Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333
2009-09-04
The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappamore » B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.« less
Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J
2002-03-08
An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.
NASA Technical Reports Server (NTRS)
Reed, G. L.; Matsueda, G. R.; Haber, E.
1992-01-01
Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.
McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D
1996-12-13
The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.
Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde
2008-01-01
Thalidomide is used to treat erythema nodosum leprosum (ENL). The events that precipitate this inflammatory reaction, which may occur in multibacillary leprosy patients, and the mechanism by which thalidomide arrest ENL, are not known. Thalidomide's ability to inhibit tumor necrosis factor alpha (TNF-alpha) in vitro has been proposed as a partial explanation of its effective treatment of ENL. In in vitro assays, thalidomide can enhance or suppress TNF-alpha. This is dependent on the stimulant used to evoke TNF-alpha; the procedure used to isolate the mononuclear cells from blood, and the predominant mononuclear cell type in the culture. To avoid artifacts that may occur during isolation of mononuclear cells from blood, we stimulated normal human blood with LPS and evaluated the effect of thalidomide and dexamethasone on TNF-alpha, and other inflammatory cytokines and biomarkers. Thalidomide suppressed interleukin 1 beta (IL-1beta) (p = 0.007), and it enhanced TNF-alpha (p = 0.007) and interleukin 10 (IL-10) (p = 0.031). Dexamethasone enhanced IL-10 (p = 0.013) and suppressed IL-1beta, TNF-alpha, interleukin 6 (IL-6), and interleukin 8 (IL-8) (p = 0.013). The two drugs did not suppress: C-reactive protein (CRP), Ig-superfamily cell-adhesion molecule 1 (ICAM 1), tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), or amyloid A. In vitro and in vivo evidence is accumulating that TNF-alpha is not the primary cytokine targeted by thalidomide in ENL and other inflammatory conditions.
Yoo, Y-G; Na, T-Y; Yang, W-K; Kim, H-J; Lee, I-K; Kong, G; Chung, J-H; Lee, M-O
2007-05-31
Hypoxia-inducible factor-1alpha (HIF-1alpha) plays a central role in oxygen homeostasis. Previously, we reported that the orphan nuclear receptor Nur77 functions in stabilizing HIF-1alpha. Here, we demonstrate that 6-mercaptopurine (6-MP), an activator of the NR4A family members, enhances transcriptional activity of HIF-1. 6-MP enhanced the protein-level of HIF-1alpha as well as vascular endothelial growth factor (VEGF) in a dose- and time-dependent manner. The induction of HIF-1alpha was abolished by the transfection of either a dominant-negative Nur77 mutant or si-Nur77, indicating a critical role of Nur77 in the 6-MP action. The HIF-1alpha protein level remained up to 60 min in the presence of 6-MP when de novo protein synthesis was blocked by cycloheximide, suggesting that 6-MP induces stabilization of the HIF-1alpha protein. The fact that 6-MP decreased the association of HIF-1alpha with von Hippel-Lindau protein and the acetylation of HIF-1alpha, may explain how 6-MP induced stability of HIF-1alpha. Further, 6-MP induced the transactivation function of HIF-1alpha by recruiting co-activator cyclic-AMP-response-element-binding protein. Finally, 6-MP enhanced the expression of HIF-1alpha and VEGF, and the formation of capillary tubes in human umbilical vascular endothelial cells. Together, our results provide a new insight for 6-MP action in the stabilization of HIF-1alpha and imply a potential application of 6-MP in hypoxia-associated human vascular diseases.
2013-01-01
Background Diabetes mellitus is affecting more than 300 million people worldwide. Current treatment strategies cannot prevent secondary complications. Stem cells due to their regenerative power have long been the attractive target for the cell-based therapies. Mesenchymal stem cells (MSCs) possess the ability to differentiate into several cell types and to escape immune recognition in vitro. MSCs can be differentiated into insulin-producing cells (IPCs) and could be an exciting therapy for diabetes but problems like poor engraftment and survivability need to be confronted. It was hypothesized that stromal cell derived factor- 1alpha (SDF-1alpha) will enhance therapeutic potential of stem cell derived IPCs by increasing their survival and proliferation rate. Methods Novel culture conditions were developed to differentiate bone marrow derived mesenchymal stem cells (BMSCs) into IPCs by using endocrine differentiation inducers and growth factors via a three stage protocol. In order to enhance their therapeutic potential, we preconditioned IPCs with SDF-1alpha. Results Our results showed that SDF-1alpha increases survival and proliferation of IPCs and protects them from glucotoxicity under high glucose conditions in vitro. SDF-1alpha also enhances the glucose responsive insulin secretion in IPCs in vitro. SDF-1alpha preconditioning reverses hyperglycemia and increase serum insulin in drug induced diabetic rats. Conclusions The differentiation of BMSCs into IPCs and enhancement of their therapeutic potential by SDF-1alpha preconditioning may contribute to cell based therapies for diabetes. PMID:23648189
DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzuhara, T.; Suganuma, M.; Oka, K.
2007-11-03
Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggestsmore » a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.« less
Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma
2009-01-01
Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.
Inhibitory spectrum of alpha 2-plasmin inhibitor.
Saito, H; Goldsmith, G H; Moroi, M; Aoki, N
1979-01-01
alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364
Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong
2009-11-01
Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.
Matsumoto, M; Imagawa, M; Aoki, Y
2000-07-01
Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.
Matsumoto, M; Imagawa, M; Aoki, Y
2000-01-01
Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression. PMID:10861232
Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L
2003-08-01
Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.
Wise, G E; Zhao, L
1997-05-01
Interleukin-1alpha (IL-1alpha) enhances the gene expression of colony-stimulating factor-one (CSF-1) in dental follicle cells. In turn, CSF-1 appears to be a critical molecule in stimulating the cellular events of eruption that require the presence of the follicle. Chronologically, the maximal transcription and translation of CSF-1 in the follicle occurs early postnatally, followed by a decline later. Thus, in this study, immunostaining for the interleukin-1 receptor type I (IL-1RI) was used to determine if it paralleled the CSF-1 localization and chronology. The results showed that IL-1RI is primarily localized in the dental follicle, with maximal immunostaining early postnatally and a greatly reduced staining by day 10. In conjunction with this, molecules that enhance the gene expression of IL-1alpha epidermal growth factor (EGF) and transforming growth factor-beta1 (TGF-beta1) were also shown to enhance the expression of IL-1RI, but IL-1alpha did not increase the gene expression of IL-1RI. After injections of EGF at different times postnatally the mRNA of IL-1RI increased over comparable controls. Between days 2 and 5 the IL-1RI mRNA in the follicle decreased. In combination the results suggest that, as the expression of IL-1alpha is enhanced in the stellate reticulum either by EGF or TGF-beta1, these two molecules could also enhance the expression of IL-1RI in the dental follicle such that more receptors would be available to respond to the increased IL-1alpha secreted. The maximal presence of the receptors (IL-1RI) in the dental follicle early postnatally, followed by their subsequent decline, parallels the rise and fall of CSF-1 in the follicle. Thus, regulation of the IL-1RI and IL-1RI gene expression might be a means of regulating changes in CSF-1 in the follicle.
Production and action of cytokines in space
NASA Technical Reports Server (NTRS)
Chapes, Stephen K.; Morrison, Dennis R.; Guikema, James A.; Lewis, Marian L.; Spooner, Brian S.
1994-01-01
B6MP102 cells, a continuously cultured murine bone marrow macrophage cell line, were tested for secretion of tumor necrosis factor-alpha and Interleukin-1 during space flight. We found that B6MP102 cells secreted more tumor necrosis factor-alpha and interleukin-1 when stimulated in space with lipopolysaccharide than controls similarly stimulated on earth. This compared to increased secretion of interferon-beta and -gamma by lymphocytes that was measured on the same shuttle flights. Although space flight enhanced B6MP102 secretion of tumor necrosis factor-alpha, an experiment on a subsequent space flight (STS-50) found that cellular cytotoxicity, mediated by tumor necrosis factor-alpha, was inhibited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kai; Zhu, Fei; Zhang, Han-zhong
Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oralmore » squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black-Right-Pointing-Pointer VCAM-1/VLA-4 mediated TNF-{alpha}-enhanced cell fusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de; Hintereder, Gudrun, E-mail: Gudrun.Hintereder@kgu.de; Bruene, Bernhard, E-mail: bruene@pathobiochemie1.de
2010-04-15
Hypoxia-inducible factor (HIF) is the major transcription factor mediating adaption to hypoxia e.g. by enhancing glycolysis. In tumor cells, high glucose concentrations are known to increase HIF-1{alpha} expression even under normoxia, presumably by enhancing the concentration of tricarboxylic acid cycle intermediates, while reactions of non-tumor cells are not well defined. Therefore, we analyzed cellular responses to different glucose concentrations in respect to HIF activation comparing tumor to non-tumor cells. Using cells derived from non-tumor origin, we show that HIF-1{alpha} accumulation was higher under low compared to high glucose concentrations. Low glucose allowed mRNA expression of HIF-1 target genes like adrenomedullin.more » Transfection of C{sub 2}C{sub 12} cells with a HIF-1{alpha} oxygen-dependent degradation domaine-GFP fusion protein revealed that prolyl hydroxylase (PHD) activity is impaired at low glucose concentrations, thus stabilizing the fusion protein. Mechanistic considerations suggested that neither O{sub 2} redistribution nor an altered redox state explains impaired PHD activity in the absence of glucose. In order to affect PHD activity, glucose needs to be metabolized. Amino acids present in the medium also diminished HIF-1{alpha} expression, while the addition of fatty acids did not. This suggests that glucose or amino acid metabolism increases oxoglutarate concentrations, which enhances PHD activity in non-tumor cells. Tumor cells deprived of glutamine showed HIF-1{alpha} accumulation in the absence of glucose, proposing that enhanced glutaminolysis observed in many tumors enables these cells to compensate reduced oxoglutarate production in the absence of glucose.« less
Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.
Bottles, K D; Morrissey, J H
1993-06-01
Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.
Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G
2000-10-31
We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.
Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I
1999-03-15
We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).
O'Connell, T D; Rokosh, D G; Simpson, P C
2001-05-01
alpha1-Adrenergic receptor (AR) subtypes in the heart are expressed by myocytes but not by fibroblasts, a feature that distinguishes alpha1-ARs from beta-ARs. Here we studied myocyte-specific expression of alpha1-ARs, focusing on the subtype alpha1C (also called alpha1A), a subtype implicated in cardiac hypertrophic signaling in rat models. We first cloned the mouse alpha1C-AR gene, which consisted of two exons with an 18 kb intron, similar to the alpha1B-AR gene. The receptor coding sequence was >90% homologous to that of rat and human. alpha1C-AR transcription in mouse heart was initiated from a single Inr consensus sequence at -588 from the ATG; this and a putative polyadenylation sequence 8.5 kb 3' could account for the predominant 11 kb alpha1C mRNA in mouse heart. A 5'-nontranscribed fragment of 4.4 kb was active as a promoter in cardiac myocytes but not in fibroblasts. Promoter activity in myocytes required a single muscle CAT (MCAT) element, and this MCAT bound in vitro to recombinant and endogenous transcriptional enhancer factor-1. Thus, alpha1C-AR transcription in cardiac myocytes shares MCAT dependence with other cardiac-specific genes, including the alpha- and beta-myosin heavy chains, skeletal alpha-actin, and brain natriuretic peptide. However, the mouse alpha1C gene was not transcribed in the neonatal heart and was not activated by alpha1-AR and other hypertrophic agonists in rat myocytes, and thus differed from other MCAT-dependent genes and the rat alpha1C gene.
Formica, S; Roach, T I; Blackwell, J M
1994-05-01
The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic proline/serine-rich putative SH3 binding domain.
Ueyama, T; Zhu, C; Valenzuela, Y M; Suzow, J G; Stewart, A F
2000-06-09
Cardiac myocytes respond to alpha(1)-adrenergic receptor stimulation by a progressive hypertrophy accompanied by the activation of many fetal genes, including skeletal muscle alpha-actin. The skeletal muscle alpha-actin gene is activated by signaling through an MCAT element, the binding site of the transcription enhancer factor-1 (TEF-1) family of transcription factors. Previously, we showed that overexpression of the TEF-1-related factor (RTEF-1) increased the alpha(1)-adrenergic response of the skeletal muscle alpha-actin promoter, whereas TEF-1 overexpression did not. Here, we identified the functional domains and specific sequences in RTEF-1 that mediate the alpha(1)-adrenergic response. Chimeric TEF-1 and RTEF-1 expression constructs localized the region responsible for the alpha(1)-adrenergic response to the carboxyl-terminal domain of RTEF-1. Site-directed mutagenesis was used to inactivate eight serine residues of RTEF-1, not present in TEF-1, that are putative targets of alpha(1)-adrenergic-dependent kinases. Mutation of a single serine residue, Ser-322, reduced the alpha(1)-adrenergic activation of RTEF-1 by 70% without affecting protein stability, suggesting that phosphorylation at this serine residue accounts for most of the alpha(1)-adrenergic response. Thus, these results demonstrate that RTEF-1 is a direct target of alpha(1)-adrenergic signaling in hypertrophied cardiac myocytes.
Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi
2004-03-01
The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi; Pietilae, Mika; Salonen, Riikka J.
Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found,more » as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.« less
McClintock, Jennifer L; Ceresa, Brian P
2010-07-01
PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.
Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xiuguo; Tanaka, Naoki; Nakajima, Takero
2006-08-11
Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.
van Ooij, C; Snyder, R C; Paeper, B W; Duester, G
1992-01-01
The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113
Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito
2006-01-01
SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. SCG shows antitumor activity and also enhances the hematopoietic response in cyclophosphamide (CY)-treated mice. In the present study, the molecular mechanism of the enhancement of the hematopoietic response was investigated. The levels of interferon-(IFN-)gamma, tumor necrosis factor-(TNF-)alpha, granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin-(IL-) 6 and IL-12p70 were significantly increased by SCG in CY-treated mice. GM-CSF production in the splenocytes from the CY-treated mice was higher than that in normal mice regardless of SCG stimulation. Neutralizing GM-CSF significantly inhibited the induction of IFN-gamma, TNF-alpha and IL-12p70 by SCG. The level of cytokine induction by SCG was regulated by the amount of endogenous GM-CSF produced in response to CY treatment in a dose-dependent manner. The expression of beta-glucan receptors, such as CR3 and dectin-1, was up-regulated by CY treatment. Blocking dectin-1 significantly inhibited the induction of TNF-alpha and IL-12p70 production by SCG. Taken together, these results suggest that the key factors in the cytokine induction in CY-treated mice were the enhanced levels of both endogenous GM-CSF production and dectin-1 expression.
Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi
2008-02-01
Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.
Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L
2006-08-01
Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.
Rothe, H; Ongören, C; Martin, S; Rösen, P; Kolb, H
1994-01-01
Upon stimulation with lipopolysaccharide (LPS), peritoneal macrophages from diabetes-prone Bio-Breeding (BB) rats secrete more tumour necrosis factor-alpha (TNF-alpha) than macrophages from diabetes-resistant BB or normal Wistar rats. Enhanced transcription was demonstrated by Northern blot analysis and at the single cell level by mRNA: RNA hybridization. Cytofluorometry analysis showed 2-4 times more plasma membrane and total cell-associated TNF-alpha in macrophages of diabetes-prone BB rats. The analysis of fluorescence intensity showed a single peak, and TNF-alpha mRNA was found in > 90% of macrophages. These findings exclude TNF hypersecretion as being due to an abnormal subfraction of cells. TNF-alpha gene hyperexpression in diabetes-prone BB rats was not due to mutations in the regulatory regions of the promoter, which could be shown by cloning and sequencing of the TNF-alpha promoter in the three rat strains. When searching for other regulatory defects we found the production of prostaglandin E2 (PGE2) in response to LPS to be up to 10 times lower in macrophages from diabetes-prone BB rats than from Wistar rats. Furthermore, BB rats macrophages required significantly higher concentrations of PGE2 for suppression of TNF-alpha secretion. We conclude that abnormal TNF-alpha production in macrophages from diabetes-prone BB rats is due to enhanced gene transcription and translation and that this is associated with defective PGE2 feedback inhibition. Images Figure 1 Figure 2 PMID:8206514
Sugatani, T; Alvarez, U M; Hruska, K A
2003-09-01
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis. Copyright 2003 Wiley-Liss, Inc.
Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes
NASA Technical Reports Server (NTRS)
Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)
1999-01-01
Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.
Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas
Isono, Takahiro; Chano, Tokuhiro; Yoshida, Tetsuya; Kageyama, Susumu; Kawauchi, Akihiro; Suzaki, Masafumi; Yuasa, Takeshi
2016-01-01
Dormant cancer cells are deprivation-resistant, and cause a number of problems for therapeutic approaches for cancers. Renal cell carcinomas (RCCs) include deprivation-resistant cells that are resistant to various treatments. In this study, the specific characteristics of deprivation-resistant cells were transcriptionally identified by next generation sequencing. The hypoxia-inducible factors (HIF) transcription factor network was significantly enhanced in deprivation-resistant RCCs compared to the sensitive RCCs. Deprivation-resistant RCCs, that had lost Von Hippel-Lindau tumor suppressor expression, expressed hydroxyl-HIF2-alpha in the nucleus, but not sensitive-RCCs. Hydroxyl-HIF-alpha was also expressed in nuclei of RCC tissue samples. Knockdown for HIF2-alpha, but not HIF1-alpha, induced cell death related to a reduction in HIF-related gene expression in deprivation-resistant RCC cells. Chetomin, a nuclear HIF-inhibitor, induced marked level of cytotoxicity in deprivation-resistant cells, similar to the knockdown of HIF2-alpha. Therefore, hydroxyl-HIF2-alpha might be a potential therapeutic target for RCCs. PMID:27822416
Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito
2006-04-01
SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice are potently induced by SCG to produce interferon- gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12p70 (IL-12p70), and that GM-CSF plays a key biologic role among these cytokines. In this study, we investigated the contribution of cell-cell contact and soluble factors to cytokine induction by SCG in DBA/2 mice. Cell-cell contact involving intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) was an essential step for the induction of GM-CSF and IFN-gamma by SCG but not for the induction of TNF-alpha or IL-12p70 by SCG. SCG directly induced adherent splenocytes to produce TNF-alpha and IL-12p70. GM-CSF was required for the induction of TNF-alpha by SCG, and in turn, TNF-alpha enhanced the release of GM-CSF and thereby augmented the induction of IL-12p70 and IFN-gamma by SCG. Neutralization of IL-12 significantly inhibited the induction of IFN-gamma by SCG. We concluded that induction of GM-CSF production by SCG was mediated through ICAM-1 and LFA-1 interaction, GM-CSF subsequently contributed to further cytokine induction by SCG, and reciprocal actions of the cytokines were essential for enhancement of the overall response to SCG in DBA/2 mice.
Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice.
Gotic, Ivana; Leschnik, Michael; Kolm, Ursula; Markovic, Mato; Haubner, Bernhard J; Biadasiewicz, Katarzyna; Metzler, Bernhard; Stewart, Colin L; Foisner, Roland
2010-02-05
Lamina-associated polypeptide (LAP)2alpha is a mammalian chromatin-binding protein that interacts with a fraction of A-type lamins in the nuclear interior. Because mutations in lamins and LAP2alpha lead to cardiac disorders in humans, we hypothesized that these factors may play important roles in heart development and adult tissue homeostasis. We asked whether the presence of LAP2alpha was required for normal cardiac function. To study the molecular mechanisms of the disease, we analyzed heart structure and function in complete and conditional Lap2alpha(-/-) mice as well as Lap2alpha(-/-)/Mdx mutants. Unlike conditional deletion of LAP2alpha in late embryonic striated muscle, its complete knockout caused systolic dysfunction in young mice, accompanied by sporadic fibrosis in old animals, as well as deregulation of major cardiac transcription factors GATA4 and myocyte enhancer factor 2c. Activation of compensatory pathways, including downregulation of beta-adrenergic receptor signaling, resulted in reduced responsiveness of the myocardium to chronic beta-adrenergic stimulation and stalled the progression of LAP2alpha-deficient hearts from hypertrophy toward cardiac failure. Dystrophin deficiency in an Mdx background resulted in a transient rescue of the Lap2alpha(-/-) phenotype. Our data suggest a novel role of LAP2alpha in the maintenance of cardiac function under normal and stress conditions.
Zhao, Guoying; Karageorgos, Litsa; Hutchinson, Rhonda G; Hopwood, John J; Hemsley, Kim
2010-05-01
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) in which an absence of sulfamidase results in incomplete degradation and subsequent accumulation of its substrate, heparan sulfate. Most neurodegenerative LSD remain untreatable. However, therapy options, such as gene, enzyme end cell therapy, are under investigation. Previously, we have constructed an embryonic stem (ES) cell line (NS21) that over-expresses human sulphamidase as a potential treatment for murine MPS IIIA. In the present study the sulfatase-modifying factor I (SUMF1) and enhanced green fluorescence protein (eGFP) genes were co-introduced under a cytomegalovirus (CMV) promoter into NS21 cells, to enhance further sulfamidase activity and provide a marker for in vivo cell tracking, respectively. eGFP was also introduced under the control of the human elongation factor-1alpha (hEF-1alpha) promoter to compare the stability of transgene expression. During differentiation of ES cells into glial precursors, SUMF1 was down-regulated and was hardly detectable by day 18 of differentiation. Likewise, eGFP expression was heterogeneous and highly unstable. Use of a human EF-1alpha promoter resulted in more homogeneous eGFP expression, with approximately 50% of cells eGFP positive following differentiation into glial precursors. Compared with NS21 cells, the outgrowth of eGFP-expressing cells was not as confluent when differentiated into glial precursors. Our data suggest that SUMF1 enhances sulfamidase activity in ES cells, hEF-1alpha is a stronger promoter than CMV for ES cells and over-expression of eGFP may affect cell growth and contribute to unstable gene expression.
2003-06-01
type Ill, alpha 1 ( Ehlers - Danlos syndrome type IV, autosomal dominant) T98612 multimerin AA423867 ribonuclease, RNase A family, 1 (pancreatic...tax-responsive enhancer element 967) AA600217 jagged1 (Alagille syndrome ) R70685 TNF receptor-associated factor 1 R71691 glycyl-tRNA synthetase...in patients succumbing to sepsis and systemic inflamma- tion. The effects of removing one syndrome -causing agent may be compensated by others with
Enhancement of the Triple Alpha Rate in a Hot Dense Medium
NASA Astrophysics Data System (ADS)
Beard, Mary; Austin, Sam M.; Cyburt, Richard
2017-09-01
In a sufficiently hot and dense astrophysical environment the rate of the triple-alpha (3 α ) reaction can increase greatly over the value appropriate for helium burning stars owing to hadronically induced deexcitation of the Hoyle state. In this Letter we use a statistical model to evaluate the enhancement as a function of temperature and density. For a density of 106 g cm-3 enhancements can exceed a factor of 100. In high temperature or density situations, the enhanced 3 α rate is a better estimate of this rate and should be used in these circumstances. We then examine the effect of these enhancements on production of 12C in the neutrino wind following a supernova explosion and in an x-ray burster.
Tadesse, Azeb; Abebe, Markos; Bizuneh, Elizabeth; Mulugeta, Wondwossen; Aseffa, Abraham; Shannon, E J
2006-01-01
Hypersensitivity reactions called reversal reaction (RR) and erythema nodosum leprosum (ENL) occur in leprosy. They are characterized by an increase in tumor necrosis factor-alpha (TNF-alpha). Thalidomide is an effective treatment for ENL but not RR. Its effectiveness in ENL is attributed to inhibition of TNF-alpha, and this does not explain its failure to treat RR. We assessed thalidomide's effect on TNF-alpha in RR. Mononuclear cells from RR and non-RR patients and healthy individuals were treated with thalidomide and M.leprae (AFB), a cytosol fraction of M. leprae or Dharmendra lepromin. Thalidomide suppressed TNF-alpha, but when some RR patients' cells were stimulated with AFB, it enhanced TNF-alpha.
Martinez, Victor G; Ontoria-Oviedo, Imelda; Ricardo, Carolina P; Harding, Sian E; Sacedon, Rosa; Varas, Alberto; Zapata, Agustin; Sepulveda, Pilar; Vicente, Angeles
2017-09-29
Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK cell lysis and, hence, their potential in vivo lifespan. Our results further support the use of HIF-1 alpha-expressing dental MSCs for cell therapy in tissue injury and immune disorders.
Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M
2007-01-01
Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.
MCAT elements and the TEF-1 family of transcription factors in muscle development and disease.
Yoshida, Tadashi
2008-01-01
MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.
Sun, Dong; Matsune, Shoji; Ohori, Junichiro; Fukuiwa, Tatsuya; Ushikai, Masato; Kurono, Yuichi
2005-09-01
Vascular endothelial growth factor (VEGF) promotes angiogenesis and is associated with the invasion and metastasis of malignant tumors. It enhances vascular permeability and is expressed in inflammatory nasal as well as middle-ear mucosa. As the mechanism of VEGF induction during chronic inflammation, such as chronic paranasal sinusitis (CPS) remains to be clarified, we studied the factors regulating the production of VEGF in cultured human nasal fibroblasts and discussed the role of VEGF in the pathogenesis of CPS. We used ELISA to quantify VEGF levels in paranasal sinus effusions, nasal secretions, and serum from patients with CPS. In addition, we cultured human nasal fibroblasts isolated from nasal polyps of CPS patients and studied the effects of hypoxia, TNF-alpha, and endotoxin on their production of VEGF using ELISA and PCR. The VEGF concentration was significantly higher in paranasal sinus effusions than in nasal secretions and serum. Nasal fibroblasts produced high levels of VEGF, when cultured under hypoxic condition and this production was remarkably enhanced in the presence of TNF-alpha or endotoxin. VEGF is locally produced in paranasal sinuses as well as nasal mucosa and its production is increased in patients with CPS. Hypoxia is associated with the production of VEGF by nasal fibroblasts and TNF-alpha and endotoxin may act synergistically to enhance VEGF production in paranasal sinuses under hypoxic condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su
2011-09-01
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrialmore » membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell cycle progression and induces apoptosis. > IN4CPBD suppresses SDF-1{alpha}-enhanced signaling and melanoma migration. > IN4CPBD abolishes angiogenic factor production and chemotactic effect of SDF-1{alpha}. > This drug is clinically applicable to melanoma therapy.« less
The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha.
Gort, E H; van Haaften, G; Verlaan, I; Groot, A J; Plasterk, R H A; Shvarts, A; Suijkerbuijk, K P M; van Laar, T; van der Wall, E; Raman, V; van Diest, P J; Tijsterman, M; Vooijs, M
2008-03-06
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFalpha protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFalpha) and aha-1 (HIFbeta), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2alpha-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2alpha, but not HIF-1alpha. These results identify TWIST1 as a direct target gene of HIF-2alpha, which may provide insight into the acquired metastatic capacity of hypoxic tumors.
Koide, Naoki; Morikawa, Akiko; Naiki, Yoshikazu; Tumurkhuu, Gantsetseg; Yoshida, Tomoaki; Ikeda, Hiroshi; Yokochi, Takashi
2009-02-01
The susceptibility of NC/Nga mice to tumor necrosis factor (TNF)-alpha was examined by using sensitization with d-galactosamine (d-GalN). Administration of TNF-alpha and d-GalN killed none of the NC/Nga mice, whereas it killed all of the BALB/c mice. Treatment with TNF-alpha and d-GalN caused few hepatic lesions in NC/Nga mice but massive hepatocellular apoptosis in BALB/c mice. Unlike BALB/c mice, there was no elevation in caspase 3 and 8 activities in the livers of NC/Nga mice receiving TNF-alpha and d-GalN. On the other hand, administration of anti-Fas antibody definitely killed both NC/Nga and BALB/c mice via activation of caspases 3 and 8. Treatment with TNF-alpha and d-GalN led to translocation of nuclear factor (NF)-kappaB in NC/Nga and BALB/c mice. However, NF-kappaB translocation was sustained in NC/Nga mice, although it disappeared in BALB/c mice 7 h after the treatment. NF-kappaB inhibitors activated caspases 3 and 8, and enhanced TNF-alpha-mediated lethality in NC/Nga. Taken together, the low susceptibility of NC/Nga mice to TNF-alpha-mediated lethality was suggested to be responsible for the sustained NF-kappaB activation.
Kim, Sung-Jo
2010-06-01
In addition to regulating body weight, leptin is also recognized for its role in the regulation of immune function and inflammation. The purpose of this study was to investigate the effect of leptin on Prevotella (P.) intermedia lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production in differentiated THP-1 cells, a human monocytic cell line. LPS from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. The amount of TNF-alpha and interleukin-8 secreted into the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). TNF-alpha and Ob-R mRNA expression levels were determined by semi-quantitative reverse transcription-polymerase chain reaction analysis. Leptin enhanced P. intermedia LPS-induced TNF-alpha production in a dose-dependent manner. Leptin modulated P. intermedia LPS-induced TNF-alpha expression predominantly at the transcriptional level. Effect of leptin on P. intermedia LPS-induced TNF-alpha production was not mediated by the leptin receptor. The ability of leptin to enhance P. intermedia LPS-induced TNF-alpha production may be important in the establishment of chronic lesion accompanied by osseous tissue destruction observed in inflammatory periodontal disease.
Gelse, K; Mühle, C; Knaup, K; Swoboda, B; Wiesener, M; Hennig, F; Olk, A; Schneider, H
2008-12-01
To investigate the chondrogenic potential of growth factor-stimulated periosteal cells with respect to the activity of Hypoxia-inducible Factor 1alpha (HIF-1alpha). Scaffold-bound autologous periosteal cells, which had been activated by Insulin-like Growth Factor 1 (IGF-1) or Bone Morphogenetic Protein 2 (BMP-2) gene transfer using both adeno-associated virus (AAV) and adenoviral (Ad) vectors, were applied to chondral lesions in the knee joints of miniature pigs. Six weeks after transplantation, the repair tissues were investigated for collagen type I and type II content as well as for HIF-1alpha expression. The functional role of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling on BMP-2/IGF-1-induced HIF-1alpha expression was assessed in vitro by employing specific inhibitors. Unstimulated periosteal cells formed a fibrous extracellular matrix in the superficial zone and a fibrocartilaginous matrix in deep zones of the repair tissue. This zonal difference was reflected by the absence of HIF-1alpha staining in superficial areas, but moderate HIF-1alpha expression in deep zones. In contrast, Ad/AAVBMP-2-stimulated periosteal cells, and to a lesser degree Ad/AAVIGF-1-infected cells, adopted a chondrocyte-like phenotype with strong intracellular HIF-1alpha staining throughout all zones of the repair tissue and formed a hyaline-like matrix. In vitro, BMP-2 and IGF-1 supplementation increased HIF-1alpha protein levels in periosteal cells, which was based on posttranscriptional mechanisms rather than de novo mRNA synthesis, involving predominantly the MEK/ERK pathway. This pilot experimental study on a relatively small number of animals indicated that chondrogenesis by precursor cells is facilitated in deeper hypoxic zones of cartilage repair tissue and is stimulated by growth factors which enhance HIF-1alpha activity.
Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook
2005-07-29
The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Eric; Jakinovich, Paul; Bae, Aekyung
Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1}more » knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a suppressor of PKC activity.« less
Yang, Yi; Li, Wang; Liu, Yang; Sun, Yuning; Li, Yan; Yao, Qing; Li, Jianning; Zhang, Qian; Gao, Yujing; Gao, Ling; Zhao, Jiajun
2014-11-01
Understanding the mechanism by which alpha-lipoic acid supplementation has a protective effect upon nonalcoholic fatty liver disease in vivo and in vitro may lead to targets for preventing hepatic steatosis. Male C57BL/6J mice were fed a normal diet, high-fat diet or high-fat diet supplemented with alpha-lipoic acid for 24 weeks. HepG2 cells were incubated with normal medium, palmitate or alpha-lipoic acid. The lipid-lowering effects were measured. The protein expression and distribution were analyzed by Western blot, immunoprecipitation and immunofluorescence, respectively. We found that alpha-lipoic acid enhanced sirtuin 1 deacetylase activity through liver kinase B1 and stimulated AMP-activated protein kinase. By activating the sirtuin 1/liver kinase B1/AMP-activated protein kinase pathway, the translocation of sterol regulatory element-binding protein-1 into the nucleus and forkhead box O1 into the cytoplasm was prevented. Alpha-lipoic acid increased adipose triacylglycerol lipase expression and decreased fatty acid synthase abundance. In in vivo and in vitro studies, alpha-lipoic acid also increased nuclear NF-E2-related factor 2 levels and downstream target amounts via the sirtuin 1 pathway. Alpha-lipoic acid eventually reduced intrahepatic and serum triglyceride content. The protective effects of alpha-lipoic acid on hepatic steatosis appear to be associated with the transcription factors sterol regulatory element-binding protein-1, forkhead box O1 and NF-E2-related factor 2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene.
Geier, Andreas; Martin, Ina V; Dietrich, Christoph G; Balasubramaniyan, Natarajan; Strauch, Sonja; Suchy, Frederick J; Gartung, Carsten; Trautwein, Christian; Ananthanarayanan, Meenakshisundaram
2008-08-01
Sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake system for conjugated bile acids. Deletions of hepatocyte nuclear factor (HNF)-1alpha and retinoid X receptor-alpha:retinoic acid receptor-alpha binding sites in the mouse 5'-flanking region corresponding to putatively central regulatory elements of rat Ntcp do not significantly reduce promoter activity. We hypothesized that HNF-4alpha, which is increasingly recognized as a central regulator of hepatocyte function, may directly transactivate mouse (mNtcp). A 1.1-kb 5'-upstream region including the mouse Ntcp promoter was cloned and compared with the rat promoter. In contrast to a moderate 3.5-fold activation of mNtcp by HNF-1alpha, HNF-4alpha cotransfection led to a robust 20-fold activation. Deletion analysis of mouse and rat Ntcp promoters mapped a conserved HNF-4alpha consensus site at -345/-326 and -335/-316 bp, respectively. p-475bpmNtcpLUC is not transactivated by HNF-1alpha but shows a 50-fold enhanced activity upon cotransfection with HNF-4alpha. Gel mobility shift assays demonstrated a complex of the HNF-4alpha-element formed with liver nuclear extracts that was blocked by an HNF-4alpha specific antibody. HNF-4alpha binding was confirmed by chromatin immunoprecipitation. Using Hepa 1-6 cells, HNF-4alpha-knockdown resulted in a significant 95% reduction in NTCP mRNA. In conclusion, mouse Ntcp is regulated by HNF-4alpha via a conserved distal cis-element independently of HNF-1alpha.
Diao, Huajia; Li, Xin; Chen, Jiangning; Luo, Yi; Chen, Xi; Dong, Lei; Wang, Chunming; Zhang, Chenyu; Zhang, Junfeng
2008-02-01
Bletilla striata, a traditional Chinese medicine, has been used for the treatment of alimentary canal mucosal damage, ulcers, bleeding, bruises and burns. B. striata polysaccharide (BSP) isolated from B. striata was found to enhance vascular endothelial cell (EC) proliferation and vascular endothelial growth factor (VEGF) expression. However, the wound healing mechanism of BSP is not well understood. In this study, the results show that treatment with BSP induces coordinate changes in inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) mRNA levels and enhances the expression of these cytokines, but has no effect on interferon gamma (IFN-gamma) level. In this study, we partially elucidate the wound healing mechanism of BSP.
Sueoka, E; Nishiwaki, S; Okabe, S; Iida, N; Suganuma, M; Yano, I; Aoki, K; Fujiki, H
1995-08-01
Cord factors are mycoloyl glycolipids in cell walls of bacteria belonging to Actinomycetales, such as Mycobacterium, Nocardia and Rhodococcus. They induce granuloma formation in the lung and interstitial pneumonitis, associated with production of macrophage-derived cytokines. We studied how cord factors induce biological activities in the cells. Cord factors isolated from M. tuberculosis, trehalose 6-monomycolate (mTMM) and trehalose 6,6'-dimycolate (mTDM), enhanced protein kinase C (PKC) activation in the presence of phosphatidylserine (PtdSer), diacylglycerol and Ca2+, and mTMM activated PKC alpha more strongly than PKC beta or gamma under the same assay conditions. Kinetic studies of mTMM in response to PKC activation revealed that mTMM increased the apparent affinity of PKC to Ca2+ in the presence of both PtdSer and diolein. Although this is similar to observations with unsaturated fatty acids, such as arachidonic acid, mTMM was synergistic with PtdSer for PKC activation, but arachidonic acid was not. mTMM was also different as regards PKC activation, as phorbol ester was. A single i.p. administration of mTMM to mouse induced tumor necrosis factor-alpha (TNF-alpha) in serum and in the lung, which is a unique target tissue of cord factors. Based on our recent finding that TNF-alpha is an endogenous tumor promoter, the correlation between lung cancer and pulmonary tuberculosis is discussed.
Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi
2008-12-01
Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.
Li, Hong-Ge; Ren, Yong-Ming; Guo, Song-Chang; Cheng, Long; Wang, De-Peng; Yang, Jie; Chang, Zhi-Jie; Zhao, Xin-Quan
2009-02-01
The plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant species living only at 3,000-5,000 m above sea-level on the Qinghai-Tibetan plateau. Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates a variety of cellular and systemic adaptations to hypoxia. To investigate how the plateau pika adapts to a high-altitude hypoxic environment at the molecular level, we examined the expression pattern of the HIF-1alpha protein in the pika by Western blot and immunohistochemical analysis. We found that HIF-1alpha protein is expressed at a significantly high level in the pika, which is higher in most tissues (particularly in the lung, liver, spleen and kidney) of the plateau pika than that of mice living at sea-level. Importantly, we found that the protein levels of HIF-1alpha in the lung, liver, spleen and kidney of the pika were increased with increased habitat altitudes. We observed that the plateau pika HIF-1alpha localized to the nucleus of cells by an immunostaining analysis, and enhanced HRE-driven gene expression by luciferase reporter assays. Our study suggests that the HIF-1alpha protein levels are related to the adaptation of the plateau pika to the high-altitude hypoxic environment.
Estes, D M; Tuo, W; Brown, W C; Goin, J
1998-12-01
In this report, we sought to determine the role of selected type I interferons [interferon-alpha (IFN-alpha) and interferon-tau (IFN-tau)], IFN-gamma and transforming growth factor-beta (TGF-beta) in the regulation of bovine antibody responses. B cells were stimulated via CD40 in the presence or absence of B-cell receptor (BCR) cross-linking. IFN-alpha enhanced IgM, IgG2 and IgA responses but did not enhance IgG1 responses. BCR signalling alone was more effective at inducing IgG2 responses with IFN-alpha than dual cross-linking with CD40. Recombinant ovine IFN-tau was less effective at inducing IgG2 responses when compared with IFN-alpha, though IgA responses were similar in magnitude following BCR cross-linking. At higher concentrations, IFN-tau enhanced IgA responses greater than twofold over the levels observed with IFN-alpha. Previous studies have shown that addition of IFN-gamma to BCR or pokeweed mitogen-activated bovine B cells stimulates IgG2 production. However, following CD40 stimulation alone, IFN-gamma was relatively ineffective at stimulating high-rate synthesis of any non-IgM isotype. Dual cross-linking via CD40 and the BCR resulted in decreased synthesis of IgM with a concomitant increase in IgA and similar levels of IgG2 production to those obtained via the BCR alone. We also assessed the effects of endogenous and exogenous TGF-beta on immunoglobulin synthesis by bovine B cells. Exogenous TGF-beta stimulates both IgG2 and IgA production following CD40 and BCR cross-linking in the presence of IL-2. Blocking endogenous TGF-beta did not inhibit the up-regulation of IgG2 or IgA by interferons.
Free hemoglobin enhances tumor necrosis factor-alpha production in isolated human monocytes.
Carrillo, Eddy H; Gordon, Laura E; Richardson, J David; Polk, Hiram C
2002-03-01
A systemic inflammatory response (SIR) is seen in approximately 75% of patients with complex blunt liver injuries treated nonoperatively. Many feel this response is caused by blood, bile, and necrotic tissue accumulation in the peritoneal cavity. Our current treatment for these patients is a delayed laparoscopic washout of the peritoneal cavity, resulting in a dramatic resolution of the SIR. Spectrophotometric analysis of the intraperitoneal fluid has confirmed the presence of high concentrations of free hemoglobin (Hb). We hypothesize that free Hb enhances the local peritoneal response by increasing tumor necrosis factor-alpha (TNF-alpha) production by monocytes, contributing to the local inflammatory response and SIR. Monocytes from five healthy volunteers were isolated and cultured in RPMI-1640 for 24 hours. Treatment groups included saline controls, lipopolysaccharide ([LPS], 10 ng/mL, from Escherichia coli), human Hb (25 microg/mL), and Hb + LPS. Supernatants were analyzed by enzyme-linked immunosorbent assay. Student's t test with Mann-Whitney posttest was used for statistical analysis with p < or = 0.05 considered significant. Free Hb significantly increased TNF-alpha production 915 +/- 223 pg/mL versus saline (p = 0.02). LPS and Hb + LPS further increased TNF-alpha production (2294 pg/mL and 2501 pg/mL, respectively, p < 0.001) compared with saline controls. These data confirm that free Hb is a proinflammatory mediator resulting in the production of significant amounts of TNF-alpha. These in vitro findings support our clinical data in which timely removal of intraperitoneal free hemoglobin helps prevent its deleterious local and systemic inflammatory effects in patients with complex liver injuries managed nonoperatively.
Organ, Edward L; Nalbantyan, Christopher D; Nanney, Lillian B; Woodward, Stephen C; Sheng, Jinsong; Dubois, Raymond N; Price, James; Sutcliffe, Marilyn; Coffey, Robert J; Rubin, Donald H
2004-07-01
We have utilized growth factors in in vitro and in vivo systems to examine the role of cellular proliferation in reovirus replication. In vitro, proliferating RIE-1 cells can be infected with whole reovirus virions, but are relatively resistant to infection once confluent (Go arrest). It has been shown that TGF-alpha, which signals through the EGF-receptor (EGF-R), is capable of dramatically increasing the number of RIE-1 cells entering the S-phase in the presence of additional serum factors. Stimulation of the EGF-R without serum results in minimal increases in cells entering the S-phase with a restriction in reovirus replication. Therefore, other factors in serum are essential for fully permissive infection. In vivo, we used metallothionein (MT) promoter/enhancer-TGF-alpha transgenic mice to study the effect of cytokine activation on reovirus type 1 infection. Virus replication decreased following oral infection in these transgenic mice at 1 month of age, concordant with increased mucin production. Titers of reovirus obtained from the livers of 1 year old transgenic mice were approximately 10-fold higher than titers obtained in control mice. Taken together, these data indicate that while growth factor activation ultimately leads to an increase in virus infectivity, other factors may be necessary for reovirus replication.
Yanpallewar, Sudhirkumar U; Fernandes, Kimberly; Marathe, Swananda V; Vadodaria, Krishna C; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A
2010-01-20
Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants.
Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.
Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi
2004-04-01
Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells.
Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru
2003-03-01
It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahdjoudj, S.; Kaabeche, K.; Holy, X.
2005-02-01
The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less
Sukhotnik, Igor; Shteinberg, Dan; Ben Lulu, Shani; Bashenko, Yulia; Mogilner, Jorge G; Ure, Benno M; Shaoul, Ron; Shamian, Benhoor; Coran, Arnold G
2008-12-01
Recent evidence suggests that transforming growth factor-alpha (TGF-alpha) enhances enterocyte proliferation and exerts a gut trophic effect. The purpose of the present study was to evaluate the effect of TGF-alpha on enterocyte proliferation and intestinal recovery following methotrexate (MTX)-induced intestinal mucositis in rats and in Caco-2 cells. Nonpretreated Caco-2 cells and those pretreated with MTX were incubated with increasing concentrations of TGF-alpha. Cell proliferation was determined by FACS cytometry. Adult rats were divided into three groups: control rats treated with vehicle, MTX rats treated with one dose (20 microg/kg) of MTX given intraperitoneally, and MTX-TGF-alpha rats treated with one dose of MTX followed by two doses of TGF-alpha (75 microg/kg a day). Three days after MTX injection, rats were sacrificed. Intestinal mucosal damage (Park's score), mucosal structural changes, and enterocyte proliferation were measured at sacrifice. Western blotting was used to determine the level of extracellular signal-related kinase (ERK) protein, a marker of cell proliferation. A nonparametric Kruskal-Wallis ANOVA test was used for statistical analysis with P value less than 0.05 considered statistically significant. The in vitro experiment demonstrated that treatment with TGF-alpha of Caco-2 cells resulted in a significant stimulation of cell proliferation in a dose-dependent manner. The in vivo experiment showed that treatment with TGF-alpha resulted in a significant increase in bowel and mucosal weight, DNA and protein content in jejunum and ileum, villus height in jejunum and ileum, crypt depth in ileum, and increased cell proliferation in jejunum and ileum compared to the MTX group. MTX-TGF-alpha rats also had a significantly lower intestinal injury score in ileum when compared to MTX animals. The increase in levels of cell proliferation in MTX-TGF-alpha rats corresponded with the increase in ERK protein levels in intestinal mucosa. Treatment with TGF-alpha prevents mucosal injury, enhances ERK-induced enterocyte proliferation, and improves intestinal recovery following MTX-induced intestinal mucositis in rats. These findings correlated with the observation that TGF-alpha also caused a significant stimulation of cell proliferation in a Caco-2 cell culture model treated with MTX. These observations may have significant implications for the treatment of patients on chemotherapy who develop severe mucositis.
Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E; Hinnebusch, Alan G
2009-03-01
Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.
Gerlofs-Nijland, Miriam E; van Berlo, Damien; Cassee, Flemming R; Schins, Roel P F; Wang, Kate; Campbell, Arezoo
2010-05-17
The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM), present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP), derived from a specific source (diesel engine), and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE) using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1 alpha (IL-1alpha) were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-kappaB) and (AP-1) was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-alpha and TNF Receptor-subtype I (TNF-RI). Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution, however, it is valuable to assess if and to what extent the observed changes may impact the normal function and cellular integrity of unique brain regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro
Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophagesmore » with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Department of cardiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin 150081; Guo, Ting
2011-05-01
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration.more » Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.
2008-02-01
Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation,more » just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larbouret, Christel; Robert, Bruno; Linard, Christine
2007-11-15
Purpose: Tumor necrosis factor-{alpha} (TNF-{alpha}) enhances radiotherapy (RT) killing of tumor cells in vitro and in vivo. To overcome systemic side effects, we used a bispecific antibody (BsAb) directed against carcinoembryonic antigen (CEA) and TNF-{alpha} to target this cytokine in a CEA-expressing colon carcinoma. We report the evaluation of this strategy in immunocompetent CEA-transgenic mice. Methods and Materials: The murine CEA-transfected colon carcinoma MC-38 was used for all experiments. In vitro, clonogenic assays were performed after RT alone, TNF-{alpha} alone, and RT plus TNF-{alpha}. In vivo, the mice were randomly assigned to treatment groups: control, TNF-{alpha}, BsAb, BsAb plus TNF-{alpha},more » RT, RT plus TNF-{alpha}, and RT plus BsAb plus TNF-{alpha}. Measurements of endogenous TNF-{alpha} mRNA levels and evaluation of necrosis (histologic evaluation) were assessed per treatment group. Results: In vitro, combined RT plus TNF-{alpha} resulted in a significant decrease in the survival fraction at 2 Gy compared with RT alone (p < 0.00001). In vivo, we observed a complete response in 5 (50%) of 10, 2 (20%) of 10, 2 (18.2%) of 11, and 0 (0%) of 12 treated mice in the RT plus BsAb plus TNF-{alpha}, RT plus TNF-{alpha}, RT alone, and control groups, respectively. This difference was statistically significant when TNF-{alpha} was targeted with the BsAb (p = 0.03). The addition of exogenous TNF-{alpha} to RT significantly increased the endogenous TNF-{alpha} mRNA level, particularly when TNF-{alpha} was targeted with BsAb (p < 0.01). The percentages of necrotic area were significantly augmented in the RT plus BsAb plus TNF-{alpha} group. Conclusion: These results suggest that targeting TNF-{alpha} with the BsAb provokes RT curability in a CEA-expressing digestive tumor syngenic model and could be considered as a solid rationale for clinical trials.« less
Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi
2007-11-01
Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.
Legraverend, C; Antonson, P; Flodby, P; Xanthopoulos, K G
1993-01-01
The promoter region of the mouse CCAAT-Enhancer Binding Protein (C/EBP alpha) gene is capable of directing high levels of expression of reporter constructs in various cell lines, albeit even in cells that do not express their endogenous C/EBP alpha gene. To understand the molecular mechanisms underlying this ubiquitous expression, we have characterized the promoter region of the mouse C/EBP alpha gene by a variety of in vitro and in vivo methods. We show that three sites related in sequence to USF, BTE and C/EBP binding sites and present in promoter region -350/+3, are recognized by proteins from rat liver nuclear extracts. The sequence of the C/EBP alpha promoter that includes the USF binding site is also capable of forming stable complexes with purified Myc+Max heterodimers and mutation of this site drastically reduces transcription of C/EBP alpha promoter luciferase constructs both in liver and non liver cell lines. In addition, we identify three novel protein-binding sites two of which display similarity to NF-1 and a NF kappa B binding sites. The region located between nucleotides -197 and -178 forms several heat-stable complexes with liver nuclear proteins in vitro which are recognized mainly by antibodies specific for C/EBP alpha. Furthermore, transient expression of C/EBP alpha and to a lesser extent C/EBP beta expression vectors, results in transactivation of a cotransfected C/EBP alpha promoter-luciferase reporter construct. These experiments support the notion that the C/EBP alpha gene is regulated by C/EBP alpha but other C/EBP-related proteins may also be involved. Images PMID:8493090
Goel, Gunjan; Guo, Miao; Ding, Jamie; Dornbos, David; Ali, Ahmer; Shenaq, Mohammed; Guthikonda, Murali; Ding, Yuchuan
2010-10-15
Studies have demonstrated neuroprotective effects of either TNF-alpha or HSP-70 in ischemia/reperfusion injury following exercise. However, the protective mechanisms involving combined effect of the two proteins, particularly in neuronal apoptosis, remain unclear. This study aims to elucidate the beneficial role of TNF-alpha and HSP-70 in the regulation of apoptotic proteins and ERK signaling in hypoxic injury. Cortical neurons from 20 Sprague-Dawley rat embryos were isolated and cultured in five groups with or without pretreatment with recombinant TNF-alpha, HSP-70 protein or both prior to hypoxic conditions: (1) control; (2) control/hypoxia; (3) TNF-alpha/hypoxia; (4) HSP-70/hypoxia and (5) TNF-alpha/HSP-70/hypoxia. Western blotting was used to detect pro- and anti-apoptotic proteins, including Bax, AIF, Bcl-xL, Bcl-2, and pERK1/2 protein. TNF-alpha and HSP-70 significantly (p<0.05) reduced the levels of pro-apoptotic proteins, Bax and AIF. Also, pretreatment of hypoxic brain tissue with TNF-alpha and HSP-70 significantly (p<0.05) enhanced the levels of anti-apoptotic protein, Bcl-xL. TNF-alpha and HSP-70 together increased Bcl-2 levels by 70%. Hypoxia caused a significant (p<0.05) increase in ERK1/2 phosphorylation levels by 224%. The most effective inhibition of ERK levels was obtained by the combined administration of TNF-alpha and HSP-70. This study suggested that TNF-alpha and HSP-70 together enhance the decrease in pro-apoptotic protein levels and the increase in anti-apoptotic protein levels in the event of neuronal hypoxia through ERK1/2 signal transduction. 2010. Published by Elsevier Ireland Ltd.
Tatsuta, M; Iishi, H; Baba, M; Hirasawa, R; Yano, H; Sakai, N; Nakaizumi, A
1999-02-01
The effect of prolonged administration of all-trans-retinoic acid (RA) on sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine, and the labelling and apoptotic indices and immunoreactivity of transforming growth factor (TGF) alpha in the gastric cancers was investigated in Wistar rats. After 25 weeks of carcinogen treatment, the rats were given chow pellets containing 10% sodium chloride and subcutaneous injections of RA at doses of 0.75 or 1.5 mg kg(-1) body weight every other day. In week 52, oral supplementation with sodium chloride significantly increased the incidence of gastric cancers compared with the untreated controls. Long-term administration of RA at both doses significantly reduced the incidence of gastric cancers, which was enhanced by oral administration of sodium chloride. RA at both doses significantly decreased the labelling index and TGF-alpha immunoreactivity of gastric cancers, which were enhanced by administration of sodium chloride, and significantly increased the apoptotic index of cancers, which was lowered by administration of sodium chloride. These findings suggest that RA attenuates gastric carcinogenesis, enhanced by sodium chloride, by increasing apoptosis, decreasing DNA synthesis, and reducing TGF-alpha expression in gastric cancers.
Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao
2002-07-01
Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257-264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand-tumour necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses.
Yamaguchi, Y; Tsumura, H; Miwa, M; Inaba, K
1997-01-01
Dendritic cells (DC) are a distinct population of leukocytes and specialized antigen-presenting cells for T cell responses. Prior work has shown that GM-CSF can induce the development of large numbers of DC from proliferating progenitors in mouse bone marrow. We have monitored the effects of potentially enhancing and suppressive cytokines in these cultures. In this system, many immature DC develop from proliferating precursors during the first six days of culture, and between days 6-8 maturation of typical nonadherent and nonreplicating DC takes place. The maturation is accompanied by a large increase in the expression of major histocompatibilities complex class II (MHC II) and B7-2/CD86, and in mixed leukocyte reaction stimulating activity. Tumor necrosis factor-alpha (TNF-alpha), previously shown to be required for development of human DC, was found to enhance the maturation of mouse DC in the last two days of culture. Transforming growth factor-beta 1 (TGF-beta 1), on the other hand, almost totally blocked DC maturation, but it had to be given in the first six days of culture when the DC were actively proliferating. TGF-beta 1 did not block the production of immature, MHC II-positive but B7-2/CD86-negative DC. Maturation would take place between days 6-8 as long as the cultures were depleted of Fc-receptor-bearing cells, or if TNF-alpha were added. In both instances, maturation was not blocked even when TGF-beta 1 remained in the culture. We conclude that the development of DC, in response to GM-CSF, can be modified by other cytokines. TGF-beta 1 is suppressive but only indirectly via Fc-receptor-bearing suppressive cells, presumably suppressive macrophages, while TNF-alpha enhances the final maturation of DC.
The role of lipopolysaccharide in infectious bone resorption of periapical lesion.
