Science.gov

Sample records for enhances arsenic trioxide-induced

  1. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    SciTech Connect

    Huang, H.-S.; Liu, Z.-M.; Hong, D.-Y.

    2010-04-15

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21{sup WAF1/CIP1} (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  2. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    SciTech Connect

    Wu Yichen; Yen Wenyen; Lee, T.-C. Yih, L.-H.

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  3. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells.

    PubMed

    Song, Li-Li; Tu, Yao-Yao; Xia, Li; Wang, Wei-Wei; Wei, Wei; Ma, Chun-Min; Wen, Dong-Hua; Lei, Hu; Xu, Han-Zhang; Wu, Ying-Li

    2014-01-01

    Despite considerable efficacy of arsenic trioxide (As2O3) in acute promyelocytic leukemia (APL) treatment, other non-APL leukemias, such as chronic myeloid leukemia (CML), are less sensitive to As2O3 treatment. However, the underlying mechanism is not well understood. Here we show that relative As2O3-resistant K562 cells have significantly lower ROS levels than As2O3-sensitive NB4 cells. We compared the expression of several antioxidant enzymes in these two cell lines and found that peroxiredoxin 1/2/6 and catalase are expressed at high levels in K562 cells. We further investigated the possible role of peroxirdoxin 1/2/6 and catalase in determining the cellular sensitivity to As2O3. Interestingly, knockdown of peroxiredoxin 1/2/6 did not increase the susceptibility of K562 cells to As2O3. On the contrary, knockdown of catalase markedly enhanced As2O3-induced apoptosis. In addition, we provide evidence that overexpression of BCR/ABL cannot increase the expression of PRDX 1/2/6 and catalase. The current study reveals that the functional role of antioxidant enzymes is cellular context and treatment agents dependent; targeting catalase may represent a novel strategy to improve the efficacy of As2O3 in CML treatment.

  4. Arsenic Trioxide-Induced Mandibular Osteomyelitis.

    PubMed

    Lu, Pei-Chen; Wu, Ju-Hui; Chen, Chun-Ming; Du, Je-Kang

    2015-09-01

    Previously, arsenic was a popular devitalizing agent used to necrotize inflamed dental pulp to lower the pulp sensitivity owing to the unavailability of appropriate anesthesia. However, leakage from the apical foramen, lateral or accessory canals, or cracks in the tooth is common. This can be dangerous because of the reportedly high toxic effects of arsenic in both hard and soft tissues, leading to gingival and osseous necrosis and, consequently, osteomyelitis. Therefore, arsenic can prove fatal for both bones and teeth and is no longer used. We encountered a case involving a 50-year-old man who had developed mandibular osteomyelitis with lower lip paresthesia caused by arsenic trioxide used during endodontic treatment. The patient was treated with appropriate antibiotics, adjunctive hyperbaric oxygen therapy, and adequate surgical debridement. Hyperbaric oxygen therapy can induce neovascularization in necrosed tissues and improve bone and soft tissue healing. At a 4-year follow-up visit, bone healing was observed, with restoration of periodontal health, although the paresthesia had persisted. We describe this case, present a review of the relevant published data, and discuss the possible causes, diagnosis, treatment, and follow-up protocol of mandibular osteomyelitis caused by arsenic trioxide. PMID:25896568

  5. Melatonin enhances arsenic trioxide-induced cell death via sustained upregulation of Redd1 expression in breast cancer cells.

    PubMed

    Yun, Sun-Mi; Woo, Sang Hyeok; Oh, Sang Taek; Hong, Sung-Eun; Choe, Tae-Boo; Ye, Sang-Kyu; Kim, Eun-Kyu; Seong, Min Ki; Kim, Hyun-A; Noh, Woo Chul; Lee, Jin Kyung; Jin, Hyeon-Ok; Lee, Yun-Han; Park, In-Chul

    2016-02-15

    Melatonin is implicated in various physiological functions, including anticancer activity. However, the mechanism(s) of its anticancer activity is not well understood. In the present study, we investigated the combined effects of melatonin and arsenic trioxide (ATO) on cell death in human breast cancer cells. Melatonin enhanced the ATO-induced apoptotic cell death via changes in the protein levels of Survivin, Bcl-2, and Bax, thus affecting cytochrome c release from the mitochondria to the cytosol. Interestingly, we found that the cell death induced by co-treatment with melatonin and ATO was mediated by sustained upregulation of Redd1, which was associated with increased production of reactive oxygen species (ROS). Combined treatment with melatonin and ATO induced the phosphorylation of JNK and p38 MAP kinase downstream from Redd1 expression. Rapamycin and S6K1 siRNA enhanced, while activation of mTORC1 by transfection with TSC2 siRNA suppressed the cell death induced by melatonin and ATO treatment. Taken together, our findings suggest that melatonin enhances ATO-induced apoptotic cell death via sustained upregulation of Redd1 expression and inhibition of mTORC1 upstream of the activation of the p38/JNK pathways in human breast cancer cells. PMID:26607805

  6. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells

    PubMed Central

    Zeng, Yingjian; Weng, Guangyang; Fan, Jiaxin; Li, Zhangqiu; Wu, Jianwei; Li, Yuanming; Zheng, Rong; Xia, Pingfang; Guo, Kunyuan

    2016-01-01

    Low response, treatment-related complications and relapse due to the low sensitivity of myelodysplastic syndrome (MDS) and leukemia stem cells (LSCs) or pre-LSCs to arsenic trioxide (ATO), represent the main problems following treatment with ATO alone in patients with MDS. To solve these problems, a chemosensitization agent can be applied to increase the susceptibility of these cells to ATO. Curcumin (CUR), which possesses a wide range of anticancer activities, is a commonly used chemosensitization agent for various types of tumors, including hematopoietic malignancies. In the present study, we investigated the cytotoxic effects and potential mechanisms in MDS-SKM-1 and leukemia stem-like KG1a cells treated with CUR and ATO alone or in combination. CUR and ATO exhibited growth inhibition detected by MTT assays and apoptosis analyzed by Annexin V/PI analyses in both SKM-1 and KG1a cells. Apoptosis of SKM-1 and KG1a cells determined by Annexin V/PI was significantly enhanced in the combination groups compared with the groups treated with either agent alone. Further evaluation was performed by western blotting for two hallmark markers of apoptosis, caspase-3 and cleaved-PARP. Co-treatment of the cells with CUR and ATO resulted in significant synergistic effects. In SKM-1 and KG1a cells, 31 and 13 proteins analyzed by protein array assays were modulated, respectively. Notably, survivin protein expression levels were downregulated in both cell lines treated with CUR alone and in combination with ATO, particularly in the latter case. Susceptibility to apoptosis was significantly increased in SKM-1 and KG1a cells treated with siRNA-survivin and ATO. These results suggested that CUR increased the sensitivity of SKM-1 and KG1a cells to ATO by downregulating the expression of survivin. PMID:27430728

  7. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress.

    PubMed

    Yu, Meiling; Xue, Jiangdong; Li, Yijing; Zhang, Weiqian; Ma, Dexing; Liu, Lian; Zhang, Zhigang

    2013-06-01

    Arsenic trioxide (As(2)O(3)) is an environmental toxicant and a potent antineoplastic agent. Exposure to arsenic causes renal cancer. Resveratrol is a well-known polyphenolic compound that is reported to reduce As(2)O(3)-induced cardiotoxicity. The present study aimed to investigate the effect of resveratrol on As(2)O(3)-induced nephrotoxicity and arsenic metabolism. Chinese Dragon-Li cats were injected with 1 mg/kg As(2)O(3) on alternate days; resveratrol (3 mg/kg) was administered via the forearm vein 1 h before the As(2)O(3) treatment. On the sixth day, the cats were killed to determine the histological renal damage, renal function, the accumulation of arsenic, and antioxidant activities in the kidney. Urine samples were taken for arsenic speciation. In the resveratrol + As(2)O(3)-treated group, activities of glutathione peroxidase, catalase, and superoxide dismutase, the ratio of reduced glutathione to oxidized glutathione, the total arsenic concentrations, and the percentage of methylated arsenic in urine were significantly increased. The concentrations of renal malondialdehyde, reactive oxygen species, 8-hydroxydeoxyguanosine, serum creatinine, blood urea nitrogen, and renal arsenic accumulation were significantly decreased and reduced renal morphologic injury was observed compared with the As(2)O(3)-treated group. These results demonstrate that resveratrol could significantly scavenge reactive oxygen species, inhibit As(2)O(3)-induced oxidative damage, and significantly attenuate the accumulation of arsenic in renal tissues by facilitating As(2)O(3) metabolism. These data suggest that use of resveratrol as postremission therapy for acute promyelocytic leukemia as well as adjunctive therapy in patients with exposure to arsenic may decrease arsenic nephrotoxicity. PMID:23471352

  8. Protective effect of resveratrol on arsenic trioxide-induced nephrotoxicity in rats

    PubMed Central

    Zhang, Weiqian; Liu, Yan; Ge, Ming; Jing, Jiang; Chen, Yan; Jiang, Huijie; Yu, Hongxiang; Li, Ning

