Sample records for enhancer factor 2a

  1. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Daisuke; Department of Photonics Engineering, Technical University of Denmark, 2800 Lyngby; Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi Tempaku, 468-8502 Nagoya

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  2. Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex

    PubMed Central

    Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.

    2014-01-01

    Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530

  3. Assessing Input Enhancement as Positive Factor and Its Impact on L2 Vocabulary Learning

    ERIC Educational Resources Information Center

    Motlagh, Seyyed Fariborz Pishdadi; Nasab, Mahdiyeh Seyed Beheshti

    2015-01-01

    Input enhancement's role to promote learners' awareness in L2 contexts has caused a tremendous amount of research. Conspicuously, by regarding all aspects of input enhancement, the study aimed to find out how differently many kinds of input enhancement factors such as bolding, underlining, and capitalizing impact on L2 learners' vocabulary…

  4. Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin.

    PubMed

    Chaya, D; Hayamizu, T; Bustin, M; Zaret, K S

    2001-11-30

    Nucleosome-like particles and acetylated histones occur near active promoters and enhancers, and certain transcription factors can recognize their target sites on the surface of a nucleosome in vitro; yet it has been unclear whether transcription factors can occupy target sites on nucleosomes in native chromatin. We developed a method for sequential chromatin immunoprecipitation of distinct nuclear proteins that are simultaneously cross-linked to nucleosome-sized genomic DNA segments. We find that core histone H2A co-occupies, along with the FoxA (hepatocyte nuclear factor-3) transcription factor, DNA for the albumin transcriptional enhancer in native liver chromatin, where the enhancer is active. Because histone H2A on nuclear DNA is only known to exist in nucleosomes, we conclude that transcription factors can form a stable complex on nucleosomes at an active enhancer element in vivo.

  5. Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Xu, Zhengbin; Song, Qinghai; Konger, Raymond L.; Kim, Young L.

    2010-05-01

    We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under spatially coherent illumination. We show that the enhancement factor in these configurations is a measure of the integrated intensity within the localized coherence or detection area, which can exhibit strong dependence on small perturbations in scattering properties. To further evaluate the utility of the LEBS enhancement factor, we use a well-established animal model of cutaneous two-stage chemical carcinogenesis. In this pilot study, we demonstrate that the LEBS enhancement factor can be substantially altered at a stage of preneoplasia. Our animal result supports the idea that early carcinogenesis can cause subtle alterations in the scattering properties that can be captured by the LEBS enhancement factor. Thus, the LEBS enhancement factor has the potential as an easily measurable biomarker in skin carcinogenesis.

  6. Identification of an algal carbon fixation-enhancing factor extracted from Paramecium bursaria.

    PubMed

    Kato, Yutaka; Imamura, Nobutaka

    2011-01-01

    The green ciliate Paramecium bursaria contains several hundred symbiotic Chlorella species. We previously reported that symbiotic algal carbon fixation is enhanced by P. bursaria extracts and that the enhancing factor is a heat-stable, low-molecular-weight, water-soluble compound. To identify the factor, further experiments were carried out. The enhancing activity remained even when organic compounds in the extract were completely combusted at 700 degrees C, suggesting that the factor is an inorganic substance. Measurement of the major cations, K+, Ca2+, and Mg2+, by an electrode and titration of the extract resulted in concentrations of 0.90 mM, 0.55 mM, and 0.21 mM, respectively. To evaluate the effect of these cations, a mixture of the cations at the measured concentrations was prepared, and symbiotic algal carbon fixation was measured in the solution. The results demonstrated that the fixation was enhanced to the same extent as with the P. bursaria extract, and thus this mixture of K+, Ca2+, and Mg2+ was concluded to be the carbon fixation-enhancing factor. There was no effect of the cation mixture on free-living C. vulgaris. Comparison of the cation concentrations of nonsymbiotic and symbiotic Paramecium extracts revealed that the concentrations of K+ and Mg2+ in nonsymbiotic Paramecium extracts were too low to enhance symbiotic algal carbon fixation, suggesting that symbiotic P. bursaria provide suitable cation conditions for photosynthesis to its symbiotic Chlorella.

  7. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  8. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  9. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.

    PubMed

    Li, Xiaotao; Bhattacharya, Chitralekha; Dayal, Sandeep; Maity, Sankar; Klein, William H

    2002-05-01

    Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.

  10. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  11. Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise.

    PubMed

    Dohm, G Lynis

    2002-08-01

    The amount of GLUT-4 protein is a primary factor in determining the maximal rate of glucose transport into skeletal muscle. Therefore, it is important that we understand how exercise regulates GLUT-4 expression so that therapeutic strategies can be designed to increase muscle glucose disposal as a treatment for diabetes. Muscle contraction increases the rates of GLUT-4 transcription and translation. Transcriptional control likely requires at least two DNA binding proteins, myocyte enhancer factor-2 and GLUT-4 enhancer factor, which bind to the promoter. Increased GLUT-4 expression may be mediated by the enzyme AMP-activated kinase, which is activated during exercise and has been demonstrated to increase GLUT-4 transcription. Further research needs to be done to investigate whether AMP-activated kinase activates myocyte enhancer factor-2 and GLUT-4 enhancer factor to increase transcription of the GLUT-4 gene.

  12. Contributions of radiative factors to enhanced dryland warming over East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Yanting; Guan, Xiaodan; Yu, Haipeng; Xie, Yongkun; Jin, Hongchun

    2017-08-01

    Enhanced near-surface atmospheric warming has occurred over East Asia in recent decades, especially in drylands. Although local factors have been confirmed to provide considerable contributions to this warming, such factors have not been sufficiently analyzed. In this study, we extracted the radiatively forced temperature (RFT) associated with the built-up greenhouse gases, aerosol emission, and various other radiative forcing over East Asia and found a close relationship between RFT and CO2. In addition, using climate model experiments, we explored the responses of temperature changes to black carbon (BC), CO2, and SO4 and found that the enhanced dryland warming induced by CO2 had the largest magnitude and was strengthened by the warming effect of BC. Moreover, the sensitivity of daily maximum and minimum temperature changes to BC, CO2, and SO4 was examined. It showed asymmetric responses of daily maximum and minimum temperature to radiative factors, which led to an obvious change of diurnal temperature range (DTR), especially in drylands. The DTR's response to CO2 is the most significant. Therefore, CO2 not only plays a dominant role in enhanced warming but also greatly affects the decrease of DTR in drylands. However, the mechanisms of these radiative factors' effects in the process of DTR change are not clear and require more investigation.

  13. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Shang-Chao, E-mail: schung99@gmail.com; Chen, Yu-Jyun

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure,more » and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.« less

  14. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    PubMed

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  15. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer.

    PubMed Central

    Brabletz, T; Pietrowski, I; Serfling, E

    1991-01-01

    Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism. Images PMID:1707162

  16. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer.

    PubMed

    Brabletz, T; Pietrowski, I; Serfling, E

    1991-01-11

    Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism.

  17. Thermal Performance of Microencapsulated Phase Change Material Slurry

    DTIC Science & Technology

    2008-03-01

    the enhanced tubing to account for the microfin enhancement size. Figure 4.2 suggests that a roughness factor value for an 8 mm enhanced tubing ...After taking into account the enhanced tubing additional surface area, it can be concluded that that the microfins or enhancements on the tubing ...39 4.2 Pressure drop of water with 8 mm enhanced tubing

  18. Thermal Performance of Microencapsulated Phase Change Material Survey

    DTIC Science & Technology

    2008-03-01

    the enhanced tubing to account for the microfin enhancement size. Figure 4.2 suggests that a roughness factor value for an 8 mm enhanced tubing ...After taking into account the enhanced tubing additional surface area, it can be concluded that that the microfins or enhancements on the tubing ...39 4.2 Pressure drop of water with 8 mm enhanced tubing

  19. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Hitron, John Andrew; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of bothmore » NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.« less

  20. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Guha, A.; Gentner, D. R.; Weber, R. J.; Provencal, R.; Goldstein, A. H.

    2015-10-01

    Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change) experiment from mid-May to the end of June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily minima that were simultaneously observed at a mid-oceanic background station (NOAA, Mauna Loa) by approximately 70 ppb and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 and > 7 ppb, respectively) were routinely observed, suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g., straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were used with a positive matrix factorization (PMF) source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a seven-factor solution. We identified these emission source factors as follows: evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for the majority of the CH4 (70-90 %) enhancements during the duration of experiments. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60-70 %). Agriculture and soil management accounted for ~ 20-25 % of N2O enhancements over a 24 h cycle, which is not surprising given that organic and synthetic fertilizers are known to be a major source of N2O. The N2O attribution to the agriculture and soil management factor had a high uncertainty in the conducted bootstrapping analysis. This is most likely due to an asynchronous pattern of soil-mediated N2O emissions from fertilizer usage and collocated biogenic emissions from crops from the surrounding agricultural operations that is difficult to apportion statistically when using PMF. The evaporative/fugitive source profile, which resembled a mix of petroleum operation and non-tailpipe evaporative gasoline sources, did not include a PMF resolved-CH4 contribution that was significant (< 2 %) compared to the uncertainty in the livestock-associated CH4 emissions. The uncertainty of the CH4 estimates in this source factor, derived from the bootstrapping analysis, is consistent with the ~ 3 % contribution of fugitive oil and gas emissions to the statewide CH4 inventory. The vehicle emission source factor broadly matched VOC profiles of on-road exhaust sources. This source factor had no statistically significant detected contribution to the N2O signals (confidence interval of 3 % of livestock N2O enhancements) and negligible CH4 (confidence interval of 4 % of livestock CH4 enhancements) in the presence of a dominant dairy and livestock factor. The CalNex PMF study provides a measurement-based assessment of the state CH4 and N2O inventories for the southern San Joaquin Valley (SJV). The state inventory attributes ~ 18 % of total N2O emissions to the transportation sector. Our PMF analysis directly contradicts the state inventory and demonstrates there were no discernible N2O emissions from the transportation sector in the southern SJV region.

  1. In-situ laser-induced synthesis of associated YVO4:Eu3+@SiO2@Au-Ag/C nanohybrids with enhanced luminescence

    NASA Astrophysics Data System (ADS)

    Kolesnikov, I. E.; lvanova, T. Yu.; Ivanov, D. A.; Kireev, A. A.; Mamonova, D. V.; Golyeva, E. V.; Mikhailov, M. D.; Manshina, A. A.

    2018-02-01

    Associated luminescence/plasmonic nanoparticles were prepared in a single step process as a result of laser illumination (low intensity CW He-Cd laser) of colloidal solution of YVO4:Eu3+@SiO2 mixed with heterometallic supramolecular complex. The results of SEM-EDX analysis, absorption, steady-state luminescence and luminescence decay measurements revealed formation of associated nanohybrids with core/shell morphology. The obtained nanostructures demonstrated metal enhanced luminescence with enhancement factor of 1.6. The theoretical calculations revealed strong correlation of enhancement factor and plasmonic nanoparticles number.

  2. Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells

    PubMed Central

    Benson, Don M.; Yu, Jianhua; Becknell, Brian; Wei, Min; Freud, Aharon G.; Ferketich, Amy K.; Trotta, Rossana; Perrotti, Danilo; Briesewitz, Roger

    2009-01-01

    Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)–cell development. CD34+ hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34+ HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells. PMID:19060242

  3. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor-Associated Genes in PDLSCs.

    PubMed

    Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri

    2016-07-01

    This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

  4. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  5. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2.

    PubMed

    Lee, Jung-Seok; Kim, Seul Ki; Jung, Byung-Joo; Choi, Seong-Bok; Choi, Eun-Young; Kim, Chang-Sung

    2018-04-01

    This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs) expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2) treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia) and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis), and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Epstein-Barr Virus oncoprotein super-enhancers control B cell growth

    PubMed Central

    Zhou, Hufeng; Schmidt, Stefanie CS; Jiang, Sizun; Willox, Bradford; Bernhardt, Katharina; Liang, Jun; Johannsen, Eric C; Kharchenko, Peter; Gewurz, Benjamin E; Kieff, Elliott; Zhao, Bo

    2015-01-01

    Summary Super-enhancers are clusters of gene-regulatory sites bound by multiple transcription factors that govern cell transcription, development, phenotype, and oncogenesis. By examining Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs), we identified four EBV oncoproteins and five EBV-activated NF-κB subunits co-occupying ~1800 enhancer sites. Of these, 187 had markedly higher and broader histone H3K27ac signals characteristic of super-enhancers, and were designated “EBV super-enhancers”. EBV super-enhancer-associated genes included the MYC and BCL2 oncogenes, enabling LCL proliferation and survival. EBV super-enhancers were enriched for B cell transcription factor motifs and had a high co-occupancy of the transcription factors STAT5 and NFAT. EBV super-enhancer-associated genes were more highly expressed than other LCL genes. Disrupting EBV super-enhancers by the bromodomain inhibitor, JQ1 or conditionally inactivating an EBV oncoprotein or NF-κB decreased MYC or BCL2 expression and arrested LCL growth. These findings provide insight into mechanisms of EBV-induced lymphoproliferation and identify potential therapeutic interventions. PMID:25639793

  7. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Guha, A.; Gentner, D. R.; Weber, R. J.; Provencal, R.; Goldstein, A. H.

    2015-03-01

    Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change) experiment from 15 May to 30 June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily averages that were simultaneously observed at a similar latitude background station (NOAA, Mauna Loa) by approximately 70 and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 ppb and > 7 ppb, respectively) were routinely observed suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g. straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were used with a Positive Matrix Factorization (PMF) source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a 7-factor solution. We identified these source factors as emissions from evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for a majority of the CH4 (70-90%) enhancements during the duration of the experiments. Propagation of uncertainties in the PMF-derived factor profiles and time series from bootstrapping analysis resulted in a 29% uncertainty in the CH4 apportionment to this factor. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60-70%) with an uncertainty of 33%. Agriculture and soil management accounted for ~20-25% of N2O enhancements over the course of a day, not surprisingly given that organic and synthetic fertilizers are known to be a major source of N2O. The evaporative/fugitive source profile resembles a mix of petroleum operation and non-tailpipe evaporative gasoline sources, but was not responsible for any observed PMF resolved-CH4 enhancements. The vehicle emission source factor broadly matches VOC profiles of on-road exhaust sources and had no detected contribution to the N2O signals and negligible CH4 in the presence of a dominant dairy and livestock factor. The CalNex PMF study provides a measurement-based assessment of the state CH4 and N2O inventories for the southern San Joaquin valley. The state inventory attributes ~18% of the total N2O emissions to the transportation sector. Our PMF analysis directly contradicts the state inventory and demonstrates there were no discernible N2O emissions from the transportation sector.

  8. Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2.

    PubMed

    Yasuhiko, Yukuto; Kitajima, Satoshi; Takahashi, Yu; Oginuma, Masayuki; Kagiwada, Harumi; Kanno, Jun; Saga, Yumiko

    2008-11-01

    The T-box transcription factor Tbx6 controls the expression of Mesp2, which encodes a basic helix-loop-helix transcription factor that has crucial roles in somitogenesis. In cultured cells, Tbx6 binding to the Mesp2 enhancer region is essential for the activation of Mesp2 by Notch signaling. However, it is not known whether this binding is required in vivo. Here we report that an Mesp2 enhancer knockout mouse bearing mutations in two crucial Tbx6 binding sites does not express Mesp2 in the presomitic mesoderm. This absence leads to impaired skeletal segmentation identical to that reported for Mesp2-null mice, indicating that these Tbx6 binding sites are indispensable for Mesp2 expression. T-box binding to the consensus sequences in the Mesp2 upstream region was confirmed by chromatin immunoprecipitation assays. Further enhancer analyses indicated that the number and spatial organization of the T-box binding sites are critical for initiating Mesp2 transcription via Notch signaling. We also generated a knock-in mouse in which the endogenous Mesp2 enhancer was replaced by the core enhancer of medaka mespb, an ortholog of mouse Mesp2. The homozygous enhancer knock-in mouse was viable and showed normal skeletal segmentation, indicating that the medaka mespb enhancer functionally replaced the mouse Mesp2 enhancer. These results demonstrate that there is significant evolutionary conservation of Mesp regulatory mechanisms between fish and mice.

  9. Factors Associated with Enhanced Gross Motor Progress in Children with Cerebral Palsy: A Register-Based Study.

    PubMed

    Størvold, Gunfrid V; Jahnsen, Reidun B; Evensen, Kari Anne I; Romild, Ulla K; Bratberg, Grete H

    2018-05-01

    To examine associations between interventions and child characteristics; and enhanced gross motor progress in children with cerebral palsy (CP). Prospective cohort study based on 2048 assessments of 442 children (256 boys, 186 girls) aged 2-12 years registered in the Cerebral Palsy Follow-up Program and the Cerebral Palsy Register of Norway. Gross motor progress estimates were based on repeated measures of reference percentiles for the Gross Motor Function Measure (GMFM-66) in a linear mixed model. Mean follow-up time: 2.9 years. Intensive training was the only intervention factor associated with enhanced gross motor progress (mean 3.3 percentiles, 95% CI: 1.0, 5.5 per period of ≥3 sessions per week and/or participation in an intensive program). Gross motor function was on average 24.2 percentiles (95% CI: 15.2, 33.2) lower in children with intellectual disability compared with others. Except for eating problems (-10.5 percentiles 95% CI: -18.5, -2.4) and ankle contractures by age (-1.9 percentiles 95% CI: -3.6, -0.2) no other factors examined were associated with long-term gross motor progress. Intensive training was associated with enhanced gross motor progress over an average of 2.9 years in children with CP. Intellectual disability was a strong negative prognostic factor. Preventing ankle contractures appears important for gross motor progress.

  10. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    PubMed

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A universal formula for the field enhancement factor

    NASA Astrophysics Data System (ADS)

    Biswas, Debabrata

    2018-04-01

    The field enhancement factor (FEF) is an important quantity in field emission calculations since the tunneling electron current depends very sensitively on its magnitude. The exact dependence of FEF on the emitter height h, the radius of curvature at the apex Ra, as well as the shape of the emitter base are still largely unknown. In this work, a universal formula for the field enhancement factor is derived for a single emitter. It depends on the ratio h/Ra and has the form γ a = ( 2 h / R a ) / [ α 1 ln ( 4 h / R a ) - α 2 ] , where α1 and α2 depend on the charge distribution on the emitter. Numerical results show that a simpler form γ a = ( 2 h / R a ) / [ ln ( 4 h / R a ) - α ] is equally valid with α depending on the emitter-base. Thus, for the hyperboloid, conical, and ellipsoid emitters, the value of α is 0, 0.88, and 2, while for the cylindrical base, α ≃ 2.6.

  12. Theory of g-factor enhancement in narrow-gap quantum well heterostructures.

    PubMed

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2011-09-28

    We report on the study of the exchange enhancement of the g-factor in the two-dimensional (2D) electron gas in n-type narrow-gap semiconductor heterostructures. Our approach is based on the eight-band k⋅p Hamiltonian and takes into account the band nonparabolicity, the lattice deformation, the spin-orbit coupling and the Landau level broadening in the δ-correlated random potential model. Using the 'screened' Hartree-Fock approximation we demonstrate that the exchange g-factor enhancement not only shows maxima at odd values of Landau level filling factors but, due to the conduction band nonparabolicity, persists at even filling factor values as well. The magnitude of the exchange enhancement, the amplitude and the shape of the g-factor oscillations are determined by both the screening of the electron-electron interaction and the Landau level width. The 'enhanced' g-factor values calculated for the 2D electron gas in InAs/AlSb quantum well heterostructures are compared with our earlier experimental data and with those obtained by Mendez et al (1993 Phys. Rev. B 47 13937) in magnetic fields up to 30 T.

  13. The Effect of Insulin and Insulin-Like Growth Factors on Hippocampus- and Amygdala-Dependent Long-Term Memory Formation

    ERIC Educational Resources Information Center

    Stern, Sarah A.; Chen, Dillon Y.; Alberini, Cristina M.

    2014-01-01

    Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or…

  14. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes.

    PubMed

    Jacobs, Jelle; Atkins, Mardelle; Davie, Kristofer; Imrichova, Hana; Romanelli, Lucia; Christiaens, Valerie; Hulselmans, Gert; Potier, Delphine; Wouters, Jasper; Taskiran, Ibrahim I; Paciello, Giulia; González-Blas, Carmen B; Koldere, Duygu; Aibar, Sara; Halder, Georg; Aerts, Stein

    2018-06-04

    Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.

  15. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for amore » new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.« less

  16. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  17. Signal Factors Secreted by 2D and Spheroid Mesenchymal Stem Cells and by Cocultures of Mesenchymal Stem Cells Derived Microvesicles and Retinal Photoreceptor Neurons

    PubMed Central

    Mao, Mao; Zhou, Liang

    2017-01-01

    We aim to identify levels of signal factors secreted by MSCs cultured in 2D monolayers (2D-MSCs), spheroids (spheroids MSCs), and cocultures of microvesicles (MVs) derived from 2D-MSCs or spheroid MSCs and retinal photoreceptor neurons. We seeded 2D-MSCs, spheroid MSCs, and cells derived from spheroids MSCs at equal numbers. MVs isolated from all 3 culture conditions were incubated with 661W cells. Levels of 51 signal factors in conditioned medium from those cultured conditions were quantified with bead-based assay. We found that IL-8, IL-6, and GROα were the top three most abundant signal factors. Moreover, compared to 2D-MSCs, levels of 11 cytokines and IL-2Rα were significantly increased in conditioned medium from spheroid MSCs. Finally, to test if enhanced expression of these factors reflects altered immunomodulating activities, we assessed the effect of 2D-MSC-MVs and 3D-MSC-MVs on CD14+ cell chemoattraction. Compared to 2D-MSC-MVs, 3D-MSC-MVs significantly decreased the chemotactic index of CD14+ cells. Our results suggest that spheroid culture conditions improve the ability of MSCs to selectively secrete signal factors. Moreover, 3D-MSC-MVs also possessed an enhanced capability to promote signal factors secretion compared to 2D-MSC-MVs and may possess enhanced immunomodulating activities and might be a better regenerative therapy for retinal degenerative diseases. PMID:28194184

  18. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  19. Effective Factors in Enhancing School Manager's Job Motivation

    PubMed Central

    Mirzamani, S. Mahmoud; Esfahani, Hamideh Darb

    2011-01-01

    Objective This study examines the effective factors in enhancing school manager's job motivation from viewpoint of school mangers, teachers, education department managerial and staff experts in teaching, and also identifies and prioritizes each of these factors and indicators. Method For selecting a representative sample and increasing measurement precision, 587 people were selected using classified random sampling. The measurement tool was a 79-questionnaire made by the researcher. The questionnaire was collected using motivation theories and observing the findings of previous researches. Then, according to the three-stage Delphi technique, the questionnaire was sent to experts in education. The reliability of instruments was measured by calculating Cronbach's Alpha coefficient, and total reliability of the test was 0.99; the validity of the instrument was assessed by factor analysis (Construct Validity) and its load factor was 0.4 which was high. Results The results from factor analysis shows that the effective factors in enhancing manager's job motivation are as follows: self- actualization (51%) including 28 indices; social factor (7/9%) including 22 indices; self-esteem (3.2%) including 17 indices; job desirable features (2.2%) including 4 indices; physiologic (1.8%) including 4 indices; and job richness (1.6%) including 4 indices. Conclusions The results show that the six mentioned factors determine 68% of the total variance of manager's motivation. PMID:22952541

  20. A unique stylopod patterning mechanism by Shox2-controlled osteogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Wenduo; Song, Yingnan; Huang, Zhen

    Here, vertebrate appendage patterning is programmed by Hox-TALE factorbound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clusteringmore » around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.« less

  1. A unique stylopod patterning mechanism by Shox2-controlled osteogenesis

    DOE PAGES

    Ye, Wenduo; Song, Yingnan; Huang, Zhen; ...

    2016-06-10

    Here, vertebrate appendage patterning is programmed by Hox-TALE factorbound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clusteringmore » around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.« less

  2. TAF11 assembles RISC loading complex to enhance RNAi efficiency

    PubMed Central

    Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C.; Liu, Qinghua

    2015-01-01

    SUMMARY Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains Dicer-2(Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here, we identified the missing factor of RLC as TATA-binding protein associated factor 11 (TAF11) by genetic screen. Although an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11−/− ovary extract, we reconstituted the RLC in vitro using recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of Drosophila RLC and elucidate a novel cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. PMID:26257286

  3. Orientation effect in d(d,n)3He reaction initiated by 20 keV deuterons at channeling in textured CVD-Diamond target

    NASA Astrophysics Data System (ADS)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Pivovarov, Yu. L.; Rusetskii, A. S.; Tukhfatullin, T. A.

    2017-07-01

    Orientation effect of increasing the enhancement factor of DD-reaction in CVD-Diamond was investigated by simulation. It is obtained that the flux peaking effect up to 2.2 times increases the relative enhancement factor for a parallel beam and up to 1.2 times for the deuteron beam with angular divergence equals 3 critical channeling angles. Qualitative agreement with the experiment was obtained.

  4. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed Central

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-01-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007

  5. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  6. Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2

    NASA Astrophysics Data System (ADS)

    Wang, Yulong; Wen, Junfu; Fan, Zhenghua; Bao, Ningzhong; Huang, Rong; Tu, Rong; Wang, Yifeng

    2015-04-01

    We report on a greatly enhanced power factor for 1%PbS-nanoparticle-embedded TiS2 bulk ceramic, about 1 mW/(mK2) at 300 K and 1.23 mW/(mK2) in a wide temperature range of 573 ˜ 673 K, of which the latter is among the highest so far for TiS2-based thermoelectric materials. Compared to TiS2, the power factor is increased by ˜110% at 300 K and (50 ˜ 35)% at 573 ˜ 673 K. This enhancement is derived from a large increase in Seebeck coefficient which overwhelmed the modest degradation of electrical conductivity, which should be attributed to energy filtering induced by the band gap offset between TiS2 and PbS.

  7. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer.

    PubMed

    Juang, Yu-Lin; Jeng, Yung-Ming; Chen, Chi-Long; Lien, Huang-Chun

    2016-12-01

    TGF-β and cancer progression share a multifaceted relationship. Despite the knowledge of TGF-β biology in the development of cancer, several factors that mediate the cancer-promoting role of TGF-β continue to be identified. This study aimed to identify and characterise novel factors potentially related to TGF-β-mediated tumour aggression in breast cells. We treated the human mammary epithelial cell line MCF10A with TGF-β and identified TGF-β-dependent upregulation of PRRX2, the gene encoding paired-related homeobox 2 transcription factor. Overexpression of PRRX2 enhanced migration, invasion and anchorage-independent growth of MCF10A cells and induced partial epithelial mesenchymal transition (EMT), as determined by partial fibroblastoid morphology of cells, upregulation of EMT markers and partially disrupted acinar structure in a three-dimensional culture. We further identified PLAT, the gene encoding tissue-type plasminogen activator (tPA), as the highest differentially expressed gene in PRRX2-overexpressing MCF10A cells, and demonstrated direct binding and transactivation of the PLAT promoter by PRRX2. Furthermore, PLAT knockdown inhibited PRRX2-mediated enhanced migration and invasion, suggesting that tPA may mediate PRRX2-induced migration and invasion. Finally, the significant correlation of PRRX2 expression with poor survival in 118 primary breast tumour samples (P = 0.027) and the increased PRRX2 expression in metaplastic breast carcinoma samples, which is pathogenetically related to EMT, validated the biological importance of PRRX2-enhanced migration and invasion and PRRX2-induced EMT. Thus, our data suggest that upregulation of PRRX2 may be a mechanism contributing to TGF-β-induced invasion and EMT in breast cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Nrf2 Deficiency in Dendritic Cells Enhances the Adjuvant Effect of Ambient Ultrafine Particles on Allergic Sensitization

    EPA Science Inventory

    Airborne particulate matter (PM) is an important risk factor for asthma. Generation of oxidative stress by PM-associated chemicals is a major mechanism of its health effects. Transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mediates antioxidant and phase II...

  9. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Rui; Yao, Rui; Du, Juan

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stemmore » cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.« less

  10. Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor.

    PubMed

    Park, Kunsu; Ahn, Kyunghan; Cha, Joonil; Lee, Sanghwa; Chae, Sue In; Cho, Sung-Pyo; Ryee, Siheon; Im, Jino; Lee, Jaeki; Park, Su-Dong; Han, Myung Joon; Chung, In; Hyeon, Taeghwan

    2016-11-02

    Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi 2 Te 3 ) that violates phase equilibrium, namely, phase-pure n-type K 0.06 Bi 2 Te 3.18 . Incorporated potassium and tellurium in Bi 2 Te 3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 μW cm -1 K -2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

  11. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility.

    PubMed

    Lio, Chan-Wang; Zhang, Jiayuan; González-Avalos, Edahí; Hogan, Patrick G; Chang, Xing; Rao, Anjana

    2016-11-21

    Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine, facilitating DNA demethylation and generating new epigenetic marks. Here we show that concomitant loss of Tet2 and Tet3 in mice at early B cell stage blocked the pro- to pre-B cell transition in the bone marrow, decreased Irf4 expression and impaired the germline transcription and rearrangement of the Igκ locus. Tet2/3-deficient pro-B cells showed increased CpG methylation at the Igκ 3' and distal enhancers that was mimicked by depletion of E2A or PU.1, as well as a global decrease in chromatin accessibility at enhancers. Importantly, re-expression of the Tet2 catalytic domain in Tet2/3-deficient B cells resulted in demethylation of the Igκ enhancers and restored their chromatin accessibility. Our data suggest that TET proteins and lineage-specific transcription factors cooperate to influence chromatin accessibility and Igκ enhancer function by modulating the modification status of DNA.

  12. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  14. Conditions Enhancing Self-Directed Learning in the Workplace. A Report to the Participants.

    ERIC Educational Resources Information Center

    1992

    The appreciative inquiry process was used to identify conditions enhancing self-directed learning. Participants in the project did the following: (1) used the five-step process to identify factors/conditions/forces that seemed to cause self-directed learning to occur; (2) created a matrix by combining the factors/conditions/forces with six…

  15. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  16. TAF11 Assembles the RISC Loading Complex to Enhance RNAi Efficiency.

    PubMed

    Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C; Liu, Qinghua

    2015-09-03

    Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains the Dicer-2 (Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here we identified the missing factor of RLC as TATA-binding protein-associated factor 11 (TAF11) by genetic screen. Although it is an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11(-/-) ovary extract, we reconstituted the RLC in vitro using the recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of the Drosophila RLC and elucidate a cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, Christina J.; Sur, Shantanu; Lee, Sungsoo S.

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is relatedmore » to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.« less

  18. Glycosylation enables aesculin to activate Nrf2.

    PubMed

    Kim, Kyun Ha; Park, Hyunsu; Park, Hee Jin; Choi, Kyoung-Hwa; Sadikot, Ruxana T; Cha, Jaeho; Joo, Myungsoo

    2016-07-15

    Since aesculin, 6,7-dihydroxycoumarin-6-O-β-glucopyranoside, suppresses inflammation, we asked whether its anti-inflammatory activity is associated with the activation of nuclear factor-E2-related factor 2 (Nrf2), a key anti-inflammatory factor. Our results, however, show that aesculin marginally activated Nrf2. Since glycosylation can enhance the function of a compound, we then asked whether adding a glucose makes aesculin activate Nrf2. Our results show that the glycosylated aesculin, 3-O-β-d-glycosyl aesculin, robustly activated Nrf2, inducing the expression of Nrf2-dependent genes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase 1 in macrophages. Mechanistically, 3-O-β-d-glycosyl aesculin suppressed ubiquitination of Nrf2, retarding degradation of Nrf2. Unlike aesculin, 3-O-β-d-glycosyl aesculin significantly suppressed neutrophilic lung inflammation, a hallmark of acute lung injury (ALI), in mice, which was not recapitulated in Nrf2 knockout mice, suggesting that the anti-inflammatory function of the compound largely acts through Nrf2. In a mouse model of sepsis, a major cause of ALI, 3-O-β-d-glycosyl aesculin significantly enhanced the survival of mice, compared with aesculin. Together, these results show that glycosylation could confer the ability to activate Nrf2 on aesculin, enhancing the anti-inflammatory function of aesculin. These results suggest that glycosylation can be a way to improve or alter the function of aesculin.

  19. Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang

    2017-03-01

    Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.

  20. Quartz-Enhanced Photoacoustic Spectroscopy with Right-Angle Prism.

    PubMed

    Liu, Yongning; Chang, Jun; Lian, Jie; Liu, Zhaojun; Wang, Qiang; Qin, Zengguang

    2016-02-06

    A right-angle prism was used to enhance the acoustic signal of a quartz-enhanced photoacoustic spectroscopy (QEPAS) system. The incident laser beam was parallelly inverted by the right-angle prism and passed through the gap between two tuning fork prongs again to produce another acoustic excitation. Correspondingly, two pairs of rigid metal tubes were used as acoustic resonators with resonance enhancement factors of 16 and 12, respectively. The QEPAS signal was enhanced by a factor of 22.4 compared with the original signal, which was acquired without resonators or a prism. In addition, the system noise was reduced a little with double resonators due to the Q factor decrease. The signal-to-noise ratio (SNR) was greatly improved. Additionally, a normalized noise equivalent absorption coefficient (NNEA) of 5.8 × 10(-8) W·cm(-1)·Hz(-1/2) was achieved for water vapor detection in the atmosphere.

  1. Factors influencing the dosimetry for high-intensity focused ultrasound ablation of uterine fibroids: a retrospective study.

    PubMed

    Peng, Song; Zhang, Lian; Hu, Liang; Chen, Jinyun; Ju, Jin; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Chen, Wenzhi

    2015-04-01

    The aim of this article is to analyze factors affecting sonication dose and build a dosimetry model of high-intensity focused ultrasound (HIFU) ablation for uterine fibroids. Four hundred and three patients with symptomatic uterine fibroids who underwent HIFU were retrospectively analyzed. The energy efficiency factor (EEF) was set as dependent variable, and the factors possibly affecting sonication dose included age, body mass index, size of uterine fibroid, abdominal wall thickness, the distance from uterine fibroid dorsal side to sacrum, the distance from uterine fibroid ventral side to skin, location of uterus, location of uterine fibroids, type of uterine fibroids, abdominal wall scar, signal intensity on T2-weighted imaging (T2WI), and enhancement type on T1-weighted imaging (T1WI) were set as predictors to build a multiple regression model. The size of uterine fibroid, distance from fibroid ventral side to skin, location of uterus, location of uterine fibroids, type of uterine fibroids, signal intensity on T2WI, and enhancement type on T1WI had a linear correlation with EEF. The distance from fibroid ventral side to skin, enhancement type on T1WI, size of uterine fibroid, and signal intensity on T2WI were eventually incorporated into the dosimetry model. The distance from fibroid ventral side to skin, enhancement type on T1WI, size of uterine fibroid, and signal intensity on T2WI can be used as dosimetric predictors for HIFU for uterine fibroids.

  2. Acetaminophen Enhances Cisplatin- and Paclitaxel-mediated Cytotoxicity to SKOV3 Human Ovarian Carcinoma

    PubMed Central

    Wu, Y. Jeffrey; Neuwelt, Alexander J.; Muldoon, Leslie L.; Neuwelt, Edward A.

    2013-01-01

    Background Ovarian cancer is commonly treated with cisplatin/paclitaxel but many tumors become resistant. Acetaminophen reduced glutathione and enhanced chemotherapy efficacy in treating hepatic cancer. The objective of this study was to examine if acetaminophen enhances the cytotoxicity of cisplatin/paclitaxel in ovarian cancer. Materials and Methods SKOV3 human ovarian carcinoma cells in vitro and a subcutaneous tumor nude rat model were used and treated with cisplatin/paclitaxel with or without acetaminophen. Results In vitro, acetaminophen enhanced apoptosis induced by cisplatin and paclitaxel with similar effects on glutathione, reactive oxygen species and mitochondrial membrane potential but different effects on nuclear factor erythroid 2-related factor 2 (NRF2) translocation. In vivo, acetaminophen was uniformly distributed in tissue and significantly reduced hepatic glutathione. Acetaminophen enhanced cisplatin chemotherapeutic effect by reducing tumor recurrence Conclusion Our results suggest that acetaminophen as a chemoenhancing adjuvant could improve the efficacy of cisplatin and paclitaxel in treating patients with ovarian carcinoma and other tumor types. PMID:23749887

  3. Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors.

    PubMed

    Razavian, Narges; Blecker, Saul; Schmidt, Ann Marie; Smith-McLallen, Aaron; Nigam, Somesh; Sontag, David

    2015-12-01

    We present a new approach to population health, in which data-driven predictive models are learned for outcomes such as type 2 diabetes. Our approach enables risk assessment from readily available electronic claims data on large populations, without additional screening cost. Proposed model uncovers early and late-stage risk factors. Using administrative claims, pharmacy records, healthcare utilization, and laboratory results of 4.1 million individuals between 2005 and 2009, an initial set of 42,000 variables were derived that together describe the full health status and history of every individual. Machine learning was then used to methodically enhance predictive variable set and fit models predicting onset of type 2 diabetes in 2009-2011, 2010-2012, and 2011-2013. We compared the enhanced model with a parsimonious model consisting of known diabetes risk factors in a real-world environment, where missing values are common and prevalent. Furthermore, we analyzed novel and known risk factors emerging from the model at different age groups at different stages before the onset. Parsimonious model using 21 classic diabetes risk factors resulted in area under ROC curve (AUC) of 0.75 for diabetes prediction within a 2-year window following the baseline. The enhanced model increased the AUC to 0.80, with about 900 variables selected as predictive (p < 0.0001 for differences between AUCs). Similar improvements were observed for models predicting diabetes onset 1-3 years and 2-4 years after baseline. The enhanced model improved positive predictive value by at least 50% and identified novel surrogate risk factors for type 2 diabetes, such as chronic liver disease (odds ratio [OR] 3.71), high alanine aminotransferase (OR 2.26), esophageal reflux (OR 1.85), and history of acute bronchitis (OR 1.45). Liver risk factors emerge later in the process of diabetes development compared with obesity-related factors such as hypertension and high hemoglobin A1c. In conclusion, population-level risk prediction for type 2 diabetes using readily available administrative data is feasible and has better prediction performance than classical diabetes risk prediction algorithms on very large populations with missing data. The new model enables intervention allocation at national scale quickly and accurately and recovers potentially novel risk factors at different stages before the disease onset.

  4. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT.

    PubMed

    Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi

    2008-02-01

    Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.

  5. Properties of ordered titanium templates covered with Au thin films for SERS applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard

    2016-12-01

    Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  6. Effect of mesoporous structure on the Seebeck coefficient and electrical properties of SrTi0.8Nb0.2O3

    NASA Astrophysics Data System (ADS)

    Park, Chang-Sun; Hong, Min-Hee; Cho, Hyung Hee; Park, Hyung-Ho

    2017-07-01

    The porosity of mesoporous SrTi0.8Nb0.2O3 (STNO) was controlled by changing the surfactant concentration to investigate the porosity effect on the thermoelectric properties. Mesoporous structure typically induces a large decrease in the carrier mobility and a small increase in the carrier concentration owing to carrier scattering and oxygen vacancies. These changes in the carrier mobility and concentration induce a change in the thermoelectric properties by enhancing the Seebeck coefficient owing to an increase in the electrical resistivity and carrier filtering effect. Brij-S10 surfactant induces a carrier filtering effect in STNO, and so the Seebeck coefficient could be enhanced even with increasing carrier concentration. Because the Seebeck coefficient affects the power factor more strongly than the electrical resistivity does, incorporation of Brij-S10 surfactant into STNO films increases the power factor. The maximum value of the power factor, approximately 2.2 × 10-4 W/mK2 at 200 °C, was obtained at a Brij-S10 molar ratio of 0.075. From this result, we can expect the application of STNO as a thermoelectric material with an enhanced power factor through successful adoption of mesoporous structure.

  7. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.

    PubMed

    Pasquali, Lorenzo; Gaulton, Kyle J; Rodríguez-Seguí, Santiago A; Mularoni, Loris; Miguel-Escalada, Irene; Akerman, İldem; Tena, Juan J; Morán, Ignasi; Gómez-Marín, Carlos; van de Bunt, Martijn; Ponsa-Cobas, Joan; Castro, Natalia; Nammo, Takao; Cebola, Inês; García-Hurtado, Javier; Maestro, Miguel Angel; Pattou, François; Piemonti, Lorenzo; Berney, Thierry; Gloyn, Anna L; Ravassard, Philippe; Skarmeta, José Luis Gómez; Müller, Ferenc; McCarthy, Mark I; Ferrer, Jorge

    2014-02-01

    Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.

  8. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors. PMID:24068937

  9. Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency.

    PubMed

    Adachi, Kenjiro; Kopp, Wolfgang; Wu, Guangming; Heising, Sandra; Greber, Boris; Stehling, Martin; Araúzo-Bravo, Marcos J; Boerno, Stefan T; Timmermann, Bernd; Vingron, Martin; Schöler, Hans R

    2018-06-11

    Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Control of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Sato, Shusei; Wada, Takuji

    2013-01-01

    In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homologous genes from the tomato genome and named them SlTRY and SlGL3, respectively. Phylogenic analyses revealed a close relationship between the tomato and Arabidopsis genes. Real-time reverse transcription PCR analyses showed that SlTRY and SlGL3 were predominantly expressed in aerial parts of developing tomato. After transformation into Arabidopsis, CPC::SlTRY inhibited trichome formation and enhanced root-hair differentiation by strongly repressing GL2 expression. On the other hand, GL3::SlGL3 transformation did not show any obvious effect on trichome or non-hair cell differentiation. These results suggest that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant trichome and root-hair development. PMID:23326563

  11. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more efficient than hypoxia at increasing dental pulp stem cells derived from deciduous teeth (SHED)-induced vascularization compared with nonprimed controls. Together, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both hepatocyte growth factor and vascular endothelial growth factor. PMID:26798059

  12. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  13. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  14. Accelerating forest growth enhancement due to climate and atmospheric changes in British Colombia, Canada over 1956-2001.

    PubMed

    Wu, Chaoyang; Hember, Robbie A; Chen, Jing M; Kurz, Werner A; Price, David T; Boisvenue, Céline; Gonsamo, Alemu; Ju, Weimin

    2014-03-25

    Changes in climate and atmospheric CO2 and nitrogen (N) over the last several decades have induced significant effects on forest carbon (C) cycling. However, contributions of individual factors are largely unknown because of the lack of long observational data and the undifferentiating between intrinsic factors and external forces in current ecosystem models. Using over four decades (1956-2001) of forest inventory data at 3432 permanent samples in maritime and boreal regions of British Columbia (B.C.), Canada, growth enhancements were reconstructed and partitioned into contributions of climate, CO2 and N after removal of age effects. We found that climate change contributed a particularly large amount (over 70%) of the accumulated growth enhancement, while the remaining was attributed to CO2 and N, respectively. We suggest that climate warming is contributing a widespread growth enhancement in B.C.'s forests, but ecosystem models should consider CO2 and N fertilization effects to fully explain inventory-based observations.