Hong, Chi-Yuan; Lin, Sze-Kwan; Kok, Sang-Heng; Cheng, Shih-Jung; Lee, Ming-Shu; Wang, Tong-Mei; Chen, Chuan-Shuo; Lin, Li-Deh; Wang, Juo-Song
2004-03-01
The role of lipopolysaccharide (LPS) in periapical lesion-induced bone resorption was investigated. Polymyxin B (PMB), a specific inhibitor of LPS, was evaluated to treat the apical lesion. Lipopolysaccharide isolated from two common endodontic pathogens, Fusobacterium nucleatum and Porphyromonas endodontalis, stimulated mouse macrophage (J774) to release interleukin-1alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) in a time-dependent manner. Combination of LPS further enhanced the stimulation. PMB inhibited these effects significantly. LPS also stimulated matrix metalloproteinase-1 (MMP-1) gene expression in J774, whereas anti-IL-1 alpha and anti-TNF-alpha antibodies, as well as PMB, diminished this effect. A disease model of periapical lesion was established in Wistar rat. Administration of PMB reduced the extent of lesion-associated bone resorption by 76% to approximately 80%, and simultaneously reduced the numbers of MMP-1-producing macrophages. It is suggested that LPS released from the infected root canal triggers the synthesis of IL-1 alpha and TNF-alpha from macrophages. These pro-inflammatory cytokines up-regulate the production of MMP-1 by macrophages to promote periapical bone resorption.
Harada, Toshie; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito
2004-08-01
Sparassis crispa Fr. is an edible/medicinal mushroom that recently became cultivable in Japan. SCG is a major 6-branched 1,3-beta-D-glucan in S. crispa showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice strongly react with SCG to produce interferon-gamma (IFN-gamma). In this study, cytokines induced by SCG were screened and found to be IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12 (IL-12p70). The addition of recombinant murine GM-CSF (rMuGM-CSF) to spleen cell cultures from various strains of mice synergistically enhanced IFN-gamma, TNF-alpha and IL-12p70 in the presence of SCG. In contrast, neutralizing GM-CSF using anti-GM-CSF monoclonal antibody (mAb) significantly inhibited IFN-gamma, TNF-alpha, and IL-12p70 elicited by SCG. We conclude that GM-CSF is a key molecule for cytokine induction by beta-glucan, and GM-CSF induction by SCG is the specific step in DBA/2 mice in vitro.
Enhancement of scleral macromolecular permeability with prostaglandins.
Weinreb, R N
2001-01-01
PURPOSE: It is proposed that the sclera is a metabolically active and pharmacologically responsive tissue. These studies were undertaken to determine whether prostaglandin exposure can enhance scleral permeability to high-molecular-weight substances. METHODS: Topical prostaglandin F2 alpha (PGF2 alpha) was administered to monkeys to determine if this altered the amount of scleral matrix metalloproteinases (MMPs). Experiments also were performed to determine whether the prostaglandin F (FP) receptor and gene transcripts are expressed in normal human sclera. Permeability of organ-cultured human sclera following prostaglandin exposure then was studied and the amount of MMP released into the medium measured. Finally, the permeability of human sclera to basic fibroblast growth factor (FGF-2) was determined following prostaglandin exposure. RESULTS: Topical prostaglandin administration that reduced scleral collagen also increased scleral MMP-1, MMP-2, and MMP-3 by 63 +/- 35%, 267 +/- 210%, and 729 +/- 500%, respectively. FP receptor protein was localized in scleral fibroblasts, and FP receptor gene transcript was identified in sclera. Exposure to prostaglandin F2 alpha, 17-phenyltrinor, PGF2 alpha, or latanoprost acid increased scleral permeability by up to 124%, 183%, or 213%, respectively. In these cultures, MMP-1, MMP-2, and MMP-3 were increased by up to 37%, 267%, and 96%, respectively. Finally, transscleral absorption of FGF-2 was increased by up to 126% with scleral exposure to latanoprost. CONCLUSIONS: These studies demonstrate that the sclera is metabolically active and pharmacologically responsive to prostaglandins. Further, they demonstrate the feasibility of cotreatment with prostaglandin to enhance transscleral delivery of peptides, such as growth factors and high-molecular-weight substances, to the posterior segment of the eye. PMID:11797317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung
2008-06-15
Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-{alpha} (TNF-{alpha}) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-{alpha} in human A549 cells remain unclear. Here, we showed that TNF-{alpha} induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-{kappa}B (helenalin), and transfection with dominant negative mutants of ERK2 ({delta}ERK) and JNK ({delta}JNK), and siRNAs for MEK1, p42 and JNK2. TNF-{alpha}-stimulated phosphorylation of p42/p44 MAPK and JNKmore » were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of {delta}ERK and {delta}JNK. Furthermore, the involvement of NF-{kappa}B in TNF-{alpha}-induced MMP-9 production was consistent with that TNF-{alpha}-stimulated degradation of I{kappa}B-{alpha} and translocation of NF-{kappa}B into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-{kappa}B was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-{alpha} in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-{alpha}-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-{kappa}B MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-{alpha}-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-{kappa}B are essential for TNF-{alpha}-induced MMP-9 gene expression.« less
Anti-endotoxic shock effects of cyproheptadine in rats.
Wang, Lizan; Zhang, Qingzhu; Hu, Xiuzhou; Lun, Ning; Wang, Baosheng; Zhu, Fanhe
2002-03-01
To investigate the antagonistic effect and mechanism of the effect of cyproheptadine (Cyp) on endotoxic shock in rats. Endotoxic shock was produced in rats by i.v. injection of lipopolysaccharides (LPS) (5 mg/kg). Tumor necrosis factor (TNF(alpha)) mRNA expression was assessed by Northern blot. Plasma TNF(alpha) content was measured by radioimmunoassay. Plasma superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured. The intracellular free calcium concentration ([Ca(2+)](i)) in single endothelial cells was determined by laser scanning confocal microscopy (LSCM). Cyp 5 mg/kg injected immediately after i.v. LPS raised the mean arterial blood pressure (MABP) of shocked rats and improved their 24 h survival rate. Meanwhile, Cyp markedly decreased TNF(alpha) mRNA levels in rat liver (18 +/- 10 vs. LPS + saline 38 +/- 10, P < 0.01) as well as plasma TNF(alpha) content [(7.8 +/- 2.4) microg/L vs. LPS + saline (21.5 +/- 3.2) microg/L, P < 0.01)]. It enhanced plasma SOD activity [(1037.2 +/- 112.8) NU/L vs LPS + saline (615.4 +/- 92.6) NU/L, P < 0.01], reduced the MDA content [(5.2 +/- 1.1) micromol/L vs. LPS + saline (9.8 +/- 1.5) micromol/L, P < 0.01], and inhibited TNF(alpha)-induced [Ca(2+)](i) elevation. Cyp exerts an anti-endotoxic shock effect by inhibiting TNF(alpha) gene expression, enhancing SOD activity, reducing lipid peroxidation, and preventing [Ca(2+)](i) overload.
Todros, T; Marzioni, D; Lorenzi, T; Piccoli, E; Capparuccia, L; Perugini, V; Cardaropoli, S; Romagnoli, R; Gesuita, R; Rolfo, A; Paulesu, L; Castellucci, M
2007-01-01
There is evidence that alpha-smooth muscle actin (alpha-SMA) is a protein that plays a pivotal role in the production of contractile forces and it is induced by transforming growth factor-beta1 (TGF-beta1). We have analysed the expression of alpha-SMA, TGF-beta1, its receptor RI and the activator phospho-Smad2 in (a) fetal growth restriction pre-eclamptic placentae characterised by early onset and absence of end diastolic velocities in the umbilical arteries (FGR-AED) and (b) control placentae accurately matched for gestational age. The study was performed by immunohistochemical, quantitative Western blotting, ELISA, RT-PCR and in vitro analyses. We found that TGF-beta1 stimulates alpha-SMA production in chorionic villi cultured in vitro. In addition, we observed that in vivo TGF-beta1 concentration is significantly higher in FGR-AED placental samples than in control placentae and that this growth factor could have a paracrine action on villous stroma myofibroblasts expressing TGF-beta1 receptors and phospho-Smad2. Indeed, we report that alpha-SMA undergoes a redistribution in FGR-AED placental villous tree, i.e. we show that alpha-SMA is enhanced in medium and small stem villi and significantly decreased in the peripheral villi. Our data allow us to consider TGF-beta1 and alpha-SMA as key molecules related to FGR-AED placental villous tree phenotypic changes responsible for increased impedance to blood flow observable in this pathology.
Huang, Po-Hsun; Chen, Yung-Hsiang; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Wu, Tao-Cheng; Lin, Feng-Yen; Sata, Masataka; Chen, Jaw-Wen; Lin, Shing-Jong
2010-04-01
Red wine (RW) consumption has been associated with a reduction of cardiovascular events, but limited data are available on potential mediating mechanisms. This study tested the hypothesis that intake of RW may promote the circulating endothelial progenitor cell (EPC) level and function through enhancement of nitric oxide bioavailability. Eighty healthy, young subjects were randomized and assigned to consume water (100 mL), RW (100 mL), beer (250 mL), or vodka (30 mL) daily for 3 weeks. Flow cytometry was used to quantify circulating EPC numbers, and in vitro assays were used to evaluate EPC functions. After RW ingestion, endothelial function determined by flow-mediated vasodilation was significantly enhanced; however, it remained unchanged after water, beer, or vodka intake. There were significantly increased numbers of circulating EPC (defined as KDR(+)CD133(+), CD34(+)CD133(+), CD34(+)KDR(+)) and EPC colony-forming units only in the RW group (all P<0.05). Only RW ingestion significantly enhanced plasma levels of nitric oxide and decreased asymmetrical dimethylarginine (both P<0.01). Incubation of EPC with RW (but not beer or ethanol) and resveratrol in vitro attenuated tumor necrosis factor-alpha-induced EPC senescence and improved tumor necrosis factor-alpha-suppressed EPC functions and tube formation. Incubation with nitric oxide donor sodium nitroprusside significantly ameliorated the inhibition of tumor necrosis factor-alpha on EPC proliferation, but incubation with endothelial nitric oxide synthase inhibitor l-NAME and PI3K inhibitor markedly attenuated the effect of RW on EPC proliferation. The intake of RW significantly enhanced circulating EPC levels and improved EPC functions by modifying nitric oxide bioavailability. These findings may help explain the beneficial effects of RW on the cardiovascular system. This study demonstrated that a moderate intake of RW can enhance circulating levels of EPC in healthy subjects by increasing nitric oxide availability. Direct incubation of EPC with RW and resveratrol can modify the functions of EPC, including attenuation of senescence and promotion of EPC adhesion, migration, and tube formation. These data suggest that RW ingestion may alter the biology of EPC, and these alterations may contribute to its unique cardiovascular-protective effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetschel, Frank; Kern, Claudia; Lang, Simona
2008-04-01
Glycogen synthase kinase-3 (GSK-3) is known to modulate cell survival and apoptosis through multiple intracellular signaling pathways. However, its hepatoprotective function and its role in activation of NF-{kappa}B and anti-apoptotic factors are poorly understood and remain controversial. Here we investigated whether inhibition of GSK-3 could induce apoptosis in the presence of TNF-{alpha} in primary mouse hepatocytes. We show that pharmacological inhibition of GSK-3 in primary mouse hepatocytes does not lead to TNF-{alpha}-induced apoptosis despite reduced NF-{kappa}B activity. Enhanced stability of I{kappa}B-{alpha} appears to be responsible for lower levels of nuclear NF-{kappa}B and hence reduced transactivation. Additionally, inhibition of GSK-3 wasmore » accompanied by marked upregulation of {beta}-catenin, AP-1, and CREB transcription factors. Stimulation of canonical Wnt signaling and CREB activity led to elevated levels of anti-apoptotic factors. Hence, survival of primary mouse hepatocytes may be caused by the activation and/or upregulation of other key regulators of liver homeostasis and regeneration. These signaling molecules may compensate for the compromised anti-apoptotic function of NF-{kappa}B and allow survival of hepatocytes in the presence of TNF-{alpha} and GSK-3 inhibition.« less
Alpha-synuclein levels in blood plasma decline with healthy aging.
Koehler, Niklas K U; Stransky, Elke; Meyer, Mirjam; Gaertner, Susanne; Shing, Mona; Schnaidt, Martina; Celej, Maria S; Jovin, Thomas M; Leyhe, Thomas; Laske, Christoph; Batra, Anil; Buchkremer, Gerhard; Fallgatter, Andreas J; Wernet, Dorothee; Richartz-Salzburger, Elke
2015-01-01
There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years) compared to younger (avg. 27.6 years) individuals. This difference between the age groups was enhanced after acidification of the plasmas (p<0.0001), possibly reflecting a decrease of alpha-synuclein-antibody complexes or chaperone activity in older individuals. Our results support the concept that alpha-synuclein homeostasis may be impaired early on, possibly due to disturbance of the proteostasis network, a key component of healthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.
Mehta, Jawahar L; Hu, Bo; Chen, Jiawei; Li, Dayuan
2003-12-01
LOX-1, a novel lectin-like receptor for oxidized LDL (ox-LDL), is expressed in response to ox-LDL, angiotensin II (Ang II), tumor necrosis factor (TNF)-alpha, and other stress stimuli. It is highly expressed in atherosclerotic tissues. Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, such as pioglitazone, exert antiatherosclerotic effects. This study examined the regulation of LOX-1 expression in human coronary artery endothelial cells (HCAECs) by pioglitazone. Fourth generation HCAECs were treated with ox-LDL, Ang II, or TNF-alpha with or without pioglitazone pretreatment. All 3 stimuli upregulated LOX-1 expression (mRNA and protein). Pioglitazone, in a concentration-dependent manner, reduced LOX-1 expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha alone). Ox-LDL, Ang II, and TNF-alpha each enhanced intracellular superoxide radical generation, and pioglitazone pretreatment reduced superoxide generation (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). Furthermore, all 3 stimuli upregulated the expression of the transcription factors nuclear factor-kappaB and activator protein-1 (determined by electrophoretic mobility shift assay), and pioglitazone pretreatment reduced this expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). To determine the biological significance of pioglitazone-mediated downregulation of LOX-1, we studied monocyte adhesion to ox-LDL-treated HCAECs. Pioglitazone reduced the adhesion of monocytes to activated HCAECs in a fashion similar to that produced by antisense to LOX-1 mRNA. These observations suggest that the PPAR-gamma ligand pioglitazone reduces intracellular superoxide radical generation and subsequently reduces the expression of transcription factors, expression of the LOX-1 gene, and monocyte adhesion to activated endothelium. The salutary effect of PPAR-gamma ligands in atherogenesis may involve the inhibition of LOX-1 and the adhesion of monocytes to endothelium.
Kaminski, Alexander; Ma, Nan; Donndorf, Peter; Lindenblatt, Nicole; Feldmeier, Gregor; Ong, Lee-Lee; Furlani, Dario; Skrabal, Christian A; Liebold, Andreas; Vollmar, Brigitte; Steinhoff, Gustav
2008-01-01
In the era of intravascular approaches for regenerative cell therapy, the underlying mechanisms of stem cell migration to non-marrow tissue have not been clarified. We hypothesized that next to a local inflammatory response implying adhesion molecule expression, endothelial nitric oxide synthase (eNOS)-dependent signaling is required for stromal- cell-derived factor-1 alpha (SDF-1alpha)-induced adhesion of c-kit+ cells to the vascular endothelium. SDF-1alpha/tumor necrosis factor-alpha (TNF-alpha)-induced c-kit+-cell shape change and migration capacity was studied in vitro using immunohistochemistry and Boyden chamber assays. In vivo interaction of c-kit+ cells from bone marrow with the endothelium in response to SDF-1alpha/TNF-alpha stimulation was visualized in the cremaster muscle microcirculation of wild-type (WT) and eNOS (-/-) mice using intravital fluorescence microscopy. In addition, NOS activity was inhibited with N-nitro-L-arginine-methylester-hydrochloride in WT mice. To reveal c-kit+-specific adhesion behavior, endogenous leukocytes (EL) and c-kit+ cells from peripheral blood served as control. Moreover, intercellular adhesion molecule-1 (ICAM-1) and CXCR4 were blocked systemically to determine their role in inflammation-related c-kit+-cell adhesion. In vitro, SDF-1alpha enhanced c-kit+-cell migration. In vivo, SDF-1alpha alone triggered endothelial rolling-not firm adherence-of c-kit+ cells in WT mice. While TNF-alpha alone had little effect on adhesion of c-kit+ cells, it induced maximum endothelial EL adherence. However, after combined treatment with SDF-1alpha+TNF-alpha, endothelial adhesion of c-kit+ cells increased independent of their origin, while EL adhesion was not further incremented. Systemic treatment with anti-ICAM-1 and anti-CXCR4-monoclonal antibody completely abolished endothelial c-kit+-cell adhesion. In N-nitro-L-arginine-methylester-hydrochloride-treated WT mice as well as in eNOS (-/-) mice, firm endothelial adhesion of c-kit+ cells was entirely abrogated, while EL adhesion was significantly increased. The chemokine SDF-1alpha mediates firm adhesion c-kit+ cells only in the presence of TNF-alpha stimulation via an ICAM-1- and CXCR4-dependent mechanism. The presence of eNOS appears to be a crucial and specific factor for firm c-kit+-cell adhesion to the vascular endothelium.
Alpha-like resonances in nuclei
NASA Astrophysics Data System (ADS)
Baran, V. V.; Delion, D. S.
2018-03-01
We investigate normal dipole oscillations in a system of protons, neutrons and α-particles within the Brink approach. We introduce an effective mass of α-clusters in terms of the spectroscopic factor. The Pauli exclusion principle is taken into account by using the Wildermuth rule. The ratio between alpha and giant resonance energy weighted sum rule (EWSR) is investigated for N = Z and N> Z systems. In both cases we notice an unexpected decrease of this ratio versus the increase of the spectroscopic factor. Due to this fact the possibility to experimentally detect α-like oscillations is enhanced in nuclei above 100Sn. The occurrence of the pygmy mode in N> Z systems decreases the EWSR for the α-like oscillations.
Van de Wetering, M; Castrop, J; Korinek, V; Clevers, H
1996-01-01
Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multitude of TCF-1 proteins ranging from 25-55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of 5' cDNA ends revealed (i) the presence of an alternative upstream promoter, which extended the known N terminus by 116 amino acids, (ii) the presence of four alternative exons, and (iii) the existence of a second reading frame in the last exon encoding an extended C terminus. Inclusion of the extended N terminus into the originally reported protein resulted in a striking similarity to the lymphoid factor Lef-1. Several of the TCF-1 isoforms, although less potent, mimicked Lef-1 in transactivating transcription through the T-cell receptor alpha-chain (TCR-alpha) enhancer. These data provide a molecular basis for the complexity of the expressed TCF-1 proteins and establish the existence of functional differences between these isoforms. Furthermore, the functional redundancy between Tcf-1 and Lef-1 explains the apparently normal TCR-alpha expression in single Tcf-1 or Lef-1 knockout mice despite the firm in vitro evidence for the importance of the Tcf/Lef site in the TCR-alpha enhancer. PMID:8622675
Miarelli, Maria; Signorelli, Federica
2015-01-01
The aim of this study was to explore the possibility of detecting novel phenotypes of natural resistance at the molecular level through the in-vitro stimulation of monocyte-derived macrophages (MDMs). This study was conducted with 16 healthy buffaloes who were reared for milk production and for whom data on milk-producing ability were available for several lactations. MDMs from circulating monocytes were activated with interferon-gamma and lipopolysaccharide. The response was evaluated using Western blotting to detect the presence of 2 types of proteins separated by electrophoresis: tyrosine-phosphorylated proteins, which are indicators of the dynamic control of biochemical pathways, and IkB-alpha (Kappa light polipeptide gene enhancer in B-cells Inhibitor, alpha) protein, which controls the activity of nuclear factor kappa-light-chain-enhancer of activated B cells-a transcription factor that is responsible for the expression of proinflammatory cytokines. The results showed that the buffaloes who were positive for IkB-alpha proteins had a significantly higher milk-producing ability than the buffaloes who did not express IkB-alpha. On the contrary, no significant difference was detected between the high and low milk-producing buffaloes with regard to the presence of tyrosine-phosphorylated proteins. This preliminary study indicated that it may be possible to identify the more disease-resistant nonhuman animals on a molecular level. The results, therefore, indicate that an intense selection toward the increase of milk yield could impair natural disease resistance in future dairy buffalo generations.
Sun, Kai; Montana, Vedrana; Chellappa, Karthikeyani; Brelivet, Yann; Moras, Dino; Maeda, Yutaka; Parpura, Vladimir; Paschal, Bryce M; Sladek, Frances M
2007-06-01
Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.
Kubin, M; Chow, J M; Trinchieri, G
1994-04-01
Natural killer cell-stimulatory factor or interleukin-12 (NKSF/IL-12) was originally identified and purified from the conditioned medium of Epstein-Barr virus (EBV)-transformed B-cell lines. Phorbol diesters were observed to be potent stimulators of NKSF/IL-12 production from the B-cell lines. Although monocytes were found to be the major producers of NKSF/IL-12 in peripheral blood (PB) in response to lipopolysaccharide (LPS) or to Staphylococcus aureus, several myeloid leukemia cell lines tested did not produce detectable NKSF/IL-12 either constitutively or upon stimulation with phorbol diesters. However, three lines, ML-3, HL-60, and THP-1, responded to LPS with significant levels of NKSF/IL-12 production, whereas S aureus was effective only on THP-1 cells. When the cell lines were preincubated with compounds known to induce them to differentiate, production of tumor necrosis factor alpha (TNF alpha) and IL-1 beta was in most cases maximal in cells with differentiated characteristics, whereas NKSF/IL-12 production in response to LPS in all three producing cell lines was significantly enhanced only by pretreatment with dimethylsulfoxide (DMSO) for 24 hours, or by costimulation with interferon gamma (IFN gamma). The efficiency of DMSO enhancement of NKSF/IL-12 production decreased after 2 to 5 days of incubation, when the cells acquired differentiated characteristics. Unlike DMSO, IFN gamma enhanced NKSF/IL-12 production, and IL-10 and dexamethasone inhibited it in cell lines and PB mononuclear cells stimulated by either LPS or S aureus. The ability of the cell lines to respond to these mediators of possibly physiologically relevant function provides a tissue-culture model for studying their mechanism of action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Chao; Zhang, Jingjing, E-mail: jingjingzhangzs@163.com; Fu, Jianhua
One of transcription factors of the T-box family, Brachyury has been implicated in tumorigenesis of many types of cancers, regulating cancer cell proliferation, metastasis, invasion and epithelial-to-mesenchymal transition (EMT). However, the role of Brachyury in breast cancer cells has been scarcely reported. The present study aimed to investigate the expression and role of Brachyury in breast cancer. Brachyury expression was analyzed by qRT-PCR and Western blot. The correlations between Brachyury expression and clinicopathological factors of breast cancer were determined. Involvement of EMT stimulation and hypoxia-inducible factor-1α (HIF-1α) expression induction by Brachyury was also evaluated. Moreover, the effect of Brachyury onmore » tumor growth and metastasis in vivo was examined in a breast tumor xenograft model. Brachyury expression was enhanced in primary breast cancer tissues and Brachyury expression was correlated with tumor stage and lymph node metastasis. Hypoxia enhanced Brachyury expression, the silencing of which blocked the modulation effect of hypoxia on E-cadherin and vimentin expression. Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling as well as accelerated cell proliferation and migration in vitro. Additionally, Brachyury accelerated breast tumor xenograft growth and increased lung metastasis in nude mice. In summary, our data confirmed that Brachyury might contribute to hypoxia-induced EMT of breast cancer and trigger HIF-1alpha expression via PTEN/Akt signaling. - Highlights: • Brachyury expression was correlated with tumor stage and lymph node metastasis. • Hypoxia enhanced Brachyury expression, which contributes to hypoxia-induced EMT. • Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling. • Brachyury accelerated tumor xenograft growth and increased lung metastasis.« less
Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.
Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan
2016-01-01
Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.
Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria.
Marin, M L; Lee, J H; Murtha, J; Ustunol, Z; Pestka, J J
1997-11-01
When used in commercial fermented dairy products, bifidobacteria may enhance immunity by stimulating cytokine secretion by leukocytes. To assess whether interaction between bifidobacteria and leukocytes promote cytokine production, we cultured RAW 264.7 cells (macrophage model) and EL-4.IL-2 thymoma cells (helper T-cell model) in the presence of 14 representative strains of heat-killed bifidobacteria. In unstimulated RAW 264.7 cells, all bifidobacteria induced pronounced increases (up to several hundred-fold) in the production of tumor necrosis factor-alpha compared with that of controls. Interleukin-6 production by unstimulated cells also increased significantly, but less than did tumor necrosis factor-alpha. Upon concurrent stimulation of RAW 264.7 cells with lipopolysaccharide, production of tumor necrosis factor-alpha and interleukin-6 were both enhanced between 1.5- to 5.8-fold and 4.7- to 7.9-fold, respectively, when cultured with 10(8) bifidobacteria/ml. In unstimulated EL-4.IL-2 cells, bifidobacteria had no effect on the production of interleukin-2 or interleukin-5. Upon stimulation of EL-4.IL-2 with phorbol-12-myristate-13-acetate, there were variable increases in interleukin-2 secretion (up to 2.4-fold for 10(6) Bifidobacterium Bf-1/ml) and interleukin-5 secretion (up to 4.6-fold for 10(8) B. adolescentis M101-4). The results indicated that, even when variations among strains were considered, direct interaction of most bifidobacteria with macrophages enhanced cytokine production, but the effects on cytokine production by the T-cell model were less marked. Interestingly, the 4 bifidobacteria strains used commercially for diary foods showed the greatest capacity for cytokine stimulation. The in vitro approaches employed here should be useful in future characterization of the effects of bifidobacteria on gastrointestinal and systemic immunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing
2011-07-08
Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract:more » Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor {alpha} (TNF{alpha}) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.« less
Ethanol acts as an enhancer of steroid anesthetic activity in mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukusoglu, C.; Mok, W.M.; Krieger, N.R.
1992-02-26
Ethanol and the steroid 3{alpha}-hydroxy-5{alpha}-pregnan-20-one (3{alpha}) are each potent general anesthetics that bring about the rapid loss of the righting response (LRR) in mice. Ethanol is known to enhance the actions of a range of sedative and anesthetic agents. However the effects of ethanol on steroid anesthesia have not previously been described. When ethanol was co-injected with 3{alpha} as compared to 3{alpha} injected alone, the percentage of mice that lost the righting response was substantially increased; the time to LRR was shortened; and 3{alpha} brain levels were increased. The interactions between the two agents were analyzed with the aid ofmore » an isobologram and they were found to be consistent with a hypothesis of additivity. The authors speculate that the role of ethanol as an enhancer of administered 3{alpha} activity described here may extend to the enhancement of endogenous 3{alpha} activity.« less
Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H
1994-11-15
Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.
On the Numerical Analysis of Decay Rate Enhancement in Metallic Environment
NASA Astrophysics Data System (ADS)
Mehedinteanu, S.
2007-10-01
Motivated on the very recent experiments to determine the acceleration of the alpha decay of meta-stable radionuclides in metallic environment some work has been done to strengthten the importance in the process of electrons screening in metals. Thus, by combining the Gamow decay theory with electrostatic screening in Debye-Hückel approximation (jellium model) a formula for ``the shift'' in screening energy which enters in the decay enhancement factor expression that copes well with these experiments has been derived. It was established that to simulate the poly-atoms system containing decaying isotopes in QM&MD codes calculations, and to include ``the screening energy shift'' of protons, decay alpha, beta+ particles due to all surrounding interacting effects, it is sufficiently only to substitute the code ruly pseudo-potential input for hydrogen-like atoms (including alpha) by a screened Coulomb potential as from the well-known Gamow alpha decay theory. For demonstration is used the QM&MD code package which usually performs density-functional theory (DFT) total-energy calculations for materials ranging from insulators to transition metals. This package employs first-principles pseudo-potentials and a plane-wave basis-set, and it was used to do a special calculus for some metal environments (Pd) where protons-deuterons are implanted or when it is alloyed with a radionuclide-like isotopes (174Hf72), the results compare well with the existing experiments on the decay enhancement. These works give further arguments for a cheap solution to remove the transuranic waste (involving all alpha-decay) of used-up rods of fission reactors in a time period of a few years.
Cao, Jun; Jiang, Liping; Zhang, Xiaomei; Yao, Xiaofeng; Geng, Chengyan; Xue, Xiangxin; Zhong, Laifu
2008-01-01
Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism.
Palmer, Bradley M; Wang, Yuan; Teekakirikul, Polakit; Hinson, J Travis; Fatkin, Diane; Strouse, Stacy; Vanburen, Peter; Seidman, Christine E; Seidman, J G; Maughan, David W
2008-04-01
Male but not female mice carrying a single R403Q missense allele for cardiac alpha-myosin heavy chain (M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+), respectively) develop significant hypertrophic cardiomyopathy (HCM) compared with male and female wild-type mice (M-alphaMHC(+/+) and F-alphaMHC(+/+), respectively) after approximately 30 wk of age. We tested the hypothesis that myofilament mechanical performance differs between M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+) at younger ages (10-20 wk) and could account for sex differences in HCM development. The sensitivity of chemically skinned myocardial strips to Ca(2+) activation (pCa(50)) was significantly (P < 0.05) enhanced in male mice independent of genotype (M-alphaMHC(R403Q/+): 5.70 +/- 0.06, M-alphaMHC(+/+): 5.63 +/- 0.05, F-alphaMHC(R403Q/+): 5.57 +/- 0.03, F-alphaMHC(+/+): 5.54 +/- 0.04) by two-way ANOVA, whereas maximum developed tension was significantly enhanced in alpha-MHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 29.3 +/- 2.3, M-alphaMHC(+/+): 26.0 +/- 1.4, F-alphaMHC(R403Q/+): 30.2 +/- 2.1, F-alphaMHC(+/+): 26.2 +/- 1.2 mN/mm(2)). The frequency of maximum work generated by sinusoidal length perturbation was significantly higher in alphaMHC(R403Q/+) mice than in sex-matched controls (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 Hz). Unloaded shortening velocity was significantly enhanced in alphaMHC(R403Q/+) and in female mice (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 muscle lengths/s), and normalized mechanical power, calculated from the tension-velocity relationship, was significantly enhanced in alphaMHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 60 +/- 2 10(-3), M-alphaMHC(+/+): 37 +/- 3 10(-3), F-alphaMHC(R403Q/+): 57 +/- 3 10(-3), F-alphaMHC(+/+) 25 +/- 3 10(-3) muscle lengths/s x normalized tension). We did not find a statistically significant sex x mutation interaction for any measure of myofilament performance. Therefore, sarcomeric incorporation of the R403Q myosin similarly enhanced left ventricular myofilament mechanical performance in both male and female mice. The sex-dependent development of HCM due to the R403Q myosin may then be inhibited by female sex hormones, which may additionally underlie the observed sex differences for pCa(50) and unloaded shortening velocity.
[Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].
Nyporko, A Iu; Demchuk, O N; Blium, Ia B
2003-01-01
The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Percy H.; Scherle, Peggy A.; Muckelbauer, Jodi K.
2010-03-05
The binding of tumor necrosis factor alpha (TNF-{alpha}) to the type-1 TNF receptor (TNFRc1) plays an important role in inflammation. Despite the clinical success of biologics (antibodies, soluble receptors) for treating TNF-based autoimmune conditions, no potent small molecule antagonists have been developed. Our screening of chemical libraries revealed that N-alkyl 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones were antagonists of this protein-protein interaction. After chemical optimization, we discovered IW927, which potently disrupted the binding of TNF-{alpha} to TNFRc1 (IC{sub 50} = 50 nM) and also blocked TNF-stimulated phosphorylation of I{kappa}-B in Ramos cells (IC{sub 50} = 600 nM). This compound did not bind detectably to themore » related cytokine receptors TNFRc2 or CD40, and did not display any cytotoxicity at concentrations as high as 100 {micro}M. Detailed evaluation of this and related molecules revealed that compounds in this class are 'photochemically enhanced' inhibitors, in that they bind reversibly to the TNFRc1 with weak affinity (ca. 40-100 mM) and then covalently modify the receptor via a photochemical reaction. We obtained a crystal structure of IV703 (a close analog of IW927) bound to the TNFRc1. This structure clearly revealed that one of the aromatic rings of the inhibitor was covalently linked to the receptor through the main-chain nitrogen of Ala-62, a residue that has already been implicated in the binding of TNF-{alpha} to the TNFRc1. When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-{alpha}-TNFRc1 interaction.« less
Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.
Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C
2000-12-01
The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.
Xie, Hui-Chun; Li, Jin-Gang; He, Jian-Ping
2017-05-04
With hypoxic stress, hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) are elevated and their responses are altered in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (Ochotona curzoniae)] as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. The results indicate that HIF-1alpha and VEGF are engaged in physiological functions under hypoxic environment. The purpose of the current study was to examine the protein levels of VEGF receptor subtypes (VEGFRs: VEGFR-1, VEGFR-2 and VEGFR-3) in the end organs, namely skeletal muscle, heart and lung in response to hypoxic stress. ELISA and Western blot analysis were employed to determine HIF-1alpha and the protein expression of VEGFRs in control animals and plateau pikas. We further blocked HIF-1alpha signal to determine if HIF-1alpha regulates alternations in VEGFRs in those tissues. We hypothesized that responsiveness of VEGFRs in the major end organs of plateau animals is differential with insult of hypoxic stress and is modulated by low oxygen sensitive HIF-1alpha. Our results show that hypoxic stress induced by exposure of lower O(2) for 6 h significantly increased the levels of VEGFR-2 in skeletal muscle, heart and lung and the increases were amplified in plateau pikas. Our results also demonstrate that hypoxic stress enhanced VEGFR-3 in lungs of plateau animals. Nonetheless, no significant alternations in VEGFR-1 were observed in those tissues with hypoxic stress. Moreover, we observed decreases of VEGFR-2 in skeletal muscle, heart and lung; and decreases of VEGFR-3 in lung following HIF-1alpha inhibition. Overall, our findings suggest that in plateau animals 1) responsiveness of VEGFRs is different under hypoxic environment; 2) amplified VEGFR-2 response appears in skeletal muscle, heart and lung, and enhanced VEGFR-3 response is mainly observed in lung; 3) HIF-1alpha plays a regulatory role in the levels of VEGFRs. Our results provide the underlying cellular and molecular mechanisms responsible for hypoxic environment in plateau animals, having an impact on research of physiological and ecological adaptive responses to acute or chronic hypoxic stress in humans who living at high attitude and who live at a normal sea level but suffer from hypoxic disorders.
NASA Astrophysics Data System (ADS)
Pereira, Mauro F.; Winge, David O.; Wacker, Andreas; Jumpertz, Louise; Michel, Florian; Pawlus, Robert; Elsaesser, Wolfgang E.; Schires, Kevin; Carras, Mathieu; Grillot, Frédéric
2016-10-01
The linewidth of a conventional laser is due to fluctuations in the laser field due to spontaneous emission and described by the Schalow-Townes formula. In addition to that, in a semiconductor laser there is a contribution arising from fluctuations in the refractive index induced by carrier density fluctuations. The later are quantitatively described by the linewidth enhancement or alpha factor [C. H. Henry, IEEE J. Quantum Electron. 18 (2), 259 (1982), W. W. Chow, S. W. Koch and M. Sargent III, Semiconductor-Laser Physics, Springer-Verlag (1994), M.F. Pereira Jr et al, J. Opt. Soc. Am. B10, 765 (1993). In this paper we investigate the alpha factor of quantum cascade lasers under actual operating conditions using the Nonequilibrium Greens Functions approach [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, (2013), T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, (2009)]. The simulations are compared with recent results obtained with different optical feedback techniques [L. Jumpertz et al, AIP ADVANCES 6, 015212 (2016)].
Methamphetamine enhances Hepatitis C virus replication in human hepatocytes
Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.
2009-01-01
SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590
De Nichilo, M O; Burns, G F
1993-03-15
The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.
Immunoregulatory and antioxidant performance of alpha-tocopherol and selenium on human lymphocytes.
Lee, Chung-Yung Jetty; Wan, Jennifer Man-Fan
2002-05-01
The role of alpha-tocopherol (alpha-toco) and selenium (Se) on human lymphocyte oxidative stress and T-cells proliferation were studied by flow cytometry. We measured the hydrogen peroxide and glutathione levels in cultured human T-lymphocytes and the proliferation of their subsets: T-helper/inducer, T-suppressor/cytotoxic, and natural killer and interleukin-2 receptors upon stimulation by the mitogens phytohemaglutinin (PHA) and lipopolysaccharide (LPS). The results indicate that early stimulation by mitogens is affected by the glutathione and hydrogen peroxide status of the T-lymphocytes. The addition of 100 microM or 500 microM alpha-toco or 0.5 microM Se alone shows weak antioxidant and immunostimulant properties. When combined, an enhanced antioxidant and immunoregulatory effect was observed. The present findings indicate that alpha-toco and Se have interactive effects as oxygen radical scavengers, thus promoting human lymphocyte response to antigens. This suggests that micronutrient status is an important factor in considering when interpreting the results of in vitro assays of lymphocyte function.
Mitrović, Milena; Ilić, Tatjana; Stokić, Edita; Paro, Jovanka Novaković; Naglić, Dragana Tomić; Bajkin, Ivana; Icin, Tijana
2011-09-01
Results of studies which have proved an increased inflammatory activity in diabetes type 1, have been published over recent years. One of possible mechanisms that are used to explain chronic inflammation in diabetes is the state of hyperglycemia leading to the enhanced synthesis of glycosylation end products (AGEs) which activate macrophages, increase the oxidative stress and affect the synthesis of interleukins (IL-1, IL-6), tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein (CRP). The aim of the study was to determine the inflammatory markers (CRP, IL-6, TNF-alpha) in patients with diabetes type 1 and to establish their correlation with glucoregulation parameters and other cardiovascular risk factors as well as to compare them with the healthy controls. The study included 76 patients with diabetes type 1 and 30 healthy controls. We determined values of inflammatory markers (CRP, IL-6, TNF-alpha) and glucoregulation parameters (fasting glucose HbA(1c)). The values of CRP (p = 0.014), IL-6 (p = 0.020) and TNF-alpha (p = 0.037) were statistically significantly higher in the diabetic patients than in the healthy controls. There was a positive correlation between CRP with postprandial glycemia (p = 0.004); the multivariate regression analysis revealed a statistically significant correlation between CRP and age (p = 0.001), smoking (p = 0.055), fasting glucose (p = 0.021) and triglycerides (p = 0.048) as well as between IL-6 and LDL-cholesterol (p = 0.009). No statistically significant correlations were found between glycosilated hemoglobin (HbA(1c)) and the inflammatory markers (CRP, IL-6 and TNF-alpha). The patients with type 1 diabetes were found to have a low level of inflammatory activity manifested by the increased values of CRP, IL-6 and TNF-alpha.
[Alpha power voluntary increasing training for cognition enhancement study].
Alekseeva, M V; Balioz, N V; Muravleva, K B; Sapina, E V; Bazanova, O M
2012-01-01
With the aim simultaneous alpha EEG stimulating and EMG decreasing biofeedback training impact on the alpha-activity and cognitive functions 27 healthy male subjects (18-34 years) were investigated in pre- and post 10 training sessions of the voluntary increasing alpha power in individual upper alpha range. The accuracy of conceptual span task, fluency and flexibility in alternatives use task performance and alpha-activity indices were compared in real (14 participants) and sham (13 participants) biofeedback groups for the discrimination of the feedback role in training. The follow up effect oftrainings was studied through month over the training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did not change the cognitive performance. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. It could be concluded that alpha-EEG-EMG biofeedback has application not only for cognition enhancement, but also in prognostic aims in clinical practice and brain-computer interface technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo
2010-10-08
Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is amore » key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.« less
Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mameli, Giuseppe; Astone, Vito; Khalili, Kamel
Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1more » promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNF{alpha}, interferon-{gamma}, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-{beta} is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNF{alpha} had the ability to activate the ERVWE1 promoter through an NF-{kappa}B-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNF{alpha} enhances the binding of the p65 subunit of NF-{kappa}B, to its cognate site within the promoter. The effect of TNF{alpha} is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNF{alpha}-mediated induction of syncytin-1 in multiple sclerosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yanjun; Cao, Jing; Wang, Haidong
2010-06-11
Nitric oxide (NO) and {alpha}-melanocyte-stimulating hormone ({alpha}-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of {alpha}-MSH to stimulate {alpha}-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to {alpha}-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control culturesmore » were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm{sup 2} of UVB; the UV + L-NAME group is the same as group UV but has the addition of 300 {mu}M L-NAME (every 6 h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of {alpha}-MSH pathway on melanogenesis, the key gene and protein of the {alpha}-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance {alpha}-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete {alpha}-MSH to enhance the {alpha}-MSH pathway on melanogenesis. This process will be of considerable interest in future studies.« less
Dong, Yanjun; Cao, Jing; Wang, Haidong; Zhang, Jie; Zhu, Zhiwei; Bai, Rui; Hao, HuanQing; He, Xiaoyan; Fan, Ruiwen; Dong, Changsheng
2010-06-11
Nitric oxide (NO) and alpha-melanocyte-stimulating hormone (alpha-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of alpha-MSH to stimulate alpha-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to alpha-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control cultures were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm(2) of UVB; the UV+L-NAME group is the same as group UV but has the addition of 300 microM L-NAME (every 6h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of alpha-MSH pathway on melanogenesis, the key gene and protein of the alpha-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance alpha-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete alpha-MSH to enhance the alpha-MSH pathway on melanogenesis. This process will be of considerable interest in future studies. (c) 2010 Elsevier Inc. All rights reserved.
Elmadbouh, I; Haider, Husnain Kh; Jiang, Shujia; Idris, Niagara Muhammad; Lu, Gang; Ashraf, Muhammad
2007-04-01
We aimed to optimize non-viral transfection of human stromal cell derived factor (SDF-1alpha) gene into skeletal myoblasts (SkM) and, transplant these cells to establish transient SDF-1alpha gradient to favor extra-cardiac stem cell translocation into infarcted heart. Optimized conditions for transfection of SDF-1alpha gene into syngenic SkM were achieved using FuGene6/phSDF-1alpha (3:2v/w, 4 h transfection) with 125 microM ZnCl(2) (p<0.001). After characterization for transgene overexpression by immunostaining, ELISA and PCR, the cells were transplanted in female rat model of myocardial infarction. Thirty-six rats were grouped (n=12/group) to receive 70 microl DMEM without cells (group-1) or containing 1.5 x 10(6) non-transfected (group-2) or SDF-1alpha transfected SkM (group-3). On day 4 post-transplantation (in 4 animals/group), marked expression of SDF-1alpha/sry-gene (p=0.003), total Akt, phospho-Akt and Bcl2 was observed in group-3. The number of CD31(+), C-kit(+) and CD34(+) cells was highest in group-3 hearts (p<0.01). Blood vessel density in group-3 was higher in both scar and peri-scar regions (p<0.001) as compared with other groups. Echocardiography showed improved indices of left ventricle contractile function and remodeling in group-3 (p<0.05) as compared with groups-1 and -2. We conclude that ex vivo SDF-1alpha transgene delivery promotes stem and progenitor cell migration to the heart, activates cell survival signaling and enhances angiomyogenesis in the infarcted heart.
Martin, T R; Mathison, J C; Tobias, P S; Letúrcq, D J; Moriarty, A M; Maunder, R J; Ulevitch, R J
1992-01-01
A plasma lipopolysaccharide (LPS)-binding protein (LBP) has been shown to regulate the response of rabbit peritoneal macrophages and human blood monocytes to endotoxin (LPS). We investigated whether LBP is present in lung fluids and the effects of LBP on the response of lung macrophages to LPS. Immunoreactive LBP was detectable in the lavage fluids of patients with the adult respiratory distress syndrome by immunoprecipitation followed by Western blotting, and also by specific immunoassay. In rabbits, the LBP appeared to originate outside of the lungs, inasmuch as mRNA transcripts for LBP were identified in total cellular RNA from liver, but not from lung homogenates or alveolar macrophages. Purified LBP enhanced the response of human and rabbit alveolar macrophages to both smooth form LPS (Escherichia coli O111B:4) and rough form LPS (Salmonella minnesota Re595). In the presence of LBP and LPS, the onset of tumor necrosis factor-alpha (TNF alpha) production occurred earlier and at an LPS threshold dose that was as much as 1,000-fold lower for both types of LPS. In rabbit alveolar macrophages treated with LBP and LPS, TNF alpha mRNA appeared earlier, reached higher levels, and had a prolonged half-life as compared with LPS treatment alone. Neither LPS nor LPS and LBP affected pHi or [Cai++] in alveolar macrophages. Specific monoclonal antibodies to CD14, a receptor that binds LPS/LBP complexes, inhibited TNF alpha production by human alveolar macrophages stimulated with LPS alone or with LPS/LBP complexes, indicating the importance of CD14 in mediating the effects of LPS on alveolar macrophages. Thus, immunoreactive LBP accumulates in lung lavage fluids in patients with lung injury and enhances LPS-stimulated TNF alpha gene expression in alveolar macrophages by a pathway that depends on the CD14 receptor. LBP may play an important role in augmenting TNF alpha expression by alveolar macrophages within the lungs. Images PMID:1281827
Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.
Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu
2018-01-20
The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.
Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth
2002-09-01
Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.
[Development of a scale to measure Korean ego-integrity in older adults].
Chang, Sung Ok; Kong, Eun Sook; Kim, Kwuy Bun; Kim, Nam Cho; Kim, Ju Hee; Kim, Chun Gill; Kim, Hee Kyung; Song, Mi Soon; Ahn, Soo Yeon; Lee, Kyung Ja; Lee, Young Whee; Chon, Si Ja; Cho, Nam Ok; Cho, Myung Ok; Choi, Kyung Sook
2007-04-01
Ego-integrity in older adults is the central concept related to quality of life in later life. Therefore, for effective interventions to enhance the quality of later life, a scale to measure ego-integrity in older adults is necessary. This study was carried out to develop a scale to measure ego-integrity in older adults. This study utilized cronbach's alpha in analyzing the reliability of the collected data and expert group, and factor analysis and item analysis to analyze validity. Seventeen items were selected from a total of 21 items. Cronbach's alpha coefficient for internal consistency was .88 for the 17 items of ego-integrity in the older adults scale. Three factors evolved by factor analysis, which explained 50.71% of the total variance. The scale for measuring ego-integrity in Korean older adults in this study was evaluated as a tool with a high degree of reliability and validity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summermatter, Serge; Troxler, Heinz; Santos, Gesa
2011-04-29
Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agentsmore » in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training on muscle metabolism in this context.« less
Wang, Hui; Bi, Xiaohui; Xu, Lei; Li, Yirong
2017-01-01
Background Rheumatoid factor causes positive interference in multiple immunoassays. Recently, negative interference has also been found in immunoassays in the presence of rheumatoid factor. The chemiluminescent microparticle immunoassay is widely used to determine serum alpha-fetoprotein. However, it is not clear whether the presence of rheumatoid factor in the serum causes interference in the chemiluminescent microparticle immunoassay of alpha-fetoprotein. Methods Serum alpha-fetoprotein was determined using the ARCHITECT alpha-fetoprotein assay. The estimation of alpha-fetoprotein recovery was carried out in samples prepared by diluting high-concentration alpha-fetoprotein serum with rheumatoid factor-positive or rheumatoid factor-negative serum. Paramagnetic microparticles coated with hepatitis B surface antigen-anti-HBs complexes were used to remove rheumatoid factor from the serum. Results The average recovery of alpha-fetoprotein was 88.4% and 93.8% in the rheumatoid factor-positive and rheumatoid factor-negative serum samples, respectively. The recovery of alpha-fetoprotein was significantly lower in the rheumatoid factor-positive serum samples than in the rheumatoid factor-negative serum samples. In two of five rheumatoid factor-positive samples, a large difference was found (9.8%) between the average alpha-fetoprotein recoveries in the serially diluted and initial recoveries. Fourteen rheumatoid factor-positive serum samples were pretreated with hepatitis B surface antigen-anti-HBs complex-coated paramagnetic microparticles. The alpha-fetoprotein concentrations measured in the pretreated samples increased significantly. Conclusions It was concluded that the alpha-fetoprotein chemiluminescent microparticle immunoassay is susceptible to interference by rheumatoid factor, leading to significantly lower results. Eliminating the incidence of negative interference from rheumatoid factor should be an important goal for immunoassay providers. In the meantime, laboratorians must remain alert to the negative interference by rheumatoid factor, and in some cases, pretreat rheumatoid factor-positive samples with blocking or absorbing reagents.
Joyce, D A; Steer, J H; Kloda, A
1996-07-01
The activities of monocyte-derived tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta are potentially modified by IL-1RA and soluble receptors for TNF (sTNF-R), which are themselves monocyte products. IL-4, IL-10, TGF-beta, and glucocorticoids (GC) all suppress the lipopolysaccharide (LPS)-stimulated release of TNF-alpha and IL-1beta but vary in their effects on IL-1RA and sTNF-R. This raises the prospect of interactions between the cytokines and glucocorticoids, which may be antagonistic or additive on IL-1 and TNF activity. We, therefore, studied the interactions of the GC dexamethasone (Dex) with IL-4, IL-10, and transforming growth factor (TGF)-beta on the release of TNF-alpha and IL-1RA by human monocytes and the monocytic THP-1 cell line. Low concentration of Dex (10(-8)-10(-7)M) acted additively with low concentrations of IL-4 (0.01-1 ng/ml), IL-10 (0.01-0.1 U/ml), or TGF-beta (0.01-1 ng/ml) to profoundly suppress LPS-stimulated release of TNF-alpha by whole blood and, to a lesser degree, THP-1 cells. Dex also suppressed spontaneous release of IL-1RA from PBMC and THP-1 cells, whereas IL-4 and IL-10, but not TGF-beta, stimulated release. Dex antagonized the enhanced release in IL-4 and IL-10-stimulated cultures. The capacity to stimulate release of IL-1RA may contribute to the anti-inflammatory potential of IL-4 and IL-10 in monocyte/macrophage-mediated disease. GC, therefore, do not uniquely enhance the suppressive functions of IL-4 and IL-10 on monokine activity. The therapeutic benefit of combinations of GC and IL-4, IL-10 or TGF-beta in disease may depend on the roles of the individual monokines and antagonists in pathogenesis.
Adam-Vizi, Vera
2005-01-01
Overwhelming evidence has accumulated indicating that oxidative stress is a crucial factor in the pathogenesis of neurodegenerative diseases. The major site of production of superoxide, the primary reactive oxygen species (ROS), is considered to be the respiratory chain in the mitochondria, but the exact mechanism and the precise location of the physiologically relevant ROS generation within the respiratory chain have not been disclosed as yet. Studies performed with isolated mitochondria have located ROS generation on complex I and complex III, respectively, depending on the substrates or inhibitors used to fuel or inhibit respiration. A more "physiological" approach is to address ROS generation of in situ mitochondria, which are present in their normal cytosolic environment. Hydrogen peroxide formation in mitochondria in situ in isolated nerve terminals is enhanced when complex I, complex III, or complex IV is inhibited. However, to induce a significant increase in ROS production, complex III and complex IV have to be inhibited by >70%, which raises doubts as to the physiological importance of ROS generation by these complexes. In contrast, complex I inhibition to a small degree is sufficient to enhance ROS generation, indicating that inhibition of complex I by approximately 25-30% observed in postmortem samples of substantia nigra from patients suffering from Parkinson's disease could be important in inducing oxidative stress. Recently, it has been described that a key Krebs cycle enzyme, alpha-ketoglutarate dehydrogenase (alpha-KGDH), is also able to produce ROS. ROS formation by alpha-KGDH is regulated by the NADH/NAD+ ratio, suggesting that this enzyme could substantially contribute to generation of oxidative stress due to inhibition of complex I. As alpha-KGDH is not only a generator but also a target of ROS, it is proposed that alpha-KGDH is a key factor in a vicious cycle by which oxidative stress is induced and promoted in nerve terminals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, G.W.; Dye, D.H.; Karim, D.P.
1987-02-01
The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less
HIV-1, HTLV-I and the interleukin-2 receptor: insights into transcriptional control.
Böhnlein, E; Lowenthal, J W; Wano, Y; Franza, B R; Ballard, D W; Greene, W C
1989-01-01
In this study, we present direct evidence for the binding of the inducible cellular protein, HIVEN86A, to a 12-bp element present in the IL-2R alpha promoter. This element shares significant sequence similarity with the NF-kappa B binding sites present in the HIV-1 and kappa immunoglobulin enhancers. Transient transfection studies indicate that this kappa B element is both necessary and sufficient to confer tax or mitogen inducibility to a heterologous promoter. As summarized schematically in Fig. 5, the findings suggest that the HIVEN86A protein may play a central role in the activation of cellular genes required for T-cell growth, specifically the IL-2R alpha gene. In addition, the induced HIVEN86A protein also binds to a similar sequence present in the HIV-1 LTR leading to enhanced viral gene expression and ultimately T-cell death. Thus, mitogen activation of the HIV-1 LTR appears to involve the same inducible transcription factor(s) that normally regulates IL-2R alpha gene expression and T-cell growth. These findings further underscore the importance of the state of T-cell activation in the regulation of HIV-1 replication. Our results also demonstrate that HIVEN86A is induced by the tax protein of HTLV-I. Thus, in HTLV-I infected cells, normally the tight control of the transient expression of the IL-2R alpha gene is lost. The constitutive high-level display of IL-2 receptors may play a role in leukemic transformation mediated by HTLV-I (ATL). Apparently by the same mechanism, the tax protein also activates the HIV-1 LTR through the induction of HIVEN86A.(ABSTRACT TRUNCATED AT 250 WORDS)
Xiong, Guang-Su; Wu, Shu-Ming; Wang, Zhen-Hua; Mo, Jian-Zhong; Xiao, Shu-Dong
2007-03-01
Tumor necrosis factor-alpha (TNF-alpha) plays a central role in the pathogenesis of acute pancreatitis and related systemic complications. The authors hypothesized that it may also play an important role in the development of pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP). The aim of the study was to evaluate the effectiveness of thalidomide, an immunomodulator that exerts an inhibitory action on TNF-alpha by enhancing mRNA degradation, in reducing post-ERCP pancreatitis in a rat model. A total of 200 mg/kg thalidomide was given intragastric once a day (total 8 days) before the experimental models of post-ERCP pancreatitis were established. After 24 h, histology and edema of pancreas, serum amylase, and TNF-alpha mRNA in the pancreatic tissue were evaluated. Intraductal contrast infusion caused increases in serum amylase, edema, histological grade, and TNF-alpha mRNA of pancreas. The prophylactic use of thalidomide significantly reduced serum amylase, pancreatic edema and the histologic grade of pancreatitis accompanied by a decrease in mRNA expression of TNF-alpha in the pancreatic tissue. Prophylactic intragastric administration of thalidomide provides a protective effect in post-ERCP pancreatitis. The mechanism of the protective effects of thalidomide seems to be the reduction of expression of TNF-alpha mRNA in pancreatic tissue.