    2014-01-01

    BACKGROUD/OBEJECTIVES Arsenic, which causes human carcinogenicity, is ubiquitous in the environment. This study was designed to evaluate modulation of arsenic induced cancer by resveratrol, a phytoalexin found in vegetal dietary sources that has antioxidant and chemopreventive properties, in arsenic trioxide (As2O3)-induced Male Wistar rats. MATERIALS/METHODS Adult rats received 3 mg/kg As2O3 (intravenous injection, iv.) on alternate days for 4 days. Resveratrol (8 mg/kg) was administered (iv.) 1 h before As2O3 treatment. The plasma and homogenization enzymes associated with oxidative stress of rat kidneys were measured, the kidneys were examined histologically and trace element contents were assessed. RESULTS Rats treated with As2O3 had significantly higher oxidative stress and kidney arsenic accumulation; however, pretreatment with resveratrol reversed these changes. In addition, prior to treatment with resveratrol resulted in lower blood urea nitrogen, creatinine and insignificant renal tubular epithelial cell necrosis. Furthermore, the presence of resveratrol preserved the selenium content (0.805 ± 0.059 µg/g) of kidneys in rats treated with As2O3. However, resveratrol had no effect on zinc level in the kidney relative to As2O3-treated groups. CONCLUSIONS Our data show that supplementation with resveratrol alleviated nephrotoxicity by improving antioxidant capacity and arsenic efflux. These findings suggest that resveratrol has the potential to protect against kidney damage in populations exposed to arsenic. PMID:24741408

  9. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis

    PubMed Central

    Zhang, Yong; Wu, Xianxian; Li, Yang; Zhang, Haiying; Li, Zhange; Zhang, Ying; Zhang, Longyin; Ju, Jiaming; Liu, Xin; Chen, Xiaohui; Glybochko, Peter V.; Nikolenko, Vladimir; Kopylov, Philipp; Xu, Chaoqian; Yang, Baofeng

    2016-01-01

    Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the deposition of collagen was detected by Masson’s trichrome staining and electron microscope. EndMT was indicated by the loss of endothelial cell markers (VE-cadherin and CD31) and the acquisition of mesenchymal cell markers (α-SMA and FSP1) determined by RT-PCR at the mRNA level and Western blot and immunofluorescence analysis at the protein level. In the in-vitro experiments, endothelial cells acquired a spindle-shaped morphology accompanying downregulation of the endothelial cell markers and upregulation of the mesenchymal cell markers when exposed to As2O3. As2O3 activated the AKT/GSK-3β/Snail signaling pathway, and blocking this pathway with PI3K inhibitor (LY294002) abolished EndMT in As2O3-treated endothelial cells. Our results highlight that As2O3 is an EndMT-promoting factor during cardiac fibrosis, suggesting that targeting EndMT is beneficial for preventing As2O3-induced cardiac toxicity. PMID:27671604

  10. Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2010-04-01

    We recently reported that the endoplasmic reticulum (ER)-induced cell pathway of apoptosis is operational in human neutrophils and that some ER stressors can accelerate this process. Recent data suggest that arsenic trioxide (As(2)O(3) or ATO), may also act as an ER stressor. The aims of the present study were to elucidate if other ER stress-related events occur in ATO-induced neutrophils, and to determine the role of caspase-4 in the proapoptotic activity of ATO. We found that ATO induced ubiquitination of proteins, and increased calcium concentration and gene expression of calcineurin in neutrophils. In addition to caspase-4, activities of caspase-3, -8 and -9 were increased by ATO. The processing of caspase-4 was reversed by a caspase-8 inhibitor, indicating that caspase-4 activation requires the action of upstream initiator components, questioning on the role of caspase-4 in ATO-induced ER stress-mediated cell apoptosis. Using caspase-4 deficient THP-1 cells, we demonstrated that the proapoptotic effect of ATO was similar to that of control caspase-4-positive cells. We conclude that ATO is an ER stressor that can induce cell apoptosis by a mechanism which does not require caspase-4. In addition, we conclude that caspase-4 activation in ATO-induced neutrophils could be involved in functions other than apoptosis.

  11. Requirement of PML SUMO Interacting Motif for RNF4- or Arsenic Trioxide-Induced Degradation of Nuclear PML Isoforms

    PubMed Central

    El Asmi, Faten; Dianoux, Laurent; Aubry, Muriel; Chelbi-Alix, Mounira K.

    2012-01-01

    PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As2O3) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As2O3 enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As2O3-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As2O3-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As2O3-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As2O3. PMID:23028697

  12. Protection against arsenic trioxide-induced autophagic cell death in U118 human glioma cells by use of lipoic acid.

    PubMed

    Cheng, Tain-Junn; Wang, Ying-Jan; Kao, Wei-Wan; Chen, Rong-Jane; Ho, Yuan-Soon

    2007-06-01

    Arsenic is an environmental toxicant found naturally in ground water. Epidemiological studies have suggested a correlation between chronic arsenic exposure and potential brain tissue damage in clinical case and animal experiments. Lipoic acid (LA) is a thiol-compound naturally occurring in plants and animals, which is thought to be a strong antioxidant and possess neuroprotective effects. The objective of this study was to determine if the AS(2)O(3)-induced glial cell toxicity could be prevented by LA. The human malignant glioma cell (U118) was selected as a research model. By using acridine orange staining and flow cytometry analysis, we found that autophagic, but not apoptotic, cell death was significantly induced by AS(2)O(3) in U118 cells, and that AS(2)O(3)-mediated autophagic cell death was nearly completely attenuated by LA. Down-regulation of p53 and Bax proteins and the up-regulation of Bcl-2 and HSP-70 proteins were observed by western blot in AS(2)O(3)-mediated autophagic cell death. Our results implied that LA completely inhibited U118 cells autophagic cell death induced by AS(2)O(3). We suggested that LA may emerge as a useful protective agent against arsenic-induced glial cell toxicity and reversing arsenic-induced damage in human brain.

  13. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells

    PubMed Central

    2014-01-01

    Background Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), which accounts for approximately 10% of all acute myloid leukemia cases. It is a blood cancer that is formed by chromosomal mutation. Each year in the United States, APL affects about 1,500 patients of all age groups and causes approximately 1.2% of cancer deaths. Arsenic trioxide (ATO) has been used successfully for treatment of APL patients, and both induction and consolidated therapy have resulted in complete remission. Recently published studies from our laboratory have demonstrated that ATO pharmacology as an anti-leukemic drug is associated with cytotoxic and genotoxic effects in leukemia cells. Methods In the present study, we further investigated the detailed molecular mechanism of ATO-mediated intrinsic pathway of apoptosis; using HL-60 cells as a test model. Oxidative stress was assessed by spectrophotometric measurements of MDA and GSH levels while genotoxicity was determined by single cell gel electrophoresis (Comet assay). Apoptosis pathway was analyzed by Western blot analysis of Bax, Bcl2 and caspase 3 expression, as well as immunocytochemistry and confocal imaging of Bax and Cyt c translocation and mitochondrial membrane potential depolarization. Results ATO significantly (p < 0.05) induces oxidative stress, DNA damage, and caspase 3 activityin HL-60 cells in a dose-dependent manner. It also activated the intrinsic pathway of apoptosis by significantly modulating (p < 0.05) the expression and translocation of apoptotic molecules and decreasing the mitochondrial membrane potential in leukemia cells. Conclusion Taken together, our research demonstrated that ATO induces mitochondrial pathway of apoptosis in HL-60 cells. This apoptotic signaling is modulated via oxidative stress, DNA damage, and change in mitochondrial membrane potential, translocation and upregulation of apoptotic proteins leading programmed cell death. PMID:24887205

  14. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    SciTech Connect

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling; Yeh, Bi-Wen; Wu, Wen-Jeng; Huang, Huei-Sheng

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF mediates

  15. Folic acid or combination of folic acid and vitamin B(12) prevents short-term arsenic trioxide-induced systemic and mitochondrial dysfunction and DNA damage.

    PubMed

    Majumdar, Sangita; Mukherjee, Sandip; Maiti, Anasuya; Karmakar, Subhra; Das, Asankur Sekhar; Mukherjee, Maitrayee; Nanda, Arunabha; Mitra, Chandan

    2009-08-01

    The effect of folic acid and folic acid + vitamin B(12) supplementation upon short-term arsenic-induced systemic and pancreatic islet cell mitochondria oxidative stress was investigated in male rats. Arsenic trioxide was administered orally at a dose of 3 mg kg body weight(-1) day(-1) for 30 days, and folic acid and vitamin B(12) were administered at a dose of 36 and 0.63 microg kg body weight(-1) day(-1), respectively, for 30 days. Compared to control, arsenic-treated group showed a significant increase in the levels of systemic oxidative markers, malondialdehyde (MDA), nitric oxide (NO), and hydroxyl radical (OH(-)) formation, which were found decreased significantly after supplementation either with folic acid or a combination of folic acid + vitamin B(12). Similar supplementations were found effective against arsenic-induced oxidative marker changes (MDA, NO, and OH(-)) in pancreatic islet cell mitochondria. Also, low activities of antioxidant defense enzymes such as superoxide dismutase and catalase, and level of antioxidant glutathione, all could regain significantly on supplementations both against systemic and islet cell mitochondria oxidative stress. Results of agarose-gel electrophoresis of DNA from lymphocytes and islet cells of arsenic-exposed rats showed DNA smearing, which could be reduced with simultaneous administration either with folic acid or a combination of folic acid + vitamin B(12). Significantly, similar supplementations were found effective in increasing the urinary clearance of arsenic. Together, these results indicate that folic acid and vitamin B(12) may be effective to reduce the arsenic-induced damage at molecular target level.

  16. Azidothymidine hinders arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells by induction of p21 and attenuation of G2/M arrest.