  15. The effect of chemical carcinogenesis on rat glutathione S-transferase P1 gene transcriptional regulation.

    PubMed

    Liu, D; Liao, M; Zuo, J; Henner, W D; Fan, F

    2001-03-01

    To investigate mechanisms of rat glutathione S-transferase P1 gene (rGSTP1) expression regulation during chemical carcinogenesis. we studied enhancer elements located in the region between -2.5 kb to -2.2 kb. The region was upstream from the start site of transcription and was divided into two major fragments, GPEI and GPEII. The GPEII fragment was further divided into two smaller fragments, GPEII- I and GPEII-2. Using a luciferase reporter system, we identified a strong enhancer of GPEI and a weak enhancer of GPEII in HeLa and a rat hepatoma cell line CBRH79 19 cell. The enhancer of GPEII was located within the GPEII-I region. Chemical stimulation by glycidyl methatylate (GMA) and phorbol 12-o-tetradecanoate 13-acetate (TPA) analysis revealed that induction of rGSTP1 expression was mainly through GPEI. Although H2O2 could enhance GPEII enhancer activity, the enhancement is not mediated by the NF-kappaB factor that bound the NF-kappaB site in GPEII. Using electrophoretic mobility shift assays (EMSA) and the UV cross-linking assays, we found that HeLa and CBRH7919 cells had proteins that specifically bound GPEI core sequence and a 64 kDa protein that interacted with GPEII-1. The cells from normal rat liver did not express the binding proteins. Therefore, the trans-acting factors seem to be closely related to GPEI, GPEII enhancer activities and may play an important role in high expression of rGSTPI gene.

  16. Prohibitin 2 Regulates the Proliferation and Lineage-Specific Differentiation of Mouse Embryonic Stem Cells in Mitochondria

    PubMed Central

    Komazaki, Shinji; Enomoto, Kei; Seki, Yasuhiro; Wang, Ying Ying; Ishigaki, Yohei; Ninomiya, Naoto; Noguchi, Taka-aki K.; Kokubu, Yuko; Ohnishi, Keigoh; Nakajima, Yoshiro; Kato, Kaoru; Intoh, Atsushi; Takada, Hitomi; Yamakawa, Norio; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2014-01-01

    Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells. PMID:24709813

  17. Field electron emission from diamond and related films synthesized by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Xianfeng

    The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.

  18. Enhanced uridine 5'-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux.

    PubMed

    Liu, Dong; Chen, Yong; Li, An; Xie, Jingjing; Xiong, Jian; Bai, Jianxin; Chen, Xiaochun; Niu, Huanqing; Zhou, Tao; Ying, Hanjie

    2012-06-01

    A whole-cell biocatalytic process for uridine 5'-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH(2)PO(4), MgCl(2) and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH(2)PO(4) 22.1 g/L; MgCl(2) 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.

  19. Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.

    PubMed

    Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H

    2001-12-21

    We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.

  20. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

    PubMed

    Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak

    2017-03-07

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.

  1. Icaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ERα

    PubMed Central

    Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao

    2017-01-01

    Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα. PMID:28091581

  2. Icaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ERα.

    PubMed

    Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao

    2017-01-16

    Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα.

  3. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

    PubMed

    Welsbie, Derek S; Mitchell, Katherine L; Jaskula-Ranga, Vinod; Sluch, Valentin M; Yang, Zhiyong; Kim, Jessica; Buehler, Eugen; Patel, Amit; Martin, Scott E; Zhang, Ping-Wu; Ge, Yan; Duan, Yukan; Fuller, John; Kim, Byung-Jin; Hamed, Eman; Chamling, Xitiz; Lei, Lei; Fraser, Iain D C; Ronai, Ze'ev A; Berlinicke, Cynthia A; Zack, Donald J

    2017-06-21

    Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO 3 thin films with T c enhanced to >300 °C

    DOE PAGES

    Sangle, Abhijeet L.; Lee, Oon Jew; Kursumovic, Ahmed; ...

    2018-02-05

    We report on nanoengineered SrTiO 3–Sm2O 3 nanocomposite thin films with the highest reported values of commutation quality factor (CQF or K-factor) of >2800 in SrTiO 3 at room temperature. The films also had a large tunability of dielectric constant (49%), low tangent loss (tan δ = 0.01) and a Curie temperature for SrTiO 3 > 300 °C, making them very attractive for tunable RF applications. The enhanced properties originate from the unique nanostructure in the films, with <20 nm diameter strain-controlling Sm 2O 3 nanocolumns embedded in a SrTiO 3 matrix. Very large out-of-plane strains (up to 2.6%) andmore » high tetragonality (c/a) (up to 1.013) were induced in the SrTiO 3. Finally, the K-factor was further enhanced by adding 1 at% Sc 3+ (acceptor) dopant in SrTiO 3 to a value of 3300 with the tangent loss being ≤0.01 up to 1000 kV cm -1.« less

  5. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO 3 thin films with T c enhanced to >300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangle, Abhijeet L.; Lee, Oon Jew; Kursumovic, Ahmed

    We report on nanoengineered SrTiO 3–Sm2O 3 nanocomposite thin films with the highest reported values of commutation quality factor (CQF or K-factor) of >2800 in SrTiO 3 at room temperature. The films also had a large tunability of dielectric constant (49%), low tangent loss (tan δ = 0.01) and a Curie temperature for SrTiO 3 > 300 °C, making them very attractive for tunable RF applications. The enhanced properties originate from the unique nanostructure in the films, with <20 nm diameter strain-controlling Sm 2O 3 nanocolumns embedded in a SrTiO 3 matrix. Very large out-of-plane strains (up to 2.6%) andmore » high tetragonality (c/a) (up to 1.013) were induced in the SrTiO 3. Finally, the K-factor was further enhanced by adding 1 at% Sc 3+ (acceptor) dopant in SrTiO 3 to a value of 3300 with the tangent loss being ≤0.01 up to 1000 kV cm -1.« less

  6. A rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-TiO2.

    PubMed

    Bharad, Pradnya A; Sivaranjani, Kumarsrinivasan; Gopinath, Chinnakonda S

    2015-07-07

    A rational approach was employed to enhance the solar water splitting (SWS) efficiency by systematically combining various important factors that helps to increase the photocatalytic activity. The rational approach includes four important parameters, namely, charge generation through simulated sunlight absorption, charge separation and diffusion, charge utilization through redox reaction, and the electronic integration of all of the above three factors. The complexity of the TiO2 based catalyst and its SWS activity was increased systematically by adding reduced graphene oxide (RGO) or N-doped RGO and/or nanogold. Au-N-RGO-TiO2 shows the maximum apparent quantum yield (AQY) of 2.46% with a H2 yield (525 μmol g(-1) h(-1)) from aqueous methanol, and overall water splitting activity (22 μmol g(-1) h(-1); AQY = 0.1%) without any sacrificial agent under one sun conditions. This exercise helps to understand the factors which help to enhance the SWS activity. Activity enhancement was observed when there is synergy among the components, especially the simulated sunlight absorption (or one sun conditions), charge separation/conduction and charge utilization. Electronic integration among the components provides the synergy for efficient solar light harvesting. In our opinion, the above synergy helps to increase the overall utilization of charge carriers towards the higher activity.

  7. Estimation of pairwise sequence similarity of mammalian enhancers with word neighbourhood counts.

    PubMed

    Göke, Jonathan; Schulz, Marcel H; Lasserre, Julia; Vingron, Martin

    2012-03-01

    The identity of cells and tissues is to a large degree governed by transcriptional regulation. A major part is accomplished by the combinatorial binding of transcription factors at regulatory sequences, such as enhancers. Even though binding of transcription factors is sequence-specific, estimating the sequence similarity of two functionally similar enhancers is very difficult. However, a similarity measure for regulatory sequences is crucial to detect and understand functional similarities between two enhancers and will facilitate large-scale analyses like clustering, prediction and classification of genome-wide datasets. We present the standardized alignment-free sequence similarity measure N2, a flexible framework that is defined for word neighbourhoods. We explore the usefulness of adding reverse complement words as well as words including mismatches into the neighbourhood. On simulated enhancer sequences as well as functional enhancers in mouse development, N2 is shown to outperform previous alignment-free measures. N2 is flexible, faster than competing methods and less susceptible to single sequence noise and the occurrence of repetitive sequences. Experiments on the mouse enhancers reveal that enhancers active in different tissues can be separated by pairwise comparison using N2. N2 represents an improvement over previous alignment-free similarity measures without compromising speed, which makes it a good candidate for large-scale sequence comparison of regulatory sequences. The software is part of the open-source C++ library SeqAn (www.seqan.de) and a compiled version can be downloaded at http://www.seqan.de/projects/alf.html. Supplementary data are available at Bioinformatics online.

  8. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2more » inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.« less

  9. An enhanceosome containing the Jun B/Fra-2 heterodimer and the HMG-I(Y) architectural protein controls HPV 18 transcription.

    PubMed

    Bouallaga, I; Massicard, S; Yaniv, M; Thierry, F

    2000-11-01

    Recent studies have reported new mechanisms that mediate the transcriptional synergy of strong tissue-specific enhancers, involving the cooperative assembly of higher-order nucleoprotein complexes called enhanceosomes. Here we show that the HPV18 enhancer, which controls the epithelial-specific transcription of the E6 and E7 transforming genes, exhibits characteristic features of these structures. We used deletion experiments to show that a core enhancer element cooperates, in a specific helical phasing, with distant essential factors binding to the ends of the enhancer. This core sequence, binding a Jun B/Fra-2 heterodimer, cooperatively recruits the architectural protein HMG-I(Y) in a nucleoprotein complex, where they interact with each other. Therefore, in HeLa cells, HPV18 transcription seems to depend upon the assembly of an enhanceosome containing multiple cellular factors recruited by a core sequence interacting with AP1 and HMG-I(Y).

  10. Transgenic analysis of the medaka mesp-b enhancer in somitogenesis.

    PubMed

    Terasaki, Harumi; Murakami, Ryohei; Yasuhiko, Yukuto; Shin-I, Tadasu; Kohara, Yuji; Saga, Yumiko; Takeda, Hiroyuki

    2006-04-01

    Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity.

  11. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Yacoub, Daniel; Hachem, Ahmed; Théorêt, Jean-François; Gillis, Marc-Antoine; Mourad, Walid; Merhi, Yahye

    2010-12-01

    CD40 ligand is a thromboinflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40 ligand (sCD40L), which has been shown to influence platelet activation, although its exact functional impact on platelets and the underlying mechanisms remain undefined. We aimed to determine the impact and the signaling mechanisms of sCD40L on platelets. sCD40L strongly enhances platelet activation and aggregation. Human platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40(-/-) mouse platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Notably, sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target p38 mitogen-activated protein kinase, which leads to platelet shape change and actin polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in wild-type mice but not in CD40(-/-) mice. sCD40L enhances agonist-induced platelet activation and aggregation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing platelets to enhanced thrombus formation in response to vascular injury. This may explain the link between circulating levels of sCD40L and cardiovascular diseases.

  12. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Jia, Jin-Liang; Xu, Han-Hong; Zhang, Gui-Rong; Hu, Zhun; Xu, Bo-Qing

    2012-12-01

    Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV-visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 105 and 5.7 × 104 using 1.0 × 10-6 M 2,4-D, respectively, illustrating that EF value is a factor of ˜10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues.

  13. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Jia, Jin-Liang; Xu, Han-Hong; Zhang, Gui-Rong; Hu, Zhun; Xu, Bo-Qing

    2012-12-14

    Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV-visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 10(5) and 5.7 × 10(4) using 1.0 × 10(-6) M 2,4-D, respectively, illustrating that EF value is a factor of ~10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues.

  14. Unraveling the Raman Enhancement Mechanism on 1T'-Phase ReS2 Nanosheets.

    PubMed

    Miao, Peng; Qin, Jing-Kai; Shen, Yunfeng; Su, Huimin; Dai, Junfeng; Song, Bo; Du, Yunchen; Sun, Mengtao; Zhang, Wei; Wang, Hsing-Lin; Xu, Cheng-Yan; Xu, Ping

    2018-04-01

    2D transition metal dichalcogenides materials are explored as potential surface-enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T') rhenium disulfide (ReS 2 ) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al 2 O 3 dielectric layer unambiguously reveal that Raman enhancement on ReS 2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS 2 nanosheets. On monolayer ReS 2 film, a strong resonance-enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10 -9 m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer-number-dependent feature and excitation-energy-related resonance effect, ReS 2 is a promising Raman enhancement platform for sensing applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tissue Factor-Factor VIIa Complex Triggers Protease Activated Receptor 2-Dependent Growth Factor Release and Migration in Ovarian Cancer

    PubMed Central

    Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.

    2017-01-01

    Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395

  16. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin

    PubMed Central

    Rojo de la Vega, Montserrat; Krajisnik, Andrea; Zhang, Donna D.; Wondrak, Georg T.

    2017-01-01

    The transcription factor NRF2 (nuclear factor-E2-related factor 2) orchestrates major cellular defense mechanisms including phase-II detoxification, inflammatory signaling, DNA repair, and antioxidant response. Recent studies strongly suggest a protective role of NRF2-mediated gene expression in the suppression of cutaneous photodamage induced by solar UV (ultraviolet) radiation. The apocarotenoid bixin, a Food and Drug Administration (FDA)-approved natural food colorant (referred to as ‘annatto’) originates from the seeds of the achiote tree native to tropical America, consumed by humans since ancient times. Use of achiote preparations for skin protection against environmental insult and for enhanced wound healing has long been documented. We have recently reported that (i) bixin is a potent canonical activator of the NRF2-dependent cytoprotective response in human skin keratinocytes; that (ii) systemic administration of bixin activates NRF2 with protective effects against solar UV-induced skin damage; and that (iii) bixin-induced suppression of photodamage is observable in Nrf2+/+ but not in Nrf2−/− SKH-1 mice confirming the NRF2-dependence of bixin-induced antioxidant and anti-inflammatory effects. In addition, bixin displays molecular activities as sacrificial antioxidant, excited state quencher, PPAR (peroxisome proliferator-activated receptor) α/γ agonist, and TLR (Toll-like receptor) 4/NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) antagonist, all of which might be relevant to the enhancement of skin barrier function and environmental stress protection. Potential skin photoprotection and photochemoprevention benefits provided by topical application or dietary consumption of this ethno-pharmacologically validated phytochemical originating from the Americas deserves further preclinical and clinical examination. PMID:29258247

  17. Transcription Factors MYOCD, SRF, Mesp1 and SMARCD3 Enhance the Cardio-Inducing Effect of GATA4, TBX5, and MEF2C during Direct Cellular Reprogramming

    PubMed Central

    Christoforou, Nicolas; Chellappan, Malathi; Adler, Andrew F.; Kirkton, Robert D.; Wu, Tianyi; Addis, Russell C.; Bursac, Nenad; Leong, Kam W.

    2013-01-01

    Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca2+ transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies. PMID:23704920

  18. Collaborative Network Management for Enhancing Quality Education of Primary Schools

    ERIC Educational Resources Information Center

    Chaikoed, Wisithsak; Sirisuthi, Chaiyuth; Numnaphol, Kochaporn

    2017-01-01

    This research aims to study the network and collaborative factors that enhance quality education of primary schools. Different methods were used in this research work: (1) Related approaches, theories, and research literatures and (2) Scholars were interviewed on 871 issues in the form of questionnaire, and the collaborative network factors were…

  19. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Dimple; Jena, Nityasagar; De Sarkar, Abir

    2017-06-01

    Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS2 (ML-MoS2) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid-Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the (direct) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm2 V-1 s-1. Such strain sensitive thermoelectric responses in ML-MoS2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting.

  20. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.

    2017-02-01

    Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

  2. Opposite Role of Tumor Necrosis Factor Receptors in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Wang, Yi; Liu, Guijun; Wang, Renxi; Xiao, He; Li, Xinying; Hou, Chunmei; Shen, Beifen; Guo, Renfeng; Li, Yan; Shi, Yanchun; Chen, Guojiang

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity. PMID:23285227

  3. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids.

    PubMed

    Murphy, Kaitlin C; Whitehead, Jacklyn; Zhou, Dejie; Ho, Steve S; Leach, J Kent

    2017-12-01

    Mesenchymal stem cells (MSCs) secrete endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE 2 ) that promote angiogenesis, modulate the inflammatory microenvironment, and stimulate wound repair, and MSC spheroids secrete more trophic factors than dissociated, individual MSCs. Compared to injection of cells alone, transplantation of MSCs in a biomaterial can enhance their wound healing potential by localizing cells at the defect site and upregulating trophic factor secretion. To capitalize on the therapeutic potential of spheroids, we engineered a fibrin gel delivery vehicle to simultaneously enhance the proangiogenic and anti-inflammatory potential of entrapped human MSC spheroids. We used multifactorial statistical analysis to determine the interaction between four input variables derived from fibrin gel synthesis on four output variables (gel stiffness, gel contraction, and secretion of VEGF and PGE 2 ). Manipulation of the four input variables tuned fibrin gel biophysical properties to promote the simultaneous secretion of VEGF and PGE 2 by entrapped MSC spheroids while maintaining overall gel integrity. MSC spheroids in stiffer gels secreted the most VEGF, while PGE 2 secretion was highest in more compliant gels. Simultaneous VEGF and PGE 2 secretion was greatest using hydrogels with intermediate mechanical properties, as small increases in stiffness increased VEGF secretion while maintaining PGE 2 secretion by entrapped spheroids. The fibrin gel formulation predicted to simultaneously increase VEGF and PGE 2 secretion stimulated endothelial cell proliferation, enhanced macrophage polarization, and promoted angiogenesis when used to treat a wounded three-dimensional human skin equivalent. These data demonstrate that a statistical approach is an effective strategy to formulate fibrin gel formulations that enhance the wound healing potential of human MSCs. Mesenchymal stem cells (MSCs) are under investigation for wound healing applications due to their secretion of bioactive factors that enhance granulation tissue formation, blood vessel ingrowth, and reduce inflammation. However, the effectiveness of cell-based therapies is reduced due to poor engraftment and high rates of cell death when transplanted into harsh environments characteristic of large wounds. Compared to dissociated cells, MSCs exhibit increased overall function when aggregated into three-dimensional spheroids, and transplantation of cells using biomaterials is one strategy for guiding cell function in the defect site. The present study demonstrates that the biophysical properties of fibrin hydrogels, designed for use as a cell carrier, can be engineered to dictate the secretion of bioactive factors by entrapped MSC spheroids. This strategy enables MSCs to contribute to wound healing by synergistically promoting neovascularization and modulating the inflammatory milieu. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Enhancement of allergic skin wheal responses in patients with atopic eczema/dermatitis syndrome by playing video games or by a frequently ringing mobile phone.

    PubMed

    Kimata, H

    2003-06-01

    Playing video games causes physical and psychological stress, including increased heart rate and blood pressure and aggression-related feelings. Use of mobile phones is very popular in Japan, and frequent ringing is a common and intrusive part of Japanese life. Atopic eczema/dermatitis syndrome is often exacerbated by stress. Stress increases serum IgE levels, skews cytokine pattern towards Th2 type, enhances allergen-induced skin wheal responses, and triggers mast cell degranulation via substance P, vasoactive intestinal peptide and nerve growth factor. (1). In the video game study, normal subjects (n = 25), patients with allergic rhinitis (n = 25) or atopic eczema/dermatitis syndrome (n = 25) played a video game (STREET FIGHTER II) for 2 h. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor, and in vitro production of total IgE, antihouse dust mite IgE and cytokines were measured. (2). In the mobile phone study, normal subjects (n = 27), patients with allergic rhinitis (n = 27) or atopic eczema/dermatitis syndrome (n = 27) were exposed to 30 incidences of ringing mobile phones during 30 min. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor were measured. Playing video games had no effect on the normal subjects or the patients with allergic rhinitis. In contrast, playing video games significantly enhanced allergen-induced skin wheal responses and increased plasma levels of substance P, vasoactive intestinal peptide and nerve growth factors in the patients with atopic eczema/dermatitis syndrome. Moreover, playing video games enhanced in vitro production of total IgE and anti-house dust mite IgE with concomitant increased production of IL-4, IL-10 and IL-13 and decreased production of IFN-gamma and IL-12 in the patients with atopic eczema/dermatitis syndrome. However, exposure to frequently ringing mobile phones significantly enhanced allergen-induced skin wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factors in the patients with atopic eczema/dermatitis syndrome, but not in the normal subjects or the patients with allergic rhinitis. Playing video games enhanced allergic responses with a concomitant increased release of substance P, vasoactive intestinal peptide and nerve growth factor, and skewing of the cytokine pattern toward Th2 type in the patients with atopic eczema/dermatitis syndrome. In addition, exposure to frequently ringing mobile phones also enhanced allergic responses with a concomitant increased release of substance P, vasoactive intestinal peptide and nerve growth factor Collectively, high technology causes stress, which in turn may aggravate symptoms of atopic eczema/dermatitis syndrome.

  5. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway.

    PubMed

    Goszczynski, Barbara; Captan, Vasile V; Danielson, Alicia M; Lancaster, Brett R; McGhee, James D

    2016-05-01

    The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    PubMed

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  7. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    PubMed Central

    Chahal, Manpreet S.; Brauner, Daniel J.; Meier, Kathryn E.

    2010-01-01

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells. PMID:27713341

  8. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    PubMed Central

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  9. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  10. Chromatin reorganisation in Epstein-Barr virus-infected cells and its role in cancer development.

    PubMed

    West, Michelle J

    2017-10-01

    The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-α-induced TGF-α expression and MEK/VEGF-A-mediated angiogenesis.

    PubMed

    Chang, Li-Hsun; Pan, Shiow-Lin; Lai, Chin-Yu; Tsai, An-Chi; Teng, Che-Ming

    2013-08-01

    Tissue factor initiates the process of thrombosis and activates cell signaling through protease-activated receptor-2 (PAR-2). The aim of this study was to investigate the pathological role of PAR-2 signaling in pancreatic cancer. We first demonstrated that activated PAR-2 up-regulated the protein expression of both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α, resulting in enhanced transcription of transforming growth factor-α (TGF-α). Down-regulation of HIFs-α by siRNA or YC-1, an HIF inhibitor, resulted in depleted levels of TGF-α protein. Furthermore, PAR-2, through integrin-linked kinase (ILK) signaling, including the p-AKT, promoted HIF protein expression. Diminishing ILK by siRNA decreased the levels of PAR-2-induced p-AKT, HIFs-α, and TGF-α; our results suggest that ILK is involved in the PAR-2-mediated TGF-α via an HIF-α-dependent pathway. Furthermore, the culture medium from PAR-2-treated pancreatic cancer cells enhanced human umbilical vein endothelial cell proliferation and tube formation, which was blocked by the MEK inhibitor, PD98059. We also found that activated PAR-2 enhanced tumor angiogenesis through the release of vascular endothelial growth factor-A (VEGF-A) from cancer cells, independent of the ILK/HIFs-α pathways. Consistent with microarray analysis, activated PAR-2 induced TGF-A and VEGF-A gene expression. In conclusion, the activation of PAR-2 signaling induced human pancreatic cancer progression through the induction of TGF-α expression by ILK/HIFs-α, as well as through MEK/VEGF-A-mediated angiogenesis, and it plays a role in the interaction between cancer progression and cancer-related thrombosis. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.

    PubMed

    Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun

    2015-06-24

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.

  13. Enhanced efficiency fertilizers: Effect on nitrous oxide emissions in Iowa

    USDA-ARS?s Scientific Manuscript database

    Fertilizer application in crop production agriculture is as a major factor influencing soil emissions of the greenhouse gas N2O. Enhanced efficiency fertilizers (EEFs) have the potential to decrease N2O emissions by improving the synchrony between soil N supply and crop N demand. This study was done...

  14. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm

    PubMed Central

    Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.

    2015-01-01

    Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510

  15. Vibrationally enhanced charge transfer and mode/bond-specific H{sup +} and D{sup +} transfer in the reaction of HOD{sup +} with N{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, David M.; Anderson, Scott L.

    2013-09-21

    The reaction of HOD{sup +} with N{sub 2}O was studied over the collision energy (E{sub col}) range from 0.20 eV to 2.88 eV, for HOD{sup +} in its ground state and in each of its fundamental vibrational states: bend (010), OD stretch (100), and OH stretch (001). The dominant reaction at low E{sub col} is H{sup +} and D{sup +} transfer, but charge transfer becomes dominant for E{sub col} > 0.5 eV. Increasing E{sub col} enhances charge transfer only in the threshold region (E{sub col} < 1 eV), but all modes of HOD{sup +} vibrational excitation enhance this channel overmore » the entire energy range, by up to a factor of three. For reaction of ground state HOD{sup +}, the H{sup +} and D{sup +} transfer channels have similar cross sections, enhanced by increasing collision energy for E{sub col} < 0.3 eV, but suppressed by E{sub col} at higher energies. OD stretch excitation enhances D{sup +} transfer by over a factor of 2, but has little effect on H{sup +} transfer, except at low E{sub col} where a modest enhancement is observed. Excitation of the OH stretch enhances H{sup +} transfer by up to a factor of 2.5, but actually suppresses D{sup +} transfer over most of the E{sub col} range. Excitation of the bend mode results in ∼60% enhancement of both H{sup +} and D{sup +} transfer at low E{sub col} but has little effect at higher energies. Recoil velocity distributions at high E{sub col} are strongly backscattered in the center-of-mass frame, indicating direct reaction dominated by large impact parameter collisions. At low E{sub col} the distributions are compatible with mediation by a short-lived collision complex. Ab initio calculations find several complexes that may be important in this context, and RRKM calculations predict lifetimes and decay branching that is consistent with observations. The recoil velocity distributions show that HOD{sup +} vibrational excitation enhances reactivity in all collisions at low E{sub col}, while for high E{sub col} with enhancement comes entirely from the subset of collisions that generate strongly back-scattered product ions.« less

  16. Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  17. Sci-Thur PM – Brachytherapy 01: Fast brachytherapy dose calculations: Characterization of egs-brachy features to enhance simulation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, Marc; Taylor, Randle E.P.; Rogers, Da

    2016-08-15

    Purpose: egs-brachy is a fast, new EGSnrc user-code for brachytherapy applications. This study characterizes egs-brachy features that enhance simulation efficiency. Methods: Calculations are performed to characterize efficiency gains from various features. Simulations include radionuclide and miniature x-ray tube sources in water phantoms and idealized prostate, breast, and eye plaque treatments. Features characterized include voxel indexing of sources to reduce boundary checks during radiation transport, scoring collision kerma via tracklength estimator, recycling photons emitted from sources, and using phase space data to initiate simulations. Bremsstrahlung cross section enhancement (BCSE), uniform bremsstrahlung splitting (UBS), and Russian Roulette (RR) are considered for electronicmore » brachytherapy. Results: Efficiency is enhanced by a factor of up to 300 using tracklength versus interaction scoring of collision kerma and by up to 2.7 and 2.6 using phase space sources and particle recycling respectively compared to simulations in which particles are initiated within sources. On a single 2.5 GHz Intel Xeon E5-2680 processor cor, simulations approximating prostate and breast permanent implant ((2 mm){sup 3} voxels) and eye plaque ((1 mm){sup 3}) treatments take as little as 9 s (prostate, eye) and up to 31 s (breast) to achieve 2% statistical uncertainty on doses within the PTV. For electronic brachytherapy, BCSE, UBS, and RR enhance efficiency by a factor >2000 compared to a factor of >10{sup 4} using a phase space source. Conclusion: egs-brachy features provide substantial efficiency gains, resulting in calculation times sufficiently fast for full Monte Carlo simulations for routine brachytherapy treatment planning.« less

  18. Characterization of a hybridoma-derived T cell factor that promotes the production of antibodies bearing a dominant cross-reactive idiotype(s).

    PubMed

    Wardzala, A M; Bowen, M B; Jendrisak, G S; Bellone, C J

    1986-01-01

    The participation of postulated subsets of T helper cells in antigen-specific antibody responses has generated both interest and controversy among immunologists. Specifically the import as well as the very existence of multiple populations of T helper cells has led to an intense search in recent years for cloned lines of such subsets that permit unambiguous classification and study. Furthermore, the means by which some of these T cells induce antibody responses may be via the elaboration of soluble factors mandating their characterization both biochemically and mechanistically. We have recently reported the existence of a T helper factor present in a 24-h Con A supernatant that specifically enhances an idiotype-bearing (Id+) response to trinitrophenol (TNP). The unique biochemical properties of this substance, namely, its capacity to bind both antigen and cross-reactive idiotype (CRI), has led to the generation of a cloned T cell hybridoma that constitutively "secretes" a factor which appears identical to the helper activity in Con A Sn. The cloned T cell hybridoma, herein designated LOP 1.4, elaborates a factor which selectively enhances the CRI+ anti-TNP antibody response in vitro. The specificity of the assay employed as well as its sensitivity for detecting significant enhancement of the percent CRI+ anti-TNP PFC response lent itself well as a useful vehicle for subsequent characterization of the factor. The LOP 1.4 factor, which can act at the later stages of the B cell response in a dose-dependent fashion, was characterized by affinity chromatography in order to probe the mechanism of its selective Id enhancement. The factor binds both the idiotype and the ligand for which one of the idiotype-bearing monoclonal antibodies is specific. That the factor binds idiotype and can be eluted selectively with ligand but not with noncross-reacting ligand suggests that the factor possesses separate but not independent binding sites, or alternatively, a single binding site that preferentially binds to a unique composite of antigen-idiotype. In addition, the factor bears I-J determinants, consistent with what we have previously detected on the surface of TH2-like cells. These results, collectively, suggest that the T cell hybridoma LOP 1.4 is a TH2-like cell (supporting the concept of multiple TH subsets) in light of its ability to enhance an idiotypic response to specific antigen through the production of a soluble factor that demonstrates affinity for both antigen and idiotype. In addition, like the I-J+ TH2 cell, the LOP 1.4 factor also bears I-J region determinants.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Enhancing healthcare process design with human factors engineering and reliability science, part 2: applying the knowledge to clinical documentation systems.

    PubMed

    Boston-Fleischhauer, Carol

    2008-02-01

    The demand to redesign healthcare processes that achieve efficient, effective, and safe results is never-ending. Part 1 of this 2-part series introduced human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare organizations. In part 2, the author applies this knowledge to one of the most common operational processes in healthcare: clinical documentation. Specific implementation strategies and anticipated results are discussed, along with organizational challenges and recommended executive responses.

  20. Communicating Hydrocephalus Associated with Intracranial Schwannoma Treated by Gamma Knife Radiosurgery.

    PubMed

    Park, Chang Kyu; Lee, Sung Ho; Choi, Man Kyu; Choi, Seok Keun; Park, Bong Jin; Lim, Young Jin

    2016-05-01

    Gamma knife radiosurgery (GKRS) has been established as an effective and safe treatment for intracranial schwannoma. However, serious complications can occur after GKRS, including hydrocephalus. The pathophysiology and risk factors of this disorder are not yet fully understood. The objective of the study was to assess potential risk factors for hydrocephalus after GKRS. We retrospectively reviewed the medical radiosurgical records of 244 patients who underwent GKRS to treat intracranial schwannoma. The following parameters were analyzed as potential risk factors for hydrocephalus after GKRS: age, sex, target volume, irradiation dose, prior tumor resection, treatment technique, and tumor enhancement pattern. The tumor enhancement pattern was divided into 2 groups: group A (homogeneous enhancement) and group B (heterogeneous or rim enhancement). Of the 244 patients, 14 of them (5.7%) developed communicating hydrocephalus. Communicating hydrocephalus occurred within 2 years after GKRS in most patients (92.8%). No significant association was observed between any of the parameters investigated and the development of hydrocephalus, with the exception of tumor enhancement pattern. Group B exhibited a statistically significant difference by univariate analysis (P = 0.002); this difference was also significant by multivariate analysis (P = 0.006). Because hydrocephalus is curable, patients should be closely monitored for the development of this disorder after GKRS. In particular, patients with intracranial schwannomas with irregular enhancement patterns or cysts should be meticulously observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effects of chronic alcohol consumption on dermal penetration of pesticides in rats.

    PubMed

    Brand, R M; Charron, A R; Dutton, L; Gavlik, T L; Mueller, C; Hamel, F G; Chakkalakal, D; Donohue, T M

    2004-01-23

    Topically applied ethanol is a well-known dermal penetration enhancer. The purpose of this work was to determine if ethanol consumption might also increase transdermal penetration. Male rats were fed either an ethanol containing or control diet for 6-8 wk. After the feeding regime was completed, skin was removed and placed in an in vitro diffusion system. The transdermal absorption of four very commonly used herbicides was determined. Penetration through skin from ethanol-fed rats was enhanced when compared to control by a factor of 5.3 for paraquat, 2.4 for atrazine, and 2.2 for 2,4-dichlorophenoxyacetic acid (2,4-D), and reduced by a factor 0.6 for trifluralin. Comparison of physical factors of the herbicides to the penetration enhancement revealed an inverse linear correlation with lipophilicity, as defined by log octanol/water partition coefficient (log Kow) with r2 =.98. These changes were at least partially reversible after 1 wk of abstinence from ethanol. These experiments demonstrate that regular ethanol consumption can alter the properties of the dermal barrier, leading to increased absorption of some chemicals through rat skin. If ethanol consumption has the same effect on human skin it could potentially have adverse health effects on people regularly exposed to agricultural, environmental, and industrial chemicals.

  2. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines.

    PubMed

    Gadgeel, Shirish M; Ali, Shadan; Philip, Philip A; Wozniak, Antoinette; Sarkar, Fazlul H

    2009-05-15

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown modest clinical benefit in patients with relapsed nonsmall cell lung cancer (NSCLC). Down-regulation of Akt appears to correlate with the antitumor activity of EGFR-TKIs. Akt activates nuclear factor kappa B (NF-kappaB), which transcribes genes important for cell survival, invasion, and metastasis. The authors hypothesized that genistein, through the inhibition of NF-kappaB, could enhance the activity of EGFR-TKIs in NSCLCs. Three NSCLC cell lines with various EGFR mutation status and sensitivities to EGFR-TKIs were selected: H3255 (L858R), H1650 (del E746-A750), and H1781 (wild-type EGFR). Cells were treated with erlotinib, gefitinib, genistein, or the combination of each of the EGFR-TKIs with genistein. Cell survival and apoptosis were assessed, and expression levels of EGFR, pAkt, cyclooxygenase-2 (COX-2), E-cadherin, prostaglandin E(2) (PGE(2)), and NF-kappaB were measured. Both EGFR-TKIs demonstrated growth inhibition and apoptosis in each of the cell lines, but H1650 and H1781 were much less sensitive. Genistein demonstrated some antitumor activity in all cell lines, but enhanced growth inhibition and apoptosis when combined with the EGFR-TKIs in each of the cell lines. Both combinations down-regulated NF-kappaB significantly more than either agent alone in H3255. In addition, the combinations reduced the expression of EGFR, pAkt, COX-2, and PGE(2,) consistent with inactivation of NF-kappaB. The authors concluded that genistein enhances the antitumor effects of EGFR-TKIs in 3 separate NSCLC cell lines. This enhanced activity is in part because of greater reduction in the DNA-binding activity of NF-kappaB when EGFR-TKIs were combined with genistein.

  3. Presence of non-hypervascular hypointense nodules on Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in patients with hepatocellular carcinoma.

    PubMed

    Inoue, Masanori; Ogasawara, Sadahisa; Chiba, Tetsuhiro; Ooka, Yoshihiko; Wakamatsu, Toru; Kobayashi, Kazufumi; Suzuki, Eiichiro; Tawada, Akinobu; Yokosuka, Osamu

    2017-04-01

    Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) performed before curative therapy for hepatocellular carcinoma (HCC) can distinguish between intrahepatic distant recurrence and hypervascularization. This study aimed to retrospectively evaluate the presence of non-hypervascular hypointense nodules on hepatobiliary phase images from Gd-EOB-DTPA-enhanced MRI as a risk factor of the intrahepatic distant recurrence of early stage HCC following radiofrequency ablation (RFA). A total of 132 patients who underwent preprocedural Gd-EOB-DTPA-enhanced MRI followed by initial RFA were retrospectively analyzed. Post-RFA intrahepatic distant recurrence, which excluded the hypervascularization of non-hypervascular hypointense nodules detected by preprocedural Gd-EOB-DTPA-enhanced MRI, was evaluated according to the presence of non-hypervascular hypointense nodules on preprocedural Gd-EOB-DTPA-enhanced MRI. Intrahepatic distant recurrence rates following RFA were higher in patients with non-hypervascular hypointense nodules (1-year: 22.5%, 2-year: 52.1%, 5-year: 89.1%) compared with in patients without non-hypervascular hypointense nodules (1-year: 7.0%, 2-year: 28.8%, 5-year: 48.7%). The presence of non-hypervascular hypointense nodules was associated with markedly increased cumulative recurrence rates of both identical and different subsegment intrahepatic distant recurrence, being an independent risk factor for post-RFA identical and different subsegment intrahepatic distant recurrence (identical: HR = 2.365, P = 0.027; different: HR = 3.276, P < 0.001). The presence of non-hypervascular hypointense nodules on hepatobiliary phase images from Gd-EOB-DTPA-enhanced MRI obtained prior to RFA is an important predictive factor of intrahepatic distant recurrence following RFA of HCC. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. Mass spectrometry for identification of proteins that specifically bind to a distal enhancer of the Oct4 gene

    NASA Astrophysics Data System (ADS)

    Bakhmet, E. I.; Nazarov, I. B.; Artamonova, T. O.; Khodorkovsky, M. A.; Tomilin, A. N.

    2017-11-01

    Transcription factor Oct4 is a marker of pluripotent stem cells and has a significant role in their self-renewal. Oct4 gene is controlled by three cis-regulatory elements - proximal promoter, proximal enhancer and distal enhancer. All of these elements are targets for binding of regulatory proteins. Distal enhancer is in our research focus because of its activity in early stages of embryonic development. There are two main sequences called site 2A and site 2B that are presented in distal enhancer. For this moment proteins which bind to a site 2A (CCCCTCCCCCC) remain unknown. Using combination of in vitro method electrophoretic mobility shift assay (EMSA) and mass spectromery we identified several candidates that can regulate Oct4 gene expression through site 2A.

  5. Field-effect modulation of the thermoelectric characteristics of silicon nanowires on plastic substrates.

    PubMed

    Choi, Jinyong; Jeon, Youngin; Cho, Kyoungah; Kim, Sangsig

    2016-12-02

    In this study, we demonstrate the substantial enhancement of the thermoelectric power factors of silicon nanowires (SiNWs) on plastic substrates achievable by field-effect modulation. The Seebeck coefficient and electrical conductivity are adjusted by varying the charge carrier concentration via electrical modulation with a gate voltage in the 0 to ±5 range, thus enhancing the power factors from 2.08 to 935 μW K -2 m -1 ) for n-type SiNWs, and from 453 to 944 μW K -2 m -1 ) for p-type SiNWs. The electrically modulated thermoelectric characteristics of SiNWs are analyzed and discussed.

  6. Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form

    DOE PAGES

    Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes

    2015-06-01

    Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, wheremore » the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F 2 molecule being a notable outlier.« less

  7. SU-F-T-659: Nanoparticle-Aided Eye Plaque Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, J; Ngwa, W

    Purpose: Eye plaque brachytherapy is one of the approaches for radiotherapy treatment for ocular cancers: retinoblastoma and choroidal melanoma. This study, investigates the potential benefits of using gold nanoparticles to enhance therapeutic efficacy during eye plaque brachytherapy. Methods: The EYE PHYSICS Inc. Plaque Simulator program distributed by IsoAid, LLC, Port Richey, Florida was used. It is based on the superposition of dose contributions from individual seeds following the TG–43 formalism. Dose enhancement factor (DEF) values for feasible nanoparticle concentrations from previous studies was used to investigate the benefit of using nanoparticles to enhance dose to tumour or reduce dose tomore » healthy tissue. The dose enhancement factor (DEF) represents the ratio of the dose deposited in tumour with nanoparticles divided by dose deposited in the tumour without nanoparticles. The investigation was done for I–125 and Pd–103 typical sources employed for eye plaque brachytherapy. The prescription dose used is 85 Gy. Results: Lower dose enhancement values were obtained for Pd–103. With DEF of 2 due to gold nanoparticles, critical structure doses reduce by a factor of 2. Optic disc dose is 6.69 Gy and 4.571 Gy, opposite retina dose is 4.064 and 2.484 Gy, lens dose is 12.66 Gy and 9.870 Gy, and fovea dose is 9.85 Gy and 7.275 Gy. With DEF of 3 due to gold nanoparticles, critical structure doses reduce by a factor of 3. Optic disc dose is 4.352 Gy and 2.975 Gy, opposite retina dose is 2.644 Gy and 1.618 Gy, lens dose is 8.322 Gy and 6.427 Gy, and fovea dose is 4.815 Gy and 4.737 Gy. Conclusion: The results of this research predict that using gold nanoparticles will lead to major sparing of dose to critical structures. The finding provides more impetus for the development of nanoparticle–aided brachytherapy.« less

  8. Water-enhanced solvation of organic solutes in ketone and ester solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Brunt, V. van; King, C.J.

    1994-05-01

    Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, andmore » 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.« less

  9. Spontaneous emission in semiconductor laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnaud, J.; Coste, F.; Fesqueet, J.

    1985-06-01

    In a mode matched configuration, spontaneous emission in semiconductor laser amplifiers is enhanced by a factor which is larger than unity but which is significantly smaller than the K-factor calculated by Petermann. Using thin-slab model, we find that in typical situations, the factor is about K/2.

  10. Water-soluble drug partitioning and adsorption in HEMA/MAA hydrogels.

    PubMed

    Dursch, Thomas J; Taylor, Nicole O; Liu, David E; Wu, Rong Y; Prausnitz, John M; Radke, Clayton J

    2014-01-01

    Two-photon confocal microscopy and back extraction with UV/Vis-absorption spectrophotometry quantify equilibrium partition coefficients, k, for six prototypical drugs in five soft-contact-lens-material hydrogels over a range of water contents from 40 to 92%. Partition coefficients were obtained for acetazolamide, caffeine, hydrocortisone, Oregon Green 488, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA, pKa≈5.2) copolymer hydrogels as functions of composition, aqueous pH (2 and 7.4), and salinity. At pH 2, the hydrogels are nonionic, whereas at pH 7.4, hydrogels are anionic due to MAA ionization. Solute adsorption on and nonspecific electrostatic interaction with the polymer matrix are pronounced. To express deviation from ideal partitioning, we define an enhancement or exclusion factor, E ≡ k/φ1, where φ1 is hydrogel water volume fraction. All solutes exhibit E > 1 in 100 wt % HEMA hydrogels owing to strong specific adsorption to HEMA strands. For all solutes, E significantly decreases upon incorporation of anionic MAA into the hydrogel due to lack of adsorption onto charged MAA moieties. For dianionic sodium fluorescein and Oregon Green 488, and partially ionized monoanionic acetazolamide at pH 7.4, however, the decrease in E is more severe than that for similar-sized nonionic solutes. Conversely, at pH 2, E generally increases with addition of the nonionic MAA copolymer due to strong preferential adsorption to the uncharged carboxylic-acid group of MAA. For all cases, we quantitatively predict enhancement factors for the six drugs using only independently obtained parameters. In dilute solution for solute i, Ei is conveniently expressed as a product of individual enhancement factors for size exclusion (Ei(ex)), electrostatic interaction (Ei(el)), and specific adsorption (Ei(ad)):Ei≡Ei(ex)Ei(el)Ei(ad). To obtain the individual enhancement factors, we employ an extended Ogston mesh-size distribution for Ei(ex); Donnan equilibrium for Ei(el); and Henry's law characterizing specific adsorption to the polymer chains for Ei(ad). Predicted enhancement factors are in excellent agreement with experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Enhanced gain and output power of a sealed-off rf-excited CO2 waveguide laser with gold-plated electrodes

    NASA Astrophysics Data System (ADS)

    Heeman-Ilieva, M. B.; Udalov, Yu. B.; Hoen, K.; Witteman, W. J.