Rosón, María I; Della Penna, Silvana L; Cao, Gabriel; Gorzalczany, Susana; Pandolfo, Marcela; Toblli, Jorge E; Fernández, Belisario E
2010-07-01
The aim of this work was to study the role of local intrarenal angiotensin II (Ang II) and the oxidative stress in the up-regulation of pro-inflammatory cytokines expression observed in rats submitted to an acute sodium overload. Sprague-Dawley rats were infused for 2 h with isotonic saline solution (Control group) and with hypertonic saline solution alone (Na group), plus the AT1 receptor antagonist losartan (10 mg kg(-1) in bolus) (Na-Los group), or plus the superoxide dismutase mimetic tempol (0.5 mg min(-1) kg(-1)) (Na-Temp group). Mean arterial pressure, glomerular filtration rate, and fractional sodium excretion (FE(Na)) were measured. Ang II, NF-kappaB, hypoxia inducible factor-1 alpha (HIF-1 alpha), transforming growth factor beta1 (TGF-beta1), smooth muscle actin (alpha-SMA), endothelial nitric oxide synthase (eNOS), and RANTES renal expression was evaluated by immunohistochemistry. Ang II, NF-kappaB, and TGF-beta1 and RANTES early inflammatory markers were overexpressed in Na group, accompanied by enhanced HIF-1 alpha immunostaining, lower eNOS expression, and unmodified alpha-SMA. Losartan and tempol increased FE(Na) in sodium overload group. Although losartan reduced Ang II and NF-kappaB staining and increased eNOS expression, it did not restore HIF-1 alpha expression and did not prevent inflammation. Conversely, tempol increased eNOS and natriuresis, restored HIF-1 alpha expression, and prevented inflammation. Early inflammatory markers observed in rats with acute sodium overload is associated with the imbalance between HIF-1 alpha and eNOS expression. While both losartan and tempol increased natriuresis and eNOS expression, only tempol was effective in restoring HIF-1 alpha expression and down-regulating TGF-beta1 and RANTES expression. The protective role of tempol, but not of losartan, in the inflammatory response may be associated with its greater antioxidant effects. (c) 2010 Wiley-Liss, Inc.
Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde; Kearney, Michael
2007-11-01
An early rationale for using thalidomide to treat erythema nodosum leprosum had been based on some reports that it suppresses tumor necrosis factor-alpha (TNF-alpha). However, in vivo and in vitro studies have yielded variable results, having shown that thalidomide can either enhance or suppress TNF-alpha. Since the course of circulating cytokines like TNF-alpha after infusion of endotoxin into volunteers is reproducible and characteristic, we investigated the effect of thalidomide on endotoxin-induced synthesis of TNF-alpha, interleukin (IL)-6, and IL-8. The cytokine response from 18 placebo-treated subjects who had undergone the endotoxin challenge were pooled with a placebo-treated subject from the current study and were compared with 4 subjects who received thalidomide (100 mg) every 6 h for 5 doses before endotoxin challenge. Thirty minutes after the last dose of thalidomide or placebo, volunteers were infused with 4-ng/kg endotoxin. Plasma was collected and assayed for cytokines by enzyme-linked immunosorbent assay. Endotoxin evoked the synthesis of the cytokines in all volunteers. The peak response for TNF-alpha was 1.5 h, 2.5 h for IL-8, and 3.0 h for IL-6. Thalidomide did not significantly delay the release of cytokines into the circulating blood. At the peak response, thalidomide reduced the concentration of the cytokines in the plasma. Using the area under the dose response curve (AUC(0 to 24) h), thalidomide reduced the AUC for IL-6 by 56%, for IL-8 by 30%, and TNF-alpha by 32%. In this model, thalidomide did not suppress TNF-alpha or IL-8, but it did suppress IL-6 at 4-h postinfusion with lipopolysaccharide (P=0.004), at 6 h (P=0.014), at 12 h (P=0.001), and at 16 h (P=0.012).
Sabel, Michael S; Skitzki, Joseph; Stoolman, Lloyd; Egilmez, Nejat K; Mathiowitz, Edith; Bailey, Nicola; Chang, Wen-Jian; Chang, Alfred E
2004-02-01
Local, sustained delivery of cytokines at a tumor can enhance induction of antitumor immunity and may be a feasible neoadjuvant immunotherapy for breast cancer. We evaluated the ability of intratumoral poly-lactic-acid-encapsulated microspheres (PLAM) containing interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) in a murine model of breast cancer to generate a specific antitumor response. BALB/c mice with established MT-901 tumors underwent resection or treatment with a single intratumoral injection of PLAM containing IL-12, TNF-alpha, or GM-CSF, alone or in combination. Two weeks later, lymph nodes and spleens were harvested, activated with anti-CD3 monoclonal antibodies (mAb) and rhIL-2, and assessed for antitumor reactivity by an interferon gamma (IFNgamma) release assay. Tumor-infiltrating lymphocyte (TIL) analysis was performed on days 2 and 5 after treatment by mechanically processing the tumors to create a single cell suspension, followed by three-color fluorescence-activated cell sorter (FACS) analysis. Intratumoral injection of cytokine-loaded PLAM significantly suppressed tumor growth, with the combination of IL-12 and TNF-alpha leading to increased infiltration by polymorphonuclear cells and CD8+ T-cells in comparison with controls. The induction of tumor-specific reactive T-cells in the nodes and spleens, as measured by IFN-gamma production, was highest with IL-12 and TNF-alpha. This treatment resulted in resistance to tumor rechallenge. A single intratumoral injection of IL-12 and TNF-alpha-loaded PLAM into a breast tumor leads to infiltration by polymorphonuclear cells and CD8+ T-cells with subsequent tumor regression. In addition, this local therapy induces specific antitumor T-cells in the lymph nodes and spleens, resulting in memory immune response.
Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I
2008-02-01
We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.
Effect of passive concentration as instructional set for training enhancement of EEG alpha.
Knox, S S
1980-12-01
The technique of passive concentration, employed by autogenic training and Transcendental Meditation for achieving relaxation, was tested here as a technique for enhancing EEG alpha. Of 30 subjects displaying between 15% and 74% alpha in their resting EEGs recruited, 10 had to be eliminated. The remaining 20 constituted two groups. One was instructed only to attempt to maintain a tone indicating alpha but given no information about technique (control group). The other was given additional instructions in passive concentration (experimental group). Both were given four 5-min. trials a day for 4 consecutive days. Heart rate and skin conductance were measured to monitor autonomic arousal. The group receiving instructions in passive concentration had significantly less alpha than the control group, which did not increase amount of alpha above baseline. The reduction of alpha in the experimental group was interpreted as resulting from beginning long training periods (20 min. per day), a practice advocated by Transcendental Meditation but discouraged by autogenic training. It was concluded that the relevance of passive concentration for alpha enhancement is doubtful.
Feliciani, C; Toto, P; Amerio, P; Pour, S M; Coscione, G; Shivji, G; Wang, B; Sauder, D N
2000-01-01
Keratinocyte-derived cytokines have been implicated in the pathogenesis of a number of skin diseases. In this study we examined the possible role of keratinocyte-derived cytokines in the development of acantholysis in pemphigus vulgaris. Nineteen patients with pemphigus vulgaris, demonstrating the characteristic clinical, pathologic, and immunopathologic findings were studied. In situ immunolabeling demonstrated the presence of two cytokines interleukin-1alpha and tumor necrosis factor-alpha, in lesional and perilesional areas. Results were confirmed by reverse transcriptase-polymerase chain reaction, demonstrating overexpression of both cytokines in vivo. To study the role of these cytokines in the pathogenesis of pemphigus vulgaris both in vitro and in vivo studies were performed. The results of the in vitro study demonstrated that pemphigus vulgaris IgG induced interleukin-1alpha and tumor necrosis factor-alpha mRNA in the skin. The potential pathogenic role of these mediators was demonstrated by a blocking study using antibodies against human interleukin-1alpha and tumor necrosis factor-alpha in keratinocytes cultures. A combination of anti-interleukin-1alpha and anti-tumor necrosis factor-alpha antibodies inhibited in vitro pemphigus vulgaris IgG induced acantholysis. To confirm the role of interleukin-1 and tumor necrosis factor-alpha in pemphigus, we utilized passive transfer studies using interleukin-1 deficient mice (ICE-/-, interleukin-1beta-/-) and tumor necrosis factor-alpha receptor deficient mice (TNFR1R2-/-). Both groups demonstrated a decreased susceptibility to the passive transfer of pemphigus. Our data support the role of cytokines interleukin-1 and tumor necrosis factor-alpha in the pathogenesis of pemphigus vulgaris.
Control of erythropoietin gene expression and its use in medicine.
Jelkmann, Wolfgang
2007-01-01
Erythropoietin (EPO) gene expression is under the control of inhibitory (GATA-2, NF-kappaB) and stimulatory (hypoxia-inducible transcription factor [HIF]-2, hepatocyte nuclear factor [HNF]-4alpha [alpha]) transcription factors. EPO deficiency is the main cause of the anemia in chronic kidney disease (CKD) and a contributing factor in the anemias of inflammation and cancer. Small, orally active compounds capable of stimulating endogenous EPO production are in preclinical or clinical trials for treatment of anemia. These agents include stabilizers of the HIFs that bind to the EPO enhancer and GATA inhibitors which prevent GATA from suppressing the EPO promoter. While HIF stabilizing drugs may prove useful as inexpensive second-line choices, at present, their side effects--particularly tumorigenicity--preclude their use as first-choice therapy. As an alternative, EPO gene therapy has been explored in animal studies and in trials on CKD patients. Here, a major problem is immunogenicity of ex vivo transfected implanted cells and of the recombinant protein produced after ex vivo or in vivo EPO complementary DNA (cDNA) transfer. Recombinant human EPO (rhEPO) engineered in Chinese hamster ovary (CHO) cell cultures (epoetin alpha and epoetin beta [beta]) and its hyperglycosylated analogue darbepoetin alpha are established and safe drugs to avoid allogeneic red blood cell transfusion. Gene-activated EPO (epoetin delta [delta]) from human fibrosarcoma cells (HT-1080) has recently been launched for use in CKD. It is important to know the basics of the technologies, production processes, and structural properties of the novel anti-anemic strategies and drugs.
Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses.
Nussdorfer, G G; Mazzocchi, G
1998-01-01
Several cytokines, which are the major mediators of the inflammatory responses, are well-known to stimulate the hypothalamopituitary corticotropin-releasing hormone (CRH)/adrenocorticotropic hormone (ACTH) system, thereby evoking secretory responses by the adrenal cortex. Many of these cytokines, including interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma) are synthesized in the adrenal gland by both parenchymal cells and resident macrophages, and the release of some of them (e.g., IL-6 and TNF-alpha) is regulated by the main agonists of steroid hormone secretion (e.g., ACTH and angiotensin-II) and bacterial endotoxins. Adrenocortical and adrenomedullary cells are provided with specific receptors for IL-1, IL-2, and IL-6. IL-1 and TNF-alpha directly inhibit aldosterone secretion of zona glomerulosa cells, whereas IL-6 enhances it. IL-2, IL-3, IL-6, and INF-alpha are able to directly stimulate glucocorticoid production by zona fasciculata and zona reticularis cells, whereas IL-1 exerts an analogous effect through an indirect mechanism involving the stimulation of catecholamine release by chromaffin cells and/or the activation of the intramedullary CRH/ACTH system; again, TNF-alpha depresses glucocorticoid synthesis. IL-6 raises androgen secretion by inner adrenocortical layers. IL-1 enhances the proliferation of adrenocortical cells, and findings suggest that cytokines may control the apoptotic deletion of senescent zona reticularis cells. The relevance of the intraadrenal cytokine system in the fine-tuning of the secretion and growth of the adrenal cortex under normal conditions remains to be explored. However, indirect proof is available that local immune-endocrine interactions may play an important role in modulating adrenal responses to inflammatory and immune challenges and stresses.
Teti, G; Mancuso, G; Tomasello, F
1993-01-01
Cytokines are suspected of playing an important role in the pathophysiology of septic shock. This study was undertaken to determine whether tumor necrosis factor alpha (TNF-alpha) induces the production of other cytokines and mediates mortality in a neonatal rat model of sepsis caused by group B streptococci (GBS). We have measured TNF-alpha, interleukin-1 alpha (IL-1 alpha), interleukin-6 (IL-6), and gamma interferon (IFN-gamma) levels in neonatal rats infected with different strains (H738, 259, and 90) and doses (1 50% lethal dose [LD50] and 5 90% lethal doses [LD90]) of type III GBS. TNF-alpha and IL-6 were detected by the L929 cytotoxicity and the B9 proliferation assays, respectively, in serial plasma samples. IL-1 alpha and IFN-gamma were measured in spleen homogenates by enzyme-linked immunosorbent assay kits by using antibodies raised against the corresponding mouse cytokines. Plasma TNF-alpha levels significantly rose above baseline values within 12 h after intraperitoneal challenge with 5 LD90 of GBS strain H738, corresponding to 3 x 10(3) CFU. A mean peak TNF-alpha concentration of 232 +/- 124 U/ml was reached at 20 h. Peak IL-1 alpha and IL-6 levels of 766 +/- 404 U/g and 1,033 +/- 520 U/ml, respectively, were reached at 24 h after bacterial challenge. Maximal spleen concentrations of IFN-gamma (449 +/- 283 U/g) were measured at 36 h. Concentrations of TNF-alpha, but not other cytokines, remained significantly elevated at 72 h, a time when mortality approached 100%. Significant correlations were found between concentrations of each of the cytokines tested and the logs of CFU concentrations in the blood. In order to ascertain whether TNF-alpha influenced the production of other cytokines, rat pups received two injections of anti-murine TNF-alpha or normal rabbit serum at 2 h before and at 26 h after challenge with live GBS. Plasma TNF-alpha bioactivity was undetectable in anti-TNF-alpha-treated animals, while IL-6 and IFN-gamma, but not IL-1 alpha, levels were significantly reduced, compared with normal serum controls. Rat pups pretreated with anti-TNF-alpha serum and infected with 1 and 5 LD90 of strains H738 and 259 showed enhanced early (48 to 72 h) survival. However, by 96 h this protection was no longer apparent. PMID:8418044
Peltzer, J; Carpentier, G; Martelly, I; Courty, J; Keller, A
2010-09-01
Contraction and energy metabolism are functions of skeletal muscles co-regulated by still largely unknown signals. To help elucidating these interconnecting pathways, we are developing new cellular models that will allow to control the switch from a neonatal to an adult slow-oxidative or fast-glycolytic phenotype of myofibers, during in vitro differentiation. Thus, our purpose was to direct the differentiation of the newly characterized WTt clone, from a mixed towards either fast or slow phenotype, by modifying amounts of two transcription factors respectively involved in control of glycolytic and oxidative energy metabolism, namely HIF-1alpha and PPARdelta. Our data support the idea that HIF-1alpha protein stabilization would favor expression of fast phenotypic markers, accompanied or not by a decreased expression of slow markers, depending on treatment conditions. Conversely, PPARdelta over-expression appears to enhance the slow-oxidative phenotype of WTt myotubes. Furthermore, we have observed that expression of PGC-1alpha, a coregulator of PPAR, is also modified in this cell line upon conditions that stabilize HIF-1alpha protein. This observation points to the existence of a regulatory link between pathways controlled by the two transcription factors HIF-1alpha and PPARdelta. Therefore, these cells should be useful to analyze the balance between oxidative and glycolytic energy production as a function of phenotypic transitions occurring during myogenic maturation. The newly characterized murine WTt clone will be a good tool to investigate molecular mechanisms implicating HIF-1alpha and PPARdelta in the coordinated metabolic and contractile regulations involved in myogenesis. (c) 2010 Wiley-Liss, Inc.
Liver X receptor alpha regulates fatty acid synthase expression in chicken.
Demeure, O; Duby, C; Desert, C; Assaf, S; Hazard, D; Guillou, H; Lagarrigue, S
2009-12-01
Liver X receptor alpha (LXRalpha), also referred to as nuclear receptor subfamily 1, group H, member 3 is a member of the nuclear hormone receptor superfamily, and has recently been shown to act as a master transcription factor governing hepatic lipogenesis in mammals. Liver X receptor alpha directly regulates both the expression of other lipogenic transcription factors and the expression of lipogenic enzymes, thereby enhancing hepatic fatty acid synthesis (FASN). In birds, like in humans, fatty acid synthesis primarily occurs in the liver. Whether LXRalpha is involved in hepatic regulation of lipogenic genes remained to be investigated in this species. Here we show that fatty acid synthase and the expression of other lipogenic genes (sterol regulatory element binding protein 1 and steroyl coenzyme A desaturase 1) are induced in chicken hepatoma cells in response to a pharmacological liver X receptor agonist, T0901317. A detailed analysis of the chicken FASN promoter revealed a functional liver X response element. These data define the chicken FASN gene as a direct target of LXRalpha and further expand the role of LXRalpha as a regulator of lipid metabolism in this species.
Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.
Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira
2007-01-01
It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.
van der Poll, T; Jansen, J; Endert, E; Sauerwein, H P; van Deventer, S J
1994-01-01
Sepsis and lipopolysaccharide (LPS) trigger the systemic release of both cytokines and catecholamines. Cytokines are known to be capable of eliciting a stress hormone response in vivo. The present study sought insight into the effect of noradrenaline on LPS-induced release of tumor necrosis factor alpha (TNF) and interleukin 6 (IL-6) in human whole blood. Whole blood was incubated with LPS for 4 h at 37 degrees C in the presence and absence of noradrenaline and/or specific alpha and beta antagonists and agonists. Noradrenaline caused a dose-dependent inhibition of LPS-induced TNF and IL-6 production. This effect could be completely prevented by addition of the specific beta 1, antagonist metoprolol, while it was not affected by the alpha antagonist phentolamine. Specific beta-adrenergic stimulation by isoprenaline mimicked the inhibiting effect of noradrenaline on LPS-evoked cytokine production, whereas alpha-adrenergic stimulation by phenylephrine had no effect. Fluorescence-activated cell sorter analysis demonstrated that beta-adrenergic stimulation had no effect on LPS binding to and internalization into mononuclear cells or on the expression of CD14, the major receptor for LPS on mononuclear cells. In acute sepsis, enhanced release of noradrenaline may be part of a negative feedback mechanism meant to inhibit ongoing TNF and IL-6 production. PMID:8168970
Sukhotnik, Igor; Mogilner, Jorge G; Shaoul, Ron; Karry, Rahel; Lieber, Michael; Suss-Toby, Edith; Ure, Benno M; Coran, Arnold G
2008-01-01
Recent evidence suggests that transforming growth factor alpha (TGF-alpha) enhances enterocyte proliferation and stimulates intestinal adaptation after massive bowel resection. In the present study, we evaluated the effects of TGF-alpha on enterocyte turnover and correlated it with epidermal-growth factor (EGF) receptor expression along the villus-crypt axis in a rat model of short bowel syndrome (SBS). Male rats were divided into three groups, sham rats underwent bowel transection (group A); SBS rats underwent a 75% bowel resection (group B); and SBS/TGF-alpha rats underwent bowel resection and were treated with TGF-alpha (75 microg/kg) (group C) from the seventh postoperative day. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined on day 15. Villus tips, lateral villi and crypts were separated using laser capture microdissection. EGF receptor expression for each compartment was assessed by quantitative real-time PCR (Taqman). Statistical analysis was performed using one-way ANOVA test, with P < 0.05 considered statistically significant. Treatment with TGF-alpha resulted in a significant increase in all parameters of intestinal adaptation. EGF receptor expression in crypts significantly increased in SBS rats (vs sham rats) (0.035 +/- 0.013 vs 0.010 +/- 0.002 Log ng Total RNA/18 s) and was accompanied by a significant increase in enterocyte proliferation (169 +/- 8 vs 138 +/- 5 BrdU positive cells/per 10 crypts, P < 0.05) and decreased apoptosis following TGF-alpha administration (group C). A significant decrease in EGF receptor expression at the tip of the villus (0.005 +/- 0.002 vs 0.029 +/- 0.014 Log ng Total RNA/18 s) and in the lateral villus (0.003 +/- 0.001 vs 0.028 +/- 0.006 Log ng Total RNA/18 s) in SBS (group B) rats (vs sham, group A) was accompanied by increased cell apoptosis in these compartments following treatment with TGF-alpha (group C). In a rat model of SBS, TGF-alpha increased enterocyte proliferation and stimulated intestinal adaptation. The effect of TGF-alpha on enterocyte turnover is correlated with EGF receptor expression along the villus-crypt axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funaki, Y.; Horiuchi, H.; International Institute for Advanced Studies, Kizugawa 619-0225
2008-06-15
At low densities, with decreasing temperatures, in symmetric nuclear matter {alpha} particles are formed, which eventually give raise to a quantum condensate with four-nucleon {alpha}-like correlations (quartetting). Starting with a model of {alpha} matter, where undistorted {alpha} particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the {alpha} particle due to medium effects will further reduce the condensate. In finite systems,more » an enhancement of the S-state wave function of the center-of-mass orbital of {alpha}-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n{alpha} threshold. Comparison with orthogonality condition model calculations in {sup 12}C and {sup 16}O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the {alpha} particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in {alpha} matter. The ground states of {sup 12}C and {sup 16}O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.« less
Reliability and validity of a Tutorial Group Effectiveness Instrument.
Singaram, Veena S; Van Der Vleuten, Cees P M; Van Berkel, Henk; Dolmans, Diana H J M
2010-01-01
Tutorial group effectiveness is essential for the success of learning in problem-based learning (PBL). Less effective and dysfunctional groups compromise the quality of students learning in PBL. This article aims to report on the reliability and validity of an instrument aimed at measuring tutorial group effectiveness in PBL. The items within the instrument are clustered around motivational and cognitive factors based on Slavin's theoretical framework. A confirmatory factor analysis (CFA) was carried out to estimate the validity of the instrument. Furthermore, generalizability studies were conducted and alpha coefficients were computed to determine the reliability and homogeneity of each factor. The CFA indicated that a three-factor model comprising 19 items showed a good fit with the data. Alpha coefficients per factor were high. The findings of the generalizability studies indicated that at least 9-10 student responses are needed in order to obtain reliable data at the tutorial group level. The instrument validated in this study has the potential to provide faculty and students with diagnostic information and feedback about student behaviors that enhance and hinder tutorial group effectiveness.
Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.
Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR
Two MCAT elements of the SM alpha-actin promoter function differentially in SM vs. non-SM cells.
Swartz, E A; Johnson, A D; Owens, G K
1998-08-01
Transcriptional activity of the smooth muscle (SM) alpha-actin gene is differentially regulated in SM vs. non-SM cells. Contained within the rat SM alpha-actin promoter are two MCAT motifs, binding sites for transcription enhancer factor 1 (TEF-1) transcriptional factors implicated in the regulation of many muscle-specific genes. Transfections of SM alpha-actin promoter-CAT constructs containing wild-type or mutagenized MCAT elements were performed to evaluate their functional significance. Mutation of the MCAT elements resulted in increased transcriptional activity in SM cells, whereas these mutations either had no effect or decreased activity in L6 myotubes or endothelial cells. High-resolution gel shift assays resolved several complexes of different mobilities that were formed between MCAT oligonucleotides and nuclear extracts from the different cell types, although no single band was unique to SM. Western blot analysis of nuclear extracts with polyclonal antibodies to conserved domains of the TEF-1 gene family revealed multiple reactive bands, some that were similar and others that differed between SM and non-SM. Supershift assays with a polyclonal antibody to the TEF-related protein family demonstrated that TEF-1 or TEF-1-related proteins were contained in the shifted complexes. Results suggest that the MCAT elements may contribute to cell type-specific regulation of the SM alpha-actin gene. However, it remains to be determined whether the differential transcriptional activity of MCAT elements in SM vs. non-SM is due to differences in expression of TEF-1 or TEF-1-related proteins or to unique (cell type specific) combinatorial interactions of the MCAT elements with other cis-elements and trans-factors.
Analysis of cytotoxic activity of the CD4+ T lymphocytes generated by local immunotherapy.
Katsumoto, Y.; Monden, T.; Takeda, T.; Haba, A.; Ito, Y.; Wakasugi, E.; Wakasugi, T.; Sekimoto, M.; Kobayashi, T.; Shiozaki, H.; Shimano, T.; Monden, M.
1996-01-01
We previously reported that the anti-tumour effect of OK-432 is considerably enhanced by its intratumoral injection together with fibrinogen. In the present study, we generated killer T cells by culturing tumour-infiltrating lymphocytes from thyroid cancer patients who had received this local immunotherapy. Phenotypic analysis revealed that the T cells were positive for CD3+, CD4+, Leu8-, CD45RO+ and T-cell receptor (TCR)alpha beta+, as well as showing strong surface expression of HLA-DR, CD25, LFA-1 and ICAM-1. The generated CD4+ T cells secreted interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha, TNF-beta, and interleukin (IL)-6 (but not IL-4), and exhibited a high level of cytolytic activity against several tumour cell lines. The cytolytic activity of these T cells for Daudi cells was inhibited by preincubation with an anti-intercellular adhesion molecule (ICAM)-1 antibody, but not by preincubation with anti-TCR alpha beta, anti-CD2, or anti-LFA-1 antibodies. Pretreatment with anti-ICAM-1 antibody inhibited T-cell cytolytic activity, but not conjugation with target cells. In addition, incubation with immobilised anti-ICAM-1 enhanced the secretion of IFN-gamma by T cells. We conclude that ICAM-1 expressed on the effector cytotoxic CD4+ T lymphocytes delivers regulatory signals that enhance IFN-gamma secretion. PMID:8554971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah
Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less
Bahia, Malkeet S; Silakari, Om
2010-05-01
Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.
INTERACTION OF BENZO(A)PYRENE DIOL EPOXIDE WITH SVAO MINICHROMOSOMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamper, Howard B.; Yokota, Hisao A.; Bartholomew, James C.
SV40 minichromosomes were reacted with (+)7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide). Low levels of modification (< 5 DNA adducts/minichromosome) did not detectably alter the structure of the minichromosomes but high levels (> 200 DNA adducts/minichromosome) led to extensive fragmentation. Relative to naked SV40 DNA BaP diol epoxide induced alkylation and strand scission of minichromosomal DNA was reduced or enhanced by factors of 1.5 and 2.0, respectively. The reduction in covalent binding was attributed to the presence of histones, which competed with DNA for the hydrocarbon and reduced the probability of BaP diol epoxide intercalation by tightening the helix. The enhancement ofmore » strand scission was probably due to the catalytic effect of histones on the rate of S-elimination at apurinic sites, although an altered adduct profile or the presence of a repair endonuclease were not excluded. Staphylococcal nuclease digestion indicated that BaP dial epoxide randomly alkylated the minichromosomal DNA. This is in contrast to studies with cellular chromatin where internucleosomal DNA was preferentially modified. Differences in the minichromosomal protein complement were responsible for this altered susceptibility.« less
Function of the two Xenopus smad4s in early frog development.
Chang, Chenbei; Brivanlou, Ali H; Harland, Richard M
2006-10-13
Signals from the transforming growth factor beta family members are transmitted in the cell through specific receptor-activated Smads and a common partner Smad4. Two Smad4 genes (alpha and beta/10, or smad4 and smad4.2) have been isolated from Xenopus, and conflicting data are reported for Smad4beta/10 actions in mesodermal and neural induction. To further understand the functions of the Smad4s in early frog development, we analyzed their activities in detail. We report that Smad10 is a mutant form of Smad4beta that harbors a missense mutation of a conserved arginine to histidine in the MH1 domain. The mutation results in enhanced association of Smad10 with the nuclear transcription corepressor Ski and leads to its neural inducing activity through inhibition of bone morphogenetic protein (BMP) signaling. In contrast to Smad10, both Smad4alpha and Smad4beta enhanced BMP signals in ectodermal explants. Using antisense morpholino oligonucleotides (MOs) to knockdown endogenous Smad4 protein levels, we discovered that Smad4beta was required for both activin- and BMP-mediated mesodermal induction in animal caps, whereas Smad4alpha affected only the BMP signals. Neither Smad4 was involved directly in neural induction. Expression of Smad4beta-MO in early frog embryos resulted in reduction of mesodermal markers and defects in axial structures, which were rescued by either Smad4alpha or Smad4beta. Smad4alpha-MO induced only minor deficiency at late stages. As Smad4beta, but not Smad4alpha, is expressed at high levels maternally and during early gastrulation, our data suggest that although Smad4alpha and Smad4beta may have similar activities, they are differentially utilized during frog embryogenesis, with only Smad4beta being essential for mesoderm induction.
Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?
Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo
2018-03-27
Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.
Yue, Tian-li; Bao, Weike; Jucker, Beat M; Gu, Juan-li; Romanic, Anne M; Brown, Peter J; Cui, Jianqi; Thudium, Douglas T; Boyce, Rogely; Burns-Kurtis, Cynthia L; Mirabile, Rosanna C; Aravindhan, Karpagam; Ohlstein, Eliot H
2003-11-11
Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is expressed in the heart and regulates genes involved in myocardial fatty acid oxidation (FAO). The role of PPAR-alpha in acute ischemia/reperfusion myocardial injury remains unclear. The coronary arteries of male mice were ligated for 30 minutes. After reperfusion for 24 hours, ischemic and infarct sizes were determined. A highly selective and potent PPAR-alpha agonist, GW7647, was administered by mouth for 2 days, and the third dose was given 1 hour before ischemia. GW7647 at 1 and 3 mg x kg(-1) x d(-1) reduced infarct size by 28% and 35%, respectively (P<0.01), and myocardial contractile dysfunction was also improved. Cardioprotection by GW7647 was completely abolished in PPAR-alpha-null mice. Ischemia/reperfusion downregulated mRNA expression of cardiac PPAR-alpha and FAO enzyme genes, decreased myocardial FAO enzyme activity and in vivo cardiac fat oxidation, and increased serum levels of free fatty acids. All of these changes were reversed by GW7647. Moreover, GW7647 attenuated ischemia/reperfusion-induced release of multiple proinflammatory cytokines and inhibited neutrophil accumulation and myocardial expression of matrix metalloproteinases-9 and -2. Furthermore, GW7647 inhibited nuclear factor-kappaB activation in the heart, accompanied by enhanced levels of inhibitor-kappaBalpha. Activation of PPAR-alpha protected the heart from reperfusion injury. This cardioprotection might be mediated through metabolic and antiinflammatory mechanisms. This novel effect of the PPAR-alpha agonist could provide an added benefit to patients treated with PPAR-alpha activators for dyslipidemia.
Schulze-Tanzil, G; de, Souza P; Behnke, B; Klingelhoefer, S; Scheid, A; Shakibaei, M
2002-04-01
Inflammatory joint diseases are characterized by enhanced extracellular matrix degradation which is predominantly mediated by cytokine-stimulated upregulation of matrix metalloproteinase (MMP) expression. Besides tumour necrosis factor-alpha (TNF-alpha), Interleukin-1beta (IL-1beta) produced by articular chondrocytes and synovial macrophages, is the most important cytokine stimulating MMP expression under inflammatory conditions. Blockade of these two cytokines and their downstream effectors are suitable molecular targets of antirheumatic therapy. Hox alpha is a novel stinging nettle (Urtica dioica/Urtica urens) leaf extract used for treatment of rheumatic diseases. The aim of the present study was to clarify the effects of Hox alpha and the monosubstance 13-HOTrE (13-Hydroxyoctadecatrienic acid) on the expression of matrix metalloproteinase-1, -3 and -9 proteins (MMP-1, -3, -9). Human chondrocytes were cultured on collagen type-II-coated petri dishes, exposed to IL-1beta and treated with or without Hox alpha and 13-HOTrE. A close analysis by immunofluorescence microscopy and western blot analysis showed that Hox alpha and 13-HOTrE significantly suppressed IL-1beta-induced expression of matrix metalloproteinase-1, -3 and -9 proteins on the chondrocytes in vitro. The potential of Hox alpha and 13-HOTrE to suppress the expression of matrix metalloproteinases may explain the clinical efficacy of stinging nettle leaf extracts in treatment of rheumatoid arthritis. These results suggest that the monosubstance 13-HOTrE is one of the more active antiinflammatory substances in Hox alpha and that Hox alpha may be a promising remedy for therapy of inflammatory joint diseases.
Kelm, R J; Cogan, J G; Elder, P K; Strauch, A R; Getz, M J
1999-05-14
Transcriptional activity of the mouse vascular smooth muscle alpha-actin gene in fibroblasts is regulated, in part, by a 30-base pair asymmetric polypurine-polypyrimidine tract containing an essential MCAT enhancer motif. The double-stranded form of this sequence serves as a binding site for a transcription enhancer factor 1-related protein while the separated single strands interact with two distinct DNA binding activities termed VACssBF1 and 2 (Cogan, J. G., Sun, S., Stoflet, E. S., Schmidt, L. J., Getz, M. J., and Strauch, A. R. (1995) J. Biol. Chem. 270, 11310-11321; Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2936). VACssBF2 has been recently cloned and shown to consist of two closely related proteins, Puralpha and Purbeta (Kelm, R. J., Elder, P. K., Strauch, A. R., and Getz, M. J. (1997) J. Biol. Chem. 272, 26727-26733). In this study, we demonstrate that Puralpha and Purbeta interact with each other via highly specific protein-protein interactions and bind to the purine-rich strand of the MCAT enhancer in the form of both homo- and heteromeric complexes. Moreover, both Pur proteins interact with MSY1, a VACssBF1-like protein cloned by virtue of its affinity for the pyrimidine-rich strand of the enhancer. Interactions between Puralpha, Purbeta, and MSY1 do not require the participation of DNA. Combinatorial interactions between these three single-stranded DNA-binding proteins may be important in regulating activity of the smooth muscle alpha-actin MCAT enhancer in fibroblasts.
Laukkanen, Jari A; Mäkikallio, Timo H; Kauhanen, Jussi; Kurl, Sudhir
2009-10-01
Adrenoceptors mediate contraction of vascular smooth muscle and induce coronary vasoconstriction in humans. A deletion variant of the human alpha(2B)-adrenoreseptor of glutamic acid residues has been associated with impaired receptor desensitization. This receptor variant could, therefore, be involved in cardiovascular diseases associated with enhanced vasoconstriction. Our aim was to study whether an insertion/deletion (I/D) polymorphism in the alpha(2B)-adrenoceptor gene is associated with the risk for sudden cardiac death. This was a prospective population-based study investigating risk factors for cardiovascular diseases in middle-aged men from 42 to 60 years from eastern Finland. The study is based on 1,606 men with complete data on DNA observed for an average time of 17 years. In this study population, 338 men (21%) had the D/D genotype, 467 (29%) had the I/I genotype, and 801 (50%) had a heterozygous genotype. There were 76 sudden cardiac deaths during follow-up (0.81 deaths/1,000 persons per year). In a Cox model adjusting for other coronary risk factors (age, systolic blood pressure, smoking, diabetes, serum low-density lipoprotein and high-density lipoprotein cholesterol, body mass index, and exercise-induced myocardial ischemia), men with the D/D or I/D genotype had 1.97 times (95% CI 1.08-3.59, P = .026) higher risk to experience sudden cardiac death (20 events for D/D genotype, 13 events for I/I genotype, and 43 events for I/D genotype) compared with men carrying the I/I genotype. In addition, the alpha(2B)-adrenoceptor D/D genotype was associated with the risk of coronary heart disease death and acute coronary events, after adjusting for risk factors. The genetic polymorphism of the alpha(2B)-adrenoreceptor is genetic risk predictor for sudden cardiac death.
The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation.
Simon, Stephane; Smith, Anthony J; Berdal, Ariane; Lumley, Philip J; Cooper, Paul R
2010-02-01
We have previously shown that the p38 gene is highly expressed in odontoblasts during active primary dentinogenesis, but is drastically down-regulated as cells become quiescent in secondary dentinogenesis. Based on these observations, we hypothesized that p38 expression might be upregulated, and the protein activated by phosphorylation, when odontoblasts are stimulated such as during tertiary reactionary dentinogenesis. We stimulated immortalized, odontoblast-like MDPC-23 cells, alone or in combination, with heat-inactivated Streptococcus mutans, EDTA-extracted dentine matrix proteins (DMPs), or growth factors, including transforming growth factor (TGF)-beta1, tumor necrosis factor-alpha (TNF-alpha), and adrenomedullin (ADM). We used ELISA to measure the resulting phosphorylation of the p38 protein, as well as its degree of nuclear translocation. Our results suggest that the p38-MAPKinase pathway is activated during odontoblast stimulation in tertiary dentinogenesis by both p38 phosphorylation and enhanced nuclear translocation. Data indicate that odontoblast behaviour therefore potentially recapitulates that during active primary dentinogenesis. Copyright 2010 American Association of Endodontists. All rights reserved.
Peripheral visual performance enhancement by neurofeedback training.
Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho
2013-12-01
Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.
Ribeiro, Maisa; Teixeira, Sarah R; Azevedo, Monarko N; Fraga, Ailton C; Gontijo, Antônio Pm; Vêncio, Eneida F
2017-04-01
To investigate hypoxia-induced factor-1 alpha expression in distinct oral squamous cell carcinoma subtypes and topographies and correlate with clinicopathological data. Hypoxia-induced factor-1 alpha expression was assessed by immunohistochemistry in 93 cases of OSCC. Clinical and histopathological data were reviewed from medical records. Hypoxia-induced factor-1 alpha status was distinct according to tumor location, subtype and topography affect. In superficial oral squamous cell carcinomas, most tumor cells overexpressed hypoxia-induced factor-1 alpha, whereas hypoxia-induced factor-1 alpha was restricted to the intratumoral region in conventional squamous cell carcinomas. All basaloid squamous cell carcinomas exhibited downregulation of hypoxia-induced factor-1 alpha. Interestingly, metastatic lymph nodes (91.7%, p = 0.001) and the intratumoral regions of corresponding primary tumors (58.3%, p = 0.142) showed hypoxia-induced factor-1 alpha-positive tumor cells. Overall survival was poor in patients with metastatic lymph nodes. Hypoxia-induced factor-1 alpha has distinct expression patterns in different oral squamous cell carcinoma subtypes and topographies, suggesting that low oxygen tension promotes the growth pattern of superficial and conventional squamous cell carcinoma, but not basaloid squamous cell carcinoma. Indeed, a hypoxic environment may facilitate regional metastasis, making it a useful diagnostic and prognostic marker in primary tumors.
Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.
Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias
2003-10-20
Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.
Zeren, Sezgin; Bayhan, Zulfu; Kocak, Fatma Emel; Kocak, Cengiz; Akcılar, Raziye; Bayat, Zeynep; Simsek, Hasan; Duzgun, Sukru Aydin
2016-06-15
Nonsteroidal anti-inflammatory drugs (NSAIDs) commonly cause gastric ulcers (GUs). We investigated the effects of sulforaphane (SF) and thymoquinone (TQ) in rats with acetylsalicylic acid (ASA)-induced GUs. Thirty-five male Wistar-Albino rats were divided into five groups: control; ASA; ASA with vehicle; ASA + SF; and ASA + TQ. Compounds were administered by oral gavage before GU induction. GUs were induced by intragastric administration of ASA. Four hours after GU induction, rats were killed and stomachs excised. Total oxidant status, total antioxidant status, total thiol, nitric oxide, asymmetric dimethylarginine, tumor necrosis factor-alpha levels, superoxide dismutase activity, and glutathione peroxidase activity in tissue were measured. Messenger RNA expression of dimethylarginine dimethylaminohydrolases, heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2, and nuclear factor kappa-light-chain-enhancer of activated B cells were analyzed. Renal tissues were evaluated by histopathologic and immunohistochemical means. SF and TQ reduced GU indices, apoptosis, total oxidant status, asymmetric dimethylarginine, and tumor necrosis factor-alpha levels, nuclear factor kappa-light-chain-enhancer of activated B cells, and inducible nitric oxide synthase expressions (P < 0.001, P = 0.001). Both examined compounds increased superoxide dismutase activity, glutathione peroxidase activity, total antioxidant status, total thiol, nitric oxide levels, endothelial nitric oxide synthase, dimethylarginine dimethylaminohydrolases, HO-1, nuclear factor erythroid 2-related factor 2, and HO-1 expressions (P < 0.001). These results suggest that pretreatment with SF or TQ can reduce ASA-induced GUs via anti-inflammatory, antioxidant, and antiapoptotic effects. These compounds may be useful therapeutic strategies to prevent the gastrointestinal adverse effects that limit nonsteroidal anti-inflammatory drugs use. Copyright © 2016 Elsevier Inc. All rights reserved.
Anticryptococcal effect of amphotericin B is mediated through macrophage production of nitric oxide.
Tohyama, M; Kawakami, K; Saito, A
1996-01-01
Amphotericin B (AmB) is a classical antifungal drug and one of the most effective antifungal drugs for the treatment of systemic fungal infection. It is also known to have various immunomodulating activities other than its direct antifungal effect. In the present study, we demonstrated that AmB augmented gamma interferon (IFN-gamma)-induced killing potentials of murine peritoneal macrophages against Cryptococcus neoformans in a dose-dependent manner. This effect was strongly blocked by NG-monomethyl-L-arginine, a competitive inhibitor of nitric oxide (NO) synthesis. In addition, AmB markedly augmented macrophage NO production induced by IFN-gamma with a dose-response curve similar to that seen with its effect on the anticryptococcal activity. These effects were partially mediated by either tumor necrosis factor alpha or interleukin-1, because AmB enhanced IFN-gamma-induced production of these cytokines by macrophages and their specific antibodies partially inhibited the AmB-induced enhancement of NO generation when they were used separately. Our results indicate that AmB induces the production of tumor necrosis factor alpha and IL-1 by macrophages and augments their anticryptococcal activity through triggering the NO-dependent pathway. PMID:8843304
Rogers, Scott W; Gahring, Lorise C
2015-01-01
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Lloyd, G S; Busby, S J; Savery, N J
1998-01-01
During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed. PMID:9461538
Pettipher, E. R.; Labasi, J. M.; Salter, E. D.; Stam, E. J.; Cheng, J. B.; Griffiths, R. J.
1996-01-01
1. The role of adrenal hormones in the regulation of the systemic and local production of tumour necrosis factor (TNF alpha) was examined in male Balb/c mice. 2. Intraperitoneal injection of 0.3 mg E. coli lipopolysaccharide (LPS, 0111:B4) led to high levels of circulating TNF alpha without stimulating TNF alpha production in the peritoneal cavity. Systemic production of TNF alpha in response to LPS was increased in adrenalectomized animals and in normal animals treated with the beta-adrenoceptor antagonist, propranolol. The glucocorticoid antagonist, RU 486, did not modify systemic TNF alpha production. These results indicate that systemic TNF alpha production is regulated by adrenaline but not by corticosterone. 3. When mice were primed with thioglycollate, TNF alpha was produced in the peritoneal cavity in response to low dose LPS (1 micrograms). The levels of TNF alpha in the peritoneal cavity were not enhanced by adrenalectomy or by treatment with either propranolol or RU 486, indicating local production of TNF alpha in the peritoneal cavity is not regulated by adrenaline or corticosterone. 4. The phosphodiesterase type IV (PDE-IV) inhibitor, rolipram, inhibited both the systemic production of TNF alpha in response to high dose endotoxin (ED50 = 1.3 mg kg-1) and the local production of TNF alpha in the peritoneal cavity in response to low dose endotoxin (ED50 = 9.1 mg kg-1). In adrenalectomized mice there was a slight reduction in the ability of rolipram to inhibit the systemic production of TNF alpha (ED50 = 3.3 mg kg-1) while the ability of rolipram to inhibit the local production of TNF alpha in the peritoneal cavity was virtually abolished (24% inhibition at 30 mg kg-1). The glucocorticoid antagonist, RU 486, also reduced the ability of rolipram to inhibit local TNF alpha production while propranolol was without effect. 5. Systemic treatment with rolipram increased the plasma concentrations of corticosterone in normal mice but not in adrenalectomized mice indicating that rolipram can cause adrenal stimulation in vivo. 6. In summary, these data indicate that systemic production of TNF alpha in response to high dose endotoxin is controlled differently from the local production of TNF alpha in response to low dose endotoxin. The systemic production of TNF alpha is regulated by catecholamines, but not by corticosterone, while the local production of TNF alpha in the peritoneal cavity is not regulated by basal levels of either catecholamines or corticosterone. 7. These data also show that the ability of rolipram to inhibit the local production of TNF alpha is dependent on the release of corticosterone from the adrenal glands. PMID:8730750
Pettipher, E R; Labasi, J M; Salter, E D; Stam, E J; Cheng, J B; Griffiths, R J
1996-04-01
1. The role of adrenal hormones in the regulation of the systemic and local production of tumour necrosis factor (TNF alpha) was examined in male Balb/c mice. 2. Intraperitoneal injection of 0.3 mg E. coli lipopolysaccharide (LPS, 0111:B4) led to high levels of circulating TNF alpha without stimulating TNF alpha production in the peritoneal cavity. Systemic production of TNF alpha in response to LPS was increased in adrenalectomized animals and in normal animals treated with the beta-adrenoceptor antagonist, propranolol. The glucocorticoid antagonist, RU 486, did not modify systemic TNF alpha production. These results indicate that systemic TNF alpha production is regulated by adrenaline but not by corticosterone. 3. When mice were primed with thioglycollate, TNF alpha was produced in the peritoneal cavity in response to low dose LPS (1 micrograms). The levels of TNF alpha in the peritoneal cavity were not enhanced by adrenalectomy or by treatment with either propranolol or RU 486, indicating local production of TNF alpha in the peritoneal cavity is not regulated by adrenaline or corticosterone. 4. The phosphodiesterase type IV (PDE-IV) inhibitor, rolipram, inhibited both the systemic production of TNF alpha in response to high dose endotoxin (ED50 = 1.3 mg kg-1) and the local production of TNF alpha in the peritoneal cavity in response to low dose endotoxin (ED50 = 9.1 mg kg-1). In adrenalectomized mice there was a slight reduction in the ability of rolipram to inhibit the systemic production of TNF alpha (ED50 = 3.3 mg kg-1) while the ability of rolipram to inhibit the local production of TNF alpha in the peritoneal cavity was virtually abolished (24% inhibition at 30 mg kg-1). The glucocorticoid antagonist, RU 486, also reduced the ability of rolipram to inhibit local TNF alpha production while propranolol was without effect. 5. Systemic treatment with rolipram increased the plasma concentrations of corticosterone in normal mice but not in adrenalectomized mice indicating that rolipram can cause adrenal stimulation in vivo. 6. In summary, these data indicate that systemic production of TNF alpha in response to high dose endotoxin is controlled differently from the local production of TNF alpha in response to low dose endotoxin. The systemic production of TNF alpha is regulated by catecholamines, but not by corticosterone, while the local production of TNF alpha in the peritoneal cavity is not regulated by basal levels of either catecholamines or corticosterone. 7. These data also show that the ability of rolipram to inhibit the local production of TNF alpha is dependent on the release of corticosterone from the adrenal glands.
Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki
2009-10-15
The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.
Xia, Zhengyuan; Liu, Min; Wu, Yong; Sharma, Vijay; Luo, Tao; Ouyang, Jingping; McNeill, John H
2006-11-21
The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.
Development and psychometric testing of the Clinical Learning Organisational Culture Survey (CLOCS).
Henderson, Amanda; Creedy, Debra; Boorman, Rhonda; Cooke, Marie; Walker, Rachel
2010-10-01
This paper describes the development and psychometric testing of the Clinical Learning Organisational Culture Survey (CLOCS) that measures prevailing beliefs and assumptions important for learning to occur in the workplace. Items from a tool that measured motivation in workplace learning were adapted to the nursing practice context. The tool was tested in the clinical setting, and then further modified to enhance face and content validity. Registered nurses (329) across three major Australian health facilities were surveyed between June 2007 and September 2007. An exploratory factor analysis identified five concepts--recognition, dissatisfaction, affiliation, accomplishment, and influence. VALIDITY AND RELIABILITY: Internal consistency measures of reliability revealed that four concepts had good internal consistency: recognition (alpha=.914), dissatisfaction (alpha=.771), affiliation (alpha=.801), accomplishment (alpha=.664), but less so for influence (alpha=.529). This tool effectively measures recognition, affiliation and accomplishment--three concepts important for learning in practice situations, as well as dissatisfied staff across all these domains. Testing of additional influence items identify that this concept is difficult to delineate. The CLOCS can effectively inform leaders about concepts inherent in the culture important for maximising learning by staff. Crown Copyright © 2009. Published by Elsevier Ltd. All rights reserved.
Liu, Tingting; Duan, Wang; Nizigiyimana, Paul; Gao, Lin; Liao, Zhouning; Xu, Boya; Liu, Lerong; Lei, Minxiang
2018-02-05
Diabetic nephropathy is a common complication of diabetes, but there are currently few treatment options. The aim of this study was to gain insight into the effect of alpha-mangostin on diabetic nephropathy and possible related mechanisms. Goto-Kakizaki rats were used as a diabetic model and received alpha-mangostin or desipramine treatment with normal saline as a control. Ten age-matched Sprague Dawley rats were used as normal controls and treated with normal saline. At week 12, blood glucose, albuminuria, apoptosis and renal pathologic changes were assessed. Protein levels for acid sphingomyelinase, glucose-regulated protein 78, phosphorylated PKR-like ER-resident kinase, activated transcription factor 4, CCAAT/enhancer-binding protein, homologous protein), and cleaved-caspase12 were measured. The level of acid sphingomyelinase was significantly increased, and ER stress was activated in diabetic rat kidneys when compared to the control animals. When acid sphingomyelinase was inhibited by alpha-mangostin, the expression of ER stress-related proteins was down-regulated in association with decreased levels of diabetic kidney injury. Alpha-mangostin, an acid sphingomyelinase inhibitor plays a protective role in diabetic neuropathy by relieving ER stress induced-renal cell apoptosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu
2008-11-01
Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P < 0.05). However, the intake of SAC or SEC significantly decreased hepatic triglyceride accumulation, and reduced G6PDH and FAS activities (P < 0.05). MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P < 0.05). The intake of SAC or SEC significantly increased serum and hepatic GSH levels, decreased MDA and GSSG formation, restored the activity and mRNA expression of GPX, SOD and catalase (P < 0.05). MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P < 0.05). The intake of SAC and SEC significantly blunted the mRNA expression of IL-1beta, IL-6, TNF-alpha, TGF-beta1 and collagen-alpha1 (P < 0.05). SEC was greater than SAC in suppressing IL-6 and TNF-alpha expression (P < 0.05), but SAC was greater than SEC in suppressing collagen-alpha1 and TGF-beta1 expression (P < 0.05). These data suggest that SAC and SEC are potent agents against MCD-induced hepatotoxicity.
Kino, T; Rice, K C; Chrousos, G P
2007-05-01
Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.
Effect of boric acid solution on cartilage metabolism.
Benderdour, M; Hess, K; Gadet, M D; Dousset, B; Nabet, P; Belleville, F
1997-05-08
Pelvic cartilage of chick embryo was used to demonstrate that presence of boron in culture medium decreases synthesis of proteoglycans, collagen and total proteins but on the other hand increases the release of these macromolecules. However, when glucose concentration in culture medium is brought to 22mM, the synthesis decrease is no longer observed, whereas release increase persists. Proteins released into the culture medium included heat shock proteins (70 hsp) and tumor necrosis factor alpha (TNF alpha). The amount of phosphorylated proteins was enhanced in presence of boron while endoprotease activity in cartilage and in culture medium was significantly augmented. The in vitro effects of boric acid may explain its in vivo effect on wound healing.
Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H
2009-06-26
Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-alpha in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-alpha and oleic acid treated cells was evaluated using flow cytometry. PPAR-gamma translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-alpha inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-alpha and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Oleic acid was found to be effective in reversing the inhibitory effect in insulin production of the inflammatory cytokine TNF-alpha. This finding is consistent with the reported therapeutic characteristics of other monounsaturated and polyunsaturated fatty acids. Furthermore, a diet high in oleic acid, which can be easily achieved through consumption of peanuts and olive oil, can have a beneficial effect in type II diabetes and ultimately reverse the negative effects of inflammatory cytokines observed in obesity and non insulin dependent diabetes mellitus.
Sales, Kurt J; Boddy, Sheila C; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N
2007-08-01
Prostaglandin (PG) F(2alpha) is a potent bioactive lipid in the female reproductive tract, and exerts its function after coupling with its heptahelical G-protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of fibroblast growth factor (FGF) 2, FGF receptor 1 (FGFR1), and FP receptor, colocalized within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF(2alpha)-FP receptor interaction in modulating FGF2 expression and signaling using an endometrial adenocarcinoma cell line stably expressing the FP receptor to the levels detected in endometrial adenocarcinomas (FPS cells) and endometrial adenocarcinoma tissue explants. PGF(2alpha)-FP receptor activation rapidly induced FGF2 mRNA expression, and elevated FGF2 protein expression and secretion into the culture medium in FPS cells and endometrial adenocarcinoma explants. The effect of PGF(2alpha) on the expression and secretion of FGF2 could be abolished by treatment of FPS cells and endometrial tissues with an FP receptor antagonist (AL8810) and inhibitor of ERK (PD98059). Furthermore, we have shown that FGF2 can promote the expression of FGF2 and cyclooxygenase-2, and enhance proliferation of endometrial adenocarcinoma cells via the FGFR1 and ERK pathways, thereby establishing a positive feedback loop to regulate neoplastic epithelial cell function in endometrial adenocarcinomas.
Stevenson, Heather L; Estes, Mark D; Thirumalapura, Nagaraja R; Walker, David H; Ismail, Nahed
2010-08-01
Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.
Dechanet, J; Taupin, J L; Chomarat, P; Rissoan, M C; Moreau, J F; Banchereau, J; Miossec, P
1994-12-01
The expression of the proinflammatory cytokine leukemia inhibitory factor (LIF) has been reported in the cartilage and synovium of rheumatoid arthritis (RA) patients. Here, we show that high levels of LIF were constitutively produced by cultures of synovium pieces. Low levels of LIF were produced spontaneously by isolated synoviocytes, but interleukin (IL)-1 beta caused a fourfold enhancement of this secretion. The anti-inflammatory cytokine IL-4 reduced the production of LIF by synovium pieces by 75%, as observed earlier with IL-6, IL-1 beta and tumor necrosis factor (TNF)-alpha. IL-4 had a direct effect since it inhibited LIF production by unstimulated and IL-1 beta- or TNF-alpha-stimulated synoviocytes. Conversely, IL-4 enhanced the production of IL-6, which shares with LIF biological activities and receptor components. The inhibitory effect of IL-4 was dose dependent and was reversed using a blocking anti-IL-4 receptor antibody. Similar inhibitory action of IL-4 on LIF production was observed on synovium pieces from patients with osteoarthritis and on normal synoviocytes. IL-10, another anti-inflammatory cytokine acting on monocytes, had no effect on LIF production by either synovium pieces or isolated synoviocytes. Thus, the production of LIF by synovium tissue was inhibited by IL-4 through both a direct effect on synoviocytes and an indirect effect by inhibition of the production of LIF-inducing cytokines.