    PubMed

    Hassani, Saeed; Ghaffari, Seyed H; Zaker, Farhad; Mirzaee, Rohellah; Mardani, Hajar; Bashash, Davood; Zekri, Ali; Yousefi, Meysam; Zaghal, Azam; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2013-09-01

    To enhance anticancer efficacy of the arsenic trioxide (ATO), the combination of ATO and azidothymidine (AZT), with convergence anti-telomerase activity, were examined on acute promyelocytic leukemia (APL) cell line, NB4. In spite of an induction of apoptosis by both drugs separately and a synergistic effect of them on hTERT down-regulation and telomerase inhibition, the ATO-induced cytotoxicity was reduced when it was used in combination with AZT. AZT attenuated the ATO effects on viability, metabolic activity, DNA synthesis, and apoptosis. These observations, despite the deflection from the main goal of this study, dedicate an especial opportunity to elucidate the importance of some of the mechanisms that have been suggested by which ATO induces apoptosis. Cell cycle distribution, ROS level, and caspase-3 activation analyses suggest that AZT reduced the ATO-induced cytotoxic effect possibly via relative induction and diminution of cells accumulated in (G1, S) and (G2/M) phase, respectively, as well as through attenuation of ROS generation and subsequent caspase-3 inhibition. QRT-PCR assay revealed that induction of p21expression by the combined AZT/ATO compared to ATO alone could be a reason for the relative decline of cells accumulation in G2/M and the increase of cells in G1 and S phases. Therefore, the G2/M arrest and ROS generation are likely principle mediators for the ATO-induced apoptosis and can be used as a guide to design rational combinatorial strategies involving ATO and agents with G2/M arrest or ROS generation capacity to intensify ATO-induced apoptosis.

  17. Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation.

    PubMed

    Lemarie, Anthony; Morzadec, Claudie; Mérino, Delphine; Micheau, Olivier; Fardel, Olivier; Vernhet, Laurent

    2006-01-01

    Arsenic trioxide (As(2)O(3)) is known to be toxic toward leukemia cells. In this study, we determined its effects on survival of human monocytic cells during macrophagic differentiation, an important biological process involved in the immune response. As(2)O(3) used at clinically relevant pharmacological concentrations induced marked apoptosis of human blood monocytes during differentiation with either granulocyte-macrophage colony-stimulating factor or macrophage colony-stimulating factor. Apoptosis of monocytes was associated with increased caspase activities and decreased DNA binding of p65 nuclear factor-kappaB (NF-kappaB); like As(2)O(3), the selective NF-kappaB inhibitor (E)-3-[(4-methylphenyl)-sulfonyl]-2-propenenitrile (Bay 11-7082) strongly reduced survival of differentiating monocytes. The role of NF-kappaB in arsenic toxicity was also studied in promonocytic U937 cells during phorbol 12-myristate 13-acetate-induced macrophagic differentiation. In these cells, As(2)O(3) first reduced DNA binding of p65 NF-kappaB and subsequently induced apoptosis. In addition, overexpression of the p65 NF-kappaB subunit, following stable infection with a p65 retroviral expressing vector, increased survival of As(2)O(3)-treated U937 cells. As(2)O(3) specifically decreased protein levels of X-linked inhibitor of apoptosis protein and FLICE-inhibitory protein, two NF-kappaB-regulated genes in both U937 cells and blood monocytes during their differentiations. Finally, As(2)O(3) was found to inhibit macrophagic differentiation of monocytic cells when used at cytotoxic concentrations; however, overexpression of the p65 NF-kappaB subunit in U937 cells reduced its effects toward differentiation. In contrast to monocytes, well differentiated macrophages were resistant to low concentrations of As(2)O(3). Altogether, our study demonstrates that clinically relevant concentrations of As(2)O(3) induced marked apoptosis of monocytic cells during in vitro macrophagic differentiation

  18. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells.

    PubMed

    Gao, Yan-Hui; Zhang, Hao-Peng; Yang, Shu-Meng; Yang, Yue; Ma, Yu-Yan; Zhang, Xin-Yu; Yang, Yan-Mei

    2014-04-01

    Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells. PMID:24482137

  19. Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes.

    PubMed

    Vineetha, Vadavanath Prabhakaran; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2015-05-01

    Arsenic trioxide (ATO), though a very effective drug for the treatment of acute promyelocytic leukemia, leads to cardiotoxicity. As mitochondria are the center of attention of cardiac cell׳s general metabolic status, it is primarily important to see the interaction of ATO with mitochondria. Studies related exclusively to the alterations in mitochondria and its associated functions caused by ATO are very limited. The present investigation aims to explore the effect of ATO on various components of electron transport chain, oxygen consumption, ATP production, mitochondrial superoxide generation, transmembrane potential, permeability pore opening, calcium homeostasis and apoptosis. Attempts were also made to see the efficacy of phloretin, a potent antioxidant flavonoid found majorly in apple peel on cardiotoxicity. The H9c2 cells exposed to ATO (5µM) exhibited increased oxidative stress with reduced innate antioxidant status, mitochondrial dysfunctions and apoptosis. It increased the intracellular calcium content, caused alterations in the activity of transcription factor Nrf2, xanthine oxidase, aconitase and caspase 3 compared to the control group. Phloretin at 2.5 and 5µM concentrations were able to protect the cells from ATO toxicity via protecting mitochondria through its antioxidant potential. The present investigation based on mitochondria reveals the probability of cardioprotective potential of phloretin for the cancer patients on ATO chemotherapy. PMID:25746422

  20. Arsenic trioxide induces de novo protein synthesis of annexin-1 in neutrophils: association with a heat shock-like response and not apoptosis.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2008-02-01

    We recently demonstrated that arsenic trioxide (ATO) induced apoptosis in human neutrophils and increased de novo protein synthesis. Here, we identified one of these newly synthesized proteins as annexin-1 (AnxA1), a protein recently found to be proapoptotic in neutrophils when added exogenously. AnxA1 was detected at the cell membrane of ATO-induced neutrophils as well as in the supernatants. Using neutrophils harvested from AnxA1 knockout mice, we found that the proapoptotic activity of ATO was similar in neutrophils, regardless of AnxA1 levels. A second protein was identified as heat shock protein (Hsp) 89alpha. Because ATO is known to induce a HS-like response in a variety of cells, we investigated its ability to induce gene expression of Hsp in neutrophils and found that ATO increases HSP90AA1, HSPA1 and HSPB1 mRNA in these cells. We conclude that ATO-induced neutrophil apoptosis by an AnxA1-independent mechanism. Our data provide the first evidence that ATO induces a stress response in human neutrophils and that de novo synthesis of AnxA1 is related to this event rather than to the proapoptotic activity of ATO.

  1. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    PubMed

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  2. Enhanced coagulation for arsenic removal

    SciTech Connect

    Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. )

    1994-09-01

    The possible use of enhanced coagulation for arsenic removal was examined at the facilities of a California utility in 1992 and 1993. The tests were conducted at bench, pilot, and demonstration scales, with two source waters. Alum and ferric chloride, with cationic polymer, were investigated at various influence arsenic concentrations. The investigators concluded that for the source waters tested, enhanced coagulation could be effective for arsenic removal and that less ferric chloride than alum, on a weight basis, is needed to achieve the same removal.

  3. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite.

    PubMed

    Song, S; Lopez-Valdivieso, A; Hernandez-Campos, D J; Peng, C; Monroy-Fernandez, M G; Razo-Soto, I

    2006-01-01

    Arsenic removal from high-arsenic water in a mine drainage system has been studied through an enhanced coagulation process with ferric ions and coarse calcite (38-74 microm) in this work. The experimental results have shown that arsenic-borne coagulates produced by coagulation with ferric ions alone were very fine, so micro-filtration (membrane as filter medium) was needed to remove the coagulates from water. In the presence of coarse calcite, small arsenic-borne coagulates coated on coarse calcite surfaces, leading the settling rate of the coagulates to considerably increase. The enhanced coagulation followed by conventional filtration (filter paper as filter medium) achieved a very high arsenic removal (over 99%) from high-arsenic water (5mg/l arsenic concentration), producing a cleaned water with the residual arsenic concentration of 13 microg/l. It has been found that the mechanism by which coarse calcite enhanced the coagulation of high-arsenic water might be due to attractive electrical double layer interaction between small arsenic-borne coagulates and calcite particles, which leads to non-existence of a potential energy barrier between the heterogeneous particles.

  4. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  5. Arsenic

    MedlinePlus

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can ... Breathing sawdust or burning smoke from arsenic-treated wood Living in an area with high levels of ...

  6. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    SciTech Connect

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet ({+-} arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: Black-Right-Pointing-Pointer Characterizes a mouse model of arsenic enhanced NAFLD. Black-Right-Pointing-Pointer Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. Black-Right-Pointing-Pointer This effect is associated with increased inflammation.

  7. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  8. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  9. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy.

    PubMed

    Keimowitz, A R; Mailloux, B J; Cole, P; Stute, M; Simpson, H J; Chillrud, S N

    2007-10-01

    Landfills have the potential to mobilize arsenic via induction of reducing conditions in groundwater and subsequent desorption from or dissolution of arsenic-bearing iron phases. Laboratory incubation experiments were conducted with materials from a landfill where such processes are occurring. These experiments explored the potential for induced sulfate reduction to immobilize dissolved arsenic in situ. The native microbial community at this site reduced sulfate in the presence of added acetate. Acetate respiration and sulfate reduction were observed concurrent with dissolved iron concentrations initially increasing from 0.6 microM (0.03 mg L(-1)) to a maximum of 111 microM (6.1 mg L(-1)) and subsequently decreasing to 0.74 microM (0.04 mg L(-1)). Dissolved arsenic concentrations initially covaried with iron but subsequently increased again as sulfide accumulated, consistent with the formation of soluble thioarsenite complexes. Dissolved arsenic concentrations subsequently decreased again from a maximum of 2 microM (148 microg L(-1)) to 0.3 microM (22 microg L(-1)), consistent with formation of sulfide mineral phases or increased arsenic sorption at higher pH values. Disequilibrium processes may also explain this second arsenic peak. The maximum iron and arsenic concentrations observed in the lab represent conditions most equivalent to the in situ conditions. These findings indicate that enhanced sulfate reduction merits further study as a potential in situ groundwater arsenic remediation strategy at landfills and other sites with elevated arsenic in reducing groundwater.