    1994-02-01

    The small-signal gain and the laser output power have been measured in a cw sealed-off rf-excited CO2 waveguide laser for two different electrode materials, gold-plated copper and aluminum, at several excitation frequencies, gas pressures and mixture compositions. In the case of the gold-plated electrodes an enhancement of the gain up to a factor of 2 and the output power up to a factor of 1.4 with time at a frequency of 190 MHz and 60 Torr of 1:1:5+5% (CO2:N2:He+Xe) mixture is observed. This is believed to be the result of the gold catalytic activities which are favored by increased electrode temperatures and helium rich gas compositions.

  12. Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro.

    PubMed

    Sheen, Yi-Shuan; Fan, Sabrina Mai-Yi; Chan, Chih-Chieh; Wu, Yueh-Feng; Jee, Shiou-Hwa; Lin, Sung-Jan

    2015-01-01

    Hair follicles are located at the interface of the external and internal environments and their cycling has been shown to be regulated by intra- and extra-follicular factors. The aim of this study is to examine whether or how hair follicles respond to visible light. We examined the effect of 3 mW red (630 nm, 1 J/cm(2)), 2 mW green (522 nm, 1 J/cm(2)), and 2 mW blue light (463 nm, 1 J/cm(2)) on telogen in mice for 3 weeks. The photobiologic effects of red light on cell proliferation of outer root sheath keratinocytes and dermal papilla cells were studied in vitro. We found that red light accelerated anagen entry faster than green and blue light in mice. Red light irradiation stimulated the proliferation of both outer root sheath keratinocytes and dermal papilla cells in a dose-dependent manner by promoting cell cycle progression. This stimulative effect was mediated via extracellular signal-regulated kinase phosphorylation in both cells. In a co-culture condition, dermal papilla cells irradiated by red light further enhanced keratinocyte proliferation, suggesting enhanced epithelial-mesenchymal interaction. In search for factors that mediated this paracrine effect, we found fibroblast growth factor 7 was upregulated in both mRNA and protein levels. The stimulative paracrine effect on keratinocytes was significantly inhibited by neutralizing antibody against fibroblast growth factor 7. These results suggest that hair follicles respond to visible light in vivo. Red light may promote physiological telogen to anagen transition by directly stimulating outer root sheath keratinocytes and indirectly by enhancing epithelial-mesenchymal interaction in vitro. © 2014 Wiley Periodicals, Inc.

  13. HMGCR inhibits the early stage of PCV2 infection, while PKC enhances the infection at the late stage.

    PubMed

    Ma, Teng; Chen, Xinrong; Ouyang, Hongsheng; Liu, Xiaohui; Ouyang, Ting; Peng, Zhiyuan; Yang, Xin; Chen, Fuwang; Pang, Daxin; Bai, Jieying; Ren, Linzhu

    2017-02-02

    Porcine circovirus type 2 (PCV2) is the smallest DNA virus, which causes porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD). Due the small size of viral genomic DNA, PCV2 replication predominantly relies on the host factors. In this study, effects of PKC and HMGCR on PCV2 infection were evaluated using real time PCR and western blot. We found that PKC and HMGCR participated in different stages of PCV2 infection. HMGCR works on the early stage of the infection to inhibit the virus infection, while PKC enhances the infection at the late stage. Furthermore, PKC enhances PCV2 replication by activating JNK1/2 and inactivating HMGCR via regulating phosphorylation of these two proteins, while HMGCR can suppress phosphorylation of JNK1/2. The results in the present study will provide new sights in the pathogenesis of PCV2 infection, as well as interactions between host factors during PCV2 infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.

    PubMed

    Eguchi, Daiki; Ikenaga, Naoki; Ohuchida, Kenoki; Kozono, Shingo; Cui, Lin; Fujiwara, Kenji; Fujino, Minoru; Ohtsuka, Takao; Mizumoto, Kazuhiro; Tanaka, Masao

    2013-05-01

    Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P < 0.01). When co-cultured with PSCs, PC cell invasion was more enhanced under hypoxia than under normoxia (P < 0.05). Among various soluble factors, which were related to invasiveness, CTGF was one of the overexpressed molecules in hypoxic PSCs. A higher level of CTGF expression was also found in supernatant of hypoxic PSCs than in supernatant of normoxic PSCs. PC cell invasiveness was reduced by CTGF knockdown in hypoxic PSCs co-cultured with PC cells (P < 0.05). Hypoxia induces PSCs' secretion of CTGF, leading to enhancement of PC invasiveness. CTGF derived from hypoxia-stimulated PSCs may be a new therapeutic target for pancreatic cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Heat transfer and friction factor of composite TiO2-SiO2 nanofluids in water-ethylene glycol (60:40) mixture

    NASA Astrophysics Data System (ADS)

    Nabil, M. F.; Azmi, W. H.; Hamid, K. A.; Mamat, R.

    2017-10-01

    The need for high performance of heat transfer has been evaluated by finding different ways to enhance heat transfer rate in fluid. One of the methods is the combination of two or more nanoparticles and it is known as hybrid/composite nanofluids which can give better performance of heat transfer. Thus, the present study focused on combination of Titanium oxide (TiO2) and Silicon oxide (SiO2) nanoparticles dispersed in 60:40 volume ratio of water and ethylene glycol mixture as the base fluid. The TiO2-SiO2 hybrid nanofluids are prepared using two-step method for different concentration of 2.0%, 2.5% and 3.0%. The experimental determination of heat transfer coefficients are conducted in the Reynolds numbers range from 2000 to 10000 at a bulk temperature of 30°C. The experiments are undertaken for constant heat flux in a circular tube. The Nusselt number of composite TiO2- SiO2 nanofluids is observed to be higher than the base fluid. The finding on heat transfer coefficient shows that 3.0% volume concentration is the highest enhancement with 45.9% compared with base fluid. While at concentration 2.0% and 2.5%, the enhancement recorded were 29.4% and 33.2%, respectively. The friction factor of nanofluids shows a decreased with the increasing of Reynolds numbers. However, the friction factor slightly increased with the increased of concentration.

  16. Protective effects of glutamine on human melanocyte oxidative stress model.

    PubMed

    Jiang, Liya; Guo, Zhen; Kong, Yulong; Liang, Jianhua; Wang, Yi; Wang, Keyu

    2018-01-01

    Vitiligo is a disorder caused by the loss of the melanocyte activity on melanin pigment generation. Studies show that oxidative-stress induced apoptosis in melanocytes is closely related to the pathogenesis of vitiligo. Glutamine is a well known antioxidant with anti-apoptotic effects, and is used in a variety of diseases. However, it is unclear whether glutamine has an antioxidant or anti-apoptotic effect on melanocytes. The aim of this study was to investigate the protective effects of glutamine on a human melanocyte oxidative stress model. The oxidative stress model was established on human melanocytes using hydrogen peroxide. The morphology and viability of melanocytes, levels of oxidants [reactive oxygen species and malondialdehyde], levels of antioxidants [superoxide dismutase and glutathione-S-transferase], and apoptosis-related indicators (caspase-3, bax and bcl-2) were examined after glutamine exposure at various concentrations. Expressions of nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 were detected using western blot technique after glutamine exposure at various concentrations. Our results demonstrate that pre-treatment and post-treatment with glutamine promoted melanocyte viability, increased levels of superoxide dismutase, glutathione-S-transferase and bcl-2, decreased levels of reactive oxygen species, malondialdehyde, bax and caspase-3, and enhanced nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 expression in a dose dependent manner. The effect of pre-treatment was more significant than post-treatment, at the same concentration. The mechanisms of glutamine activated nuclear factor-E2-related factor 2 antioxidant responsive element signaling pathway need further investigation. Glutamine enhances the antioxidant and anti-apoptotic capabilities of melanocytes and protects them against oxidative stress.

  17. Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia.

    PubMed

    Zhao, Lixing; Wu, Yeke; Tan, Lijun; Xu, Zhenrui; Wang, Jun; Zhao, Zhihe; Li, Xiaoyu; Li, Yu; Yang, Pu; Tang, Tian

    2013-12-01

    During periodontitis and orthodontic tooth movement, periodontal vasculature is severely impaired, leading to a hypoxic microenvironment of periodontal cells. However, the impact of hypoxia on periodontal cells is poorly defined. The present study investigates responses of cocultured endothelial cells (ECs) and periodontal ligament stem cells (PDLSCs) to hypoxia. Osteogenic differentiation, molecular characterization, and various behaviors of PDLSCs and human umbilical venous ECs under hypoxia were assessed by quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Moreover, the effect of ECs on PDLSC osteogenic differentiation was tested using NS398 (cyclooxygenase 2 blocker), SU5416 (vascular endothelial growth factor [VEGF] receptor inhibitor), AH6809, L-798106, and L-161982 (EP1/2/3/4 antagonists). First, hypoxia promoted osteogenic differentiation in PDLSCs and enhanced EC migration, whereas PD98059 (extracellular signal-regulated protein kinase [ERK] inhibitor) blocked, and cocultured ECs further enhanced, hypoxia-induced osteogenic differentiation. Second, NS398 impaired EC migration and prostaglandin E2 (PGE2)/VEGF release, whereas cocultured PDLSCs and exogenous PGE2 partially reversed it. Third, NS398 (pretreated ECs) decreased PGE2/VEGF concentrations. NS398-treated ECs and AH6809/SU5416-treated PDLSCs impaired cocultured EC-induced enhancement of PDLSC osteogenic differentiation. Hypoxia enhances ERK-mediated osteogenic differentiation in PDLSCs. Coculture with EC further augments PDLSC osteogenic differentiation via cyclooxygenase-2/PGE2/VEGF signaling.

  18. Fluorescein permeability and electrical resistance of human skin during low frequency ultrasound application.

    PubMed

    Cancel, Limary M; Tarbell, John M; Ben-Jebria, Abdellaziz

    2004-09-01

    Transdermal drug delivery offers an alternative to injections and oral medication but is limited by the low skin permeability of most drugs. The use of low-frequency ultrasound over long periods of time, typically over an hour, has been shown to enhance skin permeability, a phenomenon referred to as sonophoresis. In this study, we investigated the effects of short time sonication of human skin at 20 kHz and at variable intensities and duty cycles on the dynamics of fluorescein transport across the skin (permeability) as well as the changes in the skin's structural integrity (electrical resistance). We found that a short application of ultrasound enhanced the transport of fluorescein across human skin by a factor in the range of 2-9 for full thickness skin samples and by a factor in the range of 2-28 000 for heat-stripped stratum corneum samples (however, samples with very high (10(3)) enhancement were likely to have been damaged by ultrasound). The electrical resistance of the skin decreased by an average of 20% for full thickness samples and 58% for stratum corneum samples. Increasing the duty cycle from 10 to 60% caused a significant increase in permeability enhancement from 2.3 to 9.1, and an increase in intensity from 8 to 23 mW cm(-2) induced a significant increase in permeability enhancement from 2 to 7.4, indicating a clear dependence of the permeability on both duty cycle and intensity. The increase in solute flux upon ultrasound exposure was immediate, demonstrating for the first time the fast response dynamics of sonophoretic enhancement. In addition, a quantitative analysis of the thermal and convective dispersion effects associated with ultrasound application showed that each contributes significantly to the overall permeability enhancement observed.

  19. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles

    PubMed Central

    1994-01-01

    Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685

  20. Photoluminescence Enhancement of CuInS 2 Quantum Dots in Solution Coupled to Plasmonic Gold Nanocup Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peer, Akshit; Hu, Zhongjian; Singh, Ajay

    A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less

  1. Photoluminescence Enhancement of CuInS 2 Quantum Dots in Solution Coupled to Plasmonic Gold Nanocup Array

    DOE PAGES

    Peer, Akshit; Hu, Zhongjian; Singh, Ajay; ...

    2017-07-05

    A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less

  2. 2:1 for naturalness at the LHC?

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Blum, Kfir; D'Agnolo, Raffaele Tito; Fan, JiJi

    2013-01-01

    A large enhancement of a factor of 1.5 - 2 in Higgs production and decay in the diphoton channel, with little deviation in the ZZ channel, can only plausibly arise from a loop of new charged particles with large couplings to the Higgs. We show that, allowing only new fermions with marginal interactions at the weak scale, the required Yukawa couplings for a factor of 2 enhancement are so large that the Higgs quartic coupling is pushed to large negative values in the UV, triggering an unacceptable vacuum instability far beneath the 10 TeV scale. An enhancement by a factor of 1.5 can be accommodated if the charged particles are lighter than 150 GeV, within reach of discovery in almost all cases in the 8 TeV run at the LHC, and in even the most difficult cases at 14 TeV. Thus if the diphoton enhancement survives further scrutiny, and no charged particles beneath 150 GeV are found, there must be new bosons far beneath the 10 TeV scale. This would unambiguously rule out a large class of fine-tuned theories for physics beyond the Standard Model, including split SUSY and many of its variants, and provide strong circumstantial evidence for a natural theory of electroweak symmetry breaking at the TeV scale. Alternately, theories with only a single fine-tuned Higgs and new fermions at the weak scale, with no additional scalars or gauge bosons up to a cutoff much larger than the 10 TeV scale, unambiguously predict that the hints for a large diphoton enhancement in the current data will disappear.

  3. Enhancing the Value of Population-Based Risk Scores for Institutional-Level Use.

    PubMed

    Raza, Sajjad; Sabik, Joseph F; Rajeswaran, Jeevanantham; Idrees, Jay J; Trezzi, Matteo; Riaz, Haris; Javadikasgari, Hoda; Nowicki, Edward R; Svensson, Lars G; Blackstone, Eugene H

    2016-07-01

    We hypothesized that factors associated with an institution's residual risk unaccounted for by population-based models may be identifiable and used to enhance the value of population-based risk scores for quality improvement. From January 2000 to January 2010, 4,971 patients underwent aortic valve replacement (AVR), either isolated (n = 2,660) or with concomitant coronary artery bypass grafting (AVR+CABG; n = 2,311). Operative mortality and major morbidity and mortality predicted by The Society of Thoracic Surgeons (STS) risk models were compared with observed values. After adjusting for patients' STS score, additional and refined risk factors were sought to explain residual risk. Differences between STS model coefficients (risk-factor strength) and those specific to our institution were calculated. Observed operative mortality was less than predicted for AVR (1.6% [42 of 2,660] vs 2.8%, p < 0.0001) and AVR+CABG (2.6% [59 of 2,311] vs 4.9%, p < 0.0001). Observed major morbidity and mortality was also lower than predicted for isolated AVR (14.6% [389 of 2,660] vs 17.5%, p < 0.0001) and AVR+CABG (20.0% [462 of 2,311] vs 25.8%, p < 0.0001). Shorter height, higher bilirubin, and lower albumin were identified as additional institution-specific risk factors, and body surface area, creatinine, glomerular filtration rate, blood urea nitrogen, and heart failure across all levels of functional class were identified as refined risk-factor variables associated with residual risk. In many instances, risk-factor strength differed substantially from that of STS models. Scores derived from population-based models can be enhanced for institutional level use by adjusting for institution-specific additional and refined risk factors. Identifying these and measuring differences in institution-specific versus population-based risk-factor strength can identify areas to target for quality improvement initiatives. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Frequency, outcome, and risk factors of contrast media extravasation in 142,651 intravenous contrast-enhanced CT scans.

    PubMed

    Hwang, Eui Jin; Shin, Cheong-Il; Choi, Young Hun; Park, Chang Min

    2018-06-06

    To evaluate the frequency, outcome, and risk factors of intravenous contrast media (CM) extravasation during contrast-enhanced CT scans in a large population. After institutional review board approval, 142,651 patients (72,976 males and 69,675 females; mean age, 59.9 ± 13.0 years) who underwent contrast-enhanced CT scans with intravenous CM between January 2015 and April 2017 were retrospectively included. The frequency of CM extravasations and their clinical outcomes were investigated. Risk factors of CM extravasation were evaluated using logistic regression with generalized estimating equation analyses. In addition, the frequency and risk factors of large-volume (≥100 ml) CM extravasation were also investigated. CM extravasation occurred in 0.23% (321/142,651) of patients, all of which were of mild degree and resolved without any sequelae through conservative management. Multivariate analysis revealed that female gender [odds ratio (OR) = 1.61; p < 0.001], 60 < age ≤ 70 years (OR = 1.71; p = 0.004) or age > 70 years (OR = 2.49; p < 0.001), patients in general wards (OR = 2.71; p < 0.001) or ICUs (OR = 4.76; p < 0.001), 9.4 < CM viscosity ≤ 10.0 (OR = 1.65; p = 0.015), 10.0 < CM viscosity ≤ 10.6 (OR = 1.60; p = 0.002), and CM viscosity > 16.0 (OR = 2.55, p < 0.001) were independent risk factors for CM extravasation. CM extravasation during contrast-enhanced CT scans was uncommon with no substantial clinical consequences. Several risk factors that may have the potential to reduce the occurrence of CM extravasation were identified. • The observed frequency of contrast media extravasation during contrast-enhanced CT scans was 0.23% (321/142,651). • Significant risk factors for contrast media extravasation were female gender, age older than 60 years, patients in general wards or ICUs, and the viscosity of contrast media greater than 9.4 mPa∙s. • The main preventive action for contrast media extravasation would be to lower the viscosity of contrast media.

  5. Using Quality Management Tools to Enhance Feedback from Student Evaluations

    ERIC Educational Resources Information Center

    Jensen, John B.; Artz, Nancy

    2005-01-01

    Statistical tools found in the service quality assessment literature--the "T"[superscript 2] statistic combined with factor analysis--can enhance the feedback instructors receive from student ratings. "T"[superscript 2] examines variability across multiple sets of ratings to isolate individual respondents with aberrant response…

  6. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    PubMed Central

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453

  7. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment.

    PubMed

    An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun

    2018-07-06

    Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi 2 Te 3 ) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m -1 K -2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi 2 Te 3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.

  8. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment

    NASA Astrophysics Data System (ADS)

    An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun

    2018-07-01

    Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi2Te3) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m‑1K‑2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi2Te3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.

  9. A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Alahnomi, Rammah A.; Zakaria, Z.; Ruslan, E.; Bahar, Amyrul Azuan Mohd

    2016-02-01

    In this paper, novel symmetrical split ring resonator (SSRR) is proposed as a suitable component for performance enhancement of microwave sensors. SSRR has been employed for enhancing the insertion loss of the microwave sensors. Using the same device area, we can achieve a high Q-factor of 141.54 from the periphery enhancement using Quasi-linear coupling SSRR, whereas loose coupling SSRR can achieve a Q-factor of 33.98 only. Using Quasi-linear coupling SSRR, the Q-factor is enhanced 4.16 times the loose coupling SSRR using the same device area. After the optimization was made, the SSRR sensor with loose coupling scheme has achieved a very high Qfactor value around 407.34 while quasi-linear scheme has achieved high Q-factor value of 278.78 at the same operating frequency with smaller insertion loss. Spurious passbands at 1st, 2nd, 3rd, and 4th harmonics have been completely suppressed well above -20 dB rejection level without visible changes in the passband filter characteristics. The most significant of using SSRR is to be used for various industrial applications such as food industry, quality control, bio-sensing medicine and pharmacy. The simulation result that Quasi-linear coupling SSRR is a viable candidate for the performance enhancement of microwave sensors has been verified.

  10. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    PubMed Central

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  11. Direct interactions of OCA-B and TFII-I regulate immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter communication.

    PubMed

    Ren, Xiaodi; Siegel, Rachael; Kim, Unkyu; Roeder, Robert G

    2011-05-06

    B cell-specific coactivator OCA-B, together with Oct-1/2, binds to octamer sites in promoters and enhancers to activate transcription of immunoglobulin (Ig) genes, although the mechanisms underlying their roles in enhancer-promoter communication are unknown. Here, we demonstrate a direct interaction of OCA-B with transcription factor TFII-I, which binds to DICE elements in Igh promoters, that affects transcription at two levels. First, OCA-B relieves HDAC3-mediated Igh promoter repression by competing with HDAC3 for binding to promoter-bound TFII-I. Second, and most importantly, Igh 3' enhancer-bound OCA-B and promoter-bound TFII-I mediate promoter-enhancer interactions, in both cis and trans, that are important for Igh transcription. These and other results reveal an important function for OCA-B in Igh 3' enhancer function in vivo and strongly favor an enhancer mechanism involving looping and facilitated factor recruitment rather than a tracking mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Direct interactions of OCA-B and TFII-I regulate immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter communication

    PubMed Central

    Ren, Xiaodi; Siegel, Rachael; Kim, Unkyu; Roeder, Robert G.

    2011-01-01

    Summary B cell-specific coactivator OCA-B, together with Oct-1/2, binds to octamer sites in promoters and enhancers to activate transcription of immunoglobulin (Ig) genes, although the mechanisms underlying their roles in enhancer-promoter communication are unknown. Here, we demonstrate a direct interaction of OCA-B with transcription factor TFII-I, which binds to DICE elements in IgH promoters, that affects transcription at two levels. First, OCA-B relieves HDAC3-mediated IgH promoter repression by competing with HDAC3 for binding to promoter-bound TFII-I. Second, and most importantly, Igh 3′enhancer-bound OCA-B and promoter-bound TFII-I mediate promoter-enhancer interactions, in both cis and trans, that are important for Igh transcription. These and other results reveal an important function for OCA-B in Igh 3′enhancer function in vivo and strongly favor an enhancer mechanism involving looping and facilitated factor recruitment rather than a tracking mechanism. PMID:21549311

  13. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm.

    PubMed

    Elwell, Jennifer A; Lovato, TyAnna L; Adams, Melanie M; Baca, Erica M; Lee, Thai; Cripps, Richard M

    2015-04-15

    Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2.

    PubMed

    Wang, Fengping; Qiu, Ye; Zhang, Huifang M; Hanson, Paul; Ye, Xin; Zhao, Guangze; Xie, Ronald; Tong, Lei; Yang, Decheng

    2017-07-01

    We previously demonstrated that coxsackievirus B3 (CVB3) infection upregulated heat shock protein 70 (Hsp70) and promoted CVB3 multiplication. Here, we report the underlying mechanism by which Hsp70 enhances viral RNA translation. By using an Hsp70-overexpressing cell line infected with CVB3, we found that Hsp70 enhanced CVB3 VP1 translation at two stages. First, Hsp70 induced upregulation of VP1 translation at the initiation stage via upregulation of internal ribosome entry site trans-acting factor lupus autoantigen protein and activation of eIF4E binding protein 1, a cap-dependent translation suppressor. Second, we found that Hsp70 increased CVB3 VP1 translation by enhancing translation elongation. This was mediated by the Akt-mammalian target of rapamycin complex 1 signal cascade, which led to the activation of eukaryotic elongation factor 2 via p70S6K- and cell division cycle protein 2 homolog (Cdc2)-mediated phosphorylation and inactivation of eukaryotic elongation factor 2 kinase. We also determined the position of Cdc2 in this signal pathway, indicating that Cdc2 is regulated by mammalian target of rapamycin complex 1. This signal transduction pathway was validated using a number of specific pharmacological inhibitors, short interfering RNAs (siRNAs) and a dominant negative Akt plasmid. Because Hsp70 is a central component of the cellular network of molecular chaperones enhancing viral replication, these data may provide new strategies to limit this viral infection. © 2017 John Wiley & Sons Ltd.

  15. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2.

    PubMed

    Sancisi, Valentina; Gandolfi, Greta; Ambrosetti, Davide Carlo; Ciarrocchi, Alessia

    2015-05-01

    Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression. ©2015 American Association for Cancer Research.

  16. Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and Ca2+

    PubMed Central

    Lee, Mee H; Chung, Su W; Kang, Bok Y; Park, Jin; Lee, Choon H; Hwang, Seung Y; Kim, Tae S

    2003-01-01

    Bisphenol A (BPA) and p-nonylphenol (NP) are representative endocrine disruptors (EDs) that may have adverse effects on human health. The influence of these compounds on allergic immune responses remains unclear. In this study, we have examined the effects of BPA and NP on production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune responses. Both BPA and NP significantly enhanced IL-4 production in keyhole limpet haemocyanin (KLH)-primed CD4+ T cells in a concentration-dependent manner. Treatment with BPA or NP in vivo resulted in significant increase of IL-4 production in CD4+ T cells and of antigen-specific immunoglobulin E (IgE) levels in the sera of KLH-primed mice. Furthermore, BPA and NP enhanced the activation of IL-4 gene promoter in EL4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the enhancing effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor (NF)-AT. Activation of T lymphocytes by phorbol 12-myristate 13-acetate/ionomycin resulted in markedly enhanced binding activities to the NF-AT site, which significantly increased upon addition of BPA or NP, as demonstrated by the electrophoretic mobility shift assay, indicating that the transcription factor NF-AT was involved in the enhancing effect of BPA and NP on IL-4 production. The enhancement of IL-4 production by BPA or NP was significantly reduced by nitrendipine, a blocker of Ca2+ influx, and by FK506, a calcineurin inhibitor. FK506 inhibited the NF-AT–DNA binding activity and IL-4 gene promoter activity enhanced by BPA or NP. These results represent the first report describing possible enhancement of allergic response by EDs through increasing IL-4 production in CD4+ T cells and antigen-specific IgE levels in the sera via the stimulation of Ca2+/calcineurin-dependent NF-AT activation. PMID:12709020

  17. Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity.

    PubMed

    Choi, Jin Myung; Kim, Hyun Jung; Lee, Kwang Youl; Choi, Hyun Jin; Lee, Ik-Soo; Kang, Bok Yun

    2009-01-01

    Xanthohumol (XN) is a major chalcone found in hop, which is used to add bitterness and flavor to beer. In this study, we investigated the effects of XN on the production of interlukin-2 (IL-2), a potent T cell growth factor. Treatment with XN significantly increased IL-2 production in mouse EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) in a dose-dependent manner. To further characterize its regulatory mechanism of XN on increased IL-2 production, the effects of XN on IL-2 promoter activity and the activity of several transcription factors modulating IL-2 expression were analyzed. XN enhanced activity of the IL-2 promoter, which contains distal and proximal regulatory elements in PMA/Io-activated EL-4 T cells. Furthermore, the activity of NF-AT and AP-1 was enhanced but NF-kappaB activity was not influenced by XN in PMA/Io-activated EL-4 T cells. These results suggest that XN increased IL-2 production at the transcriptional levels via the up-regulation of NF-AT and AP-1 in PMA/Io-activated EL-4 T cells.

  18. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer.

    PubMed

    Geng, Jian; Li, Xiao; Zhou, Zhanmei; Wu, Chin-Lee; Dai, Meng; Bai, Xiaoyan

    2015-04-10

    Enhancer of Zeste Homologue 2 (EZH2) accounts for aggressiveness and unfavorable prognosis of tumor. We investigated the mechanisms and signaling pathways of EZH2 in non-small cell lung carcinoma (NSCLC) progression. Increased expression of EZH2, vascular endothelial growth factor-A (VEGF-A) and AKT phosphorylation correlated with differentiation, lymph node metastasis, size and TNM stage in NSCLC. There was a positive correlation between EZH2 and VEGF-A expression and high EZH2 expression, as an independent prognostic factor, predicted a shorter overall survival time for NSCLC patients. The expression of VEGF-A and phosphorylated Ser(473)-AKT, cell proliferation, migration and metastasis were enhanced in EZH2-overexpressing A549 cells, but inhibited in parental H2087 cells with EZH2 silencing or GSK126 treatment. AKT activity was enhanced by recombinant human VEGF-165 but suppressed by bevacizumab. An AKT inhibitor MK-2206 blocked VEGF-A expression and AKT phosphorylation in parental H2087 and EZH2-overexpressing A549 cells. EZH2 activity was not affected by either VEGF-A stimulation/depletion or MK-2206 inhibition. These results demonstrate that EZH2 promotes lung cancer progression via the VEGF-A/AKT signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Identification of an Intronic Splicing Enhancer Essential for the Inclusion of FGFR2 Exon IIIc*S⃞

    PubMed Central

    Seth, Puneet; Miller, Heather B.; Lasda, Erika L.; Pearson, James L.; Garcia-Blanco, Mariano A.

    2008-01-01

    The ligand specificity of fibroblast growth factor receptor 2 (FGFR2) is determined by the alternative splicing of exons 8 (IIIb) or 9 (IIIc). Exon IIIb is included in epithelial cells, whereas exon IIIc is included in mesenchymal cells. Although a number of cis elements and trans factors have been identified that play a role in exon IIIb inclusion in epithelium, little is known about the activation of exon IIIc in mesenchyme. We report here the identification of a splicing enhancer required for IIIc inclusion. This 24-nucleotide (nt) downstream intronic splicing enhancer (DISE) is located within intron 9 immediately downstream of exon IIIc. DISE was able to activate the inclusion of heterologous exons rat FGFR2 IIIb and human β-globin exon 2 in cell lines from different tissues and species and also in HeLa cell nuclear extracts in vitro. DISE was capable of replacing the intronic activator sequence 1 (IAS1), a known IIIb splicing enhancer and vice versa. This fact, together with the requirement for DISE to be close to the 5′-splice site and the ability of DISE to promote binding of U1 snRNP, suggested that IAS1 and DISE belong to the same class of cis-acting elements. PMID:18256031

  20. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    PubMed Central

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  1. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.

    PubMed

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-08-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.

  2. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    PubMed

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  3. Deletion of the Distal Tnfsf11 RL-D2 Enhancer That Contributes to PTH-Mediated RANKL Expression in Osteoblast Lineage Cells Results in a High Bone Mass Phenotype in Mice.

    PubMed

    Onal, Melda; St John, Hillary C; Danielson, Allison L; Pike, J Wesley

    2016-02-01

    Receptor activator of nuclear factor-κB ligand (RANKL) is a tumor necrosis factor (TNF)-like cytokine that is necessary for osteoclast formation and survival. Elevated RANKL synthesis is associated with both increased osteoclast number and bone resorption. Earlier studies identified an enhancer 76 kb upstream of the Tnfsf11 transcriptional start site (TSS) termed RL-D5 or the distal control region (DCR) that modulates RANKL expression in response to PTH, 1,25(OH)2D3,, and an array of cytokines. Mice lacking RL-D5 exhibit high bone mass associated with decreased RANKL expression in bone, spleen, and thymus. In addition to RL-D5, genome-wide studies have identified 9 additional Tnfsf11 enhancers residing upstream of the gene's TSS, which provide RANKL cell type-specificity and responsiveness to local and systemic factors. ChIP-chip analyses has revealed inducible vitamin D receptor (VDR) and cAMP response element-binding protein (CREB) binding at an enhancer termed RL-D2 23 kb upstream of the Tnfsf11 TSS in osteoblastic ST2 cells. Herein, we use ChIP-seq analyses to confirm this finding and then delete this enhancer from the mouse genome to determine its physiological role in vivo. RL-D2(-/-) primary stromal cells showed decreased RANKL-induction by both forskolin and 1,25(OH)2D3 ex vivo. Consistent with this, the parathyroid hormone (PTH) induction of RANKL expression was significantly blunted in RL-D2(-/-) mice in vivo. In contrast, lack of RL-D2 had no effect on 1,25(OH)2D3 induction of RANKL in vivo. Similar to the results found in RL-D5(-/-) mice, lack of RL-D2 led to decreased skeletal RANKL expression, resulting in decreased osteoclast numbers and a progressive increase in bone mineral density. Lack of RL-D2 increased cancellous bone mass in femur and spine but did not alter femoral cortical bone thickness. These results highlight the role of distal enhancers in the regulation of RANKL expression by PTH and perhaps 1,25(OH)2D3 and suggest that the RL-D2 and RL-D5 enhancers contribute in either an additive or synergistic manner to regulate bone remodeling. © 2015 American Society for Bone and Mineral Research.

  4. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  5. A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers.

    PubMed

    Nishimura, Naoko; Kamimura, Yoshifumi; Ishida, Yoshiko; Takemoto, Tatsuya; Kondoh, Hisato; Uchikawa, Masanori

    2012-11-22

    Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.

  6. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.

    PubMed

    Tsai, Jordan C; Miller-Vedam, Lakshmi E; Anand, Aditya A; Jaishankar, Priyadarshini; Nguyen, Henry C; Renslo, Adam R; Frost, Adam; Walter, Peter

    2018-03-30

    Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis.

    PubMed

    Chen, Xue; Ward, Stephen C; Cederbaum, Arthur I; Xiong, Huabao; Lu, Yongke

    2017-03-15

    Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5 -/- ) mice develop more severe alcoholic fatty liver than Cyp2a5 +/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα -/- ) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5 -/- mice. Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. More severe alcoholic fatty liver disease was developed in Cyp2a5 -/- mice than in Cyp2a5 +/+ mice. Basal FGF21 levels were higher in Cyp2a5 -/- mice than in Cyp2a5 +/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5 -/- mice while FGF21 was induced by ethanol in Cyp2a5 +/+ mice. Basal levels of serum FGF21 were lower in Pparα -/- mice than in Pparα +/+ mice; ethanol induced FGF21 in Pparα +/+ mice but not in Pparα -/- mice, whereas ethanol induced hypertriglyceridemia in Pparα -/- mice but not in Pparα +/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα -/- mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα -/- /Cyp2a5 -/- ) mice developed more severe alcoholic fatty liver than Pparα +/+ /Cyp2a5 -/- mice. These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synergism between a half-site and an imperfect estrogen-responsive element, and cooperation with COUP-TFI are required for estrogen receptor (ER) to achieve a maximal estrogen-stimulation of rainbow trout ER gene.

    PubMed

    Petit, F G; Métivier, R; Valotaire, Y; Pakdel, F

    1999-01-01

    In all oviparous, liver represents one of the main E2-target tissues where estrogen receptor (ER) constitutes the key mediator of estrogen action. The rainbow trout estrogen receptor (rtER) gene expression is markedly up-regulated by estrogens and the sequences responsible for this autoregulation have been located in a 0.2 kb upstream transcription start site within - 40/- 248 enhancer region. Absence of interference with steroid hormone receptors and tissue-specific factors and a conserved basal transcriptional machinery between yeast and higher eukaryotes, make yeast a simple assay system that will enable determination of important cis-acting regulatory sequences within rtER gene promoter and identification of transcription factors implicated in the regulation of this gene. Deletion analysis allowed to show a synergistic effect between an imperfect estrogen-responsive element (ERE) and a consensus half-ERE to achieve a high hormone-dependent transcriptional activation of the rtER gene promoter in the presence of stably expressed rtER. As in mammalian cells, here we observed a positive regulation of the rtER gene promoter by the chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) through enhancing autoregulation. Using a point mutation COUP-TFI mutant unable to bind DNA demonstrates that enhancement of rtER gene autoregulation requires the interaction of COUP-TFI to the DNA. Moreover, this enhancement of transcriptional activation by COUP-TFI requires specifically the AF-1 transactivation function of ER and can be observed in the presence of E2 or 4-hydroxytamoxifen but not ICI 164384. Thus, this paper describes the reconstitution of a hormone-responsive transcription unit in yeast in which the regulation of rtER gene promoter could be enhanced by the participation of cis-elements and/or trans-acting factors, such as ER itself or COUP-TF.

  9. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast

    PubMed Central

    Wang, Ya-Ning; Yang, Wu-Cai; Li, Pei-Wei; Wang, Hong-Bao; Zhang, Ying-Ying

    2018-01-01

    Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2. PMID:29698438

  10. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States

    PubMed Central

    Kundu, Shuvashish; Stone, Elizabeth. A.

    2014-01-01

    The composition and sources of fine particulate matter (PM2.5) were investigated in rural and urban locations in Iowa, located in the agricultural and industrial Midwestern United States from April 2009 to December 2012. Major chemical contributors to PM2.5 mass were sulfate, nitrate, ammonium, and organic carbon. Non-parametric statistical analyses demonstrated that the two rural sites had significantly enhanced levels of crustal materials (Si, Al) driven by agricultural activities and unpaved roads. Meanwhile, the three urban areas had enhanced levels of secondary aerosol (nitrate, sulfate, and ammonium) and combustion (organic and elemental carbon). The heavily industrialized Davenport site had significantly higher levels of PM2.5 and trace metals (Fe, Pb, Zn), demonstrating the important local impact of industrial point sources on air quality. Sources of PM2.5 were evaluated by the multi-variant positive matrix factorization (PMF) source apportionment model. For each individual site, seven to nine factors were identified: secondary sulfate (accounting for 29–30% of PM2.5), secondary nitrate (17–24%), biomass burning (9–21%), gasoline combustion (6–16), diesel combustion (3–9%), dust (6–11%), industry (0.4–5%) and winter salt (2–6%). Source contributions demonstrated a clear urban enhancement in PM2.5 from gasoline engines (by a factor of 1.14) and diesel engines (by a factor of 2.3), which is significant due to the well-documented negative health impacts of vehicular emissions. This study presents the first source apportionment results from the state of Iowa and is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban-rural continuum of particle air pollution. PMID:24736797

  11. Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, M. S.; Sherstyuk, N. E.; Mishina, E. D.; Khomchenko, V. A.; Tselev, A.; Mukhortov, V. M.; Paixão, J. A.; Kholkin, A. L.

    2017-10-01

    The local piezoresponse in a Ba0.8Sr0.2TiO3 epitaxial ferroelectric film perforated by cylindrical channels has been investigated experimentally by means of piezoresponse force microscopy (PFM). A large enhancement of the effective values for both lateral and vertical components of piezoelectric tensor was experimentally detected in the perforated film as compared to non-perforated structure—by a factor of 8 for the lateral and by a factor 2 for the vertical piezoresponse. This result is consistent with the previously reported enhancement of the optical second harmonic generation over perforated films observed in macroscopic experiments. We assume that a possible mechanism for the increased PFM response is due to reduction of stress and clamping in the film imposed by the substrate. The obtained insight is critical for understanding nanoscale piezo- and ferroelectric responses in photonic crystals fabricated by focused ion beam milling.

  12. A DFT study on surface-enhanced Raman spectroscopy of aromatic dithiol derivatives adsorbed on gold nanojunctions

    NASA Astrophysics Data System (ADS)

    You, Tingting; Lang, Xiufeng; Huang, Anping; Yin, Penggang

    2018-01-01

    A computational study on aromatic dithiol derivatives (HS-Ar-X-Ar-SH, X = O, S, Se, NH, CH2, Ndbnd N, CHdbnd CH, Ctbnd C) interacting with gold cluster(s) was presented to investigate the chemical enhancement mechanism related to surface-enhanced Raman spectroscopy (SERS) for molecular junctions. Density functional theory (DFT) were performed on derivatives molecules as well as their single-end-linked (SEL) or double-end-linked (DEL) complexes for geometric, spectra, electronic and excitation properties, leading to discussions on dominant factor during SERS process. The resulted enhancement factors of SEL and DEL complexes exhibited specific dependency on linking atom or functional group between two phenyls, which was in accordance with the variation of polarizabilities and molecule-cluster transition energy.

  13. Plasmonic light-sensitive skins of nanocrystal monolayers

    NASA Astrophysics Data System (ADS)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  14. CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4.

    PubMed

    Tominaga, Hiroyuki; Maeda, Shingo; Hayashi, Makoto; Takeda, Shu; Akira, Shizuo; Komiya, Setsuro; Nakamura, Takashi; Akiyama, Haruhiko; Imamura, Takeshi

    2008-12-01

    Although CCAAT/enhancer-binding protein beta (C/EBPbeta) is involved in osteocalcin gene expression in osteoblast in vitro, the physiological importance of and molecular mechanisms governing C/EBPbeta in bone formation remain to be elucidated. In particular, it remains unclear whether C/EBPbeta acts as a homodimer or a heterodimer with other proteins during osteoblast differentiation. Here, deletion of the C/EBPbeta gene from mice resulted in delayed bone formation with concurrent suppression of chondrocyte maturation and osteoblast differentiation. The expression of type X collagen as well as chondrocyte hypertrophy were suppressed in mutant bone, providing new insight into the possible roles of C/EBPbeta in chondrocyte maturation. In osteoblasts, luciferase reporter, gel shift, DNAP, and ChIP assays demonstrated that C/EBPbeta heterodimerized with activating transcription factor 4 (ATF4), another basic leucine zipper transcription factor crucial for osteoblast maturation. This complex interacted and transactivated osteocalcin-specific element 1 (OSE1) of the osteocalcin promoter. C/EBPbeta also enhanced the synergistic effect of ATF4 and Runx2 on osteocalcin promoter transactivation by enhancing their interaction. Thus, our results provide evidence that C/EBPbeta is a crucial cofactor in the promotion of osteoblast maturation by Runx2 and ATF4.

  15. Transcriptional deregulation of oncogenic myocyte enhancer factor 2C in T-cell acute lymphoblastic leukemia.

    PubMed

    Nagel, Stefan; Venturini, Letizia; Meyer, Corinna; Kaufmann, Maren; Scherr, Michaela; Drexler, Hans G; Macleod, Roderick A F

    2011-02-01

    Myocyte enhancer factor 2C (MEF2C) encodes a transcription factor which is ectopically expressed in T-cell acute lymphoblastic leukemia (T-ALL) cell lines, deregulated directly by ectopically expressed homeodomain protein NKX2-5 or by loss of promoter regions via del(5)(q14). Here, we analyzed the MEF2C 5'-region, thus identifying potential regulatory binding sites for GFI1B, basic helix-loop-helix proteins, STAT5, and HOXA9/HOXA10. Chromatin immunoprecipitation and overexpression analyses demonstrated direct activation by GFI1B and LYL1 and inhibition by STAT5. HOXA9/HOXA10 activated expression of NMYC which in turn mediated MEF2C repression, indicating an indirect mode of regulation via NMYC interactor (NMI) and STAT5. Lacking comma: Chromosomal deletion of the STAT5 binding site in LOUCY cells reduced protein levels of STAT5 in some MEF2C-positve T-ALL cell lines, and the presence of inhibitory IL7-JAK-STAT5 signaling highlighted the repressive impact of this factor in MEF2C regulation. Taken together, our results indicate that the expression of MEF2C in T-ALL cells is principally deregulated via activating leukemic transcription factors GFI1B or NKX2-5 and by escaping inhibitory developmental STAT5 signaling.

  16. Osteopontin Signals through Calcium and Nuclear Factor of Activated T Cells (NFAT) in Osteoclasts

    PubMed Central

    Tanabe, Natsuko; Wheal, Benjamin D.; Kwon, Jiyun; Chen, Hong H.; Shugg, Ryan P. P.; Sims, Stephen M.; Goldberg, Harvey A.; Dixon, S. Jeffrey

    2011-01-01

    Osteopontin (OPN), an integrin-binding extracellular matrix glycoprotein, enhances osteoclast activity; however, its mechanisms of action are elusive. The Ca2+-dependent transcription factor NFATc1 is essential for osteoclast differentiation. We assessed the effects of OPN on NFATc1, which translocates to nuclei upon activation. Osteoclasts from neonatal rabbits and rats were plated on coverslips, uncoated or coated with OPN or bovine albumin. OPN enhanced the proportion of osteoclasts exhibiting nuclear NFATc1. An RGD-containing, integrin-blocking peptide prevented the translocation of NFATc1 induced by OPN. Moreover, mutant OPN lacking RGD failed to induce translocation of NFATc1. Thus, activation of NFATc1 is dependent on integrin binding through RGD. Using fluorescence imaging, OPN was found to increase the proportion of osteoclasts exhibiting transient elevations in cytosolic Ca2+ (oscillations). OPN also enhanced osteoclast survival. The intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) suppressed Ca2+ oscillations and inhibited increases in NFATc1 translocation and survival induced by OPN. Furthermore, a specific, cell-permeable peptide inhibitor of NFAT activation blocked the effects of OPN on NFATc1 translocation and osteoclast survival. This is the first demonstration that OPN activates NFATc1 and enhances osteoclast survival through a Ca2+-NFAT-dependent pathway. Increased NFATc1 activity and enhanced osteoclast survival may account for the stimulatory effects of OPN on osteoclast function in vivo. PMID:21940634

  17. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  18. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  19. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins.