Chronology and regulation of gene expression of RANKL in the rat dental follicle.
Liu, D; Yao, S; Pan, F; Wise, G E
2005-10-01
Tooth eruption in the rat requires bone resorption resulting from a major burst of osteoclastogenesis on postnatal day 3 and a minor burst of osteoclastogenesis on postnatal day 10 in the alveolar bone of the first mandibular molar. The dental follicle regulates the major burst on postnatal day 3 by down-regulating its osteoprotegerin (OPG) gene expression to enable osteoclastogenesis to occur. To determine the role of receptor activator of nuclear factor-kappa B ligand (RANKL) in tooth eruption, its gene expression was measured on postnatal days 1-11 in the dental follicle. The results show that RANKL expression was significantly elevated on postnatal days 9-11 in comparison to low expression levels at earlier time-points. As OPG expression is high at this latter time-point, this increase in RANKL expression would be needed for stimulating the minor burst of osteoclastogenesis. Tumor necrosis factor-alpha enhances RANKL gene expression in vitro and it may be responsible for up-regulating RANKL in vivo. Transforming growth factor-beta1 and interleukin-1alpha also enhance RANKL gene expression in vitro but probably have no effect in vivo because they are maximally expressed early. Bone morphogenetic protein-2 acts to down-regulate RANKL expression in vitro and, in vivo, may promote alveolar bone growth in the basal region of the tooth.
2009-04-30
successfully raised physiological and 15. SUBJECT TERMS brain, cognitive neuroscience, EEG , neurofeedback , competition, stress, neuroendocrine, shooting...efficacy of the Neurofeedback training to elevate frontal EEG asymmetry (F4 minus F3 alpha power) in an attempt to enhance emotion regulation. The...observed a remarkable increase or synchrony of EEG alpha power (i.e., low-alpha) across the general scalp topography for both groups ( neurofeedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochizuki, Kazuki; Sakaguchi, Naomi; Takabe, Satsuki
2007-08-10
Thyroid hormone and p44/42 MAPK inactivation are important in intestinal differentiation. We demonstrated not only that treatment with p44/42 MAPK inhibitor U0126 in intestinal cell line Caco-2 cells reduced the phosphorylation of serine and threonine residues of TR{alpha}-1, but also that T{sub 3} and U0126 synergistically induced GLUT5 gene expression. EMSA demonstrated that the binding activity of TR{alpha}-1-RXR heterodimer on GLUT5-TRE in nuclear proteins of Caco-2 cells was synergistically enhanced by co-incubation in vitro with T{sub 3} and CIAP, which strongly de-phosphorylates proteins. ChIP and transfection assays revealed that co-treatment of T{sub 3} and U0126 induces TR{alpha}-1-RXR binding to GLUT5-TREmore » on the human GLUT5 enhancer region, and recruitment of the transcriptional complex in cells. These results suggest that inactivation of p44/42 MAPK enhances T{sub 3}-induced GLUT5 gene expression in Caco-2 cells through increasing TR{alpha}-1 transactivity and binding activity to the GLUT5-TRE, probably due to de-phosphorylation of TR{alpha}-1.« less
Günther, A; Mosavi, P; Ruppert, C; Heinemann, S; Temmesfeld, B; Velcovsky, H G; Morr, H; Grimminger, F; Walmrath, D; Seeger, W
2000-06-01
Bronchoalveolar lavage fluids (BALF) from patients with hypersensitivity pneumonitis (HP; n = 35), idiopathic pulmonary fibrosis (IPF, n = 41) and sarcoidosis (SARC, n = 48) were investigated for alterations in the alveolar hemostatic balance. Healthy individuals (n = 21) served as Controls. Procoagulant activity (PCA), tissue factor (TF) activity and F VII activity were assessed by means of specific recalcification assays. The overall fibrinolytic activity (FA) was measured using the (125)I-labeled fibrin plate assay. Fibrinopeptide A (FP-A), D-Dimer, plasminogen activators (PA) of the urokinase (u-PA) or tissue type (t-PA), PA-inhibitor I (PAI-1) and alpha2-antiplasmin (alpha2-AP) were determined by ELISA technique. As compared to Controls, all groups with interstitial lung disease (ILD) displayed an increase in BALF PCA by approximately one order of magnitude, and this was ascribed to enhanced TF activity by >98%. Accordingly, F VII-activity was increased in all ILD groups, and elevated FP-A levels were noted. There was no significant difference in procoagulant activities between the different ILD entities, but the increase in TF was significantly correlated with deterioration of lung compliance. Overall fibrinolytic activity did not significantly differ between ILD entities and Controls, although some reduction in IPF subjects was observed. Nevertheless, changes in the profile of the different pro- and antifibrinolytic compounds were noted. U-PA, but not t-PA levels were significantly reduced in all ILD groups. alpha2-AP was markedly elevated throughout, whereas PAI-1 levels were lowered. As a balance of
Effective Factors in Enhancing School Manager's Job Motivation
Mirzamani, S. Mahmoud; Esfahani, Hamideh Darb
2011-01-01
Objective This study examines the effective factors in enhancing school manager's job motivation from viewpoint of school mangers, teachers, education department managerial and staff experts in teaching, and also identifies and prioritizes each of these factors and indicators. Method For selecting a representative sample and increasing measurement precision, 587 people were selected using classified random sampling. The measurement tool was a 79-questionnaire made by the researcher. The questionnaire was collected using motivation theories and observing the findings of previous researches. Then, according to the three-stage Delphi technique, the questionnaire was sent to experts in education. The reliability of instruments was measured by calculating Cronbach's Alpha coefficient, and total reliability of the test was 0.99; the validity of the instrument was assessed by factor analysis (Construct Validity) and its load factor was 0.4 which was high. Results The results from factor analysis shows that the effective factors in enhancing manager's job motivation are as follows: self- actualization (51%) including 28 indices; social factor (7/9%) including 22 indices; self-esteem (3.2%) including 17 indices; job desirable features (2.2%) including 4 indices; physiologic (1.8%) including 4 indices; and job richness (1.6%) including 4 indices. Conclusions The results show that the six mentioned factors determine 68% of the total variance of manager's motivation. PMID:22952541
Nuclear Threshold States: Yesterday, Today, Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.
2010-04-30
50 years ago exotic nuclear states with abnormally large radii located close to the thresholds of emission of nucleons or clusters were predicted. Recently a hypothesis of possible existence of alpha-particle Bose condensation was proposed. The 0{sup +}{sub 2}(7.65 MeV) state of {sup 12}C(so-called Hoyle state) is considered to be the prototype of such condensed state and have a dilute structure. We propose two methods for searching the alpha-condensate signatures in the Hoyle state and some other ones near the alpha-thresholds by using inelastic diffractive and rainbow scattering. Inelastic scattering of {sup 2}H, {sup 3}He, {sup 4}He, {sup 6}Li, andmore » {sup 12}C on {sup 12}C was studied and the enhancement of the {sup 12}C radius in the Hoyle state relatively the ground state radius by a factor of 1.2 was demonstrated. Another signature of the condensate structure, 70% probability of all three alpha-particles to be in the s-state, was observed for the Hoyle state by studying the {sup 8}Be transfer reaction. The analogs of the Hoyle state with enhanced radii were identified in {sup 11}B and {sup 13}C. The proposed methods of measuring the nuclear radii allowed observation of neutron halos in the excited states of {sup 9}Be and {sup 13}C. The conception of abnormal dimensions of the threshold states finds its confirmation in many nuclear phenomena both well-known and new ones. One of the perspective domains of its manifestation are the nuclei heavier than {sup 100}Sn with N = Z, which are able to emit several alpha particles.« less
Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni
2005-10-01
We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.
Marui, N; Offermann, M K; Swerlick, R; Kunsch, C; Rosen, C A; Ahmad, M; Alexander, R W; Medford, R M
1993-01-01
Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis. Images PMID:7691889
The role of cytokines in cancer-related fatigue.
Kurzrock, R
2001-09-15
Fatigue is prominent in cancer patients and probably multifactorial in origin. Factors contributing to fatigue include anemia, weight loss, fever, pain, medication, and infection. In cancer patients, many of these factors are influenced by a frequently disrupted balance between endogenous cytokine levels and their natural antagonists. Indeed, cancer cells and the immune system appear to overexpress a range of cytokines in patients with malignancies. Some of these cytokines act as autocrine or paracrine growth factors for the neoplastic tissue while simultaneously causing secondary symptoms related to fatigue. For instance, cancer-associated anemia may be due to a blunted erythropoietin response and/or cytokines (interleukin-1 [IL-1], IL-6, tumor necrosis factor-alpha [TNF-alpha]), which suppress erythropoiesis. Cancerous cachexia, a wasting syndrome and a hallmark of cancer, can be attributed to loss of appetite or enhanced energy expenditure. Several different interleukins, as well as TNF, interferon-gamma, and leukemia inhibitory factor, act as cachectins in animal models. Similarly, fever and night sweats are influenced by pyrogenic cytokines. Recently, molecules that function as cytokine antagonists have been identified. These molecules may be exploitable in combating the components of cancer-related fatigue, and may inhibit tumor growth as well. Copyright 2001 American Cancer Society.
Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.
Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen
2017-11-13
Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
Li, Yushan; Ohizumi, Yasushi
2004-07-01
20 medicinal plants of Paraguay and 3 medicinal plants of Thailand were examined on nerve growth factor (NGF)-potentiating activities in PC12D cells. The trail results demonstrated that the methanol extracts of four plants, Verbena littoralis, Scoparia dulcis, Artemisia absinthium and Garcinia xanthochymus, markedly enhanced the neurite outgrowth induced by NGF from PC12D cells. Furthermore, utilizing the bioactivity-guided separation we successfully isolated 32, 4 and 5 constituents from V. littoralis, S. dulcis and G. xanthochymus, respectively, including nine iridoid and iridoid glucosides (1-9), two dihydrochalcone dimers (10 and 11), two flavonoids and three flavonoid glycosides (12-16), two sterols (17 and 18), ten triterpenoids (19-28), five xanthones (29-33), one naphthoquinone (34), one benzenepropanamide (35), four phenylethanoid glycosides (36-39) and two other compounds (40 and 41). Among which, 15 compounds (1-4, 10-11, 14-18, 29-31 and 34) were new natural products. The results of pharmacological trails verified that littoralisone (1), gelsemiol (5), 7a-hydroxysemperoside aglucone (6), verbenachalcone (10), littorachalcone (11), stigmast-5-ene 3beta,7alpha,22alpha-triol (18), ursolic acid (19), 3beta-hydroxyurs-11-en-28,13beta-olide (24), oleanolic acid (25), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (26), 1,4,5,6-tetrahydroxy-7,8-di(3-methylbut-2-enyl)xanthone (29), 1,2,6-trihydroxy-5-methoxy-7-(3-methylbut-2-enyl)xanthone (30), 1,3,5,6-tetrahydroxy-4,7,8-tri(3-methyl-2-butenyl)xanthone (31), 12b-hydroxy-des-D-garcigerrin A (32), garciniaxanthone E (33) and (4R)-4,9-dihydroxy-8-methoxy-alpha-lapachone (34) elicited marked enhancement of NGF-mediated neurite outgrowth in PC12D cells. These substances may contribute to the basic study and the medicinal development for the neurodegenerative disorder.
Kasimanickam, Ramanathan K; Kasimanickam, Vanmathy R; Haldorson, Gary J; Tibary, Ahmed
2012-01-23
Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. Pregnant ewes (N=18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N=6) or 1,000 mg of gT (N=7) or placebo (CON; N=5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P<0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P<0.05), whereas IL-1b was similar between treatment groups (P>0.1). Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8.
2012-01-01
Background Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. Methods Pregnant ewes (N = 18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N = 6) or 1,000 mg of gT (N = 7) or placebo (CON; N = 5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. Results Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P < 0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P < 0.05), whereas IL-1b was similar between treatment groups (P > 0.1). Conclusions Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8. PMID:22269218
Pasta, Saloni Yatin; Raman, Bakthisaran; Ramakrishna, Tangirala; Rao, Ch Mohan
2002-11-29
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.
NASA Astrophysics Data System (ADS)
Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.
2006-07-01
Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.
Global brain ischemia and reperfusion.
White, B C; Grossman, L I; O'Neil, B J; DeGracia, D J; Neumar, R W; Rafols, J A; Krause, G S
1996-05-01
Brain damage accompanying cardiac arrest and resuscitation is frequent and devastating. Neurons in the hippocampus CA1 and CA4 zones and cortical layers III and V are selectively vulnerable to death after injury by ischemia and reperfusion. Ultrastructural evidence indicates that most of the structural damage is associated with reperfusion, during which the vulnerable neurons develop disaggregation of polyribosomes, peroxidative damage to unsaturated fatty acids in the plasma membrane, and prominent alterations in the structure of the Golgi apparatus that is responsible for membrane assembly. Reperfusion is also associated with vulnerable neurons with prominent production of messenger RNAs for stress proteins and for the proteins of the activator protein-1 complex, but these vulnerable neurons fail to efficiently translate these messages into the proteins. The inhibition of protein synthesis during reperfusion involves alteration of translation initiation factors, specifically serine phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (elF-2 alpha). Growth factors--in particular, insulin--have the potential to reverse phosphorylation of elF-2 alpha, promote effective translation of the mRNA transcripts generated in response to ischemia and reperfusion, enhance neuronal defenses against radicals, and stimulate lipid synthesis and membrane repair. There is now substantial evidence that the insulin-class growth factors have neuron-sparing effects against damage by radicals and ischemia and reperfusion. This new knowledge may provide a fundamental basis for a rational approach to "cerebral resuscitation" that will allow substantial amelioration of the often dismal neurologic outcome now associated with resuscitation from cardiac arrest.
Rigor, Robert R; Hawkins, Brian T; Miller, David S
2010-07-01
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
Anatomy of a new B-cell-specific enhancer.
Koch, W; Benoist, C; Mathis, D
1989-01-01
The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhancers seem to show little resemblance. Images PMID:2467189
Kiaei, Mahmoud; Petri, Susanne; Kipiani, Khatuna; Gardian, Gabrielle; Choi, Dong-Kug; Chen, Junyu; Calingasan, Noel Y; Schafer, Peter; Muller, George W; Stewart, Charles; Hensley, Kenneth; Beal, M Flint
2006-03-01
Accumulating evidence suggests that inflammation plays a major role in the pathogenesis of motor neuron death in amyotrophic lateral sclerosis (ALS). Important mediators of inflammation such as the cytokine tumor necrosis factor-alpha (TNF-alpha) and its superfamily member fibroblast-associated cell-surface ligand (FasL) have been implicated in apoptosis. We found increased TNF-alpha and FasL immunoreactivity in lumbar spinal cord sections of ALS patients and G93A transgenic mice. Both increased TNF-alpha and FasL immunostaining in the lumbar spinal cord of the G93A SOD1 transgenic mice occurred at 40-60 d, well before the onset of symptoms and loss of motor neurons. We tested the neuroprotective effect of thalidomide and its analog lenalidomide, pharmacological agents that inhibit the expression of TNF-alpha and other cytokines by destabilizing their mRNA. Treatment with either thalidomide or lenalidomide attenuated weight loss, enhanced motor performance, decreased motor neuron cell death, and significantly increased the life span in G93A transgenic mice. Treated G93A mice showed a reduction in TNF-alpha and FasL immunoreactivity as well as their mRNA in the lumbar spinal cord. Both compounds also reduced interleukin (IL)-12p40, IL-1alpha, and IL-1beta and increased IL-RA and TGF-beta1 mRNA. Therefore, both thalidomide and lenalidomide bear promise as therapeutic interventions for the treatment of ALS.
Shank, R P; Campbell, G L
1984-04-01
The uptake of alpha-ketoglutarate and malate by rat brain synaptosomal preparations was found to be affected by a variety of substances at physiologically relevant concentrations. Glutamine altered the uptake of alpha-ketoglutarate by causing an apparent reduction in the substrate-carrier affinity and an increase in Vmax. In contrast, glutamine did not appear to affect the Vmax of malate uptake, but it did increase markedly the uptake velocity at low concentrations of malate. L-Glutamate and L-aspartate were comparatively strong inhibitors of alpha-ketoglutarate and malate uptake. N-Acetylaspartate was a weak inhibitor of alpha-ketoglutarate uptake, a finding that contrasts with our previous observation that this compound potently inhibited alpha-ketoglutarate uptake by synaptosomes obtained from the cerebellum of 8- to 14-day-old mice. Ca2+ exhibited a variable effect but usually enhanced the uptake of alpha-ketoglutarate. The addition of small amounts of postmicrosomal supernatant to the incubation medium enhanced the uptake of alpha-ketoglutarate by low-density synaptosomes. By comparison, the uptake of glutamate, glutamine, gamma-aminobutyric acid, and several other amino acids was not affected. The enhancement of alpha-ketoglutarate uptake by the supernatant was due to a heat labile substance that was retained by dialysis tubing (MW cutoff = 8,000) and Amicon filter cones (CF 25), and was precipitated by ammonium sulfate at 60% saturation. In experiments in which the metabolic conversion of [U-14C] alpha-ketoglutarate to glutamate, aspartate, glutamine, and gamma-aminobutyric acid was determined, the presence of glutamine and glutamate in the incubation medium did not affect the pattern of labelling appreciably.
Stefanoni, Giovanni; Melchionda, Laura; Riva, Chiara; Brighina, Laura
2013-01-01
Dysfunctions of chaperone-mediated autophagy (CMA), the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson's disease (PD). Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition. PMID:23984410
Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.
Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F
2006-07-01
We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.
Mancuso, G; Tomasello, F; Ofek, I; Teti, G
1994-01-01
Lipoteichoic acid (LTA) from gram-positive bacteria can stimulate monocytes to produce cytokines. To ascertain whether aggregation of LTA receptors can contribute to this effect, human monocytes were sensitized with LTA from Streptococcus pyogenes, washed, and treated with anti-LTA antibodies. The addition of anti-LTA antibodies or F(ab')2 fragments markedly enhanced the aggregation of LTA receptors, as evidenced by indirect immunofluorescence and the release of tumor necrosis factor alpha and interleukin-1 beta. These findings suggest that aggregation of LTA receptors of monocytes is required for triggering marked cytokine responses. PMID:8132355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesler, J.; Baccarini, M.; Vogt, B.
1989-08-01
We tested several of the functions of macrophages (M phi) in the early phase after allogeneic bone marrow transfer to get information about this important aspect of the nonspecific immune system in the T-cell-deficient recipient. On days 3-5 after transfer, the number of M phi was reduced in the spleen, liver, lungs, and peritoneal cavity (Pe). The phagocytosis of sheep red blood cells (SRBC) by these M phi was normal or even enhanced, as in the case of Pe-M phi. Already on days 8-12 after transfer, the number of M phi in spleen and liver exceeded that of controls, whereasmore » the number was still reduced in lungs and Pe. We examined their ability to kill P815 tumor cells, to produce tumor necrosis factor-alpha (TNF alpha), to phagocytose SRBC, to produce reactive oxygen intermediates (ROI) in vitro and to kill Listeria monocytogenes in vivo. Most functions were normal and often even enhanced, depending on the organ origin, but the ability of Pe-M phi to produce ROI was reduced. Proliferative response to macrophage colony-stimulating factor (M-CSF) and killing of YAC-1 tumor cells revealed a high frequency of macrophage precursor cells in the spleen and liver and a high natural killer (NK) activity in the liver. Altogether, enhanced nonspecific immune function, especially preactivated M phi, may enable chimeras to survive attacks by opportunistic pathogens.« less
Neurofeedback training of alpha-band coherence enhances motor performance.
Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G
2015-09-01
Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Hedqvist, P; Von Euler, U S
1976-11-01
Noradrenaline as well as the indirectly acting amines tyramine and phenethylamine either enhance or inhibit the twitch response of the transmurally stimulated, isolated guine-pig vas deferens, thus partly confirming previous reports. In both cases enhancement is annulled by alpha-adrenoceptor blockers. The twitch inhibition caused by noradrenaline is abolished by alpha- + beta2-adrenoceptor blockers, but not by either blocker alone. The inhibition caused by the indirectly acting amines is largely abolished by alpha-adrenoceptor blockers. Clonidine strongly inhibits the twitch. This effect if promptly removed by phentolamine. After blockade of the neurally induced twitch by tetrodotoxin, noradrenaline and the indirectly acting amines have no effect or slightly enhance the twitch elicited by transmural stimulation of the smooth muscle. It is concluded that exogenous noradrenaline acts on postjunctional stimulatory alpha-adrenoceptors and on inhibitory alpha- and beta2-adrenoceptors, which are presumably prejunctional. In the unstimulated preparation contracted by acetylcholine, noradrenaline causes further contraction which is changed into relaxation after phentolamine. This relaxation is abolished by butoxamine, suggesting that noradrenaline may also act on inhibitory postjunctional beta2-adrenoceptors. The twitch-inhibiting effect of endogenous noradrenaline, released by nerve stimulation or by indirectly acting amines, appears to be primarily mediated by prejunctional alpha-adrenoceptors.
Li, Peiqi; Hashimoto, Yoshiya; Honda, Yoshitomo; Arima, Yoshiyuki; Matsumoto, Naoyuki
2015-01-01
Inflammatory responses are frequently associated with the expression of inflammatory cytokines and severe osteoclastogenesis, which significantly affect the efficacy of biomaterials. Recent findings have suggested that interferon (IFN)-γ and zoledronate (Zol) are effective inhibitors of osteoclastogenesis. However, little is known regarding the utility of IFN-γ and Zol in bone tissue engineering. In this study, we generated rat models by generating critically sized defects in calvarias implanted with an alpha-tricalcium phosphate/collagen sponge (α-TCP/CS). At four weeks post-implantation, the rats were divided into IFN-γ, Zol, and control (no treatment) groups. Compared with the control group, the IFN-γ and Zol groups showed remarkable attenuation of severe osteoclastogenesis, leading to a significant enhancement in bone mass. Histomorphometric data and mRNA expression patterns in IFN-γ and Zol-injected rats reflected high bone-turnover with increased bone formation, a reduction in osteoclast numbers, and tumor necrosis factor-α expression. Our results demonstrated that the administration of IFN-γ and Zol enhanced bone regeneration of α-TCP/CS implants by enhancing bone formation, while hampering excess bone resorption. PMID:26516841
Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E
1994-01-01
Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.
2012-10-15
Slight enhancement of saturation magnetization to 219 A m{sup 2} kg{sup -1} was observed from 199 A m{sup 2} kg{sup -1} for the original {alpha}-Fe on the intermediate nitrided mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' with residual {alpha}-Fe among the low temperature ammonia nitridation products under 5 T magnetic field at room temperature. The value changed not linearly against the yield as had been expected. Crystal structure refinement indicated that the phase similar to {alpha} Prime Prime -Fe{sub 16}N{sub 2} had deviations on its lattice constants and positional parameters, compared to previously reported values for {alpha} Prime Primemore » -Fe{sub 16}N{sub 2}. Spin-polarized total energy calculations were performed using the projector-augmented wave method as implemented in the Vienna ab-initio simulation package (VASP) to calculate magnetic moment on the refined crystal structure of the intermediate '{alpha} Prime Prime -Fe{sub 16}N{sub 2}'. The calculations supported the observed magnetization enhancement in the intermediate nitridation product. - Graphical abstract: Crystal structural parameters slightly change in the intermediate nitrided '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' from those in {alpha} Prime Prime -Fe{sub 16}N{sub 2} to show the magnetization maxima in the mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' and the residual {alpha}-F. Highlights: Black-Right-Pointing-Pointer Larger magnetization was observed than the value of Fe{sub 16}N{sub 2} on its intermediate nitrided mixture with residual {alpha}-Fe. Black-Right-Pointing-Pointer The enhancement was related to the crystal structural deviation from Fe{sub 16}N{sub 2} on the intermediate nitride. Black-Right-Pointing-Pointer It was supported by spin-polarized total energy calculation using the deviated structure.« less
NASA Technical Reports Server (NTRS)
Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.; Paloski, W. H. (Technical Monitor)
2000-01-01
The present studies were designed to determine effects of microgravity upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF - alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-117,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS 3) static culture, 4) static culture plus LPS TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). A decrease in insulin concentration was demonstrated in the LPS stimulated HARV culture (p<0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. While nitrogenous compound analysis indicated a ubiquitous reliance upon glutamine in all experimental groups, arginine was converted to ornithine at a two-fold greater rate in the islets cultured in the HARV microgravity paradigm (p<0.05). These studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV paradigm. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.
Vassalle, C; Petrozzi, L; Botto, N; Andreassi, M G; Zucchelli, G C
2004-10-01
It is well known that free radicals contribute to endothelial dysfunction and are involved in the pathogenesis and development of cardiovascular diseases, such as atherosclerosis. The aim of this study was to provide evidence for enhanced oxidative stress in coronary artery disease (CAD). Plasma levels of 8-isoprostane (8-epiPGF(2alpha)), marker of lipid peroxidation, were measured in 68 subjects (age: 60 +/- 2 years, mean +/- SEM). Subjects included 30 healthy control subjects and 38 patients with angiographically proven CAD. In addition, the total antioxidant power (PAO) was evaluated in a subgroup (40 subjects, 12 healthy and 28 CAD). Levels of 8-epiPGF(2alpha) increased with the number of affected vessels (one- and multi-vessel disease versus control subjects, P < 0.001) and considering different risk determinants for atherosclerosis (i.e. hypertension, gender, hypercholesterolaemia, P < 0.01). In multivariate regression models the number of affected vessels was independently correlated with 8-epiPGF(2alpha) (P < 0.05). PAO values significantly decreased with increased number of affected vessels (P < 0.05) and in hypertensive patients when compared with those without hypertension (P < 0.05). In multivariate regression models the number of affected vessels resulted an independent determinant for PAO (P < 0.05). Concentration of 8-epiPGF(2alpha) and PAO also correlated with the number of cardiovascular risk factors (P < 0.01 and P = 0.07, respectively). These findings indicate that elevated levels of plasma 8-epiPGF(2alpha) and reduced antioxidant capacity are associated with the extent and the severity of CAD and with the occurrence and number of different atherogenic risk factors. This observation may assist in providing more information as to how oxidative stress may predispose to atherogenesis and suggest attractive therapeutic strategies in the prevention and treatment of cardiovascular disease.
Targeting MUC1-Mediated Tumor-Stromal Metabolic Interaction in Triple-Negative Breast Cancer
2014-10-01
to MUC1 interaction with hypoxia-inducible factor alpha (HIF1α), a key regulator of glycolysis . We previously observed that ectopic overexpression of...nuclear localization and transcriptional activation of the cytoplasmic tail of MUC1. Additionally, MUC1 enhanced glutamine uptake that was increased...rate (OCR) and extracellular acidification rate (ECAR), indicative of cells utilizing glycolysis and/or oxidative phosphorylation to meet energy
Reduction of PTP1B induces differential expression of PI3-kinase (p85alpha) isoforms.
Rondinone, Cristina M; Clampit, Jill; Gum, Rebecca J; Zinker, Bradley A; Jirousek, Michael R; Trevillyan, James M
2004-10-15
Protein tyrosine phosphatase 1B (PTP1B) inhibition increases insulin sensitivity and normalizes blood glucose levels in animals. The molecular events associated with PTP1B inhibition that increase insulin sensitivity remain controversial. Insulin resistant, diabetic ob/ob mice, dosed with PTP1B antisense for 3 weeks exhibited a decrease in PTP1B protein levels and a change in the expression level of p85alpha isoforms in liver, characterized by a reduction in p85alpha and an upregulation of the p50alpha and p55alpha isoforms. Transfection of mouse hepatocytes with PTP1B antisense caused a downregulation PTP1B and p85alpha protein levels. Furthermore, transfection of mouse hepatocytes with PTP1B siRNA downregulated p85alpha protein expression and enhanced insulin-induced PKB phosphorylation. Treatment of mouse hepatocytes with p85alpha antisense oligonucleotide caused a reduction of p85alpha and an increase in p50alpha and p55alpha isoforms and enhanced insulin-stimulated PKB activation. These results demonstrate that PTP1B inhibition causes a direct differential regulation of p85alpha isoforms of PI3-kinase in liver and that reduction of p85alpha may be one mechanism by which PTP1B inhibition improves insulin sensitivity and glucose metabolism in insulin-resistant states. Copyright 2004 Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.« less
Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.
Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R
2016-07-01
First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.
Urinary tract infectivity or R strains of Escherichia coli carrying various virulence factors.
Kétyi, I; Naumann, G; Nimmich, W
1983-01-01
The virulence factors of Escherichia coli supposed to act in urinary tract infections were studied on R strains in a suckling mouse model. The production of alpha-(diffusible-) haemolysin or the possession of antigen K1 enhanced the virulence significantly, while the type 1 (common) fimbriae failed to do so. An isogenic motile and non-motile pair of E. coli did not show any difference in infectivity in the model. The adhesins, the diffusible haemolysin, and the acidic polysaccharide K antigens (K1) are definitely additive virulence factors in the model. This is in good agreement with the experience of clinical bacteriology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M.H.; Neubig, R.R.
1986-03-05
High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less
Fayed, Mostafa R; El-Naga, Reem N; Akool, El-Sayed; El-Demerdash, Ebtehal
2018-01-01
Liver fibrosis results from chronic inflammation that precipitates excessive accumulation of extracellular matrix. Oxidative stress is involved in its pathogenesis. This study aimed to elucidate the potential antifibrotic effect of the NADPH oxidase (NOX) inhibitor, apocynin against concanavalin A (ConA)-induced immunological model of liver fibrosis, and to investigate the ability of the antioxidant, alpha-lipoic acid (α-LA) to potentiate this effect. Rats were treated with apocynin and/or α-LA for six weeks. Hepatotoxicity indices, oxidative stress, insulin, NOXs, inflammatory and liver fibrosis markers were assessed. Treatment of animals with apocynin and α-LA significantly ameliorated the changes in liver functions and histopathological architecture induced by ConA. Liver fibrosis induced by ConA was evident where alpha-smooth muscle actin and transforming growth factor- beta1 were elevated, which was further confirmed by Masson's trichrome stain and increased hydroxyproline. Co-treatment with apocynin and α-LA significantly reduced their expression. Besides, apocynin and α-LA significantly ameliorated oxidative stress injury evoked by ConA, as evidenced by enhancing reduced glutathione content, antioxidant enzymes activities and decreasing lipid peroxides. ConA induced a significant elevation in serum insulin level and inflammatory markers; tumor necrosis factor-alpha, interleukin-6 and nuclear factor kappa b. Furthermore, the mRNA tissue expression of NOXs 1 and 4 was found to be elevated in the ConA group. All these elevations were significantly reduced by apocynin and α-LA co-treatment. These findings indicate that using apocynin and α-LA in combination possess marked antifibrotic effects, and that NOX enzymes are partially involved in the pathogenesis of ConA-induced liver fibrosis.
C/EBP beta regulation of the tumor necrosis factor alpha gene.
Pope, R M; Leutz, A; Ness, S A
1994-01-01
Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-IL6). C/EBP beta activated the TNF alpha gene promoter in cotransfection assays and bound to it at a site which failed to bind the closely related protein C/EBP alpha. Finally, a dominant-negative version of C/EBP beta blocked TNF alpha promoter activation in myeloid cells. Our results implicate C/EBP beta as an important regulator of TNF alpha by myelomonocytic cells. Images PMID:7929820
Nimrod, A
1977-09-01
Metabolic transformations of progesterone in cultures of granulosa cells from immature hypophysectomized rats treated with diethylstilbestrol were studied in relation to the synergistic action of exogenous androgen and FSH on progestin (progesterone and 20alpha-dihydroprogesterone) accumulation. Androstenedione (Ad; 10 ng/ml) enhanced the sensitivity of rat granulosa cells to this steroidogenic action of FSH, lowering the threshold of the response from greater than 4 ng/ml (FSH alone) to 0.8 ng/ml in the presence of Ad. A synergistic effect with FSH was also shown by various 5alpha-androstane derivatives. They were, however, less effective than the parent delta4-3 keto androstenes. Progesterone underwent extensive 5alpha-reduction during culture, leading to accumulation of endogenous 5alpha-pregnane compounds, and to transformation of labelled progesterone into 5 alpha-reduced radiometabolites. These compounds corresponded in gas-liquid and thin-layer chromatographic behaviour to 3alpha-hydroxy-5alpha-pregnan-20-one, 20alpha-hydroxy-5alpha-pregnan-3-one and 5alpha-pregnane-3alpha,20alpha-diol. The rate of 5alpha-reduction of progestins was not affected by the presence of exogenous Ad (1 microgram/ml), ruling out the possibility that the effect of androgen on progestin accumulation depends on competitive inhibition of 5alpha-reductase. An involvement of androgen of thecal origin in the enhancement of the sensitivity of the FSH-responsive mechanism in granulosa cells is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binukumar, BK; Gupta, Nidhi; Bal, Amanjit
Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg bodymore » weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.
2007-01-01
Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity aftermore » induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.« less
Bovine alpha-lactalbumin stimulates mucus metabolism in gastric mucosa.
Ushida, Y; Shimokawa, Y; Toida, T; Matsui, H; Takase, M
2007-02-01
Bovine alpha-lactalbumin (alpha-LA), a major milk protein, exerts strong gastroprotective activity against rat experimental gastric ulcers induced by ethanol or stress. To elucidate the mechanisms underlying this activity, the influence of alpha-LA on gastric mucus metabolism was investigated in vitro and in vivo. For the in vitro study, RGM1 cells (a rat gastric epithelial cell line) were selected for observation of the direct activity of alpha-LA on gastric mucosal cells and cultured in the presence of either alpha-LA or ovalbumin (OVA), a reference protein showing no gastroprotective activity. Amounts of synthesized and secreted mucin, a major component of mucus, were determined using [3H]glucosamine as a tracer, and prostaglandin E2 (PGE2) levels in the culture medium were determined by RIA. For the in vivo study, the thickness of the mucus gel layer, a protective barrier for gastric mucosa, was evaluated histochemically in rat gastric mucosa. alpha-Lactalbumin (3 mg/mL) significantly stimulated mucin synthesis and secretion in RGM1 cells and also increased PGE2 levels in the culture medium. In contrast, OVA showed no enhancing effects under identical conditions. Neither indomethacin, a cyclo-oxygenase inhibitor, nor AH23848, a prostaglandin EP4 receptor antagonist, affected alpha-LA-induced enhancement of mucin synthesis and secretion. In vivo, oral administration of alpha-LA (300 mg/kg x 3 times/d x 7 d) increased the thickness of the mucus gel layer in rats. These results indicate that alpha-LA fortifies the mucus gel layer by stimulating mucin production and secretion in gastric mucus-producing cells, and that this enhancing effect is independent of endogenous PGE2. Comparison of the efficacy of alpha-LA with OVA suggests that the activities observed in RGM1 cells are closely related to the gastroprotective effects in rat gastric ulcer models. In conclusion, alpha-LA stimulates mucus metabolism, and this action may be responsible for its gastroprotective activity.
N-acetylcysteine inhibits induction of nitric oxide synthase in 3T3-L1 adipocytes.
Araki, Shunsuke; Dobashi, Kazushige; Kubo, Kazuyasu; Kawagoe, Rinko; Yamamoto, Yukiyo; Shirahata, Akira
2007-12-01
The present study was designed to determine whether N-acetylcysteine (NAC), a potent antioxidant, modulates nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Stimulation by the combination of 5 microg/ml of LPS and 100 ng/ml of TNF-alpha (LT) significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the cells with NAC (5-20 mM) for 24 h suppressed the increased NO production in a dose-dependent manner. The production of NO was decreased by 49% at the concentration of 20 mM of NAC. The decrease in NO production by NAC was accompanied by a decrease in inducible nitric oxide synthase (iNOS) protein, detected by immunoblot analysis, and iNOS mRNA, determined by real-time reverse-transcriptase coupled polymerase chain reaction analysis. Nuclear factor-kappa B (NF-kappa B) was significantly activated by LT-treatment, while the pretreatment with 20 mM of NAC prevented the activity by 42%. Pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, also inhibited the LT-mediated NO production dose-dependently. One hundred microM of PDTC inhibited the NO production by 46%. We also investigated the effect of NAC and PDTC on the production of interleukein-6 (IL-6), which is regulated transcriptionally by NF-kappa B in 3T3-L1 adipocytes. IL-6 production was markedly increased by LT stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by pretreatment with NAC or PDTC. These results suggest that NAC regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappa B.
Bone Factors Regulating the Osteotropism of Metastatic Breast Cancer
1999-10-01
C141: NIP3 (NIP3) C04j: rac-alpha serine/threonine kinase (rac-PK-alpha); protein kinase (PKB); c- akt ; aktl C09j: IEX-1L anti-death protein; PRG-l; DIF...fringe Elongation factor 1 alpha-I Transcription Factors GATA 3 Zinc finger GL IC CREB2/ATF4 IN-4-alpha NSEB (YB-i) C-1 Sinl NFkappaB p52 Trmansduction
Ueyama, Jun; Nadai, Masayuki; Zhao, Ying Lan; Kanazawa, Hiroaki; Takagi, Kenji; Kondo, Takaaki; Takagi, Kenzo; Wakusawa, Shinya; Abe, Fumie; Saito, Hiroko; Miyamoto, Ken-Ichi; Hasegawa, Takaaki
2008-08-01
Thalidomide has been reported to inhibit the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) that are involved in the down-regulation of hepatic cytochrome P450 (CYP) induced by endotoxin. In the present study, we investigated the effects of thalidomide on endotoxin-induced decreases in the activity and expression of hepatic CYP3A2 in rats. Thalidomide (50 mg/kg) was administered orally 22 h and 2 h before intraperitoneal injection of endotoxin (1 mg/kg). Twenty-four hours after the injection of endotoxin, antipyrine clearance experiments were conducted, in which the rats were sacrificed and protein levels of hepatic CYP3A2 were measured. There were no significant differences in the histopathological changes in the liver between the endotoxin-treated and endotoxin plus thalidomide-treated rats. Thalidomide had no effect on the systemic clearance of antipyrine, which is a proper indicator for hepatic CYP3A2 activity, whereas it enhanced endotoxin-induced decrease in the systemic clearance of antipyrine. Western blot analysis revealed that thalidomide had no effect on the protein levels of hepatic CYP3A2, whereas it enhanced the down-regulation of hepatic CYP3A2 by endotoxin. However, there were no significant differences in the concentrations of TNF-alpha and NO in plasma between the endotoxin-treated and endotoxin plus thalidomide-treated rats. The present findings suggest that thalidomide enhances endotoxin-induced decreases in the activity and expression of hepatic CYP3A2.
Miranda, Beatriz Nogueira Messias; Fotoran, Wesley Luzetti; Canduri, Fernanda; Souza, Dulce Helena Ferreira; Wunderlich, Gerhard; Carrilho, Emanuel
2018-02-01
The role of Alpha folate receptors (FRα) in folate metabolism and cancer development has been extensively studied. The reason for this is not only associated to its direct relation to disease development but also to its potential use as a highly sensitive and specific biomarker for cancers therapies. Over the recent years, the crystal structures of human FRα complexed with different ligands were described relying on an expensive and time-consuming production process. Here, we constructed an efficient system for the expression and purification of a human FRα in E. coli. Unlike a conventional expression method we used a specific protein fusion expressing the target protein together with a trigger factor (TF). This factor is a chaperone from E. coli that assists the correct folding of newly synthesized polypeptide chains. The activity of rTFFRα was comparable to glycosylphosphatidylinositol (GPI) anchored proteins extracted from HeLa tumor cells. Our work demonstrates a straightforward and versatile approach for the production of active human FRα by heterologous expression; this approach further enhances the development of inhibition studies and biotechnological applications. The purified product was then conjugated to liposomes, obtaining a 35% higher signal from densitometry measurement on the immunoblotting assay in the contruct containing the Ni-NTA tag, as a mimesis of an exosome, which is of vital importance to nanotherapeutic techniques associated to treatment and diagnosis of tumors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raths, S.K.
1987-01-01
Alpha-factor is a peptide of thirteen amino acids which is required for mating between the haploid mating types, a and ..cap alpha.., in Saccharomyces cerevisiae. An analogue of alpha-factor, DHP/sup 8/ DHP/sup 11/ Nle/sup 12/ tridecapeptide, was catalytically reduced in the presence of /sup 3/H gas for production of a radiolabeled pheromone suitable for use in binding studies. Incorporation of tritium resulted in /sup 3/H-alpha-factor with high specific activity, purity, biological activity and long shelf-life. Binding studies revealed that alpha-factor interacts with its receptor via a simple, reversible process which obeys the law of mass action. Association and dissociation kineticsmore » indicate values of 2.92 x 10/sup 6/ M/sup /minus/1/ min/sup -1/ for k/sub 1/ and between 4 and 7 x 10/sup /minus/2/ min/sup /minus/1/ for k/sub /minus/1/. Saturation binding studies reveal an equilibrium dissociation constant equal to 2.32 x 10/sup /minus/8/ M which approximate the kinetically-derived K/sub D/ of 2.12 x 10/sup /minus/8/ M. Scatchard and Hill analyses as well as dissociation behavior in the presence of excess unlabeled ligand indicate alpha-factor interacts with a homogeneous population of binding sites which do not interact and exhibit one affinity for the alpha-factor pheromone.« less
Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.
Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P
1998-01-01
The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800
Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.
Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P
1998-11-01
The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.
Development and Testing of the Nurse Manager EBP Competency Scale.
Shuman, Clayton J; Ploutz-Snyder, Robert J; Titler, Marita G
2018-02-01
The purpose of this study was to develop and evaluate the validity and reliability of an instrument to measure nurse manager competencies regarding evidence-based practice (EBP). The Nurse Manager EBP Competency Scale consists of 16 items for respondents to indicate their perceived level of competency on a 0 to 3 Likert-type scale. Content validity was demonstrated through expert panel review and pilot testing. Principal axis factoring and Cronbach's alpha evaluated construct validity and internal consistency reliability, respectively. Eighty-three nurse managers completed the scale. Exploratory factor analysis resulted in a 16-item scale with two subscales, EBP Knowledge ( n = 6 items, α = .90) and EBP Activity ( n = 10 items, α = .94). Cronbach's alpha for the entire scale was .95. The Nurse Manager EBP Competency Scale is a brief measure of nurse manager EBP competency with evidence of validity and reliability. The scale can enhance our understanding in future studies regarding how nurse manager EBP competency affects implementation.
Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira
2016-05-01
Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.
2007-06-01
We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less
Role of astrocytes in reproduction and neuroprotection.
Mahesh, Virendra B; Dhandapani, Krishnan M; Brann, Darrell W
2006-02-26
Hypothalamic astrocytes secrete TGF-beta and 3 alpha,5 alpha-tetrahydro progesterone (3 alpha,5 alpha-THP) in culture. When the astrocyte-conditioned medium (ACM) was incubated with the hypothalamic cell line GT1-7, it resulted in the secretion of GnRH. Immunoneutralization with TGF-beta antibody or ultra-filteration with a 10 kDa cut off filter resulted in attenuation of the GnRH releasing ability of ACM, indicating that TGF-beta was a major factor involved with GnRH release. Treatment with estrogens increases TGF-beta secretion. These observations indicate a significant role of astrocytes in GnRH secretion. Serum-deprivation results in the death of GT1-7 neurons in culture and addition of ACM or TGF-beta to the culture, attenuates cell death. The mechanism of protection from cell death appears to involve phosphorylation of MKK4, JNK, c-Jun(Ser63), and enhancement of AP-1 binding. Co-administration of JNK inhibitors, but not MEK inhibitors attenuated ACM or TGF-beta-induced c-Jun(Ser63) phosphorylation and their neuroprotective effects. These studies suggest that astrocytes can protect neurons, at least in part, by the release of TGF-beta and activation of a c-Jun/AP-1 protective pathway.
NASA Astrophysics Data System (ADS)
Michelini, Elisa; Mirasoli, Mara; Karp, Matti; Virta, Marko; Roda, Aldo
2004-06-01
Estrogen receptor (ER) is a ligand-activated transcriptional factor, able to dimerize after activation and to bind specific DNA sequences (estrogen response elements), thus activating gene target transcription. Since ER homo- and hetero-dimerization (giving a-a and a-b isoforms) is a fundamental step for receptor activation, we developed an assay for detecting compounds that induce human ERa homo-dimerization based on bioluminescence resonance energy transfer (BRET). BRET is a non-radiative energy transfer, occurring between a luminescent donor and a fluorescent acceptor, that strictly depends on the closeness between the two proteins and can therefore be used for studying protein-protein interactions. We cloned ERa coding sequence in frame with either a variant of the green fluorescent protein (enhanced yellow fluorescent protein, EYFP) or Renilla luciferase (RLuc). Upon ERa homo-dimerization, BRET process takes place in the presence of the RLuc substrate coelenterazine resulting in EYFP emission at its characteristic wavelength. The ER alpha-Rluc and ER alpha-EYFP fusion proteins were cloned, then the occurrence of BRET in the presence of ER alpha activators was assayed both in vivo, within cells, and in vitro, with purified fusion proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Lars, E-mail: lars.mueller@uksh-kiel.de; Seggern, Lena von; Schumacher, Jennifer
2010-07-02
Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparablemore » up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.« less
Imiquimod and resiquimod as novel immunomodulators.
Dockrell, D H; Kinghorn, G R
2001-12-01
Augmenting the host's natural immune response to viruses by the administration of exogenous cytokines such as interferon-alpha (IFN-alpha) is a strategy increasingly employed in antiviral therapeutics. Enhancing the release of endogenous cytokines is, however, an alternative approach. The imidazoquinolinamines imiquimod and resiquimod have demonstrated potency as inducers of IFN-alpha and other cytokines both in vitro and in vivo. Cytokine gene activation is mediated via the signal transducer and activator of transcription 1 (STAT-1) and involves the transcription factors NFkappaB and alpha4F1. Antiviral activity has been demonstrated against a variety of viruses, and clinical efficacy has been demonstrated against genital warts, herpes genitalis and molluscum contagiosum. Imiquimod is administered as a 5% cream (Aldara) and has been licensed for the treatment of anogenital warts in immunocompetent patients. Complete clearance of warts has been observed in up to half of treated patients with only local side effects reported. Resiquimod can be administered topically but also exists as an oral formulation. The range of potential infections for which these agents may have clinical utility includes chronic hepatitis C virus infection and Kaposi's sarcoma. In addition, the imidazoquinolinamines may find roles in the therapy of cancers and as vaccine adjuvants.
Harris, Anthony M; Dux, Paul E; Mattingley, Jason B
2018-05-15
Delineating the neural correlates of sensory awareness is a key requirement for developing a neuroscientific understanding of consciousness. A neural signal that has been proposed as a key neural correlate of awareness is amplitude reduction of 8-14 Hz alpha oscillations. Alpha oscillations are also closely linked to processes of spatial attention, providing potential alternative explanations for past results associating alpha oscillations with awareness. We employed a no-report inattentional blindness (IB) paradigm with electroencephalography to examine the association between awareness and the power of 8-14 Hz alpha oscillations. We asked whether the alpha-power decrease commonly reported when stimuli are perceived is related to awareness, or other factors that commonly confound awareness investigations, specifically task-relevance and visual salience. Two groups of participants performed a target discrimination task at fixation while irrelevant non-salient shape probes were presented briefly in the left or right visual field. One group was explicitly informed of the peripheral probes at the commencement of the experiment (the control group), whereas the other was not told about the probes until halfway through the experiment (IB group). Consequently, the IB group remained unaware of the probes for the first half of the experiment. In all conditions in which participants were aware of the probes, there was an enhanced negativity in the event-related potential (the visual awareness negativity). Furthermore, there was an extended contralateral alpha-power decrease when the probes were perceived, which was not present when they failed to reach awareness. These results suggest alpha oscillations are intrinsically associated with awareness itself. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Alpha channeling in a rotating plasma.
Fetterman, Abraham J; Fisch, Nathaniel J
2008-11-14
The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.
2011-10-01
healthy conditions such as exercise (6) and weight loss (22,48) while fission (degradation, dysfunction) is associated with obesity and disease (3,4...before each trial. Following an overnight 12 hour fast , participants arrived at the laboratory in the early morning to complete testing. Upon...type 2 diabetes, obesity , weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54: 2685-2693, 2005. 4
Lehnert, B E; Goodwin, E H
1997-01-01
The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706
Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun
2014-07-01
Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.
Lough, Denver; Dai, Hui; Yang, Mei; Reichensperger, Joel; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2013-11-01
Discovery of leucine-rich repeat-containing G-protein-coupled receptors 5 and 6 (LGR5 and LGR6) as markers of adult epithelial stem cells of the skin and intestine permits researchers to draw on the intrinsic cellular fundamentals of wound healing and proliferation dynamics of epithelial surfaces. In this study, the authors use the intestine-derived human alpha defensin 5 to stimulate epithelial proliferation, bacterial reduction, and hair production in burn wound beds to provide the field with initial insight on augmenting wound healing in tissues devoid of adnexal stem cells. Murine third-degree burn wound beds were treated with (1) intestine-derived human alpha defensin 5, (2) skin-derived human beta defensin 1, and (3) sulfadiazine to determine their roles in wound healing, bacterial reduction, and hair growth. The human alpha defensin 5 peptide significantly enhanced wound healing and reduced basal bacterial load compared with human beta defensin 1 and sulfadiazine. Human alpha defensin 5 was the only therapy to induce LGR stem cell migration into the wound bed. In addition, gene heat mapping showed significant mRNA up-regulation of key wound healing and Wnt pathway transcripts such as Wnt1 and Wisp1. Ex vivo studies showed enhanced cell migration in human alpha defensin 5-treated wounds compared with controls. Application of human alpha defensin 5 increases LGR stem cell migration into wound beds, leading to enhanced healing, bacterial reduction, and hair production through the augmentation of key Wnt and wound healing transcripts. These findings can be used to derive gut protein-based therapeutics in wound healing.
Identification of functional VEGF receptors on human platelets.
Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S
2002-02-13
Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.
Communication requirements of sparse Cholesky factorization with nested dissection ordering
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.
Chang, Ching-Chih; Wang, Sun-Sang; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Lee, Jing-Yi; Chen, Yi-Chou; Lee, Shou-Dong
2009-05-01
Arginine vasopressin (AVP) controls gastroesophageal variceal bleeding, partly due to its vasoconstrictive effect on portal-systemic collaterals. It has been shown that chronic thalidomide treatment decreases portal pressure, attenuates hyperdynamic circulation and inhibits vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-alpha in partially portal vein-ligated rats. This study investigated the effects of chronic thalidomide treatment on portal-systemic collateral vascular responsiveness to AVP in common bile duct-ligated (CBDL) cirrhotic rats. In the first series, CBDL-induced cirrhotic rats received thalidomide (50 mg/kg/day orally) or distilled water (control) from the 35th to 42nd day after ligation. On the 43rd day after ligation, the body weight, mean arterial pressure, portal pressure, and heart rate were measured. An in situ collateral vascular perfusion model was used to obtain the cumulative concentration-response curves of collateral vessels to AVP (10(-10) to 3 x 10(-7) M). Plasma levels of VEGF and TNF-alpha were measured, and expressions of VEGF and TNF-alpha mRNA in the left adrenal veins were also determined. In the second series, the cumulative concentration-response curves of collateral vessels to AVP in CBDL rats with or without thalidomide (10(-5) M) preincubation in the perfusate were obtained. The thalidomide and control groups were not significantly different in terms of heart rate, mean arterial pressure and portal pressure (p > 0.05). The collateral vascular perfusion pressure change to AVP was significantly enhanced at 10(-8) M after thalidomide treatment (p = 0.041). Compared with the control group, thalidomide-treated rats had significantly lower plasma VEGF levels (p < 0.001), accompanied by an insignificant reduction in plasma TNF-alpha levels (p > 0.05). The expressions of VEGF and TNF-alpha mRNA in the left adrenal veins of thalidomide-treated CBDL rats were not significantly changed compared with those of the control group. In addition, thalidomide did not significantly elicit changes in vascular responsiveness to AVP in collateral vessels of CBDL rats when it was added into the perfusate. In cirrhotic rats, chronic thalidomide treatment improves the portal-systemic collateral vascular responsiveness to AVP, which was partly related to VEGF inhibition.
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.
2008-05-01
A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.
Minimum requirements for the function of eukaryotic translation initiation factor 2.
Erickson, F L; Nika, J; Rippel, S; Hannig, E M
2001-01-01
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo. PMID:11333223
Serum and Urinary Levels of Tumor Necrosis Factor-Alpha in Renal Transplant Patients.
Senturk Ciftci, Hayriye; Demir, Erol; Savran Karadeniz, Meltem; Tefik, Tzevat; Yazici, Halil; Nane, Ismet; Savran Oguz, Fatma; Aydin, Filiz; Turkmen, Aydin
2017-12-18
Allograft rejection is an important cause of early and long-term graft loss in kidney transplant recipients. Tumor necrosis factor-alpha promotes T-cell activation, the key reaction leading to allograft rejection. Here, we investigated whether serum and urinary tumor necrosis factor-alpha levels can predict allograft rejection. This study included 65 living related-donor renal transplant recipients with mean follow-up of 26 ± 9 months. Serum and urinary tumor necrosis factor-alpha levels were measured at pretransplant and at posttransplant time points (days 1 and 7 and months 3 and 6); serum creatinine levels were also monitored during posttransplant follow-up. Standard enzyme-linked immunoabsorbent assay was used to detect tumor necrosis factor-alpha levels. Clinical variables were monitored. Nine of 65 patients (13.8%) had biopsy-proven rejection during follow-up. Preoperative serum and urinary tumor necrosis factor-alpha levels were not significantly different when we compared patients with and without rejection. Serum tumor necrosis factor-alpha levels (in pg/mL) were significantly higher in the allograft rejection versus nonrejection group at day 7 (11.5 ± 4.7 vs 15.4 ± 5.8; P = .029) and month 1 (11.1 ± 4.8 vs 17.8 ± 10.9; P =.003). Urinary tumor necrosis factor-alpha levels (in pg/mL) were also elevated in the allograft rejection versus the nonrejection group at days 1 (10.2 ± 2.5 vs 14.1 ± 6.8; P = .002) and 7 (9.8 ± 2.2 vs 14.5 ± 2.7; P < .001) and at months 1 (8.0 ± 1.7 vs 11.8 ± 2.4; P < .001), 3 (7.7 ± 1.6 vs 9.6 ± 1.7; P = .002), and 6 (7.4 ± 1.6 vs 8.9 ± 0.9; P = .005). Our preliminary findings suggest that tumor necrosis factor-alpha has a role in diagnosing renal transplant rejection. Serum and urinary tumor necrosis factor-alpha levels may be a possible predictor for allograft rejection.