  10. Arsenic

    MedlinePlus

    ... mainly found in its less toxic organic form. Industrial processes Arsenic is used industrially as an alloying ... are also required to reduce occupational exposure from industrial processes. Education and community engagement are key factors ...

  11. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice.

    PubMed

    Arteel, Gavin E; Guo, Luping; Schlierf, Thomas; Beier, Juliane I; Kaiser, J Phillip; Chen, Theresa S; Liu, Marsha; Conklin, Daniel J; Miller, Heather L; von Montfort, Claudia; States, J Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  12. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice

    SciTech Connect

    Arteel, Gavin E. Guo, Luping; Schlierf, Thomas; Beier, Juliane I.; Kaiser, J. Phillip; Chen, Theresa S.; Liu, Marsha; Conklin, Daniel J.; Miller, Heather L.; Montfort, Claudia von; States, J. Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  13. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice.

    PubMed

    Tan, Min; Schmidt, Robin H; Beier, Juliane I; Watson, Walter H; Zhong, Hai; States, J Christopher; Arteel, Gavin E

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations.

  14. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    PubMed Central

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. PMID:21983427

  15. CASE STUDY: SITE CONCEPTUAL MODEL FOR ENHANCED MNA OF ARSENIC

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into the Halls Brook Holding Area (HBHA) Pond at the Industri-Plex Superfund Site in Massachusetts. The ground water plume contains elevated levels of arsenic...

  16. Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli.

    PubMed

    Singh, Shailendra; Kang, Seung Hyun; Lee, Wonkyu; Mulchandani, Ashok; Chen, Wilfred

    2010-03-01

    Phytochelatin (PC) is a naturally occurring peptide with high affinity towards arsenic (As). In this article, we demonstrated the systematic engineering of PC-producing E. coli for As accumulation by addressing different bottlenecks in PC synthesis as well as As transport. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) was expressed in E. coli resulting in 18 times higher As accumulation. PC production was further increased by co-expressing a feedback desensitized gamma-glutamylcysteine synthetase (GshI*), resulting in 30-fold higher PC levels and additional 2-fold higher As accumulation. The significantly increased PC levels were exploited further by co-expressing an arsenic transporter GlpF, leading to an additional 1.5-fold higher As accumulation. These engineering steps were finally combined in an arsenic efflux deletion E. coli strain to achieve an arsenic accumulation level of 16.8 micromol/g DCW, a 80-fold improvement when compared to a control strain not producing phytochelatins.

  17. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  18. Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers.

    PubMed

    Lee, Chih-Hung; Wu, Shi-Bei; Hong, Chien-Hui; Liao, Wei-Ting; Wu, Ching-Ying; Chen, Gwo-Shing; Wei, Yau-Huei; Yu, Hsin-Su

    2011-05-01

    Arsenic-induced Bowen's disease (As-BD), a cutaneous carcinoma in situ, is thought to arise from gene mutation and uncontrolled proliferation. However, how mitochondria regulate the arsenic-induced cell proliferation remains unclear. The aim of this study was to clarify whether arsenic interfered with mitochondrial biogenesis and function, leading to aberrant cell proliferation in As-BD. Skin biopsy samples from patients with As-BD and controls were stained for cytochrome c oxidase (Complex IV), measured for mitochondrial DNA (mtDNA) copy number and the expression levels of mitochondrial biogenesis-related genes, including peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (mtTFA). The results showed that expression of cytochrome c oxidase, mtTFA, NRF-1, and PGC-1α was increased in As-BD compared with in healthy subjects. Treatment of primary keratinocytes with arsenic at concentrations lower than 1.0 μmol/L induced cell proliferation, along with enhanced mitochondrial biogenesis. Furthermore, we observed that the mitochondrial oxygen consumption rate and intracellular ATP level were increased in arsenic-treated keratinocytes. Blocking of mitochondrial function by oligomycin A (Complex V inhibitor) or knockdown of mtTFA by RNA interference abrogated arsenic-induced cell proliferation without affecting cyclin D1 expression. We concluded that mtTFA up-regulation, augmented mitochondrial biogenesis, and enhanced mitochondrial functions may contribute to arsenic-induced cell proliferation. Targeting mitochondrial biogenesis may help treat arsenical cancers at the stage of cell proliferation.

  19. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2009-01-01

    Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic matter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb-Zn mine tailings sample collected from Bathurst, New Brunswick, Canada. Capillary electrophoresis analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings and the addition of HA at pH 11 did not incur the oxidation-reduction or methylation reactions of arsenic. A 0.1% HA solution with an initial pH adjusted to 11 was selected as the flushing solution, while distilled water (initial pH adjusted to 11) was used as the control to account for the mobilization of arsenic and the heavy metals by physical mixing and the effect of pH. It was found that the HA could significantly enhance the mobilization of arsenic and heavy metals simultaneously from the mine tailings. After a 70-pore-volume-flushing, the mobilization of arsenic, copper, lead and zinc reached 97, 35, 838 and 224 mg kg(-1), respectively. The mobilization of arsenic and the heavy metals was found to be positively correlated with the mobilization of Fe in the presence of the HA. Moreover, the mobilization of arsenic was also correlated well with that of the heavy metals. The mobilization of co-existing metals to some extent might enhance arsenic mobilization in the presence of the HA by helping incorporate it into soluble aqueous organic complexes through metal-bridging mechanisms. Use of HA in arsenic and heavy metal remediation may be developed as an environmentally benign and possible effective remedial option to reduce and avoid further contamination.

  20. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    PubMed

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  1. Mthfr gene ablation enhances susceptibility to arsenic prenatal toxicity

    PubMed Central

    Wlodarczyk, Bogdan J.; Zhu, Huiping; Finnell, Richard H.

    2014-01-01

    Background In utero exposure to arsenic is known to adversely affect reproductive outcomes. Evidence of arsenic teratogenicity vary widely and depend on individual genotypic differences in sensitivity to As. In this study, we investigated the potential interaction between 5,10-methylenetetrahydrofolate reductase (Mthfr) genotype and arsenic embryotoxicity using the Mthfr knockout mouse model. Methods Pregnant dams were treated with sodium arsenate, and reproductive outcomes including: implantation, resorption, congenital malformation and fetal birth weight were recorded at E18.5. Results When the dams in Mthfr+/− x Mthfr+/− matings were treated with 7.2mg/kg As, the resorption rate increased to 43.4%, from a background frequency of 7.2%. The As treatment also induced external malformations (40.9%) and significantly lowered the average fetal birth weight among fetuses, without any obvious toxic effect on the dam. When comparing the pregnancy outcomes resulting from different mating scenarios (Mthfr+/+ x Mthfr+/−, Mthfr+/− x Mthfr+/− and Mthfr−/− x Mthfr+/−) and arsenic exposure; the resorption rate showed a linear relationship with the number of null alleles (0, 1 or 2) in the Mthfr dams. Fetuses from nullizygous dams had the highest rate of external malformations (43%) and lowest average birth weight. When comparing the outcomes of reciprocal matings (nullizygote x wild-type versus wild-type x nullizygote) after As treatment, the null dams showed significantly higher rates of resorptions and malformations, along with lower fetal birth weights. Conclusions Maternal genotype contributes to the sensitivity of As embryotoxicity in the Mthfr mouse model. The fetal genotype, however, does not appear to affect the reproductive outcome after in utero As exposure. PMID:24384392

  2. Mthfr gene ablation enhances susceptibility to arsenic prenatal toxicity

    SciTech Connect

    Wlodarczyk, Bogdan J. Zhu, Huiping; Finnell, Richard H.

    2014-02-15

    Background: In utero exposure to arsenic is known to adversely affect reproductive outcomes. Evidence of arsenic teratogenicity varies widely and depends on individual genotypic differences in sensitivity to As. In this study, we investigated the potential interaction between 5,10-methylenetetrahydrofolate reductase (Mthfr) genotype and arsenic embryotoxicity using the Mthfr knockout mouse model. Methods: Pregnant dams were treated with sodium arsenate, and reproductive outcomes including: implantation, resorption, congenital malformation and fetal birth weight were recorded at E18.5. Results: When the dams in Mthfr{sup +/−} × Mthfr{sup +/−} matings were treated with 7.2 mg/kg As, the resorption rate increased to 43.4%, from a background frequency of 7.2%. The As treatment also induced external malformations (40.9%) and significantly lowered the average fetal birth weight among fetuses, without any obvious toxic effect on the dam. When comparing the pregnancy outcomes resulting from different mating scenarios (Mthfr{sup +/+} × Mthfr{sup +/−}, Mthfr{sup +/−} × Mthfr{sup +/−} and Mthfr{sup −/−} × {sup Mthfr+/−}) and arsenic exposure; the resorption rate showed a linear relationship with the number of null alleles (0, 1 or 2) in the Mthfr dams. Fetuses from nullizygous dams had the highest rate of external malformations (43%) and lowest average birth weight. When comparing the outcomes of reciprocal matings (nullizygote × wild-type versus wild-type × nullizygote) after As treatment, the null dams showed significantly higher rates of resorptions and malformations, along with lower fetal birth weights. Conclusions: Maternal genotype contributes to the sensitivity of As embryotoxicity in the Mthfr mouse model. The fetal genotype, however, does not appear to affect the reproductive outcome after in utero As exposure. - Highlights: • An interaction between Mthfr genotype and arsenic embryotoxicity is presented. • Maternal Mthfr genotype

  3. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  4. Small System Use of a Solid Arsenic Oxidizing Media in Place of Chemical Oxidation to Enhance Arsenic Removals

    EPA Science Inventory

    As part of the USEPA Arsenic Demonstration Program, an arsenic removal adsorptive media treatment system (10 gpm) was installed at Head Start School in Buckeye Lake, Ohio on June 28, 2006. The source water (ground water) contained around 20 µg/L of arsenic, existing predominatel...

