenicity. Exemplified with urate oxidase (UOx), the enzyme used for hyperuricemia treatment, as-formed UOx nanocapsules, n(UOx), exhibits enhanced stability, more significant therapeutic effects, and a more than 10-fold improvement in circulation time when compared with native UOx. This technology not only demonstrates the use of UOx nanocapsules for hyperuricemia management, but also provides a general approach for a broad spectrum of therapeutic proteins for in vivo applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance.

    PubMed

    Liao, Yuqin; Liu, Hefei; Zhou, Wenjia; Yang, Dongwen; Shang, Yuequn; Shi, Zhifang; Li, Binghan; Jiang, Xianyuan; Zhang, Lijun; Quan, Li Na; Quintero-Bermudez, Rafael; Sutherland, Brandon R; Mi, Qixi; Sargent, Edward H; Ning, Zhijun

    2017-05-17

    The low toxicity and a near-ideal choice of bandgap make tin perovskite an attractive alternative to lead perovskite in low cost solar cells. However, the development of Sn perovskite solar cells has been impeded by their extremely poor stability when exposed to oxygen. We report low-dimensional Sn perovskites that exhibit markedly enhanced air stability in comparison with their 3D counterparts. The reduced degradation under air exposure is attributed to the improved thermodynamic stability after dimensional reduction, the encapsulating organic ligands, and the compact perovskite film preventing oxygen ingress. We then explore these highly oriented low-dimensional Sn perovskite films in solar cells. The perpendicular growth of the perovskite domains between electrodes allows efficient charge carrier transport, leading to power conversion efficiencies of 5.94% without the requirement of further device structure engineering. We tracked the performance of unencapsulated devices over 100 h and found no appreciable decay in efficiency. These findings raise the prospects of pure Sn perovskites for solar cells application.

  6. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    SciTech Connect

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  7. Shaped Apertures in Photoresist Films Enhance the Lifetime and Mechanical Stability of Suspended Lipid Bilayers

    PubMed Central

    Kalsi, Sumit; Powl, Andrew M.; Wallace, B.A.; Morgan, Hywel; de Planque, Maurits R.R.

    2014-01-01

    Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms. PMID:24739164

  8. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers.

    PubMed

    Li, Li; Yang, Yong; Xu, Qiang; Owsiany, Katherine; Welsch, Ralf; Chitchumroonchokchai, Chureeporn; Lu, Shan; Van Eck, Joyce; Deng, Xiu-Xin; Failla, Mark; Thannhauser, Theodore W

    2012-03-01

    Provitamin A carotenoids in staple crops are not very stable during storage and their loss compromises nutritional quality. To elucidate the fundamental mechanisms underlying carotenoid accumulation and stability, we investigated transgenic potato tubers that expressed the cauliflower Orange (Or) gene. We found that the Or transgene not only promoted retention of β-carotene level, but also continuously stimulated its accumulation during 5 months of cold storage. In contrast, no increased levels of carotenoids were observed in the tubers of vector-only controls or a yellow-flesh variety during the same period of storage. The increased carotenoid accumulation was found to be associated with the formation of lipoprotein-carotenoid sequestering structures, as well as with the enhanced abundance of phytoene synthase, a key enzyme in the carotenoid biosynthetic pathway. Furthermore, the provitamin A carotenoids stored were shown to be stable during simulated digestion and accessible for uptake by human intestinal absorptive cells. Proteomic analysis identified three major functional groups of proteins (i.e. heat shock proteins, glutathione-S-transferases, and carbohydrate metabolic proteins) that are potentially important in the Or-regulated carotenoid accumulation. Our results show that regulation of carotenoid sequestration capacity is an important mechanism by which carotenoid stability is regulated. Our findings suggest that induction of a proper sink structure formation in staple crops may provide the crops with a unique ability to promote and/or stabilize provitamin A accumulation during plant growth and post-harvest storage.

  9. Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides

    SciTech Connect

    Wang Qian; Feng Yongjun; Feng Junting; Li Dianqing

    2011-06-15

    2,5-dichloro-4-(5-hydroxy-3-methyl-4-(sulphophenylazo) pyrazol-1-yl) benzenesulphonate (DHSB) anions, namely acid yellow 17 anions, have been successfully intercalated into Zn-Al layered double hydroxides (LDH) to produce a novel organic-inorganic pigment by a simple method involving separate nucleation and aging steps (SNAS), and the dye-intercalated LDH was analyzed by various techniques, e.g., XRD, SEM, FT-IR, TG-DTA and ICP. The d-spacing of the prepared LDH is 2.09 nm. Furthermore, the incorporation of the DHSB aims to enhance the thermal- and photo-stability of the guest dye molecule, for example, the less color change after accelerated thermal- and photo-aging test. - Graphical abstract: Acid yellow anions were successfully assembled into ZnAl layered double hydroxides (LDH) to produce a novel organic-inorganic composite pigment by a simple method involving separate nucleation and aging steps (SNAS). Highlights: > Acid yellow 17 was directly intercalated into ZnAl-LDH to form a novel pigment. > The pigment was prepared by a method involving separate nucleation and aging steps. > The intercalation of dye anions enhances its thermal- and photo-stability.

  10. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    DOE PAGES

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; ...

    2016-10-05

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, themore » perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. Furthermore, a crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days’ exposure in an ambient environment.« less

  11. Colored Noise Enhanced Stability in a Tumor Cell Growth System Under Immune Response

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Wang, Hua

    2010-12-01

    In this paper, we investigate a mathematical model for describing the growth of tumor cell under immune response, which is driven by cross-correlation between multiplicative and additive colored noises as well as the nonzero cross-correlation in between. The expression of the mean first-passage time (MFPT) is obtained by virtue of the steepest-descent approximation. It is found: (i) When the noises are negatively cross-correlated ( λ<0), then the escape is faster than in the case with no correlation ( λ=0); when the noises are positively cross-correlated ( λ>0), then the escape is slower than in the case with no correlation. Moreover, in the case of positive cross-correlation, the escape time has a maximum for a certain intensity of one of the noises, i.e., the maximum for MFPT identifies the noise enhanced stability of the cancer state. (ii) The effect of the cross-correlation time τ 3 on the MFPT is completely opposite for λ>0 and λ<0. (iii) The self-correlation times τ 1 and τ 2 of colored noises can enhance stability of the cancer state, while the immune rate β can reduce it.

  12. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    SciTech Connect

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; Deng, Yehao; Wang, Qi; Shen, Liang; Wang, Dong; Wei, Wei; Huang, Jinsong

    2016-10-05

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. Furthermore, a crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days’ exposure in an ambient environment.

  13. Enhanced performance and stability of polymer BHJ photovoltaic devices from dry transfer of PEDOT:PSS.

    PubMed

    Kim, Jung Kyu; Park, Insun; Kim, Wanjung; Wang, Dong Hwan; Choi, Dae-Geun; Choi, Yeong Suk; Park, Jong Hyeok

    2014-07-01

    Polymer solar cells with enhanced initial cell performances and long-term stability were fabricated by performing a simple dry transfer of a hole extraction layer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] onto an indium tin oxide (ITO) substrate. Due to the very flat surface of the polyurethane acrylate/polycarbonate (PUA/PC) film, which was used as a mold and resembled the surface of the original substrate (silicon wafer), the transferred layer had a very smooth surface morphology, resulting in enhancement of the interfacial characteristics. The work function of the PEDOT:PSS layer and the morphology of bulk hetero junction (BHJ) layer were tuned by controlling the position of PSS enrichment in the PEDOT:PSS layer using the dry transfer. The power conversion efficiency of PTB7:PC71 BM BHJ device prepared by the dry transfer was 8.06%, which was significantly higher than that of the spin-cast device (7.32%). By avoiding direct contact between the ITO substrate and the PEDOT:PSS solution in the dry transfer system, etching and diffusion of indium in the ITO substrate were greatly reduced, thereby improving the stability.

  14. RNPC1 enhances progesterone receptor functions by regulating its mRNA stability in breast cancer

    PubMed Central

    Xia, Tian-Song; Zhou, Wenbin; Wu, Jing; Zhou, Xujie; Li, Xiaoxia; Wang, Ying; Wei, Ji-Fu; Ding, Qiang

    2017-01-01

    Progesterone receptor (PR) could activate transcriptional process involved in normal mammary gland proliferation and breast cancer development. Moreover, PR expression is an important marker of luminal breast cancer, which is associated with good prognosis and indicates better responding to endocrine therapies. The regulation of PR expression was studied mainly on its post-translational levels. In this study, we found PR was positively regulated by RNA-binding region-containing protein 1 (RNPC1), a RNA-binding protein, in PR positive breast cancer. Overexpression of RNPC1 increased, whereas knockdown of RNPC1 decreased, the level of PR protein and transcripts. Additionally, we demonstrated that RNPC1 could bind to PR mRNA via AU-rich elements (AREs) within PR 3′-untranslated region (3′-UTR) and then enhance PR mRNA stability. Moreover, we proved that progesterone-dependent PR functions which could induce breast cancer proliferation were enhanced by RNPC1, both in vitro and in vivo. Conclusively, we revealed a novel mechanism by which PR could be regulated by RNPC1 via stabilizing its mRNA. PMID:27634883

  15. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; Deng, Yehao; Wang, Qi; Shen, Liang; Wang, Dong; Wei, Wei; Huang, Jinsong

    2016-10-01

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. A crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days' exposure in an ambient environment.

  16. Effect of ultrasound-enhanced fat separation on whey powder phospholipid composition and stability.

    PubMed

    Torkamani, Amir E; Juliano, Pablo; Fagan, Peter; Jiménez-Flores, Rafael; Ajlouni, Said; Singh, Tanoj K

    2016-06-01

    Fat from freshly pasteurized liquid whey was partially separated by gravity for 5, 10, and 30min, with and without simultaneous application of ultrasound. Ultrasound treatments were carried out at 400 and 1,000 kHz at different specific energy inputs (23-390 kJ/kg). The fat-enriched top layers (L1) and the fat-depleted bottom layers (L2) were separately removed and freeze-dried. Nonsonicated and sonicated L2 powders were stored for 14d at ambient temperature to assess their oxidative stability. Creaming was enhanced at both frequencies and fat separation increased with higher ultrasonic energy, extended sonication, or both. The oxidative volatile compound content decreased in defatted whey powders below published odor detection threshold values for all cases. Sonication had a minor influence on the partitioning of phospholipids with fat separation. The current study suggested that ultrasonication at high frequency enhanced fat separation from freshly pasteurized whey while improving whey powder oxidative stability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization.

    PubMed

    Raja, Shilpa N; Bekenstein, Yehonadav; Koc, Matthew A; Fischer, Stefan; Zhang, Dandan; Lin, Liwei; Ritchie, Robert O; Yang, Peidong; Alivisatos, A Paul

    2016-12-28

    Lead halide perovskites hold promise for photonic devices, due to their superior optoelectronic properties. However, their use is limited by poor stability and toxicity. We demonstrate enhanced water and light stability of high-surface-area colloidal perovskite nanocrystals by encapsulation of colloidal CsPbBr3 quantum dots into matched hydrophobic macroscale polymeric matrices. This is achieved by mixing the quantum dots with presynthesized high-molecular-weight polymers. We monitor the photoluminescence quantum yield of the perovskite-polymer nanocomposite films under water-soaking for the first time, finding no change even after >4 months of continuous immersion in water. Furthermore, photostability is greatly enhanced in the macroscale polymer-encapsulated nanocrystal perovskites, which sustain >10(10) absorption events per quantum dot prior to photodegradation, a significant threshold for potential device use. Control of the quantum dot shape in these thin-film polymer composite enables color tunability via strong quantum-confinement in nanoplates and significant room temperature polarized emission from perovskite nanowires. Not only does the high-molecular-weight polymer protect the perovskites from the environment but also no escaped lead was detected in water that was in contact with the encapsulated perovskites for months. Our ligand-passivated perovskite-macroscale polymer composites provide a robust platform for diverse photonic applications.

  18. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    PubMed Central

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; Deng, Yehao; Wang, Qi; Shen, Liang; Wang, Dong; Wei, Wei; Huang, Jinsong

    2016-01-01

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p–i–n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. A crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days' exposure in an ambient environment. PMID:27703136

  19. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.

    PubMed

    Kumar, Gudi Satheesh; Rather, Gulam Mohmad; Gurramkonda, Chandrasekhar; Reddy, Bontha Rajasekhar

    2016-01-01

    The uses of thermostable starch hydrolytic biocatalysts are steadily increasing for the industrial application because of their obvious need for biocatalytic performance at elevated temperatures. The starch liquefaction and saccharification can be carried out simultaneously by the use of thermostable starch hydrolytic biocatalysts, thus minimizing the unit operations, time, and efforts. The cost factor hampers the industrialization of expensive soluble (free) enzymes for biocatalytic applications and the immobilization of enzymes offers promising alternative to the hurdle. The present investigation was aimed for immobilization of thermostable α-amylase using calcium alginate, and statistical optimization studies were carried out for enhanced biocatalytic performance. Initially, one-parameter at a time optimization studies were carried out for identification of significant factors influencing the immobilization. Furthermore, a statistical approach, response surface methodology, was applied for immobilization of α-amylase. The immobilized α-amylase in alginate microbeads showed enhanced stability to temperature and reusable property for up to seven cycles (with the retention of 50% initial activity). Finally, the kinetic behavior of free and immobilized enzyme showed the Km value of 1.2% and 2.6% (w/v) and Vmax of 1,020 and 1,030 U, respectively. Fifty percent reduction in affinity of the immobilized enzyme toward substrate was compensated by its longer stability. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Oxygen stabilization induced enhancement in superconducting characteristics of high-Tc oxides

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Chen, J. T.; Huang, C. Y.

    1991-01-01

    In an attempt to enhance the electrical and mechanical properties of the high temperature superconducting oxides, high T(sub c) composites were prepared composed of the 123 compounds and AgO. The presence of extra oxygen due to the decomposition of AgO at high temperature is found to stabilize the superconducting 123 phase. Ag is found to serve as clean flux for grain growth and precipitates as pinning center. Consequently, almost two orders of magnitude enhancement in critical current densities were also observed in these composites. In addition, these composites also show much improvement in workability and shape formation. On the other hand, proper oxygen treatment of Y5Ba6Cu11Oy was found to possibly stabilize superconducting phase with T(sub c) near 250 K. I-V, ac susceptibility, and electrical resistivity measurements indicate the existence of this ultra high T(sub c) phase in this compound. Detailed structure, microstructure, electrical, magnetic and thermal studies of the superconducting composites and the ultra high T(sub c) compound are presented and discussed.

  1. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.

    1995-05-16

    A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.

  2. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.

    1995-01-01

    A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.

  3. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  4. PDF and cAMP enhance PER stability in Drosophila clock neurons

    PubMed Central

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-01-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054

  5. PDF and cAMP enhance PER stability in Drosophila clock neurons.

    PubMed

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-04-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf(01) (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light-dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene per(S) ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the per(S) protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf(01) circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF.

  6. Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.).

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2012-06-01

    Folate (vitamin B₉) content was evaluated in 10 varieties of coriander with the aim of enhancing its concentration and stability, because of three reasons: 1) coriander is among a few widely used greens in the world and suits many cuisines, 2) folate deficiency is prevalent in developing countries causing anaemia, infant mortality and neural tube closure defects, and 3) natural folate is preferred due to doubts about health risks associated with the synthetic form. In C. sativum, the highest folate content of 1,577 μg/100 g DW was found in var. GS4 Multicut foliage of mature plants (marketable stage) with an insignificantly higher content (1,599.74 μg/100 g DW) at flowering, which is a stage not preferred in markets. In callus cultures treated with plant growth regulators (GRs) (6-benzylaminopurine, kinetin and abscisic acid) substantial increase in folate occurred after 6 h, whereas elicitors (methyl jasmonate and salicylic acid) caused rapid 2-fold increase of folate, particularly in response to salicylic acid. Based on these observations, foliar applications were done for in vivo plants, where salicylic acid (250 μM, 24 h) also enhanced folate level by 2-folds (3,112.33 μg/100 g DW), although the content varied with diurnal rhythms. Stability of folates in treated coriander foliage was 10 % higher than in untreated foliage when stored at 25 °C and 4 °C. This study has established for the first time that coriander foliage is rich in folates, which can be doubled by elicitation and impart 10 % more stability than control during processing and storage.