Porcu, Patrizia; O'Buckley, Todd K; Alward, Sarah E; Marx, Christine E; Shampine, Lawrence J; Girdler, Susan S; Morrow, A Leslie
2009-01-01
The 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Despite substantial information on the progesterone derivative (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP, allopregnanolone), the physiological significance of the other endogenous GABAergic neuroactive steroids has remained elusive. Here, we describe the validation of a method using gas chromatography-mass spectrometry to simultaneously identify serum levels of the eight 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone. The method shows specificity, sensitivity and enhanced throughput compared to other methods already available for neuroactive steroid quantification. Administration of pregnenolone to rats and progesterone to women produced selective effects on the 3alpha,5alpha- and 3alpha,5beta-reduced neuroactive steroids, indicating differential regulation of their biosynthetic pathways. Pregnenolone administration increased serum levels of 3alpha,5alpha-THP (+1488%, p<0.001), (3alpha,5alpha)-3,21-dihydroxypregnan-20-one (3alpha,5alpha-THDOC, +205%, p<0.01), (3alpha,5alpha)-3-hydroxyandrostan-17-one (3alpha,5alpha-A, +216%, p<0.001), (3alpha,5alpha,17beta)-androstane-3,17-diol (3alpha,5alpha-A-diol, +190%, p<0.01). (3alpha,5beta)-3-hydroxypregnan-20-one (3alpha,5beta-THP) and (3alpha,5beta)-3-hydroxyandrostan-17-one (3alpha,5beta-A) were not altered, while (3alpha,5beta)-3,21-dihydroxypregnan-20-one (3alpha,5beta-THDOC) and (3alpha,5beta,17beta)-androstane-3,17-diol (3alpha,5beta-A-diol) were increased from undetectable levels to 271+/-100 and 2.4+/-0.9 pg+/-SEM, respectively (5/8 rats). Progesterone administration increased serum levels of 3alpha,5alpha-THP (+1806%, p<0.0001), 3alpha,5beta-THP (+575%, p<0.001), 3alpha,5alpha-THDOC (+309%, p<0.001). 3alpha,5beta-THDOC levels were increased by 307%, although this increase was not significant because this steroid was detected only in 3/16 control subjects. Levels of 3alpha,5alpha-A, 3alpha,5beta-A and pregnenolone were not altered. This method can be used to investigate the physiological and pathological role of neuroactive steroids and to develop biomarkers and new therapeutics for neurological and psychiatric disorders.
McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J
2009-04-01
In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.
Fernández, Ricardo; González, Sergio; Rey, Sergio; Cortés, Paula P; Maisey, Kevin R; Reyes, Edison-Pablo; Larraín, Carolina; Zapata, Patricio
2008-07-01
In the absence of information on functional manifestations of carotid body (CB) inflammation, we studied an experimental model in which lipopolysaccharide (LPS) administration to pentobarbitone-anaesthetized cats was performed by topical application upon the CB surface or by intravenous infusion (endotoxaemia). The latter caused: (i) disorganization of CB glomoids, increased connective tissue, and rapid recruitment of polymorphonuclear cells into the vascular bed and parenchyma within 4 h; (ii) increased respiratory frequency and diminished ventilatory chemoreflex responses to brief hypoxia (breathing 100% N(2) for 10 s) and diminished ventilatory chemosensory drive (assessed by 100% O(2) tests) during normoxia and hypoxia; (iii) tachycardia, increased haematocrit and systemic hypotension in response to LPS i.v.; and (iv) increased basal frequency of carotid chemosensory discharges during normoxia, but no change in maximal chemoreceptor responses to brief hypoxic exposures. Lipopolysaccharide-induced tachypnoea was prevented by prior bilateral carotid neurotomy. Apoptosis was not observed in CBs from cats subjected to endotoxaemia. Searching for pro-inflammatory mediators, tumour necrosis factor-alpha (TNF-alpha) was localized by immunohistochemistry in glomus and endothelial cells; reverse transcriptase-polymerase chain reaction revealed that the CB expresses the mRNAs for both type-1 (TNF-R1) and type-2 TNF-alpha receptors (TNF-R2); Western blot confirmed a band of the size expected for TNF-R1; and histochemistry showed the presence of TNF-R1 in glomus cells and of TNF-R2 in endothelial cells. Experiments in vitro showed that the frequency of carotid nerve discharges recorded from CBs perfused and superfused under normoxic conditions was not significantly modified by TNF-alpha, but that the enhanced frequency of chemosensory discharges recorded along responses to hypoxic stimulation was transiently diminished in a dose-dependent manner by TNF-alpha injections. The results suggest that the CB may operate as a sensor for immune signals, that the CB exhibits histological features of acute inflammation induced by LPS, that TNF-alpha may participate in LPS-induced changes in chemosensory activity and that some pathophysiological reactions to high levels of LPS in the bloodstream may originate from changes in CB function.
Teoh, Narci C; Williams, Jacqueline; Hartley, Jennifer; Yu, Jun; McCuskey, Robert S; Farrell, Geoffrey C
2010-03-01
Steatosis increases operative morbidity/mortality from ischemia-reperfusion injury (IRI); few pharmacological approaches have been protective. Using novel genetic/dietary models of nonalcoholic steatohepatitis (NASH) and simple steatosis (SS) in Alms1 mutant (foz/foz) mice, we characterized severity of IRI in NASH versus SS and lean liver and tested our hypothesis that the lipid-lowering effects of the peroxisome proliferation-activator receptor (PPAR)-alpha agonist Wy-14,643 would be hepatoprotective. Mice were subjected to 60-minute partial hepatic IRI. Microvascular changes were assessed at 15-minute reperfusion by in vivo microscopy, injury at 24 hours by serum alanine aminotransferase (ALT), and hepatic necrosis area. Injury and inflammation mediators were determined by way of immunoblotting for intercellular cellular adhesion molecule, vascular cellular adhesion molecule, p38, c-jun N-terminal kinase, IkappaB-alpha, interleukin (IL)-1a, IL-12, tumor necrosis factor-alpha (TNF-alpha) and IL-6, cell cycle by cyclin D1 and proliferating cell nuclear antigen immunohistochemistry. In foz/foz mice fed a high-fat diet (HFD) to cause NASH or chow (SS), IRI was exacerbated compared with HFD-fed or chow-fed wild-type littermates by ALT release; corresponding necrotic areas were 60 +/- 22% NASH, 29 +/- 9% SS versus 7 +/- 1% lean. Microvasculature of NASH or SS livers was narrowed by enormous lipid-filled hepatocytes, significantly reducing numbers of perfused sinusoids, all exacerbated by IRI. Wy-14,643 reduced steatosis in NASH and SS livers, whereas PPAR-alpha stimulation conferred substantial hepatoprotection against IRI by ALT release, with reductions in vascular cellular adhesion molecule-1, IL-1a, TNF-alpha, IL-12, activated nuclear factor-kappaB (NF-kappaB), p38, IL-6 production and cell cycle entry. NASH and SS livers are both more susceptible to IRI. Mechanisms include possible distortion of the microvasculature by swollen fat-laden hepatocytes, and enhanced production of several cytokines. The beneficial effects of Wy-14,643 may be exerted by dampening adhesion molecule and cytokine responses, and activating NF-kappaB, IL-6 production, and p38 kinase to effect cell cycle entry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, R.K.; Otte, C.A.
Eight independently isolated mutants which are supersensitive (Sst/sup -/) to the G1 arrest induced by the tridecapeptide pheromone ..cap alpha.. factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by ..cap alpha.. factor. These mutants carries lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to ..cap alpha.. factor, but MAT..cap alpha.. sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on bothmore » MATa and MAT..cap alpha.. cells. Even in the absence of added ..cap alpha.. pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology (''shmoo'' shape) that normally develops only after MATa cells are exposed to ..cap alpha.. factor. This ''self-shmooing'' phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT..cap alpha.. diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT..cap alpha.. sst2-1/sst2-1) were still insensitive to ..cap alpha.. factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked nor centromere distal to MAT on the right arm of chromosome III.« less
Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won
2016-01-01
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. PMID:27690089
Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won
2016-09-27
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract.
{alpha}+{sup 6,8}He resonant scattering and exotic structures in {sup 10,12}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Makoto; Itagaki, Naoyuki
2008-05-21
The {alpha}+{sup 6}He low-energy reactions and the structural changes of {sup 10}Be in the microscopic {alpha}+{alpha}+2N model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the {alpha}+{sup 6}He(2{sub 1}{sup +}) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. The similar method is applied to the resonant scattering of {alpha}+{sup 8}He, and the coupling with the compound configurations of {alpha}+{alpha}+4N are discussed.
Permanent renal loss following tumor necrosis factor α antagonists for arthritis.
Chen, Tzu-Jen; Yang, Ya-Fei; Huang, Po-Hao; Lin, Hsin-Hung; Huang, Chiu-Ching
2010-06-01
Tumor necrosis factor alpha (TNF-alpha) antagonists are now widely used in the treatment of aggressive rheumatoid arthritis and are generally well tolerated. Although rare, they could induce systemic lupus erythematosus, glomerulonephritis, and antineutrophil cytoplasmic antibody associated systemic vasculitis. Tumor necrosis factor alpha antagonists associated glomerulonephritis usually subsides after discontinuation of the therapy and subsequent initiation of corticosteroids and immunosuppressive agents. Here we describe crescentic glomerulonephritis progression to end-stage renal disease in a patient following two doses of TNF-alpha antagonists for the treatment of reactive arthritis. To our knowledge, dialysis dependent permanent renal loss after TNF-alpha antagonists has not yet been reported. We suggest the renal function should be closely monitored in patients treated with TNF-alpha antagonists by rheumatologists.
Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R
1989-06-15
Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.
Yang, Chen; Huang, Junlin; Huang, Xiaowen; Huang, Shaozhuo; Cheng, Jiaxin; Liao, Weixin; Chen, Xuewen; Wang, Xueyi; Dai, Shixue
2018-05-12
The association between anti-tumor necrosis factor alpha agents and the risk of lymphoma in patients with inflammatory bowel disease has already been sufficiently reported. However, the results of these studies are inconsistent. Hence, this analysis was conducted to investigate whether anti-tumor necrosis factor alpha agents can increase the risk of lymphoma in inflammatory bowel disease patients. MEDLINE, EMBASE and the Cochrane Library were searched to identify relevant studies which evaluated the risk of lymphoma in inflammatory bowel disease patients treated with anti-tumor necrosis factor alpha agents. A random-effects meta-analysis was performed to calculate the pooled incidence rate ratios as well as risk ratios. Twelve studies comprising 285811 participants were included. The result showed that there was no significantly increased risk of lymphoma between anti-tumor necrosis factor alpha agents exposed and anti-tumor necrosis factor alpha agents unexposed groups (random effects: incidence rate ratio [IRR], 1.43 95%CI, 0.91-2.25, p= 0.116; random effects: risk ratio [RR], 0.83 95%CI, 0.47-1.48, p=0.534). However, monotherapy of anti-tumor necrosis factor alpha agents (random effects: IRR=1.65, 95%CI, 1.16-2.35; p=0.006; random effects: RR=1.00, 95%CI, 0.39-2.59; p=0.996) or combination therapy (random effects: IRR=3.36, 95%CI, 2.23-5.05; p< 0.001; random effects: RR=1.90, 95%CI, 0.66-5.44; p=0.233) can significantly increase the risk of lymphoma. Exposition of anti-tumor necrosis factor alpha agents in patients with inflammatory bowel disease is not associated with a higher risk of lymphoma. Combination therapy and anti-tumor necrosis factor alpha agents monotherapy can significantly increase the risk of lymphoma in patients with inflammatory bowel disease.
Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis.
Germain, Mitchel; De Arcangelis, Adèle; Robinson, Stephen D; Baker, Marianne; Tavora, Bernardo; D'Amico, Gabriela; Silva, Rita; Kostourou, Vassiliki; Reynolds, Louise E; Watson, Alan; Jones, J Louise; Georges-Labouesse, Elisabeth; Hodivala-Dilke, Kairbaan
2010-02-01
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo. Copyright 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong
2009-04-01
Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; John, Aparna; Agaian, Sos S.
2017-03-01
2-D quaternion discrete Fourier transform (2-D QDFT) is the Fourier transform applied to color images when the color images are considered in the quaternion space. The quaternion numbers are four dimensional hyper-complex numbers. Quaternion representation of color image allows us to see the color of the image as a single unit. In quaternion approach of color image enhancement, each color is seen as a vector. This permits us to see the merging effect of the color due to the combination of the primary colors. The color images are used to be processed by applying the respective algorithm onto each channels separately, and then, composing the color image from the processed channels. In this article, the alpha-rooting and zonal alpha-rooting methods are used with the 2-D QDFT. In the alpha-rooting method, the alpha-root of the transformed frequency values of the 2-D QDFT are determined before taking the inverse transform. In the zonal alpha-rooting method, the frequency spectrum of the 2-D QDFT is divided by different zones and the alpha-rooting is applied with different alpha values for different zones. The optimization of the choice of alpha values is done with the genetic algorithm. The visual perception of 3-D medical images is increased by changing the reference gray line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuai; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Lv, Jiaju
2012-03-30
Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responsesmore » in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNF{alpha}-induced RASMC migration and monocyte adhesion to RASMCs were inhibited by the Cyld knockdown. Finally, immunochemical staining revealed a dramatic augment of CYLD expression in the injured coronary artery with neointimal hyperplasia. Taken together, our results uncover an unexpected role of CYLD in promoting inflammatory responses in VSMCs via a mechanism involving MAPK activation but independent of NF-{kappa}B activity, contributing to the pathogenesis of vascular disease.« less
Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C
1991-05-01
The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.
Paul, Shelley Chireyath; Lv, Peng; Xiao, Yan-Jv; An, Ping; Liu, Shi-Quan; Luo, He-Sheng
2006-01-01
Thalidomide inhibited tumor necrosis factor-alpha (TNF-alpha) effectively in many trials. The aim of this study was to investigate the effect of thalidomide on the expression of nuclear factor-kappaB (NF-kappaB), inhibitor of NF-kappaB (IkappaB) and TNF-alpha in a rat model of liver cirrhosis. Liver cirrhosis was achieved by intraperitoneal injection of carbon tetrachloride thrice weekly, and thalidomide (10 or 100 mg/kg/day) was given daily by intragastric route for 8 weeks. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), prealbumin (PA), hyaluronic acid (HA) and laminin (LN), and hydroxyproline (HYP), NF-kappaBp65, alpha-smooth muscle actin (alpha-SMA) protein and TNF-alpha mRNA were studied in the liver, IkappaBalpha and TNF-alpha protein in the cytoplasm and NF-kappaBp65 protein in the nucleus. Compared with nontreated cirrhotic rats, the histopathology of rats given thalidomide (100 mg/kg) was significantly better. Serum ALT, AST, HA and LN and HYP content in the liver were significantly decreased and PA was elevated (p < 0.01) in this group; the expression of TNF-alpha mRNA and protein, NF-kappaBp65 and alpha-SMA were significantly decreased and IkappaBalpha protein was also elevated (p < 0.01). Thalidomide downregulates NF-kappaB-induced TNF-alpha and activates hepatic stellate cells (HSC) via inhibition of IkappaB degradation to prevent liver cirrhosis. Copyright 2006 S. Karger AG, Basel.
Gao, Beixue; Calhoun, Karen; Fang, Deyu
2006-01-01
The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.
Wieseler-Frank, Julie; Jekich, Brian M; Mahoney, John H; Bland, Sondra T; Maier, Steven F; Watkins, Linda R
2007-07-01
Pain is enhanced in response to elevations of proinflammatory cytokines in spinal cerebrospinal fluid (CSF), following either intrathecal injection of these cytokines or intrathecal immune challenge with HIV-1 gp120 that induces cytokine release. Spinal cord glia have been assumed to be the source of endogenous proinflammatory cytokines that enhance pain. However, assuming that spinal cord glia are the sole source of CSF cytokines may be an underestimate, as the cellular composition of the meninges surrounding the spinal cord CSF space includes several cell types known to produce proinflammatory cytokines. The present experiments provide the first investigation of the immunocompetent nature of the spinal cord meninges. Here, we explore whether rat meninges are responsive to intrathecal gp120. These studies demonstrate that: (a) intrathecal gp120 upregulates meningeal gene expression of proinflammatory signals, including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS), and (b) intrathecal gp120 induces meningeal release of TNF-alpha, IL-1beta, and IL-6. In addition, stimulation of isolated meninges in vitro with gp120 induced the release of TNF-alpha and IL-1beta, indicating that the resident cells of the meninges are able to respond without immune cell recruitment. Taken together, these data document that the meninges are responsive to immunogenic stimuli in the CSF and that the meninges may be a source of immune products detected in CSF. The ability of the meninges to release to proinflammatory signals suggests a potential role in the modulation of pain.
Coronal X-ray enhancements associated with H-alpha filament disappearances
NASA Technical Reports Server (NTRS)
Webb, D. F.; Krieger, A. S.; Rust, D. M.
1976-01-01
The X-ray telescope experiment aboard the Skylab/ATM mission provided high-resolution soft X-ray images of the lower corona away from active regions, revealing frequent large-scale transient X-ray enhancements which could often be associated with the disappearance of H-alpha filaments. The X-ray emitting structures featured peak brightnesses similar to those of nonflaring active region structures, durations from 3 to 40 hours, shapes that in general outlined the preexisting H-alpha filaments to as large as 400,000 km, apparent expansion velocities of the order of tens of km/sec, and observed peak temperatures of the order of a few million degrees. One such event is described and analyzed in detail. Two explanations of the events are discussed: (1) excess cool material is present in the filament cavity, contributing to the X-ray enhancement, and (2) the enhancement is due to the compression of preexisting material by a changing magnetic field.
Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin
2014-01-01
Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.
Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray
2014-11-01
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.
Identification of the antigenic determinants of factors 8, 9, and 34 of genus Candida.
Kobayashi, H; Oyamada, H; Suzuki, A; Shibata, N; Suzuki, S; Okawa, Y
1996-10-21
We investigated the antigenic determinants of factors 8, 9, and 34 of the genus Candida among pathogenic yeasts by enzyme-linked immunosorbent assay (ELISA) using mannans of Saccharomyces cerevisiae wild type and mutant types, mnn 1-mnn 4 and mnn 2. Results of ELISA including antisera against the antigenic factors of genus Candida (Candida Check, latron; FAbs) indicated that these three types of mannan distinctly react with FAbs 34, 8 and 9, respectively. To identify the recognition sites of these FAbs, we compared the ability of various oligosaccharides to inhibit the binding of the mannans to FAbs. The results indicated that FAb 34 preferentially recognizes linear side chains containing a non-reducing terminal alpha-1,3-linked mannose residue, Man(alpha)1 --> 3Man(alpha)1 --> (2Man(alpha)1 --> )n(2Man) (n > or = 0), and that one of the recognition sites of FAb 9 is linear alpha-1,6-linked oligomannosyl series, Man(alpha)1 --> (6Man(alpha)1 --> )n(6Man) (n > or = 2). On the other hand, the recognition site of FAb 8 apparently consisted of two alpha-1,2-linked oligomannosyl side chains and an alpha-1,6-linked mannose residue that originated from the mannan backbone, Man(alpha)1 --> 2Man(alpha)1 --> 2(Man(alpha)1 -->2Man(alpha)1 --> 6)Man.
Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model.
Norris, Erin H; Uryu, Kunihiro; Leight, Susan; Giasson, Benoit I; Trojanowski, John Q; Lee, Virginia M-Y
2007-02-01
The factors initiating or contributing to the pathogenesis of Parkinson's disease and related neurodegenerative synucleinopathies are still largely unclear, but environmental factors such as pesticides have been implicated. In this study, A53T mutant human alpha-synuclein transgenic mice (M83), which develop alpha-synuclein neuropathology, were treated with the pesticides paraquat and maneb (either singly or together), and their effects were analyzed. Immunohistochemical and biochemical analyses showed that chronic treatment of M83 transgenic mice with both pesticides (but not with either pesticide alone) drastically increased neuronal alpha-synuclein pathology throughout the central nervous system including the hippocampus, cerebellum, and sensory and auditory cortices. alpha-Synuclein-associated mitochondrial degeneration was observed in M83 but not in wild-type alpha-synuclein transgenic mice. Because alpha-synuclein inclusions accumulated in pesticide-exposed M83 transgenic mice without a motor phenotype, we conclude that alpha-synuclein aggregate formation precedes disease onset. These studies support the notion that environmental factors causing nitrative damage are closely linked to mechanisms underlying the formation of alpha-synuclein pathologies and the onset of Parkinson's-like neurodegeneration.
USDA-ARS?s Scientific Manuscript database
Iron absorption from infant formula is relatively low. Alpha-lactalbumin and casein-glycomacropeptide have been suggested to enhance mineral absorption. We therefore assessed the effect of alpha-lactalbumin and casein-glycomacropeptide on iron absorption from infant formula in healthy term infants. ...
Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M
2004-10-27
Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.
Mui, B; Raney, S G; Semple, S C; Hope, M J
2001-09-01
The therapeutic benefit from phosphorothioate oligodeoxynucleotides (PS ODN) containing immune stimulatory sequences (ISS) has been demonstrated in animal models of cancer and infection. In particular, when CpG-containing PS ODN are administered to mice, activation of macrophages and dendritic, NK, T, and B cells occurs, resulting in the release of an array of cytokines, including interleukin-12 (IL-12), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). We have previously described stabilized antisense-lipid particles (SALP) for the i.v. administration of antisense ODN [Biochim Biophys Acta (2001) 1510:152--166]. Given the propensity for SALP to target macrophages in vivo it was of interest to determine whether they could enhance the potency of CpG ODN to induce an immune response. In this report we show that when CpG-containing SALP are administered intravenously to ICR mice the plasma concentrations of IL-12, IFN-gamma, IL-6, monocyte chemoattractant protein-1, and TNF-alpha are greatly increased compared with the same dose of free ODN. The pattern of cytokine induction indicates that the immune response is T helper cell type 1-biased, similar to that observed for PS CpG ODN ISS in general. Furthermore, when phosphodiester (PO) ODN is substituted for PS ODN in the SALP formulation cytokine induction is even greater at the early time points, in marked contrast to free PO ODN, which is inactive. These results demonstrate that the immunogenicity of ISS is not only enhanced by encapsulation in lipid particles, which more closely mimic the way ISS DNA would normally be presented to antigen presenting cells by pathogens in vivo, but also SALP enable unmodified PO CpG ODN to be used as immune stimulants.
Alpha Power Modulates Perception Independently of Endogenous Factors.
Brüers, Sasskia; VanRullen, Rufin
2018-01-01
Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.
Shepard, L W; Yang, M; Xie, P; Browning, D D; Voyno-Yasenetskaya, T; Kozasa, T; Ye, R D
2001-12-07
The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.
2011-03-11
Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less
Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min
2008-12-01
To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.
Schwartzkopff, Franziska; Grimm, Tobias A; Lankford, Carla S R; Fields, Karen; Wang, Jiun; Brandt, Ernst; Clouse, Kathleen A
2009-12-01
Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.
Daily treatment with {alpha}-naphthoflavone enhances follicular growth and ovulation rate in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreiro, Karina A.; Di Yorio, Maria P.; Artillo-Guida, Romina D.
2011-04-01
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and the first protein involved in a variety of physiological and toxicological processes, including those of xenobiotic metabolizing enzymes. AhR has been found in the ovary of many species and seems to mediate the ovarian toxicity of many environmental contaminants, which are AhR ligands. However, the role of AhR in the ovarian function is unknown. Therefore, the aim of this work was to study the action of {alpha}-naphthoflavone ({alpha}NF), known to be an AhR antagonist, on both follicular growth and ovulation. Immature Sprague-Dawley rats were daily injected intraperitoneally with {alpha}NFmore » (0.1-80 mg/kg) or vehicle for 12 days, and primed with gonadotrophins (eCG/hCG) to induce follicular growth and ovulation. Ovaries were obtained 20 h after hCG administration. By means of immunohistochemistry, we found that the numbers of primordial, primary and antral follicles were increased in rats treated with 80 mg/kg {alpha}NF and that there were no differences with other doses. Likewise, the ovarian weight and the ovulation rate, measured by both number of oocytes within oviducts and corpora lutea in ovarian sections, were increased when the rats received either 1 or 10 mg/kg daily. Although further studies are necessary to know the mechanism of action of {alpha}NF, it is possible that the different ovarian processes can be differentially responsive to the presence of different levels of {alpha}NF, and that the same or different endogenous AhR ligands can be involved in these ovarian processes in a cell type-dependent manner.« less
Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults
Ponomareva, Natalya; Andreeva, Tatiana; Protasova, Maria; Shagam, Lev; Malina, Daria; Goltsov, Andrei; Fokin, Vitaly; Mitrofanov, Andrei; Rogaev, Evgeny
2013-01-01
Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to confer risk for AD and the allele T may have a protective effect. We investigated the influence of the AD-associated CLU genotype on a common neurophysiological trait of brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated whether this influence is modified over the course of aging. We examined quantitative electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80) divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype on EEG characteristics, only subjects without the ApoE ε4 allele were included in the study. The homozygous presence of the AD risk variant CLU CC in non-demented subjects was associated with an increase of alpha3 absolute power. Moreover, the influence of CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of age. The study also showed age-dependent alterations of alpha topographic distribution that occur independently of the CLU genotype. The increase of upper alpha power has been associated with hippocampal atrophy in patients with mild cognitive impairment (Moretti etal., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm, particularly enhanced in elderly non-demented individuals, may imply that the genotype is related to preclinical dysregulation of hippocampal neurophysiology in aging and that this factor may contribute to the pathogenesis of AD. PMID:24379779
Chiang, C H; Hsu, K; Yan, H C; Harn, H J; Chang, D M
1997-08-01
A method to reduce ischemia-reperfusion (I/R) injury can be an important criterion to improve the preservation solution. Although University of Wisconsin solution (UW) works as a lung preservation solution, its attenuation effect on I/R injury has not been investigated. We attempted to determine whether, by adding various protective agents, modified UW solutions will enhance the I/R attenuation by UW. We examined the I/R injury in an isolated rat lung model. Various solutions, e.g., physiological salt solution (PSS), UW, and modified UW solutions containing various protective agents such as prostaglandin E1, dexamethasone, U-74389G, or dibutyryl adenosine 3',5'-cyclic monophosphate were perfused individually to evaluate the I/R injury. Isolated rat lung experiments, with ischemia for 45 min, then reperfusion for 60 min, were conducted in a closed circulating system. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficient (Kfc), protein content of lavage fluid, concentration of cytokines, and lung histopathology were analyzed. Results showed that the acute I/R lung injury with immediate permeability pulmonary edema was associated with an increase in tumor necrosis factor-alpha (TNF-alpha) production. A significant correlation existed between TNF-alpha and Kfc (r = 0.8, P < 0.0001) and TNF-alpha and LWG (r = 0. 9, P < 0.0001), indicating that TNF-alpha is an important cytokine modulating early I/R injury. Significantly lower levels of Kfc, LWG, TNF-alpha, and protein concentration of lung lavage (P < 0.05) were found in the UW-perfused group than in the control group perfused with PSS. Modified UW promoted the protective effect of UW to further decrease Kfc, LWG, and TNF-alpha (P < 0.05). Histopathological observations also substantiated this evidence. In the UW+U-74389G group, bronchial alveolar lavage fluid contained lowest protein concentration. We conclude that the UW solution attenuates I/R injury of rat lung and that the modified UW solutions further enhance the effect of UW in reducing I/R injury. Among modified solutions, UW+U-74389G is the best. Further investigation of the improved effects of the modified UW solutions would be beneficial in lung transplantation.
Mechanisms involved in the ENHANCED SUSCEPTIBILITY of SENESCENT Rats TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: Role of peroxisome proliferator-activated receptor alpha (PPARa), cell proliferation and oxidative stress
Jihan A. Youssef1, Pierre Ammann2, B...
2009-09-01
ABSTRACT (maximum 200 words) Alpha contracting is a collaborative effort between a buyer and supplier during contract formation to maximize efficiency...experienced Alpha contracting teams, to include contracting officers, DCAA, DCMA, end users/ customers , program managers and acquisition directors to better...PROCESSES, ISSUES, SUCCESS FACTORS AND CONSEQUENCES ABSTRACT Alpha contracting is a collaborative effort between a buyer and supplier
Avramovich-Tirosh, Y; Bar-Am, O; Amit, T; Youdim, M B H; Weinreb, O
2010-06-01
Based on a multimodal drug design paradigm, we have synthesized a multifunctional non-toxic, brain permeable iron chelator, M30, possessing the neuroprotective propargylamine moiety of the anti-Parkinsonian drug, rasagiline (Azilect) and antioxidant-iron chelator moiety of an 8-hydroxyquinoline derivative of our iron chelator, VK28. M30 was recently found to confer potential neuroprotective effects in vitro and in various preclinical neurodegenerative models and regulate the levels and processing of the Alzheimer's amyloid precursor protein and its toxic amyloidogenic derivative, Abeta. Here, we show that M30 activates the hypoxia-inducible factor (HIF)-1alpha signaling pathway, thus promoting HIF-1alpha mRNA and protein expression levels, as well as increasing transcription of HIF-1alpha-dependent genes, including vascular endothelial growth factor, erythropoietin, enolase-1, p21 and tyrosine hydroxylase in rat primary cortical cells. In addition, M30 also increased the expression levels of the transcripts of brain derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43). Regarding aspects of relevance to Alzheimer's disease (AD), western blotting analysis of glycogen synthase kinase- 3beta (GSK-3beta) signaling pathway revealed that M30 enhanced the levels of phospho-AKT (Ser473) and phospho- GSK-3beta (Ser9) and attenuated Tau phosphorylation. M30 was also shown to protect cultured cortical neurons against Abeta(25-35) toxicity. All these multimodal pharmacological activities of M30 might be beneficial for its potent efficacy in the prevention and treatment of neurodegenerative conditions, such as Parkinson's disease and AD in which oxidative stress and iron-mediated toxicity are involved.
Metkar, Shalaka; Awasthi, Shanjana; Denamur, Erick; Kim, Kwang Sik; Gangloff, Sophie C; Teichberg, Saul; Haziot, Alain; Silver, Jack; Goyert, Sanna M
2007-11-01
Severe bacterial infections leading to sepsis or septic shock can be induced by bacteria that utilize different factors to drive pathogenicity and/or virulence, leading to disease in the host. One major factor expressed by all clinical isolates of gram-negative bacteria is lipopolysaccharide (LPS); a second factor expressed by some Escherichia coli strains is a K1 polysaccharide capsule. To determine the role of the CD14 LPS receptor in the pathogenic effects of naturally occurring E. coli, the responses of CD14-/- and CD14+/+ mice to three different isolates of E. coli obtained from sepsis patients were compared; two isolates express both smooth LPS and the K1 antigen, while the third isolate expresses only LPS and is negative for K1. An additional K1-positive isolate obtained from a newborn with meningitis and a K1-negative isogenic mutant of this strain were also used for these studies. CD14-/- mice were resistant to the lethal effects of the K1-negative isolates. This resistance was accompanied by significantly lower levels of systemic tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) in these mice than in CD14+/+ mice, enhanced clearance of the bacteria, and significantly fewer additional gross symptoms. In contrast, CD14-/- mice were as sensitive as CD14+/+ mice to the lethal effects of the K1-positive isolates, even though they had significantly lower levels of TNF-alpha and IL-6 than CD14+/+ mice. These studies show that different bacterial isolates can use distinctly different mechanisms to cause disease and suggest that new, nonantibiotic therapeutics need to be directed against multiple targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yu; Wang, Wenhui; Wang, Qi
Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886more » (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.« less
Nemoto, Eiji; Kunii, Ryotaro; Tada, Hiroyuki; Tsubahara, Taisuke; Ishihata, Hiroshi; Shimauchi, Hidetoshi
2004-02-01
CD73/5'-nucleotidase (5'-NT) is an ectoenzyme that participates in immune/inflammatory reactions. We examined the possible expression of CD73/5'-NT on human gingival fibroblasts (hGF), which are important to the immune/inflammatory system in periodontal tissue. We demonstrated that CD73/5'-NT was expressed on hGF by flow cytometry. We found that pre-treatment of hGF with 5'-AMP induced marked inhibition of granulocyte-macrophage colony-stimulating factor (GM-CSF) production from hGF upon stimulation with interleukin-1alpha (IL-1alpha) by enzyme-linked immunosorbent assay (ELISA). A specific inhibitor of 5'-NT, adenosine 5'-[alpha,beta-methylene] diphosphate blocked the inhibition of GM-CSF production, suggesting that adenosine converted from 5'-AMP acts on the inhibitory effects. The GM-CSF inhibition suggested that A3 receptor might be involved. The rank order of agonists was found to be (N6-benzyl-5'-N-ethylcarboxamidoadenosine) A3 receptor agonist > or = (2-chloroadenosine) non-selective agonist > (CGS-21680) A2A receptor agonist > adenosine > or = (N6-cyclohexyladenosine) A1 agonist. Further support for the main role of A3 receptor was the binding A3 antagonist [9-chloro-2-(2-furanyl)-5-([phenylacetyl]amino)[1,2,4]-triazolo[1,5-c]quinazdine] reversed the effect of adenosine, but no significant reverse was observed by A1 (1,3-dipropyl-8-cyclopentylxanthine), A2 [3,7-dimethyl-1-(2-propargyl)xanthine], A2A[8-(3-chlorostyryl)caffeine], and A2B (alloxazine) antagonists. The CD73/5'-NT expression was increased upon stimulation with gamma-interferon, but not other stimulants such as tumor necrosis factor-alpha, IL-4, lipopolysaccharide from Porphyromonas gingivalis and Escherichia coli, and fimbriae from P. gingivalis, and this increase was correlated with the enhanced GM-CSF inhibition by 5'-AMP but not adenosine. These findings suggested that CD73/5'-NT on hGF exerts an anti-inflammatory effects in periodontal disease by conversion from 5'-AMP to adenosine.
Antinociceptive synergism of MD-354 and clonidine. Part II. The alpha-adrenoceptor component.
Young, Shawquia; Vainio, Minna; Scheinin, Mika; Dukat, Małgorzata
2010-08-01
Previously, we reported that antinociceptive synergism of a 5-HT(3)/alpha(2)-adrenoceptor ligand MD-354 (m-chlorophenylguanidine) and clonidine combination occurs, in part, through a 5-HT(3) receptor antagonist mechanism. In the present investigation, a possible role for alpha(2)-adrenoceptors was examined. Mechanistic studies using yohimbine (a subtype non-selective alpha(2)-adrenoceptor antagonist), BRL 44408 (a preferential alpha(2A)-adrenoceptor antagonist) and imiloxan (a preferential alpha(2B/C)-adrenoceptor antagonist) on the antinociceptive actions of a MD-354/clonidine combination were conducted. Subcutaneous pre-treatment with all three antagonists inhibited the antinociceptive synergism of MD-354 and clonidine in the mouse tail-flick assay in a dose-dependent manner (AD(50) = 0.33, 2.1, and 0.17 mg/kg, respectively). Enhancement of clonidine antinociception by MD-354 did not potentiate clonidine's locomotor suppressant activity in a mouse locomotor assay. When [ethyl-3H]RS-79948-197 was used as radioligand, MD-354 displayed almost equal affinity to alpha(2A)- and alpha(2B)-adrenoceptors (K(i) = 110 and 220 nM) and showed lower affinity at alpha(2C)-adrenoceptors (K(i) = 4,700 nM). MD-354 had no subtype-selectivity for the alpha(2)-adrenoceptor subtypes as an antagonist in functional [35S]GTPgammaS binding assays. MD-354 was a weak partial agonist at alpha(2A)-adrenoceptors. Overall, in addition to the 5-HT(3) receptor component, the present investigation found MD-354 to be a weak partial alpha(2A)-adrenoceptor agonist that enhances clonidine's thermal antinociceptive actions through an alpha(2)-adrenoceptor-mediated mechanism without augmenting sedation.
Neurofeedback training of EEG alpha rhythm enhances episodic and working memory.
Hsueh, Jen-Jui; Chen, Tzu-Shan; Chen, Jia-Jin; Shaw, Fu-Zen
2016-07-01
Neurofeedback training (NFT) of the alpha rhythm has been used for several decades but is still controversial in regards to its trainability and effects on working memory. Alpha rhythm of the frontoparietal region are associated with either the intelligence or memory of healthy subjects and are also related to pathological states. In this study, alpha NFT effects on memory performances were explored. Fifty healthy participants were recruited and randomly assigned into a group receiving a 8-12-Hz amplitude (Alpha) or a group receiving a random 4-Hz amplitude from the range of 7 to 20 Hz (Ctrl). Three NFT sessions per week were conducted for 4 weeks. Working memory was assessed by both a backward digit span task and an operation span task, and episodic memory was assessed using a word pair task. Four questionnaires were used to assess anxiety, depression, insomnia, and cognitive function. The Ctrl group had no change in alpha amplitude and duration. In contrast, the Alpha group showed a progressive significant increase in the alpha amplitude and total alpha duration of the frontoparietal region. Accuracies of both working and episodic memories were significantly improved in a large proportion of participants of the Alpha group, particularly for those with remarkable alpha-amplitude increases. Scores of four questionnaires fell in a normal range before and after NFT. The current study provided supporting evidence for alpha trainability within a small session number compared with that of therapy. The findings suggested the enhancement of working and episodic memory through alpha NFT. Hum Brain Mapp 37:2662-2675, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tumor necrosis factor-alpha converting enzyme in the human placenta throughout gestation.
Hung, Tai-Ho; Chen, Szu-Fu; Hsieh, Ching-Chang; Hsu, Jenn-Jeih; Li, Meng-Jen; Yeh, Yi-Lin; Hsieh, T'sang-T'ang
2008-02-01
Ectodomain shedding of epidermal growth factor receptor ligands such as transforming growth factor- alpha (TGF-alpha), heparin-binding epidermal growth factor-like growth factor (HBEGF), and amphiregulin (AREG) is considered to be important during implantation. Tumor necrosis factor-alpha converting enzyme (TACE) has been suggested as the major sheddase for these molecules. The objectives of this study are (1) to characterize the expression of TACE in the human placenta throughout gestation; (2) to determine the association between the expression of TACE with TGF-alpha, HBEGF, and AREG; (3) to ascertain whether TACE mediates TGF-alpha, HBEGF, and AREG shedding; and (4) to examine the effect of hypoxia on the expression of TACE. By analyzing a total of 55 villous samples representing different gestational ages, the authors found that TACE was continuously expressed in the placentas throughout gestation and that the levels of TACE were positively correlated with the levels of TGF-alpha, HBEGF, and AREG. Preadministration of a TACE inhibitor in villous explant cultures or transfection of cytotrophoblastic cells with TACE-specific small interference RNA decreased the shedding of HBEGF and AREG. Moreover, hypoxia (2% O(2)) caused an increase in the levels of TACE mRNA and protein in villous explants and primary cytotrophoblastic cells in vitro. These results indicate that oxygen regulates the expression of TACE and that TACE may be important for placental development during human pregnancy.
Human gingival fibroblasts express functional chemokine receptor CXCR6.
Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T
2009-06-01
We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.
NASA Astrophysics Data System (ADS)
Brown, Jeffrey A.; Wallerstein, George; Zucker, Daniel
1997-07-01
We have performed a spectroscopic abundance analysis of two stars each in the anomalously young globular clusters Rup 106 and Pal 12. We find [Fe/H] =~ -1.45 for Rup 106 and -1.0 for Pal 12. The abundance ratios in both clusters are peculiar in comparison to other globulars: the alpha -elements are not enhanced over the solar ratio. We find that oxygen in Rup 106 is also relatively low, with [O/Fe] =~ 0.0 - +0.1. The similarity of the ratio of the alpha-elements to iron to the solar ratio shows that species contributed by supernovae of type Ia have ``caught up" with species produced by SN II's. The similar contributions of the alpha - and Fe-peak species to disk stars shows that age, not metallicity, is the determining factor in the ratio of SN II/SN Ia nucleosynthesis. Galactic enrichment models show that these abundance ratios can be understood as being the result of these two clusters coming from an environment with multiple discontinuous star formation events.
Fang, Fang; Kang, Zhanfang; Wong, Chiwai
2010-03-01
Vitamin E is comprised of two classes of compounds: tocopherols and tocotrienols. Tocotrienol-enriched palm oil has been shown to help reduce blood glucose levels in patients and preclinical animal models. However, the mechanistic basis for tocotrienol action is not well established. Peroxisome proliferator-activated receptors alpha, gamma, and delta (PPARalpha, PPARgamma, and PPARdelta) are ligand-regulated transcription factors that play essential roles in energy metabolism. Importantly, synthetic PPARalpha and PPARgamma ligands are currently used for treating hyperlipidemia and diabetes. In this study, we present data that tocotrienols within palm oil functioned as PPAR modulators. Specifically, both alpha- and gamma-tocotrienol activated PPARalpha, while delta-tocotrienol activated PPARalpha, PPARgamma, and PPARdelta in reporter-based assays. Tocotrienols enhanced the interaction between the purified ligand-binding domain of PPARalpha with the receptor-interacting motif of coactivator PPARgamma coactivator-1alpha. In addition, the tocotrienol-rich fraction of palm oil improved whole body glucose utilization and insulin sensitivity of diabetic Db/Db mice by selectively regulating PPAR target genes. These lines of evidence collectively suggested that PPARs represent a set of molecular targets of tocotrienols.
Al-Eidan, Fahad; Baig, Lubna Ansari; Magzoub, Mohi-Eldin; Omair, Aamir
2016-04-01
To assess reliability and validity of evaluation tool using Haematology course as an example. The cross-sectional study was conducted at King Saud Bin Abdul Aziz University of Health Sciences, Riyadh, Saudi Arabia, in 2012, while data analysis was completed in 2013. The 27-item block evaluation instrument was developed by a multidisciplinary faculty after a comprehensive literature review. Validity of the questionnaire was confirmed using principal component analysis with varimax rotation and Kaiser normalisation. Identified factors were combined to get the internal consistency reliability of each factor. Student's t-test was used to compare mean ratings between male and female students for the faculty and block evaluation. Of the 116 subjects in the study, 80(69%) were males and 36(31%) were females. Reliability of the questionnaire was Cronbach's alpha 0.91. Factor analysis yielded a logically coherent 7 factor solution that explained 75% of the variation in the data. The factors were group dynamics in problem-based learning (alpha0.92), block administration (alpha 0.89), quality of objective structured clinical examination (alpha 0.86), block coordination (alpha 0.81), structure of problem-based learning (alpha 0.84), quality of written exam (alpha 0.91), and difficulty of exams (alpha0.41). Female students' opinion on depth of analysis and critical thinking was significantly higher than that of the males (p=0.03). The faculty evaluation tool used was found to be reliable, but its validity, as assessed through factor analysis, has to be interpreted with caution as the responders were less than the minimum required for factor analysis.
Wang, Youcheng; Zhang, Lijuan; Hu, Guohua; Wang, Menghe; Tang, Xiaoyuan; Guo, Hui; Shi, Yimei; Chen, Shufang; Shi, Changchun
2012-04-01
To investigate the therapeutic effect of double fill nine tastes soup in treating children recurrent respiratory infection (RRTI) and the change of immune function. 77 RRTI patients were randomly selected into observation and control groups. The observation group was treated with Chinese medicine- double fill nine tastes soup,water frying points 2 times oral. The control was treated with transfer factor oral liquid,every 10 mL,2 times daily oral. Treatment periods were both two months. IgA, IgG, IgM and IL-12, TNF-alpha, INF-gamma were detected before and after treatment to assess the clinical effects and the changes of immune factors, meanwhile, a health group was established. Before treatment, compared with the health group, the serum IgA, IgG, IgM, IgE, IL-12, TNF-alpha, IFN-gamma in both groups were significantly different (P < 0.01). After treatment, the ratio of IgA, IgG, Ig M, IL-12, TNF-alpha, IFN-gamma in two groups were significantly different (P < 0.01). Compared with the recurrence rate and clinical effects, the observation group was better than control, and the differences were significant (P < 0.01). Double fill nine tastes soup has significant effects in treating recurrent respiratory infection (RRI) and enhance the immune function in children.
Amano, Satoshi; Ogura, Yuki; Akutsu, Nobuko; Nishiyama, Toshio
2007-02-01
Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyda, H.J.
1991-03-01
The metabolic effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and IGF-II were determined on human placental cells in monolayer culture obtained from early gestation (less than 20 weeks) and late gestation (38-42 weeks). Parameters studied were uptake of aminoisobutyric acid (AIB), uptake of 3-O-methylglucose and (3H)thymidine incorporation into cell protein. Since benzo(alpha)pyrene (BP) inhibits EGF binding and autophosphorylation in cultured human placental cells, particularly in early gestation, we also studied the effect of benzo(alpha)pyrene and other polycyclic aromatic hydrocarbons (PAHs) on EGF-mediated AIB uptake. The metabolic effects of EGF, insulin, and the IGFs in cultured humanmore » placental cells varied with gestational age and the growth factor studied. All three classes of growth factors stimulated AIB uptake in both early and late gestation at concentrations from 10-100 micrograms/L, well within a physiological range. However, insulin stimulation of AIB uptake was maximal at a high concentration in both early and late gestation cells, suggesting an action via type 1 IGF receptors rather than via insulin receptors. EGF stimulated 3-O-methylglucose uptake only in term placental cells. No significant stimulation of (3H)thymidine incorporation by any of the growth factors tested was seen with either early or late gestation cells. The effect of PAHs on AIB uptake by cultured placental cells was variable. BP alone stimulated AIB uptake by both very early and late gestation cells and enhanced EGF-stimulated AIB uptake. alpha-naphthoflavone alone inhibited AIB uptake at all gestational ages and inhibited EGF-stimulated AIB uptake. beta-Naphthoflavone and 3-methylcholanthrene minimally inhibited AIB uptake by early gestation cells and did not modify EGF-stimulated uptake at any gestational period.« less
Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy
2018-02-01
Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.
Cao, Yingnan; Wang, Zhaohe; Bu, Xianzhang; Tang, Shu; Mei, Zhengrong; Liu, Peiqing
2009-06-01
Tumour necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine, which has been shown to be a causative factor in rheumatoid arthritis, inflammatory bowel disease and septic shock. Proinflammatory effect of TNF-alpha is activated mainly through human TNF receptor-1 (TNF-R1). However, the role of the fourth cystein-rich domain (CRD4) of TNF-R1 extracellular portion in the interaction of TNF-alpha with TNF-R1 is still unclear. In the present study, binding activity of TNF-alpha to TNF-R1 and protein levels of IkappaB-alpha and nuclear transcription factor kappa B (NF-kappaB) p65 subunit in HeLa cells were measured using enzyme-linked immunosorbent assay (ELISA) and western-blot analysis. Pep 3 (LRENECVS) which was derived from the hydrophilic region of A1 module in CRD4 remarkably inhibited the binding of TNF-alpha to TNF-R1, and also reversed TNF-alpha-induced degradation of IkappaB-alpha and nuclear translocation of NF-kappaB p65 subunit in HeLa cells. Our results confirmed that the hydrophilic region of A1 module in CRD4 participated in the interaction of TNF-alpha with TNF-R1, and demonstrated the potential of small-molecule TNF-alpha extracellular inhibitors targeting at A1 module in CRD4 of TNF-R1 in suppressing proinflammatory effect of TNF-alpha.
Delatorre, Edson; Miranda, Milene; Tschoeke, Diogo A; Carvalho de Sequeira, Patrícia; Alves Sampaio, Simone; Barbosa-Lima, Giselle; Rangel Vieira, Yasmine; Leomil, Luciana; Bozza, Fernando A; Cerbino-Neto, José; Bozza, Patricia T; Ribeiro Nogueira, Rita Maria; Brasil, Patrícia; Thompson, Fabiano L; de Filippis, Ana M B; Souza, Thiago Moreno L
2018-05-17
Descriptive clinical data help to reveal factors that may provoke Zika virus (ZIKV) neuropathology. The case of a 24-year-old female with a ZIKV-associated severe acute neurological disorder was studied. The levels of ZIKV in the cerebrospinal fluid (CSF) were 50 times higher than the levels in other compartments. An acute anti-flavivirus IgG, together with enhanced TNF-alpha levels, may have contributed to ZIKV invasion in the CSF, whereas the unbiased genome sequencing [obtained by next-generation sequencing (NGS)] of the CSF revealed that no virus mutations were associated with the anatomic compartments (CSF, serum, saliva and urine).
Tsilchorozidou, Tasoula; Honour, John W; Conway, Gerard S
2003-12-01
Androgen excess in women with polycystic ovary syndrome (PCOS) may be ovarian and/or adrenal in origin, and one proposed contributing mechanism is altered cortisol metabolism. Increased peripheral metabolism of cortisol may occur by enhanced inactivation of cortisol by 5alpha-reductase (5alpha-R) or impaired reactivation of cortisol from cortisone by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) resulting in decreased negative feedback suppression of ACTH secretion maintaining normal plasma cortisol concentrations at the expense of androgen excess. We have tested whether any enzyme dysregulation was related to circulating insulin or androgen concentrations in women with PCOS and have sought to clarify their relationship with obesity. First, to avoid obesity-related effects on cortisol metabolism, 18 lean women with PCOS were compared with 19 lean controls who were closely matched for body mass index (BMI). Second, the impact of obesity was studied in a cross-section of 42 PCOS women of a broad range of BMI. We measured 24-h urinary excretion of steroid metabolites by gas chromatography/mass spectrometry and fasting metabolic and hormone profiles. Urinary excretion of androgens [androsterone (P = 0.003), etiocholanolone (P = 0.02), and C19 steroid sulfates (P = 0.009)], cortisone metabolites [tetrahydrocortisone (THE) (P = 0.02), alpha-cortolone (P < 0.001), beta-cortol + beta-cortolone (P < 0.001), cortolones (P < 0.001), and E metabolites (P < 0.001)], and TCM (P = 0.002) were raised in lean PCOS subjects when compared with controls. A significantly higher 5alpha-tetrahydrocortisol (5alpha-THF)/5beta-THF ratio (P = 0.04) and a significantly lower alpha-THF + THF + alpha-cortol/THE + cortolones ratio (P = 0.01) were found in lean PCOS women compared with lean controls, indicating both enhanced 5alpha-R and reduced 11beta-HSD1 activities. A decreased THE/cortolones ratio (P = 0.03) was also found in lean PCOS women compared with lean controls, indicating increased 20 alpha/beta-HSD activity. In the group of 42 PCOS subjects, measures of 5alpha/5beta reduction were positively correlated with the homeostasis model insulin resistance index (HOMA-R): alpha-THF/THF and HOMA-R (r = 0.34; P = 0.03), androsterone/etiocholanolone and HOMA-R (r = 0.32; P = 0.04), and total 5alpha /total 5beta and HOMA-R (r = 0.37; P = 0.02). A positive correlation was also found between measures of 5alpha-R and BMI (r = 0.37; P = 0.02). No correlation was found between measures of 11beta-HSD1 activity and indices of insulin sensitivity or BMI. We have demonstrated that there is an increased production rate of cortisol and androgens as measured in vivo in lean PCOS women. Insulin seems to enhance 5alpha reduction of steroids in PCOS but was not associated with the elevated cortisol production rate. The changes in 5alpha-R, 11beta-HSD1, and 20alpha/beta-HSD enzyme activities observed in PCOS may contribute to the increased production rates of cortisol and androgens, supporting the concept of a widespread dysregulation of steroid metabolism. This dysregulation does not seem to be the primary cause of PCOS because no correlation was found between serum androgen levels or urinary excretion of androgens with measurements of either 5alpha-R or 11beta-HSD1 activities.
Consideration of Real World Factors Influencing Greenhouse Gas Emissions in ALPHA
Discuss a variety of factors that influence the simulated fuel economy and GHG emissions that are often overlooked and updates made to ALPHA based on actual benchmarking data observed across a range of vehicles and transmissions. ALPHA model calibration is also examined, focusin...
Huntington, M O; Krell, K E; Armour , W E; Liljenquist, J E
2001-06-01
Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor. We report here a remarkable degree of insulin resistance in a patient with adult respiratory distress syndrome and myelodysplasia.
Xanthan/chitosan gold chip for metal enhanced protein biomarker detection.
Domnanich, Patrick; Peña, Dacimoneida Brito; Preininger, Claudia
2011-01-15
Protein microarrays for disease diagnostics are required to accurately quantify analytes in the low pg/mL range. This task is hampered by weak signal strengths and too low detector sensitivity. Herein we present reflective gold chips coated with polyelectrolyte multilayers (PEMs) for signal enhancement in immunoassays for melanoma-relevant biomarkers. Among tested (semi)natural polysaccharides (xanthan, chitosan, carboxymethylcellulose, hyaluronic acid) PEMs composed of xanthan and chitosan performed best in terms of detection of low analyte concentrations (ED10), spot morphology, fluorescence background and variability (<10%). Fluorescence signals on gold slides with a 75 nm coating of seven crosslinked polyelectrolyte double layers were up to 50 times higher than on bare glass slides. In comparison to commercial substrates the signal to noise ratio is enhanced by up to factor 11. Furthermore sandwich assays for interleukins 6, 8, 10, tumour necrosis factor alpha (TNFα), vascular endothelial growth factor A (VEGF-A) and S100B show working ranges which cover significantly lower concentrations (up to 38-fold). Not limited to above assays the presented substrates, which combine a biocompatible interface with metal-based signal amplification, are a valuable tool in a variety of biosensor applications. Copyright © 2010 Elsevier B.V. All rights reserved.