  5. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads.

    PubMed

    Yamani, Jamila S; Miller, Sarah M; Spaulding, Matthew L; Zimmerman, Julie B

    2012-09-15

    Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al₂O₃ and nanocrystalline TiO₂ were successfully developed. This adsorbent exploits the high capacity of Al₂O₃ for arsenate and the photocatalytic activity of TiO₂ to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO₂ oxidizes arsenite to arsenate which is then removed from solution by Al₂O₃. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO₂-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs. PMID:22743162

  6. Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells

    PubMed Central

    Kryeziu, Kushtrim; Pirker, Christine; Englinger, Bernhard; van Schoonhoven, Sushilla; Spitzwieser, Melanie; Mohr, Thomas; Körner, Wilfried; Weinmüllner, Regina; Tav, Koray; Grillari, Johannes; Cichna-Markl, Margit; Berger, Walter; Heffeter, Petra

    2016-01-01

    As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment. PMID:27036042

  7. Enhancing arsenic mitigation in Bangladesh: findings from institutional, psychological, and technical investigations.

    PubMed

    Johnston, Richard; Hug, Stephan J; Inauen, Jennifer; Khan, Nasreen I; Mosler, Hans-Joachim; Yang, Hong

    2014-08-01

    success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced.

  8. Enhancing arsenic mitigation in Bangladesh: findings from institutional, psychological, and technical investigations.

    PubMed

    Johnston, Richard; Hug, Stephan J; Inauen, Jennifer; Khan, Nasreen I; Mosler, Hans-Joachim; Yang, Hong

    2014-08-01

    success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced. PMID:24377677

  9. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.

    PubMed

    Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping

    2015-11-15

    A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters.

  10. Enhancements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism and carcinogenic risk via NNK/arsenic interaction

    SciTech Connect

    Lee, H.-L.; Chang, Louis W.; Wu, J.-P.; Ueng, Y.-F.; Tsai, M.-H.; Hsieh, Dennis Paul Hsientang; Lin Pinpin

    2008-02-15

    Epidemiological studies indicated an enhancement of cigarette smoke-induced carcinogenicity, including hepatocellular carcinoma, by arsenic. We believe that arsenic will enhance the expression of hepatic CYP2A enzyme and NNK metabolism (a cigarette smoke component), thus its metabolites, and carcinogenic DNA adducts. Male ICR mice were exposed to NNK (0.5 mg/mouse) and sodium arsenite (0, 10, or 20 mg/kg) daily via gavaging for 10 days and their urine was collected at day 10 for NNK metabolite analysis. Liver samples were also obtained for CYP2A enzyme and DNA adducts evaluations. Both the cyp2a4/5 mRNA levels and the CYP2A enzyme activity were significantly elevated in arsenic-treated mice liver. Furthermore, urinary NNK metabolites in NNK/arsenic co-treated mice also increased compared to those treated with NNK alone. Concomitantly, DNA adducts (N{sup 7}-methylguanine and O{sup 6}-methylguanine) were significantly elevated in the livers of mice co-treated with NNK and arsenic. Our findings provide clear evidence that arsenic increased NNK metabolism by up-regulation of CYP2A expression and activity leading to an increased NNK metabolism and DNA adducts (N{sup 7}-methylguanine and O{sup 6}-methylguanine). These findings suggest that in the presence of arsenic, NNK could induce greater DNA adducts formation in hepatic tissues resulting in higher carcinogenic potential.

  11. Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p.

    PubMed

    Shah, Dhawal; Shen, Michael W Y; Chen, Wilfred; Da Silva, Nancy A

    2010-10-01

    Arsenic contamination of ground water affects the health of millions of people worldwide. Bioremediation has the potential to lower contaminant levels in cases where physical methods are either ineffective or cost prohibitive. The yeast Saccharomyces cerevisiae was engineered for enhanced arsenite accumulation by overexpression of transporters responsible for the influx of the contaminant. The transporter genes FPS1 and HXT7 were cloned under the control of the late-phase ADH2-promoter. This allowed for protein production at high biomass levels without the addition of inducer. Following the transfer of stationary phase cells to buffer, the engineered strains were capable of 3-4-fold greater arsenic uptake as compared to control cells. Further, at trace levels of the metalloid, the cells overexpressing the Fps1p transporter removed ca. 40% more arsenite from the extracellular medium than the controls. Arsenic uptake was also evaluated in cells overexpressing the transporters coupled with high-level production of cytosolic As sequestors (phytochelatins or bacterial ArsRp) to act as an intracellular sink. This led to an up to 4-fold increase in As accumulation in the resting cell culture as compared to native cells. The results demonstrate important steps needed to engineer a yeast biosorbent with enhanced accumulation capabilities for this metalloid.

  12. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents.

    PubMed

    Yuan, Ching; Chiang, Tzu-Shing

    2008-03-21

    An enhanced electrokinetic remediation process for removal of arsenic, presented as As(V) form, from spiked soil has been investigated with groundwater (GW) and chemical reagents of cetylpyridinium chloride (CPC, a cationic surfactant), ethylenediaminetetraacetic acid (EDTA) and citric acid (CA) under potential gradient of 2.0-3.3V/cm for 5 days treatment. The removal efficiency of As(V) in EK-EDTA system was better than that in other two EK systems. As potential gradient increased from 2.0V/cm to 3.0V/cm, the removal efficiency of As(V) was increased from 35.4% to 44.8% in EK-EDTA system. It showed that the arsenic removal could be enhanced by selecting suitable chemical reagent and increasing potential gradient. The intensive of electroosmotic flow towards the cathode caused a significant retardation of electromigration of arsenic towards the anode. The quantity of As(V) collected in anode reservoir was 1.4-2.5 times greater than that in cathode reservoir for all EK systems. It implied that As(V) removal was directly related to the electromigration rather than electroosmosis mechanism in EK systems. A further investigation need to be conducted to achieve higher removal efficiency of As(V).

  13. Acetaminophen increases the risk of arsenic-mediated development of hepatic damage in rats by enhancing redox-signaling mechanism.

    PubMed

    Majhi, Chhaya Rani; Khan, Saleem; Leo, Marie Dennis Marcus; Prawez, Shahid; Kumar, Amit; Sankar, Palanisamy; Telang, Avinash Gopal; Sarkar, Souvendra Nath

    2014-02-01

    We evaluated whether the commonly used analgesic-antipyretic drug acetaminophen can modify the arsenic-induced hepatic oxidative stress and also whether withdrawal of acetaminophen administration during the course of long-term arsenic exposure can increase susceptibility of liver to arsenic toxicity. Acetaminophen was co-administered orally to rats for 3 days following 28 days of arsenic pre-exposure (Phase-I) and thereafter, acetaminophen was withdrawn, but arsenic exposure was continued for another 28 days (Phase-II). Arsenic increased lipid peroxidation and reactive oxygen species (ROS) generation, depleted glutathione (GSH), and decreased superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR) activities. Acetaminophen caused exacerbation of arsenic-mediated lipid peroxidation and ROS generation and further enhancement of serum alanine aminotransferase and aspartate aminotransferase activities. In Phase-I, acetaminophen caused further GSH depletion and reduction in SOD, catalase, GPx and GR activities, but in Phase-II, only GPx and GR activities were more affected. Arsenic did not alter basal and inducible nitric oxide synthase (iNOS)-mediated NO production, but decreased constitutive NOS (cNOS)-mediated NO release. Arsenic reduced expression of endothelial NOS (eNOS) and iNOS genes. Acetaminophen up-regulated eNOS and iNOS expression and NO production in Phase-I, but reversed these effects in Phase-II. Results reveal that acetaminophen increased the risk of arsenic-mediated hepatic oxidative damage. Withdrawal of acetaminophen administration also increased susceptibility of liver to hepatotoxicity. Both ROS and NO appeared to mediate lipid peroxidation in Phase-I, whereas only ROS appeared responsible for peroxidative damage in Phase-II.

  14. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications.

    PubMed

    Chauhan, Divya; Dwivedi, Jaya; Sankararamakrishnan, Nalini

    2014-01-01

    Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0±10.0 mg g(-1) of As(V) and 142.9±7.2 mg g(-1) of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.

  15. Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF).