  7. Stabilizing effects of enhanced resistivity due to lithium-conditioning on low-n edge localized modes in NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-01

    The stabilizing effects of enhanced edge resistivity on edge-localized instabilities in high confinement discharges due to lithium-conditioning in the National Spherical Torus Experiment are identified for the first time. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may be insufficient for a complete suppression of low toroidal mode number peeling-ballooning modes. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the edge localized modes. Notably, this stabilizing effect by enhanced edge resistivity becomes evident only in two-fluid magnetohydrodynamic simulations.

  8. Enhanced dissolution and stability of Tanshinone IIA base by solid dispersion system with nano-hydroxyapatite

    PubMed Central

    Jiang, Yan-rong; Zhang, Zhen-hai; Huang, Sai-yan; Lu, Yan; Ma, Tian-tian; Jia, Xiao-bin

    2014-01-01

    Background: Tanshinone IIA (TSIIA) exhibits a variety of cardiovascular effects; however, it has low solubility in water. The preparation of poorly soluble drugs for oral delivery is one of the greatest challenges in the field of formulation research. Among the approaches available, solid dispersion (SD) technique has proven to be one of the most commonly used these methods for improving dissolution and bioavailability of drugs, because of its relative simplicity and economy in terms of both preparation and evaluation. Objective: This study was aimed at investigating the dissolution behavior and physical stability of SDs of TSIIA by employing nano-hydroxyapatite (n-HAp). Materials and Methods: The TSIIA SDs was prepared to use a spray-drying method. First, an in vitro dissolution test was performed to assess dissolution characteristics. Next, a set of complementary techniques (differential scanning calorimetry, scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy) was used to monitor the physicochemical properties of the SDs. The SDs was stored at 40°C/75% relative humidity for 6 months, after which their stability was assessed. Results: TSIIA dissolution remarkably improved because of the formulation of the SDs with n-HAp particles. Comparisons with the corresponding physical mixtures revealed changes in the SDs and explained the formation of the amorphous phase. In the stability test, virtually no time-dependent decrease was observed in either in vitro drug dissolution or drug content. Conclusion: SD formulation with n-HAp may be a promising approach for enhancing the dissolution and stability of TSIIA. PMID:25210322

  9. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    NASA Astrophysics Data System (ADS)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2015-10-01

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu2+/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  10. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    SciTech Connect

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  11. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  12. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical

  13. Nanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35.

    PubMed

    Polovinkin, V; Balandin, T; Volkov, O; Round, E; Borshchevskiy, V; Utrobin, P; von Stetten, D; Royant, A; Willbold, D; Arzumanyan, G; Chupin, V; Popot, J-L; Gordeliy, V

    2014-10-01

    Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee-Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 10(2). SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.

  14. The deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis.

    PubMed

    Weber, Arnim; Heinlein, Melanie; Dengjel, Jörn; Alber, Claudia; Singh, Prafull Kumar; Häcker, Georg

    2016-05-01

    Bim is a pro-apoptotic Bcl-2 family member of the BH3-only protein subgroup. Expression levels of Bim determine apoptosis susceptibility in non-malignant and in tumour cells. Bim protein expression is downregulated by proteasomal degradation following ERK-dependent phosphorylation and ubiquitination. Here, we report the identification of a deubiquitinase, Usp27x, that binds Bim upon its ERK-dependent phosphorylation and can upregulate its expression levels. Overexpression of Usp27x reduces ERK-dependent Bim ubiquitination, stabilizes phosphorylated Bim, and induces apoptosis in PMA-stimulated cells, as well as in tumour cells with a constitutively active Raf/ERK pathway. Loss of endogenous Usp27x enhances the Bim-degrading activity of oncogenic Raf. Overexpression of Usp27x induces low levels of apoptosis in melanoma and non-small cell lung cancer (NSCLC) cells and substantially enhances apoptosis induced in these cells by the inhibition of ERK signalling. Finally, deletion of Usp27x reduces apoptosis in NSCLC cells treated with an EGFR inhibitor. Thus, Usp27x can trigger via its proteolytic activity the deubiquitination of Bim and enhance its levels, counteracting the anti-apoptotic effects of ERK activity, and therefore acts as a tumour suppressor.

  15. Pore pressure prediction and well bore stability analysis in Lower Paleozoic shale formation, N Poland

    NASA Astrophysics Data System (ADS)

    Słota-Valim, Małgorzata

    2017-04-01

    Pore pressure and wellbore stability sometimes pose a serious challenge while drilling, especially through rock formations of reduced strength or through intervals where abnormally high pore pressure was formed. Lack of prediction of pore pressure and lack of wellbore stability analysis introduce an element of uncertainty in selection of drilling fluid density. Too low density of drilling fluid can lead to uncontrolled flow of the reservoir fluid to the wellbore (kicks), washouts and occurrence of cavern like structures called breakouts. On the other hand too high density can lead to formation fracturing and further fluid loss. Therefore wellbore stability loss frequently prolongs the operating time, rising the costs of the drilling and in severe cases may end up well abandons loss. The above mentioned complications can be avoided or greatly reduced by reliable analysis of drilling conditions with the aspects to geomechanical characteristics of drilled rock formations. This study presents the results of analysis of pore pressure performed with the use of commonly used in oil industry methods. The analysis of pore pressure was carried out in almost entire profile of four boreholes drilled through lower Paleozoic shales, deposited in the southern part of the Baltic Basin. In addition wellbore stability analysis was performed in the well with most complete geomechanical input data base. Obtained results helped identifying intervals with elevated pore pressure could pose a risk during drilling operation. Elaborated 1D geomechanical model provides safe mud weight window helping to reduce the instabilities risk and constitute a great tool for geomechanical model validation.

  16. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.

    PubMed

    Siddiqui, Khawar Sohail

    2017-05-01

    The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.

  17. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    SciTech Connect

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  18. Controlling of stochastic resonance and noise enhanced stability induced by harmonic noises in a bistable system

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Jie; Long, Fei; Zhang, Pei; Nie, Lin-Ru

    2017-04-01

    Stochastic resonance (SR) and noise enhanced stability (NES) in a bistable system driven by an additive harmonic noise and a multiplicative harmonic noise is investigated. Through numerical simulation, we obtained the power spectrum by the Fourier transformation on time series. The results indicate that (i) for certain values of the parameters of additive harmonic noise Γ, Ω and the noise intensity D, the SR phenomenon occurs. It means we can control the SR phenomenon by modulating the parameters of harmonic noise; (ii) the NES phenomenon occurs at certain values of the parameters of multiplicative harmonic noise Γ, Ω and the multiplicative noise intensity Q. Most important, the NES phenomenon can also be controlled by modulating the parameters of harmonic noise.

  19. Synthesis of biomacromolecule-stabilized silver nanoparticles and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Yang, Houbo

    2013-09-01

    In this work, water soluble silver nanoparticles stabilized by biomacromolecule, were produced through using an aqueous solution of silver nitrate with Bovine Serum Albumin (BSA) under different reducing agents (such as sodium borohydride, hydrazine, N, N-dimethyl formamide) at the room temperature, where BSA provided the main function to form monodispersed silver nanoparticles. UV-vis spectroscopy, Fluorescence spectra, TEM and HR-TEM are used to characterize the BSA-capped silver nanoparticles under different condition. The results show that the formed silver nanoparticles have different size and morphology under the three different reducing agents. Moreover, the fluorescence intensity of BSA was drastically quenched in presence of Ag nanoparticles from the results of fluorescence spectra. Furthermore, the surface-enhanced Raman scattering effects of the formed silver nanoparticles were also displayed and we made a comparison under three different reducing agents.

  20. Gelatin-stabilized copper nanoparticles: Synthesis, morphology, and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Yang, Houbo

    2013-04-01

    Gelatin-stabilized spherical-shaped copper nanoparticles are synthesized by a simple chemical reaction. The synthesis is performed by the reduction of copper (II) salt with hydrazine in aqueous solution under atmospheric air in the presence of gelatin as capping agent. Advantages of the synthetic method include its production of water dispersible copper nanoparticles at room temperature under no inert atmosphere and making the synthesis more environmental friendly. The synthesized copper nanoparticles are investigated by UV-vis spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS) and transmission electron microscopy (TEM). The results demonstrate that the amount of gelatin is important for the formation of the copper nanoparticles. The resulting colloidal copper nanoparticles exhibit large surface-enhanced Raman scattering (SERS) signals.

  1. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  2. Macromolecular Crowding Enhances Catalytic Efficiency and Stability of α-Amylase

    PubMed Central

    Yadav, Jay Kant

    2013-01-01

    In the present study an attempt was made to investigate the macromolecular crowding effect on functional attributes of α-amylase. High concentrations of sugar based cosolvents, (e.g., trehalose, sucrose, sorbitol, and glycerol) were used to mimic the macromolecular crowding environment (of cellular milieu) under in vitro conditions. To assess the effect of macromolecular crowding, the activity and structural properties of the enzyme were evaluated in the presence of different concentrations of the above cosolvents. Based on the results it is suggested that the macromolecular crowding significantly improves the catalytic efficiency of the enzyme with marginal change in the structure. Out of four cosolvents examined, trehalose was found to be the most effective in consistently enhancing thermal stability of the enzyme. Moreover, the relative effectiveness of the above cosolvents was found to be dependent on their concentration used. PMID:25969780

  3. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    SciTech Connect

    Bolte, W.J.; Collar, Juan I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.; /Chicago U., EFI /KICP, Chicago /Fermilab

    2005-03-01

    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF{sub 3}I chamber.

  4. Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Feng, Yongjun; Feng, Junting; Li, Dianqing

    2011-06-01

    2,5-dichloro-4-(5-hydroxy-3-methyl-4-(sulphophenylazo) pyrazol-1-yl) benzenesulphonate (DHSB) anions, namely acid yellow 17 anions, have been successfully intercalated into Zn-Al layered double hydroxides (LDH) to produce a novel organic-inorganic pigment by a simple method involving separate nucleation and aging steps (SNAS), and the dye-intercalated LDH was analyzed by various techniques, e.g., XRD, SEM, FT-IR, TG-DTA and ICP. The d-spacing of the prepared LDH is 2.09 nm. Furthermore, the incorporation of the DHSB aims to enhance the thermal- and photo-stability of the guest dye molecule, for example, the less color change after accelerated thermal- and photo-aging test.

  5. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.

    PubMed

    Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-10-01

    With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species.

    PubMed

    Bhattacharya, Abhishek; Shrivastava, Ankita; Sharma, Anjana

    2013-06-01

    Carbonic anhydrase (CA) was purified from Micrococcus lylae and Micrococcus luteus with 49.90 and 53.8 % yield, respectively, isolated from calcium carbonate kilns. CA from M. lylae retained 80 % stability in the pH and temperature range of 6.0-8.0 and 35-45 °C, respectively. However, CA from M. luteus was stable in the pH and temperature range of 7.5-10.0 and 35-55 °C, respectively. Cross-linked enzyme aggregates (CLEAs) raised the transition temperature of M. lylae and M. luteus CA up to 67.5 and 74.0 °C, while the operational stability (T(1/20) of CA at 55 °C was calculated to be 7.7 and 12.0 h, respectively. CA from both the strains was found to be monomeric in nature with subunit molecular weight and molecular mass of 29 kDa. Ethoxozolamide was identified as the most potent inhibitor based on both IC(50) values and inhibitory constant measurement (K(i)). The K(m) and V(max) for M. lylae CA (2.31 mM; 769.23 μmol/mg/min) and M. luteus CA (2.0 mM; 1,000 μmol/mg/min) were calculated from Lineweaver-Burk plots in terms of esterase activity. Enhanced thermostability of CLEAs alleviates its role in operational stability for application at an on-site scrubber. The characteristic profile of purified CA from Micrococcus spp. advocates its effective application in biomimetic CO(2) sequestration.

  7. Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds

    PubMed Central

    Chou, Szu-Ting; Hom, Kellie; Zhang, Daoning; Leng, Qixin; Tricoli, Lucas J.; Hustedt, Jason M.; Lee, Amy; Shapiro, Michael J.; Seog, Joonil; Kahn, Jason D.; Mixson, A. James

    2013-01-01

    Branched peptides containing histidines and lysines (HK) have been shown to be effective carriers for DNA and siRNA. We anticipate that elucidation of the binding mechanism of HK with siRNA will provide greater insight into the self-assembly and delivery of the HK:siRNA polyplex. Non-covalent bonds between histidine residues and nucleic acids may enhance the stability of siRNA polyplexes. We first compared the polyplex biophysical properties of a branched HK with those of branched asparagines-lysine peptide (NK). Consistent with siRNA silencing experiments, gel electrophoresis demonstrated that the HK siRNA polyplex maintained its integrity with prolonged incubation in serum, whereas siRNA in complex with NK was degraded in a time-dependent manner. Isothermal titration calorimetry of various peptides binding to siRNA at pH 7.3 showed that branched polylysine, interacted with siRNA was initially endothermic, whereas branched HK exhibited an exothermic reaction at initial binding. The exothermic interaction indicates formation of non-ionic bonds between histidines and siRNA; purely electrostatic interaction is entropy-driven and endothermic. To investigate the type of non-ionic bond, we studied the protonation state of imidazole rings of a selectively 15N labeled branched HK by heteronuclear single quantum coherence NMR. The peak of Nδ1-H tautomers of imidazole shifted downfield (in the direction of deprotonation) by 0.5 to 1.0 ppm with addition of siRNA, providing direct evidence that histidines formed hydrogen bonds with siRNA at physiological pH. These results establish that histidine-rich peptides form hydrogen bonds with siRNA, thereby enhancing the stability and biological activity of the polyplex in vitro and in vivo. PMID:24161165

  8. IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer

    SciTech Connect

    Yin, Ning; Shi, Ji; Wang, Dapeng; Tong, Tong; Wang, Mingrong; Fan, Feiyue; Zhan, Qimin

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer IQGAP1 interacts with Aurora-A through its RGCt domain. Black-Right-Pointing-Pointer Overexpression of IQGAP1 prevents ubiquitination of Aurora-A. Black-Right-Pointing-Pointer Overexpression of IQGAP1 enhances the protein stability of Aurora-A. Black-Right-Pointing-Pointer Overexpression of IQGAP1 promotes the kinase activity of Aurora-A. -- Abstract: IQGAP1, a ubiquitously expressed scaffold protein, has been identified in a wide range of organisms. It participates in multiple aspects of cellular events by binding to and regulating numerous interacting proteins. In our present study, we identified a new IQGAP1 binding protein named Aurora-A which is an oncogenic protein and overexpressed in various types of human tumors. In vitro analysis with GST-Aurora-A fusion proteins showed a physical interaction between Aurora-A and IQGAP1. Moreover, the binding also occurred in HeLa cells as endogenous Aurora-A co-immunoprecipitated with IQGAP1 from the cell lysates. Overexpression of IQGAP1 resulted in an elevation of both expression and activity of Aurora-A kinase. Endogenous IQGAP1 knockdown by siRNA promoted Aurora-A degradation whereas IQGAP1 overexpression enhanced the stability of Aurora-A. Additionally, we documented that the IQGAP1-induced cell proliferation was suppressed by knocking down Aurora-A expression. Taken together, our results showed an unidentified relationship between Aurora-A and IQGAP1, and provided a new insight into the molecular mechanism by which IQGAP1 played a regulatory role in cancer.