    PubMed

    Makowski, Marcus R; Jansen, Christian H P; Ebersberger, Ullrich; Schaeffter, Tobias; Razavi, Reza; Mangino, Massimo; Spector, Tim D; Botnar, Rene M; Greil, Gerald F

    2017-11-01

    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. • BMI-discordant twins allow the investigation of the influence of lifestyle factors independent from genetic confounders. • Only thirteen obesity-discordant twins were identified underlining the strong genetic component of BMI. • In female twins, a BMI increase is associated with increased coronary late gadolinium enhancement. • Increased late gadolinium enhancement in the coronary vessel wall potentially reflects increased atherosclerosis.

  20. Absorbance enhancement in microplate wells for improved-sensitivity biosensors.

    PubMed

    Suárez, Guillaume; Santschi, Christian; Plateel, Gregory; Martin, Olivier J F; Riediker, Michael

    2014-06-15

    A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hemoglobin genetics: recent contributions of GWAS and gene editing

    PubMed Central

    Smith, Elenoe C.; Orkin, Stuart H.

    2016-01-01

    The β-hemoglobinopathies are inherited disorders resulting from altered coding potential or expression of the adult β-globin gene. Impaired expression of β-globin reduces adult hemoglobin (α2β2) production, the hallmark of β-thalassemia. A single-base mutation at codon 6 leads to formation of HbS (α2βS2) and sickle cell disease. While the basis of these diseases is known, therapy remains largely supportive. Bone marrow transplantation is the only curative therapy. Patients with elevated levels of fetal hemoglobin (HbF, α2γ2) as adults exhibit reduced symptoms and enhanced survival. The β-globin gene locus is a paradigm of cell- and developmental stage-specific regulation. Although the principal erythroid cell transcription factors are known, mechanisms responsible for silencing of the γ-globin gene were obscure until application of genome-wide association studies (GWAS). Here, we review findings in the field. GWAS identified BCL11A as a candidate negative regulator of γ-globin expression. Subsequent studies have established BCL11A as a quantitative repressor. GWAS-related single-nucleotide polymorphisms lie within an essential erythroid enhancer of the BCL11A gene. Disruption of a discrete region within the enhancer reduces BCL11A expression and induces HbF expression, providing the basis for gene therapy using gene editing tools. A recently identified, second silencing factor, leukemia/lymphoma-related factor/Pokemon, shares features with BCL11A, including interaction with the nucleosome remodeling deacetylase repressive complex. These findings suggest involvement of a common pathway for HbF silencing. In addition, we discuss other factors that may be involved in γ-globin gene silencing and their potential manipulation for therapeutic benefit in treating the β-hemoglobinopathies. PMID:27340226

  2. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    NASA Astrophysics Data System (ADS)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  3. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement.

    PubMed

    Cho, Jongmin; Gonzalez-Lepera, Carlos; Manohar, Nivedh; Kerr, Matthew; Krishnan, Sunil; Cho, Sang Hyun

    2016-03-21

    Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the currently investigated conditions that are considered clinically relevant, PIXE, PIGE, and activation products contribute minimally to GNP/GNR-mediated proton dose enhancement, whereas Auger/secondary electrons contribute significantly but only at short distances (<100 nm) from GNPs/GNRs.

  4. PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.

    PubMed

    Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T

    2018-01-01

    Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p < 0.05). Human umbilical vein endothelial cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p < 0.05). Wounds treated with PHD-2 knockdown mesenchymal stromal cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p < 0.05). Histologic studies revealed increased blood vessel density and increased cellularity in the wounds treated with PHD-2 knockdown mesenchymal stromal cells (p < 0.05). Silencing PHD-2 in mesenchymal stromal cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.

  5. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons

    PubMed Central

    Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier

    2016-01-01

    Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665

  6. Effect of the Programmed Nutrition Beef Program on moisture retention of cooked ground beef patties and enhanced strip loins.

    PubMed

    2015-02-01

    This study evaluated the influence of the Programmed Nutrition Beef Program and exogenous growth promotants (ExGP) on water holding capacity characteristics of enhanced beef strip loins. Sixty, frozen strip loins, arranged in a 2 × 2 factorial treatment arrangement with dietary program serving as the first factor and use of ExGP as the second factor, were thawed, injected with an enhancement solution, and stored for 7 days. Loins from ExGP cattle possessed the ability to bind more (P < 0.05) water before pumping and bind less (P < 0.05) water after pumping and storage. Loin pH across treatments was similar (P > 0.10) before injection, but increased post-injection and after storage (P < 0.01). Treatments did not affect loin purge loss, steak cook loss, and expressible moisture (P > 0.10). The Programmed Nutrition Beef Program and use of ExGPs minimally impacted water holding capacity of enhanced frozen/thawed beef strip loins.

  7. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Courtney M.; Hu, Jianxin; Thomas, Reuben

    2017-03-28

    Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here in this paper, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by themore » SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo. Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.« less

  8. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less

  9. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    PubMed

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  10. The same enhancer regulates the earliest Emx2 expression in caudal forebrain primordium, subsequent expression in dorsal telencephalon and later expression in the cortical ventricular zone.

    PubMed

    Suda, Yoko; Kokura, Kenji; Kimura, Jun; Kajikawa, Eriko; Inoue, Fumitaka; Aizawa, Shinichi

    2010-09-01

    We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.

  11. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function.

    PubMed

    Wang, Yuan-Hsi; Twu, Yuh-Ching; Wang, Chung-Kwe; Lin, Fu-Zhen; Lee, Chun-Ya; Liao, Yi-Jen

    2018-06-05

    Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.

  12. Nrf2 activation prevents cadmium-induced acute liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-nullmore » mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were resistant to cadmium-induced liver injury. ► Cadmium increased ROS in hepatocytes isolated from Nrf2-null and wild-type mice. ► Mt-1 and Mt‐2 were induced over 200-fold in both Nrf2-null and Nrf2-enhanced mice. ► Gclc, Gpx2, and Srxn-1 were induced in Nrf2-enhanced mice, not in Nrf2-null mice.« less

  13. The Herth Hope Index − A psychometric study among cognitively intact nursing home patients.

    PubMed

    Haugan, Gørill; Utvaer, Britt Karin Støen; Moksnes, Unni Karin

    2013-01-01

    Hope is seen as the act by which the temptation of despair is actively overcome and has thus been interpreted as an inner strength and an available resource for living in the present. An understanding of hope and its meaning in the lives of institutionalized older adults may aid in developing interventions to enhance hope and well-being in the nursing home setting. This study aimed to investigate the psychometric properties of the Norwegian version of the Herth Hope Index among cognitively intact nursing home patients. Cross-sectional data was obtained in 2008 and 2009 from 202 of 250 patients who met the inclusion criteria in 44 different nursing homes. Exploratory factor analysis revealed 3 internal consistent dimensions of hope, explaining 51.2% of the variance. The 1-factor, 2-factor, and the originally 3-factor solutions of the Herth Hope Index were tested by means of confirmatory factor analysis. A 2-factor construct comprising 11 items came out with the best model fit. The Herth Hope Index was found to be a reliable and valid instrument for assessing hope in nursing home patients. The 2-factor structure was psychometrically superior the original 3-factor construct of hope in this particular sample. The Herth Hope Index might be used to assess hope and changes in the hope process during long-term nursing home care. An enhanced understanding of hope in this population might contribute to increased quality of nursing home care.

  14. Sequestration of cAMP response element-binding proteins by transcription factor decoys causes collateral elaboration of regenerating Aplysia motor neuron axons.

    PubMed

    Dash, P K; Tian, L M; Moore, A N

    1998-07-07

    Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.

  15. Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I.

    PubMed

    Havranek, Tomas; Zatkova, Martina; Lestanova, Zuzana; Bacova, Zuzana; Mravec, Boris; Hodosy, Julius; Strbak, Vladimir; Bakos, Jan

    2015-06-01

    Brain oxytocin regulates a variety of social and affiliative behaviors and affects also learning and memory. However, mechanisms of its action at the level of neuronal circuits are not fully understood. The present study tests the hypothesis that molecular factors required for memory formation and synaptic plasticity, including brain-derived neurotrophic factor, neural growth factor, nestin, microtubule-associated protein 2 (MAP2), and synapsin I, are enhanced by central administration of oxytocin. We also investigated whether oxytocin enhances object recognition and acts as anxiolytic agent. Therefore, male Wistar rats were infused continuously with oxytocin (20 ng/µl) via an osmotic minipump into the lateral cerebral ventricle for 7 days; controls were infused with vehicle. The object recognition test, open field test, and elevated plus maze test were performed on the sixth, seventh, and eighth days from starting the infusion. No significant effects of oxytocin on anxious-like behavior were observed. The object recognition test showed that oxytocin-treated rats significantly preferred unknown objects. Oxytocin treatment significantly increased gene expression and protein levels of neurotrophins, MAP2, and synapsin I in the hippocampus. No changes were observed in nestin expression. Our results provide the first direct evidence implicating oxytocin as a regulator of brain plasticity at the level of changes of neuronal growth factors, cytoskeletal proteins, and behavior. The data support assumption that oxytocin is important for short-term hippocampus-dependent memory. © 2015 Wiley Periodicals, Inc.

  16. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.

    PubMed

    Garcia, A M; Frank, E H; Grimshaw, P E; Grodzinsky, A J

    1996-09-15

    We have studied the contributions of diffusion, fluid flow and electrical migration to molecular transport through adult articular cartilage explants using neutral and charged solutes that were either radiolabeled (3H2O, [35S]sulfate, [3H]thymidine, [3H]raffinose, and a synthetic matrix metalloproteinase inhibitor) or fluorescently tagged (NSPA and Lissamine-dextran). In order to induce fluid flow within the cartilage matrix without mechanical deformation, electric current densities were applied across cartilage disks. These currents produced electroosmotic fluid velocities of 1-2 microns/s, magnitudes that have been reported to exist during joint loading in vivo. This fluid convection enhanced neutral solute flux relative to passive diffusion alone by a factor that increased with the size of the solute. While the enhancement factor for 3H2O was 2.3-fold, that for [3H]raffinose (594 Da) and similar sized neutral solutes was 10-fold, suggesting that the effect of fluid flow is important even for small solutes. The largest enhancement (25-fold) was seen for the neutral 10-kDa Lissamine-dextran, confirming that fluid convection is most important for large solutes. We also studied the electrophoretic contribution to solute flux, which is relevant to the presence of intratissue streaming potentials induced during loading in vivo. Using the negatively charged [35S]sulfate ion with a range of current densities, as much as a 10-fold enhancement in flux was observed. Values for the intrinsic transport properties of the solutes (e.g., diffusivity, electrical mobility, hydrodynamic hindrance factor) can be obtained from the data.

  17. Space-charge-limited currents for cathodes with electric field enhanced geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less

  18. Smad Ubiquitylation Regulatory Factor 1/2 (Smurf1/2) Promotes p53 Degradation by Stabilizing the E3 Ligase MDM2*

    PubMed Central

    Nie, Jing; Xie, Ping; Liu, Lin; Xing, Guichun; Chang, Zhijie; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2010-01-01

    The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation. PMID:20484049

  19. ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitkalov, Sergey A.; Bowers, C. Russell; Simmons, Jerry A.

    2000-02-15

    This paper presents a study of the enhancement of the Zeeman energy of two-dimensional (2D) conduction electrons near the {nu}=1 filling factor of the quantum Hall effect by optical dynamic nuclear polarization. The change in the Zeeman energy is determined from the Overhauser shift of the transport detected electron spin resonance in GaAs/Al{sub x}Ga{sub 1-x}As multiquantum wells. In a separate experiment the NMR signal enhancement factor is obtained by radio frequency detected nuclear magnetic resonance under similar conditions in the same sample. These measurements afford an estimation of the hyperfine coupling constant between the nuclei and 2D conduction electrons. (c)more » 2000 The American Physical Society.« less

  20. Improvement in circulation and in cardiovascular risk factors with a proprietary isotonic bioflavonoid formula OPC-3.

    PubMed

    Cesarone, Maria R; Di Renzo, Andrea; Errichi, Silvia; Schönlau, Frank; Wilmer, James L; Blumenfeld, Julian

    2008-01-01

    This study investigated the efficacy of isotonic bioflavonoid supplementation, OPC-3 on 61 individuals presenting with risk factors meeting the criteria for metabolic syndrome. Subjects were supplemented with a proprietary isotonic bioflavonoid OPC-3 or placebo over 2 months. Plasma oxidative stress status was significantly lowered by 10.1% with OPC-3. All major cardiovascular risk factors were improved with blood pressure, total cholesterol, and fasting blood glucose lowered. OPC-3 significantly improved endothelial function as evaluated by increased vasorelaxation in reactive hyperemia and enhanced diastolic carotid artery flow. Cardiac ultrasound scanning revealed a significant increase of left ventricular ejection fraction. Skin microcirculation was enhanced, and better tissue perfusion led to significantly increased transcutaneous oxygen partial pressure and decreased pCO(2). With OPC-3 a dramatic and significant plasma C-reactive protein decrease by 52.1% occurred. Individuals may improve key cardiovascular risk factors by daily supplementation with the bioflavonoid OPC-3 as an important part of a healthier lifestyle.

  1. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    PubMed

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface morphology correlated with field emission properties of laser irradiated nickel

    NASA Astrophysics Data System (ADS)

    Jalil, S. A.; Bashir, S.; Akram, M.; Ahmed, Q. S.; Haq, F. U.

    2017-08-01

    The effect of laser fluence on the surface morphology and field emission properties of nickel (Ni) has been investigated. Circular shaped Ni targets are irradiated with Nd:YAG laser (1064 nm, 10 Hz, 10 ns) at various fluences ranging from 5.2 to 26 J/cm2 in air. For low fluence ranging from 5.2 to 10.4 J/cm2, SEM analysis reveals the growth of unorganized channels, grains, droplets, and ridges. Whereas, at moderate fluence of 15.6 J/cm2, the formation of ridges and cones along with few number of holes are observed. However, at high fluence regime ranging from 20 to 26 J/cm2, a sharp transition in morphology from ridges to holes has been observed. The laser structured Ni targets are also investigated for field emission properties by recording their I-V characteristics and Fowler-Nordheim (F-N) plots. The enhancement in field emission factor (β) and the reduction in turn on field are found to be dependent upon the laser fluence and morphology of the grown structures. For samples treated at low and moderate fluences, the growth of cones, channels and ridges is responsible for enhancement of β factor ranging from 121 to 178. Whereas, for samples treated at high fluence region, the formation of pores and holes is responsible for significant field convergence and consequently resulting in substantial enhancement in β factor to 276.

  3. The personality, motivational, and need-based background of problematic Tinder use.

    PubMed

    Orosz, Gábor; Benyó, Mária; Berkes, Bernadett; Nikoletti, Edina; Gál, Éva; Tóth-Király, István; Bőthe, Beáta

    2018-04-12

    Background and aims Tinder is a geo-located online dating application, which is present in almost 200 countries and has 10 million daily users. The aim of the present research was to investigate the motivational, personality, and basic psychological need-related background of problematic Tinder use. Methods After qualitative pretest and item construction, in Study 1 (N = 414), confirmatory factor analysis was conducted to corroborate the different motivational factors behind Tinder use. In Study 2 (N = 346), the associations between Big Five traits, Tinder motivations, and problematic Tinder use were examined with structural equation modeling (SEM). In Study 3 (N = 298), the potential role of general self-esteem, relatedness need satisfaction, and frustration in relation to Tinder-use motivations and problematic Tinder use was examined with SEM. Results In Study 1, a 16-item first-order factor structure was identified with four motivational factors, such as sex, love, self-esteem enhancement, and boredom. In Study 2, problematic Tinder use was mainly related to using Tinder for self-esteem enhancement. The Big Five personality factors were only weakly related to the four motivations and to problematic Tinder use. Counterintuitively, Study 3 showed that instead of global self-esteem, relatedness need frustration was the strongest predictor of self-esteem enhancement Tinder-use motivation which, in turn, was the strongest predictor of problematic Tinder use. Discussion Four motivational factors were identified as predictors of problematic use with need frustration being a relevant background variable instead of general personality traits.

  4. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing.

    PubMed

    Das, Subhamoy; Majid, Marjan; Baker, Aaron B

    2016-09-15

    Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is currently the only approved growth factor for enhancing wound healing. However, it has not seen widespread adoption due to limited efficacy and high cost. In this work, we have developed an enhancing agent that improves the activity of PDGF-BB in promoting wound healing in animals with diabetes. This co-therapy may be useful in improving the efficacy of PDGFBB and enhance its safety through lowering the dose of growth factor needed to improve wound healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation.

    PubMed

    Wang, Xiuli; Cui, Fuai; Madhu, Vedavathi; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2011-02-01

    A novel strategy to enhance bone repair is to combine angiogenic factors and osteogenic factors. We combined vascular endothelial growth factor (VEGF) and LIM mineralization protein-1 (LMP-1) by using an internal ribosome entry site to link the genes within a single plasmid. We then evaluated the effects on osteoblastic differentiation in vitro and ectopic bone formation in vivo with a subcutaneously placed PLAGA scaffold loaded with a cloned mouse osteoprogenitor cell line, D1, transfected with plasmids containing VEGF and LMP-1 genes. The cells expressing both genes elevated mRNA expression of RunX2 and β-catenin and alkaline phosphatase activity compared to cells from other groups. In vivo, X-ray and micro-CT analysis of the retrieved implants revealed more ectopic bone formation at 2 and 3 weeks but not at 4 weeks compared to other groups. The results indicate that the combination of the therapeutic growth factors potentiates cell differentiation and may promote osteogenesis.

  6. Transcriptional regulation of PCFT by KLF4, HNF4α, CDX2 and C/EBPα: Implication in its site-specific expression in the small intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumiya, Mai; Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521; Inoue, Katsuhisa

    2013-02-08

    Highlights: ► We examined transcription factors that may regulate PCFT expression in the intestine. ► PCFT promoter activity is basically induced by KLF4. ► KLF4-induced PCFT promoter activity is enhanced by HNF4α synergistically. ► CDX2 and C/EBPα suppress PCFT promoter activity induced by KLF4 and HNF4α. -- Abstract: Proton-coupled folate transporter (PCFT), which is responsible for the intestinal uptake of folates and analogs, is expressed only in the proximal region in the small intestine. The present study was to examine its transcriptional regulation, which may be involved in such a unique expression profile and potentially in its alteration, using dual-luciferasemore » reporter assays in human embryonic kidney (HEK) 293 cells. The luciferase activity derived from the reporter construct containing the 5′-flanking sequence of −1695/+96 of the human PCFT gene was enhanced most extensively by the introduction of Krüppel-like factor 4 (KLF4). The KLF4-induced luciferase activity was further enhanced by hepatocyte nuclear factor 4α (HNF4α) synergistically. To the contrary, caudal-type homeobox transcription factor 2 (CDX2) and CCAAT/enhancer-binding protein α (C/EBPα) extensively suppressed the luciferase activity induced by KLF4 alone and also that induced by KLF4 and HNF4α. Western blot analysis using the rat small intestine indicated uniform expression of KLF4 along the intestinal tract, proximal-oriented expression of HNF4α, distal-oriented expression of CDX2 and C/EBPα. These results suggest that the activity of PCFT promoter is basically induced by KLF4 and the gradiented expression profile of PCFT may be at least in part accounted for by those of HNF4α, CDX2 and C/EBPα.« less

  7. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro.

    PubMed

    Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R

    2014-11-01

    Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.

  8. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. ©AlphaMed Press.

  9. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle

    PubMed Central

    Kombairaju, Ponvijay; Kerr, Jaclyn P.; Roche, Joseph A.; Pratt, Stephen J. P.; Lovering, Richard M.; Sussan, Thomas E.; Kim, Jung-Hyun; Shi, Guoli; Biswal, Shyam; Ward, Christopher W.

    2014-01-01

    Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystrophic process. We also observed widespread alterations in the expression of genes associated with the X-ROS pathway and redox homeostasis in muscles from both Duchenne muscular dystrophy patients and mdx mice. As nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the transcriptional regulation of genes involved in redox homeostasis, we hypothesized that Nrf2 deficiency may contribute to enhanced X-ROS signaling by reducing redox buffering. To directly test the effect of diminished Nrf2 activity, Nrf2 was genetically silenced in the A/J model of dysferlinopathy—a model with a mild histopathologic and functional phenotype. Nrf2-deficient A/J mice exhibited significant muscle-specific functional deficits, histopathologic abnormalities, and dramatically enhanced X-ROS compared to control A/J and WT mice, both with functional Nrf2. Having identified that reduced Nrf2 activity is a negative disease modifier, we propose that strategies targeting Nrf2 activation may address the generalized reduction in redox homeostasis to halt or slow dystrophic progression. PMID:24600403

  10. A peptide that blocks the interaction of NF-κB p65 subunit with Smad4 enhances BMP2-induced osteogenesis.

    PubMed

    Urata, Mariko; Kokabu, Shoichiro; Matsubara, Takuma; Sugiyama, Goro; Nakatomi, Chihiro; Takeuchi, Hiroshi; Hirata-Tsuchiya, Shizu; Aoki, Kazuhiro; Tamura, Yukihiko; Moriyama, Yasuko; Ayukawa, Yasunori; Matsuda, Miho; Zhang, Min; Koyano, Kiyoshi; Kitamura, Chiaki; Jimi, Eijiro

    2018-09-01

    Bone morphogenetic protein (BMP) potentiates bone formation through the Smad signaling pathway in vitro and in vivo. The transcription factor nuclear factor κB (NF-κB) suppresses BMP-induced osteoblast differentiation. Recently, we identified that the transactivation (TA) 2 domain of p65, a main subunit of NF-κB, interacts with the mad homology (MH) 1 domain of Smad4 to inhibit BMP signaling. Therefore, we further attempted to identify the interacting regions of these two molecules at the amino acid level. We identified a region that we term the Smad4-binding domain (SBD), an amino-terminal region of TA2 that associates with the MH1 domain of Smad4. Cell-permeable SBD peptide blocked the association of p65 with Smad4 and enhanced BMP2-induced osteoblast differentiation and mineralization without affecting the phosphorylation of Smad1/5 or the activation of NF-κB signaling. SBD peptide enhanced the binding of the BMP2-inudced phosphorylated Smad1/5 on the promoter region of inhibitor of DNA binding 1 (Id-1) compared with control peptide. Although SBD peptide did not affect BMP2-induced chondrogenesis during ectopic bone formation, the peptide enhanced BMP2-induced ectopic bone formation in subcortical bone. Thus, the SBD peptide is useful for enabling BMP2-induced bone regeneration without inhibiting NF-κB activity. © 2018 Wiley Periodicals, Inc.

  11. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development

    PubMed Central

    Hu, Fang; Knoedler, Joseph R.

    2016-01-01

    Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257

  12. OTX2 activity at distal regulatory elements shapes the chromatin landscape of Group 3 medulloblastoma

    PubMed Central

    Boulay, Gaylor; Awad, Mary E.; Riggi, Nicolo; Archer, Tenley C.; Iyer, Sowmya; Boonseng, Wannaporn E.; Rossetti, Nikki E; Naigles, Beverly; Rengarajan, Shruthi; Volorio, Angela; Kim, James C.; Mesirov, Jill P.; Tamayo, Pablo; Pomeroy, Scott L.; Aryee, Martin J.; Rivera, Miguel N.

    2017-01-01

    Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as Wnt, SHH, Group 3 and Group 4. Here we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2 bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes we identified the kinase NEK2, whose knockdown and pharmacological inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes. PMID:28213356

  13. Evolutionary constraint on Otx2 neuroectoderm enhancers-deep conservation from skate to mouse and unique divergence in teleost

    PubMed Central

    Kurokawa, Daisuke; Sakurai, Yusuke; Inoue, Ai; Nakayama, Rika; Takasaki, Nobuyoshi; Suda, Yoko; Miyake, Tsutomu; Amemiya, Chris T.; Aizawa, Shinichi

    2006-01-01

    Otx2 is a paired type homeobox gene that plays essential roles in each step and site of head development in vertebrates. In the mouse, Otx2 expression in the anterior neuroectoderm is regulated primarily by two distinct enhancers: anterior neuroectoderm (AN) and forebrain/midbrain (FM) enhancers at 92 kb and 75 kb 5′of the Otx2 locus, respectively. The AN enhancer has activity in the entire anterior neuroectoderm at headfold and early somite stages, whereas the FM enhancer is subsequently active in the future caudal forebrain and midbrain ectoderm. In tetrapods, both AN and FM enhancers are conserved, whereas the AN region is missing in teleosts, despite overt Otx2 expression in the anterior neuroectoderm. Here, we show that zebrafish and fugu FM regions drive expression not only in the forebrain and midbrain but also in the anterior neuroectoderm at headfold stage. The analysis of coelacanth and skate genomic Otx2 orthologues suggests that the utilization of the two enhancers, AN and FM, is an ancestral condition. In contrast, the AN enhancer has been specifically lost in the teleost lineage with a compensatory establishment of AN activity within the FM enhancer. Furthermore, the AN activity in the fish FM enhancer was established by recruiting upstream factors different from those that direct the tetrapod AN enhancer, yet zebrafish FM enhancer is active in both mouse and zebrafish anterior neuroectoderm at the headfold stage. PMID:17159156

  14. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    PubMed

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  15. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening

    PubMed Central

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-01-01

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830

  16. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Yang; Shen, Wanjing; Ma, Lili

    Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2more » transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.« less

  17. Surface-enhanced Raman spectroscopy using 2D plasmons of InN nanostructures

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Dhara, Sandip

    2018-06-01

    We explored the surface-enhanced Raman scattering (SERS) activity of the InN nanostructures, possessing surface electron accumulation (SEA), using the Rhodamine 6G (R6G) molecules. SERS enhancement is observed for the InN nanostructures which possess SEA. In case of high-temperature grown InN samples, a peak is observed in the low wave number (THz region) of Raman spectra of InN nanostructures originating from excitation of the two-dimensional (2D) plasmons of the SEA. The enhancement factor of four orders was calculated with the assumption of monolayer coverage of analyte molecule. SERS enhancement of InN nanostructures is attributed to the 2D plasmonic nature of InN nanostructures invoking SEA, rather than the contributions from 3D surface plasmon resonance and chemical interaction. The role of 2D plasmon excitation in SERS enhancement is corroborated by the near-field light-matter interaction studies using near-field scanning optical microscopy.

  18. Stand-off detection of vapor phase explosives by resonance enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ehlerding, Anneli; Johansson, Ida; Wallin, Sara; Östmark, Henric

    2010-10-01

    Stand-off measurements on nitromethane (NM), 2,4-DNT and 2,4,6-TNT in vapor phase using resonance Raman spectroscopy have been performed. The Raman cross sections for NM, DNT and TNT in vapor phase have been measured in the wavelength range 210-300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The measurements show that the signal is greatly enhanced, up to 250.000 times for 2,4-DNT and 60.000 times for 2,4,6-TNT compared to the non-resonant signal at 532 nm. For NM the resonance enhancement enabled realistic outdoor measurements in vapor phase at 13 m distance. This all indicate a potential for resonance Raman spectroscopy as a stand-off technique for detection of vapor phase explosives.

  19. MeHG Stimulates Antiapoptotic Signaling in Stem Cells

    DTIC Science & Technology

    2010-07-01

    hormone signaling. Hypothyroid rats display increased caspase 3 activity and increased levels of pro-apoptotic Bcl2 members and decreased Bcl2 family...2006) Increased pro-nerve growth factor and p75 neurotrophin receptor levels in developing hypothyroid rat cerebral cortex are associated with enhanced...Tiwari M and Godbole MM (2003) Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing

  20. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Shyam Prasad, K.; Rao, Ashok; Tyagi, Kriti; Singh Chauhan, Nagendra; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay

    2017-05-01

    We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1-xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F 4 ̅ 3 m . The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax 0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.

  1. Gene expression analysis of growth factor receptors in human chondrocytes in monolayer and 3D pellet cultures

    PubMed Central

    Witt, Anika; Salamon, Achim; Boy, Diana; Hansmann, Doris; Büttner, Andreas; Wree, Andreas; Bader, Rainer; Jonitz-Heincke, Anika

    2017-01-01

    The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, therefore, the targeted use of growth factors could make chondrogenic redifferentiation more efficient. In the present study, human chondrocytes were postmortally isolated from healthy articular cartilage and cultivated as monolayer or 3D pellet cultures either under normoxia or hypoxia and stimulated with IGF-1 and/or TGF-β1 to compare the impact of the different growth factors. The mRNA levels of the specific receptors (IGF1R, TGFBR1, TGFBR2) were analyzed at different time points. Moreover, gene expression rates of collagen type 1 and 2 in pellet cultures were observed over a period of 5 weeks. Additionally, hyaline-like Col2 protein and sulphated GAG (sGAG) levels were quantified. Stimulation with IGF-1 resulted in an enhanced expression of IGF1R and TGFBR2 whereas TGF-β1 stimulated TGFBR1 in the monolayer and pellet cultures. In monolayer, the differences reached levels of significance. This effect was more pronounced under hypoxic culture conditions. In pellet cultures, increased amounts of Col2 protein and sGAGs after incubation with TGF-β1 and/or IGF-1 were validated. In summary, constructing a gene expression profile regarding mRNA levels of specific growth factor receptors in monolayer cultures could be helpful for a targeted application of growth factors in cartilage tissue engineering. PMID:28534942

  2. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  3. Effect of misonidazole or metronidazole pretreatment on the response of the RIF-1 mouse sarcoma to melphalan, cyclophosphamide, chlorambucil and CCNU.

    PubMed Central

    Twentyman, P.; Workman, P.

    1982-01-01

    The effect has been studied of adding either misonidazole (MISO) or metronidazole (METRO) to cytotoxic drug treatment of C3H mice bearing the RIF-1 sarcoma. The nitroimidazoles were injected 30 min before the cytotoxic drugs at a dose of 2 . 5 mmol/kg. Both clonogenic-cell survival and growth delay were measured as indicators of tumour response and depression in WBC count and acute lethality were used to indicate normal-tissue response. For melphalan, neither pretreatment agent produced any change in tumor response. For cyclophosphamide, no change was produced by METRO but a minimal increase in tumour response occurred with MISO. An enhancement of cell killing by CCNU was seen with MISO pretreatment, but there was no increase in tumour growth delay. METRO, however, did not enhance tumour response by either endpoint. WBC depression by CCNU was not enhanced by MISO pretreatment, and there was no significant reduction in the acute LD50. This indicates a therapeutic advantage from the addition of MISO to CCNU in this model system. For chlorambucil, considerable enhancement of tumour response followed either MISO or METRO pretreatment (dose-modifying factors of 2 . 0 and 1 . 4 respectively). However, the modification by MISO of normal-tissue response to chlorambucil was also enhanced by about a factor of 2, with no therapeutic gain. PMID:7073938

  4. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  5. Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna

    NASA Astrophysics Data System (ADS)

    Palacios, Edgar; Park, Spencer; Butun, Serkan; Lauhon, Lincoln; Aydin, Koray

    2017-07-01

    By thinning transition metal dichalcogenides (TMDCs) to monolayer form, a direct bandgap semiconductor emerges which opens up opportunities for use in optoelectronic devices. However, absorption and radiative emission is drastically reduced which hinders their applicability for practical devices. One way to address this challenge is to design plasmonic resonators that localize electric fields within or near the two-dimensional (2D) material to confine excitation fields and increase Purcell factors. Previous studies have successfully utilized this method for enhancing radiative emission in 2D-TMDCs by using large area plasmonic arrays that exhibit complex plasmonic interactions due to near and far-field couplings that take place over many periods. In this study, we demonstrate the photoluminescence enhancements in monolayer MoS2 under single Au nanoantennas which only exhibit near-field interactions. Here, the enhancements originate from excitation of near-field plasmons confined within 20 nm of monolayer MoS2 which yields a peak photoluminescence enhancement of 8-fold and an area corrected photoluminescence enhancement >980 fold. Additionally, simulated enhancement trends are found to agree well with experimental results to understand the optimal design requirements. Our results will provide a better understanding of local emission enhancements in 2D materials over small areas of MoS2 that are essential for future applications of truly compact optoelectronic devices based on two-dimensional or reduced dimensionality materials.

  6. Characterization of New Otic Enhancers of the Pou3f4 Gene Reveal Distinct Signaling Pathway Regulation and Spatio-Temporal Patterns

    PubMed Central

    Robert-Moreno, Àlex; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Gómez-Skarmeta, José Luis; Alsina, Berta

    2010-01-01

    POU3F4 is a member of the POU-homedomain transcription factor family with a prominent role in inner ear development. Mutations in the human POU3F4 coding unit leads to X-linked deafness type 3 (DFN3), characterized by conductive hearing loss and progressive sensorineural deafness. Microdeletions found 1 Mb 5′ upstream of the coding region also displayed the same phenotype, suggesting that cis-regulatory elements might be present in that region. Indeed, we and others have recently identified several enhancers at the 1 Mb 5′ upstream interval of the pou3f4 locus. Here we characterize the spatio-temporal patterns of these regulatory elements in zebrafish transgenic lines. We show that the most distal enhancer (HCNR 81675) is activated earlier and drives GFP reporter expression initially to a broad ear domain to progressively restrict to the sensory patches. The proximal enhancer (HCNR 82478) is switched later during development and promotes expression, among in other tissues, in sensory patches from its onset. The third enhancer (HCNR 81728) is also active at later stages in the otic mesenchyme and in the otic epithelium. We also characterize the signaling pathways regulating these enhancers. While HCNR 81675 is regulated by very early signals of retinoic acid, HCNR 82478 is regulated by Fgf activity at a later stage and the HCNR 81728 enhancer is under the control of Hh signaling. Finally, we show that Sox2 and Pax2 transcription factors are bound to HCNR 81675 genomic region during otic development and specific mutations to these transcription factor binding sites abrogates HCNR 81675 enhancer activity. Altogether, our results suggest that pou3f4 expression in inner ear might be under the control of distinct regulatory elements that fine-tune the spatio-temporal activity of this gene and provides novel data on the signaling mechanisms controlling pou3f4 function. PMID:21209840

  7. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides.

    PubMed

    Sun, Liqun; Cao, Xiufeng; Li, Min; Zhang, Xu; Li, Xinxin; Cui, Zhaojie

    2017-04-01

    Strain selected from mine tailings in Anshan for Pb bioremediation was characterized at the genetic level by internal transcribed spacer (ITS) sequencing. Results revealed that the strain belongs to Mucor circinelloides. Bioremediation of lead-contaminated soil was conducted using Solanum nigrum L. combined with M. circinelloides. The removal efficacy was in the order microbial/phytoremediation > phytoremediation > microbial remediation > control. The bioremediation rates were 58.6, 47.2, and 40.2% in microbial/phytoremediation, microbial remediation, and phytoremediation groups, respectively. Inoculating soil with M. circinelloides enhanced Pb removal and S. nigrum L. growth. The bioaccumulation factor (BF, 1.43), enrichment factor (EF, 1.56), and translocation factor (TF, 1.35) were higher than unit, suggesting an efficient ability of S. nigrum L. in Pb bioremediation. Soil fertility was increased after bioremediation according to change in enzyme activities. The results indicated that inoculating S. nigrum L. with M. circinelloides enhanced its efficiency for phytoremediation of soil contaminated with Pb.

  8. A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Zou, Junyan; Song, Weijia; Xie, Weiguang; Huang, Bo; Yang, Huidong; Luo, Zhi

    2018-03-01

    Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated Cu2O nanoparticles by combining two common techniques, viz, thermal oxidation growth of Cu2O nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ˜108), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R 2 value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.

  9. Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1

    PubMed Central

    Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan

    2006-01-01

    AIM: To study the expression of HBV enhancer II by transcription factor COUP-TF1. METHODS: In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. RESULTS: Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. CONCLUSION: Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes. PMID:17009409

  10. Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1.

    PubMed

    Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan

    2006-10-07

    To study the expression of HBV enhancer II by transcription factor COUP-TF1. In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes.

  11. Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFκB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments.

    PubMed

    Peng, Yan; Huang, Sha; Wu, Yan; Cheng, Biao; Nie, Xiaohu; Liu, Hongwei; Ma, Kui; Zhou, Jiping; Gao, Dongyun; Feng, Changjiang; Yang, Siming; Fu, Xiaobing

    2013-12-15

    Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription-polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0-22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.

  12. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    PubMed

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  13. Experiment on the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles.

    PubMed

    Zhao, Ying-Zheng; Gao, Hui-Sheng; Zhou, Zhi-Cai; Tang, Qin-Qin; Lu, Cui-Tao; Jin, Zhuo; Tian, Ji-Lai; Xu, Yan-Yan; Tian, Xin-Qiao; Wang, Lee; Kong, Fan-Lei; Li, Xiao-Kun; Huang, Pin-Tong; He, Hui-Liao; Wu, Yan

    2010-07-01

    The objective of this study was to investigate the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles. Ultrasound (US) combined with phospholipid-based microbubbles (MB) was used to enhance the susceptibility of colon cancer cell line SWD-620 to anticancer drugs Topotecan hydrochloride (TOP). Experiments were designed to investigate the influence of main factors on cell viability and cell inhibition, such as US intensity, MB concentration, drug combination with MB, asynchronous action between US triggered cavitation and drug entering cell, MB particle size. US exposure for 10 sec with US probe power at 0.6 W/cm(2) had satisfied cell viability. Treated with US combined with 15% MB, cell viability maintained more than 85% and cell inhibition 86.16%. Under optimal US combined with MB, TOP showed much higher cell inhibition than that of only TOP group. Cell inhibition under short delayed time (<2 h) for TOP addition did not show obvious difference. In terms of MB particle size, the order of cell inhibition was: Mixture > Micron bubble part > Nanometer bubble part. US combined with MB can enhance the susceptibility of cancer cells to chemotherapeutic drug, which may provide a potential method for US-mediated tumor chemotherapy.

  14. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    PubMed

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  15. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes.

    PubMed

    Öner, Ibrahim Halil; Querebillo, Christine Joy; David, Christin; Gernert, Ulrich; Walter, Carsten; Driess, Matthias; Leimkühler, Silke; Ly, Khoa Hoang; Weidinger, Inez M

    2018-06-11

    We present the fabrication of TiO 2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochrome b 5 were observed upon covalent immobilization of the protein matrix on the TiO 2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 °C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Single-valley quantum Hall ferromagnet in a dilute Mg xZn 1-xO/ZnO strongly correlated two-dimensional electron system

    DOE PAGES

    Kozuka, Y.; Tsukazaki, A.; Maryenko, D.; ...

    2012-02-03

    We investigate the spin susceptibility (g*m*) of dilute two-dimensional (2D) electrons confined at the Mg xZn 1-xO/ZnO heterointerface. Magnetotransport measurements show a four-fold enhancement of g*m*, dominated by the increase in the Landé g-factor. The g-factor enhancement leads to a ferromagnetic instability of the electron gas as evidenced by sharp resistance spikes. At high magnetic field, the large g*m* leads to full spin polarization, where we found sudden increase in resistance around the filling factors of half-integer, accompanied by complete disappearance of fractional quantum Hall (QH) states. Along with its large effective mass and the high electron mobility, our resultmore » indicates that the ZnO 2D system is ideal for investigating the effect of electron correlations in the QH regime.« less

  17. Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.

    1992-01-01

    Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.

  18. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation.

    PubMed

    Yu, S; Geng, Q; Ma, J; Sun, F; Yu, Y; Pan, Q; Hong, A

    2013-10-17

    Osteoblast differentiation is a pivotal event in bone formation. Runt-related transcription factor-2 (Runx2) is an essential factor required for osteoblast differentiation and bone formation. However, the underlying mechanism of Runx2-regulated osteogenic differentiation is still unclear. Here, we explored the corresponding mechanism using the C2C12/Runx2(Dox) subline, which expresses Runx2 in response to doxycycline (Dox). We found that Runx2-induced osteogenic differentiation of C2C12 cells results in a sustained decrease in the expression of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family. Forced expression of HB-EGF or treatment with HB-EGF is capable of reducing the expression of alkaline phosphatase (ALP), a defined marker of early osteoblast differentiation. HB-EGF-mediated inhibition of ALP depends upon activation of the EGFR and the downstream extracellular signal-regulated kinase, c-Jun N-terminal kinase mitogen-activated protein kinase pathways as well as phosphatidylinositol 3-kinase/Akt pathway. Runx2 specifically binds to the Hbegf promoter, suggesting that Hbegf transcription is directly inhibited by Runx2. Runx2 can upregulate miR-1192, which enhances Runx2-induced osteogenic differentiation. Moreover, miR-1192 directly targets Hbegf through translational inhibition, suggesting enhancement of Runx2-induced osteogenic differentiation by miR-1192 through the downregulation of HB-EGF. Taken together, our results suggest that Runx2 induces osteogenic differentiation of C2C12 cells by inactivating HB-EGF-EGFR signaling through the downregulation of HB-EGF via both transcriptional and post-transcriptional mechanisms.

  19. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation

    PubMed Central

    Yu, S; Geng, Q; Ma, J; Sun, F; Yu, Y; Pan, Q; Hong, A

    2013-01-01

    Osteoblast differentiation is a pivotal event in bone formation. Runt-related transcription factor-2 (Runx2) is an essential factor required for osteoblast differentiation and bone formation. However, the underlying mechanism of Runx2-regulated osteogenic differentiation is still unclear. Here, we explored the corresponding mechanism using the C2C12/Runx2Dox subline, which expresses Runx2 in response to doxycycline (Dox). We found that Runx2-induced osteogenic differentiation of C2C12 cells results in a sustained decrease in the expression of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family. Forced expression of HB-EGF or treatment with HB-EGF is capable of reducing the expression of alkaline phosphatase (ALP), a defined marker of early osteoblast differentiation. HB-EGF-mediated inhibition of ALP depends upon activation of the EGFR and the downstream extracellular signal-regulated kinase, c-Jun N-terminal kinase mitogen-activated protein kinase pathways as well as phosphatidylinositol 3-kinase/Akt pathway. Runx2 specifically binds to the Hbegf promoter, suggesting that Hbegf transcription is directly inhibited by Runx2. Runx2 can upregulate miR-1192, which enhances Runx2-induced osteogenic differentiation. Moreover, miR-1192 directly targets Hbegf through translational inhibition, suggesting enhancement of Runx2-induced osteogenic differentiation by miR-1192 through the downregulation of HB-EGF. Taken together, our results suggest that Runx2 induces osteogenic differentiation of C2C12 cells by inactivating HB-EGF-EGFR signaling through the downregulation of HB-EGF via both transcriptional and post-transcriptional mechanisms. PMID:24136232

  20. Nrf2 Activation Induced by Sirt1 Ameliorates Acute Lung Injury After Intestinal Ischemia/Reperfusion Through NOX4-Mediated Gene Regulation.