    PubMed

    Iqbal, Javed; Kim, Ho-Jeong; Yang, Jung-Seok; Baek, Kitae; Yang, Ji-Won

    2007-01-01

    The removal characteristics of arsenate using micellar-enhanced ultrafiltration (MEUF) were investigated. Among four different cationic surfactants used, hexadecylpyridinium chloride (CPC) showed the highest removal efficiency of arsenic (96%), and the removal efficiency with hexadecyltrimethylammonium bromide (CTAB) was 94%. But the removal efficiency with benzalkonium chloride (BC) was the lowest (57%) due to higher critical micelle concentration (CMC) of BC than those of other surfactants. Over 80% of arsenic was removed with octadecylamine acetate (ODA). On the effect of solution pH on the arsenic removal, since the valance of arsenate decreases from trivalent to monovalent as pH decreases, the removal was reduced at lower pH. The presence of 0.45mM of nitrate and 0.01mM of phosphate reduced the removal efficiency by 5-8%. This decrease was because of the competition between the arsenate, nitrate and phosphate for the binding sites of the surfactant micelle. Similar decrease in the removal of arsenate was observed with CPC, CTAB and ODA in the presence of these anions. In cross-flow filtration, the removal efficiency of arsenic was similar to that in the dead-end system. However, the decline in flux was less than that in dead-end filtration. In order to lower the concentration of the surfactant in the effluent, the effluent was treated with powdered activated carbon (PAC) before discharging to the environment. Over 98% surfactant was removed with 1gl(-1) of PAC. In conclusions, the MEUF is considered as a feasible process using CPC or CTAB to remove the arsenate from groundwater compared with the other solid based adsorbent processes.

  16. Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water.

    PubMed

    Kumasaka, Mayuko Y; Yamanoshita, Osamu; Shimizu, Shingo; Ohnuma, Shoko; Furuta, Akio; Yajima, Ichiro; Nizam, Saika; Khalequzzaman, Md; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2013-03-01

    Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 μM arsenic and 10 μM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.

  17. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    DOEpatents

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  18. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite.

    PubMed

    Johnston, Scott G; Burton, Edward D; Moon, Ellen M

    2016-08-01

    Fires in iron-rich seasonal wetlands can thermally transform Fe(III) minerals and alter their crystallinity. However, the fate of As associated with thermally transformed Fe(III) minerals is unclear, as are the consequences for As mobilization during subsequent reflooding and reductive cycles. Here, we subject As(V)-coprecipitated schwertmannite to thermal transformation (200, 400, 600 and 800 °C) followed by biotic reductive incubation (150 d) and examine aqueous- and solid-phase speciation of As, Fe and S. Heating to >400 °C caused transformation of schwertmannite to a nanocrystalline hematite with greater surface area and smaller particle size. Higher temperatures also caused the initially structurally incorporated As to become progressively more exchangeable, increasing surface-complexed As (AsEx) by up to 60-fold, thereby triggering enhanced As mobilization during incubation (∼70-fold in the 800 °C treatment). Although more As was mobilized in biotic treatments than controls (∼3-20×), in both cases it was directly proportional to initial AsEx and mainly due to abiotic desorption. Higher transformation temperatures also drove divergent pathways of Fe and S biomineralization and led to more As(V) and SO4 reduction relative to Fe(III) reduction. This study reveals thermal transformation of schwertmannite can greatly increase As mobility and has major consequences for As/Fe/S speciation under reducing conditions. Further research is warranted to unravel the wider implications for water quality in natural wetlands.

  19. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite.

    PubMed

    Johnston, Scott G; Burton, Edward D; Moon, Ellen M

    2016-08-01

    Fires in iron-rich seasonal wetlands can thermally transform Fe(III) minerals and alter their crystallinity. However, the fate of As associated with thermally transformed Fe(III) minerals is unclear, as are the consequences for As mobilization during subsequent reflooding and reductive cycles. Here, we subject As(V)-coprecipitated schwertmannite to thermal transformation (200, 400, 600 and 800 °C) followed by biotic reductive incubation (150 d) and examine aqueous- and solid-phase speciation of As, Fe and S. Heating to >400 °C caused transformation of schwertmannite to a nanocrystalline hematite with greater surface area and smaller particle size. Higher temperatures also caused the initially structurally incorporated As to become progressively more exchangeable, increasing surface-complexed As (AsEx) by up to 60-fold, thereby triggering enhanced As mobilization during incubation (∼70-fold in the 800 °C treatment). Although more As was mobilized in biotic treatments than controls (∼3-20×), in both cases it was directly proportional to initial AsEx and mainly due to abiotic desorption. Higher transformation temperatures also drove divergent pathways of Fe and S biomineralization and led to more As(V) and SO4 reduction relative to Fe(III) reduction. This study reveals thermal transformation of schwertmannite can greatly increase As mobility and has major consequences for As/Fe/S speciation under reducing conditions. Further research is warranted to unravel the wider implications for water quality in natural wetlands. PMID:27403840

  20. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells.

    PubMed

    Wang, Lei; Hitron, John Andrew; Wise, James T F; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development.

  1. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants. PMID:25880602

  2. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants.

  3. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells

    PubMed Central

    Zhang, Feng; Zhu, Fang-Bing; Li, Jia-Jia; Zhang, Ping-Ping; Zhu, Jun-Feng

    2015-01-01

    Hyperoside (Hyp) is the chief component of some Chinese herbs which has anticancer effect and the present study is to identify whether it could enhance the anti leukemic properties of arsenic trioxide (As2O3) in acute myeloid leukemia (AML). We provide evidence on the concomitant treatment of HL-60 human AML cells with hyperoside potentiates As2O3-dependent induction of apoptosis. The activation of caspase-9, Bcl-2-associated agonist of cell death (BAD), p-BAD, p27 was assessed by Western blot. Results showed that hyperoside inhibited BAD from phosphorylating, reactivated caspase-9, and increased p27 levels. Importantly, hyperoside demonstrated its induction of autophagy effect by upregulation of LC-II in HL-60 AML cell line. Taken together, hyperoside may serve as a great candidate of concomitant treatment for leukemia; these effects were probably related to induction of autophagy and enhancing apoptosis-inducing action of As2O3. PMID:26629016

  4. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  5. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions.

  6. Biomineralization of Arsenate to Arsenic Sulfides is Greatly Enhanced at Mildly Acidic Conditions

    PubMed Central

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A.

    2014-01-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (AsV) and sulfate (SO42−). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO42− and AsV by an anaerobic biofilm mixed culture in a range of pH conditions (6.1–7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  7. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  8. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression.

    PubMed

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan; Cheng, Tain-Junn; Chuu, Jiunn-Jye

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  9. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    PubMed Central

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression. PMID:26114099

  10. Ascorbic acid combats arsenic-induced oxidative stress in mice liver.

    PubMed

    Banerjee, Pathikrit; Bhattacharyya, Soumya Sundar; Bhattacharjee, Nandini; Pathak, Surajit; Boujedaini, Naoual; Belon, Philippe; Khuda-Bukhsh, Anisur Rahman

    2009-02-01

    Repeated injections of arsenic trioxide induced oxidative stress and hepatotoxicity in mice as revealed from elevated levels of glutamate oxaloacetate transaminases, glutamate pyruvate transaminases, acid and alkaline phosphatases, lipid peroxidation along with reduction of superoxide dismutase, catalase, reduced glutathione content, glutathione reductase and succinate dehydrogenase activities. The present investigation was undertaken to test whether simultaneous feeding of vitamin C can combat hepatotoxicity in arsenic intoxicated mice. Hepatoprotective potential of vitamin C was indicated by its ability to restore GSH, SOD, CAT, AcP, AlkP and GRD levels towards near normal. Electron microscopic studies further supported the biochemical findings confirming the hepatoprotective potential of ascorbic acid. Besides, cytogenetical endpoints (chromosome aberrations, micronuclei, mitotic index and sperm head anomaly) were also analyzed. Administration of vitamin C alone did not show any sign of toxicity of its own. Based on the present findings, ascorbic acid appears to have protective effects against arsenic toxicity and oxidative stress.

  11. Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge

    NASA Astrophysics Data System (ADS)

    Kexue, L. I.; Zhou, Weidong; Shen, Qinmei; Shao, Jie; Qian, Huiguo

    2010-05-01

    In comparison to the traditional single pulse laser induced breakdown spectroscopy (SP-LIBS), a significant enhancement of atomic emission of lead and arsenic from laser plasma of soil has been demonstrated by the use of a laser ablation and fast pulse discharge plasma spectroscopy technique (LA-FPDPS). In this technique, a specifically designed high voltage and rapid discharge circuit was used to reheat the laser plasma and to enhance the plasma emission. A rapid and time damped alternating discharge current was observed with a short oscillating period ˜ 0.6 μs and sustained for about 6 μs. The peak intensities of Pb (283.31 nm) and As (286.04 nm) lines from soil plasma emission were greatly enhanced when compare to the traditional single pulse (SP) LIBS system. In addition, the precision of measurements in terms of the relative standard deviation (RSD) and the signal to noise ( S/ N) ratios were also improved. Scanning electron microscopy (SEM) images of the laser ablation regions indicated that the plasma reheating by the discharge spark was presumably the main mechanism for observed signal enhancement in the LA-FPDPS technique.

  12. Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India.