  9. Hydrocaffeic acid-chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties.

    PubMed

    Soliman, Ghareb M; Zhang, Yu Ling; Merle, Geraldine; Cerruti, Marta; Barralet, Jake

    2014-11-01

    Catechol-containing molecules, such as hydrocaffeic acid (HCA) have been shown to increase the mucoadhesion of several polymers. We report here a simple and bioinspired approach to enhance chitosan (CS) mucoadhesion and stabilize it in nanoparticulate form by preparing HCA-CS conjugates. HCA-CS conjugates containing 6 and 15mol% HCA were synthesized and characterized by FT-IR, (1)H NMR and UV-vis spectrophotometry. HCA-CS nanoparticles prepared by ionic gelation with sodium tripolyphosphate (TPP) ranged in size between 100 and 250nm depending on the polymer and TPP/CS weight ratio. In contrast to CS nanoparticles, which aggregate at pH>6.5, HCA-CS nanoparticles did not show any sign of aggregation or precipitation over the 4-10 pH range and maintain their size. Unexpectedly, HCA-CS nanoparticles also maintained their size and polydispersity index at pH 7.4 and NaCl concentrations of up to 500mM. Partial oxidation of HCA resulted in nanoparticle cross-linking and improved stability at pH<4. HCA-CS mucoadhesion to rabbit small intestine was 6 times higher than unmodified CS. CS and HCA-CS nanoparticles were able to induce reversible tight junction opening in Caco-2 cell monolayers. Tight junction opening facilitated the permeability of a model hydrophilic molecule, fluorescein isothiocyanate-labeled dextran (FD4) and was 3 times higher in the cells treated with HCA-CS 15% nanoparticles compared to control groups. HCA-CS conjugates were found to be excellent candidates for stable nanodelivery systems with enhanced oral absorption of hydrophilic molecules.

  10. Thermal stability enhanced ZDSF proposal for ultra high-speed long haul communication systems

    NASA Astrophysics Data System (ADS)

    Makouei, S.; Makouei, F.

    2017-04-01

    In this article, thermal stability enhanced triangular graded-index single-mode zero-dispersion shifted fiber (ZDSF) is designed and the effect of temperature variation on its characteristics is investigated. The zero-dispersion wavelength (λZD) adjustment is accomplished through minimization of the broadening factor at the wavelength of 1.55 μm. The simulation results admit that the dispersion and its slope at 1.55 μm are 0.0051 ps/km/nm and 0.038 ps/km/nm2, respectively. This small slope of the structure results in the bit rate of 133 Gb/s in the 100 km distance. In addition, compared to the bell-shaped electrical mode distribution structures, the proposed structure holds an extended effective area (Aeff), which leads to elimination of the nonlinear effects. The λZD in the designed fiber exhibits a lower thermal coefficient compared to the reports previously presented which provides a better stability. This satisfactory feature is the direct result of small dispersion slope in the introduced structure. Furthermore, a temperature compensation system based on tensile strain induction, for the first time to the best of our knowledge, is proposed that preserves the effective refractive index (neff) profile versus wavelength not only in λZD but also in all communication bands of S+C+L. This accomplishment compensates the temperature impact on parameters such as dispersion and zero-dispersion wavelength.

  11. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility

    SciTech Connect

    Zhao, Wei; Rovore, Thomas; Weerawarne, Darshana; Osterhoudt, Gavin; Kang, Ning; Joseph, Pharrah; Luo, Jin; Shim, Bonggu; Poliks, Mark; Zhong, Chuan-Jian

    2015-06-02

    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal such as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple “nanoalloy printing 'laser sintering' nanostructure printing” process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.

  12. Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop

    PubMed Central

    Rogers, Shelley R.; Tarpy, David R.; Burrack, Hannah J.

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services. PMID:24817218

  13. Enhancement in dentin collagen’s biological stability after proanthocyanidins treatment in clinically relevant time periods

    PubMed Central

    Liu, Yi; Chen, Mingsheng; Yao, Xiaomei; Xu, Changqi; Zhang, Ying; Wang, Yong

    2013-01-01

    Objective To investigate whether proanthocyanidins (PA) is capable of improving dentin collagen’s biological stability through cross-linking within time periods that are clinically relevant. Materials and methods Demineralized dentin collagen slabs were treated with 3.75 wt% PA solution for 10 s, 1 min, 30 min, 60 min, 120 min, 360 min, and 720 min, respectively. The resultant cross-linked collagen samples were subject to digestion with 0.1% collagenase at 37 °C for 2 h, 6 h, 12 h, 24 h, 36 h, and 48 h. The percentage of weight loss after digestion was calculated to evaluate PA-treated collagen’s resistance toward enzymatic degradation. Fourier-Transformed Infrared (FTIR) spectroscopy was used to probe evidences of PA-collagen interactions after various periods of PA treatment. Results The collagenase digestion assay suggests that PA treatment as short as 10 s can enhance collagen’s resistance toward enzymatic challenge. The FTIR spectroscopy further verifies that PA is indeed incorporated into collagen regardless of treatment time, possibly via a mechanism involving the chemical interactions between PA and collagen. Significance This study confirmed that PA can effectively cross-link collagen and improve its biological stability in time periods as short as 10 s. The use of PA as a priming agent is therefore clinically feasible and is a promising approach to improving the durability of current dentin bonding systems. PMID:23434233

  14. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.

  15. The chemical synthesis of α-conotoxins and structurally modified analogs with enhanced biological stability.

    PubMed

    Banerjee, Jayati; Gyanda, Reena; Chang, Yi-Pin; Armishaw, Christopher J

    2013-01-01

    α-Conotoxins are peptide neurotoxins isolated from the venom ducts of carnivorous marine cone snails that exhibit exquisite pharmacological potency and selectivity for various nicotinic acetylcholine receptor subtypes. As such, they are important research tools and drug leads for treating various diseases of the central nervous system, including pain and tobacco addiction. Despite their therapeutic potential, the chemical synthesis of α-conotoxins for use in structure-activity relationship studies is complicated by the possibility of three disulfide bond isomers, where inefficient folding methods can lead to a poor recovery of the pharmacologically active isomer. In order to achieve higher yields of the native isomer, especially in high-throughput syntheses it is necessary to select appropriate oxidative folding conditions. Moreover, the poor biochemical stability exhibited by α-conotoxins limits their general therapeutic applicability in vivo. Numerous strategies to enhance their stability including the substitution of disulfide bond with diselenide bond and N-to-C cyclization via an oligopeptide spacer have successfully overcome these limitations. This chapter describes methods for performing both selective and nonselective disulfide bond oxidation strategies for controlling the yields and formation of α-conotoxin disulfide bond isomers, as well as methods for the production of highly stable diselenide-containing and N-to-C cyclized conotoxin analogs.

  16. Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive.

    PubMed

    Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco

    2012-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way.

  17. MDM4 (MDMX) overexpression enhances stabilization of stress-induced p53 and promotes apoptosis.

    PubMed

    Mancini, Francesca; Gentiletti, Francesca; D'Angelo, Marco; Giglio, Simona; Nanni, Simona; D'Angelo, Carmen; Farsetti, Antonella; Citro, Gennaro; Sacchi, Ada; Pontecorvi, Alfredo; Moretti, Fabiola

    2004-02-27

    Rescue of embryonic lethality in MDM4(-/-) mice through concomitant loss of p53 has revealed a functional partnership between the two proteins. Biochemical studies have suggested that MDM4 may act as a negative regulator of p53 levels and activity. On the other hand, MDM4 overexpression has been reported to stabilize p53 levels and to counteract MDM2-degradative activity. We have investigated the functional role of MDM4 overexpression on cell behavior. In both established and primary cells cultured under stress conditions, overexpression of MDM4 significantly increased p53-dependent cell death, in correlation with enhanced induction of the endogenous p53 protein levels. This phenomenon was associated with induced p53 transcriptional activity and increased levels of the proapoptotic protein, Bax. Further, p53 stabilization was accompanied by decreased association of the protein to its negative regulator, MDM2. These findings reveal a novel role for MDM4 by demonstrating that in non-tumor cells under stress conditions it may act as a positive regulator of p53 activity, mainly by controlling p53 levels. They also indicate a major distinction between the biological consequences of MDM4 and MDM2 overexpression.

  18. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods.

    PubMed

    Ngamwonglumlert, Luxsika; Devahastin, Sakamon; Chiewchan, Naphaporn

    2017-10-13

    Natural colorants from plant-based materials have gained increasing popularity due to health consciousness of consumers. Among the many steps involved in the production of natural colorants, pigment extraction is one of the most important. Soxhlet extraction, maceration, and hydrodistillation are conventional methods that have been widely used in industry and laboratory for such a purpose. Recently, various non-conventional methods, such as supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed-electric field extraction, and enzyme-assisted extraction have emerged as alternatives to conventional methods due to the advantages of the former in terms of smaller solvent consumption, shorter extraction time, and more environment-friendliness. Prior to the extraction step, pretreatment of plant materials to enhance the stability of natural pigments is another important step that must be carefully taken care of. In this paper, a comprehensive review of appropriate pretreatment and extraction methods for chlorophylls, carotenoids, betalains, and anthocyanins, which are major classes of plant pigments, is provided by using pigment stability and extraction yield as assessment criteria.

  19. Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media.

    PubMed

    Hajdú, Angéla; Szekeres, Márta; Tóth, Ildikó Y; Bauer, Rita A; Mihály, Judith; Zupkó, István; Tombácz, Etelka

    2012-06-01

    Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH=6.5±0.3 and I=0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion-carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ~0.001 M at no added PAA up to ~0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.

  20. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.

    PubMed

    Zhao, Wei; Rovere, Thomas; Weerawarne, Darshana; Osterhoudt, Gavin; Kang, Ning; Joseph, Pharrah; Luo, Jin; Shim, Bonggu; Poliks, Mark; Zhong, Chuan-Jian

    2015-06-23

    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed-laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal such as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple "nanoalloy printing-laser sintering-nanostructure printing" process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.

  1. NIK Stabilization in Osteoclasts Results in Osteoporosis and Enhanced Inflammatory Osteolysis

    PubMed Central

    Yang, Chang; McCoy, Kathleen; Davis, Jennifer L.; Schmidt-Supprian, Marc; Sasaki, Yoshiteru; Faccio, Roberta; Novack, Deborah Veis

    2010-01-01

    Background Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway. Methodology/Principal Findings Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis. Conclusions Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli. PMID:21151480

  2. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    NASA Astrophysics Data System (ADS)

    Leone, Serena; Pica, Andrea; Merlino, Antonello; Sannino, Filomena; Temussi, Piero Andrea; Picone, Delia

    2016-09-01

    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction.

  3. Relativistic cyclotron radiation instabilities, wave enhanced runaway rates, and stability of cylindrical spheromak

    SciTech Connect

    An, Z.G.

    1982-01-01

    Four topics are presented in this dissertation. In chapter one, the electromagnetic cyclotron instabilities occurring in a relativistic electron beam propagating in an external magnetic field are studied by considering the electron motions inside the self-consistent electromagnetic field. When the number of electrons in a subgroup is greater than two, or when the phases are random, the linear dispersion relation obtained agrees with that of Chu et al. for a gyrotron in a ring model. The effects of plasma waves on the electron runaway production rate are studied in chapter two. For a wave packet with a one-dimensional spectrum directed along the electric field and with phase velocity range containing the critical velocity v/sub c/ for runaway, the runaway production rate is found to be enhanced by many orders of magnitude. In chapter three the effect of ion waves on the runaway ion production is studied by solving a Fokker-Planck equation with a quasi-linear diffusion operator. It is shown that the presence of a wave packet with a one-dimensional spectrum can considerably enhance the population of the energetic runaway ions. The cylindrical spheromak, an optimal force-free cylindrical plasma configuration, having internal toroidal and poloidal fields and external poloidal field, is analyzed in chapter four for its equilibrium and stability properties.

  4. Myristic acid-modified thymopentin for enhanced plasma stability and immune-modulating activity.

    PubMed

    Tan, Yuanyan; Wang, Wei; Wu, Chunlei; Pan, Zhengyin; Yao, Guiyang; Fang, Lijing; Su, Wu

    2017-03-30

    Natural albumin ligand (fatty acids)-conjugated peptides can rapidly bind to circulating albumin and form complexes to control the release of peptides. The purpose of this study was to prolong the half-life and immune-modulating effects of thymopentin (TP5) by using the albumin binding strategy. We synthesized myristic acid-modified TP5 (TP5-MA) by conjugating a myristic acid-acylated lysine to a permissive site of TP5, which improved the albumin binding affinity of TP5-MA and dramatically enhanced its stability in human plasma. We observed well-preserved bioactivities of TP5-MA in RAW264.7 macrophages using a tumor necrosis factor (TNF)-α stimulation assay. Moreover, the prolonged immune-modulating effect of TP5-MA was confirmed by the normalized CD4(+)/CD8(+) ratio in immune-depressed rat models, which resulted in a reduced administration frequency (twice per week). In general, the enhanced pharmacokinetic and pharmacodynamic properties of TP5-MA make it a promising product for the treatment of immunodeficiency diseases.

  5. Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase.

    PubMed

    Guimarães, Cristiano Ruch Werneck; Repasky, Matthew P; Chandrasekhar, Jayaraman; Tirado-Rives, Julian; Jorgensen, William L

    2003-06-11

    The rate enhancement provided by the chorismate mutase (CM) enzyme for the Claisen rearrangement of chorismate to prephenate has been investigated by application of the concept of near attack conformations (NACs). Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82% and 100% of chorismate conformers were found to be NAC structures in water and in the CM active site, respectively. Consequently, the conversion of non-NACs to NACs does not contribute to the free energy of activation from preorganization of the substrate into NACs. The FEP calculations yielded differences in free energies of activation that well reproduce the experimental data. Additional calculations indicate that the rate enhancement by CM over the aqueous phase results primarily from conformational compression of NACs by the enzyme and that this process is enthalpically controlled. This suggests that preferential stabilization of the transition state in the enzyme environment relative to water plays a secondary role in the catalysis by CM.

  6. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design.

    PubMed

    Leone, Serena; Pica, Andrea; Merlino, Antonello; Sannino, Filomena; Temussi, Piero Andrea; Picone, Delia

    2016-09-23

    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction.

  7. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Chen, Bo-Chuen

    2011-01-01

    In this work, SiO 2 nanoparticles-modified surface-enhanced Raman scattering (SERS)-active silver substrates were prepared by electrochemical oxidation-reduction cycles (ORC) methods in 0.1 N HCl aqueous solutions containing 1 mM SiO 2 nanoparticles to improve their thermal stabilities and anti-aging abilities in SERS performances. Then these SERS-active substrates were further modified with different contents of SiO 2 nanoparticles to improve their corresponding SERS performances. Experimental results indicate that the operation temperature can be significantly raised from 125 to 175 °C based on this modified SERS-active Ag substrate. Also, the aging in SERS intensity is also depressed on this modified Ag substrate due to the contribution of SiO 2 nanoparticles. Moreover, the SERS enhancement capability on this modified Ag substrate is gradually raised from 25 °C to a maximum at 55 °C and monotonically decreased from 55 to 60 °C. This is a 10 °C delay as compared with the similar phenomenon observed on the unmodified Ag substrate.

  8. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  9. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    PubMed Central

    Leone, Serena; Pica, Andrea; Merlino, Antonello; Sannino, Filomena; Temussi, Piero Andrea; Picone, Delia

    2016-01-01

    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction. PMID:27658853

  10. Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms.

    PubMed

    Yang, Yang; Zhou, Dandan; Xu, Zhengxue; Li, Aijun; Gao, Hang; Hou, Dianxun

    2014-06-01

    In this study, the possibility of using backwashed biofilm as seed in an aerobic granular sludge continuous-flow airlift fluidized bed (CAFB) reactor was investigated. After the addition of the inoculated backwashed biofilm, the start-up period of this reactor fed with municipal wastewater was reduced to 25 days, and aerobic granulation and stabilization were enhanced. At steady state, the chemical oxygen demand (COD) removal efficiency and nitrification efficiency were as high as 80-90 and 60 %, respectively. The CAFB was operated continuously and totally for 90 days, and its performance was much more stable when compared with system inoculated with activated sludge. Microbial distribution analyzed by fluorescence in situ hybridization (FISH) showed that the nitrite-oxidizing bacteria (NOB) and ammonium-oxidizing bacteria (AOB) were compatible with heterotrophic bacteria and distributed evenly throughout the granules. Such unique population distribution might be attributed to the low COD level and abundant dissolved oxygen in the entire granule as simulated by the mathematic models. Moreover, scanning electron microscopy revealed broad holes in the granules, which might promote the mass transfer of the nutrients from the surface to the center and enable simultaneous COD removal and nitrification. In conclusion, backwashed biofilm is an alternative seed of the conventional flocculent activated sludge in the aerobic granular sludge system to enhance carbonaceous oxidization and nitrification.