Tatsumi, Y; Arioka, H; Ikeda, S; Fukumoto, H; Miyamoto, K; Fukuoka, K; Ohe, Y; Saijo, N; Nishio, K
2001-07-01
TK5048 and its derivatives, AM-132, AM-138, and AM-97, are recently developed antimitotic (AM) compounds. These 1-phenylpropenone derivatives induce cell cycle arrest at the G2 / M phase of the cell cycle. TK5048 inhibited tubulin polymerization in human lung cancer PC-14 cells in a concentration-dependent manner. In a polymerization assay using bovine brain tubulin, AM-132 and AM-138 were quite strong, AM-97 was moderately strong, and TK5048 was a relatively weak inhibitor of tubulin polymerization. A murine leukemia cell line resistant to a sulfonamide antimitotic agent, E7010, which binds to colchicine-binding sites on tubulin, was cross-resistant to the in vitro growth-inhibitory effect of AM compounds. Inhibition of tubulin polymerization is therefore one of the mechanisms of action of these AM compounds against tumor cells. To profile the antitumor effect of AM compounds, the in vivo antitumor effect of AM-132 was evaluated against cytokine-secreting Lewis lung carcinoma (LLC). Tumor-bearing mice were treated with intravenous AM-132 using three different treatment schedules. LLC tumors expressing tumor necrosis factor-alpha (TNF-alpha), granulocyte macrophage colony-stimulating factor (GM-CSF), or interleukin (IL)-6 were very sensitive to AM-132. In particular, LLC tumors expressing IL-6 were markedly reduced by AM-132 treatment, and showed coloring of the tumor surface and unusual hemorrhagic necrosis. These results suggest a combined effect of AM-132 and cytokines on the blood supply to tumors.
Immunoreactive transforming growth factor alpha is commonly present in colorectal neoplasia.
Tanaka, S.; Imanishi, K.; Yoshihara, M.; Haruma, K.; Sumii, K.; Kajiyama, G.; Akamatsu, S.
1991-01-01
Surgical specimens from 19 patients with invasive colorectal cancers and 12 specimens of normal mucosa from the same patients were examined immunohistochemically for the production of the immunoreactive (IR-) transforming growth factor (TGF)-alpha and IR-epidermal growth factor (EGF) with an anti-TGF-alpha monoclonal antibody (MAb) OAL-MTG01 and anti-EGF MAb KEM-10. Immunoreactive TGF-alpha was detected in 16 (84.2%) of 19 colorectal cancers. In contrast, there was no IR-TGF-alpha in the gland cells of normal mucosa. Immunoreactive EGF was detected in 7 (36.8%) of 19 colorectal cancers and 1 (8.3%) of 12 cases of normal mucosa. The production of both IR-TGF-alpha and IR-EGF in colorectal cancer did not differ by histologic type and Dukes' stage. Immunoreactive TGF-alpha was detected at significantly higher incidence than IR-EGF in colorectal cancer. These results indicate that IR-TGF-alpha should prove valuable as a possible tumor marker in colorectal cancers, and it may be very useful in understanding the biology of colorectal cancer. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1853928
Enhancement of fruit shelf life by suppressing N-glycan processing enzymes.
Meli, Vijaykumar S; Ghosh, Sumit; Prabha, T N; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis
2010-02-09
In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.
Substance P enhances proliferation and paracrine potential of adipose-derived stem cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Suna; Piao, Jiyuan; Son, Youngsook
Stem cells have tremendous promise to treat intractable diseases. Notably, adipose-derived stem cells (ADSCs) are actively being investigated because of ease of sampling and high repopulation capacity in vitro. ADSCs can exert a therapeutic effect through differentiation and paracrine potential, and these actions have been proven in many diseases, including cutaneous and inflammatory diseases. Transplantation of ADSCs necessitates therapeutic quantities and thus, long term ex vivo culture of ADSCs. However, this procedure can impair the activity of ADSCs and provoke cellular senescence, leading to low efficacy in vivo. Accordingly, strategies to restore cellular activity and inhibit senescence of stem cells during ex vivo culturemore » are needed for stem cell-based therapies. This study evaluated a potential supplementary role of Substance P (SP) in ADSC ex vivo culture. After confirming that the ADSC cell cycle was damaged by passage 6 (p6), ADSCs at p6 were cultured with SP, and their proliferation rates, cumulative cell numbers, cytokine profiles, and impact on T/endothelial cells were assessed. Long-term culture weakened proliferation ability and secretion of the cytokines, transforming growth factor-beta 1 (TGF-beta1), vascular endothelial growth factor (VEGF), and stromal cell derived factor-1 alpha (SDF-1alpha) in ADSCs. However, SP treatment reduced the population doubling time (PDT), enabling gain of a sufficient number of ADSCs at early passages. In addition, SP restored cytokine secretion, enhancing the ADSC-mediated paracrine effect on T cell and human umbilical vein endothelial cells (HUVECs). Taken together, these results suggest that SP can retain the therapeutic effect of ADSCs by elevating their proliferative and paracrine potential in ex vivo culture. - Highlights: • Long-term culture of ADSCs leads to cell senescence. • Paracrine potential of ADSC decreases as passage number increases. • SP enhances the weakened proliferation capacity of ADSCs. • SP stimulates cytokine secretion from ADSC with impaired paracrine potential.« less
The immunometabolite S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate
Tyrakis, Petros A.; Palazon, Asis; Macias, David; Lee, Kian. L.; Phan, Anthony. T.; Veliça, Pedro; You, Jia; Chia, Grace S.; Sim, Jingwei; Doedens, Andrew; Abelanet, Alice; Evans, Colin E.; Griffiths, John R.; Poellinger, Lorenz; Goldrath, Ananda. W.; Johnson, Randall S.
2016-01-01
R-2-hydroxyglutarate accumulates to millimolar levels in cancers with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both R- and S-2-hydroxyglutarate, the other enantiomer of this metabolite, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that CD8+ T-lymphocytes accumulate 2-hydroxyglutarate in response to T-cell receptor triggering. This increases to millimolar levels in physiological oxygen conditions, via a hypoxia inducible factor 1 alpha-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8+ T-lymphocyte differentiation in response to this metabolite. Modulation of histone and DNA demethylation as well as hypoxia inducible factor 1 alpha stability mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8+ T-lymphocytes. Thus S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, via a metabolic-epigenetic axis, to immune fate and function. PMID:27798602
Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi
2014-02-14
Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.
Ellen, Thomas P; Ke, Qingdong; Zhang, Ping; Costa, Max
2008-01-01
N-myc downstream-regulated gene 1 (NDRG1) is an intracellular protein that is induced under a wide variety of stress and cell growth-regulatory conditions. NDRG1 is up-regulated by cell differentiation signals in various cancer cell lines and suppresses tumor metastasis. Despite its specific role in the molecular cause of Charcot-Marie-Tooth type 4D disease, there has been more interest in the gene as a marker of tumor progression and enhancer of cellular differentiation. Because it is strongly up-regulated under hypoxic conditions, and this condition is prevalent in solid tumors, its regulation is somewhat complex, governed by hypoxia-inducible factor 1 alpha (HIF-1alpha)- and p53-dependent pathways, as well as its namesake, neuroblastoma-derived myelocytomatosis, and probably many other factors, at the transcriptional and translational levels, and through mRNA stability. We survey the data for clues to the NDRG1 gene's mechanism and for indications that the NDRG1 gene may be an efficient diagnostic tool and therapy in many types of cancers.
Lelyanova, V G; Thomson, D; Ribchester, R R; Tonevitsky, E A; Ushkaryov, Y A
2009-06-01
The mechanisms of acetylcholine release in presynaptic terminals of motoneurons induced by mutant alpha-latrotoxin (LT(N4C)) were analyzed. In contrast to wild-type alpha-latrotoxin that causes both continuous and splash secretion of acetylcholine and necessarity block neuromuscular transmission, LT(N4C) causes only splash release lasting over many hours. Thus, activation of alpha-latrotoxin receptors controls long-lasting enhanced secretion of acetylcholine.
Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham J. Fetterman and Nathaniel J. Fisch
Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.
Consideration of Real World Factors Influencing Greenhouse ...
Discuss a variety of factors that influence the simulated fuel economy and GHG emissions that are often overlooked and updates made to ALPHA based on actual benchmarking data observed across a range of vehicles and transmissions. ALPHA model calibration is also examined, focusing on developing generic calibrations for driver behavior, transmission gear selection and torque converter lockup. In addition, show the derivation of correction factors needed to estimate cold start emission results. To provide an overview of the ALPHA tool with additional focus on recent updates by presenting the approach for validating and calibrating ALPHA to match particular vehicles in a general sense, then by looking at the individual losses, and calibration factors likely to influence fuel economy.
Andley, U P; Song, Z; Wawrousek, E F; Brady, J P; Bassnett, S; Fleming, T P
2001-01-01
alphaB-crystallin is a member of the small heat shock protein family and can act as a molecular chaperone preventing the in vitro aggregation of other proteins denatured by heat or other stress conditions. Expression of alphaB-crystallin increases in cells exposed to stress and enhanced in tumors of neuroectodermal origin and in many neurodegenerative diseases. In the present study, we examined the properties of lens epithelial cells derived from mice in which the alphaB-crystallin gene had been knocked out. Primary rodent cells immortalize spontaneously in tissue culture with a frequency of 10(-5) to 10(-6). Primary lens epithelial cells derived from alphaB-crystallin-/- mice produced hyperproliferative clones at a frequency of 7.6 x 10(-2), four orders of magnitude greater than predicted by spontaneous immortalization (1). Hyperproliferative alphaB-crystallin-/- cells were shown to be truly immortal since they have been passaged for more than 100 population doublings without any diminution in growth potential. In striking contrast to the wild-type cells, which were diploid, the alphaB-crystallin-/- cultures had a high proportion of tetraploid and higher ploidy cells, indicating that the loss of alphaB-crystallin is associated with an increase in genomic instability. Further evidence of genomic instability of alphaB-crystallin-/- cells was observed when primary cultures were infected with Ad12-SV40 hybrid virus. In striking contrast to wild-type cells, alphaB-crystallin-/- cells expressing SV40 T antigen exhibited a widespread cytocidal response 2 to 3 days after attaining confluence, indicating that SV40 T antigen enhanced the intrinsic genomic instability of alphaB-crystallin-/- lens epithelial cells. These observations suggest that the widely distributed molecular chaperone alphaB-crystallin may play an important nuclear role in maintaining genomic integrity.
Unified studies of the structure changes and the nuclear reactions in {sup 10}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Makoto
2006-08-14
The {alpha}+6He low-energy reactions and the structural changes of 10Be in the microscopic {alpha}+{alpha}+N+N model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the {alpha}+{sup 6}He(2{sub 1}{sup +}) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. The reaction mechanism in breakup of 10Be into the {alpha}+6He continuum is also discussed.
Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W
1994-11-01
Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX.
Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.
Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less
USDA-ARS?s Scientific Manuscript database
In several studies, vitamin E has been observed to influence angiogenesis and vasculogenesis. We recently showed that the phosphorylated form of alpha-tocopherol (alphaT), alpha-tocopheryl phosphate (alphaTP), increases the expression of the vascular endothelial growth factor (VEGF). Thus, alphaTP m...
Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.
Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R
2017-01-01
Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.
Kawanami, Daiji; Mahabeleshwar, Ganapati H; Lin, Zhiyong; Atkins, G Brandon; Hamik, Anne; Haldar, Saptarsi M; Maemura, Koji; Lamanna, Joseph C; Jain, Mukesh K
2009-07-31
Hypoxia-inducible factor 1 (HIF-1) is a central regulator of the hypoxic response in many cell types. In endothelial cells, HIF-1 induces the expression of key proangiogenic factors to promote angiogenesis. Recent studies have identified Kruppel-like factor 2 (KLF2) as a potent inhibitor of angiogenesis. However, the role of KLF2 in regulating HIF-1 expression and function has not been evaluated. KLF2 expression was induced acutely by hypoxia in endothelial cells. Adenoviral overexpression of KLF2 inhibited hypoxia-induced expression of HIF-1alpha and its target genes such as interleukin 8, angiopoietin-2, and vascular endothelial growth factor in endothelial cells. Conversely, knockdown of KLF2 increased expression of HIF-1alpha and its targets. Furthermore, KLF2 inhibited hypoxia-induced endothelial tube formation, whereas endothelial cells from mice with haploinsufficiency of KLF2 showed increased tube formation in response to hypoxia. Consistent with this ex vivo observation, KLF2 heterozygous mice showed increased microvessel density in the brain. Mechanistically, KLF2 promoted HIF-1alpha degradation in a von Hippel-Lindau protein-independent but proteasome-dependent manner. Finally, KLF2 disrupted the interaction between HIF-1alpha and its chaperone Hsp90, suggesting that KLF2 promotes degradation of HIF-1alpha by affecting its folding and maturation. These observations identify KLF2 as a novel inhibitor of HIF-1alpha expression and function. Therefore, KLF2 may be a target for modulating the angiogenic response in disease states.
c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.
Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A
1994-07-01
The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)
ERIC Educational Resources Information Center
Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil
2009-01-01
Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…
Liao, Shu-Hsien; Huang, Han-Sheng; Chieh, Jen-Jie; Su, Yu-Kai; Tong, Yuan-Fu; Huang, Kai-Wen
2017-09-03
In this work, we report characterizations of biofunctionalized magnetic nanoparticles (BMNPs) associated with alpha-fetoprotein (AFP) for biomedical applications. The example BMNP in this study is anti-alpha-fetoprotein (anti-AFP) conjugated onto dextran-coated Fe₃O₄ labeled as Fe₃O₄-anti-AFP, and the target is AFP. We characterize magnetic properties, such as increments of magnetization ΔM H and effective relaxation time Δτ eff in the reaction process. It is found that both ΔM H and Δτ eff are enhanced when the concentration of AFP, Ф AFP , increases. The enhancements are due to magnetic interactions among BMNPs in magnetic clusters, which contribute extra M H after the association with M H and in turn enhance τ eff . The screening of patients carrying hepatocellular carcinoma (HCC) is verified via ΔM H /M H . The proposed method can be applied to detect a wide variety of analytes. The scaling characteristics of ΔM H /M H show the potential to develop a vibrating sample magnetometer system with low field strength for clinic applications.
Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L
2009-08-01
The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced TNF-alpha mRNA levels (LPS = 8 +/- 0.9; flavocoxid = 1.9 +/- 0.8 n-fold/beta-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages. Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression.
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Bhat, M. K.
1992-01-01
A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.
Effect of human alpha 2HS glycoprotein on mouse macrophage function.
Lewis, J G; André, C M
1980-01-01
alpha 2HS glycoprotein was isolated from normal adult serum. The ability of alpha 2HS glycoprotein to promote the endocytosis of radiolabelled DNA and radiolabelled latex particles by mouse macrophages was investigated. The results using both radiolabelled latex particles and radiolabelled DNA show that alpha 2HS glycoprotein enhances the ability of mouse macrophages to take up these radiolabelled substrates as compared to control cells. Images Figure 1 Figure 2 PMID:7439929
E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements.
Bretschneider, Nancy; Kangaspeska, Sara; Seifert, Martin; Reid, George; Gannon, Frank; Denger, Stefanie
2008-08-01
Estrogen receptor alpha (ERalpha) is a ligand dependent transcription factor that regulates the expression of target genes through interacting with cis-acting estrogen response elements (EREs). However, only a minority of ERalpha binding sites are located within the proximal promoter regions of responsive genes. Here we report the characterization of an ERE located 9kbp upstream of the TSS of the cathepsin D gene (CTSD) that up-regulates CTSD expression upon estrogen stimulation in MCF-7 cells. Using ChIP, we show recruitment of ERalpha and phosphorylated PolII at the CTSD distal enhancer region. Moreover, we determine the kinetics of transient CpG methylation on the promoter region of CTSD and for the first time, at a distal enhancer element. We show that ERalpha is crucial for long-distance regulation of CTSD expression involving a looping mechanism.
Wang, Ningshan; Orr-Urtreger, Avi; Chapman, Joab; Rabinowitz, Ruth; Korczyn, Amos D
2004-07-15
Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of 12 subunits (alpha2-alpha10 and beta2-beta4). alpha5 Subunits, expressed throughout the central nervous system (CNS) and the autonomic nervous system (ANS), possess unique pharmacological properties. The effects of oxotremorine (OXO) on autonomic functions and tremor were examined in mice lacking alpha5 nAChR subunits (alpha5-/-) and compared with those in wild-type (WT) control mice. The alpha5-/- mice showed significantly increased salivation and tremor responses to OXO. The hypothermia, bradycardia and defecation induced by OXO were of similar magnitudes in the two mouse strains. The enhanced OXO effects in alpha5-/- mice indicate inhibitory effects of alpha5 subunits in autonomic ganglia, and support the participation of these subunits in cholinergic transmission in autonomic ganglia.
Solomon, Todd M; Leech, Jarrett; deBros, Guy B; Murphy, Cynthia A; Budson, Andrew E; Vassey, Elizabeth A; Solomon, Paul R
2016-03-01
Alpha BRAIN® is a nootropic supplement that purports to enhance cognitive functioning in healthy adults. The goal of this study was to investigate the efficacy of this self-described cognitive enhancing nootropic on cognitive functioning in a group of healthy adults by utilizing a randomized, double blind, placebo-controlled design. A total of 63-treatment naïve individuals between 18 and 35 years of age completed the randomized, double-blind, placebo controlled trial. All participants completed a 2-week placebo run in before receiving active product, Alpha BRAIN® or new placebo, for 6 weeks. Participants undertook a battery of neuropsychological tests at randomization and at study completion. Primary outcome measures included a battery of neuropsychological tests and measures of sleep. Compared with placebo, Alpha BRAIN® significantly improved on tasks of delayed verbal recall and executive functioning. Results also indicated significant time-by-group interaction in delayed verbal recall for the Alpha BRAIN® group. The use of Alpha BRAIN® for 6 weeks significantly improved recent verbal memory when compared with controls, in a group of healthy adults. While the outcome of the study is encouraging, this is the first randomized controlled trial of Alpha BRAIN®, and the results merit further study. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatanaga, Tetsuya; Whang, Chenduen; Cappuccini, F.
1990-11-01
Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor {alpha} (TNF-{alpha}) in vitro. BF is a protein with a molecular mass of 28kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-{alpha} and recombinant human lymphotoxin activity of TNF-{alpha} andmore » recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-{alpha} more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-{alpha} when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-{alpha} and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-{alpha} in clinical trials with human cancer patients.« less
Endogenous circulating sympatholytic factor in orthostatic intolerance
NASA Technical Reports Server (NTRS)
Shapiro, R. E.; Winters, B.; Hales, M.; Barnett, T.; Schwinn, D. A.; Flavahan, N.; Berkowitz, D. E.
2000-01-01
Sympathotonic orthostatic hypotension (SOH) is an idiopathic syndrome characterized by tachycardia, hypotension, elevated plasma norepinephrine, and symptoms of orthostatic intolerance provoked by assumption of an upright posture. We studied a woman with severe progressive SOH with blood pressure unresponsive to the pressor effects of alpha(1)-adrenergic receptor (AR) agonists. We tested the hypothesis that a circulating factor in this patient interferes with vascular adrenergic neurotransmission. Preincubation of porcine pulmonary artery vessel rings with patient plasma produced a dose-dependent inhibition of vasoconstriction to phenylephrine in vitro, abolished vasoconstriction to direct electrical stimulation, and had no effect on nonadrenergic vasoconstrictive stimuli (endothelin-1), PGF-2alpha (or KCl). Preincubation of vessels with control plasma was devoid of these effects. SOH plasma inhibited the binding of an alpha(1)-selective antagonist radioligand ([(125)I]HEAT) to membrane fractions derived from porcine pulmonary artery vessel rings, rat liver, and cell lines selectively overexpressing human ARs of the alpha(1B) subtype but not other AR subtypes (alpha(1A) and alpha(1D)). We conclude that a factor in SOH plasma can selectively and irreversibly inhibit adrenergic ligand binding to alpha(1B) ARs. We propose that this factor contributes to a novel pathogenesis for SOH in this patient. This patient's syndrome represents a new disease entity, and her plasma may provide a unique tool for probing the selective functions of alpha(1)-ARs.
Broug-Holub, E; Persoons, J H; Schornagel, K; Kraal, G
1995-01-01
Oral administration of the bacterial immunomodulator Broncho-Vaxom (OM-85), a lysate of eight bacteria strains commonly causing respiratory disease, has been shown to enhance the host defence of the respiratory tract. In this study we examined the effect of orally administered (in vivo) OM-85 on stimulus-induced cytokine and nitric oxide secretion by rat alveolar macrophages in vitro. The results show that alveolar macrophages isolated from OM-85-treated rats secreted significantly more nitric oxide, tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta upon in vitro stimulation with lipopolysaccharide (LPS), whereas, in contrast, LPS-induced IL-6 secretion was significantly lower. The observed effects of in vivo OM-85 treatment on stimulus-induced cytokine secretion in vitro are not due to a direct effect of OM-85 on the cells, because in vitro incubation of alveolar macrophages with OM-85 did not result in altered activity, nor did direct intratracheal instillation of OM-85 in the lungs of rats result in altered alveolar macrophage activity in vitro. It is hypothesized that oral administration of OM-85 leads to priming of alveolar macrophages in such a way that immune responses are non-specifically enhanced upon stimulation. The therapeutic action of OM-85 may therefore result from an enhanced clearance of infectious bacteria from the respiratory tract due to increased alveolar macrophage activity. PMID:7648713
Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma.
Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun
2016-07-21
Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene's expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.
Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma
Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun
2016-01-01
Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment. PMID:27468205
Nihal, Minakshi; Wu, Jianqiang; Wood, Gary S.
2015-01-01
Melanoma, a highly aggressive form of cancer, is notoriously resistant to available therapies. Methotrexate (MTX), an antifolate, competitively inhibits DNA synthesis and is effective for several types of cancer. In cutaneous T-cell lymphoma (CTCL), MTX increases Fas death receptor by decreasing Fas promoter methylation by blocking the synthesis of SAM, the principal methyl donor for DNMTs, resulting in enhanced Fas-mediated apoptosis. The objective of this study was to explore the effects of MTX in human melanoma. MTX variably inhibited the survival of melanoma cells and induced apoptosis as evident by annexin V positivity and senescence associated β-galactosidase activity induction. Furthermore, MTX caused increased transcript and protein levels of extrinsic apoptotic pathway factors Fas and Fas-ligand, albeit at different levels in different cell lines. Our pyrosequencing studies showed that this increased expression of Fas was associated with Fas promoter demethylation. Overall, the ability of MTX to up-regulate Fas/FasL and enhance melanoma apoptosis through extrinsic as well as intrinsic pathways might make it a useful component of novel combination therapies designed to affect multiple melanoma targets simultaneously. In support of this concept, combination therapy with MTX and interferon-alpha (IFNα) induced significantly greater apoptosis in the aggressive A375 cell line than either agent alone. PMID:24862567
Numa, F; Takeda, O; Nakata, M; Nawata, S; Tsunaga, N; Hirabayashi, K; Suminami, Y; Kato, H; Hamanaka, S
1996-01-01
Squamous cell carcinoma (SCC) antigen, a tumor marker of squamous cell carcinoma, is also increased in several nonmalignant skin lesions, e.g. pemphigus. The aim of the present investigation was to determine if tumor necrosis factor-alpha (TNF-alpha), one of the important environmental factors, stimulated the production of SCC antigen in the normal squamous cells. The exposure of normal human epidermal keratinocytes to TNF-alpha (100 IU/ml) for 72 h greatly increased the SCC antigen production. The stimulatory effect of TNF-alpha (1,000 IU/ml) on the production of SCC antigen was also observed in the normal squamous epithelium tissue. These results would be helpful for understanding the increase of SCC antigen in several nonmalignant skin disorders.
Uma Maheswar Rao, J L; Satyanarayana, T
2004-01-01
Effect of polyamines and their biosynthesis inhibitors on the production of hyperthermostable and Ca2+ -independent alpha-amylase by Geobacillus thermoleovorans MTCC 4220. The alpha-amylase was produced in starch-yeast extract-tryptone (SYT) broth with different polyamines (PA) and polyamine biosynthesis inhibitors, methylglyoxal-bis-guanylhydrazone (MGBG) and cyclohexylammonium sulphate (CHA) at 70 degrees C. The bacterial pellets were obtained after growing G. thermoleovorans at different temperatures, and used in determining total PA. The cell-free culture filtrates were used in alpha-amylase assays. During growth, total polyamines in biomass increased till 2 h, and thereafter, decreased gradually. The total polyamine content was very high in the biomass cultivated at 55 degrees C when compared with that of higher temperatures. Enzyme titre enhanced up to 70 degrees C, and thereafter declined. Extracellular enzyme and protein levels declined in the presence of exogenously added PA. The intracellular enzyme titres, however, were higher in putrescine (put) and spermidine (spd) than in spermine (spm). Polyamine biosynthesis inhibitor, MGBG enhanced secretion of alpha-amylase in a laboratory fermentor as well as shake flasks, although CHA did not affect it. The intracellular accumulation of put in the presence of MGBG appeared to enhance synthesis and secretion of alpha-amylase. Extracellular enzyme and protein levels were low in the presence of exogenously added PA, but their intracellular levels, however, were higher in put and spd than in spm. A substantial increase in the synthesis and secretion of alpha-amylase was attained in G. thermoleovorans in the presence of polyamine biosynthesis inhibitor MGBG.
Kuo, Yi-Zih; Fang, Wei-Yu; Huang, Cheng-Chih; Tsai, Sen-Tien; Wang, Yi-Ching; Yang, Chih-Li; Wu, Li-Wha
2017-01-01
Hyaluronan (HA) is a major extracellular matrix component. However, its role and mediation in oral cancer remains elusive. Hyaluronan synthase 3 (HAS3), involved in pro-inflammatory short chain HA synthesis, was the predominant synthase in oral cancer cells and tissues. HAS3 overexpression significantly increased oral cancer cell migration, invasion and xenograft tumorigenesis accompanied with the increased expression of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Conversely, HAS3 depletion abrogated HAS3-mediated stimulation. HAS3 induced oncogenic actions partly through activating EGFR-SRC signaling. HAS3-derived HA release into extracellular milieu enhanced transendothelial monocyte migration and MCP-1 expression, which was attenuated by anti-HAS3 antibodies or a HAS inhibitor, 4-Methylumbelliferone (4-MU). The NF-κB-binding site III at -1692 to -1682 bp upstream from the transcript 1 start site in HAS3 proximal promoter was the most responsive to TNF-α-stimulated transcription. ChIP-qPCR analysis confirmed the highest NF-κB-p65 enrichment on site III. Increased HAS3 mRNA expression was negatively correlated with the overall survival of oral cancer patients. A concomitant increase of TNF-α, a stimulus for HAS3 expression, with HAS3 expression was not only associated with lymph node metastasis but also negated clinical outcome. Together, HAS3 and TNF-α formed an inter-regulation loop to enhance tumorigenesis in oral cancer. PMID:28107185
Ameglio, F; D'Auria, L; Cordiali-Fei, P; Mussi, A; Valenzano, L; D'Agosto, G; Ferraro, C; Bonifati, C; Giacalone, B
1997-01-01
Recently, we reported that soluble E-selectin (sE-selectin), an isoform of the cell membrane E-selectin, an adhesion molecule synthesized only by endothelial cells, is significantly increased in sera of the patients with bullous pemphigoid (PB) or pemphigus vulgaris. A significant correlation was also found between the serum sE-selectin levels and the number of skin lesions, suggesting the possible use of this molecule to gauge disease intensity before therapy. One of the sE-selectin inducers is tumor nerosis factor-alpha (TNF-alpha), that is also able to enhance vascular endothelial growth factor (VEGF), a strong endothelium activator. On the basis of these observations, the present study was conducted to analyze the serum levels of VEGF, sE-selectin, and TNF-alpha in 8 patients with BP (age: 82, range 54-87, 7 males, 1 female) and in 6 patients affected affected with PV (age: 55, range 44-65; 5 males, 1 female) and to verify possible correlations between these variables and the disease activity, In addition, serum sE-selectin levels were measured over time and compared with the serum anti-epithelium antibodies titers. The sE-selectin, VEGF and TNF-alpha levels were measured in the samples by means of commercially available ELISA kit. The same samples were also employed to measure the anti-epithelium antibody titers. Serum VEGF, sE-selectin and TNF-alpha levels were significantly correlated each other (p at least < 0.01). All three variables were also significantly correlated with the number of lesions (p at least < 0.01). Serum VEGF levels were found increased (median = 178 pg/ml, range 37-595) as compared to 28 healthy controls (median = 135 pg/ml, range 18/269, p < 0.05). Also serum TNF-alpha levels were found increased (median = 5.5 pg/ml, range < 0.1-41.0) as compared to 28 healthy controls (median < 0.1 pg/ml, range < 0.1-5.3), p < 0.01). When the patients were observed over time, serum sE-selectin levels highly correlated with the disease intensity in both dermatoses, although with different regression curves. These data further underline the endothelium involvement in these bullous dermatoses and stress the possibility of employing sE-selectin as a non-specific follow-up marker of both BP and PV.
Numerical study of surface plasmon enhanced nonlinear absorption and refraction.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2008-07-07
Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.
Canivet, E; Lavaud, S; Wong, T; Guenounou, M; Willemin, J C; Potron, G; Chanard, J
1994-01-01
Cytokine synthesis and secretion by blood mononuclear cells is a well-documented phenomenon in hemodialyzed patients. The present study was conducted in 17 chronically hemodialyzed patients to test the relative effect of uremic toxicity, membrane biocompatibility, dialysate composition, and the risk of endotoxinemia on the serum level of tumor necrosis factor-alpha (TNF-alpha). The only significant parameter that influenced circulating TNF-alpha was the chemical characteristics of the dialyzer membrane. Tumor necrosis factor-alpha levels significantly increased during the session with cuprophane, whereas they decreased with AN69. The TNF-alpha increase was documented whatever the dialysate buffer and the presence or absence (negative Limulus amoebocyte lysate test) of endotoxin in the dialysate. In the subgroup of patients treated with a contaminated dialysate and AN69, none had clinical symptoms and the central body temperature remained constant throughout the session. In these patients, serum TNF-alpha levels did not change after priming the dialyzer with sterile saline. In conclusion, the serum TNF-alpha level during hemodialysis appears to be modulated by biocompatibility, permeability, and binding properties of dialysis membrane rather than dialysate composition. Endotoxin in the dialysate did not result in positive TNF-alpha balance no matter what its possible priming effect on mononucleated blood cells.
Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus
2011-12-01
Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. Copyright © 2011 Elsevier Inc. All rights reserved.
Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus
2012-01-01
Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. PMID:21840307
[Building immune microsphere against tumor necrosis factor-alpha (TNF-alpha)].
Wang, Qin; Wu, Xiongfei; Wang, Junxia; Liu, Hong; Li, Lian; Jin, Xiyu
2005-12-01
We have constructed the immune microsphere against tumor necrosis factor-alpha (TNF-alpha) prospectively, hoping to establish the experiment groundwork in more researches which could be used in specific elimination of the TNF-alpha by blood purification method for the future. The recombinant human tumor necrosis factor-alpha monoclonal antibody (rHTNF-alpha McAb) was wrapped on the polystyrene microsphere (PSM) carrier connecting poly-L-lysine (PLL) beforehand. They were earmarked by the fluorescein isothiocyanate (FITC) respectively. The packing conditions were examined using the inversted and fluorescence microscopes and the spectrophotometer. The results showed that the best conditions for wrapping were 20 degrees C, pH9.5 and 60 minutes. The PLL content was not changed in the washing fluid after coating, which indicated the wrapping was quite firm. At the same temperature and same coating time, the rHTNF-alpha McAb coated on the PLL was obviously substantial when the concentration of glutaraldehyde solution was 0.2%. The findings demonstrated that the built immune microsphers can be used as a novel adsorption material. This method is simple and economic, and it offers a new approach to the related studies.
Mass loss from alpha Cyg /A2Ia/ derived from the profiles of low excitation Fe II lines
NASA Technical Reports Server (NTRS)
Hensberge, H.; De Loore, C.; Lamers, H. J. G. L. M.; Bruhweiler, F. C.
1982-01-01
The low-excitation Fe II lines in the spectral region 2000-3000 A are studied in the spectrum of alpha-Cyg. The profiles of the resonance lines are described by four representative parameters, and a preliminary model is derived from the dependence of these parameters on theoretical line strength, taking into account the influence of blending photospheric lines in an overall and qualitative way. At least 11% of all iron in the wind is once ionized, unless a non-thermal heating source enhances the fraction Fe(++) without destroying much Al(+). It is shown that the contribution of blending photospheric absorption lines to weaker P Cygni profiles has been previously largely underestimated. The mass loss rate corresponding to the model is derived, and is smaller by a factor of 500 than the one derived from the infrared excess by Barlow and Cohen (1977).
Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki
2010-06-25
Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.
Kappler, Matthias; Taubert, Helge; Holzhausen, Hans-Jürgen; Reddemann, Rolf; Rot, Swetlann; Becker, Axel; Kuhnt, Thomas; Dellas, Kathrin; Dunst, Jürgen; Vordermark, Dirk; Hänsgen, Gabriele; Bache, Matthias
2008-08-01
Tumor hypoxia has an impact on the outcome of cancer patients treated with radiotherapy. The validity of endogenous markers such as hypoxia-inducible factor-1alpha (HIF-1alpha) and carbonic anhydrase isozyme IX (CAIX) to detect therapeutically relevant Levels of hypoxia within tumors is controversially discussed. Furthermore, the association of these hypoxia markers with tumor markers or tumor oxygenation parameters is of importance for understanding the relationship between the different factors. Tumortissue sections of 34 patients with advanced head-and-neck cancertreated with radio(chemo)therapy were assessed by immunohistochemistry for the expression of HIF-1alpha and CAIX. The relationships of both markers with tumor oxygenation parameters, molecular factors like P53, OPN, VEGF, VHL, survivin, and Ki67 levels, and clinical parameters were studied. Bivariate analysis showed a significant correlation of HIF-1alpha expression with high P53 and high OPN expression, high serum VEGF Levels, and low VHL and low Ki67 expression. The CAIX expression was inversely correlated with pH value and directly correlated with T-stage. However, no correlation was found between HIF-1alpha and CAIX expression. Neither in a univariate Cox proportional hazard regression nor in a Kaplan-Meier analysis did expression of HIF-1alpha or CAIX have a significant impact on clinical outcome. However, in a Kaplan-Meier analysis, the combination of both factors showed that patients with intratumoral overexpression of either HIF-1alpha or CAIX or both markers died on average 2 years earlier than patients whose tumors had low expression of both factors (p < 0.05). Expression of HIF-1alpha and CAIX was correlated with different tumor parameters. Only combined HIF-1alpha and CAIX expression was significantly predictive of patients' overall survival.
Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.
Schipani, E; Ryan, H E; Didrickson, S; Kobayashi, T; Knight, M; Johnson, R S
2001-11-01
Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.
{beta}-Catenin regulates airway smooth muscle contraction.
Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud
2010-08-01
beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.
Lii, Chong-Kuei; Liu, Kai-Li; Cheng, Yi-Ping; Lin, Ai-Hsuan; Chen, Haw-Wen; Tsai, Chia-Wen
2010-05-01
The anticarcinogenic effect of dietary organosulfur compounds has been partly attributed to their modulation of the activity and expression of phase II detoxification enzymes. Our previous studies indicated that garlic allyl sulfides upregulate the expression of the pi class of glutathione S-transferase (GSTP) through the activator protein-1 pathway. Here, we examined the modulatory effect of sulforaphane (SFN) and alpha-lipoic acid (LA) or dihydrolipoic acid (DHLA) on GSTP expression in rat Clone 9 liver cells. Cells were treated with LA or DHLA (50-600 micromol/L) or SFN (0.2-5 micromol/L) for 24 h. Immunoblots and real-time PCR showed that SFN, LA, and DHLA dose dependently induced GSTP protein and mRNA expression. Compared with the induction by the garlic organosulfur compound diallyl trisulfide (DATS), the effectiveness was in the order of SFN > DATS > LA = DHLA. The increase in GSTP enzyme activity in cells treated with 5 micromol/L SFN, 50 micromol/L DATS, and 600 micromol/L LA and DHLA was 172, 75, 122, and 117%, respectively (P < 0.05). A reporter assay showed that the GSTP enhancer I (GPEI) was required for GSTP induction by the organosulfur compounds. Electromobility gel shift assays showed that the DNA binding of GPEI to nuclear proteins reached a maximum at 0.5-1 h after SFN, LA, and DHLA treatment. Super-shift assay revealed that the transcription factors c-jun and nuclear factor erythroid-2 related factor 2 (Nrf2) were bound to GPEI. These results suggest that SFN and LA in either its oxidized or reduced form upregulate the transcription of the GSTP gene by activating c-jun and Nrf2 binding to the enhancer element GPEI.
Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin
2015-01-01
ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697
Skaper, Stephen D; Barbierato, Massimo; Facci, Laura; Borri, Mila; Contarini, Gabriella; Zusso, Morena; Giusti, Pietro
2018-01-01
Oligodendrocytes, the myelin-producing cells of the central nervous system (CNS), have limited capability to bring about repair in chronic CNS neuroinflammatory demyelinating disorders such as multiple sclerosis (MS). MS lesions are characterized by a compromised pool of undifferentiated oligodendrocyte progenitor cells (OPCs) unable to mature into myelin-producing oligodendrocytes. An attractive strategy may be to replace lost OLs and/or promote their maturation. N-palmitoylethanolamine (PEA) is an endogenous fatty acid amide signaling molecule with anti-inflammatory and neuroprotective actions. Recent studies show a co-ultramicronized composite of PEA and the flavonoid luteolin (co-ultraPEALut) to be more efficacious than PEA in improving outcome in CNS injury models. Here, we examined the effects of co-ultraPEALut on development of OPCs from newborn rat cortex cultured under conditions favoring either differentiation (Sato medium) or proliferation (fibroblast growth factor-2 and platelet-derived growth factor (PDGF)-AA-supplemented serum-free medium ("SFM")). OPCs in SFM displayed high expression of PDGF receptor alpha gene and the proliferation marker Ki-67. In Sato medium, in contrast, OPCs showed rapid decreases in PDGF receptor alpha and Ki-67 expression with a concomitant rise in myelin basic protein (MBP) expression. In these conditions, co-ultraPEALut (10 μM) enhanced OPC morphological complexity and expression of MBP and the transcription factor TCF7l2. Surprisingly, co-ultraPEALut also up-regulated MBP mRNA expression in OPCs in SFM. MBP expression in all cases was sensitive to inhibition of mammalian target of rapamycin. Within the context of strategies to promote endogenous remyelination in MS which focus on enhancing long-term survival of OPCs and stimulating their differentiation into remyelinating oligodendrocytes, co-ultraPEALut may represent a novel pharmacological approach.
Substance P enhances proliferation and paracrine potential of adipose-derived stem cells in vitro.
Kim, Suna; Piao, Jiyuan; Son, Youngsook; Hong, Hyun Sook
2017-03-25
Stem cells have tremendous promise to treat intractable diseases. Notably, adipose-derived stem cells (ADSCs) are actively being investigated because of ease of sampling and high repopulation capacity in vitro. ADSCs can exert a therapeutic effect through differentiation and paracrine potential, and these actions have been proven in many diseases, including cutaneous and inflammatory diseases. Transplantation of ADSCs necessitates therapeutic quantities and thus, long term ex vivo culture of ADSCs. However, this procedure can impair the activity of ADSCs and provoke cellular senescence, leading to low efficacy in vivo. Accordingly, strategies to restore cellular activity and inhibit senescence of stem cells during ex vivo culture are needed for stem cell-based therapies. This study evaluated a potential supplementary role of Substance P (SP) in ADSC ex vivo culture. After confirming that the ADSC cell cycle was damaged by passage 6 (p6), ADSCs at p6 were cultured with SP, and their proliferation rates, cumulative cell numbers, cytokine profiles, and impact on T/endothelial cells were assessed. Long-term culture weakened proliferation ability and secretion of the cytokines, transforming growth factor-beta 1 (TGF-beta1), vascular endothelial growth factor (VEGF), and stromal cell derived factor-1 alpha (SDF-1alpha) in ADSCs. However, SP treatment reduced the population doubling time (PDT), enabling gain of a sufficient number of ADSCs at early passages. In addition, SP restored cytokine secretion, enhancing the ADSC-mediated paracrine effect on T cell and human umbilical vein endothelial cells (HUVECs). Taken together, these results suggest that SP can retain the therapeutic effect of ADSCs by elevating their proliferative and paracrine potential in ex vivo culture. Copyright © 2017 Elsevier Inc. All rights reserved.
Mekhora, Keerin; Jalayondeja, Wattana; Jalayondeja, Chutima; Bhuanantanondh, Petcharatana; Dusadiisariyavong, Asadang; Upiriyasakul, Rujiret; Anuraktam, Khajornyod
2014-07-01
To develop an online, self-report questionnaire on computer work-related exposure (OSCWE) and to determine the internal consistency, face and content validity of the questionnaire. The online, self-report questionnaire was developed to determine the risk factors related to musculoskeletal disorders in computer users. It comprised five domains: personal, work-related, work environment, physical health and psychosocial factors. The questionnaire's content was validated by an occupational medical doctor and three physical therapy lecturers involved in ergonomic teaching. Twenty-five lay people examined the feasibility of computer-administered and the user-friendly language. The item correlation in each domain was analyzed by the internal consistency (Cronbach's alpha; alpha). The content of the questionnaire was considered congruent with the testing purposes. Eight hundred and thirty-five computer users at the PTT Exploration and Production Public Company Limited registered to the online self-report questionnaire. The internal consistency of the five domains was: personal (alpha = 0.58), work-related (alpha = 0.348), work environment (alpha = 0.72), physical health (alpha = 0.68) and psychosocial factor (alpha = 0.93). The findings suggested that the OSCWE had acceptable internal consistency for work environment and psychosocial factors. The OSCWE is available to use in population-based survey research among computer office workers.
Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A
2010-07-16
Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1alpha and HIF-2alpha immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1alpha-positive, 15 HIF-2alpha-positive and 10 positive for HIF-1alpha and HIF-2alpha. Expression of HIF-1alpha and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1alpha and HIF-2alpha in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2alpha in Ewing's. Downstream transcription was HIF-1alpha-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by >or= 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1alpha and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, R.K.; Otte, C.A.
Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by ..cap alpha.. factor pheromone. When sst1 mutants were mixed with normal SST/sup +/ cells, the entire population recovered together from ..cap alpha.. factor arrest, suggesting that SST/sup +/ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a ''barrier'' to the diffusion of ..cap alpha.. factor, were lesions in the same genes. These findings suggest that sst1 mutants are defective in recoverymore » from ..cap alpha.. factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST/sup +/ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to ..cap alpha.. factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of ..cap alpha.. factor for a much longer time than SST/sup +/ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of ..cap alpha.. factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective (''sterile'').« less
Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A
2005-01-01
Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133
Diamant, Gil; Eisenbaum, Tal; Leshkowitz, Dena; Dikstein, Rivka
2016-05-01
The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard
2007-08-01
Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei
NASA Astrophysics Data System (ADS)
Saleh Ahmed, Saad M.
2017-06-01
The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 < Z < 114, 111 < N < 174. This probability was calculated using the energy-dependent formula derived from the formulation of clusterisation states representation (CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laufersweiler, Matthew; Brugel, Todd; Clark, Michael
Novel substituted [5,5]-bicyclic pyrzazolones are presented as inhibitors of tumor necrosis factor-{alpha} (TNF-{alpha}) production. Many of these compounds show low nanomolar activity against lipopolysaccaride (LPS)-induced TNF-{alpha} production in THP-1 cells. This class of molecules was co-crystallized with mutated p38, and several analogs showed good oral bioavailability in the rat. Oral activity of these compounds in the rat iodoacetate model for osteoarthritis is discussed.
Connecting different TMD factorization formalisms in QCD
Collins, John; Rogers, Ted C.
2017-09-11
In the original Collins-Soper-Sterman (CSS) presentation of the results of transverse-momentum-dependent (TMD) factorization for the Drell-Yan process, results for perturbative coefficients can be obtained from calculations for collinear factorization. Here we show how to use these results, plus known results for the quark form factor, to obtain coefficients for TMD factorization in more recent formulations, e.g., that due to Collins, and apply them to known results at ordermore » $$\\alpha_s^2$$ and $$\\alpha_s^3$$. We also show that the ``non-perturbative'' functions as obtained from fits to data are equal in the two schemes. We compile the higher-order perturbative inputs needed for the updated CSS scheme by appealing to results obtained in a variety of different formalisms. In addition, we derive the connection between both versions of the CSS formalism and several formalisms based in soft-collinear effective theory (SCET). As a result, our work uses some important new results for factorization for the quark form factor, which we derive.« less
Connecting different TMD factorization formalisms in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John; Rogers, Ted C.
In the original Collins-Soper-Sterman (CSS) presentation of the results of transverse-momentum-dependent (TMD) factorization for the Drell-Yan process, results for perturbative coefficients can be obtained from calculations for collinear factorization. Here we show how to use these results, plus known results for the quark form factor, to obtain coefficients for TMD factorization in more recent formulations, e.g., that due to Collins, and apply them to known results at ordermore » $$\\alpha_s^2$$ and $$\\alpha_s^3$$. We also show that the ``non-perturbative'' functions as obtained from fits to data are equal in the two schemes. We compile the higher-order perturbative inputs needed for the updated CSS scheme by appealing to results obtained in a variety of different formalisms. In addition, we derive the connection between both versions of the CSS formalism and several formalisms based in soft-collinear effective theory (SCET). As a result, our work uses some important new results for factorization for the quark form factor, which we derive.« less
Hypoxia preconditioning protection of corneal stromal cells requires HIF1alpha but not VEGF.
Xing, Dongmei; Bonanno, Joseph A
2009-05-18
Hypoxia preconditioning protects corneal stromal cells from stress-induced death. This study determined whether the transcription factor HIF-1alpha (Hypoxia Inducible Factor) is responsible and whether this is promulgated by VEGF (Vascular Endothelial Growth Factor). Cultured bovine stromal cells were preconditioned with hypoxia in the presence of cadmium chloride, a chemical inhibitor of HIF-1alpha, and HIF-1alpha siRNA to test if HIF-1alpha activity is needed for hypoxia preconditioning protection from UV-irradiation induced cell death. TUNEL assay was used to detect cell apoptosis after UV-irradiation. RT-PCR and western blot were used to detect the presence of HIF-1alpha and VEGF in transcriptional and translational levels. During hypoxia (0.5% O2), 5 muM cadmium chloride completely inhibited HIF-1alpha expression and reversed the protection by hypoxia preconditioning. HIF-1alpha siRNA (15 nM) reduced HIF-1alpha expression by 90% and produced a complete loss of protection provided by hypoxia preconditioning. Since VEGF is induced by hypoxia, can be HIF-1alpha dependent, and is often protective, we examined the changes in transcription of VEGF and its receptors after 4 h of hypoxia preconditioning. VEGF and its receptors Flt-1 and Flk-1 are up-regulated after hypoxia preconditioning. However, the transcription and translation of VEGF were paradoxically increased by siHIF-1alpha, suggesting that VEGF expression in stromal cells is not down-stream of HIF-1alpha. These findings demonstrate that hypoxia preconditioning protection in corneal stromal cells requires HIF-1alpha, but that VEGF is not a component of the protection.
McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A
1992-01-01
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092
Chmela, Z; Sklenovský, A; Dostálová, K; Rypka, M
1993-01-01
The supposed antistress effect of vitamins-alpha-tocopherol, pyridoxine and dexpanthenol (pantothenic acid precursor)--was followed on the model of nociceptive stress in laboratory rats. The decrease of the stress enhancement of nonesterified fatty acids (NEFA), estimated in the brain cortex, hypothalamus and the brain stem, was taken for the indicator of the antistress effect. Nonesterified fatty acids were determined with the help of gas chromatography following the separation performed by thin layer chromatographic method. Five-day application of alpha-tocopherol acetate (per os, 300 mg.kg-1) led to a decrease of the stress enhancement of arachidonic acid level in the brain stem.
Polarized Nuclei in a Simple Mirror Fusion Reactor
NASA Technical Reports Server (NTRS)
Noever, David A.
1995-01-01
The possibility of enhancing the ratio of output to input power Q in a simple mirror machine by polarizing Deuterium-Tritium (D- T) nuclei is evaluated. Taking the Livermore mirror reference design mirror ratio of 6.54, the expected sin(sup 2) upsilon angular distribution of fusion decay products reduces immediate losses of alpha particles to the loss cone by 7.6% and alpha-ion scattering losses by approx. 50%. Based on these findings, alpha- particle confinement times for a polarized plasma should therefore be 1.11 times greater than for isotropic nuclei. Coupling this enhanced alpha-particle heating with the expected greater than 50% D- T reaction cross section, a corresponding power ratio for polarized nuclei, Q(sub polarized), is found to be 1.63 times greater than the classical unpolarized value Q(sub classical). The effects of this increase in Q are assessed for the simple mirror.
Acetyl-L-carnitine and alpha-lipoic acid: possible neurotherapeutic agents for mood disorders?
Soczynska, Joanna K; Kennedy, Sidney H; Chow, Cindy S M; Woldeyohannes, Hanna O; Konarski, Jakub Z; McIntyre, Roger S
2008-06-01
Mood disorders are associated with decrements in cognitive function, which are insufficiently treated with contemporary pharmacotherapies. To evaluate the putative neurotherapeutic effects of the mitochondrial cofactors, L-carnitine, acetyl-L-carnitine, and alpha-lipoic acid; and to provide a rationale for investigating their efficacy in the treatment of neurocognitive deficits associated with mood disorders. A PubMed search of English-language articles published between January 1966 and March 2007 was conducted using the search terms carnitine and lipoic acid. L-carnitine and alpha-lipoic acid may offer neurotherapeutic effects (e.g., neurocognitive enhancement) via disparate mechanisms including antioxidant, anti-inflammatory, and metabolic regulation. Preliminary controlled trials in depressed geriatric populations also suggest an antidepressant effect with acetyl-L-carnitine. L-carnitine and alpha-lipoic acid are pleiotropic agents capable of offering neuroprotective and possibly cognitive-enhancing effects for neuropsychiatric disorders in which cognitive deficits are an integral feature.
Chemaly, Melody; McGilligan, Victoria; Gibson, Mark; Clauss, Matthias; Watterson, Steven; Alexander, H Denis; Bjourson, Anthony John; Peace, Aaron
2017-12-01
Tumour necrosis factor alpha converting enzyme (TACE/ADAM17) is a member of the A disintegrin and metalloproteinase (ADAM) family of ectodomain shedding proteinases. It regulates many inflammatory processes by cleaving several transmembrane proteins, including tumour necrosis factor alpha (TNFα) and its receptors tumour necrosis factor alpha receptor 1 and tumour necrosis factor alpha receptor 2. There is evidence that TACE is involved in several inflammatory diseases, such as ischaemia, heart failure, arthritis, atherosclerosis, diabetes and cancer as well as neurological and immune diseases. This review summarizes the latest discoveries regarding the mechanism of action and regulation of TACE. It also focuses on the role of TACE in atherosclerosis and coronary artery disease (CAD), highlighting clinical studies that have investigated its expression and protein activity. The multitude of substrates cleaved by TACE make this enzyme an attractive target for therapy and a candidate for biomarker research and development in CAD. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.
Restraint stress enhances arterial thrombosis in vivo--role of the sympathetic nervous system.
Stämpfli, Simon F; Camici, Giovanni G; Keller, Stephan; Rozenberg, Izabela; Arras, Margarete; Schuler, Beat; Gassmann, Max; Garcia, Irene; Lüscher, Thomas F; Tanner, Felix C
2014-01-01
Stress is known to correlate with the incidence of acute myocardial infarction. However, the molecular mechanisms underlying this correlation are not known. This study was designed to assess the effect of experimental stress on arterial thrombus formation, the key event in acute myocardial infarction. Mice exposed to 20 h of restraint stress displayed an increased arterial prothrombotic potential as assessed by photochemical injury-induced time to thrombotic occlusion. This increase was prevented by chemical sympathectomy performed through 6-hydroxydopamine (6-OHDA). Blood-born tissue factor (TF) activity was enhanced by stress and this increase could be prevented by 6-OHDA treatment. Vessel wall TF, platelet count, platelet aggregation, coagulation times (PT, aPTT), fibrinolytic system (t-PA and PAI-1) and tail bleeding time remained unaltered. Telemetric analysis revealed only minor hemodynamic changes throughout the stress protocol. Plasma catecholamines remained unaffected after restraint stress. Tumor necrosis factor alpha (TNF-α) plasma levels were unchanged and inhibition of TNF-α had no effect on stress-enhanced thrombosis. These results indicate that restraint stress enhances arterial thrombosis via the sympathetic nervous system. Blood-borne TF contributes, at least in part, to the observed effect whereas vessel wall TF, platelets, circulating coagulation factors, fibrinolysis and inflammation do not appear to play a role. These findings shed new light on the understanding of stress-induced cardiovascular events.
Cannabinoids and brain injury: therapeutic implications.
Mechoulam, Raphael; Panikashvili, David; Shohami, Esther
2002-02-01
Mounting in vitro and in vivo data suggest that the endocannabinoids anandamide and 2-arachidonoyl glycerol, as well as some plant and synthetic cannabinoids, have neuroprotective effects following brain injury. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission and reduce the production of tumour necrosis factor-alpha and reactive oxygen intermediates, which are factors in causing neuronal damage. The formation of the endocannabinoids anandamide and 2-arachidonoyl glycerol is strongly enhanced after brain injury, and there is evidence that these compounds reduce the secondary damage incurred. Some plant and synthetic cannabinoids, which do not bind to the cannabinoid receptors, have also been shown to be neuroprotective, possibly through their direct effect on the excitatory glutamate system and/or as antioxidants.
NASA Astrophysics Data System (ADS)
Larina, Olga; Bekker, Anna; Turin-Kuzmin, Alexey
2016-07-01
Earth-based studies of microgravity effects showed the induction of the mechanisms of acute phase reaction (APR). APR comprises the transition of stress-sensitive protein kinases of macrophages and other responsive cells into the active state and the phosphorylation of transcription factors which in turn stimulate the production of acute-phase reaction cytokines. Leukocyte activation is accompanied by the acceleration of the formation of oxygen radicals which can serve a functional indice of leukocyte cell state. The series of events at acute phase response result in selective changes in the synthesis of a number of secretory blood proteins (acute phase proteins, APPs) in liver cells thus contributing the recovery of homeostasis state in the organism. Earlier experiment with head-down tilt showed the increase in plasma concentrations of two cytokine mediators of acute phase response, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) being the outcome of the activation of producer cells, foremost, leukocytes. In experiment with 4-day dry immersion chemiluminescent (ChL) reply of the whole blood samples to a test stimulus were studied along with the measurements of plasma levels of APPs, namely, alpha1-antitrypsin (alpha1-AT), alpha1-acid glycoprotein (alpha1-AGP), alpha2-macroglobulin (alpha2-M), ceruloplasmin (Cer), haptoglobin (Hp), C3-complement component (C3), C-reactive protein (CRP). Eight individuals aged 21.2 ± 3.2 years were the test subjects in the investigation. Protein studies showed a noticeable increase in the mean plasma levels of all APPs measured in experiment thus producing the evidence of the activation of acute phase response mechanisms while individual patterns revealed variability during the immersion period. The overall trends were similar to these in the previous immersion series. The augment in the strength of signal in stimulated light emission tests was higher after 1- and 2-day of immersion exposure than before the experiment. The effects obtained in this survey suggest the enhancement of the synthesis of active oxygen species by blood phagocytes at the initial stages of adaptation to immersion conditions. The gain of chemiluminescence signal correlated with maximal augment in APP concentrations registered in the course of 4-day immersion. Moreover, in the only case with zero effects in chemiluminescent reply stable APP levels were obtained. The data from functional studies performed with phagocytic cells in the experiment with dry immersion corroborate their implication in acute phase mechanisms participating in the adaptation to simulated microgravity conditions.