    PubMed

    Roy, Madhumita; Sinha, Dona; Mukherjee, Sutapa; Biswas, Jaydip

    2011-03-01

    Induction of oxidative stress and inhibition of DNA repair are possible modes of arsenic-induced carcinogenesis. In West Bengal, India, several districts contain high levels of arsenic, which are far above the WHO-recommended standard. Prevention of arsenic-induced oxidative stress and induction of repair enzymes by curcumin, an active ingredient of turmeric, may be an effective strategy to combat the adverse effects of arsenic. This study aimed at observing the role of curcumin in reducing 8-hydroxy-20-deoxyguanosine formation and enhancing DNA repair capacity in the arsenic-exposed population of West Bengal. Chronically arsenic-exposed volunteers (n= 66), who were asymptomatic, were selected for this study. Our results indicated that curcumin suppressed the 8-hydroxy-20-deoxyguanosine level and OGG1 expression, which were increased by arsenic. Curcumin also induced DNA repair enzymes involved in both base excision repair and nonhomologous end-joining pathways. In this study, both the protein expression and genetic profile were observed for poly-ADP-ribose polymerase 1, DNA b polymerase, X ray repair cross complement 1, DNA ligase III, DNA protein kinase catalytic sub-unit, X ray repair cross-complement 4, DNA ligase IV, and topoisomerase II b. The results indicated that arsenic-inhibited DNA repair was induced by curcumin, both at protein and genetic levels. Thus, curcumin intervention may be a useful modality for the prevention of arsenic-induced carcinogenesis. PMID:21332098

  13. Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India.

    PubMed

    Roy, Madhumita; Sinha, Dona; Mukherjee, Sutapa; Biswas, Jaydip

    2011-03-01

    Induction of oxidative stress and inhibition of DNA repair are possible modes of arsenic-induced carcinogenesis. In West Bengal, India, several districts contain high levels of arsenic, which are far above the WHO-recommended standard. Prevention of arsenic-induced oxidative stress and induction of repair enzymes by curcumin, an active ingredient of turmeric, may be an effective strategy to combat the adverse effects of arsenic. This study aimed at observing the role of curcumin in reducing 8-hydroxy-20-deoxyguanosine formation and enhancing DNA repair capacity in the arsenic-exposed population of West Bengal. Chronically arsenic-exposed volunteers (n= 66), who were asymptomatic, were selected for this study. Our results indicated that curcumin suppressed the 8-hydroxy-20-deoxyguanosine level and OGG1 expression, which were increased by arsenic. Curcumin also induced DNA repair enzymes involved in both base excision repair and nonhomologous end-joining pathways. In this study, both the protein expression and genetic profile were observed for poly-ADP-ribose polymerase 1, DNA b polymerase, X ray repair cross complement 1, DNA ligase III, DNA protein kinase catalytic sub-unit, X ray repair cross-complement 4, DNA ligase IV, and topoisomerase II b. The results indicated that arsenic-inhibited DNA repair was induced by curcumin, both at protein and genetic levels. Thus, curcumin intervention may be a useful modality for the prevention of arsenic-induced carcinogenesis.

  14. Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen

    SciTech Connect

    Waalkes, Michael P. . E-mail: waalkes@niehs.nih.gov; Liu Jie; Ward, Jerrold M.; Diwan, Bhalchandra A.

    2006-09-15

    Pregnant CD1 mice received 85 ppm arsenite in the drinking water from gestation day 8 to 18, groups (n = 35) of male offspring were subsequently injected on postpartum days 1 through 5 with diethylstilbestrol (DES; 2 {mu}g/pup/day) or tamoxifen (TAM; 10 {mu}g/pup/day), and tumor formation was assessed over 90 weeks. Arsenic alone increased hepatocellular carcinoma (14%), adenoma (23%) and total tumors (31%) compared to control (0, 2 and 2%, respectively). Arsenic alone also increased lung adenocarcinoma, adrenal cortical adenoma and renal cystic tubular hyperplasia compared to control. Compared to arsenic alone, arsenic plus DES increased liver tumor incidence in mice at risk 2.2-fold and increased liver tumor multiplicity (tumors/liver) 1.8-fold. The treatments alone did not impact urinary bladder carcinogenesis, but arsenic plus TAM significantly increased formation of urinary bladder transitional cell tumors (papilloma and carcinoma; 13%) compared to control (0%). Urinary bladder proliferative lesions (combined tumors and hyperplasia) were also increased by arsenic plus TAM (40%) or arsenic plus DES (43%) compared to control (0%) or the treatments alone. Urinary bladder proliferative lesions occurred in the absence of any evidence of uroepithelial cytotoxic lesions. Urinary bladder lesions and hepatocellular carcinoma induced by arsenic plus TAM and/or DES overexpressed estrogen receptor-{alpha}, indicating that aberrant estrogen signaling may have been a factor in the enhanced carcinogenic response. Thus, in male CD1 mice, gestational arsenic exposure alone induced liver adenoma and carcinoma, lung adenocarcinoma, adrenal adenoma and renal cystic hyperplasia. Furthermore, DES enhanced transplacental arsenic-induced hepatocarcinogenesis. In utero arsenic also initiated urinary bladder tumor formation when followed by postnatal TAM and uroepithelial proliferative lesions when followed by TAM or DES.

  15. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    SciTech Connect

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  16. Changes in catchment conditions lead to enhanced remobilization of arsenic in a water reservoir.

    PubMed

    Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Kranz, Ulrike; Feger, Karl-Heinz; Werner, Ingo; Dudel, E Gert

    2013-04-01

    Increasing arsenic concentrations in freshwater ecosystems is of global concern. Processes affecting arsenic fluxes in catchments are known. These processes are in turn controlled by the underlying geology and air pollution history. In contrast to the knowledge on catchment processes less is known about the hydrochemical processes controlling the fixation/remobilization of arsenic within lakes and artificial reservoirs. Consequently, we examined a reservoir system in the Ore Mts. (Germany) regarding its sink and source potentials affecting arsenic fluxes. This area was faced with heavy deposition inputs from coal burning based acid rain until the beginning of the 1990s. Hereafter concentrations of sulfate and nitrate in runoff waters decreased, whereas dissolved organic carbon (DOC) concentrations are still increasing. Along with this, arsenic concentrations in the water discharge from the catchments increase. Our results reveal that the sediments of the investigated reservoir system contain high inventories of arsenic in association with ferric and organic phases. A nitrate deficit dependent arsenic release is suggested. It is indicated that arsenic release from the reservoir sediments may be controlled by water nitrate concentration, which in turn is dependent on the nitrate concentration in the runoff water from the catchment.

  17. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    SciTech Connect

    Sun Yang; Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-09-15

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm{sup 2}) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: > Arsenic transformation adapted to UV-induced apoptosis. > Arsenic transformation diminished oxidant response. > Arsenic transformation enhanced UV-induced DNA damage.

  18. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    PubMed

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-01

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity.

  19. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    PubMed

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-01

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. PMID:26485141

  20. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    PubMed

    Thompson, Benjamin C; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  1. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    PubMed

    Thompson, Benjamin C; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450

  2. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line.

    PubMed

    Lee, Te-Chang; Ho, I-Ching; Lu, Wen-Jen; Huang, Jin-ding

    2006-07-01

    Arsenic-resistant cells (R15), derived from a human lung adenocarcinoma cell line (CL3), were 10-fold more resistant to sodium arsenite (As(III)). Because R15 cells accumulated less arsenic than parental CL3 cells, this arsenic resistance may be due to higher efflux and/or lower uptake of As(III). We therefore compared expression of the multidrug resistance-associated proteins MRP1, MRP2, and MRP3 in these two cell lines. MRP2 expression was 5-fold higher in R15 cells than in CL3 cells, whereas MRP1 and MRP3 expression levels were similar. Furthermore, verapamil and cyclosporin A, inhibitors of multidrug resistance transporters, significantly reduced the efflux of arsenic from R15. Thus, increased arsenic extrusion by MRP2 may contribute to arsenic resistance in R15 cells. We also examined the expression of several aquaglyceroporins (AQPs), which mediate As(III) uptake by cells. Little AQP7 or AQP9 mRNA was detected by reverse transcription-PCR in either cell line, whereas AQP3 mRNA expression was 2-fold lower in R15 cells than in CL3 cells. When AQP3 expression in CL3 cells was knocked down by RNA interference, CL3 cells accumulated less arsenic and became more resistant to As(III). Conversely, overexpression of AQP3 in human embryonic kidney 293T cells increased arsenic accumulation, and the cells were more susceptible to As(III) than 293T cells transfected with vector alone. These results suggest that AQP3 is involved in As(III) accumulation. Taken together, our results suggest that enhanced expression of MRP2 and lower expression of AQP3 are responsible for lower arsenic accumulation in arsenic-resistant R15 cells.

  3. [Study on an enhancing agent for removing arsenic from drinking water].

    PubMed

    Ling, B; Li, S; Zhu, Y; Zhang, B

    2001-05-01

    Drinking water contaminated by arsenic for an extended period of time could be detrimental to the health of people. Some preliminary symptoms could be alleviated by drinking water non-contaminated. It is important to develop an arsenic removal agent with a specific property of most efficient, cost-effective and easy for operation. The results showed that the capacity of the agent developed in this study was 10 times higher for arsenic removal than other agent available. The lowest arsenic content of the treated water was 0.05 mg/L. The special function of this agent was arsenic removing without changing other components and the concentrations of other elements in the treated water. The operation and management was simple without adjusting pH of the influent and effluent water. The agent was 5 times cheaper in cost than alumina or activated carbon, because it was a reusable oxidation-catalyst. Therefore, the agent could be widely applied in drinking water plants or used as a purifier at home in the high arsenic areas. PMID:12525087

  4. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  5. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed. PMID:15653797

  6. Speciation analysis of arsenic in prenatal and children's dietary supplements using microwave-enhanced extraction and ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Wolle, Mesay M; Rahman, G M Mizanur; Kingston, H M Skip; Pamuku, Matt

    2014-03-25

    A study was conducted to develop a microwave-enhanced extraction method for the determination of arsenic species in prenatal and children's dietary supplements prepared from plant materials. The method was optimized by evaluating the efficiency of various solutions previously used to extract arsenic from the types of plant materials used in the dietary supplement formulations. A multivitamin standard reference material (NIST SRM 3280) and a prenatal supplement sample were analyzed in the method optimization. The identified optimum conditions were 0.25 g of sample, 5 mL of 0.3 mol L(-1) orthophosphoric acid (H3PO4) and microwave heating at 90 °C for 30 min. The extracted arsenic was speciated by cation exchange ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). The method detection limit (MDL) for the arsenic species was in the range 2-8 ng g(-1). Ten widely consumed prenatal and children's dietary supplements were analyzed using the optimized protocol. The supplements were found to have total arsenic in the concentration range 59-531 ng g(-1). The extraction procedure recovered 61-92% of the arsenic from the supplements. All the supplementary products were found to contain arsenite (As(3+)) and dimethylarsinic acid (DMA). Arsenate (As(5+)) was found in two of the supplements, and an unknown specie of arsenic was detected in one product. The results of the analysis were validated using mass balance by comparing the sum of the extracted and non-extracted arsenic with the total concentration of the element in the corresponding samples.