  11. Highly stabilized and photoluminescence enhancement of ZnS:Mn{sup 2+} nanoparticles in biotin matrix

    SciTech Connect

    Keshari, Ashish K.; Pandey, Avinash C.

    2009-03-15

    We synthesized the ZnS:Mn{sup 2+} nanoparticles passivated by biocompatible layer, namely, biotin by chemical precipitation route and studied their temporal evolution for size, structure, optical, and photoluminescence stability. To monitor the structural and optoelectronic properties of the nanoparticles with time, we have characterized the grown product by x-ray diffraction, small angle x-ray scattering, UV visible, and photoluminescence spectroscopic techniques at a regular interval for a period of three months. Results showed that the properties of nanophosphors capped with biotin are remaining the same even after 3 months. Energy dispersive x-ray analysis of 3 month aged sample shows long time compatibility between ZnS:Mn{sup 2+} nanoparticles and the biotin. This is also confirmed by electron microscopy that the growth of the nanoparticles is strongly arrested by the biotin. X-ray photoelectron spectra were also recorded to show the chemical state of the elements. Enhanced ratio of Zn 2p to Mn 2p peaks in the x-ray photoelectron spectra of ZnS:Mn{sup 2+} nanoparticles shows that the Mn{sup 2+} ions are incorporated within ZnS host matrix. We found that biotin capping will enhance the luminescence from ZnS:Mn{sup 2+} nanoparticles as compared to without capped particles. Absence of biotin will gradually degrade the luminescence upon aging while drastic degradation in luminescence intensity was observed after annealing. Properties show that biotin also protected the nanoparticles from any environmental attack.

  12. Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration

    SciTech Connect

    Carey, James W.; Simpson, Wendy S.; Ziock, Hans-Joachim

    2011-01-01

    Shale-gas development in Pennsylvania since 2003 has resulted in about 19 documented cases of methane migration from the deep subsurface (7,0000) to drinking water aquifers, soils, domestic water wells, and buildings, including one explosion. In all documented cases, the methane leakage was due to inadequate wellbore integrity, possibly aggravated by hydrofracking. The leakage of methane is instructive on the potential for CO{sub 2} leakage from sequestration operations. Although there are important differences between the two systems, both involve migrating, buoyant gas with wells being a primary leakage pathway. The shale-gas experience demonstrates that gas migration from faulty wells can be rapid and can have significant impacts on water quality and human health and safety. Approximately 1.4% of the 2,200 wells drilled into Pennsylvania's Marcellus Formation for shale gas have been implicated in methane leakage. These have resulted in damage to over 30 domestic water supplies and have required significant remediation via well repair and homeowner compensation. The majority of the wellbore integrity problems are a result of over-pressurization of the wells, meaning that high-pressure gas has migrated into an improperly protected wellbore annulus. The pressurized gas leaks from the wellbore into the shallow subsurface, contaminating drinking water or entering structures. The effects are localized to a few thousands of feet to perhaps two-three miles. The degree of mixing between the drinking water and methane is sufficient that significant chemical impacts are created in terms of elevated Fe and Mn and the formation of black precipitates (metal sulfides) as well as effervescing in tap water. Thus it appears likely that leaking CO{sub 2} could also result in deteriorated water quality by a similar mixing process. The problems in Pennsylvania highlight the critical importance of obtaining background data on water quality as well as on problems associated with

  13. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  14. Modeling Methane Leakage from Faulty Wellbores in the Denver-Julesburg Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Lackey, G.; Rajaram, H.; Karra, S.; Sherwood, O.; Burke, T. L.

    2015-12-01

    Regulations in the state of Colorado mandate that all oil and gas wells be constructed with surface casings that extend 50 feet below the depth of the deepest potable aquifer, and production casings that are cemented to at least 200 feet above the shallowest producing formation. Building wells in accordance with the minimum regulations leaves an uncemented annulus between the production casing and the surrounding rock matrix, extending from the bottom of the surface casing to the top of the production casing cement. In Colorado, this annulus is sealed at the ground surface by the "bradenhead valve". Stray methane can enter the uncemented annulus through faulty cement in the producing formation or an intermediate gas-bearing zone and migrate upwards along the production casing. The gas dissolves into the annular fluid and accumulates below the bradenhead valve building pressure. Data from the Colorado Oil and Gas Conservation Commission (COGCC) indicates that 1,492 wells in the Denver-Julesburg (DJ) Basin have recorded bradenhead pressures greater than 20 psi since 2007. A leak of this kind creates the potential for both the single-phase transport of dissolved methane and the multiphase transport of methane gas away from the well. The degree to which methane transport occurs depends not only on the size of the leak but also the construction of the wellbore. In Colorado, the definition of potable groundwater has changed with time. To meet increasing demands for water, drinking water wells have been drilled deeper. As a result, there are potentially 4,144 wells in the DJ Basin with surface casings too shallow to protect the deepest potable aquifer. In this work, we investigate how a methane leak into the open annulus of an oil and gas wellbore, could result in the transport of dissolved and gas phase methane into a nearby drinking water aquifer. We construct a multiphase wellbore model that computes the pressure distribution and gas fraction along the uncemented

  15. Iron casein succinylate-chitosan coacervate for the liquid oral delivery of iron with bioavailability and stability enhancement.

    PubMed

    Min, Kyoung Ah; Cho, Jung-Hye; Song, Yun-Kyoung; Kim, Chong-Kook

    2016-01-01

    Iron casein succinylate (ICS) liquid oral preparation as iron supplement has uncomfortable taste after a long period of storage because of its stability, and poor bioavailability of iron compared to any other iron preparations. To improve the chemical stability of ICS and enhance the bioavailability of iron, chitosan-ICS nanoparticles (NPs) were prepared by complex coacervation method and stabilized with polyethylene glycol (PEG) 400. NPs were spherical (mean diameter of 830-1070 nm) with positive charge (+30-60 mV) depending on the composition of NPs. Addition of PEG400 (2 w/v %) increased the zeta potential (26-50 %) and physical stability of chitosan-ICS NPs suspension. Also, NPs decreased iron release compared to ICS after 7-weeks of storage at 4 °C. NPs markedly increased the permeability of iron in Caco-2 cell up to 32-38-fold compared to ICS, while physical mixture of chitosan and ICS increased the iron permeability only 2.5-fold. In summary, NPs improved the physicochemical stability and enhanced the transport of iron compared to other iron preparations in Caco-2 cell model. Thus, chitosan-ICS coacervate might be a promising candidate as a liquid oral iron delivery system for iron deficiency patients with stability and bioavailability enhancement.

  16. Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization.

    PubMed

    Beiyuan, Jingzi; Lau, Abbe Y T; Tsang, Daniel C W; Zhang, Weihua; Kao, Chih-Ming; Baek, Kitae; Ok, Yong Sik; Li, Xiang-Dong

    2017-09-09

    Remediation of CCA-contaminated soil (Cr, Cu, and As) by biodegradable chelant-enhanced washing (EDDS, S,S-ethylene-diamine-disuccinic-acid) needs further enhancement. This study investigated the effectiveness of coupling with pre-treatment by selective dissolution and post-treatment by soil amendments, respectively. Three groups of reagents (reductants, alkaline solvents, and organic ligands) were adopted in the pre-treatment to dissolve the oxide minerals before EDDS extraction. In the post-treatment, soil amendments (coal fly ash (CFA), acid mine drainage sludge (AMDS), green waste compost (GWC)), and their mixtures) were used for a 2-month stabilization after 2-h EDDS washing. Multi-endpoint evaluation was performed by assessing the chemical state, leachability, mobility, bioaccessibility, and plant-availability of residual metal(loid)s as well as the cytotoxicity, enzyme activities, and available nutrients of the treated soils. Pre-treatment by dithionite-citrate-bicarbonate significantly enhanced extraction efficiency, but also increased the leachability of As and Cr and bioaccessibility of Cr in the treated soils. While sodium hydroxide removed the majority of As without increasing its leachability and bioaccessibility, it increased the cytotoxicity and inhibited the acid phosphatase activity. Post-treatment with AMDS and CFA effectively controlled the mobility and leachability of residual As and Cr after EDDS washing. However, destabilized Cu was only marginally immobilized by GWC due to strong Cu-EDDS complexation. The bioaccessibility and phytoavailability of Cu was primarily reduced by EDDS washing, while those of As and Cr could be attenuated by AMDS and CFA. This study indicates that coupling chemical extraction with subsequent soil amendment plays complementary roles in mitigating effects of residual metal(loid)s and improving environmental quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects.

    PubMed

    Wuehr, M; Nusser, E; Krafczyk, S; Straube, A; Brandt, T; Jahn, K; Schniepp, R

    2016-01-01

    White noise galvanic vestibular stimulation (GVS) is thought to enhance the sensitivity of vestibular organs. To examine the effects of noise-enhanced vestibular input on the walking performance in healthy subjects walking with eyes closed. Walking performance of 17 healthy subjects (mean age 28.8 ± 1.7 years) at slow, preferred, and fast speeds was examined during three different conditions: (1) walking with eyes open (EO) as baseline condition, (2) walking with eyes closed and sham noisy GVS (EC), and (3) walking with eyes closed and non-zero amplitude noisy GVS set to 80% of the individual sensory threshold for GVS (EC-GVS). Ten gait parameters were examined: stride time, stride length, base of support, swing time percentage, double support time percentage as well as gait asymmetry, bilateral phase coordination and the coefficient of variation (CV) of stride time, stride length and base of support. Noisy GVS improved stride time CV by 36% (p < 0.034), stride length CV by 31% (p < 0.037), base of support CV by 14% (p < 0.009), and bilateral phase coordination by 23% (p < 0.034). The ameliorating effects of noisy GVS on locomotion function were primarily observable during slow walking speeds. Noise-enhanced vestibular input is effective in improving locomotion function and is accompanied by a subjectively felt improvement of walking balance. It predominantly targets the variability and bilateral coordination characteristics of the walking pattern, which are critically linked to dynamic walking stability. Noisy GVS might present an effective treatment option to improve walking performance in patients with bilateral vestibular dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    NASA Astrophysics Data System (ADS)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence

  19. Numerical analysis of wellbore integrity: results from a field study of a natural CO2 reservoir production well

    NASA Astrophysics Data System (ADS)

    Crow, W.; Gasda, S. E.; Williams, D. B.; Celia, M. A.; Carey, J. W.

    2008-12-01

    An important aspect of the risk associated with geological CO2 sequestration is the integrity of existing wellbores that penetrate geological layers targeted for CO2 injection. CO2 leakage may occur through multiple pathways along a wellbore, including through micro-fractures and micro-annuli within the "disturbed zone" surrounding the well casing. The effective permeability of this zone is a key parameter of wellbore integrity required for validation of numerical models. This parameter depends on a number of complex factors, including long-term attack by aggressive fluids, poor well completion and actions related to production of fluids through the wellbore. Recent studies have sought to replicate downhole conditions in the laboratory to identify the mechanisms and rates at which cement deterioration occurs. However, field tests are essential to understanding the in situ leakage properties of the millions of wells that exist in the mature sedimentary basins in North America. In this study, we present results from a field study of a 30-year-old production well from a natural CO2 reservoir. The wellbore was potentially exposed to a 96% CO2 fluid from the time of cement placement, and therefore cement degradation may be a significant factor leading to leakage pathways along this wellbore. A series of downhole tests was performed, including bond logs and extraction of sidewall cores. The cores were analyzed in the laboratory for mineralogical and hydrologic properties. A pressure test was conducted over an 11-ft section of well to determine the extent of hydraulic communication along the exterior of the well casing. Through analysis of this pressure test data, we are able estimate the effective permeability of the disturbed zone along the exterior of wellbore over this 11-ft section. We find the estimated range of effective permeability from the field test is consistent with laboratory analysis and bond log data. The cement interfaces with casing and/or formation are

  20. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  1. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    PubMed

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions.

    PubMed

    Li, Bin; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Structurally varied, carboxyl-containing cellulose derivatives were evaluated for their ability to form amorphous solid dispersions (ASD) with ellagic acid (EA), in order to improve the solubility of this high-melting, poorly bioavailable, but highly bioactive natural flavonoid compound. ASDs of EA with carboxymethylcellulose acetate butyrate (CMCAB), cellulose acetate adipate propionate (CAAdP), and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were prepared, and EA dissolution from these ASDs was compared with that from pure crystalline EA and from EA/poly(vinylpyrrolidinone) (PVP) solid dispersions (SD). Polymer/drug mixtures were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR). The XRPD and FT-IR results indicated that EA was amorphous in solid dispersions with EA concentration up to 25 wt%. The stability against crystallization and solution concentrations of EA from these solid dispersions were significantly higher than those observed for physical mixtures and pure crystalline EA. HPMCAS stabilized EA most effectively, among the polymers tested, against both chemical degradation and recrystallization. The relative ability to solubilize EA from ASDs at pH 6.8 was PVP>HPMCAS>CMCAB. EA dissolves from ASD in PVP quickly and completely (maximum 92%) at pH 6.8, but EA is also released from PVP at pH 1.2, and then crystallizes rapidly. Therefore PVP is not a practical candidate for EA ASD. In contrast, the cellulose derivative ASDs show very slow EA release at pH 1.2 (<4%) and faster but still incomplete drug release at pH 6.8 (maximum 35% for HPMCAS SD). The pH-triggered drug release from HPMCAS ASD makes HPMCAS a practical choice for EA solubility enhancement.

  3. Removal of seminal plasma enhances membrane stability on fresh and cooled stallion spermatozoa.

    PubMed

    Barrier-Battut, I; Bonnet, C; Giraudo, A; Dubois, C; Caillaud, M; Vidament, M

    2013-02-01

    Fertility is reduced after semen cooling for a considerable number of stallions. The main hypotheses include alterations in plasma membrane following cooling and deleterious influence of seminal plasma. However, interindividual variability is controversial. We hypothesized that the removal of seminal plasma could enhance motility in some 'poor cooler' stallions, but could also affect, negatively or positively, membrane quality in some stallions. This study examined the effect of centrifugation, followed or not by removal of seminal plasma, on parameters indicating semen quality after 48 h at 4 °C: motility, plasma membrane integrity as evaluated by hypo-osmotic swelling test, acrosome integrity and response to a pharmacological induction of acrosome reaction using ionophore A23187. Sixty-six ejaculates from 14 stallions were used, including stallions showing high or low sperm motility after cooled storage. Centrifugation without removal of seminal plasma did not affect sperm parameters. Removal of seminal plasma did not affect motility, but significantly stabilized sperm membranes, as demonstrated by a higher response to the osmotic challenge, and a reduced reactivity of the acrosome. Moreover, for the same semen sample, the response to an induction of acrosome reaction was significantly higher when the induction was performed in the presence of seminal plasma, compared with the induction in the absence of seminal plasma. This was observed both for fresh and cooled semen. When the induction of acrosome reaction with ionophore A23187 is used to evaluate sperm quality, care must therefore be taken to standardize the proportion of seminal plasma between samples. For the 10 stallions serving at least 25 mares, the only variable significantly correlated with fertility was motility. The influence of membrane stabilization regarding fertility requires further investigations.

  4. Enhancing the quality and lipid stability of chicken nuggets using natural antioxidants.

    PubMed

    Arshad, Muhammad Sajid; Imran, Ali; Nadeem, Muhammad Tahir; Sohaib, Muhammad; Saeed, Farhan; Anjum, Faqir Muhammad; Kwon, Joong-Ho; Hussain, Shahzad

    2017-06-08

    Current day consumers prefer natural antioxidants to synthetic antioxidants because they are more active. However, the activity generally depends on the specific condition and composition of food. The aim of this study was to investigate the effect of wheat germ oil and α-lipoic acid on the quality characteristics, antioxidant status, fatty acid profile, and sensory attributes of chicken nuggets. Six types of diets were prepared for feeding the chickens to evaluate the quality of nuggets made from the leg meat of these experimental animals. These included control, diet enriched with wheat germ oil (WGO), which is a rich natural source of α-tocopherol (AT), diet with added AT or α-lipoic acid (ALA), diet with a combination of either ALA and WGO (ALA + WGO) or ALA and synthetic AT (ALA + AT). ALA has great synergism with synthetic as well as natural AT (WGO). The diet with WGO and ALA showed the best potential with respect to both antioxidant activity and total phenolic content. HPLC results revealed that the chicken nuggets made from WGO + ALA group showed maximum deposition of AT and ALA. The stability of the nuggets from control group was found to be significantly lower than that of nuggets from the WGO + ALA group. Total fatty acid content too was higher in the nuggets from this group. The poly unsaturated fatty acids (PUFA) were found to be higher in the nuggets from the groups fed with a combination of natural and synthetic antioxidants. It is concluded that the combination of natural and synthetic antioxidants in the animal feed exerts a synergistic effect in enhancing the stability and quality of chicken nuggets.