Lee, Ryan H; Mills, Elizabeth A; Schwartz, Neil; Bell, Mark R; Deeg, Katherine E; Ruthazer, Edward S; Marsh-Armstrong, Nicholas; Aizenman, Carlos D
2010-01-12
Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-alpha on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-alpha resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-alpha treatment also enhanced the overall growth of tectal cell dendrites. Finally, we found that TNF-alpha-reared tadpoles had increased susceptibility to pentylenetetrazol-induced seizures. Taken together our data are consistent with a model in which TNF-alpha causes premature stabilization of developing synapses within the tectum, therefore preventing normal refinement and synapse elimination that occurs during development, leading to increased local connectivity and epilepsy. This experimental model also provides an integrative approach to understanding the effects of cytokines on the development of neural circuits and may provide novel insights into the etiology underlying some neurodevelopmental disorders.
Prediction of alpha factor values for fine pore aeration systems.
Gillot, S; Héduit, A
2008-01-01
The objective of this work was to analyse the impact of different geometric and operating parameters on the alpha factor value for fine bubble aeration systems equipped with EPDM membrane diffusers. Measurements have been performed on nitrifying plants operating under extended aeration and treating mainly domestic wastewater. Measurements performed on 14 nitrifying plants showed that, for domestic wastewater treatment under very low F/M ratios, the alpha factor is comprised between 0.44 and 0.98. A new composite variable (the Equivalent Contact Time, ECT) has been defined and makes it possible for a given aeration tank, knowing the MCRT, the clean water oxygen transfer coefficient and the supplied air flow rate, to predict the alpha factor value. ECT combines the effect on mass transfer of all generally accepted factors affecting oxygen transfer performances (air flow rate, diffuser submergence, horizontal flow). (c) IWA Publishing 2008.
Butta, Nora; Larrucea, Susana; Gonzalez-Manchon, Consuelo; Alonso, Sonia; Parrilla, Roberto
2004-12-01
This work reports the functional studies of CHO cells coexpressing alpha-adrenergic (alphaAR) and human fibrinogen (Fg) receptors (integrin alphaIIbbeta3). Stimulation of these cells with alpha-agonists produced a transient rise in the free cytosolic calcium (Ca(++)) accompanied by enhanced binding to soluble Fg, and these effects were prevented by specific alphaAR antagonists. The alpha-adrenergic-induced activation of alphaIIbbeta3 in CHO-alphaIIbbeta3-alphaAR increased the rate of adhesion and extension of cells onto Fg coated plates, and also induced a soluble Fg- and alphaIIbbeta3-dependent formation of cell aggregates, whereas no effects were observed by the stimulation of CHO-alphaIIbbeta3 cells. alpha-Adrenergic antagonists, the ligand mimetic peptide RGDS, pertussis toxin (PTX), or EDTA, they all prevented the alpha-adrenergic stimulation of adhesion and aggregation. However, inhibition of PKC prevented the alpha-adrenergic stimulation of cell adherence, whereas blocking the intracellular Ca(++) mobilization impeded the stimulation of cell aggregation. The alpha-adrenergic activation was associated with phosphorylation of a protein of approximately 100 kDa and proteins of the MAPK family. The former was selectively phosphorylated by alpha-adrenergic stimulation whereas the latter were phosphorylated by the binding of cells to Fg and markedly intensified by alpha-adrenergic stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manea, Adrian, E-mail: adrian.manea@icbp.ro; Tanase, Laurentia I.; Raicu, Monica
Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysismore » showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.« less
Breast Cancer Research Program
2010-09-01
a novel curcumin analog that specifically targets tumor blood vessels. Ligand-transformed alpha - fetoprotein peptide (AFPep) – Dr. James Bennett and...showed that inflammatory cytokines (e.g., TNF- alpha ) enhanced nanoparticle uptake by endothelial cells. When animals inoculated with 4T1 breast
Enhancing arabic bread quality and shelf life stability using bread improvers.
Aleid, S M; Al-Hulaibi, A A; Ghoush, M Abu; Al-Shathri, A A
2015-08-01
Arabic breads is produced mainly from hard red winter wheat (HRWW) and have relatively little crumb, dense texture, form pocket and are often round with golden brown crust color. The objectives of this research were to investigate the effect of different bread improvers combinations addition in enhancing the quality parameters of Arabic bread. Therefore, the ability of Arabic bread for rolling, folding and overall quality were evaluated during the Arabic bread storage period for 2 days. It was found that there was significant effect of bread improvers combinations (Arabic gum "AG" * Mongglycerides "MG" *alpha-amylase) addition on the ability of Arabic bread for rolling and folding on the second day (P ≤ 0.1). The highest white Arabic bread quality was obtained significantly from addition of low AG, high of MG and high alpha-amylase combination and high AG, low of MG and high alpha-amylase combination. While, low of AG, high of MG and low alpha-amylase combination and high of AG, high of MG and low alpha-amylase combination significantly exhibited the highest overall quality for the Arabic bread made from whole flour.
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response
Goldstein, Ido; Baek, Songjoon; Presman, Diego M.; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.
2017-01-01
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. PMID:28031249
Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai
2011-07-15
Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less
Sukhotnik, Igor; Shteinberg, Dan; Ben Lulu, Shani; Bashenko, Yulia; Mogilner, Jorge G; Ure, Benno M; Shaoul, Ron; Coran, Arnold G
2008-11-01
The purpose of the present study was to evaluate the effect of transforming-growth factor-alpha (TGF-alpha) on enterocyte apoptosis following methotrexate (MTX) induced intestinal mucositis in a rat and in Caco-2 cells. Non-pretreated and pretreated with MTX Caco-2 cells were incubated with increasing concentrations of TGF-alpha. Cell apoptosis was determined by FACS cytometry. Adult rats were divided into four groups: Control, Control-TGF-alpha, MTX, and MTX- TGF-alpha rats. Three days later rats were sacrificed. Enterocyte apoptosis were measured at sacrifice. RT-PCR and Western Blotting was used to determine the level of Bax and Bcl-2 mRNA and protein. Real time PCR was used to measure epidermal growth factor receptor (EGFr) expression along the villus-crypt axis. The in vitro experiment has shown that treatment with TGF-alpha of Caco-2 cells results in a significant inhibition of cell apoptosis in a dose-dependent manner. In vivo experiment, a decreased levels of apoptosis in MTX- TGF-alpha rats corresponded with the decrease in Bax and with the increase in Bcl-2 at both mRNA and protein levels. The inhibiting effect of TGF-alpha on enterocyte apoptosis was strongly correlated with EGFr expression along the villus-crypt axis. In conclusion, treatment with TGF-alpha inhibits enterocyte apoptosis following MTX- injury in the rat.
Radhakrishnan, V V; Sumi, M G; Reuben, S; Mathai, A; Nair, M D
2003-05-01
Tumour necrosis factor-alpha (TNF-alpha) is regarded as one of the immune factors that can induce demyelination of peripheral nerves in patients with Guillian-Barre syndrome (GBS). This present study was undertaken to find out the role of TNF-alpha and soluble TNF receptors in the pathogenesis of GBS; and to study the effect of intravenous immunoglobulin (ivIg) therapy on the serum TNF-alpha and soluble TNF receptors in patients with GBS. Thirty six patients with GBS in progressive stages of motor weakness were included in this study. The serum TNF-alpha and soluble TNF receptors (TNF-RI, TNF-RII) were measured in the serum samples of these patients before and after ivIg therapy by a sandwich ELISA. Of the 36 patients with GBS, 26 (72.2%) showed elevated serum TNF-alpha levels prior to ivIg therapy. Following a complete course of ivIg therapy there was a progressive decrease in the serum TNF-alpha concentrations in these 26 patients. On the other hand, the soluble TNF receptors, particularly TNF-RII showed an increase in the serum of GBS patients following ivIg therapy. The results indicate that ivIg reduces the serum TNF-alpha concentrations in the GBS patients having elevated levels prior to ivIg therapy. Elevated serum levels of soluble TNF receptors following ivIg therapy may play a protective role by inhibiting the demyelinating effect of TNF-alpha in the peripheral nerves of patients with GBS.
TITLE:
TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...
A Factor Analysis of Learning Data and Selected Ability Test Scores
ERIC Educational Resources Information Center
Jones, Dorothy L.
1976-01-01
A verbal concept-learning task permitting the externalizing and quantifying of learning behavior and 16 ability tests were administered to female graduate students. Data were analyzed by alpha factor analysis and incomplete image analysis. Six alpha factors and 12 image factors were extracted and orthogonally rotated. Four areas of cognitive…
p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.
Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R
2007-10-01
Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki
The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAsmore » in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.« less
Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice
1991-01-01
Antigens and infectious agents that stimulate interferon alpha(IFN- alpha) production in mice induce antibody responses that are predominantly of the immunoglobulin (Ig)G2a isotype and contain little or no IgE. This suggested the possibility that IFN-alpha might have a role in directing Ig isotype selection. Consistent with this possibility, we have found that injection of mice with recombinant mouse IFN-alpha suppresses IgE secretion, enhances IgG2a secretion, and has no independent effect on IgG1 secretion in mice stimulated with a foreign anti-IgD antibody. Injection of mice with polyinosinic acid.polycytidylic acid (poly I.C), an inducer of macrophage IFN-alpha production, also suppresses the anti-IgD antibody-induced IgE response and stimulates the IgG2a response; these effects are blocked by a sheep antibody that neutralizes mouse IFN-alpha/beta. Both recombinant IFN- alpha and poly I.C have maximum IgE suppressive and IgG2a stimulatory effects when injected early in the anti-IgD antibody-induced immune response. Addition of IFN-alpha to mouse B cells cultured with lipopolysaccharide (LPS) + interleukin 4 (IL-4) suppresses both IgG1 and IgE production, but much less potently than IFN-gamma. IFN-alpha suppresses anti-IgD antibody-induced increases in the level of splenic IL-4 mRNA, but enhances the anti-IgD antibody-induced increase in the splenic level of IFN-gamma mRNA. These results are consistent with the effect of IFN-alpha on Ig isotype expression in mice, as IL-4 stimulates IgE and suppresses IgG2a secretion while IFN-gamma exerts opposite effects. These observations suggest that antigen presenting cells, by secreting IFN-alpha early in the course of an immune response, can influence the nature of that response both through direct effects on B cells and by influencing the differentiation of T cells. PMID:1940796
Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W
1994-01-01
Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX. Images PMID:7927746
Tang, Minke; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Kagan, Valerian E; Bayir, Hülya
2010-01-01
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ying; Liu, Tao; Wang, Ning
We report on high-efficiency planar heterojunction perovskite solar cells (PSCs) employing Ni-doped alpha-Fe2O3 as electron-transporting layer (ETL). The suitable addition of nickel (Ni) dopant could enhance the electron conductivity as well as induce downward shift of the conduction band minimum for alpha-Fe2O3, which facilitate electrons injection and transfer from the conduction band of the perovskite. As a consequence, a substantial reduction in the charge accumulation at the perovskite/ETL interface makes the device much less sensitive to scanning rate and direction, i.e., lower hysteresis. With a reverse scan for the optimized PSC under standard AM-1.5 sunlight illumination, it generates a competitivemore » power conversion efficiency (PCE) of 14.2% with a large short circuit current (J(sc)) of 22.35 mA/cm(2), an open circuit photovoltage (V-oc) of 0.92 V and a fill factor (FF) of 69.1%. Due to the small J-V hysteresis behavior, a higher stabilized PCE up to 11.6% near the maximum power point can be reached for the device fabricated with 4 mol% Ni-doped alpha-Fe2O3 ETL compared with the undoped alpha-Fe2O3 based cell (9.2%). Furthermore, a good stability of devices with exposure to ambient air and high levels of ultraviolet (UV)-light can be achieved. Overall, our results demonstrate that the simple solution-processed Ni-doped alpha-Fe2O3 can be a good candidate of the n-type collection layer for commercialization of PSCs.« less
Wang, Zhong Q; Yu, Yongmei; Zhang, Xian H; Floyd, Z Elizabeth; Boudreau, Anik; Lian, Kun; Cefalu, William T
2012-01-01
Aim To compare the effects of dietary fibers on hepatic cellular signaling in mice. Methods Mice were randomly divided into four groups (n = 9/group): high-fat diet (HFD) control, cellulose, psyllium, and sugarcane fiber (SCF) groups. All mice were fed a HFD with or without 10% dietary fiber (w/w) for 12 weeks. Body weight, food intake, fasting glucose, and fasting insulin levels were measured. At the end of the study, hepatic fibroblast growth factor (FGF) 21, AMP-activated protein kinase (AMPK) and insulin signaling protein content were determined. Results Hepatic FGF21 content was significantly lowered, but βKlotho, fibroblast growth factor receptor 1, fibroblast growth factor receptor 3, and peroxisome proliferator-activated receptor alpha proteins were significantly increased in the SCF group compared with those in the HFD group (P < 0.01). SCF supplementation also significantly enhanced insulin and AMPK signaling, as well as decreased hepatic triglyceride and cholesterol in comparison with the HFD mice. The study has shown that dietary fiber, especially SCF, significantly attenuates lipid accumulation in the liver by enhancing hepatic FGF21, insulin, and AMPK signaling in mice fed a HFD. Conclusion This study suggests that the modulation of gastrointestinal factors by dietary fibers may play a key role in both enhancing hepatic multiple cellular signaling and reducing lipid accumulation. PMID:22787396
Hashem, Reem M; Mahmoud, Mona F; El-Moselhy, Mohamed A; Soliman, Hala M
2008-10-01
Fatty liver disease is commonly associated with diabetes mellitus (DM). Insulin resistance (IR) as an investigative biomarker is only concerned with fatty liver that results from DM type 2 associated with metabolic syndrome. Irrespective of IR, DM is generally characterized by overproduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), whereas action of the latter is modulated by the anti-inflammatory cytokine interleukin-10 (IL-10). The aim of this study was to investigate the efficacy of using TNF-alpha alone or IL-10/TNF-alpha ratio compared to IR, as a promising biomarker for fatty liver assessment in DM. Furthermore, we hypothesized that using garlic as an immunomodulator may decrease TNF-alpha and increase IL-10 production to improve steatohepatitis. DM was induced metabolically by a high-fat diet to bring about IR, or chemically by alloxan, producing insulin deficiency, in male albino rats. Garlic powder was supplemented (15 mg/kg per day) for 3 weeks. Fatty liver was depicted histologically and biochemically (aspartic aminotransferase, alanine aminotransferase, HOMA-IR, TNF-alpha, IL-10, IL-10/TNF-alpha ratio). We found that, in contrast to obese rats, garlic decreased IL-10/TNF-alpha ratio, despite decreasing TNF-alpha in alloxan diabetic rats in agreement with the histology, which revealed more prominent improvement in the obese group. Moreover, the effect of garlic was not linked to improvement of IR in obese rats. We conclude that IL-10/TNF-alpha ratio may be considered as a convenient biomarker for investigation of fatty liver of different grades, apart from being associated with IR, and immunomodulation of this ratio in favor of increasing it may exert significant improvement.
In vitro characterization of high purity factor IX concentrates for the treatment of hemophilia B.
Limentani, S A; Gowell, K P; Deitcher, S R
1995-04-01
This study employed sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting to assess the purity of seven high purity factor IX concentrates: Aimafix (Aima), AlphaNine-SD (Alpha Therapeutic), Factor IX VHP (Biotransfusion), Immunine (Immuno), Mononine (Armour Pharmaceutical), Nanotiv (Kabi Pharmacia), and 9MC (Blood Products Laboratory). The mean specific activity of these products ranged from 68 U factor IX/mg (Aimafix) to 246 U factor IX/mg (Mononine). SDS-PAGE analysis showed that the highest purity product, Mononine, had a single contaminating band under non-reducing conditions. Two additional bands were detected when this product was analyzed under reducing conditions. All other products had multiple contaminating bands that were more apparent under reducing than non-reducing conditions. The immunoblot for factor IX showed a dominant factor IX band for all products. In addition, visible light chain of factor IX was detected for AlphaNine-SD, Factor IX VHP, Immunine, Mononine, Nanotiv, and 9MC, suggesting that the factor IX in these products had undergone partial activation to factor IXa. Another contaminating band was visible at 49,500 for all of the products except 9MC. In addition to this band, high molecular weight contaminants were apparent for some products, most notably AlphaNine-SD. The identity of these bands is unknown. Immunoblotting failed to demonstrate factor VII as a contaminant of any of the high purity products, although factor VIIa could be detected in some lots of Immunine, Nanotiv, and 9MC by a clot-based assay. Factor X contaminated Aimafix, AlphaNine-SD, Factor IX VHP, Immunine, Nanotiv, and 9MC, but activation products of factor X were not detected.(ABSTRACT TRUNCATED AT 250 WORDS)
Brazís, P; De Mora, F; Ferrer, L; Puigdemont, A
2002-03-01
The role of IgE on mast cell (MC) activation is well known. Recent studies have demonstrated that IgE also has the ability to up-regulate the high affinity IgE receptor (Fc epsilon RI) on the surface of human and murine MC, leading to an increased production of cytokines and chemokines. In the present study, we have examined the influence of IgE levels on Fc epsilon RI expression, and its consequences on TNF-alpha production from canine skin MC. Mature MC were enzymatically dispersed from the skin biopsies of 6-8 dogs and were cultured for up to 5 days in medium supplemented with recombinant canine stem cell factor (SCF) (6 ng/ml), in the presence of increasing serum IgE concentrations (ranging from 0 to 80 microg/ml). Subsequently, skin MC were activated with anti-IgE, and TNF-alpha concentration was assessed 5h post-activation by a cytotoxic bioassay. Fc epsilon RI receptors were identified in MC surface by flow cytometry. MC cultured for up to 5 days in the presence of high serum IgE concentration (8 microg/ml) produced twice the quantity of TNF-alpha than MC cultured in the absence of serum IgE, in response to stimulation with anti-IgE. Moreover, the percentage of Fc epsilon RI-positive skin cells was found to be approximately double in cells cultured with serum IgE compared to that cultured in the absence of IgE, following saturation of IgE receptors. These results suggest that, as found in human and murine MC, IgE may induce an up-regulation of the Fc epsilon RI density and an enhancement in the secretory activity of canine skin MC. This study could be of great interest in designing new therapeutic strategies for controlling MC activation in inflammatory and allergic processes.
Ren, Ming; Ye, Lingyan; Hao, Xiaoshi; Ren, Zhixing; Ren, Shuping; Xu, Kun; Li, Juan
2014-06-01
Few studies have investigated the effects produced by combinations of polysaccharides and chemotherapeutic drugs in cancer treatment. We hypothesized that a combination of polysaccharides (COP) from Lentinus edodes and Tricholoma matsutake would improve the efficacy of 5-fluorouracil (5-FU)-mediated inhibition of H22 cell growth. Mice were injected H22 cells and then treated with either 5-FU, polysaccharides from Tricholoma matsutake (PTM), polysaccharides from Lentinus edodes (PL), PTM+PL, 5-FU+PTM, 5-FU+ PL, or 5-FU + COP. The tumor weight and volume, and splenic CD4 + and CD8 + T cell frequencies, were determined. Additionally, splenic natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activities were assessed and the serum levels of tumor necrosis factor-alpha (TNF-alpha), Interleukin-2 (IL-2), and Interferon-gamma (IFN-gamma) were measured. Compared with mice from the control, 5-FU, PL, PTM, PTM + PL, 5-FU + PL, and 5-FU + PTM groups, mice treated with 5-FU + COP showed: (a) significantly reduced tumor weight and volume (P < 0.05); (b) significantly higher serum levels of TNF-alpha, IL-2, and IFN-gamma (P < 0.05); (c) significantly increased CD4+ and CD8+ T cell frequencies in the spleen (P < 0.05); and (d) significantly increased splenic NK cell and CTL activities (P < 0.05). The tumor weight and volume in mice treated with 5-FU+PL or 5-FU+PTM were significantly reduced compared with mice treated with 5-FU alone (P < 0.05). Serum levels of TNF-alpha, IL-2, and IFN-gamma, frequencies of CD4 + and CD8+ T cells in the spleen, and splenic NK and CTL activities were also significantly increased in mice treated with 5-FU+PL or 5-FU+PTM compared with mice treated with 5-FU alone (P < 0.05). Polysaccharides from Lentinus edodes and Tricholoma matsutake could enhance the efficacy of 5-FU-mediated H22 cell growth inhibition.
Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir; Bock, Elisabeth
2010-07-01
Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor.
Noman, Abu Shadat M; Koide, Naoki; Hassan, Ferdaus; I-E-Khuda, Imtiaz; Dagvadorj, Jargalsaikhan; Tumurkhuu, Gantsetseg; Islam, Shamima; Naiki, Yoshikazu; Yoshida, Tomoaki; Yokochi, Takashi
2009-02-01
The effect of thalidomide on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production was studied by using RAW 264.7 murine macrophage-like cells. Thalidomide significantly inhibited LPS-induced TNF-alpha production. Thalidomide prevented the activation of nuclear factor (NF)-KB by down-regulating phosphorylation of inhibitory KB factor (IKB), and IKB kinase (IKK)-alpha and IKK-beta Moreover, thalidomide inhibited LPS-induced phosphorylation of AKT, p38 and stress-activated protein kinase (SAPK)/JNK. The expression of myeloid differentiation factor 88 (MyD88) protein and mRNA was markedly reduced in thalidomide-treated RAW 264.7 cells but there was no significant alteration in the expression of interleukin-1 receptor-associated kinase (IRAK) 1 and TNF receptor-associated factor (TRAF) 6 in the cells. Thalidomide did not affect the cell surface expression of Toll-like receptor (TLR) 4 and CD14, suggesting the impairment of intracellular LPS signalling in thalidomide-treated RAW 264.7 cells. Thalidomide significantly inhibited the TNF-alpha production in response to palmitoyl-Cys(RS)-2,3-di(palmitoyloxy) propyl)-Ala-Gly-OH (Pam(3)Cys) as a MyD88-dependent TLR2 ligand. Therefore, it is suggested that thalidomide might impair LPS signalling via down-regulation of MyD88 protein and mRNA and inhibit LPS-induced TNF-alpha production. The putative mechanism of thalidomide-induced MyD88 down-regulation is discussed.
Takada, Hitomi; Tsuchiya, Kaoru; Yasui, Yutaka; Nakakuki, Natsuko; Tamaki, Nobuharu; Suzuki, Shoko; Nakanishi, Hiroyuki; Itakura, Jun; Takahashi, Yuka; Kurosaki, Masayuki; Asahina, Yasuhiro; Enomoto, Nobuyuki; Izumi, Namiki
2016-11-01
Radiofrequency ablation (RFA) is considered the most effective treatment for early-stage hepatocellular carcinoma (HCC) patients unsuitable for resection. However, poor outcome after RFA has occasionally been reported worldwide. To predict such an outcome, we investigated imaging findings using contrast-enhanced ultrasonography (CEUS) with Sonazoid and serum tumor markers before RFA. This study included 176 early-stage HCC patients who had initially achieved successful RFA. Patients were examined using CEUS; their levels of alpha-fetoprotein (AFP), Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3), and des-gamma-carboxy prothrombin before RFA were measured. Sonazoid provided parenchyma-specific contrast imaging and facilitated tumor vascular architecture imaging through maximum intensity projection (MIP). Kaplan-Meier analysis examined cumulative rates of local tumor progression, intrasubsegmental recurrence, and survival; factors associated with these were determined with Cox proportional hazards analysis. Local tumor progression (n = 15), intrasubsegmental recurrence (n = 46), and death (n = 18) were observed. Irregular pattern in MIP classification and serum AFP-L3 level (>10%) before RFA were identified as independent risk factors for local tumor progression and intrasubsegmental recurrence. These two factors were independently associated with poor survival after RFA (irregular pattern in MIP: hazard ratio, (HR) = 8.26; 95% confidence interval, (CI) = 2.24-30.3; P = 0.002 and AFP-L3 > 10%: HR = 2.94; 95% CI = 1.09-7.94; P = 0.033). Irregular MIP pattern by CEUS and high level of serum AFP-L3 were independent risk factors for poor outcome after successful RFA. The Patients with these findings should be considered as special high-risk group in early-stage HCC. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Wason, Sheila; Pohlmeyer-Esch, Gabriele; Pallen, Catherine; Palazzi, Xavier; Espuña, Gemma; Bars, Remi
2003-11-05
A 28-day oral gavage toxicity study in the rat with 17alpha-methyltestosterone was conducted as part of the international validation exercise on the modified Enhanced OECD Test Guideline 407 (Organisation for Economic Co-operation and Development, Paris). Special emphasis was placed on the endocrine mediated effects exerted by 17alpha-methyltestosterone, a potent androgen agonist. The test compound was administered daily by oral gavage for at least 28 days to groups of 7-week-old-Wistar rats. Dose levels were 0, 10, 40 and 200 mg/kg body weight per day for males and 0, 10, 100 and 600 mg/kg body weight per day for females. In addition, and outside the remit of the enhanced protocol, testosterone levels in males, oestradiol levels in females and luteinizing hormone (LH) levels in both sexes were measured, to provide a broader profile on the hormonally mediated effects of 17alpha-methyltestosterone. Furthermore, stage-specific quantification of Terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling (TUNEL)-labeled germ cells (apoptotic germ cells) in the seminiferous tubules was also performed, in an effort to demonstrate the precise stages in the spermatogenic cycle 17alpha-methyltestosterone exerts its effect. In this study, the most critical additional parameters contained in the Enhanced OECD Test Guideline 407 for the detection of endocrine disruption were considered to be the histopathological assessment and organ weight data of endocrine-related tissues. Beyond the scope of this validation exercise, an increase in apoptosis in specific germ cell types was detected using the TUNEL assay in male rats treated at 200 and 40 mg/kg.
Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha.
Leibovich, S J; Polverini, P J; Shepard, H M; Wiseman, D M; Shively, V; Nuseir, N
Macrophages are important in the induction of new blood vessel growth during wound repair, inflammation and tumour growth. We show here that tumour necrosis factor-alpha (TNF-alpha), a secretory product of activated macrophages that is believed to mediate tumour cytotoxicity, is a potent inducer of new blood vessel growth (angiogenesis). In vivo, TNF-alpha induces capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membrane at very low doses. In vitro, TNF-alpha stimulates chemotaxis of bovine adrenal capillary endothelial cells and induces cultures of these cells grown on type-1 collagen gels to form capillary-tube-like structures. The angiogenic activity produced by activated murine peritoneal macrophages is completely neutralized by a polyclonal antibody to TNF-alpha, suggesting immunological features are common to TNF-alpha and the protein responsible for macrophage-derived angiogenic activity. In inflammation and wound repair, TNF-alpha could augment repair by stimulating new blood vessel growth; in tumours, TNF-alpha might both stimulate tumour development by promoting vessel growth and participate in tumour destruction by direct cytotoxicity.
Arroyo, Carmen M; Kan, Robert K; Burman, Damon L; Kahler, David W; Nelson, Marian R; Corun, Charlene M; Guzman, Juanita J; Broomfield, Clarence A
2003-05-01
The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at
Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan
2013-01-01
Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.
Habtemariam, S
1998-05-01
Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.
Nardone, Beatrice; Orrell, Kelsey A; Vakharia, Paras P; West, Dennis P
2018-02-01
Skin cancers, including both malignant melanoma (MM) and nonmelanoma skin cancer (NMSC), are the most commonly diagnosed cancers in the US. The incidence of both MM and NMSC continues to rise. Areas covered: Current evidence for an association between four of the most commonly prescribed classes of drugs in the U.S. and risk for MM and NMSC is reported. Medline was searched (January 2000 to May 2017) for each drug in the classes and for 'basal cell carcinoma', 'squamous cell carcinoma', 'non-melanoma skin cancer', 'skin cancer' and 'melanoma'. Skin cancer risk information was reported for: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase inhibitors (statins). Expert opinion: Since skin cancer risk is associated with all four classes of these commonly prescribed drugs that represent nearly 20% of the Top 100 drugs in the U.S., these important findings warrant enhanced education, especially for prescribers and those patients at high risk for skin cancer.
Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F; Gonzalez, Frank J; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro
2008-06-01
Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4alpha (HNF4alpha)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4alpha-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4alpha plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4alpha site (direct repeat 1 [TGGACAAAGGTGC]; HNF4alpha-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4alpha. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4alpha-RE. Furthermore, KLF9 functions together with HNF4alpha and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4alpha and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4alpha regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9.
Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement.
Brachmann, Saskia M; Yballe, Claudine M; Innocenti, Metello; Deane, Jonathan A; Fruman, David A; Thomas, Sheila M; Cantley, Lewis C
2005-04-01
Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response.
Frye, Cheryl A; Rhodes, Madeline E
2005-03-15
5 alpha-Pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), progesterone (P4)'s 5 alpha-reduced, 3 alpha-hydroxysteroid oxidoreduced product, facilitates lordosis of rodents in part via agonist-like actions at GABA(A)/benzodiazepine receptor complexes in the ventral tegmental area (VTA). Whether 3 alpha,5 alpha-THP influences another reproductively-relevant behavior, lateral displacement, of hamsters was investigated. Lateral displacement is the movement that female hamsters make with their perineum towards male-like tactile stimulation. This behavior facilitates, and is essential for, successful mating. Hamsters in behavioral estrus had greater lateral displacement responses when endogenous progestin levels were elevated compared to when progestin levels were lower. Administration of P4, a prohormone for 3 alpha,5 alpha-THP, dose-dependently (500 > 200 > 100, 50, or 0 microg) enhanced lateral displacement of ovariectomized hamsters that had been primed with SC estradiol benzoate (5 or 10 microg). Inhibiting P4's metabolism to 3 alpha,5 alpha-THP by co-administering finasteride, a 5 alpha-reductase inhibitor, or indomethacin, a 3 alpha-hydroxysteroid oxidoreductase inhibitor, either systemically or to the VTA, significantly decreased lateral displacement and midbrain progestin levels of naturally receptive or hormone-primed hamsters compared to controls. These data suggest that lateral displacement is progestin-sensitive and requires the formation of 3 alpha,5 alpha-THP in the midbrain VTA.
NASA Astrophysics Data System (ADS)
Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.
2006-02-01
In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.
Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K
2008-09-01
Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive functions.
Mössner, R; Beckmann, I; Hallermann, C; Neumann, C; Reich, K
2004-06-01
Psoriasis is a chronic inflammatory skin disorder characterized by accumulation of Th1-type T cells and neutrophils, regenerative keratinocyte proliferation and differentiation, and enhanced epidermal production of antimicrobial peptides. The underlying cause is unknown, but there are some similarities with the immunologic defense program against bacteria. Development of psoriasiform skin lesions has been reported after administration of granulocyte colony-stimulating factor (G-CSF), a cytokine induced in monocytes by bacterial antigens. To further investigate the relation between this type of cytokine-induced dermatitis and psoriasis, we analyzed the cutaneous cytokine profile [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma, transforming growth factor-beta1 (TGF-beta1), interleukin-10 (IL-10), IL-12p35 and p40, and IL-8] and expression of markers of epidermal activation [Ki-67, cytokeratin-16, major histocompatibility complex (MHC) class II, intercellular adhesion molecule-1 (ICAM-1)] in a patient who developed G-CSF-induced psoriasiform dermatitis by using quantitative real-time reverse transcriptase-polymerase chain reaction and immunohistology. The histologic picture resembled psoriasis with regard to epidermal hyperparakeratosis and the accumulation of lymphocytes in the upper corium. CD8(+) T cells were found to infiltrate the epidermis which was associated with an aberrant expression of Ki-67, cytokeratin-16, MHC class II, and ICAM-1 on adjacent keratinocytes. As compared to normal skin (n = 7), there was an increased expression of TNF-alpha, IL-12p40, and IL-8, a decreased expression of TGF-beta1, and a lack of IL-10, similar to the findings in active psoriasis (n = 8). Therefore, G-CSF may cause a lymphocytic dermatitis that, similar to psoriasis, is characterized by a pro-inflammatory Th1-type cytokine milieu and an epidermal phenotype indicative of aberrant maturation and acquisition of non-professional immune functions.
Lin-Cereghino, Geoff P.; Stark, Carolyn M.; Kim, Daniel; Chang, Jennifer; Shaheen, Nadia; Poerwanto, Hansel; Agari, Kimiko; Moua, Pachai; Low, Lauren K.; Tran, Namphuong; Huang, Amy D.; Nattestad, Maria; Oshiro, Kristin T.; Chang, John William; Chavan, Archana; Tsai, Jerry W.; Lin-Cereghino, Joan
2013-01-01
The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins are initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future. PMID:23454485
Mizuno, Tetsuya; Kuno, Reiko; Nitta, Atsumi; Nabeshima, Toshitaka; Zhang, Guiqin; Kawanokuchi, Jun; Wang, Jinyan; Jin, Shijie; Takeuchi, Hideyuki; Suzumura, Akio
2005-12-20
We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.
Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice.
Pontoglio, M; Sreenan, S; Roe, M; Pugh, W; Ostrega, D; Doyen, A; Pick, A J; Baldwin, A; Velho, G; Froguel, P; Levisetti, M; Bonner-Weir, S; Bell, G I; Yaniv, M; Polonsky, K S
1998-01-01
Mutations in the gene for the transcription factor hepatocyte nuclear factor (HNF) 1alpha cause maturity-onset diabetes of the young (MODY) 3, a form of diabetes that results from defects in insulin secretion. Since the nature of these defects has not been defined, we compared insulin secretory function in heterozygous [HNF-1alpha (+/-)] or homozygous [HNF-1alpha (-/-)] mice with null mutations in the HNF-1alpha gene with their wild-type littermates [HNF-1alpha (+/+)]. Blood glucose concentrations were similar in HNF-1alpha (+/+) and (+/-) mice (7.8+/-0.2 and 7.9+/-0.3 mM), but were significantly higher in the HNF-1alpha (-/-) mice (13.1+/-0.7 mM, P < 0.001). Insulin secretory responses to glucose and arginine in the perfused pancreas and perifused islets from HNF-1alpha (-/-) mice were < 15% of the values in the other two groups and were associated with similar reductions in intracellular Ca2+ responses. These defects were not due to a decrease in glucokinase or insulin gene transcription. beta cell mass adjusted for body weight was not reduced in the (-/-) animals, although pancreatic insulin content adjusted for pancreas weight was slightly lower (0.06+/-0.01 vs. 0.10+/-0.01 microg/mg, P < 0.01) than in the (+/+) animals. In summary, a null mutation in the HNF-1alpha gene in homozygous mice leads to diabetes due to alterations in the pathways that regulate beta cell responses to secretagogues including glucose and arginine. These results provide further evidence in support of a key role for HNF-1alpha in the maintenance of normal beta cell function. PMID:9593777
Staniforth, Vanisree; Wang, Sheng-Yang; Shyur, Lie-Fen; Yang, Ning-Sun
2004-02-13
Tumor necrosis factor alpha (TNF-alpha) contributes to the pathogenesis of both acute and chronic inflammatory diseases and has been a target for the development of new anti-inflammatory drugs. Shikonins, the naphthoquinone pigments present in the root tissues of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), have been reported to exert anti-inflammatory effects both in vitro and in vivo. In this study, we evaluated the effects of shikonin and its derivatives on the transcriptional activation of human TNF-alpha promoter in a gene gun-transfected mouse skin system by using a luciferase reporter gene assay. The crude plant extract of L. erythrorhizon as well as derived individual compounds shikonin, isobutyryl shikonin, acetyl shikonin, dimethylacryl shikonin and isovaleryl shikonin showed significant dose-dependent inhibition of TNF-alpha promoter activation. Among the tested compounds, shikonin and isobutyryl shikonin exhibited the highest inhibition of TNF-alpha promoter activation and also showed significant suppression of transgenic human TNF-alpha mRNA expression and protein production. We demonstrated that shikonin-inhibitory response was retained in the core TNF-alpha promoter region containing the TATA box and a 48-bp downstream sequence relative to the transcription start site. Further our results indicated that shikonin suppressed the basal transcription and activator-regulated transcription of TNF-alpha by inhibiting the binding of transcription factor IID protein complex (TATA box-binding protein) to TATA box. These in vivo results suggest that shikonins inhibit the transcriptional activation of the human TNF-alpha promoter through interference with the basal transcription machinery. Thus, shikonins may have clinical potential as anti-inflammatory therapeutics.
Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R
2006-01-01
Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.
Scent-marking by coyotes, Canis latrans: the influence of social and ecological factors
Gese; Ruff
1997-11-01
We observed 49 coyotes, Canis latransfrom five resident packs for 2456 h and five transient coyotes for 51 h from January 1991 to June 1993 in the Lamar River Valley, Yellowstone National Park, Wyoming, U.S.A. During these observations we recorded 3042 urinations, 451 defecations, 446 ground scratches and 743 double-marks. The rate of scent-marking (via urination) was influenced by the social organization (resident versus transient) to which the coyote belonged, the social class (alpha, beta or pup) of the animal and the time of the year. Transient coyotes scent-marked at a lower rate than did members of a resident pack. Within the resident packs, alpha coyotes scent-marked at a higher rate than beta coyotes (adults and yearlings subordinant to alphas, but dominant over pups) and pups. Alpha coyotes increased their rate of marking during the breeding season; beta and pup coyotes performed scent-marks at a relatively constant rate throughout the year. There was no influence of social class or time of year on the rate of defecation. The rate of double-marking was highest among alpha coyotes with a peak during the breeding season. Alpha coyotes ground-scratched at a higher rate than did beta and pup coyotes. Alpha and beta coyotes scent-marked more than expected along the periphery of the territory compared to the interior; pups marked in the interior and edge in proportion to expected frequencies. Double-marking and ground-scratching were higher than expected along the periphery of the territory. The distribution of defecations was not different from expected along the edge versus the interior of the territory. Pack size did not influence the rate of scent-marking performed by individuals in the pack or by the alpha pair. We concluded that alpha coyotes were the primary members of the resident pack involved in scent-marking. The large coyote packs and the high rate of marking by the alpha pairs were parallel to the scent-marking behaviour displayed by wolves, C. lupusto a greater extent than previously reported. Scent-marks appear to provide internal information to the members of the resident pack (internal map of territory, breeding condition, reproductive synchrony) and enhance demarcation of territorial boundaries.Copyright 1997 The Association for the Study of Animal Behaviour1997The Association for the Study of Animal Behaviour
Veiga, Flavia Maria Silva; Graus-Nunes, Francielle; Rachid, Tamiris Lima; Barreto, Aline Barcellos; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa
2017-09-01
Non-alcoholic fatty liver disease (NAFLD) presents with growing prevalence worldwide, though its pharmacological treatment remains to be established. This study aimed to evaluate the effects of a PPAR-alpha agonist on liver tissue structure, ultrastructure, and metabolism, focusing on gene and protein expression of de novo lipogenesis and gluconeogenesis pathways, in diet-induced obese mice. Male C57BL/6 mice (three months old) received a control diet (C, 10% of lipids, n = 10) or a high-fat diet (HFD, 50% of lipids, n = 10) for ten weeks. These groups were subdivided to receive the treatment (n = 5 per group): C, C-alpha (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the control diet), HFD and HFD-alpha group (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the HFD). The effects were compared with biometrical, biochemical, molecular biology and transmission electron microscopy (TEM) analyses. HFD showed greater body mass (BM) and insulinemia than C, both of which were tackled by the treatment in the HFD-alpha group. Increased hepatic protein expression of glucose-6-phosphatase, CHREBP and gene expression of PEPCK in HFD points to increased gluconeogenesis. Treatment rescued these parameters in the HFD-alpha group, eliciting a reduced hepatic glucose output, confirmed by the smaller GLUT2 expression in HFD-alpha than in HFD. Conversely, favored de novo lipogenesis was found in the HFD group by the increased expression of PPAR-gamma, and its target gene SREBP-1, FAS and GK when compared to C. The treatment yielded a marked reduction in the expression of all lipogenic factors. TEM analyses showed a greater numerical density of mitochondria per area of tissue in treated than in untreated groups, suggesting an increase in beta-oxidation and the consequent NAFLD control. PPAR-alpha activation reduced BM and treated insulin resistance (IR) and NAFLD by increasing the number of mitochondria and reducing hepatic gluconeogenesis and de novo lipogenesis protein and gene expressions in a murine obesity model. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il; Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv; Shaul, Yosef
2009-04-17
Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhancedmore » in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.« less
Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa
2009-05-12
The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified frommore » a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.« less
The human interleukin-1 alpha gene is located on the long arm of chromosome 2 at band q13.
Lafage, M; Maroc, N; Dubreuil, P; de Waal Malefijt, R; Pébusque, M J; Carcassonne, Y; Mannoni, P
1989-01-01
Interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) are two biochemically distinct, but distantly related, polypeptidic cytokines that play a key role in inflammation, immunologic reactions, and tissue repair. Recently, it has been shown that IL-1 alpha is identical to hematopoietin 1, which was described as a hematopoietic growth factor acting on early progenitor cells in synergy with other hematopoietic growth factors. In this report we discuss our use of in situ hybridization on human prometaphase cells with a human IL-1 alpha cDNA probe to localize the human IL-1 alpha gene on the proximal part of the long arm of chromosome 2 at band q13, in the same chromosomal region as the IL-1 beta gene.
Vallejo, J G; Baker, C J; Edwards, M S
1996-01-01
Group B streptococci (GBS) are the major cause of sepsis and fatal shock in neonates in the United States. The precise role of tumor necrosis factor alpha (TNF-alpha) in the development of human GBS sepsis has not been defined; however, whole GBS have been shown to induce the production of this inflammatory cytokine. We sought to determine which bacterial cell wall components of GBS are responsible for triggering TNF-alpha production. Human cord blood monocytes were stimulated with encapsulated (COH1) or unencapsulated (COH1-13) whole type III GBS or with purified bacterial components, including type III capsular polysaccharide (III-PS), group B polysaccharide (GB-PS), lipoteichoic acid (LTA), or peptidoglycan (PG). Lipopolysaccharide from Escherichia coli served as a control. Supernatants were harvested at specific timed intervals, and TNF-alpha levels were measured by enzyme-linked immunosorbent assay. Monocytes exposed to COH1 and COH1-13 induced similar amounts of TNF-alpha. III-PS, GB-PS, LTA, and PG each induced TNF-alpha in a time- and concentration-dependent manner. However, TNF-alpha release was significantly greater after stimulation by the GB-PS or PG than after stimulation by III-PS or LTA (P < 0.05). Our findings indicate that GB-PS and PG are the bacterial cell wall components primarily evoking TNF-alpha release. These, alone or in concert with other factors, may be responsible for septic shock accompanying GBS sepsis. PMID:8945544
Alpha 2-adrenoceptor blockade, pituitary-adrenal hormones, and agonistic interactions in rats.
Haller, J; Barna, I; Kovács, J L
1994-08-01
The effects of adrenergic activation on aggressiveness and the aggression induced endocrine changes were tested in rats. Alpha 2 adrenoceptor blockers were used for enhancing activation of the adrenergic system, and changes in aggressiveness were tested in resident-intruder contests. Three experiments were conducted. In experiment 1, saline injected rats responded to the presence of an opponent by aggression and the increase in plasma ACTH and corticosterone. Intraperitoneal administration of 1 mg/kg CH-38083 (an alpha 2 adrenoceptor antagonist) produced a several fold increase in clinch fighting and mutual upright scores, and also further enhanced the plasma ACTH and corticosterone response. In experiment 2, the effect of three doses (0.5, 1 and 2 mg/kg) of three different alpha 2 adrenoceptor blockers CH-38083, idazoxan and yohimbine were tested. All the substances increased aggression at 0.5 and 1 mg/kg; at 2 mg/kg the effect of idazoxan and yohimbine disappeared, while with CH-38083 an additional increase was obtained. In yohimbine treated animals the enhancement of aggression was reduced already at 1 mg/kg. In experiment 3, indomethacin, a potent inhibitor of the catecholamine-induced ACTH release completely abolished the effects of the alpha 2 adrenoceptor antagonist CH-38083: the intensity of agonistic interactions, as well as ACTH and corticosterone plasma concentrations, returned to control levels. The possible role of catecholamines and the stress hormones in the activation of aggression is discussed.
Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.
Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less
Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set
Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...
2018-03-03
Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less
Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G
1996-08-01
The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi
2010-01-15
Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effectmore » of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.« less
Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H.
2016-01-01
A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24 hours and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24 hour time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. PMID:27473896
Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import
Choo, Hyo-Jung; Cutler, Alicia; Rother, Franziska; Bader, Michael; Pavlath, Grace K.
2016-01-01
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self -renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical co-transcription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. PMID:27434733
Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H
2016-10-01
A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. Copyright © 2016 Elsevier B.V. All rights reserved.
Breivik, Torbjørn; Gundersen, Yngvar; Myhrer, Trond; Fonnum, Frode; Osmundsen, Harald; Murison, Robert; Gjermo, Per; von Hörsten, Stephan; Opstad, Per Kristian
2006-07-01
To test the hypothesis that the olfactory bulbectomy model of depression in rats could influence susceptibility to ligature-induced periodontitis, and that chronic treatment with the anti-depressant drug tianeptine could attenuate this effect. Tianeptine was given twice daily (10 mg/kg, i.p.) during the entire experiment, starting 29 days before induction of olfactory bulbectomy and periodontitis. Olfactory bulbectomized (OB) rats and sham-operated rats were given saline in a similar manner. Periodontal disease was assessed when the ligatures had been in place for 21 days. Two hours before decapitation, rats were injected with lipopolysaccharide (LPS;100 microg/kg, i.p.) to induce a robust immune and stress response. Compared with sham-operated controls, OB rats developed significantly more periodontal bone loss, exhibited characteristic behavioural responses in a novel open field test, and showed a decreased expression of glucocorticoid receptors (GRs) in the hippocampus. LPS provoked a significantly larger increase in circulating levels of the stress hormone corticosterone and the cytokine transformation growth factor (TGF)-1beta but smaller tumour necrosis factor (TNF)-alpha levels. Tianeptine treatment of OB rats significantly inhibited peridodontal bone loss, normalized behavioural responses, enhanced TGF-1beta levels, and abolished TNF-alpha decrease, but did not attenuate the increased corticosterone response and the decreased hippocampal GR expression. These experimental results are consistent with an emerging literature showing that life stress, anxiety, depression, pathological grief, and poor coping behaviour may dysregulate regulatory mechanisms within the brain involved in immune regulation, and thereby alter immune responses and influence the susceptibility/resistance to inflammatory disorders.
Irvine, D
1995-08-01
A study was conducted at two tertiary care hospitals in Canada for the purpose of developing instruments to measure organizational citizenship behaviours (OCB) and changes in job behaviours that occur as a result of participation on hospital quality improvement (CQI) teams. Semi structured interviews were conducted among 52 hospital employees in order to elicit critical incidents of OCB and changes in job behaviours related to CQI. The results of the staff interviews were used to develop a measure of OCB in the hospital setting, and a measure of changes in job behaviours related to CQI. 39 employees, who were drawn from the major departments within the two hospitals on the basis of their membership on CQI teams, participated in a test of the psychometric properties of the two research instruments. Exploratory factor analysis, employing an orthogonal rotation, yielded two factors that accounted for 30% of the variation among the OCB items. The Cronbach alpha for items loading highly on the first factor was .88. The factor was labelled 'OCB directed towards individuals within the organization'. This factor was dominated by items reflecting the kinds of extra-role job behaviours employees engage in to assist patients, family members, visitors, and other employees within the organization. The Cronbach alpha for items loading highly on the second factor was 0.71. The second factor was labelled 'organizationally directed OCB', and consisted of behaviours that reflected an impersonal form of OCB in the hospital setting. Factor analysis, employing an orthogonal rotation, yielded four factors that accounted for 48% of the variation among the items measuring changes in job behaviours related to CQI. The four factors were labelled 'problem-solving', Cronbach alpha 0.82; 'customer awareness', Cronbach alpha 0.79; 'use of CQI knowledge', Cronbach alpha 0.77; and 'organizational interests', Cronbach alpha 0.79. The two OCB factors were moderately correlated, there were no significant correlations among any of the factors measuring changes in job behaviours related to CQI, and the problem-solving job behaviours factor was moderately correlated with the two OCB factors. Directions for future research are discussed.
The role of macrophages in the regulation of erythroid colony growth in vitro.
Wang, C Q; Udupa, K B; Lipschitz, D A
1992-10-01
Depletion of macrophages from murine marrow by the use of a monoclonal anti-macrophage antibody resulted in a significant increase in the number of erythroid burst forming units (BFU-E). This increase could be neutralized by the addition back to culture of macrophages or macrophage conditioned medium indicating that the suppression was mediated by soluble factors. To further characterize this effect, the addition to culture, either alone or in combination, of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the growth of BFU-E and the colony-forming unit granulocyte-macrophage (CFU-GM) was examined in macrophage-containing and macrophage-depleted cultures. The addition of IL-1 alpha to culture stimulated the release of both TNF alpha and GM-CSF and acted synergistically with both cytokines, resulting in a dose-dependent suppression of BFU-E and stimulation of CFU-GM growth. The increase in CFU-GM caused by the addition of IL-1 alpha was mediated by GM-CSF but not by TNF alpha as the increase was prevented by the addition of a monoclonal anti-GM-CSF antibody but not by anti-TNF alpha. When either TNF alpha or GM-CSF was neutralized by monoclonal antibodies the addition of IL-1 alpha resulted in a significant increase in BFU-E growth. The addition of GM-CSF to culture caused a dose-dependent suppression of BFU-E that was mediated by TNF alpha, as colony number was not reduced when GM-CSF and a monoclonal anti-TNF alpha antibody were simultaneously added to culture. TNF alpha-induced suppression of BFU-E only occurred in the presence of macrophages. In macrophage-depleted cultures, a dose-dependent suppression of BFU-E could be induced if subinhibitory concentrations of IL-1 alpha or GM-CSF were simultaneously added with increasing concentrations of TNF alpha. The effects of IL-1 alpha or GM-CSF and TNF alpha were markedly synergistic so that the doses required to induce suppression when added simultaneously was only 10% of that required when either were added to culture alone. Suppression of BFU-E by GM-CSF or the combined addition of GM-CSF and TNF alpha did not require IL-1 alpha because inhibition was not neutralized by the addition of anti-IL-1 alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)
Walz, T M; Malm, C; Wasteson, A
1993-01-01
The process of myeloid differentiation in human promyelocytic leukemia cells (HL-60) is accompanied by the coordinate expression of numerous protooncogenes. To investigate the expression of transforming growth factor alpha (TGF-alpha) in myeloid differentiation, HL-60 cells were induced to differentiate into granulocytes with 1.25% dimethyl sulfoxide, 0.2 microM all-trans retinoic acid, or 500 microM N6,O2-dibutyryladenosine-3'5'-cyclic monophosphate or differentiated along the monocyte/macrophage pathway with 0.1 microM phorbol-12-myristate-13-acetate. Using Northern blot analyses, TGF-alpha transcripts were detected within 24 h of treatment in cells differentiating toward granulocytes; maximal levels of gene expression were reached after 3 days or later and remained essentially constant throughout the observation period. These cells released TGF-alpha protein, as demonstrated by analysis of the incubation medium. In contrast, no TGF-alpha RNA or protein was detectable in HL-60 cell cultures when induced with phorbol-12-myristate-13-acetate. Epidermal growth factor receptor transcripts could not be detected either in undifferentiated or in differentiated HL-60 cells; therefore it appears as if an autocrine loop involving TGF-alpha in HL-60 cells is unlikely. In conclusion, the results demonstrate, for the first time, the expression of TGF-alpha in human granulocyte precursor cells. Our findings may indicate novel regulatory pathways in hematopoiesis.
A review of the alpha-1 foundation: its formation, impact, and critical success factors.
Walsh, John W; Snider, Gordon L; Stoller, James K
2006-05-01
Patient-advocacy organizations have proliferated because they can be an effective method to advance research and clinical care for those with the index condition, and can produce substantial benefits for the affected community, especially when the condition is uncommon. To clarify critical success factors in organizing a patient-advocacy organization and to provide a blueprint for others, including the respiratory-care advocacy community, this report examines features of one highly successful organization, the Alpha-1 Foundation, which is committed to helping those with the genetic condition alpha-1 antitrypsin deficiency. Features of the Alpha-1 Foundation that underlie its success include: consistently creating partnerships with key stakeholders, including the scientific and clinical communities, government, and pharmaceutical manufacturers; bringing passion to the cause (eg, by assuring that organizational leadership is provided by individuals affected by alpha-1 antitrypsin deficiency); and developing strategic business partnerships, as with a company that administers alpha-1 antitrypsin treatment (so-called intravenous augmentation therapy) and employs individuals with alpha-1 antitrypsin deficiency. Funds allocated by the company help to underwrite the foundation's research-funding commitment. The foundation also recruits and retains talent, including alpha-1 patients, to leadership roles (eg, on the board of directors) and has a voluntary group of committed scientists and clinicians. We believe that attention to these factors can help assure the success of patient-advocacy groups.
TNF-{alpha} mediates the stimulation of sclerostin expression in an estrogen-deficient condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Beom-Jun; Bae, Sung Jin; Lee, Sun-Young
Highlights: Black-Right-Pointing-Pointer Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. Black-Right-Pointing-Pointer TNF-{alpha} increases the activity and expression of MEF2 in UMR-106 cells. Black-Right-Pointing-Pointer TNF-{alpha} blocker prevents the stimulation of bony sclerostin expression by ovariectomy. Black-Right-Pointing-Pointer No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude micemore » was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 {mu}g/kg {beta}-estradiol five times per week for three weeks, or 10 mg/kg TNF-{alpha} blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-{alpha}, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-{alpha} also increased the nuclear MEF2 expression. Furthermore, the TNF-{alpha} blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between ovariectomized nude mice and sham-operated nude mice. In conclusion, these results suggest that TNF-{alpha} originating from T cells may be at least in part responsible for stimulating the sclerostin expression observed in an estrogen-deficient condition.« less
Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...