    PubMed

    Chai, DongDong; Zhang, Lei; Xi, SiWei; Cheng, YanYong; Jiang, Hong; Hu, Rong

    2018-01-01

    Nuclear erythroid 2-related factor-2 (Nrf2) is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis. We investigated the effects of Nrf2 in regulating revascularization and modulating acute lung injury. The expression of Nrf2 and sirtuin1 (Sirt1) was assessed in lung tissue by western blotting and immunofluorescence staining after intestinal ischemia/reperfusion (IIR) in Nrf2-/- and wild-type (WT) mice. The involvement of Nrf2 in angiogenesis, cell viability, and migration was investigated in human pulmonary microvascular endothelial cells (PMVECs). Additionally, the influence of Nrf2 expression on NOX pathway activation was measured in PMVECs after oxygen-glucose deprivation/reoxygenation. We found activation and nuclear accumulation of Nrf2 in lung tissue after IIR. Compared to IIR in WT mice, IIR in Nrf2-/- mice significantly enhanced leukocyte infiltration and collagen deposit, and inhibited endothelial cell marker CD31 expression. Nrf2 upregulation and translocation into the nucleus stimulated by Sirt1 overexpression exhibited remission of histopathologic changes and enhanced CD31 expression. Nrf2 knockdown repressed non-phagocytic cell oxidase 4 (NOX4), hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) expression after IIR. Nrf2 upregulation by Sirt1 enhances NOX4, HIF-1α and VEGF expression after IIR in WT mice. Furthermore, Nrf2 knockdown suppressed cell viability, capillary tube formation and cell migration in PMVECs after oxygen-glucose deprivation/reoxygenation and also inhibited NOX4, HIF-1 and VEGF expression. Moreover, NOX4 knockdown in PMVECs decreased the levels of VEGF, HIF-1α and angiogenesis. Nrf2 stimulation by Sirt1 plays an important role in sustaining angiogenic potential through NOX4-mediated gene regulation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Expression of metastasis suppressor gene AES driven by a Yin Yang (YY) element in a CpG island promoter and transcription factor YY2.

    PubMed

    Kakizaki, Fumihiko; Sonoshita, Masahiro; Miyoshi, Hiroyuki; Itatani, Yoshiro; Ito, Shinji; Kawada, Kenji; Sakai, Yoshiharu; Taketo, M Mark

    2016-11-01

    We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino-terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter-enhancer is in a typical CpG island, and contains a Yin-Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy-number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG-island promoter enhancer, and it is regulated transcriptionally. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

    PubMed Central

    Nguyen-Vu, TD Barbara; Zhao, Grace Q; Lahiri, Subhaneil; Kimpo, Rhea R; Lee, Hanmi; Ganguli, Surya; Shatz, Carla J; Raymond, Jennifer L

    2017-01-01

    Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI: http://dx.doi.org/10.7554/eLife.20147.001 PMID:28234229

  3. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening[OPEN

    PubMed Central

    Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui

    2017-01-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple (Malus domestica). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1, an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2, encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3, encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1. This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1. Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. PMID:28550149

  4. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening.

    PubMed

    Li, Tong; Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui; Wang, Aide

    2017-06-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple ( Malus domestica ). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1 , an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2 , encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3 , encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1 This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1 Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. © 2017 American Society of Plant Biologists. All rights reserved.

  5. Membrane type 1-matrix metalloproteinase cleaves off the NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor.

    PubMed

    Koshikawa, Naohiko; Mizushima, Hiroto; Minegishi, Tomoko; Iwamoto, Ryo; Mekada, Eisuke; Seiki, Motoharu

    2010-07-15

    Epidermal growth factor (EGF) receptors (ErbB) and EGF family members represent promising targets for cancer therapy. Heparin-binding EGF (HB-EGF) is a member of the EGF family and is an important target for therapy in some types of human cancers. Processing of HB-EGF by proprotein convertases, and successively, by ADAM family proteases, generates a soluble growth factor that requires heparin as a cofactor. Although heparin potentiates HB-EGF activity in vitro, it is not clear how the heparin-binding activity of HB-EGF is regulated. Here, we show that membrane type 1-matrix metalloproteinase (MT1-MMP; MMP14), a potent invasion-promoting protease, markedly enhances HB-EGF-dependent tumor formation in mice. MT1-MMP additionally cleaves HB-EGF and removes the NH(2)-terminal 20 amino acids that are important for binding heparin. Consequently, the processing of HB-EGF by MT1-MMP converts HB-EGF into a heparin-independent growth factor with enhanced mitogenic activity, and thereby, expression of both proteins costimulates tumor cell growth in vitro and in vivo. The ErbB family of receptors expressed in human gastric carcinoma cells play a role in mediating enhanced HB-EGF activity by MT1-MMP during invasive cell growth in collagen. Thus, we shed light on a new mechanism whereby HB-EGF activity is regulated that should be considered when designing HB-EGF-targeted cancer therapy. (c)2010 AACR.

  6. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    PubMed

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Structure of health-enhancing behavior in adolescence: a latent-variable approach.

    PubMed

    Donovan, J E; Jessor, R; Costa, F M

    1993-12-01

    The structure of the interrelations among a variety of health-enhancing behaviors was examined using structural equation modeling analyses of questionnaire data from 1,280 middle school students and 2,219 high school students. The health-enhancing behaviors included seat belt use, adequate hours of sleep, attention to healthy diet, adequate exercise, low sedentary behavior, and regular toothbrushing. In the middle school sample, all of the health-enhancing behaviors correlated significantly but modestly with each other, except for sleep with toothbrushing. In the high school sample, all but three of the 15 correlations among the behaviors were significant. The results further show that a single underlying factor can account for the modest correlations among these health-enhancing behaviors in both samples. The generality of the single-factor model was also established for male, female, White, Hispanic, and Black students at each school level. These findings provide some support for the existence of health-related lifestyles in adolescence.

  8. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  9. Factors influencing the ablative efficiency of high intensity focused ultrasound (HIFU) treatment for adenomyosis: A retrospective study.

    PubMed

    Gong, Chunmei; Yang, Bin; Shi, Yarong; Liu, Zhongqiong; Wan, Lili; Zhang, Hong; Jiang, Denghua; Zhang, Lian

    2016-08-01

    Objectives The aim of this study was to investigate factors affecting ablative efficiency of high intensity focused ultrasound (HIFU) for adenomyosis. Materials and methods In all, 245 patients with adenomyosis who underwent ultrasound guided HIFU (USgHIFU) were retrospectively reviewed. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (MRI) before and after HIFU treatment. The non-perfused volume (NPV) ratio, energy efficiency factor (EEF) and greyscale change were set as dependent variables, while the factors possibly affecting ablation efficiency were set as independent variables. These variables were used to build multiple regression models. Results A total of 245 patients with adenomyosis successfully completed HIFU treatment. Enhancement type on T1 weighted image (WI), abdominal wall thickness, volume of adenomyotic lesion, the number of hyperintense points, location of the uterus, and location of adenomyosis all had a linear relationship with the NPV ratio. Distance from skin to the adenomyotic lesion's ventral side, enhancement type on T1WI, volume of adenomyotic lesion, abdominal wall thickness, and signal intensity on T2WI all had a linear relationship with EEF. Location of the uterus and abdominal wall thickness also both had a linear relationship with greyscale change. Conclusion The enhancement type on T1WI, signal intensity on T2WI, volume of adenomyosis, location of the uterus and adenomyosis, number of hyperintense points, abdominal wall thickness, and distance from the skin to the adenomyotic lesion's ventral side can all be used as predictors of HIFU for adenomyosis.

  10. Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis*

    PubMed Central

    Mar, Ai-Chung; Chu, Chun-Ho; Lee, Hui-Ju; Chien, Chia-Wen; Cheng, Jing-Jy; Yang, Shung-Haur; Jiang, Jeng-Kai; Lee, Te-Chang

    2015-01-01

    Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC. PMID:26209639

  11. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: the role of the PPARα-FGF21 axis

    PubMed Central

    Chen, Xue; Ward, Stephen C.; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke

    2017-01-01

    Background & Aims Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5−/−) mice develop more severe alcoholic fatty liver than Cyp2a5+/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα−/−) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5−/− mice. Methods Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. Results More severe alcoholic fatty liver disease was developed in Cyp2a5−/− mice than in Cyp2a5+/+ mice. Basal FGF21 levels were higher in Cyp2a5−/− mice than in Cyp2a5+/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5−/− mice while FGF21 was induced by ethanol in Cyp2a5+/+ mice. Basal levels of serum FGF21 were lower in Pparα−/− mice than in Pparα+/+ mice; ethanol induced FGF21 in Pparα+/+ mice but not in Pparα−/− mice, whereas ethanol induced hypertriglyceridemia in Pparα−/− mice but not in Pparα+/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα−/− mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα−/−/Cyp2a5−/−) mice developed more severe alcoholic fatty liver than Pparα+/+/Cyp2a5−/− mice. Conclusions These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease. PMID:28131861

  12. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    PubMed Central

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-01-01

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current—DC or Alternative Pulsed Current—APC). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method. PMID:28811405

  13. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes

    PubMed Central

    Chandra, Sruti; Terragni, Jolyon; Zhang, Guoqiang; Pradhan, Sriharsa; Haushka, Stephen; Johnston, Douglas; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie

    2015-01-01

    Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes. PMID:26041816

  14. Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming.

    PubMed

    Islam, Mohammed M; Smith, Derek K; Niu, Wenze; Fang, Sanhua; Iqbal, Nida; Sun, Guoqiang; Shi, Yanhong; Zhang, Chun-Li

    2015-11-10

    The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming.

  15. Encapsulation of basic fibroblast growth factor by polyelectrolyte multilayer microcapsules and its controlled release for enhancing cell proliferation.

    PubMed

    She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N

    2012-07-09

    Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.

  16. Nonresonant Local Fields Enhance Second-Harmonic Generation from Metal Nanoislands with Dielectric Cover

    NASA Astrophysics Data System (ADS)

    Chervinskii, Semyon; Koskinen, Kalle; Scherbak, Sergey; Kauranen, Martti; Lipovskii, Andrey

    2018-03-01

    We study second-harmonic generation from gold nanoislands covered with amorphous titanium oxide (TiO2 ) films. As the TiO2 thickness increases, the plasmon resonance of the nanoislands shifts away from the second-harmonic wavelength of 532 nm, diminishing the resonant enhancement of the process at this wavelength. Nevertheless, the second-harmonic signal is enhanced by up to a factor of 45 with increasing TiO2 thickness. This unexpected effect arises from the scaling of local fields at the fundamental wavelength of 1064 nm—which is at the far tail of the resonance—due to a change in the dielectric environment of the nanoislands.

  17. Thermoelectric properties optimization of Fe2VGa by tuning electronic density of states via titanium doping

    NASA Astrophysics Data System (ADS)

    Wei, Pai-Chun; Huang, Ta-Sung; Lin, Shu-Wei; Guo, Guang-Yu; Chen, Yang-Yuan

    2015-10-01

    We report the correlation between thermoelectric properties and electronic band structure of thermoelectric Heusler alloy Fe2V1-xTixGa by comparing experimental measurements with theoretical calculations. The electrical resistivity data show that the semiconducting-like behavior of pure Fe2VGa is transformed to a more metallic-like behavior at x = 0.1. Meanwhile, an enhancement of the Seebeck coefficient was observed for all Ti doped specimens at elevated temperatures with a peak value of 57 μV/K for x = 0.05 at 300 K. The experimental results can be elucidated by the calculated band structure, i.e., a gradual shifting of the Fermi level from the middle of the pseudogap to the region of valence bands. With optimized doping, the thermoelectric power factor can be significantly enhanced to 3.95 mW m-1 K-2 at room temperature, which is comparable to the power factors of Bi2Te3-based compounds. The synergy of thermal conductivity reduction due to the alloying effect and the significant increase of the thermoelectric power factor leads to higher order zT values than that of prime Fe2VGa.

  18. Toward a microfluidic-based rapid amylase assay system.

    PubMed

    Holmes, Richard J; Summersgil, Philip; Ryan, Timothy; Brown, Bernard J Treves; Mockbil, Amal; Grieve, Bruce D; Fielden, Peter R

    2009-08-01

    This article describes work into a prototype system for the assay of amylase, using microfludic technologies. The new system has a significantly shorter cycle time than the current laboratory methods, which generally use microtitre plates, yet is capable of generating significantly superior results. As such, we have shown that sensitivity is enhanced by a factor of 10 in the standard assay trials, and by a factor of 2 in the real-sample lab trials. In both assays, the use of a microreactor system reduced the reaction time by a factor of 6.2, from 20 min incubation to 3.2 min. Basing the conclusion on the Megazyme Cerealpha Standard Method, and using the Cerealpha units as a measure of assay efficiency, the typical response for the microfluidic assay was shown to be 1.0 x 10(-3) CU/mL (standard deviation [SD] 2.5 x 10(-4) CU/mL), compared to 2.56 x 10(-4) CU/mL (SD 5.94 x 10(-5) CU/mL) for the standard macroassay. It is believed that this improvement in the reaction schematics is due to the inherent advantages of microfluidic devices such as superior mixing, higher thermal efficiency, and enhanced reaction kinetics.

  19. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Hiroshi; Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Zhang, Ran

    2015-07-27

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensingmore » and imaging.« less

  20. Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO{sub 2} spacer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damm, Signe; Fedele, Stefano; Rice, James H., E-mail: james.rice@ucd.ie

    Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO{sub 2} dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectralmore » region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.« less

  1. Proteasome inhibitors enhance endothelial thrombomodulin expression via induction of Krüppel-like transcription factors

    PubMed Central

    Hiroi, Toyoko; Deming, Clayton B.; Zhao, Haige; Hansen, Baranda S.; Arkenbout, Elisabeth K.; Myers, Thomas J.; McDevitt, Michael A.; Rade, Jeffrey J.

    2009-01-01

    Objective Impairment of the thrombomodulin-protein C anticoagulant pathway has been implicated in pathologic thrombosis associated with malignancy. Patients who receive proteasome inhibitors as part of their chemotherapeutic regimen appear to be at decreased risk for thromboembolic events. We investigated the effects of proteasome inhibitors on endothelial thrombomodulin expression and function. Methods and Results Proteasome inhibitors as a class markedly induced the expression thrombomodulin and enhanced the protein C activating capacity of endothelial cells. Thrombomodulin upregulation was independent of NF-κB signaling, a principal target of proteasome inhibitors, but was instead a direct consequence of increased expression of the Krüppel-like transcription factors, KLF2 and KLF4. These effects were confirmed in vivo, where systemic administration of a proteasome inhibitor enhanced thrombomodulin expression that was paralleled by changes in the expression of KLF2 and KLF4. Conclusions These findings identify a novel mechanism of action of proteasome inhibitors that may help to explain their clinically observed thromboprotective effects. PMID:19661484

  2. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    PubMed

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia.

  3. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada's forests and wetlands

    NASA Astrophysics Data System (ADS)

    Ju, Weimin; Chen, Jing M.; Black, T. Andrew; Barr, Alan G.; McCaughey, Harry

    2010-07-01

    The variations of soil water content (SWC) and its influences on the carbon (C) cycle in Canada's forests and wetlands were studied through model simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model. It shows that Canada's forests and wetlands experienced spatially and temporally heterogeneous changes in SWC from 1901 to 2000. SWC changes caused average NPP to decrease 40.8 Tg C yr-1 from 1901 to 2000, whereas the integrated effect of non-disturbance factors (climate change, CO2 fertilization and N deposition) enhanced NPP by 9.9%. During 1981-2000, the reduction of NPP caused by changes in SWC was 58.1 Tg C yr-1 whereas non-disturbance factors together caused NPP to increase by 16.6%. SWC changes resulted in an average increase of 4.1 Tg C yr-1 in the net C uptake during 1901-2000, relatively small compared with the enhancement in C uptake of 50.2 Tg C yr-1 by the integrated effect of non-disturbance factors. During 1981-2000, changes in SWC caused a reduction of 3.8 Tg C yr-1 in net C sequestration whereas the integrated factors increased net C sequestration by 54.1 Tg C yr-1. Increase in SWC enhanced C sequestration in all ecozones.

  4. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo.

    PubMed

    Zhou, Z N; Sharma, V P; Beaty, B T; Roh-Johnson, M; Peterson, E A; Van Rooijen, N; Kenny, P A; Wiley, H S; Condeelis, J S; Segall, J E

    2014-07-17

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  5. Preparation and Imaging Investigation of Dual-targeted C3F8-filled PLGA Nanobubbles as a Novel Ultrasound Contrast Agent for Breast Cancer.

    PubMed

    Du, Jing; Li, Xiao-Yu; Hu, He; Xu, Li; Yang, Shi-Ping; Li, Feng-Hua

    2018-03-01

    Molecularly-targeted contrast enhanced ultrasound (US) imaging is a promising imaging strategy with large potential for improving diagnostic accuracy of conventional US imaging in breast cancer detection. Therefore, we constructed a novel dual-targeted nanosized US contrast agent (UCA) directed at both vascular endothelial growth factor receptor 2 (VEGFR2) and human epidermal growth factor receptor 2 (HER2) based on perfluoropropane (C 3 F 8 )-filled poly(lactic-co-glycolic acid) (PLGA) (NBs) for breast cancer detection. In vitro, single- or dual-targeted PLGA NBs showed high target specificities and better effects of target enhancement in VEGFR2 or HER2-positive cells. In vivo, US imaging signal in the murine breast cancer model was significantly higher (P < 0.01) for dual-targeted NBs than single-targeted and non-targeted NBs. Small animal fluorescence imaging further confirmed the special affinity of the dual-targeted nanosized contrast agent to both VEGFR2 and HER2. Immunofluorescence and immunohistochemistry staining confirmed the expressions of VEGFR2 and HER2 on tumor neovasculature and tumor cells of breast cancer. In conclusions, the feasibility of using dual-targeted PLGA NBs to enhance ultrasonic images is demonstrated in vitro and in vivo. This may be a promising approach to target biomarkers of breast cancer for two site-specific US molecular imaging.

  6. Enhanced singlet oxygen generation from PLGA loaded with verteporfin and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Kautzka, Zofia; Goldys, Ewa M.

    2016-12-01

    In this study, poly(lactic-co-glycolic acid) (PLGA) nanocomposites were developed by incorporating a photosensitizer, verteporfin and gold nanoparticles into this polymeric matrix and utilised for enhanced photoynamic therapy. Both enhanced fluorescence and singlet oxygen generation from verteporfin were observed in this new formulation under both 425nm LED and 405nm laser illumination. A maximum enhancement factor of 2.5 for fluorescence and 1.84 for 1O2 generation was obtained when the molar ratio of gold:VP was 5:1 and excited at 425 nm, compared with PLGA doped with verteporfin only. The experiment results could be explained by the local electric field enhancement of gold nanoparticles. Furthermore, in vitro cell-killing effect on human pancreatic cancer cells was also demonstrated by using this new formulation following light exposure, indicating the utility of these nanocomposites for enhanced photodynamic therapy.

  7. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.

    PubMed

    Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S

    2017-11-01

    A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ascorbate elevates perfusion pressure in the bovine extraocular long posterior ciliary artery: role of endothelium-derived hyperpolarizing factor (EDHF).

    PubMed

    Stirrat, Alison; Nelli, Silvia; McGuckin, Alicia; Ho, Vivian Wing Man; Wilson, William S; Martin, William

    2006-03-18

    Ascorbate blocks agonist-induced, endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary artery and this is associated with a rise in perfusion pressure. We now report the origins of this ascorbate-induced rise in perfusion pressure. In segments of ciliary artery perfused at 2.5 ml/min, the addition of ascorbate (10-150 microM) enhanced U46619-induced perfusion pressure. Ascorbate produced no enhancement in the absence of U46619, suggesting that its effects resulted not from a constrictor action but through removal of a tonic vasodilator influence. Experiments revealed the endothelial source of this vasodilator influence, and EDHF, but not nitric oxide or prostanoids, appeared to be involved. The ascorbate-induced enhancement of vasoconstrictor tone was not seen in a static myograph or in segments perfused at low rates of flow, but was seen at flow rates of 2.5 ml(-1) and above. We conclude that ascorbate augments vasoconstrictor tone through inhibition of flow-induced EDHF activity.

  9. Antibody-Dependent Enhancement of Dengue Virus Growth in Human Monocytes as a Risk Factor for Dengue Hemorrhagic Fever

    DTIC Science & Technology

    1989-01-01

    One serum exhibited a de - 1’-917 cells, no DEN-2 infection was observed gree of infection above the mean of normal se- in cell cultures in the absence...ORGANIZATION RERORT NUMBER(S) 5 MONTORNN __ ___ ____ ___ ____ i 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL la NAME OF MONITORING ORGANIZATION...schoolchildren in Bangkok were tested for their ability to enhance dengue 2 (DEN-2) virus growth in human monocytes in vitro . Two groups of dengue-immune

  10. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    PubMed

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  11. Elevated pCO2 enhances bacterioplankton removal of organic carbon

    PubMed Central

    James, Anna K.; Passow, Uta; Brzezinski, Mark A.; Parsons, Rachel J.; Trapani, Jennifer N.; Carlson, Craig A.

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean. PMID:28257422

  12. HIF-1α regulates epithelial inflammation by cell autonomous NFκB activation and paracrine stromal remodeling

    PubMed Central

    Scortegagna, Marzia; Cataisson, Christophe; Martin, Rebecca J.; Hicklin, Daniel J.; Schreiber, Robert D.; Yuspa, Stuart H.

    2008-01-01

    Hypoxia inducible factor-1 (HIF-1) is a master regulatory transcription factor controlling multiple cell-autonomous and non–cell-autonomous processes, such as metabolism, angiogenesis, matrix invasion, and cancer metastasis. Here we used a new line of transgenic mice with constitutive gain of HIF-1 function in basal keratinocytes and demonstrated a signaling pathway from HIF-1 to nuclear factor κ B (NFκB) activation to enhanced epithelial chemokine and cytokine elaboration. This pathway was responsible for a phenotypically silent accumulation of stromal inflammatory cells and a marked inflammatory hypersensitivity to a single 12-O-tetradecanoylphorbol-13-acetate (TPA) challenge. HIF-1–induced NFκB activation was composed of 2 elements, IκB hyperphosphorylation and phosphorylation of Ser276 on p65, enhancing p65 nuclear localization and transcriptional activity, respectively. NFκB transcriptional targets macrophage inflammatory protein-2 (MIP-2/CXCL2/3), keratinocyte chemokine (KC/CXCL1), and tumor necrosis factor [alfa] (TNFα) were constitutively up-regulated and further increased after TPA challenge both in cultured keratinocytes and in transgenic mice. Whole animal KC, MIP-2, or TNFα immunodepletion each abrogated TPA-induced inflammation, whereas blockade of either VEGF or placenta growth factor (PlGF) signaling did not affect transgenic inflammatory hyper-responsiveness. Thus, epithelial HIF-1 gain of function remodels the local environment by cell-autonomous NFκB-mediated chemokine and cytokine secretion, which may be another mechanism by which HIF-1 facilitates either inflammatory diseases or malignant progression. PMID:18199827

  13. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment.

    PubMed

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Cho, Song Yun

    2016-01-05

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and tellurium- PSS (Te- PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PSS and Te- PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm(-1), respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m(-1) K(-2), respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te- PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  14. High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence.

    PubMed

    Banik, Ananya; Shenoy, U Sandhya; Saha, Sujoy; Waghmare, Umesh V; Biswas, Kanishka

    2016-10-05

    Understanding the basis of electronic transport and developing ideas to improve thermoelectric power factor are essential for production of efficient thermoelectric materials. Here, we report a significantly large thermoelectric power factor of ∼31.4 μW/cm·K 2 at 856 K in Ag and In co-doped SnTe (i.e., SnAg x In x Te 1+2x ). This is the highest power factor so far reported for SnTe-based material, which arises from the synergistic effects of Ag and In on the electronic structure and the improved electrical transport properties of SnTe. In and Ag play different but complementary roles in modifying the valence band structure of SnTe. In-doping introduces resonance levels inside the valence bands, leading to a significant improvement in the Seebeck coefficient at room temperature. On the other hand, Ag-doping reduces the energy separation between light- and heavy-hole valence bands by widening the principal band gap, which also results in an improved Seebeck coefficient. Additionally, Ag-doping in SnTe enhances the p-type carrier mobility. Co-doping of In and Ag in SnTe yields synergistically enhanced Seebeck coefficient and power factor over a broad temperature range because of the synergy of the introduction of resonance states and convergence of valence bands, which have been confirmed by first-principles density functional theory-based electronic structure calculations. As a consequence, we have achieved an improved thermoelectric figure of merit, zT ≈ 1, in SnAg 0.025 In 0.025 Te 1.05 at 856 K.

  15. Enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by coupling to Au-nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Xing, Jieying; Chen, Yinsong; Liu, Yuebo; Liang, Jiezhi; Chen, Jie; Ren, Yuan; Han, Xiaobiao; Zhong, Changming; Yang, Hang; Huang, Dejia; Hou, Yaqian; Wu, Zhisheng; Liu, Yang; Zhang, Baijun

    2018-05-01

    We demonstrate the enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by nearly a factor of 2 by coupling them to localized surface plasmons of Au nano-particles (NPs). The Au NPs are fabricated in situ on the nanorods using a Ni/SiO2/Au/SiNx compound functional layer. This layer serves as a combination dry-etch mask for fabricating the nanorods and the Au NPs, as well as providing isolation necessary to prevent fluorescence quenching. Time-resolved photoluminescence measurements confirm that emission enhancement originates from the coupling.

  16. Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism.

    PubMed

    Ring, Rebecca M; Regan, Ciaran M

    2013-10-01

    The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.

  17. Enhanced production of ψ (2 S ) mesons in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae

    2015-05-01

    I study the production of a ψ (2 S ) meson in heavy ion collisions. I evaluate Wigner functions for the ψ (2 S ) meson using both Gaussian and Coulomb wave functions, and investigate the wave function dependence in the ψ (2 S ) meson production by recombination of charm and anticharm quarks. The enhanced transverse momentum distribution of ψ (2 S ) mesons compared to that of J /ψ mesons, originated from wave function distributions of the ψ (2 S ) and J /ψ meson in momentum space, provides a plausible explanation for the recent measurement of the nuclear modification factor ratio between the ψ (2 S ) and J /ψ meson.

  18. Sequential Delivery of BMP-2 and IGF-1 Using a Chitosan Gel with gelatin Microspheres Enhances Early osteoblastic Differentiation

    DTIC Science & Technology

    2012-01-18

    Vunjak- Novakovic G, Freed LE. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun...2002;294(1):149–54. [35] Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak- Novakovic G, Freed LE. Enhanced cartilage tissue engineering by sequential

  19. Development of a Program to Enhance Curriculum and Learning Management Competency of Private Primary School Teachers

    ERIC Educational Resources Information Center

    Panichpongsapak, Ratthasart; Tesaputa, Kowat; Sri-ampai, Anan

    2016-01-01

    The aims of this research were: (1) to study the factors and indicators to enhance curriculum and learning management competency of private primary school teachers; (2) to study current situations and desirable situations and techniques; (3) to develop a program; and (4) to study the effects of a program. The study comprised 4 phases: Phase…

  20. Supercritical carbon dioxide: a solvent like no other

    PubMed Central

    Peach, Jocelyn

    2014-01-01

    Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947

  1. Deletion of the distal Tnfsf11 RL-D2 enhancer that contributes to PTH-mediated RANKL expression in osteoblast lineage cells results in a high bone mass phenotype in mice

    PubMed Central

    Onal, M.; St John, H.C.; Danielson, A.L.; Pike, J.W.

    2016-01-01

    Receptor activator of nuclear factor-κB ligand (RANKL) is a TNF-like cytokine that is necessary for osteoclast formation and survival. Elevated RANKL synthesis is associated with both increased osteoclast number and bone resorption. Earlier studies identified an enhancer 76 kb upstream of the Tnfsf11 transcriptional start site (TSS) termed RL-D5 or the distal control region (DCR) that modulates RANKL expression in response to PTH, 1,25(OH)2D3, and an array of cytokines. Mice lacking RL-D5 exhibit high bone mass associated with decreased RANKL expression in bone, spleen, and thymus. In addition to RL-D5, genome-wide studies have identified 9 additional Tnfsf11 enhancers residing upstream of the gene’s TSS, which provide RANKL cell type-specificity and responsiveness to local and systemic factors. ChIP-chip analysis has revealed inducible VDR and CREB binding at an enhancer termed RL-D2 23 kb upstream of the Tnfsf11 TSS in osteoblastic ST2 cells. Herein, we use ChIP-seq analysis to confirm this finding and delete this enhancer from the mouse genome to determine its physiological role in vivo. RL-D2−/− primary stromal cells showed decreased RANKL-induction by both forskolin and 1,25(OH)2D3 ex vivo. Consistent with this, the PTH induction of RANKL expression was significantly blunted in RL-D2−/− mice in vivo. In contrast, lack of RL-D2 had no effect on 1,25(OH)2D3 induction of RANKL in vivo. Similar to the results seen in RL-D5−/− mice, lack of RL-D2 led to decreased skeletal RANKL expression, resulting in decreased osteoclast numbers and a progressive increase in bone mineral density. Lack of RL-D2 increased cancellous bone mass in femur and spine, but did not alter femoral cortical bone thickness. These results highlight the role of distal enhancers in the regulation of RANKL expression by PTH and perhaps 1,25(OH)2D3, and suggest that the RL-D2 and RL-D5 enhancers contribute in either an additive or synergistic manner to regulate bone remodeling. PMID:26332516

  2. Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers

    PubMed Central

    Potthoff, Matthew J.; Wu, Hai; Arnold, Michael A.; Shelton, John M.; Backs, Johannes; McAnally, John; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2007-01-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  3. The Small Muscle-Specific Protein Csl Modifies Cell Shape and Promotes Myocyte Fusion in an Insulin-like Growth Factor 1–Dependent Manner

    PubMed Central

    Palmer, Steve; Groves, Nicola; Schindeler, Aaron; Yeoh, Thomas; Biben, Christine; Wang, Cheng-Chun; Sparrow, Duncan B.; Barnett, Louise; Jenkins, Nancy A.; Copeland, Neal G.; Koentgen, Frank; Mohun, Tim; Harvey, Richard P.

    2001-01-01

    We have isolated a murine cDNA encoding a 9-kD protein, Chisel (Csl), in a screen for transcriptional targets of the cardiac homeodomain factor Nkx2-5. Csl transcripts were detected in atria and ventricles of the heart and in all skeletal muscles and smooth muscles of the stomach and pulmonary veins. Csl protein was distributed throughout the cytoplasm in fetal muscles, although costameric and M-line localization to the muscle cytoskeleton became obvious after further maturation. Targeted disruption of Csl showed no overt muscle phenotype. However, ectopic expression in C2C12 myoblasts induced formation of lamellipodia in which Csl protein became tethered to membrane ruffles. Migration of these cells was retarded in a monolayer wound repair assay. Csl-expressing myoblasts differentiated and fused normally, although in the presence of insulin-like growth factor (IGF)-1 they showed dramatically enhanced fusion, leading to formation of large dysmorphogenic “myosacs.” The activities of transcription factors nuclear factor of activated T cells (NFAT) and myocyte enhancer–binding factor (MEF)2, were also enhanced in an IGF-1 signaling–dependent manner. The dynamic cytoskeletal localization of Csl and its dominant effects on cell shape and behavior and transcription factor activity suggest that Csl plays a role in the regulatory network through which muscle cells coordinate their structural and functional states during growth, adaptation, and repair. PMID:11381084

  4. Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures.

    PubMed

    Johnson, Alex D; Cheng, Fei; Tsai, Yutsung; Shih, Chih-Kang

    2017-07-12

    We have investigated how the photoluminescence (PL) of WSe 2 is modified when coupled to Ag plasmonic structures at low temperature. Chemical vapor deposition (CVD) grown monolayer WSe 2 flakes were transferred onto a Ag film and a Ag nanotriangle array that had a 1.5 nm Al 2 O 3 capping layer. Using low-temperature (7.5 K) micro-PL mapping, we simultaneously observed enhancement of the defect-bound exciton emission and quenching of the band edge exciton emission when the WSe 2 was on a plasmonic structure. The enhancement of the defect-bound exciton emission was significant with enhancement factors of up to ∼200 for WSe 2 on the nanotriangle array when compared to WSe 2 on a 1.5 nm Al 2 O 3 capped Si substrate with a 300 nm SiO 2 layer. The giant enhancement of the luminescence from the defect-bound excitons is understood in terms of the Purcell effect and increased light absorption. In contrast, the surprising result of luminescence quenching of the bright exciton state on the same plasmonic nanostructure is due to a rather unique electronic structure of WSe 2 : the existence of a dark state below the bright exciton state.

  5. Prognostic value of contrast-enhanced MR mammography in patients with breast cancer.

    PubMed

    Fischer, U; Kopka, L; Brinck, U; Korabiowska, M; Schauer, A; Grabbe, E

    1997-01-01

    The objective of this study was to evaluate the prognostic value of contrast-enhanced MR mammography in patients with breast cancer. A total of 190 patients with breast cancer (37 noninvasive carcinomas, 153 invasive carcinomas) underwent dynamic contrast-enhanced MR mammography preoperatively. Using 1.5-T unit, T1-weighted sequences (2D FLASH) were obtained repeatedly one time before and five times after IV administration of 0.1 mmol gadopentetate-dimeglumine per kilogram body weight. The findings on MR imaging were correlated with histopathologically defined prognostic factors (histological type, tumor size, tumor grading, metastasis in lymph nodes). In addition, immunohistochemically defined prognostic factors (c-erbB-1, c-erbB-2, p53, Ki-67) were correlated with the signal increase on MR mammogram in 40 patients. There was no significant correlation between the findings on MR mammography and the histopathological type of carcinoma, the grading, and the lymphonodular status. Noninvasive carcinomas showed a higher rate of moderate (38 %) or low (27 %) enhancement on MR imaging than invasive carcinomas (6 and 3 %). The results on MR mammography and the results of immunohistochemical stainings did not correlate significantly. Noninvasive carcinomas showed significantly lower enhancement than invasive carcinomas. However, the signal behavior of contrast-enhanced MR mammography is not related to established histopathological prognostic parameters as subtyping, grading, nodal status, and the expression of certain oncogenes/tumor suppressor genes.

  6. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  7. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  8. Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State

    PubMed Central

    Amin, Shilu; Donaldson, Ian J.; Zannino, Denise A.; Hensman, James; Rattray, Magnus; Losa, Marta; Spitz, François; Ladam, Franck; Sagerström, Charles; Bobola, Nicoletta

    2015-01-01

    Summary Hox transcription factors (TFs) are essential for vertebrate development, but how these evolutionary conserved proteins function in vivo remains unclear. Because Hox proteins have notoriously low binding specificity, they are believed to bind with cofactors, mainly homeodomain TFs Pbx and Meis, to select their specific targets. We mapped binding of Meis, Pbx, and Hoxa2 in the branchial arches, a series of segments in the developing vertebrate head. Meis occupancy is largely similar in Hox-positive and -negative arches. Hoxa2, which specifies second arch (IIBA) identity, recognizes a subset of Meis prebound sites that contain Hox motifs. Importantly, at these sites Meis binding is strongly increased. This enhanced Meis binding coincides with active enhancers, which are linked to genes highly expressed in the IIBA and regulated by Hoxa2. These findings show that Hoxa2 operates as a tissue-specific cofactor, enhancing Meis binding to specific sites that provide the IIBA with its anatomical identity. PMID:25640223

  9. [Low-molecular-weight autoregulatory factors in bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum].

    PubMed

    Loĭko, N G; Kozlova, A N; Osipov, G A; El'-Registan, G I

    2002-01-01

    The haloalkaliphilic, lithoautotrophic, sulfur-oxidizing gram-negative bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum were found to possess a special system for the autoregulation of their growth. The system includes the extracellular autoinducers of anabiosis (the d1 factor) and autolysis (the d2 factor). The principal components of the d1 factor are alkylhydroxybenzenes. The principal components of the d2 factor are free unsaturated fatty acids dominated by oleic acid isomers. Like the respective autoregulators of neutrophilic bacteria, the d1 factor of haloalkaliphilic bacteria presumably controls their growth and transition to a anabiotic state, while the d2 factor controls autolytic processes. Alkylhydroxybenzenes of both microbial and chemical origin were found to influence bacterial respiration. The low-molecular-weight osmoprotectant glycine betaine enhanced the thermostability of trypsin. This suggests that glycine betaine, like the d1 factor, serves as a molecular chaperone.

  10. Enhancing healthcare process design with human factors engineering and reliability science, part 1: setting the context.

    PubMed

    Boston-Fleischhauer, Carol

    2008-01-01

    The design and implementation of efficient, effective, and safe processes are never-ending challenges in healthcare. Less than optimal performance levels and rising concerns about patient safety suggest that traditional process design methods are insufficient to meet design requirements. In this 2-part series, the author presents human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare. An examination of these theories, application approaches, and examples are presented.

  11. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  12. Textual Enhancement of Two L2 Arabic Forms: A Classroom-Based Study

    ERIC Educational Resources Information Center

    Park, Eun Sung; Nassif, Lama

    2014-01-01

    Research on textual enhancement (TE) has given rise to several factors that may play a role in generating learners' noticing of target forms, one of which pertains to the nature of the target form(s). In particular, results have suggested that learners are more likely to notice more meaning-bearing forms than less meaning-bearing forms.…

  13. Employer Supported Caregiver Programs: The Good News and the Bad News.

    ERIC Educational Resources Information Center

    Liebig, Phoebe S.

    This document consists of a series of tables that display data derived from a survey of 33 companies that provide employer supported caregiver programs for the elderly. The tables outline the following information: (1) factors enhancing employer-supported eldercare development; (2) factors inhibiting employer-supported eldercare development; (3)…

  14. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Holly A., E-mail: hport001@umaryland.edu; Molecular Medicine Program, University of Maryland School of Medicine, Baltimore, MD 21201; Carey, Gregory B., E-mail: gcarey@som.umaryland.edu

    2012-08-15

    The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression ofmore » IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. -- Highlights: Black-Right-Pointing-Pointer IRS1 enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. Black-Right-Pointing-Pointer This sensitivity is abrogated by the expression of IRS2. Black-Right-Pointing-Pointer Expressing IRS1 in 32D cells increased levels of Annexin A2. Black-Right-Pointing-Pointer Both IRS1 and Annexin A2 were located in cytoplasmic and membrane fractions. Black-Right-Pointing-Pointer Decreasing Annexin A2 in 32D-IRS1 cells abated their sensitivity to chemotherapy.« less

  15. Connexin43 Potentiates Osteoblast Responsiveness to Fibroblast Growth Factor 2 via a Protein Kinase C-Delta/Runx2–dependent Mechanism

    PubMed Central

    Lima, Florence; Niger, Corinne; Hebert, Carla

    2009-01-01

    In this study, we examine the role of the gap junction protein, connexin43 (Cx43), in the transcriptional response of osteocalcin to fibroblast growth factor 2 (FGF2) in MC3T3 osteoblasts. By luciferase reporter assays, we identify that the osteocalcin transcriptional response to FGF2 is markedly increased by overexpression of Cx43, an effect that is mediated by Runx2 via its OSE2 cognate element, but not by a previously identified connexin-responsive Sp1/Sp3-binding element. Furthermore, disruption of Cx43 function with Cx43 siRNAs or overexpression of connexin45 markedly attenuates the response to FGF2. Inhibition of protein kinase C delta (PKCδ) with rottlerin or siRNA-mediated knockdown abrogates the osteocalcin response to FGF2. Additionally, we show that upon treatment with FGF2, PKCδ translocates to the nucleus, PKCδ and Runx2 are phosphorylated and these events are enhanced by Cx43 overexpression, suggesting that the degree of activation is enhanced by increased Cx43 levels. Indeed, chromatin immunoprecipitations of the osteocalcin proximal promoter with antibodies against Runx2 demonstrate that the recruitment of Runx2 to the osteocalcin promoter in response to FGF2 treatment is dramatically enhanced by Cx43 overexpression. Thus, Cx43 plays a critical role in regulating the ability of osteoblasts to respond to FGF2 by impacting PKCδ and Runx2 function. PMID:19339281

  16. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.

  17. Measuring ability to enhance and suppress emotional expression: The Flexible Regulation of Emotional Expression (FREE) Scale.

    PubMed

    Burton, Charles L; Bonanno, George A

    2016-08-01

    Flexibility in self-regulatory behaviors has proved to be an important quality for adjusting to stressful life events and requires individuals to have a diverse repertoire of emotion regulation abilities. However, the most commonly used emotion regulation questionnaires assess frequency of behavior rather than ability, with little evidence linking these measures to observable capacity to enact a behavior. The aim of the current investigation was to develop and validate a Flexible Regulation of Emotional Expression (FREE) Scale that measures a person's ability to enhance and suppress displayed emotion across an array of hypothetical contexts. In Studies 1 and 2, a series of confirmatory factor analyses revealed that the FREE Scale consists of 4 first-order factors divided by regulation and emotional valence type that can contribute to 2 higher order factors: expressive enhancement ability and suppression ability. In Study 1, we also compared the FREE Scale to other commonly used emotion regulation measures, which revealed that suppression ability is conceptually distinct from suppression frequency. In Study 3, we compared the FREE Scale with a composite of traditional frequency-based indices of expressive regulation to predict performance in a previously validated emotional modulation paradigm. Participants' enhancement and suppression ability scores on the FREE Scale predicted their corresponding performance on the laboratory task, even when controlling for baseline expressiveness. These studies suggest that the FREE Scale is a valid and flexible measure of expressive regulation ability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Applying the Technology Acceptance Model and flow theory to Cyworld user behavior: implication of the Web2.0 user acceptance.

    PubMed

    Shin, Dong-Hee; Kim, Won-Yong; Kim, Won-Young

    2008-06-01

    This study explores attitudinal and behavioral patterns when using Cyworld by adopting an expanded Technology Acceptance Model (TAM). A model for Cyworld acceptance is used to examine how various factors modified from the TAM influence acceptance and its antecedents. This model is examined through an empirical study involving Cyworld users using structural equation modeling techniques. The model shows reasonably good measurement properties and the constructs are validated. The results not only confirm the model but also reveal general factors applicable to Web2.0. A set of constructs in the model can be the Web2.0-specific factors, playing as enhancing factor to attitudes and intention.

  19. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseva, Daria; Hannover Medical School, Hannover; Rizvanov, Albert A.

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignantmore » transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.« less

  20. Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Mengwei; Huang, Chenglin; Wang, Cheng

    Highlights: •Rg3 is an ergogenic aid. •Rg3 improves mitochondrial antioxidant capacity. •Rg3 regulates mitochondria dynamic remodeling. •Rg3 alone matches some the benefits of aerobic exercise. -- Abstract: Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissuemore » of Sprague–Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.« less

  1. Shape-Independent Limits to Near-Field Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Miller, Owen D.; Johnson, Steven G.; Rodriguez, Alejandro W.

    2015-11-01

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ |2/Im χ , optimally mediated by near-field photon transfer proportional to 1 /d2 across a separation distance d . Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.