  5. Enhancing the stability of xylanase from Cellulomonas fimi by cell-surface display on Escherichia coli.

    PubMed

    Chen, Y-P; Hwang, I-E; Lin, C-J; Wang, H-J; Tseng, C-P

    2012-03-01

    The cell-surface display of Cex, which encodes xylanase and exoglucanase from Cellulomonas fimi, was constructed on Escherichia coli using PgsA as the anchor protein. Characterization of the cell-surface display of Cex was performed. PgsA was fused to the N-terminus of Cex and six histidines were utilized as spacers between the targeting and anchor proteins. Successful cell-surface display of Cex was demonstrated by Western blot and immunofluorescence analyses on E. coli C41 (DE3). According to the time-course analysis, the xylanase activity of Cex was achieved at 49Ug(-1) dry cell weight after 12 h culture at 37°C. The optimal temperature and pH ranges of the cell-surface displayed protein with whole-cell were broader than the corresponding ranges of the purified form. Further determination of thermostability indicated that the half-life of cell-surface displayed Cex was 1·6 times longer than that of purified Cex at 60°C. We have successfully developed the cell-surface display of xylanase on E. coli. The cell-surface display can enhance the stability of xylanase against changes in temperature and has the potential of becoming a whole-cell biocatalyst for industrial applications, such as biobleaching of paper and production of renewable energy. The results demonstrated that the cell-surface display of xylanase embedded in the cell membrane is more stable than that of the purified enzyme. Thus, to improve the stability of heterologous proteins production, cell-surface display using the PgsA anchor protein as a tool can be considered in E. coli. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO2 Flooding.

    PubMed

    Cheshire, Michael C; Stack, Andrew G; Carey, J William; Anovitz, Lawrence M; Prisk, Timothy R; Ilavsky, Jan

    2017-01-03

    Mineral reactions during CO2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this paper, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1-2 and 10-20 nm, is affected differently during the course of carbonation reactions. Initial dissolution of cement phases occurs in the 10-20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO2 due to reactive surface area loss. This work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.

  7. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO2 Flooding

    SciTech Connect

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; Anovitz, Lawrence M.; Prisk, Timothy R.; Ilavsky, Jan

    2016-12-13

    Mineral reactions during CO2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initial dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.

  8. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO2 Flooding

    DOE PAGES

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...

    2016-12-13

    Mineral reactions during CO2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initial dissolutionmore » of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  9. Impacts of shaking Bengkulus seismicity to subsurface Wellbore in the XX area

    NASA Astrophysics Data System (ADS)

    Rusli, Saifatur; Pratama, M. Ardian; Mardiyan, Hilman; Mirza, Finisha, Brian

    2016-05-01

    Bengkulu earthquake was happened on Wednesday, May 5th 2010 at 23:29:03 WIB (UTC-7) with magnitude 6.5 Richter scale. The Epicentrum was very close to Mentawai Fault System located on latitude 4.063°S and longitude 101.085°E with depth subsurface 27 kms. It was occurred the result of the Indian Ocean Plate-Australia's activity with low angled-subducted beneath the island of Sumatra. Shaking Bengkulus seismicity impacted subsurface in the XX Area which situated on South Palembang Sub-Basin part of South Sumatra Basin (SSB) about 200 kms far away from the epicentrum. Due to XX Area has some producing wells so that the seismicity activities as hypothetically impacts to Subsurface Wellbore which has caused some wells casing problems in the same depth. The wells casing problem shown after conducted routine sand bailer by Sand Line Unit, it was a downhole device used to remove debris sands or similar small particles around the fishingnecks of downhole tools or equipment in the wellbore, and then Sand Bailer tools got scratch at one side body. Similarly, Sand Bailer tools couldnt lowered until Total Depth and got samples sands slightly. At the end, it has impacted to well performance to produce oil in the XX Area.

  10. Characterization and solvent engineering of wheat β-amylase for enhancing its activity and stability.

    PubMed

    Daba, Tadessa; Kojima, Kenji; Inouye, Kuniyo

    2012-10-10

    The kinetic and thermodynamic parameters of wheat β-amylase (WBA) were characterized and various additives were evaluated for enhancing its activity and thermostability. WBA activity was examined by neocuproine method using soluble starch as substrate. The Michaelis constant (K(m)) and molecular activity (k(cat)) were determined to be 1.0±0.1% (w/v) and 94±3s(-1), respectively, at pH 5.4 and at 25°C. The optimum reaction temperature (T(opt)) for WBA activity was 55°C and the temperature (T(50)) at which it loses half of the activity after 30-min incubation was 50±1°C. Modifications of the solvent with 182mM glycine and 0.18% (w/v) gelatin have increased the T(50) by 5°C. Glycerol, ethylene glycol, dimethylformamide (DMF) and dimethyl sulfoxide have also slightly enhanced the thermostability plausibly through weakening the water structure and decreasing the water shell around the WBA protein. Ethanol and DMF activated WBA by up to 24% at 25°C probably by inducing favorable conformation for the active site or changing the substrate structure by weakening the hydrogen bonding. Its half-life in the inactivation at 55°C was improved from 23 to 48min by 182mM glycine. The thermodynamic parameters indicate that WBA is thermo-labile and sufficient stabilization was achieved through solvent modification with additives and that the heat inactivation of WBA is entropic-driven. It is suggested that WBA could be applied more widely in starch-saccharification industries with employing suitable additives.

  11. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    SciTech Connect

    Chowdhury, E.H.

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  12. Enhanced heat stability and kinetic parameters of maize endosperm ADPglucose pyrophosphorylase by alteration of phylogenetically identified amino acids.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Georgelis, Nikolaos; Hannah, L Curtis

    2014-02-01

    ADP-glucose pyrophosphorylase (AGPase) controls the rate-limiting step in starch biosynthesis and is regulated at various levels. Cereal endosperm enzymes, in contrast to other plant AGPases, are particularly heat labile and transgenic studies highlight the importance of temperature for cereal yield. Previously, a phylogenetic approach identified Type II and positively selected amino acid positions in the large subunit of maize endosperm AGPase. Glycogen content, kinetic parameters and heat stability were measured in AGPases having mutations in these sites and interesting differences were observed. This study expands on our earlier evolutionary work by determining how all Type II and positively selected sites affect kinetic constants, heat stability and catalytic rates at increased temperatures. Variants with enhanced properties were identified and combined into one gene, designated Sh2-E. Enhanced properties include: heat stability, enhanced activity at 37 °C, activity at 55 °C, reduced Ka and activity in the absence of activator. The resulting enzyme exhibited all improved properties of the various individual changes. Additionally, Sh2-E was expressed with a small subunit variant with enhanced enzyme properties resulting in an enzyme that has exceptional heat stability, a high catalytic rate at increased temperatures and significantly decreased Km values for both substrates in the absence of the activator.

  13. Enhanced Low-temperature Electro-optical Kerr Effect of Stable Cubic Soft Superstructure Enabled by Fluorinated Polymer Stabilization.

    PubMed

    Li, Xiao; Yang, Wei-Qiang; Yuan, Cong-Long; Liu, Zhen; Zhou, Kang; Wang, Xiao-Qian; Shen, Dong; Zheng, Zhi-Gang

    2017-09-04

    An enhanced electro-optical Kerr effect of the stable self-organized cubic blue phase liquid crystal superstructure at a relatively low temperature down to -50 °C was achieved through a judiciously designed fluorinated polymer stabilization. The fluorinated sample exhibited not only a rather stable cubic structure, but the promoted electro-optical performances of low driving voltage, weak hysteresis and high contrast ratio at such a low-temperature, which were much distinct from the common non-fluorinated polymer stabilized blue phase liquid crystal without conspicuous low-temperature Kerr response behaviours. Kerr constant, which reflects the obviousness of Kerr effect, of the fluorinated sample at -50 °C indicated a spectacular enhancement of two orders of magnitude in contrast to the commonly material, thereby corroborating the high efficiency of polymer fluorination in enhancing low-temperature Kerr effect. Such an enhancement of Kerr effect was probably resulted from the decreasing of interfacial anchoring between liquid crystal and fluorinated polymer network. The fluorinated polymer stabilization not only ensures the stability of self-organized cubic structure of blue phase, but overcomes the challenge and bottleneck problem of low-temperature inapplicability of common blue phase liquid crystal and paves a brilliant and broad way for relevant materials to abundant perspective applications at low temperature.

  14. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    SciTech Connect

    Lee, Min Wook; An, Seongpil; Song, Kyo Yong; Joshi, Bhavana N.; Jo, Hong Seok; Yoon, Sam S. E-mail: ayarin@uic.edu; Al-Deyab, Salem S.; Yarin, Alexander L. E-mail: ayarin@uic.edu

    2015-12-28

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.

  15. Self-ordering dual-layered honeycomb nanotubular titania: Enhanced structural stability and energy storage capacity

    NASA Astrophysics Data System (ADS)

    Sitler, S. J.; Raja, K. S.; Karmiol, Z.; Chidambaram, D.

    2017-04-01

    Electrochemical energy storage of TiO2 anodic oxide with a novel honeycomb morphology was characterized and compared with that of standard TiO2 nanotubes. The new morphology consists of several smaller-diameter (∼20 nm) nanotubes stacked inside of each honeycomb like hemisphere. The honeycomb like hemispheres are 160-200 nm in diameter with inter-wall thicknesses of 20-50 nm grown onto a planar barrier layer. The dual-layered honeycomb oxide has a total thickness of about 350-500 nm and high surface area. Cyclic voltammetry and galvanostatic charge-discharge tests were carried out on these oxide samples in as-anodized and thermally annealed conditions using 0.1 M NaOH and 0.1 M LiCl + 0.1 M HCl electrolytes. The honeycomb arrays showed an areal capacitance of 56 mF cm-2 at 100 mV s-1 scan rate, and 0.75 mF cm-2 at a current density of 0.1 mA cm-2. The areal capacitance of the honeycomb structured samples were about 60% higher than that of the regular TiO2 nanotubes. The honeycomb structured TiO2 also showed 33% higher capacitance retention after 10,000 cycles than that of regular TiO2 nanotubes. The higher capacitance retention could be attributed to the enhanced structural stability of the honeycomb structures.

  16. Functionalization of Metal-Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions.

    PubMed

    Andirova, Dinara; Lei, Yu; Zhao, Xiaodan; Choi, Sunho

    2015-10-26

    Metal-organic frameworks (MOFs) have been highlighted recently as promising materials for CO2 capture. However, in practical CO2 capture processes, such as capture from flue gas or ambient air, the adsorption properties of MOFs tend to be harmed by the presence of moisture possibly because of the hydrophilic nature of the coordinatively unsaturated sites (CUSs) within their framework. In this work, the CUSs of the MOF framework are functionalized with amine-containing molecules to prevent structural degradation in a humid environment. Specifically, the framework of the magnesium dioxybenzenedicarboxylate (Mg/DOBDC) MOF was functionalized with ethylenediamine (ED) molecules to make the overall structure less hydrophilic. Structural analysis after exposure to high-temperature steam showed that the ED-functionalized Mg/DOBDC (ED-Mg/DOBDC) is more stable under humid conditions, than Mg/DOBDC, which underwent drastic structural changes. ED-Mg/DOBDC recovered its CO2 adsorption capacity and initial adsorption rate quite well as opposed to the original Mg/DOBDC, which revealed a significant reduction in its capture capacity and kinetics. These results suggest that the amine-functionalization of the CUSs is an effective way to enhance the structural stability of MOFs as well as their capture of humid CO2 .

  17. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    NASA Astrophysics Data System (ADS)

    Swasey, Steven M.; Gwinn, Elisabeth G.

    2016-04-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson-Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag+, as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag+-DNA nanostructures. Our studies of Ag+-induced assembly of non-complementary DNA oligomers employ strands of 2-24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag+ can be achieved by optimizing solution conditions. These Ag+-mediated duplexes are stable to at least 60 mM Mg2+, higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag+-mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag+-mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’.

  18. Enhancement of physical stability and bioaccessibility of tangeretin by soy protein isolate addition.

    PubMed

    Wan, Jiawei; Li, Dong; Song, Rong; Shah, Bakht Ramin; Li, Bin; Li, Yan

    2017-04-15

    Soy protein isolate (SPI) was selected to fabricate supersaturated self-emulsifying nanoemulsions, aiming to enhance physical stability and bioaccessibility of hydrophobic tangeretin. Dissolution studies demonstrated that tangeretin had the highest solubility in Tween 80, followed by oil phase solutions, and polymer solutions. Supersaturated tangeretin in oil phases easily formed crystals. That metastable zone was found to vary with its initial concentrations. After encapsulation by nanoemulsions, the addition of glycerol compressed the retention amount of tangeretin from 76% to 53%, but benefited the transparency. Whereas, the combination of glycerol and SPI could not only maintain high-loading tangeretin (>85%), but also provide high transparency for nanoemulsions. When tangeretin concentration was 4.83mM, combination of 50% glycerol and 1% SPI could maintain around 88% tangeretin in the nanoemulsion within one month. Its bioaccessibility of different systems were at 60-65%. These findings can provide useful information for protein to be a potential precipitation inhibitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    NASA Astrophysics Data System (ADS)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  20. Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair

    PubMed Central

    Shuai, Cijun; Zhou, Jianhua; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Peng, Shuping

    2015-01-01

    Calcium sulfate (CaSO4), as a promising tissue repair material, has been applied widely due to its outstanding bioabsorbability and osteoconduction. However, fast disintegration, insufficient mechanical strength and poor bioactivity have limited its further application. In the study, CaSO4 scaffolds fabricated by using selective laser sintering were improved by adding 45S5 bioglass. The 45S5 bioglass enhanced stability significantly due to the bond effect of glassy phase between the CaSO4 grains. After immersing for four days in simulated body fluid (SBF), the specimens with 45S5 bioglass could still retain its original shape compared as opposed to specimens without 45S5 bioglass who experienced disintegration. Meanwhile, its compressive strength and fracture toughness increased by 80% and 37%, respectively. Furthermore, the apatite layer was formed on the CaSO4 scaffolds with 45S5 bioglass in SBF, indicating good bioactivity of the scaffolds. In addition, the scaffolds showed good ability to support the osteoblast-like cell adhesion and proliferation. PMID:28793652

  1. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    NASA Astrophysics Data System (ADS)

    Lee, Min Wook; An, Seongpil; Song, Kyo Yong; Joshi, Bhavana N.; Jo, Hong Seok; Al-Deyab, Salem S.; Yoon, Sam S.; Yarin, Alexander L.

    2015-12-01

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.

  2. Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing microbubbles.

    PubMed

    Eggen, Siv; Fagerland, Stein-Martin; Mørch, Ýrr; Hansen, Rune; Søvik, Kishia; Berg, Sigrid; Furu, Håkon; Bøhn, Audun Dybvik; Lilledahl, Magnus B; Angelsen, Anders; Angelsen, Bjørn; de Lange Davies, Catharina

    2014-08-10

    The delivery of nanoparticles to solid tumors is often ineffective due to the lack of specificity towards tumor tissue, limited transportation of the nanoparticles across the vascular wall and poor penetration through the extracellular matrix of the tumor. Ultrasound is a promising tool that can potentially improve several of the transportation steps, and the interaction between sound waves and microbubbles generates biological effects that can be beneficial for the successful delivery of nanocarriers and their contents. In this study, a novel platform consisting of nanoparticle-stabilized microbubbles has been investigated for its potential for ultrasound-enhanced delivery to tumor xenografts. Confocal laser scanning microscopy was used to study the supply of nanoparticles from the vasculature and to evaluate the effect of different ultrasound parameters at a microscopic level. The results demonstrated that although the delivery is heterogeneous within tumors, there is a significant improvement in the delivery and the microscopic distribution of both nanoparticles and a released model drug when the nanoparticles are combined with microbubbles and ultrasound. The mechanisms that underlie the improved delivery are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeraj K.; Tyagi, Neha; Kumar, Amit; Srivastava, Pankaj

    2017-02-01

    Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  4. Rationally designed cyclic analogues of luteinizing hormone-releasing hormone: enhanced enzymatic stability and biological properties.