Rossini, Alessandra; Zacheo, Antonella; Mocini, David; Totta, Pierangela; Facchiano, Antonio; Castoldi, Raffaella; Sordini, Paolo; Pompilio, Giulio; Abeni, Damiano; Capogrossi, Maurizio C; Germani, Antonia
2008-04-01
High Mobility Box 1 Protein (HMGB1) is a cytokine released into the extracellular space by necrotic cells and activated macrophages in response to injury. We recently demonstrated that HMGB1 administration into the mouse heart during acute myocardial infarction induces cardiac tissue regeneration by activating resident cardiac c-kit+ cells (CSCs) and significantly enhances left ventricular function. In the present study it was analyzed the hypothesis that human cardiac fibroblasts (cFbs) exposed to HMGB1 may exert a paracrine effect on mouse and human CSCs. Human cFbs expressed the HMGB1 receptor RAGE. Luminex technology and ELISA assays revealed that HMGB1 significantly enhanced VEGF, PlGF, Mip-1alpha, IFN-gamma, GM-CSF, Il-10, Il-1beta, Il-4, Il-1ra, Il-9 and TNF-alpha in cFbs cell culture medium. HMGB1-stimulated cFbs conditioned media induced CSC migration and proliferation. These effects were significantly higher to those obtained when HMGB1 was added directly to the culture medium. In conclusion, we provide evidence that HMGB1 may act in a paracrine manner stimulating growth factor, cytokine and chemokine release by cFbs which, in turn, modulate CSC function. Via this mechanism HMGB1 may contribute to cardiac tissue regeneration.
Guo, Qian; Yan, Jia; Wen, Junjie; Hu, Yongyou; Chen, Yuanbo; Wu, Wenjin
2016-11-15
Bioremediation of triclosan (TCS) is a challenge because of its low bioavailability, persistence in the environment and recalcitrance to remediation efforts. Rhamnolipid (RL) was used to enhance TCS biodegradation by indigenous microbes in an aerobic water-sediment system. However, knowledge of the effects of TCS on the bacterial community and environmental factors in an RL-enhanced, TCS-degrading system are lacking. Therefore, in this study, the influence of environmental factors on RL-enhanced biodegradation of TCS was investigated by single factor experiments, and shifts in aerobic TCS-degrading bacterial populations, with and without RL, were analyzed by high-throughput sequencing technology. The results showed that aerobic biodegradation of TCS was significantly promoted by the addition of RL. Environmental conditions, which included RL addition (0.125-0.5g/L), medium concentrations of TCS (<90μg/g), water disturbance, elevated temperature, ionic strength (0.001-0.1mol/L NaCl) and weak alkaline environments (pH8-9), were monitored. High concentrations of TCS had a remarkable influence on the bacterial community structure, and this influence on the distribution proportion of the main microorganisms was strengthened by RL addition. Alpha-proteobacteria (e.g., Sphingomonadaceae and Caulobacteraceae) might be resistant to TCS or even capable of TCS biodegradation, while Sphingobacteria, Beta- and Delta-proteobacteria were sensitive to TCS toxicity. This research provides ecological information on the degradation efficiency and bacterial community stability in RL-enhanced bioremediation of TCS-polluted aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
1993-01-01
Tumor necrosis factor alpha (TNF-alpha), a cytokine with pleiotropic biological effects, is produced by a variety of cell types in response to induction by diverse stimuli. In this paper, TNF-alpha mRNA is shown to be highly induced in a murine T cell clone by stimulation with T cell receptor (TCR) ligands or by calcium ionophores alone. Induction is rapid, does not require de novo protein synthesis, and is completely blocked by the immunosuppressant cyclosporin A (CsA). We have identified a human TNF-alpha promoter element, kappa 3, which plays a key role in the calcium-mediated inducibility and CsA sensitivity of the gene. In electrophoretic mobility shift assays, an oligonucleotide containing kappa 3 forms two DNA protein complexes with proteins that are present in extracts from unstimulated T cells. These complexes appear in nuclear extracts only after T cell stimulation. Induction of the inducible nuclear complexes is rapid, independent of protein synthesis, and blocked by CsA, and thus, exactly parallels the induction of TNF-alpha mRNA by TCR ligands or by calcium ionophore. Our studies indicate that the kappa 3 binding factor resembles the preexisting component of nuclear factor of activated T cells. Thus, the TNF-alpha gene is an immediate early gene in activated T cells and provides a new model system in which to study CsA-sensitive gene induction in activated T cells. PMID:8376940
Large-Vortex Capture by a Wing at Very High Angles of Attack
NASA Technical Reports Server (NTRS)
Wu, J. M.; Wu, J. Z.; Denny, G. A.; Lu, X. Y.
1996-01-01
In generating the lift on a wing, the static stall is a severe barrier. As the angle of attack, alpha, increases to the stall angle, alpha(sub stall) the flow separation point on the upper surface of the wing moves to the leading edge, so that on a two-dimensional airfoil or a large-aspect-ratio wing, the lift abruptly drops to a very low level. Therefore, the first generation of aeronautical flow type, i.e., the attached steady flow, has been limited to alpha less than alpha(sub stall). Owing to the obvious importance in applications, therefore, a great effort has been made in the past two decades to enlarge the range of usable angles of attack by various flow controls for a large-aspect-ratio wing. Basically, relevant works fall into two categories. The first category is usually refereed to as separation control, which concentrates on partially separated flow at alpha less than alpha(sub stall). Since the first experimental study of Collins and Zelenevitz, there has been ample literature showing that a partially separated flow can be turned to almost fully attached by flow controls, so that the lift is recovered and the stall is delayed (for a recent work see Seifert et al.). It has been well established that, in this category, unsteady controls are much more effective than steady ones and can be realized at a very low power-input level (Wu et al.; Seifert et al.). The second and more ambitious category of relevant efforts is the post-stall lift enhancement. Its possibility roots at the existence of a second lift peak at a very high angle of attack. In fact, As alpha further increases from alpha(sub stall), the completely separated flow develops and gradually becomes a bluff-body flow. This flow gives a normal force to the airfoil with a lift component, which reaches a peak at a maximum utilizable angle of attack, alpha(sub m) approx.= 40 deg. This second peak is of the same level as the first lift peak at alpha(sub stall). Meanwhile, the drag is also quickly increased (e.g., Fage and Johansen ; Critzos et al.). Figure 1 shows a typical experimental lift and drag coefficients of NACA-0012 airfoil in this whole range of angle of attack. Obviously, without overcoming the lift crisis at alpha(sub stall) the second lift peak is completely useless. Thus, the ultimate goal of post-stall lift enhancement is to fill the lift valley after stall by flow controls, so that a wing and/or flap can work at the whole range of 0 deg less than alpha less than alpha(sub m). Relevant early experimental studies have been extensively reviewed by Wu et al., who concluded that, first, similar to the leading-edge vortex on a slender wing, the lift enhancement on a large-aspect-ratio wing should be the result of capturing a vortex on the upper surface of the wing; and, second, using steady controls cannot reach the goal, and one must rely on unsteady controls with low-level power input as well. Wu et al. also conjectured that the underlying physics of post-stall lift enhancement by unsteady controls consists of a chain of mechanisms: vortex layer instability - receptivity resonance - nonlinear streaming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthias C. M. Troffaes; Gero Walter; Dana Kelly
In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences. In this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus onmore » elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse. Next, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial. Finally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model.« less
Tachado, S D; Zhang, Y; Abdel-Latif, A A
1993-05-01
To examine the mechanisms underlying the effects of PGF2 alpha receptor desensitization on agonist-induced second messenger formation and contraction in bovine iris sphincter. Short-term PGF2 alpha receptor desensitization of the bovine iris sphincter was carried out by incubating the tissue in Krebs-Ringer bicarbonate buffer containing 25 microM PGF2 alpha for 45 min at 37 degrees C. The effects of PGF2 alpha and other pharmacologic agents on inositol 1,4,5-triphosphate (IP3) production and cyclic adenosine monophosphate (cAMP) formation in desensitized and nondesensitized tissues were monitored by anion-exchange chromatography and radioimmunoassay. In the isolated bovine iris sphincter, protein kinase C (PKC) is involved in the activation of adenylate cyclase and the desensitization of prostaglandin F2 alpha receptor-mediated responses supported by these findings. (A) Exposure of the tissue to phorbol 12,13-dibutyrate, used to activate PKC, enhanced basal cAMP formation in a dose (EC50 = 8.8 x 10(-8) M) and time (t1/2 = 7.5 min) dependent manner. Phorbol 12,13-dibutyrate increased cAMP levels by twofold and it potentiated the isoproterenol-induced cAMP formation. The biologically inactive phorbol ester, 4 alpha-phorbol had no effect. Staurosporine, a potent PKC inhibitor, inhibited phorbol 12,13-dibutyrate-induced cAMP formation in a dose-dependent manner (IC50 of 0.25 microM). The increase in cAMP levels by phorbol 12,13-dibutyrate results from stimulation of adenylate cyclase, rather than from inhibition of cAMP phosphodiesterase, and it is not mediated through Ca2+ mobilization. Pretreatment of the tissue with phorbol 12,13-dibutyrate inhibited IP3 production in response to PGF2 alpha. (B) Desensitization of the sphincter with PGF2 alpha for 45 min increased cAMP formation and attenuated IP3 production and contraction. The effects of PGF2 alpha desensitization were reversed by pretreatment of the tissue with staurosporine. Down-regulation of PKC prevented the PGF2 alpha-stimulated increase in cAMP formation. In the desensitized tissue, diacylglycerol, the endogenous activator of PKC, may arise from phosphatidylcholine, via phospholipase D. (A) Activation of PKC in the bovine iris sphincter leads to stimulation of adenylate cyclase and to an increase in cAMP formation. The cAMP formed inhibits IP3 production and muscle contraction. (B) PGF2 alpha desensitization results in adenylate cyclase activation, mediated through PKC. (C) PGF2 alpha desensitization could uncouple the receptor from the Gq and Gi proteins and enhance PG stimulation of adenylate cyclase activity through the Gs protein. (D) Uncoupling of the G proteins from the PG receptor and activation of PKC, both of which result in enhanced cAMP formation, may underlie the mechanism of PGF2 alpha desensitization. (E) These observations demonstrate "cross talk" between the two second messenger systems and their physiologic consequences.
Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G
2009-06-01
Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.
Morphology and function of lacrimal gland acinar cells in primary culture.
Hann, L E; Tatro, J B; Sullivan, D A
1989-01-01
The objectives of the current investigation were fourfold: (1) to establish an effective procedure for the isolation of acinar cells from the rat lacrimal gland; (2) to evaluate the functional capacity of freshly isolated cells; (3) to determine defined culture conditions which permit maintenance of viable, differentiated cells, as well as secretory component (SC) production, during long-term culture; and (4) to characterize the morphological features of cultured cells. Acinar cells were isolated by serial incubation of gland fragments in chelating and enzymatic solutions, followed by centrifugation through a Ficoll gradient. The yield of viable cells/gland appeared to be age-dependent: cell recovery was inversely proportional to the age of the animals. Immunofluorescence analysis of freshly isolated cells showed the presence of SC, the IgA antibody receptor, within isolated cells. In addition, experiments with a labeled analog (Nle4-D-Phe7-alpha MSH) of alpha-melanocyte-stimulating hormone (alpha-MSH) demonstrated specific binding sites on freshly isolated cells; alpha-MSH is a known modulator of acinar protein secretion. Maximum binding of the alpha-MSH analog occurred within 30 min, was dependent upon cell density and was reduced by coincubation with unlabeled alpha-MSH. To determine the culture requirements of acinar cells, cells were cultured on a variety of substrates (plastic or modified plastic [Primaria], coated with or without extracellular matrix [Matrigel]) in the presence or absence of various supplements and/or fetal calf serum (FCS) for 0.7 to 3.5 weeks. Cell attachment, function and long-term viability required an extracellular matrix. Moreover, in long term cultures (25 days), acinar cell attachment was enhanced by the inclusion of supplements to media containing 10% FCS. Replacement of serum with fibroblast growth factor, high-density lipoprotein and an increased concentration of epidermal growth factor resulted in a distinct "cobblestone" morphology characteristic of epithelial cell cultures. Electron microscopic analysis of cells cultured in supplemented serum-free media demonstrated extensive rough endoplasmic reticulum and Golgi, intermediate filaments and numerous secretory granules, as well as tight junctions and desmosomes. In addition to cell maintenance and attachment, acinar cell synthesis and/or secretion of SC was positively influenced by inclusion of supplements in the media. In summary, we have isolated lacrimal gland acinar cells, which express receptors for IgA antibodies and alpha-MSH. In addition, we have defined culture conditions which permit the long-term maintenance of SC-secreting acinar cells.
Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao
2017-01-01
Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα. PMID:28091581
Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao
2017-01-16
Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα.
Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A
2006-07-01
Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.
Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+
NASA Astrophysics Data System (ADS)
Mesick, K. E.; Coupland, D. D. S.; Stonehill, L. C.
2017-01-01
Cs2LiLaBr6:Ce3+(CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas. A linear quenching relationship Lα =Eα × q +L0 was found at alpha particle energies above 5 MeV, with a quenching factor q = 0.71 MeVee / MeV and an offset L0 = - 1.19 MeVee .
Thakurdas, S M; Hasan, Z; Hussain, R
2004-05-01
Chronic inflammation associated with cachexia, weight loss, fever and arthralgia is the hallmark of advanced mycobacterial diseases. These symptoms are attributed to the chronic stimulation of tumour necrosis factor (TNF)-alpha. Mycobacterial components directly stimulate adherent cells to secrete TNF-alpha. We have shown recently that IgG1 antimycobacterial antibodies play a role in augmenting TNF-alpha in purified protein derivative (PPD)-stimulated adherent cells from non-BCG-vaccinated donors. We now show that IgG1 antibodies can also augment TNF-alpha expression in stimulated adherent cells obtained from BCG-vaccinated donors and this augmentation is not linked to interleukin (IL)-10 secretion. In addition IgG1 antimycobacterial antibodies can reverse the effect of TNF-alpha blockers such as pentoxifylline and thalidomide. These studies therefore have clinical implications for anti-inflammatory drug treatments which are used increasingly to alleviate symptoms associated with chronic inflammation.
GMP-grade platelet lysate enhances proliferation and migration of tenon fibroblasts.
Carducci, Augusto; Scafetta, Gaia; Siciliano, Camilla; Carnevale, Roberto; Rosa, Paolo; Coccia, Andrea; Mangino, Giorgio; Bordin, Antonella; Vingolo, Enzo Maria; Pierelli, Luca; Lendaro, Eugenio; Ragona, Giuseppe; Frati, Giacomo; De Falco, Elena
2016-01-01
Tenon's fibroblasts (TFs), widely employed as in vitro model for many ophthalmological studies, are routinely cultured with FBS. Platelet Lysate (PL), a hemoderivate enriched with growth factors and cytokines has been largely tested in several clinical applications and as substitute of FBS in culture. Here, we investigate whether PL can exert biological effects on TF populations similarly to other cell types. Results show that PL significantly enhances cell proliferation and migration vs. FBS, without influencing cell size/granularity. Upregulation of EGF, VEGF, KDR, MMP2-9, FAK mRNA levels also occurs and phosphorylation of AKT but not of ERK1/2 is significantly enhanced. The inhibition of the PI3kinase/AKT pathway with the specific inhibitor wortmannin, decreases PL-induced cell migration but not proliferation. Condition supernatants containing PL show increased bioavailability of Nitric Oxide and reduced levels of 8-Iso-PGF2-alpha, correlating with cell proliferation and migration. Pro-angiogenic/inflammatory soluble factors (GRO, Angiogenin, EGF, I-309, PARC) are exclusively or greater expressed in media containing PL than FBS. GMP-grade PL preparations positively influence in vitro biological effects of TFs representing a suitable and safer alternative to FBS.
Pratheeshkumar, P; Kuttan, Girija
2011-09-01
One of the major reasons for the rapid progression of cancers is the ability of tumor cells to escape from the immune surveillance mechanism of the body. Modulation of immune responses is highly relevant in tumor cell destruction. Effect of vernolide-A on the cell-mediated immune (CMI) response in metastatic condition was studied using C57BL/6 mice model. Administration of vernolide-A enhanced natural killer (NK) cell activity, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent complement-mediated cytotoxicity (ACC) and the activity was observed in treated group much earlier compared with the metastatic tumor-bearing control. Administration of vernolide-A significantly enhanced the production of interleukin (IL)-2 and interferon-gamma (IFN-γ) in metastatic tumor-bearing animals. In addition, vernolide-A significantly down-regulated the serum levels of proinflammatory cytokines such as IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) during metastasis. All these results demonstrate that vernolide-A could enhance the immune response against metastatic progression of B16F-10 melanoma cells in mice.
Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis.
Pandey, A; Shao, H; Marks, R M; Polverini, P J; Dixit, V M
1995-04-28
B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-alpha (TNF-alpha) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-alpha but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.
Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L
2006-01-01
Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.
Choi, Soo Bong; Ko, Byoung Seob; Park, Seong Kyu; Jang, Jin Sun; Park, Sunmin
2006-01-25
Extracts from Rhei Rhizoma extracts (RR) have been reported to attenuate metabolic disorders such as diabetic nephropathy, hypercholesterolemia and platelet aggregation. With this study we investigated the anti-diabetic action of 70% ethanol RR extract in streptozotocin-induced diabetic mice, and determined the action mechanism of active compounds of RR in vitro. In the diabetic mice, serum glucose levels at fasting and post-prandial states and glucose area under the curve at modified oral glucose tolerance tests were lowered without altering serum insulin levels, indicating that RR contained potential anti-diabetic agents. The fractions fractionated from RR extracts by XAD-4 column revealed that 60%, 80% and 100% methanol fractions enhanced insulin sensitivity and inhibited alpha-glucoamylase activity. The major compounds of these fractions were sennosides, rhein and rhaponticin. Rhaponticin and rhein enhanced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Rhaponticin increased adipocytes with a differentiating effect similar to pioglitazone, but rhein and sennoside B decreased triglyceride accumulation. Sennoside A and B inhibited alpha-glucoamylase activity as much as acarbose. In conclusion, a crude extract of RR improves glucose intolerance by enhancing insulin-stimulated glucose uptake and decreasing carbohydrate digestion via inhibiting alpha-glucoamylase activity. Rhein and rhaponticin are potential candidates for hypoglycemic agents.
Murad, Rafat; Shezad, Zahra; Ahmed, Saara; Ashraf, Mussarat; Qadir, Murad; Rehman, Rehana
2018-03-01
To compare biochemical parameters serum tumour necrosis factor alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D in postmenopausal women. This cross-sectional study was carried out from June 2015 to July 2016 at Jinnah Medical and Dental College, Karachi, and comprised postmenopausal women. Bone mineral density done by dual energy X-ray absorptiometryscan categorised subjects by World Health Organisation classification into normal (T score > -1) osteopenic (T score between -1 and -2.5) and osteoporotic (T score < -2.5). Biochemical parameters like tumour necrosis alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D were measured by solid phase enzyme amplified sensitivity immunoassay method. SPSS 16 was used to analyse the data. Of the 146 women, 34(23%) were normal, 93(67%) were osteopenic and 19(13%) were osteoporotic. There was significant difference in mean body mass index, serum tumour necrosis factor alpha and calcium in all the three groups (p<0.01). Significant mean difference was observed in serum calcium levels between normal and osteopenic, and between normal and osteoporotic group (p<0.05 each) without any significant mean difference between osteopenic and osteoporotic groups (p>0.05). A significant difference was observed for mean tumour necrosis factor alpha values between normal and osteoporotic groups (p<0.05). Tumour necrosis factor alpha showed negative correlation with bone mineral density in osteopenic and osteoporotic groups (p>0.05). Increased bone turnover in postmenopausal osteopenic women can be predicted by increased serum cytokine.
Viviani, B; Corsini, E; Pesenti, M; Galli, C L; Marinovich, M
2001-04-15
Exposure of a primary culture of glial cells to the classical neurotoxicant trimethyltin (TMT) results in the release of prostaglandin (PG)E(2) and tumor necrosis factor (TNF)-alpha. Prior treatment of glial cells with either the nonspecific inhibitor of cyclooxygenase and lypoxygenase eicosatetraynoic acid (ETYA) or the cyclooxygenase inhibitor indomethacin completely prevented TMT-induced PGE(2) production and TNF-alpha release, suggesting a role for cyclooxygenase metabolites in TMT-induced TNF-alpha release. Exposure of glial cells to increasing concentrations of PGE(2) or other prostanoids did not increase TNF-alpha synthesis, while the presence of exogenous PGE(2) during treatment of glial cells with TMT actually suppressed TNF-alpha release. The activation of arachidonic acid metabolism produces reactive oxygen species (ROS). Scavenging of ROS by means of the antioxidant trolox prevented the TMT-induced release of TNF-alpha from glial cells, while indomethacin was found to suppress ROS formation induced by 1 microM TMT in glial cells. These results suggest that activation of arachidonic acid metabolism causes TNF-alpha release through the production of ROS rather than PGE(2). Indeed, PGE(2) may exert negative feedback on the release of TNF-alpha. Copyright 2001 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Laura P.; Donahower, Brian; Burke, Angela S.
2006-04-28
Hypoxia inducible factor (HIF) controls the transcription of genes involved in angiogenesis, erythropoiesis, glycolysis, and cell survival. HIF-1{alpha} levels are a critical determinant of HIF activity. The induction of HIF-1{alpha} was examined in the livers of mice treated with a toxic dose of APAP (300 mg/kg IP) and sacrificed at 1, 2, 4, 8, and 12 h. HIF-1{alpha} was induced at 1-12 h and induction occurred prior to the onset of toxicity. Pre-treatment of mice with N-acetylcysteine (1200 mg/kg IP) prevented toxicity and HIF-1{alpha} induction. In further studies, hepatocyte suspensions were incubated with APAP (1 mM) in the presence ofmore » an oxygen atmosphere. HIF-1{alpha} was induced at 1 h, prior to the onset of toxicity. Inclusion of cyclosporine A (10 {mu}M), an inhibitor of mitochondrial permeability transition, oxidative stress, and toxicity, prevented the induction of HIF-1{alpha}. Thus, HIF-1{alpha} is induced before APAP toxicity and can occur under non-hypoxic conditions. The data suggest a role for oxidative stress in the induction of HIF-1{alpha} in APAP toxicity.« less
2015-10-01
enhancer binding protein (C/EBP), alpha COL10A1 collagen, type X, alpha 1 COL11A1 collagen, type XI, alpha 1 COL1A1 collagen, type I, alpha 1 COL2A1...172.4535 Spp1 1105.6776 Col1a1 137.7958 Tac1 130.0625 ll1b 67.3332 Cxcl5 86.3414 ll10 49.9631 Col1a1 84.2834 Has1 45.5771 ll1b 74.488 Tac1
Berruti, A; Gorzegno, G; Vitetta, G; Tampellini, M; Dogliotti, L
1992-10-31
Interferon-alpha might increase triglyceride serum levels through the enhancement of hepatic lipogenesis and/or inhibition of the peripheral lipoprotein lipase. Hypertriglyceridemia during interferon-alpha therapy has been only recently described, mostly in patients with previous abnormalities of lipid metabolism. The authors report here a case of a 65-year-old male bearing advanced colon carcinoma who developed hypertriglyceridemia during long-term interferon-alpha treatment in association with 5 fluorouracil administration. Hypertriglyceridemia was maintained within acceptable levels, without adjusting the treatment plan, by an appropriate diet and gemfibrosil administration.
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response.
Goldstein, Ido; Baek, Songjoon; Presman, Diego M; Paakinaho, Ville; Swinstead, Erin E; Hager, Gordon L
2017-03-01
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. Published by Cold Spring Harbor Laboratory Press.
Shiraki, Makoto; Terakura, Yoichi; Iwasa, Junpei; Shimizu, Masahito; Miwa, Yoshiyuki; Murakami, Nobuo; Nagaki, Masahito; Moriwaki, Hisataka
2010-03-01
Protein-energy malnutrition is frequently observed in patients with liver cirrhosis and is associated with their poor prognosis. Tumor necrosis factor-alpha (TNF-alpha) is elevated in those patients and may contribute to the alterations of energy metabolism. Our aim was to characterize the aberrant energy metabolism in cirrhotic patients with regard to TNF-alpha. Twenty-four patients (mean age 65 +/- 6 y) with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twelve healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls (59 +/- 8 y). Serum levels of TNF-alpha, soluble 55-kDa TNF receptor (sTNF-R55), soluble 75-kDa TNF receptor (sTNF-R75), and leptin were determined by immunoassay. Substrate oxidation rates of carbohydrate and fat were estimated by indirect calorimetry after overnight bedrest and fasting. In cirrhotic patients, serum levels of TNF-alpha, sTNF-R55, and sTNF-R75 were significantly higher than those in the controls and correlated with the increasing grade of disease severity as defined by Child-Pugh classification. Serum leptin concentration was not different between cirrhotics and controls but correlated with their body mass index. The decrease in substrate oxidation rate of carbohydrate and the increase in substrate oxidation rate of fat significantly correlated with serum TNF-alpha, sTNF-R55, and sTNF-R75 concentrations. Tumor necrosis factor-alpha might be associated with the aberrant energy metabolism in patients with liver cirrhosis. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming
2014-03-01
To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.
Performances of the Alpha-X RF gun on the PHIL accelerator at LAL
NASA Astrophysics Data System (ADS)
Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.
2015-10-01
The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.
Shaw, JiaJiu; Chen, Ben; Huang, Wen-Hsin; Lee, An-Rong; Media, Joseph; Valeriote, Frederick A
2011-01-01
We investigated a small-molecule modulator of tumor necrosis factor alpha (TNF-alpha), UTL-5g (also referred to as GBL-5g), as a potential chemoprotective agent against cisplatin-induced side effects including nephrotoxicity, hepatotoxicity and hematotoxicity. Pretreatment of UTL-5g i.p. in BDF1 mice reduced the levels of blood urea nitrogen (BUN) and creatinine induced by cisplatin treatment. The levels of both aspartate transaminase (AST) and alanine transaminase (ALT) in these animals were also reduced by UTL-5g. Pretreatment of UTL-5g did not significantly affect the number of white blood cells (WBC) under current experimental conditions, yet it markedly increased blood platelet counts by more than threefold. Therapeutic assessment in SCID mice inoculated with human HCT-15 tumor cells showed that UTL-5g did not attenuate the anti-tumor effect of cisplatin but increased the therapeutic efficacy of cisplatin. The LD50 of UTL-5g was determined to be > 2,000 mg/kg by an acute toxicity study. In summary, our studies showed that 1) UTL-5g significantly reduces nephrotoxicity and hepatotoxicity induced by cisplatin in mice, presumably by lowering the levels of TNF-alpha, 2) UTL-5g markedly increased blood platelet counts in mice and 3) UTL-5g treatment increased the therapeutic efficacy of cisplatin against HCT-15 cells inoculated in SCID mice.
Data traffic reduction schemes for sparse Cholesky factorizations
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1988-01-01
Load distribution schemes are presented which minimize the total data traffic in the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems with local and shared memory. The total data traffic in factoring an n x n sparse, symmetric, positive definite matrix representing an n-vertex regular 2-D grid graph using n (sup alpha), alpha is equal to or less than 1, processors are shown to be O(n(sup 1 + alpha/2)). It is O(n(sup 3/2)), when n (sup alpha), alpha is equal to or greater than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal. The schemes allow efficient use of up to O(n) processors before the total data traffic reaches the maximum value of O(n(sup 3/2)). The partitioning employed within the scheme, allows a better utilization of the data accessed from shared memory than those of previously published methods.
Pesce, Vito; Fracasso, Flavio; Cassano, Pierluigi; Lezza, Angela Maria Serena; Cantatore, Palmiro; Gadaleta, Maria Nicola
2010-01-01
The age-related decay of mitochondrial function is a major contributor to the aging process. We tested the effects of 2-month-daily acetyl-L-carnitine (ALCAR) supplementation on mitochondrial biogenesis in the soleus muscle of aged rats. This muscle is heavily dependent on oxidative metabolism. Mitochondrial (mt) DNA content, citrate synthase activity, transcript levels of some nuclear- and mitochondrial-coded genes (cytochrome c oxidase subunit IV [COX-IV], 16S rRNA, COX-I) and of some factors involved in the mitochondrial biogenesis signaling pathway (peroxisome proliferator-activated receptor gamma [PPARgamma] coactivator-1alpha [PGC-1alpha], mitochondrial transcription factor A mitochondrial [TFAM], mitochondrial transcription factor 2B [TFB2]), as well as the protein content of PGC-1alpha were determined. The results suggest that the ALCAR treatment in old rats activates PGC-1alpha-dependent mitochondrial biogenesis, thus partially reverting the age-related mitochondrial decay.
Mazloomy, Seyed Said; Baghianimoghadam, Mohammad Hosein; Ehrampoush, Mohammad Hasan; Baghianimoghadam, Behnam; Mazidi, Maysam; Mozayan, Mohammad Reza
2014-01-01
Hypertension, dyslipidemia, and diabetes are established risk factors for cardiovascular disease (CVD) morbidity and mortality. In the past decade a general increase in CVD risk factors in the population aged 65 and older, along with suboptimal control rates, have occurred. In this descriptive, cross-sectional study, the authors describe the knowledge, attitudes, and practices (KAP) of Iranian females regarding risk factors for CVD, in an attempt to help with the development of strategies to control risk factors and CVD. Participants were 200 women ages 15-49 referred to health centers in Yazd, selected from four different centers. Data were gathered through a questionnaire consisting of demographics and questions related to KAP. The validity of the questionnaire was determined by a health education specialist, with its reliability determined by piloting and measuring the related Cronbach's alpha (Alpha = 0.720). Measuring knowledge of CVD on a scale of 0-20, the mean knowledge score was 10.203.91. More than 76% of the participants knew that CVD is preventable. Ninety-one percent liked exercising and believed that exercising would make them feel better. The average mean scores for attitudes of participants toward CVD were 30.31 ± 3.21 out of 36. The authors conclude that there is a need for enhancing mothers' general knowledge about the disease, because of the increasing rates of CVD in females. This will lead to improvements in attitude and practice. Furthermore, learning in groups of 12 can be a beneficial educational method.
Rutault, K; Hazzalin, C A; Mahadevan, L C
2001-03-02
Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.
Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H
2008-02-01
The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline monohydrochloride]. In conclusion, SNC80 enhanced the locomotor-stimulating effects of monoamine transporter ligands suggesting that delta-opioid receptor activation might alter the functional activity of monoamine transporters or presynaptic monoamine terminals.
Yasuda, Hiroyasu
2008-09-01
Hypoxia exists in solid tumor tissues due to abnormal vasculature, vascular insufficiency, treatment or malignancy related anemia, and low intratumor blood flow. Hypoxic status in solid tumor promotes accumulation of hypoxia-inducible factor-1 alpha which is promptly degraded by proteasomal ubiquitination under normoxic conditions. However, under hypoxic conditions, the ubiquitination system for HIF-1 alpha is inhibited by inactivation of prolyl hydroxylase which is responsible for hydroxylation of proline in the oxygen-dependent degradation domain of HIF-1 alpha. HIF-1 alpha is an important transcriptional factor that codes for hundreds of genes involved in erythropoiesis, angiogenesis, induction of glycolytic enzymes in tumor tissues, modulation of cancer cell cycle, cancer proliferation, and cancer metastasis. Hypoxia and accumulation of HIF-1 alpha in solid tumor tissues have been reported to associate with resistance to chemotherapy, radiotherapy, and immunotherapy and poor prognosis. Production of vascular endothelial growth factor (VEGF) in cancer cells is regulated by the activated HIF-1 mediated system. An increase in VEGF levels subsequently induces HIF-1 alpha accumulation and promotes tumor metastasis by angiogenesis. Recently, angiogenesis targeting therapy using humanized VEGF antibody and VEGF receptor tyrosine kinase inhibitors have been used in solid cancer therapy. Nitric oxide (NO) is a unique chemical gaseous molecule that plays a role as a chemical messenger involved in vasodilator, neurotransmitter, and anti-platelet aggregation. In vivo, NO is produced and released from three different isoforms of NO synthase (NOS) and from exogenously administered NO donors. In cancer science, NO has been mainly discussed as an oncogenic molecule over the past decades. However, NO has recently been noted in cancer biology associated with cancer cell apoptosis, cancer cell cycle, cancer progression and metastasis, cancer angiogenesis, cancer chemoprevention, and modulator for chemo/radio/immuno-therapy. The presence and activities of all the three isoforms of NOS and were detected in cancer tissue components such as cancer cells, tumor-associated macrophages, and vascular endothelium. Overexpression of iNOS in cancer tissues has been reported to associate with poor prognosis in patients with cancers. On the other hand, NO donors such as nitroglycerin have been demonstrated to improve the effects of cancer therapy in solid cancers. Nitroglycerin has been used safely for a long time as a potent vasodilator for the treatment of ischemic heart diseases or heart failure. Therefore, we think highly of clinical use of nitroglycerin as a novel cancer therapy in combination with anticancer drugs for improvement of cancer therapeutic levels. In this review article, we demonstrate the unique physiological characteristics of malignant solid tumors, several factors in solid tumors resulting in resistance for cancer therapies, and the effects of NO from NOS or exogenous NO-donating drugs on malignant cells. Furthermore, we refer to promising therapeutic roles of NO and NO-donating drugs for novel treatments in solid tumors.
Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M
2010-02-26
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Silva, J S; Vespa, G N; Cardoso, M A; Aliberti, J C; Cunha, F Q
1995-01-01
Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for continuation of the parasite life cycle and for production of Chagas' disease. T. cruzi is able to replicate in nucleated cells and can be killed by activated macrophages. Gamma interferon (IFN-gamma) is one of the major stimuli for the activation of macrophages and has been shown to be a key activation factor for the killing of intracellular parasites through a mechanism dependent upon nitric oxide (NO) biosynthesis. We show that although the addition of exogenous tumor necrosis factor alpha (TNF-alpha) does not potentiate the trypanocidal activity of IFN-gamma in vitro, treatment of resistant C57BI/6 mice with an anti-TNF-alpha monoclonal antibody increased parasitemia and mortality. In addition, the anti-TNF-alpha-treated animals had decreased NO production, both in vivo and in vitro, suggesting an important role for TNF-alpha in controlling infection. In order to better understand the role of TNF-alpha in the macrophage-mediating killing of parasites, cultures of T. cruzi-infected macrophages were treated with an anti-TNF-alpha monoclonal antibody. IFN-gamma-activated macrophages failed to kill intracellular parasites following treatment with 100 micrograms of anti-TNF-alpha. In these cultures, the number of parasites released at various time points after infection was significantly increased while NO production was significantly reduced. We conclude that IFN-gamma-activated macrophages produce TNF-alpha after infection by T. cruzi and suggest that this cytokine plays a role in amplifying NO production and parasite killing. PMID:7591147
Faulkner, C B; Simecka, J W; Davidson, M K; Davis, J K; Schoeb, T R; Lindsey, J R; Everson, M P
1995-01-01
Studies were conducted to determine whether the production of various cytokines is associated with Mycoplasma pulmonis disease expression. Susceptible C3H/HeN and resistant C57BL/6N mice were inoculated intranasally with 10(7) CFU of virulent M. pulmonis UAB CT or avirulent M. pulmonis UAB T. Expression of genes for tumor necrosis factor alpha (TNF-alpha), interleukin 1 alpha (IL-1 alpha), IL-1 beta, IL-6, and gamma interferon (IFN-gamma) in whole lung tissue and TNF-alpha gene expression in bronchoalveolar lavage (BAL) cells was determined by reverse transcription-PCR using specific cytokine primers at various times postinoculation. In addition, concentrations of TNF-alpha, IL-1, IL-6, and IFN-gamma were determined in BAL fluid and serum samples at various times postinoculation. Our results showed that there was a sequential appearance of cytokines in the lungs of infected mice: TNF-alpha, produced primarily by BAL cells, appeared first, followed by IL-1 and IL-6, which were followed by IFN-gamma. Susceptible C3H/HeN mice had higher and more persistent concentrations of TNF-alpha and IL-6 in BAL fluid than did resistant C57BL/6N mice, indicating that TNF-alpha and possibly IL-6 are important factors in pathogenesis of acute M. pulmonis disease in mice. Serum concentrations of IL-6 were elevated in C3H/HeN mice, but not C57BL/6N mice, following infection with M. pulmonis, suggesting that IL-6 has both local and systemic effects in M. pulmonis disease. PMID:7558323
Indovina, Paola; Collini, Maddalena; Chirico, Giuseppe; Santini, Maria Teresa
2007-02-20
Hypoxia through HRE (hypoxia-responsive element) activity in MG-63 human osteosarcoma cells grown in monolayer and as very small, three-dimensional tumor spheroids was investigated using molecular imaging techniques. MG-63 cells were stably transfected with a vector constructed with multiple copies of the HRE sequence of the human vascular endothelial growth factor (VEGF) gene and with the enhanced green fluorescent protein (EGFP) coding sequence. During hypoxia when HIF-1alpha (hypoxia-inducible factor-1alpha) is stabilized, the binding of HIF-1 to the HRE sequences of the vector allows the transcription of EGFP and the appearance of fluorescence. Transfected monolayer cells were characterized by flow cytometric analysis in response to various hypoxic conditions and HIF-1alpha expression in these cells was assessed by Western blotting. Two-photon excitation (TPE) microscopy was then used to examine both MG-63-transfected monolayer cells and spheroids at 2 and 5 days of growth in normoxic conditions. Monolayer cells reveal almost no fluorescence, whereas even very small spheroids (<100 microm) after 2 days of growth contain regions of high fluorescence. For the first time in the literature, at least to our knowledge, it is demonstrated, using highly sensitive and non-perturbing molecular imaging techniques, that three-dimensional cell organization leads to almost immediate HRE activation. This activation of the HRE sequences, which control a wide variety of genes, suggests that monolayer cells and spheroids of the MG-63 cell line have different genes activated and thus diverse functional activities.
Lee, Chang-Yin; Hsu, Yi-Chao; Wang, Jir-You; Chen, Chien-Chih; Chiu, Jen-Hwey
2008-07-01
Oxidative DNA damage by reactive oxygen species is involved in the process of liver carcinogenesis. To test the hypothesis that a remedy containing Scutellaria baicalensis Georgi (Sb) and Bupleurum scorzonerifolfium Willd (Bs) (Sb/Bs remedy) modulates hepatic neoplastic growth, BOP (N-nitrosobis(2-oxopropyl)amine)-induced liver cancers in hamsters were established. Parameters such as survival rate, tumour area, tumour foci, 8-hydroxydeoxyguanosine (8-OHdG), caspase-3, transforming growth factor (TGF-beta1) and tumour necrosis factor-alpha (TNF-alpha) were measured after Sb/Bs remedy treatment during BOP-induced carcinogenesis. The results showed that the Sb/Bs remedy and its constituents Sb and Bs suppressed the tumour area in BOP-induced liver tumours. Because selenium (Sel) is toxic at a high dose (10 mg/kg), with a low survival rate (0%), the combination of Sb/Bs remedy and low-dose Sel (1 mg/kg) was found to decrease the tumour area and the number of tumour foci while increasing serum TNF-alpha and TGF-beta1, but not IL-6 levels. Besides, the Sb/Bs remedy, when combined with low-dose Sel, not only decreased the expression of 8-OHdG and increased caspase-3 expression within the glutathione S-transferase placental form-positive tumour foci but also increased tumour apoptosis in BOP-induced hamsters. We conclude that low-dose Sel has a chemoprevention effect on BOP-induced liver tumours and such an effect was more enhanced when combined with Sb/Bs treatment.
Kutz, Matthew R; Scialli, Joan
2008-01-01
A two-phase exploratory and comparative research study using a Delphi technique and a web-based national survey was done to determine leadership content (i.e., theories, styles, or practices) important to include in athletic training education. Eighteen athletic training experts participated in the Delphi technique, followed by 161 athletic trainers completing the national survey. Consensus of experts was reached after two rounds (77% interrater agreement, alpha = 0.80 and alpha = 0.93 per respective round) and identified 31 leadership content items important to include in athletic training education. The national sample then rated importance of each leadership content area for inclusion in four types of athletic training education programs (entry-level baccalaureate, entry-level master's degree, postgraduate certifications, and doctoral degree). The respondents ranked the leadership content in order of importance according to mean (mean = 1.53 +/- 0.84 to 2.55 +/- 0.55; scale, 0-3). Twenty-two content items (63%) were rated at least "very important" (mean > or = 2.0). Exploratory factor analysis established construct validity and organized leadership content by three factors: managerial leadership and knowledge management; leadership theories; and leadership issues, trends, and policies (alpha = 0.84-0.91). Repeated-measures analysis of variance (Sidak post-hoc adjustments) established criterion-related concurrent validity, which found increasing levels of importance as education type progressed (F = 4.88, p = 0.003-32.56, p = 0.000). Adding leadership content within athletic training enhances the professionalization of students, facilitates leadership competency among students and practicing professionals enrolled in postcertification educational programs, and facilitates job placement and role.
Breakup effects on alpha spectroscopic factors of 16O
NASA Astrophysics Data System (ADS)
Adhikari, S.; Basu, C.; Sugathan, P.; Jhinghan, A.; Behera, B. R.; Saneesh, N.; Kaur, G.; Thakur, M.; Mahajan, R.; Dubey, R.; Mitra, A. K.
2017-01-01
The triton angular distribution for the 12C(7Li,t)16O* reaction is measured at 20 MeV, populating discrete states of 16O. Continuum discretized coupled reaction channel calculations are used to to extract the alpha spectroscopic properties of 16O states instead of the distorted wave born approximation theory to include the effects of breakup on the transfer process. The alpha reduced width, spectroscopic factors and the asymptotic normalization constant (ANC) of 16O states are extracted. The error in the spectroscopic factor is about 35% and in that of the ANC about 27%.
PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro
2012-05-18
Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less
Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N
2004-12-01
The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira Lopes, Carlos; Callera, Fernando, E-mail: fcallera@gmail.com
Purpose: To investigate the effect of radiotherapy (RT) on serum levels of interleukin-2 (IL-2), IL-4, IL-5, IL-6, tumor necrosis factor alpha (TNF-{alpha}), macrophage inflammatory protein-1-alpha (MIP-1-{alpha}) and leukemia inhibitory factor (LIF) in patients with prostate cancer. Methods and Materials: Forty eight patients with prostate cancer received three-dimensional conformal blocking radiation therapy with a linear accelerator. IL-2, IL-4, IL-5, IL-6, TNF-{alpha}, MIP-1-{alpha}, and LIF levels were measured by the related immunoassay kit 1 day before the beginning of RT and during RT at days 15 and 30. Results: The mean IL-2 values were elevated before and during the RT in contrastmore » with those of IL-4, IL-5, IL-6, TNF-{alpha}, MIP-1-{alpha}, and LIF, which were within the normal range under the same conditions. Regarding markers IL-2, IL-4, IL-5, TNF-{alpha}, MIP-1-{alpha}, and LIF, comparisons among the three groups (before treatment and 15 and 30 days during RT) did not show significant differences. Although values were within the normal range, there was a significant rise in IL-6 levels at day 15 of RT (p = 0.0049) and a decline at day 30 to levels that were similar to those observed before RT. Conclusions: IL-6 appeared to peak after 15 days of RT before returning to pre-RT levels. In contrast, IL-2, IL-4, IL-5, TNF-{alpha}, MIP-1-{alpha}, and LIF levels were not sensitive to irradiation. The increased levels of IL-6 following RT without the concurrent elevation of other cytokines involved in the acute phase reaction did not suggest a classical inflammatory response to radiation exposure. Further studies should be designed to elucidate the role of IL-6 levels in patients with prostate cancer treated with RT.« less
The factor structure of the illness attitude scales in a German population.
Weck, Florian; Bleichhardt, Gaby; Hiller, Wolfgang
2009-01-01
The illness attitudes scales (IAS) were developed to identify different dimensions of hypochondrical attitudes, fears, beliefs, and abnormal illness behavior (Kellner 1986). Although there are several studies which focus on the scale structure of the IAS, the factor structure has not yet been made quite clear. Therefore, the aim of this study was to investigate the factor structure of the IAS on a large representative sample. Participants (N = 1,575) comparable with the general German population regarding sex, age, and education level completed the IAS. For the data analyses, a principal components analyses with subsequent oblique rotations was used. The minimum average partial method suggested a three-factor solution. The three factors were named (1) health anxiety, (2) health behavior, and (3) health habits. Internal consistency (Cronbach's alpha) for the three scales were (1) alpha = 0.88, (2) alpha = 0.75, and (3) alpha = 0.56. The results support previous findings, namely that the IAS factor structure appears to be less complex than originally suggested by the author. For a sample of the general German population, a three-factor solution fit best. Further items should be added to improve the internal consistency, especially for the third scale (health habits).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelius, Ivan R., E-mail: vogelius@gmail.com; Bentzen, Soren M.
Purpose: To present a novel method for meta-analysis of the fractionation sensitivity of tumors as applied to prostate cancer in the presence of an overall time factor. Methods and Materials: A systematic search for radiation dose-fractionation trials in prostate cancer was performed using PubMed and by manual search. Published trials comparing standard fractionated external beam radiation therapy with alternative fractionation were eligible. For each trial the {alpha}/{beta} ratio and its 95% confidence interval (CI) were extracted, and the data were synthesized with each study weighted by the inverse variance. An overall time factor was included in the analysis, and itsmore » influence on {alpha}/{beta} was investigated. Results: Five studies involving 1965 patients were included in the meta-analysis of {alpha}/{beta}. The synthesized {alpha}/{beta} assuming no effect of overall treatment time was -0.07 Gy (95% CI -0.73-0.59), which was increased to 0.47 Gy (95% CI -0.55-1.50) if a single highly weighted study was excluded. In a separate analysis, 2 studies based on 10,808 patients in total allowed extraction of a synthesized estimate of a time factor of 0.31 Gy/d (95% CI 0.20-0.42). The time factor increased the {alpha}/{beta} estimate to 0.58 Gy (95% CI -0.53-1.69)/1.93 Gy (95% CI -0.27-4.14) with/without the heavily weighted study. An analysis of the uncertainty of the {alpha}/{beta} estimate showed a loss of information when the hypofractionated arm was underdosed compared with the normo-fractionated arm. Conclusions: The current external beam fractionation studies are consistent with a very low {alpha}/{beta} ratio for prostate cancer, although the CIs include {alpha}/{beta} ratios up to 4.14 Gy in the presence of a time factor. Details of the dose fractionation in the 2 trial arms have critical influence on the information that can be extracted from a study. Studies with unfortunate designs will supply little or no information about {alpha}/{beta} regardless of the number of subjects enrolled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang; Han, Ya-Ling, E-mail: hanyaling53@gmail.com
2011-03-25
Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified asmore » a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study indicate that CREG acts as a novel and potent survival factor in MSCs, and may therefore be a useful therapeutic adjunct for transplanting MSCs into the damaged heart after myocardial infarction.« less
The Molecular Epidemiology of Malaria in Western Kenya
2002-09-01
including tumor necrosis factor alpha (TNF- α), interleukin-10 (IL-10), transforming growth factor beta (TGF-β), interleukin-6 (IL-6), and interferon gamma...Ricard S, Troesch A, Mallet C, Generenaz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O. Polymorphisms of the transforming growth factor- beta 1...transforming growth factor- beta 1 and tumour necrosis factor-alpha genes: a technical report. Transpl Immunol 1998 6(3): 193-7. 36. Olomolaiye OO
Matikainen, S; Ronni, T; Lehtonen, A; Sareneva, T; Melén, K; Nordling, S; Levy, D E; Julkunen, I
1997-06-01
IFNs are antiproliferative cytokines that have growth-inhibitory effects on various normal and malignant cells. Therefore, they have been used in the treatment of certain forms of cancer, such as chronic myelogenous leukemia and hairy cell leukemia. However, there is little evidence that IFNs would be effective in the treatment of acute myelogenous leukemia, and molecular mechanisms underlying IFN unresponsiveness have not been clarified. Here we have studied the activation and induction of IFN-specific transcription factors signal transducer and activator of transcription (STAT) 1, STAT2, and p48 in all-trans-retinoic acid (ATRA)-differentiated myeloid leukemia cells using promyelocytic NB4, myeloblastic HL-60, and monoblastic U937 cells as model systems. These cells respond to ATRA by growth inhibition and differentiation. We show that in undifferentiated NB4 cells, 2',5'-oligoadenylate synthetase and MxB gene expression is not activated by IFN-alpha, possibly due to a relative lack of signaling molecules, especially p48 protein. However, during ATRA-induced differentiation, steady-state STAT1, STAT2, and especially p48 mRNA and corresponding protein levels were elevated both in NB4 and U937 cells, apparently correlating to an enhanced responsiveness of these cells to IFNs. ATRA treatment of NB4 cells sensitized them to IFN action as seen by increased IFN-gamma activation site DNA-binding activity or by efficient formation of IFN-alpha-specific ISGF3 complex and subsequent oligoadenylate synthetase and MxB gene expression. Lack of p48 expression could be one of the mechanisms of promyelocytic leukemia cell escape from growth-inhibitory effects of IFN-alpha.
Poppers, D M; Schwenger, P; Vilcek, J
2000-09-22
Transcription factor NF-kappa B is normally sequestered in the cytoplasm, complexed with I kappa B inhibitory proteins. Tumor necrosis factor (TNF) and interleukin-1 induce I kappa B-alpha phosphorylation, leading to I kappa B-alpha degradation and translocation of NF-kappa B to the nucleus where it activates genes important in inflammatory and immune responses. TNF and interleukin-1 actions are typically terminated by desensitization, and I kappa B-alpha reappearance normally occurs within 30-60 min. We found that in normal human FS-4 fibroblasts maintained in the presence of TNF, I kappa B-alpha protein failed to return to base-line levels for up to 15 h. Removal of TNF at any time during the 15-h period resulted in complete I kappa B-alpha resynthesis, suggesting that I kappa B-alpha reappearance was prevented by continued TNF signaling. Long term exposure of FS-4 fibroblasts to TNF led to a persistent presence of I kappa B-alpha mRNA, sustained I kappa B kinase activation, continuous proteasome-mediated degradation of I kappa B-alpha, and sustained nuclear localization of NF-kappa B. Continuous exposure of FS-4 cells to TNF did not lead to a sustained activation of p38 or ERK mitogen-activated protein kinases, suggesting that not all TNF-induced signaling pathways are persistently activated. These findings challenge the notion that all cytokine-mediated signals are rapidly terminated by desensitization and illustrate the need to elucidate the process of deactivation of TNF-induced signaling.
NASA Technical Reports Server (NTRS)
Tseng, Yiider; Kole, Thomas P.; Lee, Jerry S H.; Fedorov, Elena; Almo, Steven C.; Schafer, Benjamin W.; Wirtz, Denis
2005-01-01
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, alpha-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of alpha-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by alpha-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that alpha-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of alpha-actinin and fascin. These findings highlight the cooperative activity of fascin and alpha-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.
2014-01-01
Background Neurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods. Methods Electroencephalogram/event-related potential (EEG/ERP) responses were measured during visual processing (NF1 n = 17; controls n = 19) and idle periods with eyes closed and eyes open (NF1 n = 12; controls n = 14). Visual stimulation was chosen to bias activation of the three detection mechanisms: achromatic, red-green and blue-yellow. Results We found significant differences between the groups for late chromatic VEPs and a specific enhancement in the amplitude of the parieto-occipital alpha amplitude both during visual stimulation and idle periods. Alpha modulation and the negative influence of alpha oscillations in visual performance were found in both groups. Conclusions Our findings suggest abnormal later stages of visual processing and enhanced amplitude of alpha oscillations supporting the existence of deficits in basic sensory processing in NF1. Given the link between alpha oscillations, visual perception and attention, these results indicate a neural mechanism that might underlie the visual sensitivity deficits and increased lapses of attention observed in individuals with NF1. PMID:24559228
Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y
2001-10-01
Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.
Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakawa, Takeshi; Okajima, Toshihide; Kuroda, Shun'ichi
A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate {alpha}-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the {alpha}-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reactionmore » of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.« less
Dalkner, Nina; Unterrainer, Human F; Wood, Guilherme; Skliris, Dimitris; Holasek, Sandra J; Gruzelier, John H; Neuper, Christa
2017-01-01
This study evaluated the effects of alpha/theta neurofeedback on Clinical Personality Accentuations in individuals with alcohol use disorder. Twenty-five males were investigated using a pre-test/post-test design with a waiting-list control group. Participants were randomly assigned either to an experimental group ( n = 13) receiving 12 sessions of neurofeedback twice a week as a treatment adjunct over a period of 6 weeks, or to a control group ( n = 12) receiving treatment as usual. The Inventory of Clinical Personality Accentuations and the NEO-Five-Factor Inventory were applied at pre- and post-test. The neurofeedback protocol focused on enhancement of the EEG alpha (8-12 Hz) and theta (4-7 Hz) and used a visual feedback paradigm. Analyses of covariance showed improvements in Avoidant Personality Accentuation within the experimental group. Our data suggest that 12 sessions of this neurofeedback intervention might be effective in reducing avoidant and stress-related personality traits in patients with alcohol use disorder.
Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcini, Alessandro; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino; Barland, Stephane
2006-12-15
The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realisticmore » values of the linewidth enhancement factor {alpha}, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high {alpha} values.« less
Schmid, Ernst; Roos, H
2009-04-01
A recent publication on both chromosome-type and chromatid-type aberrations in lymphocytes of patients during treatment with radium-224 for ankylosing spondilitis has revived the question of whether the chromatid-type aberrations may be the consequence of factors released by irradiated cells. Therefore, the aim of the present study was to investigate the influence of such a bystander phenomenon on the chromosome aberration pattern of lymphocytes. Monolayers of human lymphocytes were irradiated with 1 Gy of alpha-particles from an americium-241 source in the absence or presence of whole blood, autologous plasma or culture medium. In the presence of any liquid covering the monolayer during irradiation, the chromatid-type aberrations were, contrary to expectation, elevated. Whereas the intercellular distribution of dicentrics was significantly overdispersed, the chromatid-type aberrations showed a regular dispersion. It can be concluded that the enhanced frequency of chromatid aberrations is the result of a damage signal or a bystander phenomenon released by irradiated cells.
Bell, Kirsten E; Snijders, Tim; Zulyniak, Michael A; Kumbhare, Dinesh; Parise, Gianni; Chabowski, Adrian; Phillips, Stuart M
2018-03-01
We evaluated whether twice-daily consumption of a multi-ingredient nutritional supplement (SUPP) would reduce systemic inflammatory markers following 6 weeks of supplementation alone (phase 1), and the subsequent addition of 12 weeks of exercise training (phase 2) in healthy older men, in comparison with a carbohydrate-based control (CON). Tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) concentrations were progressively reduced (P-time < 0.05) in the SUPP group. No change in TNF-α or IL-6 concentrations was observed in the CON group.
Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F
1995-04-01
The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role.