  2. Improved light output of plastic scintillator by a modified self-assembled photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhu, Zhichao; Liu, Bo; Cheng, Chuanwei; Liu, Jinliang; Ruan, Jinlu; Zhang, Zhongbin; Ouyang, Xiaoping; Gu, Mu; Chen, Hong

    2017-11-01

    In this investigation, we have demonstrated that a modified self-assembled photonic crystal with conformal high refractive index material TiO2 can achieve a great enhancement of light extraction efficiency. A 2.26 fold wavelength- and angle-integrated enhancement ratio can be achieved. The conformal layer increases the number of leaky modes and thus improve the extraction efficiency. The enhancement is attributed to the leaky modes based on the individual microspheres with conformal layer. Their low quality factors with a broadband characteristic are advantageous to the broadband enhancement for the emission spectra of plastic scintillator. Furthermore, the dense conformal layers have excellent combination with the self-assembled microspheres and the whole preparation process cannot destroy the plastic scintillator, which is beneficial to the practical application.

  3. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  4. Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma.

    PubMed

    Zhang, Yujian; Wang, Hui; Zhang, Jin; Lv, Jianwei; Huang, Yiran

    2013-04-01

    Adapting to hypoxic stress is pivotal in tumor progression and determining tumor malignancy. The transcriptional factor hypoxia-inducible factor (HIF) is crucial in modulating tumorous hypoxic responses through altering cell energy metabolism, which includes the modification of glucose and lipid metabolism-associated gene expression. Stearoyl-CoA desaturase-1 (SCD1) is the main isoform of SCDs, the rate-limiting enzymes in the biosynthesis of monounsaturated fatty acids from saturated fatty acids, which is extensively activated in cancer progression. In this study, we found that SCD1 and HIF-2α were overexpressed in human clear cell renal cell carcinoma (ccRCC) tissues and ccRCC cell lines, and were upregulated in the 786-0 ccRCC cell line under hypoxia. Knockdown of SCD1 or HIF-2α impacted the other's expression. Enhancing SCD1 resulted in HIF-2α upregulation, which could be blocked by inhibiting the PI3K/Akt pathway. Deficiency of SCD1 or HIF-2α in 768-0 cells led to apoptosis, less colony formation ability, and decreased cell migration. More obvious effects were observed in 786-0 cells with double SCD1 and HIF-2α knockdown. These results indicate a PI3K/Akt-mediated loop between SCD1 and HIF-2α that mutually enhances their protein levels. Both SCD1 and HIF-2α are critical to promoting tumorigenesis by synergistically acting on maintaining cell survival, triggering cell migration, and enhancing the colony formation ability of cancer cells. © 2013 Japanese Cancer Association.

  5. Enhancing Isoprene Production by Genetic Modification of the 1-Deoxy-d-Xylulose-5-Phosphate Pathway in Bacillus subtilis▿ †

    PubMed Central

    Xue, Junfeng; Ahring, Birgitte K.

    2011-01-01

    To enhance the production of isoprene, a volatile 5-carbon hydrocarbon, in the Gram-positive spore-forming rod-shaped bacterium Bacillus subtilis, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr) were overexpressed in B. subtilis DSM 10. For the strain that overexpresses Dxs, the yield of isoprene was increased 40% over that by the wild-type strain. In the Dxr overexpression strain, the level of isoprene production was unchanged. Overexpression of Dxr together with Dxs showed an isoprene production level similar to that of the Dxs overproduction strain. The effects of external factors, such as stress factors including heat (48°C), salt (0.3 M NaCl), ethanol (1%), and oxidative (0.005% H2O2) stress, on isoprene production were further examined. Heat, salt, and H2O2 induced isoprene production; ethanol inhibited isoprene production. In addition, induction and repression effects are independent of SigB, which is the general stress-responsive alternative sigma factor of Gram-positive bacteria. PMID:21296950

  6. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  7. Enhanced CT images by the wavelet transform improving diagnostic accuracy of chest nodules.

    PubMed

    Guo, Xiuhua; Liu, Xiangye; Wang, Huan; Liang, Zhigang; Wu, Wei; He, Qian; Li, Kuncheng; Wang, Wei

    2011-02-01

    The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer's recall. The Mann-Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal-Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = -2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules.

  8. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology of internally mixed light absorbing carbon aerosols must be explicitly considered in climate radiation balance.

  9. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  10. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, A.; Gosztola, D.; Schiller, T.

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less

  11. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajh, T.; Musumeci, A.; Gosztola, D.

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less

  12. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    PubMed

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  13. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    The retention factor is the percentage of injected CO2 that is naturally retained in the reservoir. Retention factors were also estimated in this study. For clastic reservoirs, 90 percent of the estimated retention factors were between 21.7 and 32.1 percent, and for carbonate reservoirs, 90 percent were between 23.7 and 38.2 percent. The respective median values were 22.9 for clastic reservoirs and 26.1 for carbonate reservoirs. Both distributions were right skewed. The recovery and retention factors that were calculated are consistent with the corresponding factors reported in the literature.

  14. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model.

    PubMed

    Shih, Hsi-Chien; Kuan, Yung-Hui; Shyu, Bai-Chung

    2017-07-01

    Approximately 7% to 10% of patients develop a chronic pain syndrome after stroke. This chronic pain condition is called central poststroke pain (CPSP). Recent studies have observed an abnormal increase in the secretion of brain-derived neurotrophic factor (BDNF) in spinal cord tissue after spinal cord injury. An animal model of CPSP was established by an intrathalamus injection of collagenase. Mechanical and thermal allodynia was induced after lesions of the thalamic ventral basal complex in rats. Four weeks after the injection, the number of neurons decreased, the number of astrocytes, microglia, and P2X4 receptors increased, and BDNF mRNA expression increased in the brain lesion area. Nociceptive activity in the medial thalamus (MT) and the coherence coefficient of spontaneous field potential oscillations in the anterior cingulate cortex were enhanced in CPSP animals, and these enhancements were blocked by an acute injection of TrkB-Fc and TrkB antagonist Tat Cyclotraxin-B. Instead of being inhibited by the γ-aminobutyric acid (GABA) system in normal rats, multiunit activity in the MT was enhanced after a microinjection of muscimol, a GABAA receptor agonist, in CPSP animals. After CPSP, BDNF expression was enhanced in the MT, whereas the expression of GABAA channels and the cotransporter KCC2 decreased in the same area. These findings suggest that neuronal plasticity in the MT that was induced by BDNF overexpression after the thalamic lesion was a key factor in CPSP.

  15. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.

    PubMed

    Kokate, Shrikant Babanrao; Dixit, Pragyesh; Das, Lopamudra; Rath, Suvasmita; Roy, Arjama Dhar; Poirah, Indrajit; Chakraborty, Debashish; Rout, Niranjan; Singh, Shivaram Prasad; Bhattacharyya, Asima

    2018-04-24

    Gastric epithelial cells infected with Helicobacter pylori acquire highly invasive and metastatic characteristics. The seven in absentia homolog (Siah)2, an E3 ubiquitin ligase, is one of the major proteins that induces invasiveness of infected gastric epithelial cells. We find that p300-driven acetylation of Siah2 at lysine 139 residue stabilizes the molecule in infected cells, thereby substantially increasing its efficiency to degrade prolyl hydroxylase (PHD)3 in the gastric epithelium. This enhances the accumulation of an oncogenic transcription factor hypoxia-inducible factor 1α (Hif1α) in H. pylori-infected gastric cancer cells in normoxic condition and promotes invasiveness of infected cells. Increased acetylation of Siah2, Hif1α accumulation, and the absence of PHD3 in the infected human gastric metastatic cancer biopsy samples and in invasive murine gastric cancer tissues further confirm that the acetylated Siah2 (ac-Siah2)-Hif1α axis is crucial in promoting gastric cancer invasiveness. This study establishes the importance of a previously unrecognized function of ac-Siah2 in regulating invasiveness of H. pylori-infected gastric epithelial cells.-Kokate, S. B., Dixit, P., Das, L., Rath, S., Roy, A. D., Poirah, I., Chakraborty, D., Rout, N., Singh, S. P., Bhattacharyya, A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.

  16. Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.

    PubMed Central

    Lo, W Y; Ting, L P

    1994-01-01

    Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237

  17. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter.

    PubMed

    Hagstrom, J N; Couto, L B; Scallan, C; Burton, M; McCleland, M L; Fields, P A; Arruda, V R; Herzog, R W; High, K A

    2000-04-15

    Hemophilia B is caused by the absence of functional coagulation factor IX (F.IX) and represents an important model for treatment of genetic diseases by gene therapy. Recent studies have shown that intramuscular injection of an adeno-associated viral (AAV) vector into mice and hemophilia B dogs results in vector dose-dependent, long-term expression of biologically active F.IX at therapeutic levels. In this study, we demonstrate that levels of expression of approximately 300 ng/mL (6% of normal human F.IX levels) can be reached by intramuscular injection of mice using a 2- to 4-fold lower vector dose (1 x 10(11) vector genomes/mouse, injected into 4 intramuscular sites) than previously described. This was accomplished through the use of an improved expression cassette that uses the cytomegalovirus (CMV) immediate early enhancer/promoter in combination with a 1.2-kilobase portion of human skeletal actin promoter. These results correlated with enhanced levels of F.IX transcript and secreted F.IX protein in transduced murine C2C12 myotubes. Systemic F.IX expression from constructs containing the CMV enhancer/promoter alone was 120 to 200 ng/mL in mice injected with 1 x 10(11) vector genomes. Muscle-specific promoters performed poorly for F.IX transgene expression in vitro and in vivo. However, the incorporation of a sequence from the alpha-skeletal actin promoter containing at least 1 muscle-specific enhancer and 1 enhancer-like element further improved muscle-derived expression of F.IX from a CMV enhancer/promoter-driven expression cassette over previously published results. These findings will allow the design of a clinical protocol for therapeutic levels of F.IX expression with lower vector doses, thus enhancing efficacy and safety of the protocol. (Blood. 2000;95:2536-2542)

  18. Early interleukin-6 enhances hepatic ketogenesis in APPSWE/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factor κB p65.

    PubMed

    Shi, Le; Zhao, Daina; Hou, Chen; Peng, Yunhua; Liu, Jing; Zhang, Shuangxi; Liu, Jiankang; Long, Jiangang

    2017-08-01

    Alzheimer's disease (AD) is considered a multifactorial disease that affects the central nervous system and periphery. A decline in brain glucose metabolism is an early feature of AD and is accompanied by a phenotypic shift from aerobic glycolysis to ketogenesis. The liver is responsible for the generation of the ketone body. However, the mechanism that underlies hepatic ketogenesis in AD remains unclear. Here, we investigated hepatic ketogenesis during the early stage of AD pathogenesis in amyloid precursor protein (APP SWE ) and presenilin (PSEN1dE9) (APP/PS1) mice. We observed that β-hydroxybutyric acid was increased in the brain of the postmortem mild cognitive impairment and AD subjects and in 3-month-old APP/PS1 AD mice. A rise in 3-hydroxy-3-methylglutary-CoA synthase 2 (HMGCS2), a key enzyme for catalyzing β-hydroxybutyric acid production, was observed in early AD mice. We further showed that proinflammatory cytokines were activated in the liver prior to their activation in the brain of 3-month-old APP/PS1 mice. Among the cytokines, interleukin-6 significantly activated HMGCS2 through the binding of nuclear factor κB (NF-κB) p65 to the HMGCS2 promoter. Additionally, interleukin-6 stimulated phosphorylation of p38 mitogen activated protein kinases, an upstream molecule for NF-κB p65 signaling. We have demonstrated that a hepatic inflammatory factor enhances ketogenesis through HMGCS2 signaling activation by p38/NF-κB p65. These results provide a novel peripheral metabolic mechanism for enhanced ketone production and suggest a plausible early AD phenotype to diagnose AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood

    2004-12-01

    Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.

  20. Radiative lifetimes for 29 N2+ and implications for planetary escape and isotope enrichment

    NASA Astrophysics Data System (ADS)

    Guberman, Steven L.

    2017-07-01

    The Viking missions to Mars found that 15N/14N is enhanced by a factor of 1.62 compared to Earth and it was suggested that the cause was dissociative recombination (DR) of N2+. The high kinetic energy imparted to N in DR drives atmospheric escape. More recent models of the Martian ionosphere show that much of the N2+ is vibrationally excited. If DR of vibrationally excited 29N2+ is important, the energetics are such that the isotope enhancement would be greatly reduced. Here I show that at the Mars exobase electron temperature and density, the excited vibrational levels of 29N2+ radiate before they can recombine. The isotope enhancement arising from DR is due entirely to DR of 28N2+ with a small contribution to 14N escape arising from DR of the ground vibrational level of 29N2+.

  1. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  2. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3′ Immunoglobulin Heavy Chain Regulatory Region

    PubMed Central

    Salisbury, Richard L.; Sulentic, Courtney E. W.

    2015-01-01

    Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3′Igh regulatory region (3′IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3′IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3′IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3′IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3′IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3′IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3′IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels. PMID:26377645

  3. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  4. Casein kinase 2 (CK2) increases survivin expression via enhanced β-catenin–T cell factor/lymphoid enhancer binding factor-dependent transcription

    PubMed Central

    Tapia, J. C.; Torres, V. A.; Rodriguez, D. A.; Leyton, L.; Quest, A. F. G.

    2006-01-01

    Increased expression of casein kinase 2 (CK2) is associated with hyperproliferation and suppression of apoptosis in cancer. Mutations in the tumor suppressor APC (adenomatous polyposis coli) are frequent in colon cancer and often augment β-catenin–T cell factor (Tcf)/lymphoid enhancer binding factor (Lef)-dependent transcription of genes such as c-myc and cyclin-D1. CK2 has also been implicated recently in the regulation of β-catenin stability. To identify mechanisms by which CK2 promotes survival, effects of the specific CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole were assessed. TBB and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole significantly decreased proliferation and increased apoptosis of HT29(US) colon cancer cells. RT-PCR and immunoblot analysis revealed that both inhibitors decreased survivin mRNA and protein levels in HT29(US) cells. Similar effects were observed with TBB in human DLD-1 and SW-480 colorectal cells as well as ZR-75 breast cancer cells and HEK-293T embryonic kidney cells. Expression of GFP–CK2α in HEK-293T cells resulted in β-catenin–Tcf/Lef-dependent up-regulation of survivin and increased resistance to anticancer drugs. Augmented β-catenin–Tcf/Lef-dependent transcription and resistance to apoptosis observed upon GFP–CK2α expression were abolished by TBB. Alternatively, HEK-293T cells expressing GFP–survivin were resistant to TBB-induced apoptosis. Finally, siRNA-mediated down-regulation of CK2α in HEK-293T cells coincided with reduced β-catenin and survivin levels. Taken together, these results suggest that CK2 kinase activity promotes survival by increasing survivin expression via β-catenin–Tcf/Lef-mediated transcription. Hence, selective CK2 inhibition or down-regulation in tumors may provide an attractive opportunity for the development of novel cancer therapies. PMID:17005722

  5. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    PubMed

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing radiation.

  6. Factors modulating cottongrass seedling growth stimulation to enhanced nitrogen and carbon dioxide: compensatory tradeoffs in leaf dynamics and allocation to meet potassium-limited growth.

    PubMed

    Siegenthaler, Andy; Buttler, Alexandre; Grosvernier, Philippe; Gobat, Jean-Michel; Nilsson, Mats B; Mitchell, Edward A D

    2013-02-01

    Eriophorum vaginatum is a characteristic species of northern peatlands and a keystone plant for cutover bog restoration. Understanding the factors affecting E. vaginatum seedling establishment (i.e. growth dynamics and allocation) under global change has practical implications for the management of abandoned mined bogs and restoration of their C-sequestration function. We studied the responses of leaf dynamics, above- and belowground biomass production of establishing seedlings to elevated CO(2) and N. We hypothesised that nutrient factors such as limitation shifts or dilutions would modulate growth stimulation. Elevated CO(2) did not affect biomass, but increased the number of young leaves in spring (+400 %), and the plant vitality (i.e. number of green leaves/total number of leaves) (+3 %), both of which were negatively correlated to [K(+)] in surface porewater, suggesting a K-limited production of young leaves. Nutrient ratios in green leaves indicated either N and K co-limitation or K limitation. N addition enhanced the number of tillers (+38 %), green leaves (+18 %), aboveground and belowground biomass (+99, +61 %), leaf mass-to-length ratio (+28 %), and reduced the leaf turnover (-32 %). N addition enhanced N availability and decreased [K(+)] in spring surface porewater. Increased tiller and leaf production in July were associated with a doubling in [K(+)] in surface porewater suggesting that under enhanced N production is K driven. Both experiments illustrate the importance of tradeoffs in E. vaginatum growth between: (1) producing tillers and generating new leaves, (2) maintaining adult leaves and initiating new ones, and (3) investing in basal parts (corms) for storage or in root growth for greater K uptake. The K concentration in surface porewater is thus the single most important factor controlling the growth of E. vaginatum seedlings in the regeneration of selected cutover bogs.

  7. Statistical validation and an empirical model of hydrogen production enhancement found by utilizing passive flow disturbance in the steam-reformation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Paul A.; Liao, Chang-hsien

    2007-11-15

    A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less

  8. Potential interaction between the GARS-AIRS-GART Gene and CP2/LBP-1c/LSF transcription factor in Down syndrome-related Alzheimer disease.

    PubMed

    Banerjee, Disha; Nandagopal, Krishnadas

    2007-12-01

    (1) GARS-AIRS-GART is an important candidate gene in studies of Down syndrome (DS)-related Alzheimer's disease (AD), due to its chromosomal localization (21q22.1) in the Down syndrome critical region, involvement in de novo purine biosynthesis, and over-expression in DS brain. The aim of this study was to identify factor(s) likely to enhance transcription of GARS-AIRS-GART in DS-related AD. (2) Based on a bio-informatics approach, the PromoterInspector, Promoter Scan II, and EBI toolbox CpG plot software programs were used to identify GARS-AIRS-GART sequences important for gene transcription. Transcription factor binding motifs within these regions were mapped with the help of the MatInspector and TFSEARCH programs. Factors implicated in neurodevelopment or neurodegeneration were the focus of attention, and mining of human (T1Dbase) and murine (GNF) expression databases revealed information on the regional distribution of these factors and their relative abundance vis-a-vis GARS-AIRS-GART. (3) The Leader-binding protein 1-c (LBP-1c/CP2/LSF) emerged as a promising candidate from these studies, as MatInspector and TFSEARCH analyses revealed a total of four CP2 binding sites with potential for functional interaction(s) within the promoter and CpG islands of GARS-AIRS-GART. Furthermore, two of these sites harbor sequences for methylation-sensitive restriction enzymes, which suggest that methylation status may, in part, regulate CP2-mediated transcription of GARS-AIRS-GART. A search of T1Dbase and GNF expression databases reveals co-expression of CP2 and GARS-AIRS-GART in brain regions relevant to DS-related AD. (4) The virtual screen identified CP2/LBP-1c/LSF as a factor that likely mediates enhanced transcription of GARS-AIRS-GART in DS-related AD.

  9. Pigment epithelium-derived factor stimulates skeletal muscle glycolytic activity through NADPH oxidase-dependent reactive oxygen species production.

    PubMed

    Carnagarin, Revathy; Carlessi, Rodrigo; Newsholme, Philip; Dharmarajan, Arun M; Dass, Crispin R

    2016-09-01

    Pigment epithelium-derived factor is a multifunctional serpin implicated in insulin resistance in metabolic disorders. Recent evidence suggests that exposure of peripheral tissues such as skeletal muscle to PEDF has profound metabolic consequences with predisposition towards chronic conditions such as obesity, type 2 diabetes, metabolic syndrome and polycystic ovarian syndrome. Chronic inflammation shifts muscle metabolism towards increased glycolysis and decreased oxidative metabolism. In the present study, we demonstrate a novel effect of PEDF on cellular metabolism in mouse cell line (C2C12) and human primary skeletal muscle cells. PEDF addition to skeletal muscle cells induced enhanced phospholipase A2 activity. This was accompanied with increased production of reactive oxygen species in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner that triggered a shift towards a more glycolytic phenotype. Extracellular flux analysis and glucose consumption assays demonstrated that PEDF treatment resulted in enhanced glycolysis but did not change mitochondrial respiration. Our results demonstrate that skeletal muscle cells express a PEDF-inducible oxidant generating system that enhances glycolysis but is sensitive to antioxidants and NADPH oxidase inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity.

    PubMed

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z; Sastry, Sarita K

    2014-02-01

    Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.

  11. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    PubMed Central

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  12. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3.

    PubMed

    Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean

    2010-11-01

    The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.

  13. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.

    PubMed

    Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J

    2016-01-01

    Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers.

  14. Lysophosphatidic acid stimulates epidermal growth factor-family ectodomain shedding and paracrine signaling from human lung fibroblasts.

    PubMed

    Shiomi, Tetsuya; Boudreault, Francis; Padem, Nurcicek; Higashiyama, Shigeki; Drazen, Jeffrey M; Tschumperlin, Daniel J

    2011-01-01

    Lysophospatidic acid (LPA) is a bioactive lipid mediator implicated in tissue repair and wound healing. It mediates diverse functional effects in fibroblasts, including proliferation, migration and contraction, but less is known about its ability to evoke paracrine signaling to other cell types involved in wound healing. We hypothesized that human pulmonary fibroblasts stimulated by LPA would exhibit ectodomain shedding of epidermal growth factor receptor (EGFR) ligands that signal to lung epithelial cells. To test this hypothesis, we used alkaline phosphatase-tagged EGFR ligand plasmids transfected into lung fibroblasts, and enzyme-linked immunosorbent assays to detect shedding of native ligands. LPA induced shedding of alkaline phosphatase-tagged heparin-binding epidermal growth factor (HB-EGF), amphiregulin, and transforming growth factor-a; non-transfected fibroblasts shed amphiregulin and HBEGF under baseline conditions, and increased shedding of HB-EGF in response to LPA. Treatment of fibroblasts with LPA resulted in elevated phosphorylation of extracellular signal-regulated kinase 1/2, enhanced expression of mRNA for c-fos, HB-EGF and amphiregulin, and enhanced proliferation at 96 hours. However, none of these fibroblast responses to LPA required ectodomain shedding or EGFR activity. To test the ability of LPA to stimulate paracrine signaling from fibroblasts, we transferred conditioned medium from LPA-stimulated cells, and found enhanced EGFR and extracellular signal-regulated kinase 1/2 phosphorylation in reporter A549 cells in excess of what could be accounted for by transferred LPA alone. These data show that LPA mediates EGF-family ectodomain shedding, resulting in enhanced paracrine signaling from lung fibroblasts to epithelial cells. © 2011 by the Wound Healing Society.

  15. Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles.

    PubMed

    Yamamoto, Shoshiro; Kato, Akari; Sakurai, Yu; Hada, Tomoya; Harashima, Hideyoshi

    2017-04-10

    The vascular endothelial growth factor (VEGF)-mediated enhancement in vascular permeability is considered to be a major factor in tumor-targeting delivery via the enhanced permeability and retention (EPR) effect. We previously reported that the silencing of the endothelial VEGF receptor (VEGFR2) by a liposomal siRNA system (RGD-MEND) resulted in an enhanced intratumoral distribution of polyethylene glycol (PEG)-modified liposomes (LPs) in a renal cell carcinoma, a type of hypervascularized cancer, although the inhibition of VEGF signaling would be expected to decrease the permeability of the tumor vasculature. We herein report that the enhancement in the intratumoral distribution of LPs by VEGFR2 inhibition was dependent on the vascular type of the tumor (stroma vessel type; SV and tumor vessel type; TV). In the case of TV-type tumors (renal cell carcinoma and hepatocellular carcinoma), inhibiting VEGFR2 improved intratumoral distribution, while no effect was found in the case of SV-type tumors (colorectal cancer). Moreover, through a comparison of the intratumoral distribution of LPs with a variety of physical properties (100nm vs 400nm, neutral vs negative vs positive), VEGFR2 inhibition was found to alter the tumor microenvironment, including heparan sulfate proteoglycans (HSPGs). In addition, the results regarding the effect of the size of nanoparticles indicated that VEGFR2 inhibition improved the penetration of nanoparticles through the vessel wall, but not via permeability, suggesting the involvement of an unknown mechanism. Our findings suggest that a combination of anti-angiogenic therapy and delivery via the EPR effect would be useful in certain cases, and that altering the tumor microenvironment by VEGFR2 blockade has a drastic effect on the intratumoral distribution of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and inmore » particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally Melnitchouk; John Tjon

    We compute the corrections from two-photon and \\gamma-Z exchange in parity-violating elastic electron--proton scattering, used to extract the strange form factors of the proton. We use a hadronic formalism that successfully reconciled the earlier discrepancy in the proton's electron to magnetic form factor ratio, suitably extended to the weak sector. Implementing realistic electroweak form factors, we find effects of the order 2-3% at Q^2 <~ 0.1 GeV^2, which are largest at backward angles, and have a strong Q^2 dependence at low Q^2. Two-boson contributions to the weak axial current are found to be enhanced at low Q^2 and for forwardmore » angles. We provide corrections at kinematics relevant for recent and upcoming parity-violating experiments.« less

  18. General introduction and recovery factors

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    IntroductionThe U.S. Geological Survey (USGS) compared methods for estimating an incremental recovery factor (RF) for the carbon dioxide enhanced oil recovery (CO2-EOR) process involving the injection of CO2 into oil reservoirs. This chapter first provides some basic information on the RF, including its dependence on various reservoir and operational parameters, and then discusses the three development phases of oil recovery—primary, second­ary, and tertiary (EOR). It ends with a brief discussion of the three approaches for estimating recovery factors, which are detailed in subsequent chapters.

  19. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less

  20. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation

    PubMed Central

    Asnani, Mukta; Pestova, Tatyana V.; Hellen, Christopher U.T.

    2016-01-01

    The cadicivirus IRES diverges structurally from canonical Type 1 IRESs (e.g. poliovirus) but nevertheless also contains an essential GNRA tetraloop in a subdomain (d10c) that is homologous to poliovirus dIVc. In addition to canonical initiation factors, the canonical Type 1 and divergent cadicivirus IRESs require the same IRES trans-acting factor, poly(C)-binding protein 2 (PCBP2). PCBP2 has three KH domains and binds poliovirus IRES domain dIV in the vicinity of the tetraloop. How PCBP2 binds the cadicivirus IRES, and the roles of PCBP2 and the tetraloop in Type 1 IRES function are unknown. Here, directed hydroxyl radical probing showed that KH1 also binds near the cadicivirus tetraloop. KH2 and KH3 bind adjacently to an IRES subdomain (d10b) that is unrelated to dIV, with KH3 in an inverted orientation. KH3 is critical for PCBP2's binding to this IRES whereas KH1 is essential for PCBP2's function in promoting initiation. PCBP2 enforced the wild-type structure of d10c when it contained minor destabilizing substitutions, exposing the tetraloop. Strikingly, PCBP2 enhanced initiation on mutant IRESs that retained consensus GNRA tetraloops, whereas mutants with divergent sequences did not respond to PCBP2. These studies show that PCBP2 enables the IRES to exploit the GNRA tetraloop to enhance initiation. PMID:27387282

  1. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    PubMed

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  2. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed Central

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-01-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364

  3. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming

    PubMed Central

    Mohamed, Tamer M. A.; Stone, Nicole R.; Berry, Emily C.; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N.; Srivastava, Deepak

    2017-01-01

    Background Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) in situ represents a promising strategy for cardiac regeneration. A combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5 (GMT), can convert fibroblasts into iCMs, albeit with low efficiency in vitro. Methods We screened 5,500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. Results We found that a combination of the transforming growth factor (TGF)-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency eight-fold when added to GMT-overexpressing cardiac fibroblasts. The small-molecules also enhanced the speed and the quality of cell conversion, as we observed beating cells as early as 1 week after reprogramming compared to 6–8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared to those exposed to only GMT. Human cardiac reprogramming was similarly enhanced upon TGF-β and WNT inhibition and was achieved most efficiently with GMT plus Myocardin. Conclusions Thus, TGF-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. PMID:27834668

  4. Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft.

    PubMed

    Zarzana, Kyle J; Min, Kyung-Eun; Washenfelder, Rebecca A; Kaiser, Jennifer; Krawiec-Thayer, Mitchell; Peischl, Jeff; Neuman, J Andrew; Nowak, John B; Wagner, Nicholas L; Dubè, William P; St Clair, Jason M; Wolfe, Glenn M; Hanisco, Thomas F; Keutsch, Frank N; Ryerson, Thomas B; Brown, Steven S

    2017-10-17

    We report enhancements of glyoxal and methylglyoxal relative to carbon monoxide and formaldehyde in agricultural biomass burning plumes intercepted by the NOAA WP-3D aircraft during the 2013 Southeast Nexus and 2015 Shale Oil and Natural Gas Nexus campaigns. Glyoxal and methylglyoxal were measured using broadband cavity enhanced spectroscopy, which for glyoxal provides a highly selective and sensitive measurement. While enhancement ratios of other species such as methane and formaldehyde were consistent with previous measurements, glyoxal enhancements relative to carbon monoxide averaged 0.0016 ± 0.0009, a factor of 4 lower than values used in global models. Glyoxal enhancements relative to formaldehyde were 30 times lower than previously reported, averaging 0.038 ± 0.02. Several glyoxal loss processes such as photolysis, reactions with hydroxyl radicals, and aerosol uptake were found to be insufficient to explain the lower measured values of glyoxal relative to other biomass burning trace gases, indicating that glyoxal emissions from agricultural biomass burning may be significantly overestimated. Methylglyoxal enhancements were three to six times higher than reported in other recent studies, but spectral interferences from other substituted dicarbyonyls introduce an estimated correction factor of 2 and at least a 25% uncertainty, such that accurate measurements of the enhancements are difficult.

  5. Scale-model charge-transfer technique for measuring enhancement factors

    NASA Technical Reports Server (NTRS)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  6. Coherent Backscattering in the Cross-Polarized Channel

    NASA Technical Reports Server (NTRS)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  7. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season

    PubMed Central

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532

  8. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season.

    PubMed

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (G s) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved P N of lettuce plants in a high-temperature season by both improvement of G s to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.

  9. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    PubMed

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  10. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was not affected by the presence of mBMP2. The approach for growth factor binding and release from mineral coatings can be adapted to different materials and medical devices and provide a simple and adaptable mechanism for sustained release of single or dual growth factors.

  12. Enhancement of 2,3-Butanediol Production by Klebsiella oxytoca PTCC 1402

    PubMed Central

    Anvari, Maesomeh; Safari Motlagh, Mohammad Reza

    2011-01-01

    Optimal operating parameters of 2,3-Butanediol production using Klebsiella oxytoca under submerged culture conditions are determined by using Taguchi method. The effect of different factors including medium composition, pH, temperature, mixing intensity, and inoculum size on 2,3-butanediol production was analyzed using the Taguchi method in three levels. Based on these analyses the optimum concentrations of glucose, acetic acid, and succinic acid were found to be 6, 0.5, and 1.0 (% w/v), respectively. Furthermore, optimum values for temperature, inoculum size, pH, and the shaking speed were determined as 37°C, 8 (g/L), 6.1, and 150 rpm, respectively. The optimal combinations of factors obtained from the proposed DOE methodology was further validated by conducting fermentation experiments and the obtained results revealed an enhanced 2,3-Butanediol yield of 44%. PMID:21318172

  13. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  14. Signal Enhancement in HPLC/Micro-Coil NMR Using Automated Column Trapping

    PubMed Central

    Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel

    2008-01-01

    A new HPLC-NMR system is described that performs analytical separation, pre-concentration, and NMR spectroscopy in rapid succession. The central component of our method is the online pre-concentration sequence that improves the match between post-column analyte peak volume and the micro-coil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3, and back-flashed to the NMR micro-coil probe with 90% acetonitrile-D3/10% D2O. In order to assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (±1.2)-fold. Furthermore, we observed that pre-concentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (±2.2)-fold was attained injecting 100 μL solution of 0.2 mM (~4 μg) ibuprofen. PMID:17037915

  15. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans

    PubMed Central

    Namachivayam, Kopperuncholan; Coffing, Hayley P.; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L.; Blanco, Cynthia L.; Patel, Aloka L.; Meier, Paula P.; Garzon, Steven A.; Desai, Umesh R.

    2015-01-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20–40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk. PMID:26045614

  16. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy.

    PubMed

    Li, Mu; Wu, Xingda; Liu, Ning; Li, Xiaoying; Meng, Fanbin; Song, Shaowei

    2017-06-01

    Pancreatic cancer is one of the leading causes of cancer-related death worldwide. Activating transcription factor 2 (ATF2) is a multifunctional transcription factor, and is implicated in tumor progress, yet its role in pancreatic cancer remains unclear. In the present study, the level of ATF2 in pancreatic cancer tissues and the adjacent non-tumorous tissues was detected by quantitative real-time PCR and Western blot. The roles of ATF2 in the proliferation, cell cycle, and apoptosis of pancreatic cancer cells were investigated through ATF2 silencing, and the effect of ATF2 shRNA on the sensitivity of pancreatic cancer cells to gemcitabine, an anti-tumor drug, was explored. The results of our study showed that the ATF2 level in the pancreatic cancer tissues was higher than that in the adjacent non-tumorous tissues. Silencing of ATF2 was found to inhibit proliferation, arrest cell cycle at G1 phase and induce apoptosis in pancreatic cancer cells. Moreover, ATF2 silencing enhanced gemcitabine-induced growth-inhibition and apoptosis-induction effects in pancreatic cancer cells. In summary, silencing of ATF2 inhibited the growth of pancreatic cancer cells and enhanced the anti-tumor effects of gemcitabine, suggesting that ATF2 plays a pro-survival role in pancreatic cancer. Our results also propose that a high level of ATF2 may serve as a potential biomarker of pancreatic cancer, and that ATF2 may become a potential target for anti-tumor therapy. © 2017 International Federation for Cell Biology.

  17. Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming

    PubMed Central

    Islam, Mohammed M.; Smith, Derek K.; Niu, Wenze; Fang, Sanhua; Iqbal, Nida; Sun, Guoqiang; Shi, Yanhong; Zhang, Chun-Li

    2015-01-01

    Summary The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming. PMID:26607952

  18. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    PubMed Central

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm−1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m−1 K−2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat. PMID:26728992

  19. Convective heat transfer from circular cylinders located within perforated cylindrical shrouds

    NASA Technical Reports Server (NTRS)

    Daryabeigi, K.; Ash, R. L.

    1986-01-01

    The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.

  20. Plasmon enhanced fluorescence with aggregated shell-isolated nanoparticles.

    PubMed

    Osorio-Román, Igor O; Guerrero, Ariel R; Albella, Pablo; Aroca, Ricardo F

    2014-10-21

    Shell-isolated nanoparticles (SHINs) nanostructures provide a versatile substrate where the localized surface plasmon resonances (LSPRs) are well-defined. For SHINEF, the silver (or gold) metal core is protected by the SiO2 coating, which is thicker than the critical distance for minimum quenching by the metal. In the present work, it is shown that an increase in the SHINEF enhancement factor may be achieved by inducing SHIN aggregation with electrolytes in solution. The proof of concept is demonstrated using NaCl as aggregating agent, although other inorganic salts will also aggregate SHIN nanoparticles. As much as a 10-fold enhancement in the SHINEF enhancement factor (EF) may be achieved by tuning the electrolyte concentrations in solution. The SHINEF experiments include the study of the aggregation effect controlling gold SHIN's surface concentration via spraying. Au-SHINs are sprayed onto layer-by-layer (LbL) and Langmuir-Blodgett (LB) films, and samples are fabricated using fluorophores with low and also high quantum yield.

  1. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    PubMed

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  2. Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    PubMed Central

    Ganapathy, Suthakar; Chen, Qinghe; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2010-01-01

    Background Resveratrol (3, 4′, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. Methodology/Principal Findings Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. Conclusions/Significance These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer. PMID:21209944

  3. Extraordinary Magnetic Field Enhancement with Metallic Nanowire: Role of Surface Impedance in Babinet's Principle for Sub-Skin-Depth Regime

    NASA Astrophysics Data System (ADS)

    Koo, Sukmo; Kumar, M. Sathish; Shin, Jonghwa; Kim, Daisik; Park, Namkyoo

    2009-12-01

    We propose and analyze the “complementary” structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.

  4. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model.

    PubMed

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo

    2013-11-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.

  5. On the effectiveness of the thermoelectric energy filtering mechanism in low-dimensional superlattices and nano-composites

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Kosina, Hans; Neophytou, Neophytos

    2016-12-01

    Electron energy filtering has been suggested as a promising way to improve the power factor and enhance the ZT figure of merit of thermoelectric materials. In this work, we explore the effect that reduced dimensionality has on the success of the energy-filtering mechanism for power factor enhancement. We use the quantum mechanical non-equilibrium Green's function method for electron transport including electron-phonon scattering to explore 1D and 2D superlattice/nanocomposite systems. We find that, given identical material parameters, 1D channels utilize energy filtering more effectively than 2D as they: (i) allow one to achieve the maximal power factor for smaller well sizes/smaller grains which are needed to maximize the phonon scattering, (ii) take better advantage of a lower thermal conductivity in the barrier/boundary materials compared to the well/grain materials in both: enhancing the Seebeck coefficient; and in producing a system which is robust against detrimental random deviations from the optimal barrier design. In certain cases, we find that the relative advantage can be as high as a factor of 3. We determine that energy-filtering is most effective when the average energy of carrier flow varies the most between the wells and the barriers along the channel, an event which occurs when the energy of the carrier flow in the host material is low, and when the energy relaxation mean-free-path of carriers is short. Although the ultimate reason for these aspects, which cause a 1D system to see greater relative improvement than a 2D, is the 1D system's van Hove singularity in the density-of-states, the insights obtained are general and inform energy-filtering design beyond dimensional considerations.

  6. Experimental Investigation of Transverse Supersonic Gaseous Injection Enhancement Into Supersonic Flow

    DTIC Science & Technology

    1996-12-01

    Ramp AR 2........................................................ A.2 A. 9 . Test Section, No Injection or PME Ramp...B.2 B.8. Wide Ramp AR 1 ......................................................... B.2 B. 9 . Narrow Ramp AR 2...identified as a major near-field mixing factor.5 𔄀 While work has continued in transverse injection, 7𔄂 ’ 9 later studies sought to produce greater

  7. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  8. ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells

    PubMed Central

    Towfik, Alam Mohammad; Akiyama, Kosuke; Ohga, Noritaka; Shindoh, Masanobu; Hida, Yasuhiro; Minowa, Kazuyuki; Fujisawa, Toshiaki; Hida, Kyoko

    2017-01-01

    Reactive oxygen species (ROS) are unstable molecules that activate oxidative stress. Because of the insufficient blood flow in tumors, the tumor microenvironment is often exposed to hypoxic condition and nutrient deprivation, which induces ROS accumulation. We isolated tumor endothelial cells (TECs) and found that they have various abnormalities, although the underlying mechanisms are not fully understood. Here we showed that ROS were accumulated in tumor blood vessels and ROS enhanced TEC migration with upregulation of several angiogenesis related gene expressions. It was also demonstrated that these genes were upregulated by regulation of Nuclear factor erythroid 2-related factor 2 (NRF2). Among these genes, we focused on Biglycan, a small leucine-rich proteoglycan. Inhibition of Toll-like receptors 2 and 4, known BIGLYCAN (BGN) receptors, cancelled the TEC motility stimulated by ROS. ROS inhibited NRF2 expression in TECs but not in NECs, and NRF2 inhibited phosphorylation of SMAD2/3, which activates transcription of BGN. These results indicated that ROS-induced BGN caused the pro-angiogenic phenotype in TECs via NRF2 dysregulation. PMID:28525375

  9. Effects of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  10. Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Xiaolong; Zhang, Li; Zhou, Jun; Zhao, Ziqi

    2016-08-01

    This study reported the improved Raman enhancement ability of silver nanoparticles (Ag NPs) decorated on surface mesoporous silica microspheres (MSiO2@Ag) than that of Ag NPs on solid silica microspheres (SSiO2@Ag). These two kinds of hybrid structures were prepared by a facile single-step hydrothermal reaction with polyvinylpyrrolidone (PVP) serves as both a reductant and stabilizer. The as-synthesized MSiO2@Ag microspheres show more significant surface-enhanced Raman scattering (SERS) activity for 4-mercaptobenzoic acid (4MBA) than SSiO2@Ag microspheres with enhancement factors as 9.20 × 106 and 4.39 × 106, respectively. The proposed reason for the higher SERS activity is estimated to be the contribution of more Raman probe molecules at the mesoporous channels where an enhanced electromagnetic field exists. Such a field was identified by theoretical calculation result. The MSiO2@Ag microspheres were eventually demonstrated for the SERS detection of a typical chemical toxin namely methyl parathion with a detection limit as low as 1 × 10-3 ppm, showing its promising potential in biosensor application.

  11. Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts

    NASA Astrophysics Data System (ADS)

    Verma, Aditya; Kumar, Manoj; Patil, Anil Kumar

    2018-04-01

    The application of compact heat exchangers in any thermal system improves overall performance with a considerable reduction in size and weight. Inserts of different geometrical features have been used as turbulence promoting devices to increase the heat transfer rates. The present study deals with the experimental investigation of heat transfer and fluid flow characteristics of a tubular heat exchanger fitted with modified helical coiled inserts. Experiments have been carried out for a smooth tube without insert, tube fitted with helical coiled inserts, and modified helical coiled inserts. The helical coiled inserts are tested by varying the pitch ratio and wire diameter ratio from 0.5-1.5, and 0.063-0.125, respectively for the Reynolds number range of 1400 to 11,000. Experimental data have also been collected for the modified helical coiled inserts with gradually increasing pitch (GIP) and gradually decreasing pitch (GDP) configurations. The Nusselt number and friction factor values for helical coiled inserts are enhanced in the range of 1.42-2.62, 3.4-27.4, relative to smooth tube, respectively. The modified helical coiled insert showed enhancements in Nusselt number and friction factor values in the range of 1.49-3.14, 11.2-19.9, relative to smooth tube, respectively. The helical coiled and modified helical coiled inserts have thermo-hydraulic performance factor in the range of 0.59-1.29, 0.6-1.39, respectively. The empirical correlations of Nusselt number and friction factor for helical coiled inserts are proposed.

  12. The effect of glucose dose and fasting interval on cognitive function: a double-blind, placebo-controlled, six-way crossover study.

    PubMed

    Owen, Lauren; Scholey, Andrew B; Finnegan, Yvonne; Hu, Henglong; Sünram-Lea, Sandra I

    2012-04-01

    Previous research has identified a number of factors that appear to moderate the behavioural response to glucose administration. These include physiological state, dose, types of cognitive tasks used and level of cognitive demand. Another potential moderating factor is the length of the fasting interval prior to a glucose load. Therefore, we aimed to examine the effect of glucose dose and fasting interval on mood and cognitive function. The current study utilised a double-blind, placebo-controlled, balanced, six period crossover design to examine potential interactions between length of fasting interval (2 versus 12 hours) and optimal dose for cognition enhancement. Results demonstrated that the higher dose (60 g) increased working memory performance following an overnight fast, whereas the lower dose (25 g) enhanced working memory performance following a 2-h fast. The data suggest that optimal glucose dosage may differ under different conditions of depleted blood glucose resources. In addition, glucoregulation was observed to be a moderating factor. However, further research is needed to develop a model of the moderating and mediating factors under which glucose facilitation is best achieved.