    PubMed

    Laimou, Despina; Katsila, Theodora; Matsoukas, John; Schally, Andrew; Gkountelias, Kostas; Liapakis, George; Tamvakopoulos, Constantin; Tselios, Theodore

    2012-12-01

    This article describes the rational design, synthesis and pharmacological properties of amide-linked cyclic analogues of Luteinizing Hormone-Releasing Hormone (LHRH) with substitutions at positions 1 (Pro), 6 (D-Leu/D-Trp), 9 (Aze) and 10 (BABA/Acp). These LHRH analogues fulfil the conformational requirements that are known in the literature (bend in the 5-8 segment) to be essential for receptor recognition and activation. Although, they are characterised by an overall low binding affinity to the LHRH-I receptor, the cyclic analogues that were studied and especially the cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH, exhibit a profoundly enhanced in vitro and in vivo stability and improved pharmacokinetics in comparison with their linear counterpart and leuprolide. Upon receptor binding, cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH causes testosterone release in C57/B16 mice (in vivo efficacy) that is comparable to that of leuprolide. Testosterone release is an acutely dose dependent effect that is blocked by the LHRH-I receptor antagonist, cetrorelix. The pharmacokinetic advantages and efficacy of cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH render this analogue a promising platform for future rational drug design studies towards the development of non-peptide LHRH mimetics.

  5. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting.

    PubMed

    Chen, Yiyin; Minh, Le Van; Liu, Jianwen; Angelov, Borislav; Drechsler, Markus; Garamus, Vasil M; Willumeit-Römer, Regine; Zou, Aihua

    2016-04-01

    Bioavailability of baicalin (BAI), an example of traditional Chinese medicine, has been modified by loading into liposome. Several liposome systems of different composition i.e., lipid/cholesterol (L), long-circulating stealth liposome (L-PEG) and folate receptor (FR)-targeted liposome (L-FA) have been used as the drug carrier for BAI. The obtained liposomes were around 80 nm in diameter with proper zeta potentials about -25 mV and sufficient physical stability in 3 months. The entrapment efficiency and loading efficiency of BAI in the liposomes were 41.0-46.4% and 8.8-10.0%, respectively. The morphology details of BAI lipsosome systems i.e., formation of small unilamellar vesicles, have been determined by cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). In vitro cytotoxicity of BAI liposomes against HeLa cells was evaluated by MTT assay. BAI loaded FR-targeted liposomes showed higher cytotoxicity and cellular uptake compared with non-targeted liposomes. The results suggested that L-FA-BAI could enhance anti-tumor efficiency and should be an effective FR-targeted carrier system for BAI delivery.

  6. Tumor-targeted TNFα stabilizes tumor vessels and enhances active immunotherapy.

    PubMed

    Johansson, Anna; Hamzah, Juliana; Payne, Christine J; Ganss, Ruth

    2012-05-15

    Solid tumors are intrinsically resistant to immune rejection. Abnormal tumor vasculature can act as a barrier for immune cell migration into tumors. We tested whether targeting IFNγ and/or TNFα into pancreatic neuroendocrine tumors can alleviate immune suppression. We found that intratumoral IFNγ causes rapid vessel loss, which does not support anti-tumor immunity. In contrast, low-dose TNFα enhances T-cell infiltration and overall survival, an effect that is exclusively mediated by CD8(+) effector cells. Intriguingly, lymphocyte influx does not correlate with increased vessel leakiness. Instead, low-dose TNFα stabilizes the vascular network and improves vessel perfusion. Inflammatory vessel remodeling is, at least in part, mediated by tumor-resident macrophages that are reprogrammed to secrete immune and angiogenic modulators. Moreover, inflammatory vessel remodeling with low-dose TNFα substantially improves antitumor vaccination or adoptive T-cell therapy. Thus, low-dose TNFα promotes both vessel remodeling and antitumor immune responses and acts as a potent adjuvant for active immunotherapy.

  7. Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity

    NASA Astrophysics Data System (ADS)

    Ramirez-Caballero, Gustavo E.; Hirunsit, Pussana; Balbuena, Perla B.

    2010-10-01

    Density functional theory is used to evaluate activity and stability properties of shell-anchor-core structures. The structures consist of a Pt surface monolayer and a composite core having an anchor bilayer where C atoms in the interstitial sites lock 3d metals in their locations, thus avoiding their surface segregation and posterior dissolution. The modified subsurface geometry induces less strain on the top surface, thus exerting a favorable effect on the surface catalytic activity where the adsorption strength of the oxygenated species becomes more moderate: weaker than on pure Pt(111) but stronger than on a Pt monolayer having a 3d metal subsurface. Here we analyze the effect of changing the nature of the 3d metal in the subsurface anchor bilayer, and we also test the use of a Pd monolayer instead of Pt on the surface. It is found that a subsurface constituted by two layers with an approximate composition of M2C (M=Fe, Ni, and Co) provides a barrier for the migration of subsurface core metal atoms to the surface. Consequently, an enhanced resistance against dissolution in parallel to improved oxygen reduction activity is expected, as given by the values of adsorption energies of reaction intermediates, delayed onset of water oxidation, and/or low coverage of oxygenated species at surface oxidation potentials.

  8. Enhanced enteric properties and stability of shellac films through composite salts formation.

    PubMed

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nuntanid, Jurairat; Luangtana-Anan, Manee

    2007-11-01

    The objective of this study was to improve the properties of shellac by composite salts formation. The shellac samples were prepared in various salt forms by dissolving them with 2-amino-2-methyl-1-propanol (AMP) and ammonium hydroxide (AMN) at various ratios of AMP:AMN. The results demonstrated that aqueous solubility of the shellac salts was improved as the ratio of AMP:AMN increased. The absorbance ratio of the FTIR peaks assigned to CO stretching of carboxylate and carboxylic acid (ABS1556/ABS1716) was increased with the increase of the AMP fraction, suggesting that the solubility enhancement was due to more ionization of AMP salts. Moisture adsorption studies indicated that shellac salts were more hygroscopic as AMP content increased. After storage at 40 degrees C, 75% RH, the acid value and insoluble solid of AMP salts were relatively constant even after storage of up to 180 days, suggesting that AMP should protect polymerization. The ABS1556/ABS1716 values of the shellac salts were rapidly decreased after storage, especially for those consisting of a high percentage of AMN. Thus, AMP should bind much tighter at the carboxylate binding site as compared with AMN, resulting in more solubility and stability. In conclusion, optimized shellac properties could be easily accomplished by composite salts formation.

  9. Fused kinase is stabilized by Cdc37/Hsp90 and enhances Gli protein levels

    SciTech Connect

    Kise, Yoshiaki; Takenaka, Kei; Tezuka, Tohru; Yamamoto, Tadashi; Miki, Hiroaki . E-mail: miki@ims.u-tokyo.ac.jp

    2006-12-08

    Serine/threonine kinase Fused (Fu) is an essential component of Hedgehog (Hh) signaling in Drosophila, but the biochemical functions of Fu remain unclear. Here, we have investigated proteins co-precipitated with mammalian Fu and identified a kinase-specific chaperone complex, Cdc37/Hsp90, as a novel-binding partner of Fu. Inhibition of Hsp90 function by geldanamycin (GA) induces rapid degradation of Fu through a ubiquitin-proteasome pathway. We next show that co-expression of Fu with transcription factors Gli1 and Gli2 significantly increases their protein levels and luciferase reporter activities, which are blocked by GA. These increases can be ascribed to Fu-mediated stabilization of Gli because co-expression of Fu prolongs half-life of Gli1 and reduces polyubiquitination of Gli1. Finally, we show that GA inhibits proliferation of PC3, a Hh signaling-activated prostate cancer cell line. This growth inhibition is partially rescued by expression of ectopic Gli1, suggesting that Fu may contribute to enhance Hh signaling activity in cancer cells.

  10. Silicon hollow sphere anode with enhanced cycling stability by a template-free method.

    PubMed

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-21

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g(-1) and 1615.1 mAh g(-1) with a high initial coulombic efficiency (72%) at a current density of 200 mA g(-1), respectively. In particular, the reversible capacity is 1534.5 mAh g(-1) with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  11. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.

    PubMed

    Nadar, Shamraja S; Gawas, Sarita D; Rathod, Virendra K

    2016-11-01

    An organic-inorganic hybrid glucoamylase nanoflower was prepared in single pot by simple, facile and highly efficient method. The stepwise formation of enzyme-embedded hybrid nanoflowers and influence of experimental parameters viz. pH of solution mixture, enzyme and copper ion concentration on the activity of prepared hybrid nanoflowers were systematically investigated. The self-assembled hybrid glucoamylase nanoflowers were synthesized by mixing aqueous solution of copper sulphate (200mM) with PBS (pH 7.5, 5mM) containing glucoamylase (1mg/mL) in 24h at room temperature. These prepared nanoflowers were further characterized by FT-IR, SEM and XRD. The hybrid nanoflowers exhibited 204% enhanced activity recovery and two folds improvement in thermal stability in terms of half-life (in the range of 50-70°C) with respect to the free form. The hybrid glucoamylase nanoflowers retained 70% residual activity after eight successive cycles indicating their excellent durability. Additionally, the nanoflowers retained up to 91% residual activity upto 25 days of storage. Moreover, the conformational changes occurred in glucoamylase structure after preparing hybrid nanoflowers were evaluated by FT-IR spectroscopy data tools.

  12. Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice

    PubMed Central

    Fraga-Silva, Rodrigo A.; Montecucco, Fabrizio; Costa-Fraga, Fabiana P.; Nencioni, Alessio; Caffa, Irene; Bragina, Maiia E.; Mach, François; Raizada, Mohan K.; Santos, Robson A.S.; da Silva, Rafaela F.; Stergiopulos, Nikolaos

    2017-01-01

    Angiotensin (Ang) II contributes to the development of atherosclerosis, while Ang-(1–7) has atheroprotective actions. Accordingly, angiotensin-converting enzyme 2 (ACE2), which breaks-down Ang II and forms Ang-(1–7), has been suggested as a target against atherosclerosis. Here we investigated the actions of diminazene, a recently developed ACE2 activator compound, in a model of vulnerable atherosclerotic plaque. Atherosclerotic plaque formation was induced in the carotid artery of ApoE-deficient mice by a shear stress (SS) modiffer device. The animals were treated with diminazene (15 mg/kg/day) or vehicle. ACE2 was strongly expressed in the aortic root and low SS-induced carotid plaques, but poorly expressed in the oscillatory SS-induced carotid plaques. Diminazene treatment did not change the lesion size, but ameliorated the composition of aortic root and low SS-induced carotid plaques by increasing collagen content and decreasing both MMP-9 expression and macrophage infiltration. Interestingly, these beneficial effects were not observed in the oscillatory SS-induced plaque. Additionally, diminazene treatment decreased intraplaque ICAM-1 and VCAM-1 expression, circulating cytokine and chemokine levels and serum triglycerides. In summary, ACE2 was distinctively expressed in atherosclerotic plaques, which depends on the local pattern of shear stress. Moreover, diminazene treatment enhances the stability of atherosclerotic plaques. PMID:26304699

  13. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability.

    PubMed

    Wang, Shenghao; Tang, Li; Lin, Junyu; Shen, Zhongliang; Yao, Yikun; Wang, Wei; Tao, Shuai; Gu, Chenjian; Ma, Jie; Xie, Youhua; Liu, Yanfeng

    2017-10-07

    Melanoma is the most aggressive type of skin cancer. Melanoma has an extremely poor prognosis because of its high potential for vascular invasion, metastasis and recurrence. The mechanism of melanoma metastasis is not well understood. ATP-binding cassette sub-family B member 5 (ABCB5) plays a key role in melanoma growth. However, it is uncertain what function ABCB5 may exert in melanoma metastasis. In this report, we for the first time demonstrate ABCB5 as a crucial factor that promotes melanoma metastasis. ABCB5 positive (ABCB5(+)) malignant melanoma initiating cells (MMICs) display a higher metastatic potential compared with ABCB5 negative (ABCB5(-)) melanoma subpopulation. Knockdown of ABCB5 expression reduces melanoma cell migration and invasion in vitro and melanoma pulmonary metastasis in tumor xenograft mice. ABCB5 and NF-κB p65 expression levels are positively correlated in both melanoma tissues and cell lines. Consequently, ABCB5 activates the NF-κB pathway by inhibiting p65 ubiquitination to enhance p65 protein stability. Our finding highlights ABCB5 as a novel pro-metastasis factor and provides a potential therapeutic target for melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  15. Plasma Creatine Kinetics After Ingestion of Microencapsulated Creatine Monohydrate with Enhanced Stability in Aqueous Solutions.

    PubMed

    Hone, Michelle; Kent, Robert M; Scotto di Palumbo, Alessandro; Bleiel, Sinead B; De Vito, Giuseppe; Egan, Brendan

    2017-07-04

    Creatine monohydrate represents one of the largest sports supplement markets. Enhancing creatine (CRE) stability in aqueous solutions, such as with microencapsulation, represents innovation potential. Ten physically active male volunteers were randomly assigned in a double-blind design to either placebo (PLA) (3-g maltodextrin; n = 5) or microencapsulated CRE (3-g creatine monohydrate; n = 5) conditions. Experimental conditions involved ingestion of the samples in a 70-mL ready-to-drink format. CRE was delivered in a novel microencapsulation matrix material consisting entirely of hydrolyzed milk protein. Three hours after ingestion, plasma creatine concentrations were unchanged during PLA, and averaged ∼45 μM. During CRE, plasma creatine concentration peaked after 30 min at 101.6 ± 14.9 μM (p < 0.05), representing a 2.3-fold increase over PLA. Thereafter, plasma creatine concentration gradually trended downwards but remained significantly elevated (∼50% above resting levels) 3 hr after ingestion. These results demonstrate that the microencapsulated form of creatine monohydrate reported herein remains bioavailable when delivered in aqueous conditions, and has potential utility in ready-to-drink formulations for creatine supplementation.

  16. Transient Stability Enhancement of Power Systems by Lyapunov-Based Recurrent Neural Networks UPFC Controllers

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Chi; Tsai, Hung-Chi; Chang, Wei-Neng

    A Lyapunov-based recurrent neural networks unified power flow controller (UPFC) is developed for improving transient stability of power systems. First, a simple UPFC dynamical model, composed of a controllable shunt susceptance on the shunt side and an ideal complex transformer on the series side, is utilized to analyze UPFC dynamical characteristics. Secondly, we study the control configuration of the UPFC with two major blocks: the primary control, and the supplementary control. The primary control is implemented by standard PI techniques when the power system is operated in a normal condition. The supplementary control will be effective only when the power system is subjected by large disturbances. We propose a new Lyapunov-based UPFC controller of the classical single-machine-infinite-bus system for damping enhancement. In order to consider more complicated detailed generator models, we also propose a Lyapunov-based adaptive recurrent neural network controller to deal with such model uncertainties. This controller can be treated as neural network approximations of Lyapunov control actions. In addition, this controller also provides online learning ability to adjust the corresponding weights with the back propagation algorithm built in the hidden layer. The proposed control scheme has been tested on two simple power systems. Simulation results demonstrate that the proposed control strategy is very effective for suppressing power swing even under severe system conditions.

  17. Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Cai, Qiang; Hu, Zhuofeng; Zhang, Qian; Li, Boyuan; Shen, Zhurui

    2017-05-01

    Herein, the fullerene (C60)/CdS nanocomposite has been fabricated by a facile one-pot hydrothermal method. Its photocatatlytic hydrogen (H2) evolution rate and degradation efficiency of Rhodamine B (Rh B) are evaluated under visible light irradiation (λ ≥ 420 nm). The content of C60 has been changed from 0.4 wt% to 8 wt%, and the optimal value for photocatalytic activity is determined to be 0.4 wt%. The H2 evolution rate over this optimal sample reaches 1.73 mmol h-1 g-1 and its apparent degradation rate of Rh B is 0.089 min-1 (degradation efficiency of 97% within 40 min), which is 2.3 times and 1.5 times compared to that of pure CdS reference. Moreover, the photocorrosion of CdS in composite is effectively suppressed, and its photocatalytic activity can be well maintained after three recycles (97.8% retaining for composite vs. 84.4% retaining for CdS). Then, the enhanced photocatalytic activity and stability of C60/CdS nanocomposite are further studied by spectroscopic and electrochemical methods. Results show that the C60 species covering on the surface of CdS can efficiently accelerate the separation and transfer of photoexcited charge carriers, which can improve its activity, and reduce the photocorrosion of CdS.

  18. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  19. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of

  20. The dopaminergic stabilizers pridopidine and ordopidine enhance cortico-striatal Arc gene expression.

    PubMed

    Waters, Susanna; Ponten, Henrik; Edling, Malin; Svanberg, Boel; Klamer, Daniel; Waters, Nicholas

    2014-11-01

    The dopaminergic stabilizers pridopidine [4-(3-(methylsulfonyl)phenyl)-1-propylpiperidine] and ordopidine [1-ethyl-4-(2-fluoro-3-(methylsulfonyl)phenyl)piperidine] inhibit psychostimulant-induced hyperactivity, and stimulate behaviour in states of hypoactivity. While both compounds act as dopamine D2 receptor antagonists in vitro, albeit with low affinity, their specific state-dependent behavioural effect profile is not shared by D2 receptor antagonists in general. To further understand the neuropharmacological effects of pridopidine and ordopidine, and how they differ from other dopaminergic compounds in vivo, we assessed the expression of activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc), an immediate early gene marker associated with synaptic activation, in the frontal cortex and striatum. Furthermore, monoamine neurochemistry and locomotor activity were assessed. The effects of pridopidine and ordopidine were compared to reference dopamine D1 and D2 receptor agonists and antagonists, as well as the partial dopamine D2 agonist aripiprazole. Pridopidine and ordopidine induced significant increases in cortical Arc expression, reaching 2.2- and 1.7-fold levels relative to control, respectively. In contrast, none of the reference dopamine D1 and D2 compounds tested increased cortical Arc expression. In the striatum, significant increases in Arc expression were seen with both pridopidine and ordopidine as well as the dopamine D2 receptor antagonists, remoxipride and haloperidol. Interestingly, striatal Arc expression correlated strongly and positively with striatal 3,4-dihydroxyphenylacetic acid, suggesting that antagonism of dopamine D2 receptors increases Arc expression in the striatum. In conclusion, the concurrent increase in cortical and striatal Arc expression induced by pridopidine and ordopidine appears unique for the dopaminergic stabilizers, as it was not shared by the reference compounds tested. The increase in cortical

  1. Permeability Changes on Wellbore Cement Fractures Modified by Geochemical and Geomechanical Processes

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Um, W.

    2015-12-01

    Experimental studies were conducted using batch reactors, X-ray microtomography (XMT), and computational fluid dynamics (CFD) modeling to determine changes in cement fracture surfaces, fluid flow pathways and permeability, and cement fracture propagation with geochemical and geomechanical processes. Portland cement-basalt interface sample with artificial fractures was prepared to study the geochemical and geomechanical effects on the integrity of wellbores containing defects caused by subsurface activities. Cement-basalt interface sample was subjected to mechanical stress at 2.7 MPa before the chemical reaction. CFD modeling was performed to simulate flow of supercritical CO2 within the fractures before and after the application of mechanical stress. The model results highlighted the complex flow characteristics within the fracture and also changes in flow patterns due to application of geomechanical stress. The CFD model predicted ~45% increase in permeability after the application of geomechanical force, which increases the fracture aperture. The same sample was reacted with CO2-saturated groundwater with impurity H2S (1 wt.%) at 50°C and 10 MPa for 3 to 3.5 months under static conditions. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Even after a 3.5-month reaction with CO2-H2S-saturated groundwater at 50°C and 10 MPa, CaCO3 (s) precipitation occurred more extensively within the cement fracture rather than along the cement-basalt interfaces. Micro X-ray diffraction analysis also showed that major cement carbonation products of CO2-saturated groundwater reacting with impurity H2S were calcite, aragonite, and vaterite, consistent with cement carbonation by pure CO2-saturated groundwater, while pyrite was not identified due to low H2S content. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated

  2. Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth

    2013-04-01

    Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk

  3. Hydro-mechanical simulations of well abandonment at the Ketzin pilot site for CO2 storage verify wellbore system integrity

    NASA Astrophysics Data System (ADS)

    Unger, Victoria; Kempka, Thomas

    2015-04-01

    In geological underground utilisation, operating and abandoned wells have been identified as a main potential leakage pathways for reservoir fluids. In the scope of the well abandonment procedure currently carried out at the Ketzin pilot site for CO2 storage in Germany, a hydro-mechanical model was built to carry out a coupled analysis of the integrity in the entire wellbore system. The main aim of the present study was to assess the impacts of stress changes associated with CO2 injection as well as the cement backfill undertaken in the scope of well abandonment. A numerical model comprising cement sheaths, steel casings, tubing, multiple packers and wellbore annuli was implemented to enable a detailed representation of the entire wellbore system. The numerical model grid has a horizontal discretisation of 5 m x 5 m to focus on near wellbore effects, whereby element sizes increase with increasing distance from the wellbore. Vertical grid discretisation uses a tartan grid type over the entire model thickness of 1,500 m to ensure a sufficient discretisation of all wellbore system elements as well as of the reservoir unit. The total number of elements amounts to 210,672. Mechanical model parameters were taken from geological, drilling, logging and laboratory test data based on Ketzin pilot site-specific information as well as related literature (Kempka et al., 2014). The coupled calculations were performed using an elasto-plastic constitutive law, whereby an initial simulation run ensured a static mechanical equilibrium to represent the initial state before the start of CO2 injection. Thereto, gravitational load of the overburden rocks and pore pressure distribution following available well logs were integrated for initial model parameterisation including a normal faulting stress regime defined by a horizontal to vertical total stress ratio of 0.85. A correction accounting for the temperature and pressure dependent CO2 density was carried out in advance of each

  4. Enhanced photovoltaic properties and long-term stability in plasmonic dye-sensitized solar cells via noncorrosive redox mediator.

    PubMed

    Jung, Heesuk; Koo, Bonkee; Kim, Jae-Yup; Kim, Taehee; Son, Hae Jung; Kim, BongSoo; Kim, Jin Young; Lee, Doh-Kwon; Kim, Honggon; Cho, Jinhan; Ko, Min Jae

    2014-11-12

    We demonstrate the localized surface plasmon resonance (LSPR) effect, which can enhance the photovoltaic properties of dye-sensitized solar cells (DSSCs), and the long-term stability of size-controlled plasmonic structures using a noncorrosive redox mediator. Gold nanoparticles (Au NPs) were synthesized with a phase transfer method based on ligand exchange. This synthetic method is advantageous because the uniformly sized Au NPs, can be mass produced and easily applied to DSSC photoanodes. The plasmonic DSSCs showed an 11% improvement of power conversion efficiency due to the incorporation of 0.07 wt % Au NPs, compared to the reference DSSCs without Au NPs. The improved efficiency was primarily due to the enhanced photocurrent generation by LSPR effect. With the cobalt redox mediator, the long-term stability of the plasmonic structures also significantly increased. The plasmonic DSSCs with cobalt(II/III) tris(2,2'-bipyridine) ([Co(bpy)3](2+/3+)) redox mediator maintained the LSPR effect with stable photovoltaic performance for 1000 h. This is, to our knowledge, the first demonstration of the long-term stability of plasmonic nanostructures in plasmonic DSSCs based on liquid electrolytes. As a result, the enhanced long-term stability of plasmonic NPs via a noncorrosive redox mediator will increase the feasibility of plasmonic DSSCs.

  5. Enhanced cycle stability of LiCoPO4 by using three-dimensionally ordered macroporous polyimide separator

    NASA Astrophysics Data System (ADS)

    Maeyoshi, Yuta; Miyamoto, Shohei; Munakata, Hirokazu; Kanamura, Kiyoshi

    2017-05-01

    To enhance the low cycle stability of LiCoPO4, the development of stable separators in batteries is required, since they are oxidized in the high-voltage system at around 5 V, affecting the cycle performance of high-voltage lithium-ion batteries. The performance of the batteries also depends on the porous structure of separators. Here we report improved coulombic efficiency and capacity retention of LiCoPO4 by using a three-dimensionally ordered macroporous polyimide (3DOM PI) separator, compared with a conventional polypropylene separator with heterogeneous pore structure. The enhanced cycle stability of the cell using 3DOM PI separator is attributed to its ordered macroporous structure and high anodic stability. The uniform current distribution created by the ordered macroporous structure results in the low overpotential during charge process, preventing the oxidation of electrolyte and the growth of the resistive film on the cathode surface during cycling. Furthermore, the high anodic stability of 3DOM PI separator maintains its chemical and macroporous structures after cycling at high potentials, leading to the superior stability of the cell.

  6. The Stability Enhancement of Nitrile Hydratase from Bordetella petrii by Swapping the C-terminal Domain of β subunit.

    PubMed

    Sun, Weifeng; Zhu, Longbao; Chen, Xianggui; Wu, Lunjie; Zhou, Zhemin; Liu, Yi

    2016-04-01

    The thermal stability of most nitrile hydratases (NHase) is poor, which has been enhanced to some extent by molecular modifications in several specific regions of the C-terminal domain (C-domain) of β subunit of NHase. Since the C-domain could be present as a naturally separate domain in a few NHases, the whole C-domain is proposed to be related to the NHase stability. The chimeric NHase (SBpNHase) from the thermal-sensitive BpNHase (NHase from Bordetella petrii) and the relatively thermal-stable PtNHase (NHase from Pseudonocardia thermophila) was constructed by swapping the corresponding C-domains. After 30 min incubation at 50 °C, the original BpNHase nearly lost its activity, while the SBpNHase retained 50 % residual activity, compared with the melting temperature (Tm) (50 °C) of the original BpNHase, that of the SBpNHase was 55 °C. The SBpNHase with higher thermal stability would be useful for the thermal stability enhancement of NHase and for the understanding of the relationship between the stability of NHase and its structure.

  7. Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System

    PubMed Central

    Yang, Lihua; Jin, Maojun; Du, Pengfei; Chen, Ge; Zhang, Chan; Wang, Jian; Jin, Fen; Shao, Hua; She, Yongxin; Wang, Shanshan; Zheng, Lufei; Wang, Jing

    2015-01-01

    A luminol-H2O2-HRP chemiluminescence system with high relative luminescent intensity (RLU) and long stabilization time was investigated. First, the comparative study on the enhancement effect of ten compounds as enhancers to the luminol-H2O2-HRP chemiluminescence system was carried out, and the results showed that 4-(imidazol-1-yl)phenol (4-IMP), 4-iodophenol (4-IOP), 4-bromophenol (4-BOP) and 4-hydroxy-4’-iodobiphenyl (HIOP) had the best performance. Based on the experiment, the four enhancers were dissolved in acetone, acetonitrile, methanol, and dimethylformamide (DMF) with various concentrations, the results indicated that 4-IMP, 4-IOP, 4-BOP and HIOP dissolved in DMF with the concentrations of 0.2%, 3.2%, 1.6% and 3.2% could get the highest RLU values. Subsequently, the influences of pH, ionic strength, HRP, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol on the stabilization of the luminol-H2O2-HRP chemiluminescence system were studied, and we found that pH value, ionic strength, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol have little influence on luminescent stabilization, while HRP has a great influence. In different ranges of HRP concentration, different enhancers should be selected. When the concentration is within the range of 0~6 ng/mL, 4-IMP should be selected. When the concentration of HRP ranges from 6 to 25ng/mL, 4-IOP was the best choice. And when the concentration is within the range of 25~80 ng/mL, HIOP should be selected as the enhancer. Finally, the three well-performing chemiluminescent enhanced solutions (CESs) have been further optimized according to the three enhancers (4-IMP, 4-IOP and HIOP) in their utilized HRP concentration ranges. PMID:26154162

  8. Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System.

    PubMed

    Yang, Lihua; Jin, Maojun; Du, Pengfei; Chen, Ge; Zhang, Chan; Wang, Jian; Jin, Fen; Shao, Hua; She, Yongxin; Wang, Shanshan; Zheng, Lufei; Wang, Jing

    2015-01-01

    A luminol-H2O2-HRP chemiluminescence system with high relative luminescent intensity (RLU) and long stabilization time was investigated. First, the comparative study on the enhancement effect of ten compounds as enhancers to the luminol-H2O2-HRP chemiluminescence system was carried out, and the results showed that 4-(imidazol-1-yl)phenol (4-IMP), 4-iodophenol (4-IOP), 4-bromophenol (4-BOP) and 4-hydroxy-4'-iodobiphenyl (HIOP) had the best performance. Based on the experiment, the four enhancers were dissolved in acetone, acetonitrile, methanol, and dimethylformamide (DMF) with various concentrations, the results indicated that 4-IMP, 4-IOP, 4-BOP and HIOP dissolved in DMF with the concentrations of 0.2%, 3.2%, 1.6% and 3.2% could get the highest RLU values. Subsequently, the influences of pH, ionic strength, HRP, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol on the stabilization of the luminol-H2O2-HRP chemiluminescence system were studied, and we found that pH value, ionic strength, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol have little influence on luminescent stabilization, while HRP has a great influence. In different ranges of HRP concentration, different enhancers should be selected. When the concentration is within the range of 0~6 ng/mL, 4-IMP should be selected. When the concentration of HRP ranges from 6 to 25 ng/mL, 4-IOP was the best choice. And when the concentration is within the range of 25~80 ng/mL, HIOP should be selected as the enhancer. Finally, the three well-performing chemiluminescent enhanced solutions (CESs) have been further optimized according to the three enhancers (4-IMP, 4-IOP and HIOP) in their utilized HRP concentration ranges.

  9. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    SciTech Connect

    Shim, HongShik; Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon E-mail: jinklee@snu.ac.kr; Lim, Joohyun; Lee, Jin-Kyu E-mail: jinklee@snu.ac.kr

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  10. Fivefold enhancement in stability of organic light-emitting diodes with addition of non-evaporable getter pumps

    NASA Astrophysics Data System (ADS)

    Le, Duy C.; Oyama, Shiho; Sakai, Heisuke; Porcelli, Tommaso; Siviero, Fabrizio; Maccallini, Enrico; Urbano, Marco; Murata, Hideyuki

    2017-07-01

    We demonstrate a significant enhancement of the operational stability of organic light-emitting diodes (OLEDs) by fabricating the devices under ultrahigh-vacuum (UHV) conditions in the region of 10-10-10-11 Torr. The UHV condition is achieved by utilizing non-evaporable getter pumps together with regular turbo molecular pumps in an OLED deposition chamber. The short-term stability of the OLEDs is prolonged fivefold because of the removal of detrimental gases, especially water. We suggest that ultra-clean fabrication conditions are indispensable for revealing the true intrinsic degradation mode of OLEDs. Additionally, we analyze the effect of operating residual gas analyzers during the device fabrication.

  11. Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: enhanced activity and operational stability.