  13. The Role ERG and CXCR4 in Prostate Cancer Progression

    DTIC Science & Technology

    2011-06-01

    axis functions in PC progression to enhance invasion and metastasis. To address the regulation of CXCR4 expression, we identified several putative ERG...interaction between ERG factor and CXCR4 gene promoter and link these activities with TMPRSS2-ERG translocations and enhanced metastasis of tumor cells via...and increased VCaP nuclear extract protein in assay enhanced the intensity of bands (Figure 1D). Inclusion of anti-ERG antibodies super shifted

  14. Suppression of NFkB by Tetrathiomolybdate Inhibits Tumor Angiogenesis and Enhances Apoptosis in Human Breast Cancers

    DTIC Science & Technology

    2005-05-01

    to treat breast cancer. 15. SUBJECT TERMS NFkappaB , tetrathiomolybdate, breast cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a...Sonenshein, G. E. Aberrant nuclear factor-icB/Rel expression and the pathogen- HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt /NF

  15. Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization.

    PubMed

    Qi, Fangfang; Zuo, Zejie; Yang, Junhua; Hu, Saisai; Yang, Yang; Yuan, Qunfang; Zou, Juntao; Guo, Kaihua; Yao, Zhibin

    2017-02-10

    The spatial learning abilities of developing mice benefit from extrinsic cues, such as an enriched environment, with concomitant enhancement in cognitive functions. Interestingly, such enhancements can be further increased through intrinsic Bacillus Calmette-Guérin (BCG) vaccination. Here, we first report that combined neonatal BCG vaccination and exposure to an enriched environment (Enr) induced combined neurobeneficial effects, including hippocampal long-term potentiation, and increased neurogenesis and spatial learning and memory, in mice exposed to the Enr and vaccinated with BCG relative to those in the Enr that did not receive BCG vaccination. Neonatal BCG vaccination markedly induced anti-inflammatory meningeal macrophage polarization both in regular and Enr breeding mice. The meninges are composed of the pia mater, dura mater, and choroid plexus. Alternatively, this anti-inflammatory activity of the meninges occurred simultaneously with increased expression of the neurotrophic factors BDNF/IGF-1 and the M2 microglial phenotype in the hippocampus. Our results reveal a critical role for BCG vaccination in the regulation of neurogenesis and spatial cognition through meningeal macrophage M2 polarization and neurotrophic factor expression; these effects were completely or partially prevented by minocycline or anti-IL-10 antibody treatment, respectively. Together, we first claim that immunological factor and environmental factor induce a combined effect on neurogenesis and cognition via a common pathway-meningeal macrophage M2 polarization. We also present a novel functional association between peripheral T lymphocytes and meningeal macrophages after evoking adaptive immune responses in the periphery whereby T lymphocytes are recruited to the meninges in response to systemic IFN-γ signaling. This leads to meningeal macrophage M2 polarization, subsequent to microglial M2 activation and neurotrophic factor expression, and eventually promotes a positive behavior.

  16. Rotational Flap to Enhance Buccal Gingival Thickness and Implant Emergence Profile in the Esthetic Zone: Two Cases Reports

    PubMed Central

    AL-Juboori, Mohammed Jasim

    2017-01-01

    Objective: Many techniques have been developed to enhance the gingival thickness, gingival level and emergence profile around the implant in the esthetic zone. Introduction: In this study, a buccal rotational flap was used to improve the implant site in the esthetic zone and increase gingival tissue thickness. Methods: Two cases involved the use of a rotational flap during second-stage implant surgery, one case involved the use of a temporary crown with a healing abutment, and another case involved the use of a healing abutment. Result: The cases were followed up until the final crown was placed. The implant site was improved in 2 cases; the gingival thickness increased, the gingival level was enhanced and the emergence profile was developed. Conclusion: Many factors affect the results of a rotational flap; some factors are surgical, while others are prosthetic, biological and anatomical. PMID:28839477

  17. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM PHOTON IRRADIATION – AN UPDATE

    PubMed Central

    Johnson, Perry; Bahadori, Amir; Eckerman, Keith; Lee, Choonsik; Bolch, Wesley E.

    2014-01-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) are presented for two radiosensitive skeletal tissues – active and total shallow marrow – within 15 and 32 bones sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon microCT images of trabecular spongiosa taken from a 40-year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, as well as a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In the present study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma factors for active marrow, inactive marrow, trabecular bone, and spongiosa at higher energies are calculated using the DRF algorithm setting the electron absorbed fraction for self-irradiation to unity. By comparing kerma factors and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites PMID:21427484

  18. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio

    2005-06-01

    There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.

  19. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    PubMed

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  20. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  1. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina

    PubMed Central

    Mills, Taylor S.; Eliseeva, Tatiana; Bersie, Stephanie M.; Randazzo, Grace; Nahreini, Jhenya; Park, Ko Uoon

    2017-01-01

    The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates. PMID:28829770

  3. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO2 3D Nanocomposites.

    PubMed

    Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik

    2017-01-11

    Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.

  4. GMP-grade platelet lysate enhances proliferation and migration of tenon fibroblasts.

    PubMed

    Carducci, Augusto; Scafetta, Gaia; Siciliano, Camilla; Carnevale, Roberto; Rosa, Paolo; Coccia, Andrea; Mangino, Giorgio; Bordin, Antonella; Vingolo, Enzo Maria; Pierelli, Luca; Lendaro, Eugenio; Ragona, Giuseppe; Frati, Giacomo; De Falco, Elena

    2016-01-01

    Tenon's fibroblasts (TFs), widely employed as in vitro model for many ophthalmological studies, are routinely cultured with FBS. Platelet Lysate (PL), a hemoderivate enriched with growth factors and cytokines has been largely tested in several clinical applications and as substitute of FBS in culture. Here, we investigate whether PL can exert biological effects on TF populations similarly to other cell types. Results show that PL significantly enhances cell proliferation and migration vs. FBS, without influencing cell size/granularity. Upregulation of EGF, VEGF, KDR, MMP2-9, FAK mRNA levels also occurs and phosphorylation of AKT but not of ERK1/2 is significantly enhanced. The inhibition of the PI3kinase/AKT pathway with the specific inhibitor wortmannin, decreases PL-induced cell migration but not proliferation. Condition supernatants containing PL show increased bioavailability of Nitric Oxide and reduced levels of 8-Iso-PGF2-alpha, correlating with cell proliferation and migration. Pro-angiogenic/inflammatory soluble factors (GRO, Angiogenin, EGF, I-309, PARC) are exclusively or greater expressed in media containing PL than FBS. GMP-grade PL preparations positively influence in vitro biological effects of TFs representing a suitable and safer alternative to FBS.

  5. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  6. Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Sun, Lingling; Wang, Guohong; Hao, Ruirui; Han, Deyan; Cao, Sheng

    2015-12-01

    The addition of graphene oxide (GO) in the semiconductors has been regarded as one of the effective methods to enhance their photocatalytic activity. In this study, Cu2O-reduced graphene oxide (Cu2O-rGO) composites with low loading (0-0.5 wt.%) of graphene oxide (GO) were produced by a one-step green solvothermal method in ethanol system by using Cu(NO3)2·3H2O and glutamic acid as copper precursor and reducing agent, respectively. During the solvothermal treatment, GO was reduced to rGO. The as-prepared Cu2O-reduced graphene oxide composite microspheres exhibited enhanced photocatalytic activity toward the degradation of RhB aqueous solution under visible light irradiation. At the optimal loading of graphene oxide (0.05 wt.%), Cu2O-rGO composites showed the highest photocatalytic activity, exceeding that of pure Cu2O and commercial Degussa P25 by a factor of 2.9 and 7.9, respectively. The enhanced photocatalytic activity may be ascribed to the strong coupling interaction between Cu2O particles and rGO nanosheets, which reduces the recombination of charge carriers.

  7. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  8. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation.

    PubMed

    Petridis, Antonios; Döll, Stefanie; Nichelmann, Lars; Bilger, Wolfgang; Mock, Hans-Peter

    2016-08-01

    Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Aldosterone Activates Transcription Factor Nrf2 in Kidney Cells Both In Vitro and In Vivo

    PubMed Central

    Oteiza, Patricia I.; Link, Samuel; Hey, Valentin; Stopper, Helga; Schupp, Nicole

    2014-01-01

    Abstract Aims: An increased kidney cancer risk was found in hypertensive patients, who frequently exhibit hyperaldosteronism, known to contribute to kidney injury, with oxidative stress playing an important role. The capacity of kidney cells to up-regulate transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2), a key regulator of the cellular antioxidative defense, as a prevention of aldosterone-induced oxidative damage was investigated both in vitro and in vivo. Results: Aldosterone activated Nrf2 and increased the expression of enzymes involved in glutathione (GSH) synthesis and detoxification. This activation depended on the mineralocorticoid receptor (MR) and oxidative stress. In vitro, Nrf2 activation, GSH amounts, and target gene levels decreased after 24 h, while oxidant levels remained high. Nrf2 activation could not protect cells against oxidative DNA damage, as aldosterone-induced double-strand breaks and 7,8-dihydro-8-oxo-guanine (8-oxodG) lesions steadily rose. The Nrf2 activator sulforaphane enhanced the Nrf2 response both in vitro and in vivo, thereby preventing aldosterone-induced DNA damage. In vivo, Nrf2 activation further had beneficial effects on the aldosterone-caused blood pressure increase and loss of kidney function. Innovation: This is the first study showing the activation of Nrf2 by aldosterone. Moreover, the results identify sulforaphane as a substance that is capable of preventing aldosterone-induced damage both in vivo and in vitro. Conclusion: Aldosterone-induced Nrf2 adaptive response cannot neutralize oxidative actions of chronically increased aldosterone, which, therefore could be causally involved in the increased cancer incidence of hypertensive individuals. Enhancing the cellular antioxidative defense with sulforaphane might exhibit beneficial effects. Antioxid. Redox Signal. 21, 2126–2142. PMID:24512358

  10. Enhancing the humidity sensitivity of Ga2O3 /SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor.

    PubMed

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2012-12-07

    The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular salt effects in the gas phase: tuning the kinetic basicity of [HCCLiCl]⁻ and [HCCMgCl₂]⁻ by LiCl and MgCl₂.

    PubMed

    Khairallah, George N; da Silva, Gabriel; O'Hair, Richard A J

    2014-10-06

    A combination of gas-phase ion-molecule reaction experiments and theoretical kinetic modeling is used to examine how a salt can influence the kinetic basicity of organometallates reacting with water. [HC≡CLiCl](-) reacts with water more rapidly than [HC≡CMgCl2](-), consistent with the higher reactivity of organolithium versus organomagnesium reagents. Addition of LiCl to [HC≡CLiCl](-) or [HC≡CMgCl2](-) enhances their reactivity towards water by a factor of about 2, while addition of MgCl2 to [HC≡CMgCl2](-) enhances its reactivity by a factor of about 4. Ab initio calculations coupled with master equation/RRKM theory kinetic modeling show that these reactions proceed via a mechanism involving formation of a water adduct followed by rearrangement, proton transfer, and acetylene elimination as either discrete or concerted steps. Both the energy and entropy requirements for these elementary steps need to be considered in order to explain the observed kinetics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Two-step passivation for enhanced InGaN/GaN light emitting diodes with step graded electron injectors

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2018-01-01

    Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.

  13. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  14. Enhancement of human neural stem cell self-renewal in 3D hypoxic culture.

    PubMed

    Ghourichaee, Sasan Sharee; Powell, Elizabeth M; Leach, Jennie B

    2017-05-01

    The pathology of neurological disorders is associated with the loss of neuronal and glial cells that results in functional impairments. Human neural stem cells (hNSCs), due to their self-renewing and multipotent characteristics, possess enormous tissue-specific regenerative potential. However, the efficacy of clinical applications is restricted due to the lack of standardized in vitro cell production methods with the capability of generating hNSC populations with well-defined cellular compositions. At any point, a population of hNSCs may include undifferentiated stem cells, intermediate and terminally differentiated progenies, and dead cells. Due to the plasticity of hNSCs, environmental cues play crucial roles in determining the cellular composition of hNSC cultures over time. Here, we investigated the independent and synergistic effect of three important environmental factors (i.e., culture dimensionality, oxygen concentration, and growth factors) on the survival, renewal potential, and differentiation of hNSCs. Our experimental design included two dimensional (2D) versus three dimensional (3D) cultures and normoxic (21% O 2 ) versus hypoxic (3% O 2 ) conditions in the presence and absence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Additionally, we discuss the feasibility of mathematical models that predict hNSC growth and differentiation under these culture conditions by adopting a negative feedback regulatory term. Our results indicate that the synergistic effect of culture dimensionality and hypoxic oxygen concentration in the presence of growth factors enhances the proliferation of viable, undifferentiated hNSCs. Moreover, the same synergistic effect in the absence of growth factors promotes the differentiation of hNSCs. Biotechnol. Bioeng. 2017;114: 1096-1106. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer

    PubMed Central

    Daubas, Philippe; Duval, Nathalie; Bajard, Lola; Langa Vives, Francina; Robert, Benoît; Mankoo, Baljinder S.; Buckingham, Margaret

    2015-01-01

    ABSTRACT Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development. PMID:26538636

  16. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering.

    PubMed

    Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J

    2016-01-01

    Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist.

  17. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    PubMed Central

    Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J

    2016-01-01

    Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3′-diethylthiatricarbocyanine iodide] and DTDC [3,3′-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist. PMID:26730189

  18. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases

    PubMed Central

    Harvey, P; Clark, I M; Jaurand, M-C; Warn, R M; Edwards, D R

    2000-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional factor involved both in development and tissue repair, as well as pathological processes such as cancer and metastasis. It has been identified in vivo in many types of tumours together with its tyrosine kinase receptor, Met. We show here that exogenous HGF/SF acts as a strong chemoattractant for human mesothelioma cell lines. The factor also enhanced cell adhesion to and invasion into Matrigel. The mesothelioma cell lines synthesized a panel of matrix metalloproteinases critical for tumour progression such as MMP-1, 2, 3, 9 and membrane-bound MT1-MMP. HGF/SF stimulated the expression of MMP-1, 9 and MT1-MMP and had a slight effect on expression of the MMP inhibitor TIMP-1 but not TIMP-2. However, there was no simple correlation between the levels of MMPs and TIMPs of the cell lines and their different invasion properties or between HGF/SF stimulatory effects on MMP expression and invasion. In addition, effects of protease inhibitors on invasion suggested that serine proteases were also expressed in human mesothelioma cell lines and were involved in HGF/SF-induced invasion. The results show a predominant role for HGF/SF in mesothelioma cell invasion, stimulating simultaneously adhesion, motility, invasion and regulation of MMP and TIMP levels. © 2000 Cancer Research Campaign PMID:11027427

  19. The transcription factor Lc-Maf participates in Col27a1 regulation during chondrocyte maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jaime L.; Holden, Devin N.; Barrow, Jeffery R.

    2009-08-01

    The transcription factor Lc-Maf, which is a splice variant of c-Maf, is expressed in cartilage undergoing endochondral ossification and participates in the regulation of type II collagen through a cartilage-specific Col2a1 enhancer element. Type XXVII and type XI collagens are also expressed in cartilage during endochondral ossification, and so enhancer/reporter assays were used to determine whether Lc-Maf could regulate cartilage-specific enhancers from the Col27a1 and Col11a2 genes. The Col27a1 enhancer was upregulated over 4-fold by Lc-Maf, while the Col11a2 enhancer was downregulated slightly. To confirm the results of these reporter assays, rat chondrosarcoma (RCS) cells were transiently transfected with anmore » Lc-Maf expression plasmid, and quantitative RT-PCR was performed to measure the expression of endogenous Col27a1 and Col11a2 genes. Endogenous Col27a1 was upregulated 6-fold by Lc-Maf overexpression, while endogenous Col11a2 was unchanged. Finally, in situ hybridization and immunohistochemistry were performed in the radius and ulna of embryonic day 17 mouse forelimbs undergoing endochondral ossification. Results demonstrated that Lc-Maf and Col27a1 mRNAs are coexpressed in proliferating and prehypertrophic regions, as would be predicted if Lc-Maf regulates Col27a1 expression. Type XXVII collagen protein was also most abundant in prehypertrophic and proliferating chondrocytes. Others have shown that mice that are null for Lc-Maf and c-Maf have expanded hypertrophic regions with reduced ossification and delayed vascularization. Separate studies have indicated that Col27a1 may serve as a scaffold for ossification and vascularization. The work presented here suggests that Lc-Maf may affect the process of endochondral ossification by participating in the regulation of Col27a1 expression.« less

  20. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors.

    PubMed

    Hibi, M; Hirano, T

    2000-04-01

    Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.

  1. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of humanmore » ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.« less

  2. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    NASA Astrophysics Data System (ADS)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  3. Simultaneous spin-coating and solvent annealing: Manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells

    DOE PAGES

    He, Zhicai; Liu, Feng; Wang, Cheng; ...

    2015-08-20

    Here, we developed a simultaneous spin-coating/solvent-annealing process and demonstrated morphology optimization for PTB7 based organic photovoltaics. This novel processing method enhances the edge-on crystalline content in thin films and induces the formation of weak PCBM aggregates. As a result, the efficiency of polymer solar cells increased from 9.2% to a certified high efficiency of 9.61%, owing to an enhanced short-circuit current (J sc, 18.4 mA cm –2vs. 17. 5 mA cm –2) and an improved fill factor.

  4. SU-E-T-82: Comparison of Several Lumbar Intervertebral Fusion Titanium Cages with Respect to Their Backscattering Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Failing, T; Chofor, N; Poppinga, D

    Purpose: Investigating the backscatter dose factor with regards to structure and geometry of the surface material. Methods: The titanium cages used for this study representing both prototypes and well established products are made of a laser-sintered titanium alloy (AditusV GmbH, Berlin, Germany). A set of four radiochromic EBT3 films was used in a stacked geometry to measure the range and the magnitude of the expected surface dose enhancement due to the in comparison to water increased secondary electron release from the material. The measurement geometry and the small thickness of radiochromic EBT3 film allowed the dose measurement at distances ofmore » 0.1 mm, 0.9 mm, 1.7 mm and 2.5 mm from the probe surfaces. Water reference measurements were taken under equal conditions, in order to allow the calculation of the relative dose enhancement at the surface of a probe. Measurements were performed within a water phantom. An Epson Expression 10000 XL flatbed scanner was used for digitization. Results: Sintered titanium showed a dose enhancement factor of 1.22 at the surface of the material. The factor can be reduced to less than 1.10 by utilizing mesh structures. In both cases, the dose enhancement factor decreased to less than 1.03 at a distance of 1.7mm indicating the low energy of scattered electrons. Conclusion: Backscattering of titanium cages should be considered in treatment planning, especially when the cages are located close to organs at risk. While mesh structures were introduced to improve bone fusion with the implant structure, the potentially harmful surface dose enhancement is significantly reduced.« less

  5. Degraded λ-carrageenan activates NF-κB and AP-1 pathways in macrophages and enhances LPS-induced TNF-α secretion through AP-1.

    PubMed

    Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun

    2014-07-01

    Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter

    DOE PAGES

    Visser, S.; Slowik, Jay G.; Furger, M.; ...

    2015-10-12

    Here, trace element measurements in PM 10–2.5, PM 2.5–1.0 and PM 1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too smallmore » a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM 10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM 2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM 1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM 10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM 1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.« less

  7. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, S.; Slowik, Jay G.; Furger, M.

    Here, trace element measurements in PM 10–2.5, PM 2.5–1.0 and PM 1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too smallmore » a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM 10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM 2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM 1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM 10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM 1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.« less

  8. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  9. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae.

    PubMed

    Kang, J J; Yokoi, T J; Holland, M J

    1995-12-01

    The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the 35S-rRNA precursor about 20-fold in vivo (Mestel,, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J. (1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protien. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively, Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a "multiplicative" fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.

  10. Role of Vascular Endothelial Growth Factor and Transforming Growth Factor-β2 in Rat Bone Tissue after Bone Fracture and Placement of Titanium Implants with Bioactive Bioresorbable Coatings.

    PubMed

    Kalinichenko, S G; Matveeva, N Yu; Kostiv, R E; Puz', A V

    2017-03-01

    The study established enhanced expression of vascular endothelial growth factor (VEGF) in the subpopulation of osteoblasts located in the regeneration region of femoral bone fracture near the titanium implants with bioactive calcium phosphate and hydroxyapatite coatings and suppressed activity of transforming growth factor-β2 (TGF-β2) in chondroblasts during the two weeks after surgery. In the delayed posttraumatic period, the distribution of TGF-β2 inversely related to its maximal activity. The data revealed the up-regulating effect of bioresorbable coatings on expression of VEGF and TGF-β2 and their implication in the control over various stages of reparative osteogenesis.

  11. The Development of Program for Enhancing Learning Management Competency of Teachers in Non-Formal and Informal Education Centers

    ERIC Educational Resources Information Center

    Jutasong, Chanokpon; Sirisuthi, Chaiyut; Phusri-on, Songsak

    2016-01-01

    The objectives of this research are: 1) to study factors and indicators, 2) to study current situations, desirable situations and techniques, 3) to develop the Program, and 4) to study the effect of Program. It comprised 4 phases: (1) studying the factors and indicators; (2) studying the current situations, desirable situations and techniques; (3)…

  12. Gab1 Mediates Hepatocyte Growth Factor-Stimulated Mitogenicity and Morphogenesis in Multipotent Myeloid Cells

    PubMed Central

    Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.

    2012-01-01

    Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405

  13. Bean Metal-Responsive Element-Binding Transcription Factor Confers Cadmium Resistance in Tobacco1

    PubMed Central

    Sun, Na; Liu, Meng; Zhang, Wentao; Yang, Wanning; Bei, Xiujuan; Ma, Hui; Qiao, Fan; Qi, Xiaoting

    2015-01-01

    Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase α-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis. PMID:25624396

  14. Superior Field Emission Properties of Layered WS2-RGO Nanocomposites

    PubMed Central

    Rout, Chandra Sekhar; Joshi, Padmashree D.; Kashid, Ranjit V.; Joag, Dilip S.; More, Mahendra A.; Simbeck, Adam J.; Washington, Morris; Nayak, Saroj K.; Late, Dattatray J.

    2013-01-01

    We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. PMID:24257504

  15. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

    NASA Astrophysics Data System (ADS)

    Lim, Dong-Kwon; Jeon, Ki-Seok; Hwang, Jae-Ho; Kim, Hyoki; Kwon, Sunghoon; Suh, Yung Doug; Nam, Jwa-Min

    2011-07-01

    An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R2 > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 108, which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 108 and 5.0 × 109.

  16. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoni, F.; Lalli, S.; Lucchetti, L.

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  17. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jia-Wei; Beijing Institute of Radiation Medicine, Beijing 100850; Liu, Jing

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID inmore » the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA.« less

  18. Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

    PubMed Central

    Henan, Xu; Toyota, Naoka; Yanjiang, Xing; Fujita, Yuuki; Zhijun, Huang; Touma, Maki; Qiong, Wu; Sugimoto, Kenkichi

    2014-01-01

    Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of CD11b+ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-α), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells. [BMB Reports 2014; 47(5): 286-291] PMID:24286318

  19. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction.

    PubMed

    Ferguson, Richard A; Hunt, Julie E A; Lewis, Mark P; Martin, Neil R W; Player, Darren J; Stangier, Carolin; Taylor, Conor W; Turner, Mark C

    2018-04-01

    This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT-PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.

  20. Procarcinogenic effects of cyclosporine A are mediated through the activation of TAK1/TAB1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jianmin; Walsh, Stephanie B.; Verney, Zoe M.

    Research highlights: {yields} Organ transplant recipients are highly susceptible to early skin cancer development. {yields} CsA-mediated TGFB1-dependent TAK1/TAB1 signaling augments invasive tumor growth. {yields} CsA enhances accumulation of upstream kinases, ZMP, AMPK and IRAK to activate TAK1. {yields} TAK1 mediates enhanced proliferation and reduced apoptosis via CsA-dependent NF{kappa}B. -- Abstract: Cyclosporine A (CsA) is an immunosuppressive drug commonly used for maintaining chronic immune suppression in organ transplant recipients. It is known that patients receiving CsA manifest increased growth of aggressive non-melanoma skin cancers. However, the underlying mechanism by which CsA augments tumor growth is not fully understood. Here, we showmore » that CsA augments the growth of A431 epidermoid carcinoma xenograft tumors by activating tumor growth factor {beta}-activated kinase1 (TAK1). The activation of TAK1 by CsA occurs at multiple levels by kinases ZMP, AMPK and IRAK. TAK1 forms heterodimeric complexes with TAK binding protein 1 and 2 (TAB1/TAB2) which in term activate nuclear factor {kappa}B (NF{kappa}B) and p38 MAP kinase. Transcriptional activation of NF{kappa}B is evidenced by IKK{beta}-mediated phosphorylation-dependent degradation of I{kappa}B and consequent nuclear translocation of p65. This also leads to enhancement in the expression of its transcriptional target genes cyclin D1, Bcl2 and COX-2. Similarly, activation of p38 leads to enhanced inflammation-related signaling shown by increased phosphorylation of MAPKAPK2 and which in turn phosphorylates its substrate HSP27. Activation of both NF{kappa}B and p38 MAP kinase provide mitogenic stimuli to augment the growth of SCCs.« less

  1. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  2. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Chun-Liang; Jian, Yi-Jun; Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreasedmore » XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.« less

  3. Plasmon enhanced heterogeneous electron transfer with continuous band energy model

    NASA Astrophysics Data System (ADS)

    Zhao, Dandan; Niu, Lu; Wang, Luxia

    2017-08-01

    Photoinduced charge injection from a perylene dye molecule into the conduction band of a TiO2 system decorated by a metal nanoparticles (MNP) is studied theoretically. Utilizing the density matrix theory the charge transfer dynamics is analyzed. The continuous behavior of the TiO2 conduction band is accounted for by a Legendre polynomials expansion. The simulations consider optical excitation of the dye molecule coupled to the MNP and the subsequent electron injection into the TiO2 semiconductor. Due to the energy transfer coupling between the molecule and the MNP optical excitation and subsequent charge injection into semiconductor is strongly enhanced. The respective enhancement factor can reach values larger than 103. Effects of pulse duration, coupling strength and energetic resonances are also analyzed. The whole approach offers an efficient way to increase charge injection in dye-sensitized solar cells.

  4. Experimental and Numerical Investigation of Pressure Drop in Silicon Carbide Fuel Rod for Application in Pressurized Water Reactors

    NASA Astrophysics Data System (ADS)

    Abir, Ahmed Musafi

    Spacer grids are used in Pressurized Water Reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at High Performance Light Water Reactors (LWRs). Their applicability was tested by Carrilho at University of South Carolina's (USC) Single Heated Element Loop Tester (SHELT). He attained a heat transfer and friction factor enhancement of 50% and 45% respectively, using Inconel nuclear fuel rods with square transverse ribbed surface. Following him Najeeb conducted a similar study due to three dimensional diamond shaped blocks in turbulent flow. He recorded a maximum heat transfer enhancement of 83%. At present, several types of materials are being used for fuel rod cladding including Zircaloy, Uranium oxide, etc. But researchers are actively searching for new material that can be a more practical alternative. Silicon Carbide (SiC) has been identified as a material of interest for application as fuel rod cladding [2]. The current study deals with the experimental investigation to find out the friction factor increase of a SiC fuel rod with 3D surface roughness. The SiC rod was tested at USC's SHELT loop. The experiment was conducted in turbulent flowing Deionized (DI) water at steady state conditions. Measurements of Flow rate and pressure drop were made. The experimental results were also validated by Computational Fluid Dynamics (CFD) analysis in ANSYS Fluent. To simplify the CFD analysis and to save computational resources the 3D roughness was approximated as a 2D one. The friction factor results of the CFD investigation was found to lie within +/-8% of the experimental results. A CFD model was also run with the energy equation turned on, and a heat generation of 8 kW applied to the rod. A maximum heat transfer enhancement of 18.4% was achieved at the highest flow rate investigated (i.e. Re=109204).

  5. Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths.

    PubMed

    Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas

    2013-08-12

    We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm(2) and stable quality factors of ~2500.

  6. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element

    PubMed Central

    Oropeza-Aburto, Araceli; Cruz-Ramírez, Alfredo; Acevedo-Hernández, Gustavo J.; Pérez-Torres, Claudia-Anahí; Caballero-Pérez, Juan; Herrera-Estrella, Luis

    2012-01-01

    Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element. PMID:22210906

  7. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    USDA-ARS?s Scientific Manuscript database

    Process factors of enzyme concentration, time, power and frequency were investigated for ultrasound-enhanced bioscouring of greige cotton. A fractional factorial experimental design and subsequent regression analysis of the process factors were employed to determine the significance of each factor a...

  8. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    PubMed

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. CCAAT/enhancer-binding protein β regulates the repression of type II collagen expression during the differentiation from proliferative to hypertrophic chondrocytes.

    PubMed

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Iwamoto, Yukihide

    2014-01-31

    CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation by stimulating type X collagen and matrix metalloproteinase 13 during chondrocyte differentiation. However, the effect of C/EBPβ on proliferative chondrocytes is unclear. Here, we investigated whether C/EBPβ represses type II collagen (COL2A1) expression and is involved in the regulation of sex-determining region Y-type high mobility group box 9 (SOX9), a crucial factor for transactivation of Col2a1. Endogenous expression of C/EBPβ in the embryonic growth plate and differentiated ATDC5 cells were opposite to those of COL2A1 and SOX9. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked repression of Col2a1. The expression of Sox9 mRNA and nuclear protein was also repressed, resulting in decreased binding of SOX9 to the Col2a1 enhancer as shown by a ChIP assay. Knockdown of C/EBPβ by lentivirus expressing shRNA caused significant stimulation of these genes in ATDC5 cells. Reporter assays demonstrated that C/EBPβ repressed transcriptional activity of Col2a1. Deletion and mutation analysis showed that the C/EBPβ core responsive element was located between +2144 and +2152 bp within the Col2a1 enhancer. EMSA and ChIP assays also revealed that C/EBPβ directly bound to this region. Ex vivo organ cultures of mouse limbs transfected with C/EBPβ showed that the expression of COL2A1 and SOX9 was reduced upon ectopic C/EBPβ expression. Together, these results indicated that C/EBPβ represses the transcriptional activity of Col2a1 both directly and indirectly through modulation of Sox9 expression. This consequently promotes the phenotypic conversion from proliferative to hypertrophic chondrocytes during chondrocyte differentiation.

  10. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    PubMed

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Mutations in the Nucleolar Phosphoprotein, Nucleophosmin, Promote the Expression of the Oncogenic Transcription Factor MEF/ELF4 in Leukemia Cells and Potentiates Transformation*

    PubMed Central

    Ando, Koji; Tsushima, Hideki; Matsuo, Emi; Horio, Kensuke; Tominaga-Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Iwanaga, Masako; Itonaga, Hidehiro; Yoshida, Shinichiro; Hata, Tomoko; Moriuchi, Ryozo; Kiyoi, Hitoshi; Nimer, Stephen; Mano, Hiroyuki; Naoe, Tomoki; Tomonaga, Masao; Miyazaki, Yasushi

    2013-01-01

    Myeloid ELF1-like factor (MEF/ELF4), a member of the ETS transcription factors, can function as an oncogene in murine cancer models and is overexpressed in various human cancers. Here, we report a mechanism by which MEF/ELF4 may be activated by a common leukemia-associated mutation in the nucleophosmin gene. By using a tandem affinity purification assay, we found that MEF/ELF4 interacts with multifactorial protein nucleophosmin (NPM1). Coimmunoprecipitation and GST pull-down experiments demonstrated that MEF/ELF4 directly forms a complex with NPM1 and also identified the region of NPM1 that is responsible for this interaction. Functional analyses showed that wild-type NPM1 inhibited the DNA binding and transcriptional activity of MEF/ELF4 on the HDM2 promoter, whereas NPM1 mutant protein (Mt-NPM1) enhanced these activities of MEF/ELF4. Induction of Mt-NPM1 into MEF/ELF4-overexpressing NIH3T3 cells facilitated malignant transformation. In addition, clinical leukemia samples with NPM1 mutations had higher human MDM2 (HDM2) mRNA expression. Our data suggest that enhanced HDM2 expression induced by mutant NPM1 may have a role in MEF/ELF4-dependent leukemogenesis. PMID:23393136

  12. Mutations in the nucleolar phosphoprotein, nucleophosmin, promote the expression of the oncogenic transcription factor MEF/ELF4 in leukemia cells and potentiates transformation.

    PubMed

    Ando, Koji; Tsushima, Hideki; Matsuo, Emi; Horio, Kensuke; Tominaga-Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Iwanaga, Masako; Itonaga, Hidehiro; Yoshida, Shinichiro; Hata, Tomoko; Moriuchi, Ryozo; Kiyoi, Hitoshi; Nimer, Stephen; Mano, Hiroyuki; Naoe, Tomoki; Tomonaga, Masao; Miyazaki, Yasushi

    2013-03-29

    Myeloid ELF1-like factor (MEF/ELF4), a member of the ETS transcription factors, can function as an oncogene in murine cancer models and is overexpressed in various human cancers. Here, we report a mechanism by which MEF/ELF4 may be activated by a common leukemia-associated mutation in the nucleophosmin gene. By using a tandem affinity purification assay, we found that MEF/ELF4 interacts with multifactorial protein nucleophosmin (NPM1). Coimmunoprecipitation and GST pull-down experiments demonstrated that MEF/ELF4 directly forms a complex with NPM1 and also identified the region of NPM1 that is responsible for this interaction. Functional analyses showed that wild-type NPM1 inhibited the DNA binding and transcriptional activity of MEF/ELF4 on the HDM2 promoter, whereas NPM1 mutant protein (Mt-NPM1) enhanced these activities of MEF/ELF4. Induction of Mt-NPM1 into MEF/ELF4-overexpressing NIH3T3 cells facilitated malignant transformation. In addition, clinical leukemia samples with NPM1 mutations had higher human MDM2 (HDM2) mRNA expression. Our data suggest that enhanced HDM2 expression induced by mutant NPM1 may have a role in MEF/ELF4-dependent leukemogenesis.

  13. Enhancement of fermentation process in Pu-erh tea by tea-leaf extract.

    PubMed

    Hou, C W; Jeng, K C; Chen, Y S

    2010-01-01

    Pu-erh tea is known as a fermented tea and longer storage enhances its flavor and taste. Recently, Aspergillus, Blastobotrys, and Streptomyces are found to play important roles in nutritional enhancement of Pu-erh tea by fermentation. Since water and temperature affect the microbial growth, we therefore explored the factors that might enhance the Pu-erh tea fermentation. The results showed that the addition of fresh tea-leaf extract (TLE) enhanced the withered tea fermentation (at 37 degrees C, 80 to 85% RH) as compared with the water only. Contents of statin, GABA, gallic acid, DPPH scavenging and polyphenol oxidase (PPO) activities were increased, whereas polyphenols and caffeine were decreased over 6 mo. TLE dose-dependently enhanced some of the qualities (that is, statin, PPO) of Pu-erh tea significantly as compared with the water only. The effect was related to the increase population of A. niger and A. carbonarius at 6 mo (from 7.6 +/- 1.2 x 10(1) and 3.2 +/- 1.3 x 10(1) to 3.1 +/- 1.2 x 10(6) and 2.4 +/- 1.1 x 10(5) colony forming units [CFU]/g, respectively). After drying process (90 degrees C, 30 min), the total microbial count from these samples returned to background level (3 +/- 0.5 x 10(2) CFU/g). None of ochratoxin and fumonisin, toxins from Aspergillus, was detected in the final products. The flavor and taste were also enhanced by treatment with TLE. The inoculation with S. cinereus Y11 with 2% TLE further enhanced these functional contents (about 2-fold increase of statin level) in the experimental Pu-erh tea. Therefore, this result may add a new process for Pu-erh tea manufacture.

  14. Introduction of enhanced recovery for elective caesarean section enabling next day discharge: a tertiary centre experience.

    PubMed

    Wrench, I J; Allison, A; Galimberti, A; Radley, S; Wilson, M J

    2015-05-01

    The widespread adoption of enhanced recovery programmes in various surgical specialties has resulted in patient benefits including reduced morbidity, reduced length of stay and an earlier return to normal activities. This evidence, along with the increased financial pressures in the UK National Health Service, has led many units to consider introducing such a programme for obstetric surgery. We report our experience in setting up an enhanced recovery programme for women undergoing elective caesarean section and a prospective analysis of factors that influence length of stay. An enhanced recovery pathway was designed by a multidisciplinary team and introduced in March 2012. Factors influencing length of stay were determined using a log normal model. The proportion of women discharged on Day 1 increased from 1.6% in the first quarter of 2012 to 25.2% in the first quarter of 2014. The 30-day readmission rate was 4.4% for those discharged on Day 1 and 5.6% for Day 2. Earlier gestation, multiple birth, intention to breast feed, longer surgery and more time in the post-anaesthesia recovery unit were all independently associated with a longer postoperative stay. Women presenting for obstetric surgery with the indication "one previous caesarean section" were more likely to leave hospital earlier compared to most other indications. An enhanced recovery programme was successfully introduced into our unit. Many of the interventions were straightforward and could be adopted easily elsewhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs

    PubMed Central

    Nagayasu-Tanaka, Toshie; Anzai, Jun; Takaki, Shu; Shiraishi, Noriko; Terashima, Akio; Asano, Taiji; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL. PMID:26120833

  16. Experimentally determined spectral optimization for dedicated breast computed tomography.

    PubMed

    Prionas, Nicolas D; Huang, Shih-Ying; Boone, John M

    2011-02-01

    The current study aimed to experimentally identify the optimal technique factors (x-ray tube potential and added filtration material/thickness) to maximize soft-tissue contrast, microcalcification contrast, and iodine contrast enhancement using cadaveric breast specimens imaged with dedicated breast computed tomography (bCT). Secondarily, the study aimed to evaluate the accuracy of phantom materials as tissue surrogates and to characterize the change in accuracy with varying bCT technique factors. A cadaveric breast specimen was acquired under appropriate approval and scanned using a prototype bCT scanner. Inserted into the specimen were cylindrical inserts of polyethylene, water, iodine contrast medium (iodixanol, 2.5 mg/ml), and calcium hydroxyapatite (100 mg/ml). Six x-ray tube potentials (50, 60, 70, 80, 90, and 100 kVp) and three different filters (0.2 mm Cu, 1.5 mm Al, and 0.2 mm Sn) were tested. For each set of technique factors, the intensity (linear attenuation coefficient) and noise were measured within six regions of interest (ROIs): Glandular tissue, adipose tissue, polyethylene, water, iodine contrast medium, and calcium hydroxyapatite. Dose-normalized contrast to noise ratio (CNRD) was measured for pairwise comparisons among the six ROIs. Regression models were used to estimate the effect of tube potential and added filtration on intensity, noise, and CNRD. Iodine contrast enhancement was maximized using 60 kVp and 0.2 mm Cu. Microcalcification contrast and soft-tissue contrast were maximized at 60 kVp. The 0.2 mm Cu filter achieved significantly higher CNRD for iodine contrast enhancement than the other two filters (p = 0.01), but microcalcification contrast and soft-tissue contrast were similar using the copper and aluminum filters. The average percent difference in linear attenuation coefficient, across all tube potentials, for polyethylene versus adipose tissue was 1.8%, 1.7%, and 1.3% for 0.2 mm Cu, 1.5 mm Al, and 0.2 mm Sn, respectively. For water versus glandular tissue, the average percent difference was 2.7%, 3.9%, and 4.2% for the three filter types. Contrast-enhanced bCT, using injected iodine contrast medium, may be optimized for maximum contrast of enhancing lesions at 60 kVp with 0.2 mm Cu filtration. Soft-tissue contrast and microcalcification contrast may also benefit from lower tube potentials (60 kVp). The linear attenuation coefficients of water and polyethylene slightly overestimate the values of their corresponding tissues, but the reported differences may serve as guidance for dosimetry and quality assurance using tissue equivalent phantoms.

  17. Metformin inhibits the radiation-induced invasive phenotype of esophageal squamous cell carcinoma.

    PubMed

    Nakayama, Akira; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-11-01

    Esophageal cancer is one of the most aggressive tumor types because of its invasiveness and metastatic potential. Several reports have described an association between increased invasiveness after ionizing radiation (IR) treatment and epithelial-to-mesenchymal transition (EMT). The biguanide metformin is reported to prevent transforming growth factor-β (TGF-β)-induced EMT and proliferation of cancer. This study examined whether IR induces EMT and promotes the invasive potential of TE-9 esophageal squamous cell carcinoma cells and the effect of metformin on IR-induced EMT. After IR exposure, TE-9 cells showed a spindle-shaped morphology and lost cell-cell adhesion. Immunoblotting showed that IR induced expression of mesenchymal markers (vimentin and N-cadherin), transcription factors (Slug, Snail, and Twist), and matrix metalloproteinases. A scratch wound assay and Matrigel invasion assay showed that IR enhanced the invasive potential and migratory capacity of TE-9 cells. Expression of hypoxia-related factor-1α and TGF-β was increased after IR. IR also induced phosphorylation of Smad2 and Smad3. Metformin inhibited radiation-induced EMT-like morphological changes, and enhanced invasion and migration of TE-9 cells. Metformin inhibited IR-induced phosphorylation of Smad2 and Smad3. Although phosphorylation of AMP-activated protein kinase was enhanced by IR and metformin, phosphorylation of mammalian target of rapamycin was enhanced by IR and suppressed by metformin. These results indicated that metformin suppressed IR-induced EMT via suppression of the TGF-β-Smad phosphorylation pathway, and a part of the non-Smad pathway. Metformin might be useful to prevent IR-induced invasion and metastasis of esophageal squamous cell carcinoma.

  18. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes

    PubMed Central

    Ajit, Deepa; Simonyi, Agnes; Li, Runting; Chen, Zihong; Hannink, Mark; Fritsche, Kevin L.; Mossine, Valeri V.; Smith, Robert E.; Dobbs, Thomas K.; Luo, Rensheng; Folk, William R.; Gu, Zezong; Lubahn, Dennis B.; Weisman, Gary A.; Sun, Grace Y.

    2016-01-01

    The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemiscals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promotor activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells. PMID:27166148

  19. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.

  20. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    NASA Astrophysics Data System (ADS)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  1. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    PubMed

    Wang, Xiaohong; Li, Qinglu; Hu, Qingsong; Suntharalingam, Piradeep; From, Arthur H L; Zhang, Jianyi

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD) ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV) function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF) (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01). IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01) and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  2. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway.

    PubMed

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F

    2017-02-16

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  3. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    PubMed Central

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.

    2017-01-01

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323

  4. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qipeng; Yao, Bei; Li, Ning

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosismore » of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.« less

  5. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio.

    PubMed

    Grimes, David Robert; Partridge, Mike

    2015-12-04

    The presence of oxygen in tumours has substantial impact on treatment outcome; relative to anoxic regions, well-oxygenated cells respond better to radiotherapy by a factor 2.5-3. This increased radio-response is known as the oxygen enhancement ratio. The oxygen effect is most commonly explained by the oxygen fixation hypothesis, which postulates that radical-induced DNA damage can be permanently 'fixed' by molecular oxygen, rendering DNA damage irreparable. While this oxygen effect is important in both existing therapy and for future modalities such a radiation dose-painting, the majority of existing mathematical models for oxygen enhancement are empirical rather than based on the underlying physics and radiochemistry. Here we propose a model of oxygen-enhanced damage from physical first principles, investigating factors that might influence the cell kill. This is fitted to a range of experimental oxygen curves from literature and shown to describe them well, yielding a single robust term for oxygen interaction obtained. The model also reveals a small thermal dependency exists but that this is unlikely to be exploitable.