    PubMed

    Martins, Andréa B; Schein, Mirela F; Friedrich, John L R; Fernandez-Lafuente, Roberto; Ayub, Marco A Z; Rodrigues, Rafael C

    2013-09-01

    The influence of low-frequency ultrasound (40 kHz) in the esterification reaction between acetic acid and butanol for flavor ester synthesis catalyzed by the commercial immobilized lipase B from Candida antarctica (Novozym 435) was evaluated. A central composite design and the response surface methodology were used to analyze the effects of the reaction parameters (temperature, substrate molar ratio, enzyme content and added water) and their response (yields of conversion in 2.5 h of reaction). The reaction was carried out using n-hexane as solvent. The optimal conditions for ultrasound-assisted butyl acetate synthesis were found to be: temperature of 46 °C; substrate molar ratio of 3.6:1 butanol:acetic acid; enzyme content of 7%; added water of 0.25%, conditions that are slightly different from those found using mechanical mixing. Over 94% of conversion was obtained in 2.5h under these conditions. The optimal acid concentration for the reaction was determined to be 2.0 M, compared to 0.3 M without ultrasound treatment. Enzyme productivity was significantly improved to around 7.5-fold for each batch when comparing ultrasound and standard mechanical agitation. The biocatalyst could be directly reused for 14 reactions cycles keeping around 70% of its original activity, while activity was virtually zeroed in the third cycle using the standard mixing system. Thus, compared to the traditional mechanical agitation, ultrasound technology not only improves the process productivity, but also enhances enzyme recycling and stability in the presence of acetic acid, being a powerful tool to improve biocatalyst performance in this type of reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A facile approach to enhance the high temperature stability of magnetite nanoparticles with improved magnetic property

    NASA Astrophysics Data System (ADS)

    Pati, S. S.; Philip, John

    2013-01-01

    We study the effect of Zn2+ doping on crystal structure, magnetic properties, blocking and Curie temperatures, and the high temperature phase stability of magnetite nanoparticles under air and vacuum annealing. The Zn2+ doped nanoparticles (ZnxFe3-xO4 with x = 0, 0.2, 0.4, and 0.6) are prepared by simple co-precipitation technique and are characterized by high temperature X-ray powder diffraction (HTXRD), vibrating sample magnetometer, small angle X-ray scattering, thermogravimetry, differential scanning calorimetry (DSC), and transmission electron microscopy. Our HTXRD studies show that the decomposition temperature of pure magnetite (Fe3O4) in vacuum is increased by 300 °C (from 700 to 1000 °C), with 0.2 fraction of Zn2+ doping. The DSC studies under air environment also show that the γ-Fe2O3 to α-Fe2O3 phase transition temperature increases with the zinc fraction. The increase in transition temperature is attributed to the increase in the activation energy of the maghemite to hematite phase transition after the replacement of Fe3+ with larger diameter Zn2+ in the A site. Interestingly, the saturation magnetization increases from 61 to 69 emu/g upon 0.2 fraction of Zn2+, which augments the utility of the doped compound for practical applications. While the Curie temperature is found to increase with doping concentration, the blocking temperature shows an opposite trend. The blocking temperature values were found to be 262, 196, 144, and 153 K for 0, 0.2, 0.4, and 0.6 fraction of zinc, respectively. The reduction in TB is attributed to weak dipole-dipole interactions and local exchange coupling between nanoparticles. All the Zn2+ doped samples show superparamagnetic nature. These findings are extremely useful in producing superparamagnetic nanoparticles with enhanced magnetic properties for high temperature applications.

  13. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.

    PubMed

    Iinoya, Kaoru; Kotani, Tetsuya; Sasano, Yu; Takagi, Hiroshi

    2009-06-01

    The budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene, which confers resistance to the proline analogue azetidine-2-carboxylate (AZC). This gene encodes an N-acetyltransferase Mpr1 that detoxifies AZC, and the homologous genes have been found in many yeasts. Recently, we found that Mpr1 protects yeast cells by reducing the intracellular reactive oxygen species (ROS) levels under oxidative stresses, such as heat-shock, freezing, or ethanol treatment. Unlike the known antioxidant enzymes, Mpr1 is thought to acetylate toxic metabolite(s) involved in ROS generation via oxidative events. To improve the enzymatic functions of Mpr1, we applied PCR random mutagenesis to MPR1. The mutagenized plasmid library was introduced into the S. cerevisiae S288C strain lacking MPR1, and we successfully isolated two Mpr1 variants with higher AZC resistance (K63R and F65L/L117V). Interestingly, overexpression of the K63R variant was found to increase cell viability or decrease intracellular ROS levels after exposure to H(2)O(2) or ethanol compared with the wild-type Mpr1. In vitro studies with the recombinant enzymes showed that the catalytic efficiency of the K63R variant for AZC and acetyl-CoA was higher than that of the wild-type Mpr1 and that the F65L mutation greatly enhanced the thermal stability. The mutational analysis and molecular modeling suggest that an alpha-helix containing Lys63 and Phe65 has important roles in the function of Mpr1. In addition, the wild-type and K63R variant Mpr1 reduced intracellular ROS levels under ethanol stress conditions on haploid sake yeast cells. These results suggest that engineering Mpr1 might be useful in breeding oxidative stress-tolerant yeast strains.

  15. Hypoglycemic activity and stability enhancement of human insulin-tat mixture loaded in elastic anionic niosomes.

    PubMed

    Manosroi, Aranya; Tangjai, Theeraphong; Sutthiwanjampa, Chanutchamon; Manosroi, Worapaka; Werner, Rolf G; Götz, Friedrich; Sainakham, Mathukorn; Manosroi, Jiradej

    2016-10-01

    This study aimed to investigate the synergistic effect of trans-activator of transcription (Tat) and niosomes for the improvement of hypoglycemic activity of orally delivered human insulin. The elastic anionic niosomes composing of Tween 61/cholesterol/dicetyl phosphate/sodium cholate at 1:1:0.05:0.02 molar ratio loaded with insulin-Tat mixture (1:3 molar ratio) was prepared. Deformability of the elastic anionic niosomes decreased after loaded with the mixture of 1.35 times. For the in vitro release, the insulin (T10 = 4 h) loaded in the elastic anionic niosomes indicated the slower release rate than insulin in the mixture (T10 = 3 h) loaded in niosomes. At room temperature (30 ± 2 °C), the mixture loaded in elastic anionic niosomes was more chemical stable than the free mixture of 1.3, 1.4 and 1.7 times after stored for 4, 8 and 12 weeks, respectively. Oral administration in the alloxan-induced diabetic mice of the mixture loaded in elastic anionic niosomes with the insulin doses at 25, 50 and 100 IU/kg body weight indicated significant hypoglycemic activity with the percentage fasting blood glucose reduction of 1.95, 2.10 and 2.10 folds of the subcutaneous insulin injection at 12 h, respectively. This study has demonstrated the synergistic benefits of Tat and elastic anionic niosomes for improving the hypoglycemic activity of the orally delivered human insulin as well as the stability enhancement of human insulin when stored at high temperature. The results from this study can be further developed as an effective oral insulin delivery.

  16. Enhancing the Bioactivity of Yttria-Stabilized Tetragonal Zirconia Ceramics via Grain-Boundary Activation.

    PubMed

    Ke, Jinhuan; He, Fupo; Ye, Jiandong

    2017-05-17

    Yttria-stabilized tetragonal zirconia (Y-TZP) has been proposed as a potential dental implant because of its good biocompatibility, excellent mechanical properties, and distinctive aesthetic effect. However, Y-TZP cannot form chemical bonds with bone tissue because of its biological inertness, which affects the reliability and long-term efficacy of Y-TZP implants. In this study, to improve the bioactivity of Y-TZP ceramics while maintaining their good mechanical performance, Y-TZP was modified by grain-boundary activation via the infiltration of a bioactive glass (BG) sol into the surface layers of Y-TZP ceramics under different negative pressures (atmospheric pressure, -0.05 kPa, and -0.1 kPa), followed by gelling and sintering. The in vitro bioactivity, mechanical properties, and cell behavior of the Y-TZP with improved bioactivity were systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron probe microanalysis (EPMA), and Raman spectroscopy. The results of the bioactivity test conducted by immersing Y-TZP in simulated body fluid (SBF) showed that a bonelike apatite layer was produced on the entire surface. The mechanical properties of the modified Y-TZP decreased as the negative pressure in the BG-infiltration process increased relative to those of the Y-TZP blank group. However, the samples infiltrated with the BG sol under -0.05 kPa and atmospheric pressure still retained good mechanical performance. The cell-culture results revealed that the bioactive surface modification of Y-TZP could promote cell adhesion and differentiation. The present work demonstrates that the bioactivity of Y-TZP can be enhanced by grain-boundary activation, and the bioactive Y-TZP is expected to be a potential candidate for use as a dental implant material.

  17. Phase Transformation of U3O8 and Enhanced Structural Stability at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Fuxiang; Lang, Maik; Ewing, Rodney

    2013-06-01

    A powder sample of β-U3O8 was pressurized at room temperature up to 37.5 GPa with a symmetric diamond anvil cell. XRD patterns clearly indicated that a phase transition occurred between 3-11 GPa. The high-pressure phase is a fluorite-like structure. The fluorite-like structure is stable up to 37.5 GPa. The high-pressure phase was then laser heated to over 1700 K in the diamond anvil cell at high pressure conditions. No phase transition was found at high pressure/ temperature conditions, and the fluorite-like structure of U3O8 is even fully quenchable. The lattice parameter of the fluorite-like high-pressure phase is 5.425 Å at ambient conditions, which is smaller than that of the stoichiometric UO2. Previous experiments have shown that the stoichiometric uranium dioxide (UO2) is not stable at high pressure conditions and starts to transform to a cotunnite structure at ~30 GPa. When heating the sample at high pressure, the critical transtion pressure is greatly reduced. However, the fluorite-like high-pressure phase of U3O8 is very stable at high pressure/high temperature conditions. The enhanced phase stability is believed to be related to the presence of extra oxygen (or U vacancies) in the structure. This work was supported by Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001089.

  18. Solvothermal synthesis of Ag hybrid BiPO4 heterostructures with enhanced photodegradation activity and stability.

    PubMed

    Huang, Chang-Wei; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-15

    In this study, Ag hybrid BiPO4 (Ag/BiPO4) heterostructures were synthesized using a solvothermal method. The morphologies and optical properties of the Ag/BiPO4 heterostructures were drastically different from those of BiPO4 and were highly dependent on the AgNO3:BiPO4 weight percent during the synthesis. The three formulated heterostructures were evaluated for their photocatalytic degradation of methylene blue (MB) under UV light illumination; the 0.5%Ag/BiPO4 heterostructure was observed to result in 99% degradation of MB within 60min, a remarkably higher level of photodegradation activity than the levels caused by TiO2 and BiPO4. Furthermore, even after use for five cycles of MB degradation, the 0.5%Ag/BiPO4 heterostructure showed no observable loss in photodegradation activity and no change in XRD patterns, demonstrating its chemical and structural stability. According to the results of a systematic experimental investigation, the enhanced photodegradation activity of this Ag/BiPO4 heterostructure could be ascribed to the high position of its valence band and the highly efficient separation of photogenerated electrons and holes. Moreover, hydroxyl radicals and holes were found to be the major reactive species. Successful photodegradation of standard dye solutions, including acid blue 1, methyl orange, fast green, rhodamine B, rhodamine 6G, and MB, in real water samples was demonstrated with the 0.5%Ag/BiPO4 heterostructure, providing clear evidence of its utility for treating waste water containing organic dyes.

  19. Keeping laying hens in furnished cages and an aviary housing system enhances their bone stability.

    PubMed

    Leyendecker, M; Hamann, H; Hartung, J; Kamphues, J; Neumann, U; Sürie, C; Distl, O

    2005-10-01

    1. Tibia and humerus breaking strength of Lohmann Silver hybrids kept in conventional cages, furnished cages and an aviary with outdoor run were examined in two production cycles. Each trial lasted a full laying period; feeding, management and healthcare were identical for all hens. In both trials bone strength was investigated at the end of laying months 6, 9 and 14. 2. The objective was to determine if bone strength increases when hens are kept in alternative housing systems, especially in furnished cages, and whether hen age affects bone stability. 3. The results indicated that housing system influenced bone breaking strength, which was consistently higher for hens in the aviary compared to hens in conventional and furnished cages. Furthermore, humerus breaking strength was higher for hens in furnished cages compared to conventional cages. No significant difference regarding tibia breaking strength was found between conventional and furnished cages. 4. Our results showed that lack of exercise contributed to the problem of weak bones more than did calcium depletion from eggshell formation. 5. Tibia breaking strength increased during the last third of the production cycle, whereas humerus breaking strength remained unaffected by hen age. 6. Genetic group affected only tibial bone breaking strength, which was lower overall in genetic group A than in group B, which in turn was lower than group C. 7. The increased bone strength in the aviary and in the furnished cages probably reduced the incidence of recently broken bones in these systems compared to the conventional cages. This increase in bone strength can be regarded as an improvement in welfare. Furnished cages, like the aviary system, might be considered an alternative housing system for laying hens, because both resulted in enhanced bone strength.

  20. Mechanisms of Energy Transfer and Enhanced Stability of Carbidonitride Phosphors for Solid-State Lighting.

    PubMed

    Grieco, Christopher; Hirsekorn, Kurt F; Heitsch, Andrew T; Thomas, Alan C; McAdon, Mark H; Vanchura, Britt A; Romanelli, Michael M; Brehm, Lora L; Leugers, Anne; Sokolov, Anatoliy N; Asbury, John B

    2017-04-12

    Phosphor-converted light emitting diodes (pcLEDs) produce white light through the use of phosphors that convert blue light emitted from the LED chip into green and red wavelengths. Understanding the mechanisms of degradation of the emission spectra and quantum yields of the phosphors used in pcLEDs is of critical importance to fully realize the potential of solid-state lighting as an energy efficient technology. Toward this end, time-resolved photoluminescence spectroscopy was used to identify the mechanistic origins of enhanced stability and luminescence efficiency that can be obtained from a series of carbidonitride red phosphors with varying degrees of substitutional carbon. The increasing substitution of carbon and oxygen in nitrogen positions of the carbidonitride phosphor (Sr2Si5N8-[(4x/3)+z]CxO3z/2:Eu(2+)) systematically changed the dimensions of the crystalline lattice. These structural changes caused a red shift and broadening of the emission spectra of the phosphors due to faster energy transfer from higher to lower energy emission sites. Surprisingly, in spite of broadening of the emission spectra, the quantum yield was maintained or increased with carbon substitution. Aging phosphors with lowered carbon content under conditions that accurately reflected thermal and optical stresses found in functioning pcLED packages led to spectral changes that were dependent on substitutional carbon content. Importantly, phosphors that contained optimal amounts of carbon and oxygen possessed luminescence spectra and quantum yields that did not undergo changes associated with aging and therefore provided a more stable color point for superior control of the emission properties of pcLED packages. These findings provide insights to guide continued development of phosphors for efficient and stable solid-state lighting materials and devices.

  1. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information

    SciTech Connect

    Moody, Mark; Sminchak, J.R.

    2015-11-01

    Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may be wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO2 storage applications in the Midwest United States. Realistic CO2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO2 storage applications including, a

  2. An integrated approach to evaluating and managing wellbore instability in the Cusiana Field, Colombia, South America

    SciTech Connect

    Last, N.; Plumb, R.; Harkness, R.

    1995-12-31

    An integrated approach to evaluating the causes of severe wellbore instability in the Cusiana field is described. The field is located in a tectonically active region of Colombia. Deterioration of the hole during drilling operations has led to excessive nonproductive time and expensive wells. The scale of the problem is unprecedented in the world. In wells costing tens of millions of dollars, millions per well could be attributed to poor hole conditions. This paper describes how the problem was addressed and what actions were taken to improve operational performance, resulting in reduced drilling costs. The improved understanding has contributed to better well planning, and improved drilling performance, and has underlined the need to consider all aspects of the drilling process to achieve improved hole conditions in a difficult geological setting.

  3. Open hole packer for high pressure service in a five hundred degree fahrenheit precambrian wellbore

    SciTech Connect

    Dreesen, D.S.; Miller, J.R.; Halbardier, F.A.; Nicholson, R.W.

    1985-01-01

    Massive hydraulic fracturing (MHF) from a lower wellbore (EE-2) created a large man-made reservoir which did not intersect the upper well (EE-3). To create a heat extraction flow loop, the upper well was sidetracked and redrilled (EE-3A) down into a microseismic cloud around EE-2 mapped during the MHF. The potential to intersect numerous fracture zones in the redrilled bore was apparent from seismicity. To economically and effectively isolate and test these microseismic zones required that a functional open hole packer be developed. The packer would be exposed to soak temperatures as high as 500/sup 0/F (260/sup 0/C) with cool down to 100/sup 0/F (40/sup 0/C) at differential pressures exceeding 5000 psi (35 Mpa). A functional packer has been designed, manufactured, and successfully used for the creation of a hot dry rock (HDR) reservoir. 5 figs., 1 tab.