  6. [Coagulation factor VII levels in uremic patients and theirs influence factors].

    PubMed

    Fang, Jun; Xia, Ling-Hui; Wei, Wen-Ning; Song, Shan-Jun

    2004-12-01

    This study was aimed to investigate coagulation factor VII level in uremic patients with chronic renal failure and to explore theirs influence factors. The plasma levels of coagulation factor VII were detected in 30 uremic patients with chronic renal failure before and after hemodialysis for 1 month, the factor VII activity (FVII:C) was determined by one-stage coagulation method, while activated factor VII (FVIIa) was measured by one-stage coagulation method using recombinant soluble tissue factor, and factor VII antigen was detected by ELISA. The results showed that: (1) The FVIIa, FVII:C and FVIIAg levels in chronic uremic patients before hemodialysis were 4.00 +/- 0.86 microg/L, (148.5 +/- 40.4)% and (99.8 +/- 21.1)% respectively, which were significantly increased, as compared with healthy controls [2.77 +/- 1.02 microg/L, (113.1 +/- 33.0)% and (73.7 +/- 18.3)% respectively, P < 0.05]. (2) After hemodialysis the FVIIa, FVII:C and FVIIAg levels in uremic patients significantly enhanced to 5.56 +/- 1.45 microg/L, (200.8 +/- 68.7)% and (124.1 +/- 19.3)% respectively (P < 0.05). (3) The abnormal increase of coagulation factor VII was positively correlated with levels of blood uria nitrogen and serum creatinine before hemodialysis but not after hemodialysis. It is concluded that the enhanced levels of coagulation factor VII in chronic uremic patients suggested abnormal activated state, herperactivity and elevated production of factor VII which correlated with renal functional injury. The abnormality of factor VII in uremia may be aggravated by hemodialysis. Coagulation factor (FVII) may be a risk factor for cardiovascular events in uremic patients who especially had been accepted long-term hemodialysis.

  7. Differentiation of Mesenchymal Stem Cells Towards Nephrogenic Lineage and Their Enhanced Resistance to Oxygen Peroxide-induced Oxidative Stress.

    PubMed

    Tayyeb, Asima; Shahzad, Naveed; Ali, Gibran

    2017-07-01

    Mesenchymal stem cells (MSCs) have been publicized to ameliorate kidney injury both in vitro and in vivo. However, very less is known if MSCs can be differentiated towards renal lineages and their further application potential in kidney injuries. The present study developed a conditioning system of growth factors fibroblast growth factor 2, transforming growth factor-β2, and leukemia inhibitory factor for in vitro differentiation of MSCs isolated from different sources towards nephrogenic lineage. Less invasively isolated adipose-derived MSCs were also compared to bone marrow-derived MSCs for their differentiation potential to induce renal cell. Differentiated MSCs were further evaluated for their resistance to oxidative stress induced by oxygen peroxide. A combination of growth factors successfully induced differentiation of MSCs. Both types of differentiated cells showed significant expression of pronephrogenic markers (Wnt4, Wt1, and Pax2) and renal epithelial markers (Ecad and ZO1). In contrast, expression of mesenchymal stem cells marker Oct4 and Vim were downregulated. Furthermore, differentiated adipose-derived MSCs and bone marrow-derived MSCs showed enhanced and comparable resistance to oxygen peroxide-induced oxidative stress. Adipose-derived MSC provides a promising alternative to bone marrow-derived MSC as a source of autologous stem cells in human kidney injuries. In addition, differentiated MSCs with further in vivo investigations may serve as a cell source for tissue engineering or cell therapy in different renal ailments.

  8. Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation.

    PubMed

    Shim, Ki-Shuk; Lee, Chung-Jo; Yim, Nam-Hui; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.

  9. CCAAT/enhancer binding protein Beta-2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific poly...

  10. Model for Porosity Changes Occurring during Ultrasound-Enhanced Transcorneal Drug Delivery.

    PubMed

    Hariharan, Prasanna; Nabili, Marjan; Guan, Allan; Zderic, Vesna; Myers, Matthew

    2017-06-01

    Ultrasound-enhanced drug delivery through the cornea has considerable therapeutic potential. However, our understanding of how ultrasound enhances drug transport is poor, as is our ability to predict the increased level of transport for given ultrasound parameters. Described here is a computational model for quantifying changes in corneal porosity during ultrasound exposure. The model is calibrated through experiments involving sodium fluorescein transport through rabbit cornea. Validation was performed using nylon filters, for which the properties are known. It was found that exposure to 800-kHz ultrasound at an intensity 2 W/cm 2 for 5 min increased the porosity of the epithelium by a factor of 5. The model can be useful for determining the extent to which ultrasound enhances the amount of drug transported through biological barriers, and the time at which a therapeutic dose is achieved at a given location, for different drugs and exposure strategies. Published by Elsevier Inc.

  11. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  12. Prostaglandin E(2) and insulin-like growth factor I interact to enhance proliferation of theca externa cells from chicken prehierarchical follicles.

    PubMed

    Jia, Yudong; Lin, Jinxing; Mi, Yuling; Zhang, Caiqiao

    2013-10-01

    The interactive effect of insulin-like growth factor I (IGF-I) and prostaglandin E2 (PGE2) on the proliferation of theca externa cells (TECs) was investigated in the prehierarchical small yellow follicles of laying hens. IGF-I manifested a proliferating effect like PGE2 on TECs, but this stimulating effect was restrained by AG1024 (IGF-IR inhibitor), KP372-1 (PKB/AKT inhibitor) or NS398 (COX-2 inhibitor). AG1024, KP372-1 or NS398 abolished IGF-I-stimulated COX-2 expression and PGE2 production. Meanwhile, KP372-1, NS398 or AG1024 depressed the PGE2-stimulated expression of COX-2 and IGF-IR mRNA. Therefore, the IGF-I receptor pathway up-regulates COX-2 expression and PGE2 synthesis via PKB signaling cascade, and then PGE2 stimulates IGF-IR mRNA expression to promote TEC proliferation in an autocrine pattern. Overall, the reciprocal stimulation of intracellular PGE2 and IGF-I may enhance TEC proliferation and facilitate the development of chicken prehierarchical follicles. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Enhanced thermoelectric performance in ternary spinel Cu4Mn2Te4via the synergistic effect of tellurium deficiency and chlorine doping.

    PubMed

    Chen, Hong; Lin, Hua; Liu, Yi; Wu, Xin-Tao; Wu, Li-Ming

    2017-11-07

    The chemistry of copper-based chalcogenides has received considerable attention due to their diverse structures and potential applications in the area of thermoelectric (TE) materials. In this communication, a series of spinel-type Cu 4 Mn 2 Te 4 -based samples have been successfully prepared and their high TE performances are attributed to the enhanced power factor and low thermal conductivity via the synergistic effect of Te deficiency and Cl doping. Consequently, a maximum TE figure of merit (ZT) of ∼0.4 was achieved for the Cu 4 Mn 2 Te 3.93 Cl 0.03 sample at 700 K, which was about 100% enhanced in comparison with the undoped Cu 4 Mn 2 Te 4 sample and one of the highest ZT values reported for p-type spinel tellurides.

  14. Enhanced Systemic Bioavailability of Curcumin Through Transmucosal Administration of a Novel Microgranular Formulation.

    PubMed

    Latimer, Brian; Ekshyyan, Oleksandr; Nathan, Neil; Moore-Medlin, Tara; Rong, Xiaohua; Ma, Xiaohui; Khandelwal, Alok; Christy, Hunter T; Abreo, Fleurette; McClure, Gloria; Vanchiere, John A; Caldito, Gloria; Dugas, Tammy; McMartin, Kenneth; Lian, Timothy; Mehta, Vikas; Nathan, Cherie-Ann O

    2015-12-01

    Curcumin is a promising nutraceutical for chemoprevention of head and neck squamous cell carcinoma (HNSCC). Capsular formulations of curcumin demonstrate low systemic bioavailability. We aimed to determine if curcumin levels were higher in healthy volunteers and cancer patients with microgranular curcumin that allows for transmucosal absorption and identify a consistent biomarker. Eight healthy volunteers and 15 HNSCC patients completed the trials. Serum levels of curcumin were measured by HPLC. Biological activity of curcumin was assessed with Multiplex Immunoassay and immunohistochemistry. We achieved higher serum levels of curcumin compared to trials using capsular formulation. In cancer patients a significant decrease in expression of fibroblast growth factor-2 (FGF-2) in post-biopsy samples and decreased serum levels of FGF-2, granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17) (p<0.05) was observed. Transmucosal administration of microgranular curcumin leads to enhanced curcumin bioavailability that is associated with significant biological effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    PubMed

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    PubMed

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  17. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Pia; Department of Neurosurgery, University of Bern, CH-3010 Bern; Gramsbergen, Jan-Bert

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactivemore » (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.« less

  18. Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids.

    PubMed

    Murphy, Kaitlin C; Whitehead, Jacklyn; Falahee, Patrick C; Zhou, Dejie; Simon, Scott I; Leach, J Kent

    2017-06-01

    Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells. Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application. The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature. We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E 2 (PGE 2 ) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome. DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE 2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2). Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE 2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid. The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model-demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds. We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids. Stem Cells 2017;35:1493-1504. © 2017 AlphaMed Press.

  19. Thermoelectric properties optimization of Fe{sub 2}VGa by tuning electronic density of states via titanium doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pai-Chun, E-mail: pcwei68@gmail.com, E-mail: cheny2@phys.sinica.edu.tw; Huang, Ta-Sung; Chen, Yang-Yuan, E-mail: pcwei68@gmail.com, E-mail: cheny2@phys.sinica.edu.tw

    2015-10-28

    We report the correlation between thermoelectric properties and electronic band structure of thermoelectric Heusler alloy Fe{sub 2}V{sub 1-x}Ti{sub x}Ga by comparing experimental measurements with theoretical calculations. The electrical resistivity data show that the semiconducting-like behavior of pure Fe{sub 2}VGa is transformed to a more metallic-like behavior at x = 0.1. Meanwhile, an enhancement of the Seebeck coefficient was observed for all Ti doped specimens at elevated temperatures with a peak value of 57 μV/K for x = 0.05 at 300 K. The experimental results can be elucidated by the calculated band structure, i.e., a gradual shifting of the Fermi level from the middle of the pseudogapmore » to the region of valence bands. With optimized doping, the thermoelectric power factor can be significantly enhanced to 3.95 mW m{sup −1} K{sup −2} at room temperature, which is comparable to the power factors of Bi{sub 2}Te{sub 3}-based compounds. The synergy of thermal conductivity reduction due to the alloying effect and the significant increase of the thermoelectric power factor leads to higher order zT values than that of prime Fe{sub 2}VGa.« less

  20. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  1. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  2. A repressive role of enhancer of zeste homolog 2 in 11β-hydroxysteroid dehydrogenase type 2 expression in the human placenta.

    PubMed

    Zuo, Rujuan; Liu, Xiaohui; Wang, Wangsheng; Li, Wenjiao; Ying, Hao; Sun, Kang

    2017-05-05

    The expression of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which acts as a placental glucocorticoid barrier, is silenced in cytotrophoblasts but substantially up-regulated during syncytialization. However, the repressive mechanism of 11β-HSD2 expression before syncytialization and how this repression is lifted during syncytialization remain mostly unresolved. Here we found that enhancer of zeste homolog 2 (EZH2) accounts for the silence of 11β-HSD2 expression via trimethylation of histone H3 lysine 27 at the promoter of the 11β-HSD2 gene. Further studies revealed that, upon syncytialization, human chorionic gonadotropin reduced the phosphorylation of retinoblastoma protein (pRB) via activation of the cAMP/PKA pathway, which sequesters E2F transcription factor 1 (E2F1), the transcription factor for EZH2 expression. As a result of inactivation of the pRB-E2F1-EZH2 pathway, the repressive marker trimethylation of histone H3 lysine 27 at the 11β-HSD2 promoter is removed, which leads to the robust expression of 11β-HSD2 during syncytialization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Enhancement of the Effect of Methyl Pyropheophorbide-a-Mediated Photodynamic Therapy was Achieved by Increasing ROS through Inhibition of Nrf2-HO-1 or Nrf2-ABCG2 Signaling.

    PubMed

    Tian, Si; Yong, Min; Zhu, Jiang; Zhang, Li; Pan, Li; Chen, Qing; Li, Kai-Ting; Kong, Yu-Han; Jiang, Yuan; Yu, Ting-He; Yu, Le-Hua; Bai, Ding-Qun

    2017-01-01

    Emerging evidence indicates that the transcription factor nuclear factor-E2-related factor 2 (Nrf2) plays an essential role in cellular defense against oxidative stress; its activation has been related to cytoprotection. Here, we investigated the role of Nrf2 in improving the efficacy of methyl pyropheophorbide-amediated photodynamic therapy (Mppa-PDT) via the downregulation of Nrf2. Human ovarian cancer A2780 cells and SKOV3 cells were treated with Mppa-PDT and siRNA transfection was performed to inhibit Nrf2. After treated with siRNA and Mppa-PDT, the cell viability was examined with CCK-8 assay; cell apoptosis was detected tested by flow cytometry with Annexin V-FITC/PI; the celluar reactive oxygen species (ROS) and mitochondrial membrane potential were measured with DCFHDA and JC-1 staining; expression of protein was assessed by western blot analysis. We found that Nrf2 translocated from the cytoplasm to the nucleus in vitro and in vivo, and the expression of Nrf2 and P-Nrf2 increased through a possible mechanism regulated by mitogen-activated protein kinase (MAPK) after Mppa-PDT treatment. Furthermore, cytotoxicity and apoptosis induced by Mppa-PDT increased after Nrf2down-regulation. Nrf2 down -regulation increased reactive oxygen species (ROS) levels by attenuating antioxidants or pumping Mppa out of cells,which resulted from the inhibition of Nrf2-HO-1 or Nrf2- ABCG2 signaling. In addition, SKOV3 cells exhibited increased resistance to Mppa-PDT, and the expression levels of P-Nrf2 and ABCG2 were higher in SKOV3 cells than in A2780 cells, suggesting that Nrf2-ABCG2 signaling might be involved in the intrinsic resistanceto Mppa-PDT. These results provided evidence that Nrf2 down-regulation can enhance the effect of Mppa-PDT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Effects of Secreted Mast Cell Mediators on Retinal Pigment Epithelial Cells: Focus on Mast Cell Tryptase.

    PubMed

    Arai, Rei; Usui-Ouchi, Ayumi; Ito, Yosuke; Mashimo, Keitaro; Murakami, Akira; Ebihara, Nobuyuki

    2017-01-01

    Numerous mast cells are present in the choroid, but the effects of mast cell mediators on retinal pigment epithelial (RPE) cells are not well understood. We investigated the influence of mast cell mediators on RPE cells in vitro, focusing on tryptase. Expression of receptors was examined by the reverse transcription polymerase chain reaction. We also assessed production of interleukin 8 and vascular endothelial growth factor (VEGF) after RPE cells were stimulated with mast cell mediators by using an antibody array and enzyme-linked immunosorbent assay. Furthermore, we investigated the influence of tryptase on RPE cell migration and integrity by the scratch assay and the transepithelial resistance. RPE cells expressed protease-activated receptor 2 (PAR2), histamine receptor 1, tumor necrosis factor- α (TNF- α ) receptor 1, and CCR 1, 3, 4, 8, and 11. Tryptase, PAR2 agonists, histamine, and TNF- α all enhanced interleukin 8 production by RPE cells, while only tryptase enhanced VEGF production. Tryptase also enhanced expression of phosphorylated extracellular signal-regulated kinases 1/2, resulting in increased migration of RPE cells. However, tryptase did not alter epithelial integrity or the expression of zonula occludens-1 and junctional adhesion molecule-A by RPE cells. Mast cell mediators, especially tryptase, may influence RPE cell inflammation.

  5. Thalidomide suppressed IL-1beta while enhancing TNF-alpha and IL-10, when cells in whole blood were stimulated with lipopolysaccharide.

    PubMed

    Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde

    2008-01-01

    Thalidomide is used to treat erythema nodosum leprosum (ENL). The events that precipitate this inflammatory reaction, which may occur in multibacillary leprosy patients, and the mechanism by which thalidomide arrest ENL, are not known. Thalidomide's ability to inhibit tumor necrosis factor alpha (TNF-alpha) in vitro has been proposed as a partial explanation of its effective treatment of ENL. In in vitro assays, thalidomide can enhance or suppress TNF-alpha. This is dependent on the stimulant used to evoke TNF-alpha; the procedure used to isolate the mononuclear cells from blood, and the predominant mononuclear cell type in the culture. To avoid artifacts that may occur during isolation of mononuclear cells from blood, we stimulated normal human blood with LPS and evaluated the effect of thalidomide and dexamethasone on TNF-alpha, and other inflammatory cytokines and biomarkers. Thalidomide suppressed interleukin 1 beta (IL-1beta) (p = 0.007), and it enhanced TNF-alpha (p = 0.007) and interleukin 10 (IL-10) (p = 0.031). Dexamethasone enhanced IL-10 (p = 0.013) and suppressed IL-1beta, TNF-alpha, interleukin 6 (IL-6), and interleukin 8 (IL-8) (p = 0.013). The two drugs did not suppress: C-reactive protein (CRP), Ig-superfamily cell-adhesion molecule 1 (ICAM 1), tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), or amyloid A. In vitro and in vivo evidence is accumulating that TNF-alpha is not the primary cytokine targeted by thalidomide in ENL and other inflammatory conditions.

  6. National plan to enhance aviation safety through human factors improvements

    NASA Technical Reports Server (NTRS)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  7. SPQR II: A beam-plasma interaction experiment

    NASA Astrophysics Data System (ADS)

    Bimbot, R.; Della-Negra, S.; Gardès, D.; Rivet, M. F.; Fleurier, C.; Dumax, B.; Hoffman, D. H. H.; Weyrich, K.; Deutsch, C.; Maynard, G.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of Cn+ ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nℓ=1019 e-cm-2 at T=5 eV. One expects a factor of two enhanced stopping over the cold gas case.

  8. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; MirSense, 8 avenue de la Vauve, F-91120 Palaiseau; Michel, F.

    2016-01-15

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results aremore » consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.« less

  9. Economic analysis of secondary and enhanced oil recovery techniques in Wyoming

    NASA Astrophysics Data System (ADS)

    Kara, Erdal

    This dissertation primarily aims to theoretically analyze a firm's optimization of enhanced oil recovery (EOR) and carbon dioxide sequestration under different social policies and empirically analyze the firm's optimization of enhanced oil recovery. The final part of the dissertation empirically analyzes how geological factors and water injection management influence oil recovery. The first chapter builds a theoretical model to analyze economic optimization of EOR and geological carbon sequestration under different social policies. Specifically, it analyzes how social policies on sequestration influence the extent of oil operations, optimal oil production and CO2 sequestration. The theoretical results show that the socially optimal policy is a subsidy on the net CO2 sequestration, assuming negative net emissions from EOR. Such a policy is expected to increase a firm's total carbon dioxide sequestration. The second chapter statistically estimates the theoretical oil production model and its different versions. Empirical results are not robust over different estimation techniques and not in line with the theoretical production model. The last part of the second chapter utilizes a simplified version of theoretical model and concludes that EOR via CO2 injection improves oil recovery. The final chapter analyzes how a contemporary oil recovery technology (water flooding of oil reservoirs) and various reservoir-specific geological factors influence oil recovery in Wyoming. The results show that there is a positive concave relationship between cumulative water injection and cumulative oil recovery and also show that certain geological factors affect the oil recovery. Moreover, the curvature of the concave functional relationship between cumulative water injection and oil recovery is reservoir-specific due to heterogeneities among different reservoirs.

  10. Effects of Al substitution and thermal annealing on magnetoelectric Ba0.5Sr1.5Zn2Fe12O22 investigated by the enhancement factor of 57Fe nuclear magnetic resonance.

    PubMed

    Kwon, Sangil; Kang, Byeongki; Kim, Changsoo; Jo, Euna; Lee, Soonchil; Chai, Yi Sheng; Chun, Sae Hwan; Kim, Kee Hoon

    2014-04-09

    The magnetoelectric properties of hexaferrite Ba0.5Sr1.5Zn2Fe12O22 are significantly improved by Al substitution and thermal annealing. Measuring the enhancement factor of 57Fe NMR, we found direct microscopic evidence that the magnetic moments of the L and S blocks are rotated by a magnetic field in such a way as to increase the net magnetic moment of a magnetic unit, even after the field is removed. Al substitution makes magnetoelectric property arise easily by suppressing the easy-plane anisotropy. The effect of thermal annealing is to stabilize the multiferroic state by reducing the number of pinning sites and the electron spin fluctuation. The transverse conic structure gradually changes to the alternating longitudinal conic structure where spins fluctuate more severely.

  11. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  12. Elevated ATF4 Expression, in the Absence of Other Signals, Is Sufficient for Transcriptional Induction via CCAAT Enhancer-binding Protein-activating Transcription Factor Response Elements*

    PubMed Central

    Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.

    2009-01-01

    Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279

  13. Microwave enhanced oxidation treatment of organic fertilizers.

    PubMed

    More, Abhilasha; Srinivasan, Asha; Liao, Ping Huang; Lo, Kwang Victor

    2017-08-01

    Liquid organic fertilizers (LOFs) are relatively easier to degrade than those of solid organic fertilizers, and the nutrients are readily available for plant uptake. Microwave enhanced advanced oxidation treatment (MW/H 2 O 2 -AOP) was used to convert solid organic fertilizers (insoluble blood meal, bone meal, feather meal, sunflower ash and a mixture) into LOF. After the MW/H 2 O 2 -AOP treatment, high soluble nitrogen (11-29%), soluble phosphorus (64%) and potassium (92%), as well as low total suspended solids content could be obtained. The resulting LOF would make the nutrients more bioavailable, and would provide some of them for the plant uptake immediately. Temperature and hydrogen peroxide dosage were found to be significant factors affecting nitrogen release from blood meal and feather meal, while temperature and pH were found to be significant factors for solubilizing phosphorus and potassium from bone meal and ash, respectively. The MW/H 2 O 2 -AOP reduced suspended solids, and released nutrients into solution; therefore, it was an effective treatment method to make LOFs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Effects of Ambient Humidity on Plant Growth Enhancement by Atmospheric Air Plasma Irradiation to Plant Seeds

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Amano, Takaaki; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Humidity is an important factor for plasma-bio applications because composition of species generated by atmospheric pressure plasmas significantly depends on the humidity. Here we have examined effects of humidity on the growth enhancement to study the mechanism. Experiments were carried out with a scalable DBD device. 10 seeds of Raphanus sativus L. were set for x = 5 mm and y = 3 mm below the electrodes. The humidity Hair was 10 - 90 %Rh. The ratio of length of plants with plasma irradiation to that of control increases from 1.2 for Hair = 10 %Rh to 2.5 for Hair = 50 %Rh. The ratio is 2.5 for Hair = 50-90 %Rh. This humidity dependence is similar to the humidity dependence of O2+-H2O,H3O*, NO2--H2Oand NO3--H2Odensities, whereas it is different from that of other species such as O3, NO, and so on. The similarity gives information on key species for the growth enhancement.

  15. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    EPA Science Inventory

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  16. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration.

    PubMed

    Peplow, Philip V; Chatterjee, Marissa P

    2013-04-01

    Keratinocyte migration from the wound edge is a crucial step in the reepithelization of cutaneous wounds. Growth factors and cytokines, released from cells that invade the wound matrix, play an important role, and several in vitro assays have been performed to elucidate this. The purposes of this study were to review in vitro human studies on keratinocyte migration to identify those growth factors or cytokines that stimulate keratinocyte migration and whether these assays might serve as a screening procedure prior to testing combinations of growth factors or cytokines to promote wound closure in vivo. Research papers investigating effect of growth factors and cytokines on human keratinocyte migration in vitro were retrieved from library sources, PubMed databases, reference lists of papers, and searches of relevant journals. Fourteen different growth factors and cytokines enhanced migration in scratch wound assay and HGF together with TGF-β, and IGF-1 with EGF, were more stimulatory than either growth factor alone. HGF with TGF-β1 had a greater chemokinetic effect than either growth factor alone in transmigration assay. TGF-β1, FGF-7, FGF-2 and AGF were chemotactic to keratinocytes. EGF, TGF-α, IL-1α, IGF and MGSA enhanced cell migration on ECM proteins. Many growth factors and cytokines enhanced migration of keratinocytes in vitro, and certain combinations of growth factors were more stimulatory than either alone. These and other combinations that stimulate keratinocyte migration in vitro should be tested for effect on wound closure and repair in vivo. The scratch wound assay provides a useful, inexpensive and easy-to-perform screening method for testing individual or combinations of growth factors or cytokines, or growth factors combined with other modalities such as laser irradiation, prior to performing wound healing studies with laboratory animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Desorption Induced by KEV Molecular and Cluster Projectiles.

    NASA Astrophysics Data System (ADS)

    Blain, Matthew Glenn

    1990-01-01

    A new experimental method has been developed for studying negative secondary ion (SI) emission from solid surfaces bombarded by polyatomic primary ions of 5 to 30 keV. The method is based on the time-of-flight (TOF) analysis of primary ions which are produced by either ^ {252}Cf fission fragment induced desorption or by extraction from a liquid metal ion source, and then accelerated into a field free region. The primary ions included organic monomer, dimer, and fragment ions of coronene and phenylalanine, (CsI)_ nCs ^{+} cluster ions, and Au _sp{n}{+} cluster ions. Secondary electrons, emitted from a target surface upon primary ion impact, are used to identify which primary ion has hit the surface. An event-by-event coincidence counting technique allows several secondary ion TOF spectra, correlated to several different primary ions, to be acquired simultaneously. Negative SI yields from organic (phenylalanine and dinitrostilbene), CsI, and Au surfaces have been measured for a number of different mono- and polyatomic primary ions. The results show, for example, yields ranging from 1 to 10% for phenylalanine (M-H) ^{ -}, 1 to 10% for I^{-} , and 1 to 5% for Au^{-} , with Cs_2I^ {+} and Cs_3I _sp{2}{+} clusters as projectiles. Yields for the same surfaces using Cs ^{+} primary ions are much less than 1%, indicating that SI yields are enhanced with clusters. A yield enhancement occurs when the SI yield per atom of a polyatomic projectile is greater than the SI yield of its monoatomic equivalent, at the same velocity. Thus, a (M-H) ^{-} yield increase of a factor of 50, when phenylalanine is bombarded with Cs_3I_sp{2} {+} instead of Cs^{+ }, represents a yield enhancement factor of 10. For the projectiles and samples studied, it was observed that the heavier the mass of the constituents of a projectile, the larger the enhancement effects, and that the largest yield enhancements (with CsI and Au _ n projectiles) occur for the organic target, phenylalanine. One possible explanation for the larger enhancements with organics, namely a thermal spike process, appears unlikely. Experiments with high and low melting point isomers of dinitrostilbene, bombarded with Cs _2I^{+} and Cs^{+} projectiles, showed larger Cs_2I^ {+} yield enhancements for the high melting point isomer.

  18. Enhanced backscatter of a reflected beam in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Churnside, James H.; Wilson, James J.

    1993-05-01

    We measure the mean and the variance of the irradiance of a diverging laser beam after reflection from a retroreflector and from a plane mirror in a turbulent atmosphere. Increases in both the mean irradiance and the normalized variance are observed in the direct backscatter direction because of correlation of turbulence on the outgoing path and the return path. The backscattered irradiance is enhanced by a factor of about 2 and the variance by somewhat less.

  19. Factors Affecting the Transfer of Basic Combat Skills Training in the Air Force

    DTIC Science & Technology

    2006-03-01

    Kaiser - Meyer - Olkin Measure of Sampling Adequacy (KMO) and Bartlett’s test of Sphericity. The items reported a KMO=.87 and χ2 = 5,158.57, p < .01...Results Factor Analysis Table E1 Kaiser - Meyer - Olkin (KMO) and Bartlett’s Test of Sphericity for Perceived Training Transfer and Transfer Enhancing...Activities KMO Χ2 df Sig. Kaiser - Meyer - Olkin Measure of Sampling Adequacy .87 Bartletts Test of Sphericity 5,158.57 66 .000 100

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, Mitsuhiro; Saito, Yuika, E-mail: yuika@ap.eng.osaka-u.ac.jp; Kawata, Satoshi

    We report plasmonic nanoparticle enhanced photocatalysis on titanium dioxide (TiO{sub 2}) in the deep-UV range. Aluminum (Al) nanoparticles fabricated on TiO{sub 2} film increases the reaction rate of photocatalysis by factors as high as 14 under UV irradiation in the range of 260–340 nm. The reaction efficiency has been determined by measuring the decolorization rate of methylene blue applied on the TiO{sub 2} substrate. The enhancement of photocatalysis shows particle size and excitation wavelength dependence, which can be explained by the surface plasmon resonance of Al nanoparticles.

  1. Observation of enhanced spontaneous emission in dielectrically apertured microcavities

    NASA Astrophysics Data System (ADS)

    Graham, Luke Alan

    The effects of enhanced spontaneous emission are important in determining the low threshold characteristics of oxide confined vertical cavity semiconductor lasers. This enhancement effect increases as Q/V, where Q = λ/Δλ for the cavity and V is the mode volume. In particular we investigate the effects of mode diameter on enhancement in microcavity structures with successively smaller dielectric apertures. These structures were fabricated by etching and back filling with SiO 2 and by lateral steam oxidation. For both cavities, InAlGaAs quantum dot emitters were used in the active region in order to avoid carrier diffusion and recombination at the side walls. Decay data was obtained at 10 K using time resolved photoluminescence of individual microcavities, and arrays. The detector used here is based on a silicon avalanche photodiode operated in ``Geiger'' mode. It provides a resolution of 350 ps and a quantum efficiency of ~1% at a wavelength of 1 μm. For the etched aperture structures we observed enhancement factors as high as 1.4 for the 1 μm diameter cavities with a maximum Q ~ 200. The enhancement is limited by the low Qs induced by etched side wall scattering. For 1 μm apertures fabricated by lateral steam oxidation, a Q of 450 is obtained with an enhancement factor of 2.3. In these devices we show that the enhancement is limited by distribution of quantum dots throughout the aperture region. Dots resonant with the cavity and located along the aperture edge decay more slowly than those in the center, leading to spatial hole burning effects in the decay data. Microcavities with aperture sizes ranging from 1-5 μm and Qs greater than 5000 are also demonstrated. We show 0th and 1 st order mode spacings as a function of aperture size and from this data calculate the transverse optical mode diameter as a function of aperture diameter. We find that the optical mode size becomes larger than the aperture size for diameters of ~2.5 μm and below and that this is correlated with a steep drop in Q for smaller apertures. We also find that the upper limit in cavity Q in these structures appears to come from losses induced by the MgF2/ZnSe e-beam deposited DBRs.

  2. Restoring synaptic plasticity and memory in mouse models of Alzheimer's disease by PKR inhibition.

    PubMed

    Hwang, Kyoung-Doo; Bak, Myeong Seong; Kim, Sang Jeong; Rhee, Sangmyung; Lee, Yong-Seok

    2017-12-13

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with deficits in cognition and synaptic plasticity. While accumulation of amyloid β (Aβ) and hyper-phosphorylation of tau are parts of the etiology, AD can be caused by a large number of different genetic mutations and other unknown factors. Considering such a heterogeneous nature of AD, it would be desirable to develop treatment strategies that can improve memory irrespective of the individual causes. Reducing the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) was shown to enhance long-term memory and synaptic plasticity in naïve mice. Moreover, hyper-phosphorylation of eIF2α is observed in the brains of postmortem AD patients. Therefore, regulating eIF2α phosphorylation can be a plausible candidate for restoring memory in AD by targeting memory-enhancing mechanism. In this study, we examined whether PKR inhibition can rescue synaptic and learning deficits in two different AD mouse models; 5XFAD transgenic and Aβ 1-42 -injected mice. We found that the acute treatment of PKR inhibitor (PKRi) can restore the deficits in long-term memory and long-term potentiation (LTP) in both mouse models without affecting the Aβ load in the hippocampus. Our results prove the principle that targeting memory enhancing mechanisms can be a valid candidate for developing AD treatment.

  3. Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells

    PubMed Central

    Kesler, Cristina T.; Kuo, Angera; Wong, Hon-Kit; Masuck, David J.; Shah, Jennifer L.; Kozak, Kevin; Held, Kathryn D.; Padera, Timothy P.

    2013-01-01

    Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of H2A.X—an indicator of DNA damage—after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence. PMID:24201897

  4. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing.

    PubMed

    Zhao, Guifang; Liu, Feilin; Lan, Shaowei; Li, Pengdong; Wang, Li; Kou, Junna; Qi, Xiaojuan; Fan, Ruirui; Hao, Deshun; Wu, Chunling; Bai, Tingting; Li, Yulin; Liu, Jin Yu

    2015-03-19

    Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.

  5. Inhibitory effects of HgCl2 on excitation-secretion coupling at the motor nerve terminal and excitation-contraction coupling in the muscle cell.

    PubMed

    Røed, A; Herlofson, B B

    1994-12-01

    1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 x 10(-5) M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i. 2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition. 3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine. 4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K(+)-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca(2+)-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl. 1.85 x 10(-5) M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.

  6. Relationships of protective factors to stress and symptoms of illness.

    PubMed

    Dolbier, Christyn L; Smith, Shanna E; Steinhardt, Mary A

    2007-01-01

    To examine relationships of work and individual protective factors to health outcomes. Participants from 2 corporate samples completed measures of supervisor support, hardiness, coping, global stress, and symptoms of illness. Regression analyses indicated that higher scores on hardiness and approach coping and being male predicted lower scores on stress and symptoms of illness. Additionally, supervisor support predicted fewer symptoms of illness but did not have a spillover effect onto stress. Interventions that enhance individual protective factors primarily and work protective factors secondarily may be most effective in reducing stress and illness among employees.

  7. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation.

    PubMed

    Sham, M H; Vesque, C; Nonchev, S; Marshall, H; Frain, M; Gupta, R D; Whiting, J; Wilkinson, D; Charnay, P; Krumlauf, R

    1993-01-29

    The zinc finger gene Krox20 and many Hox homeobox genes are expressed in segment-restricted domains in the hindbrain. The restricted expression patterns appear before morphological segmentation, suggesting that these transcription factors may play an early role in the establishment and identity of rhombomeric segments. In this paper, we show that the HoxB2 (Hox2.8) gene is normally upregulated in rhombomeres (r) 3, 4, and 5, and we identify an enhancer region upstream of the gene that imposes r3/r5 expression in transgenic mice. This enhancer contains three Krox20-binding sites required in vitro for complex formation with Krox20 protein and in vivo for rhombomere-restricted expression. In transgenic mice, Krox20 expressed in ectopic domains can transactivate a reporter construct containing the HoxB2 r3/r5 enhancer. These data demonstrate that Krox20 is a part of the upstream transcriptional cascade that directly regulates HoxB2 expression during hindbrain segmentation.

  8. Pokemon promotes the invasiveness of hepatocellular carcinoma by enhancing MEF2D transcription.

    PubMed

    Kong, Jing; Liu, Xiaoping; Li, Xiangqian; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2016-05-01

    Pokemon, a master oncogene crucial for the tumorigenicity and progression of a variety of cancers, has been demonstrated to enhance the proliferation and survival of hepatocellular carcinoma (HCC). However, the contribution of Pokemon to the invasiveness of HCC has not yet been studied. In this study, we employed HCC cells to investigate the role of Pokemon in the invasion of HCC with multidisciplinary approaches. Pokemon overexpression was found to be closely associated with invasion and intrahepatic metastasis of HCC in clinical specimens. Suppression of Pokemon attenuated the invasion of HCC cells by in vitro transwell and wound-healing assays. Myocyte enhancer factor 2D (MEF2D), an oncogene that can promote the invasiveness of HCC, was found to be underexpressed during Pokemon silencing in HCC cells. Restoration of MEF2D abolished the effect of Pokemon downregulation on the migration of HCC cells. Further experiments verified that Pokemon binds two putative recognition sites located within the upstream region of the MEF2D promoter and enhances its transcription. The association between Pokemon and MEF2D was further confirmed in HCC specimens. Animal experiments further confirmed that Pokemon downregulation attenuated the metastasis of HCC cells in mice. Collectively, Pokemon was found to enhance the migration and invasion of HCC by increasing MEF2D expression. Thus, targeting Pokemon and MEF2D may be an effective strategy to suppress the metastasis of HCC.

  9. Visualizing deceleration-phase instabilities in inertial confinement fusion implosions using an "enhanced self-emission" technique at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Robey, H. F.; Benedetti, L. R.; Berzak Hopkins, L.; Bradley, D. K.; Field, J. E.; Haan, S. W.; Hatarik, R.; Hartouni, E.; Izumi, N.; Johnson, S.; Khan, S.; Lahmann, B.; Landen, O. L.; Le Pape, S.; MacPhee, A. G.; Meezan, N. B.; Milovich, J.; Nagel, S. R.; Nikroo, A.; Pak, A. E.; Petrasso, R.; Remington, B. A.; Rice, N. G.; Springer, P. T.; Stadermann, M.; Widmann, K.; Hsing, W.

    2018-05-01

    High-mode perturbations and low-mode asymmetries were measured in the deceleration phase of indirectly driven, deuterium gas filled inertial confinement fusion capsule implosions at convergence ratios of 10 to 15, using a new "enhanced emission" technique at the National Ignition Facility [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In these experiments, a high spatial resolution Kirkpatrick-Baez microscope was used to image the x-ray emission from the inner surface of a high-density-carbon capsule's shell. The use of a high atomic number dopant in the shell enabled time-resolved observations of shell perturbations penetrating into the hot spot. This allowed the effects of the perturbations and asymmetries on degrading neutron yield to be directly measured. In particular, mix induced radiation losses of ˜400 J from the hot spot resulted in a neutron yield reduction of a factor of ˜2. In a subsequent experiment with a significantly increased level of short-mode initial perturbations, shown through the enhanced imaging technique to be highly organized radially, the neutron yield dropped an additional factor of ˜2.

  10. Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats.

    PubMed

    Wongdee, Kannikar; Thonapan, Natchayaporn; Saengamnart, Wasana; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2013-09-01

    In lactating rats, the endochondral bone growth is markedly enhanced, leading to the lengthening of long bone. This lactation-induced bone elongation could be abolished by a dopaminergic D2 receptor agonist bromocriptine, but how bromocriptine altered the expression of major chondroregulatory proteins in the growth plate cartilage was elusive. Here, we performed a quantitative immunohistochemical analysis to determine the expression of various peptides and transcription factors known to control the growth plate chondrocyte proliferation and differentiation [i.e., parathyroid hormone-related protein (PTHrP), PTHrP receptor, Indian hedgehog (Ihh), and runt-related transcription factor 2 (Runx2)], in bromocriptine-treated lactating rats. The results showed that bromocriptine markedly increased Ihh expression in hypertrophic chondrocytes during early and mid-lactation, while the expression of PTHrP receptor, but not its ligand PTHrP, was upregulated in the proliferative and hypertrophic zones during mid and late lactation. In contrast, the expression of Runx2, an important transcription factor for chondrocyte differentiation, was suppressed in the hypertrophic chondrocytes of bromocriptine-treated rats. In conclusion, bromocriptine increased Ihh and PTHrP receptor expressions and decreased Runx2 expression, which might, in turn, enhance chondrocyte proliferation and delay chondrocyte hypertrophy, thereby slowing down endochondral bone growth. This finding could explain how bromocriptine compromised the lactation-induced bone elongation.

  11. Understanding the Giant Enhancement of Exchange Interaction in Bi 2 Se 3 - EuS Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongwoo; Kim, Kyoung-Whan; Wang, Hui

    2017-07-01

    A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator Bi 2 Se 3 might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).]. Through systematic density functional calculations, we demonstrate that in addition to the factor that Bi 2 Se 3 has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced,more » unlike what was reported in the experiment. Our results and model analyses provide useful insights for how these quantities are linked, and pave a way for the control of properties of magnetic films via contact with topological insulators.« less

  12. NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development.

    PubMed

    Piper, Michael; Barry, Guy; Harvey, Tracey J; McLeay, Robert; Smith, Aaron G; Harris, Lachlan; Mason, Sharon; Stringer, Brett W; Day, Bryan W; Wray, Naomi R; Gronostajski, Richard M; Bailey, Timothy L; Boyd, Andrew W; Richards, Linda J

    2014-02-19

    Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.

  13. Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.

    PubMed

    Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio

    2010-02-01

    The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.

  14. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation

    PubMed Central

    Belanto, Joseph J.; Diaz-Perez, Silvia V.; Magyar, Clara E.; Maxwell, Michele M.; Yilmaz, Yasemin; Topp, Kasey; Boso, Guney; Jamieson, Catriona H.; Cacalano, Nicholas A.; Jamieson, Christina A.M.

    2010-01-01

    Glucocorticoids are beneficial in many muscular dystrophies but they are ineffective in treating dysferlinopathy, a rare muscular dystrophy caused by loss of dysferlin. We sought to understand the molecular basis for this disparity by studying the effects of a glucocorticoid on differentiation of the myoblast cell line, C2C12, and dysferlin-deficient C2C12s. We found that pharmacologic doses of dexamethasone enhanced the myogenic fusion efficiency of C2C12s and increased the induction of dysferlin, along with specific myogenic transcription factors, sarcolemmal and structural proteins. In contrast, the dysferlin-deficient C2C12 cell line demonstrated a reduction in long myotubes and early induction of particular muscle differentiation proteins, most notably, myosin heavy chain. Dexamethasone partially reversed the defect in myogenic fusion in the dysferlin-deficient C2C12 cells. We hypothesize that a key therapeutic benefit of glucocorticoids may be the up-regulation of dysferlin as an important component of glucocorticoid-enhanced myogenic differentiation. PMID:20080405

  15. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    PubMed Central

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo

    2017-01-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs. PMID:29308238

  16. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  17. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate.

    PubMed

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO 2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO 2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO 2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO 2 surface, form a perfect CH 3 NH 3 PbI 3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO 2 /perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  18. Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Zengze; Fang, Jin; Mi, Yang; Zhu, Xiaoyang; Ren, He; Liu, Xinfeng; Yan, Yong

    2018-04-01

    The performance of a semiconductor electronic or photonic device depends greatly on the properties of the interface. In a typical perovskite solar cell (PSC), the interface between electron transport layer (ETL) and perovskites is found to significantly influence the power conversion efficiency (PCE). Herein, Ultraviolet-ozone (UVO) treatment, a technique commonly used to clean a device substrate, is applied on ETL, specially, mesoporous/compact TiO2 layer. This treatment increases the conductivity of ETL and removes the residual organics at the surface. Consequently, an improved interface between mesoporous TiO2 and perovskite is achieved to enhance the performance of PSC. For example, the fill factor (FF) increases by ∼13%, the short-circuit current density (Jsc) and open-circuit voltage (Voc) increase by ∼2%, and the PCE finally enhances by ∼20% with 15 min of UVO treatment. With this method, the PCE of the best cell reaches to 20.43% under the illumination of AM 1.5 (100 mW cm-2) simulated sunlight.

  19. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome

    PubMed Central

    Tan-Cabugao, Joanne; Sauka-Spengler, Tatjana; Bronner, Marianne E.

    2012-01-01

    The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes. PMID:23284303

Top