  7. Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Hatta, Yoshihiro; Horikoshi, Akira; Yoshino, Yuta; Toyoda, Hiroo; Aizawa, Shin; Takeuchi, Jin

    2012-11-01

    The effects of arsenic trioxide (ATO), all-trans retinoic acid (ATRA) and granulocyte colony-stimulating factor (G-CSF), alone or in combination, were investigated by focusing on differentiation, growth inhibition and arsenic uptake in the acute promyelocytic leukemia (APL) cell line HT93A. ATO induced differentiation at low concentrations (0.125 µM) and apoptosis at high concentrations (1-2 µM). Furthermore, ATRA induced greater differentiation than ATO. No synergistic effect of ATRA and ATO was found on differentiation. G-CSF promoted differentiation-inducing activities of both ATO and ATRA. The combination of ATRA and G-CSF showed maximum differentiation and ATO addition was not beneficial. Addition of 1 µM ATRA and/or 50 ng/ml G-CSF to ATO did not affect apoptosis compared to ATO treatment alone. ATRA induced expression of aquaporin-9 (AQP9), a transmembrane transporter recognized as a major pathway of arsenic uptake, in a time- and dose-dependent manner. However, treatment with 1 µM ATRA decreased arsenic uptake by 43.7% compared to control subject. Although G-CSF addition did not enhance AQP9 expression in the cells, the reduced arsenic uptake was recovered to the same level as that in controls. ATRA decreased cell viability and addition of 50 ng/ml G-CSF to ATRA significantly increased the number of viable cells compared with that in ATRA alone treated cells. G-CSF not only promotes differentiation-inducing activities of both ATRA and ATO, but also makes APL cells vulnerable to increased arsenic uptake. These observations provide new insights into combination therapy using these three agents for the treatment of APL.

  8. A Mutant of the Arabidopsis Phosphate Transporter PHT1;1 Displays Enhanced Arsenic Accumulation

    PubMed Central

    Catarecha, Pablo; Segura, Ma Dolores; Franco-Zorrilla, José Manuel; García-Ponce, Berenice; Lanza, Mónica; Solano, Roberto; Paz-Ares, Javier; Leyva, Antonio

    2007-01-01

    The exceptional toxicity of arsenate [As(V)] is derived from its close chemical similarity to phosphate (Pi), which allows the metalloid to be easily incorporated into plant cells through the high-affinity Pi transport system. In this study, we identified an As(V)-tolerant mutant of Arabidopsis thaliana named pht1;1-3, which harbors a semidominant allele coding for the high-affinity Pi transporter PHT1;1. pht1;1-3 displays a slow rate of As(V) uptake that ultimately enables the mutant to accumulate double the arsenic found in wild-type plants. Overexpression of the mutant protein in wild-type plants provokes phenotypic effects similar to pht1;1-3 with regard to As(V) uptake and accumulation. In addition, gene expression analysis of wild-type and mutant plants revealed that, in Arabidopsis, As(V) represses the activation of genes specifically involved in Pi uptake, while inducing others transcriptionally regulated by As(V), suggesting that converse signaling pathways are involved in plant responses to As(V) and low Pi availability. Furthermore, the repression effect of As(V) on Pi starvation responses may reflect a regulatory mechanism to protect plants from the extreme toxicity of arsenic. PMID:17400898

  9. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium.

    PubMed

    Moreno-Jiménez, Eduardo; Meharg, Andrew A; Smolders, Erik; Manzano, Rebeca; Becerra, Daniel; Sánchez-Llerena, Javier; Albarrán, Ángel; López-Piñero, Antonio

    2014-07-01

    Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding. Both irrigation techniques resulted in similar grain yields (~3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinkler systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result. PMID:24742557

  10. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation.

    PubMed

    Tsai, Shen-Long; Singh, Shailendra; Dasilva, Nancy A; Chen, Wilfred

    2012-02-01

    Arsenic is one of the most hazardous pollutants found in aqueous environments and has been shown to be a carcinogen. Phytochelatins (PCs), which are cysteine-rich and thio-reactive peptides, have high binding affinities for various metals including arsenic. Previously, we demonstrated that genetically engineered Saccharomyces cerevisiae strains expressing phytochelatin synthase (AtPCS) produced PCs and accumulated arsenic. In an effort to further improve the overall accumulation of arsenic, cysteine desulfhydrase, an aminotransferase that converts cysteine into hydrogen sulfide under aerobic condition, was co-expressed in order to promote the formation of larger AsS complexes. Yeast cells producing both AtPCS and cysteine desulfhydrase showed a higher level of arsenic accumulation than a simple cumulative effect of expressing both enzymes, confirming the coordinated action of hydrogen sulfide and PCs in the overall bioaccumulation of arsenic.

  11. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    PubMed

    Zhang, Jianying; Ding, Tengda; Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater.

  12. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  13. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    PubMed

    Zhang, Jianying; Ding, Tengda; Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  14. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    SciTech Connect

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  15. Cytotoxicity of arsenic trioxide is enhanced by (-)-epigallocatechin-3-gallate via suppression of ferritin in cancer cells

    SciTech Connect

    Lee, Te-Chang; Cheng, I-Cheng; Shue, Jun-Jie; Wang, T.C.

    2011-01-01

    Arsenic trioxide (ATO) treatment is a useful therapy against human acute promyelocytic leukemia (APL), however, it concomitantly brings potential adverse consequences including serious side effect, human carcinogenicity and possible development of resistance. This investigation revealed that those problems might be relaxed by simultaneous application with (-)-epigallocatechin-3-gallate (EGCG), one of the major components from green tea. EGCG significantly lowered down the ATO concentration required for an effective control of APL cells, HL-60. The simultaneous treatment of ATO with EGCG induced a mitochondria-dependent apoptosis in HL-60 cells significantly, which accounted for more than 70% of the cell death in the treatment. The mechanism of apoptosis induction was elucidated. EGCG in HL-60 cells acted as a pro-oxidant enhancing intracellular hydrogen peroxide significantly. ATO, on the other hand, induced heme oxygenase-1 (HO-1) to catalyze heme degradation, thereby provided ferrous iron for EGCG-induced hydrogen peroxide to precede Fenton reaction, which in turn generated deleterious reactive oxygen species to damage cell. In addition, EGCG inhibited expression of ferritin, which supposedly to sequester harmful ferrous iron, thereby augmented the occurrence of Fenton reaction. This investigation also provided evidence that ATO, since mainly acted to induce HO-1 in simultaneous treatment with EGCG, could be replaced by other HO-1 inducer with much less human toxicity. Furthermore, several of our preliminary investigations revealed that the enhanced cytotoxicity induced by combining heme degradation and Fenton reaction is selectively toxic to malignant but not non-malignant cells.

  16. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    PubMed

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals. PMID:26505322

  17. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species. PMID:27309856

  18. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia Yi; Li, Hong Bo; Liang, Shuang; Luo, Jun; Ma, Lena Q

    2014-11-01

    We investigated the effects of arsenic species on As accumulation, plant growth and rhizospheric changes in As-hyperaccumulator Pteris vittata (PV). PV was grown for 60-d in a soil spiked with 200 mg kg(-1) arsenate (AsV-soil) or arsenite (AsIII-soil). Diffusive gradients in thin-films technique (DGT) were used to monitor As uptake by PV. Interestingly AsIII-soil produced the highest PV biomass at 8.6 g plant(-1), 27% and 46% greater than AsV-soil and the control. Biomass increase was associated with As-induced P uptake by PV. Although AsIII was oxidized to AsV during the experiment, As species impacted As accumulation by PV, with 17.5% more As in AsIII-soil than AsV-soil (36 vs. 31 mg plant(-1)). As concentration in PV roots was 30% higher in AsV-soil whereas As concentration in PV fronds was 7.9% greater in AsIII-soil, suggesting more rapid translocation of AsIII than AsV. These findings were important to understand the mechanisms of As uptake, accumulation and translocation by PV. PMID:25103044

  19. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.

  20. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  1. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  2. Enhanced arsenic removal by in situ formed Fe-Mn binary oxide in the aeration-direct filtration process.

    PubMed

    Wu, Kun; Liu, Rui-Ping; Liu, Hui-Juan; Lan, Hua-Chun; Qu, Jiu-Hui

    2012-11-15

    Field studies were conducted to evaluate the feasibility of an in situ formed Fe-Mn binary oxide (in situ FMBO) for improving arsenic (As) removal in the aeration-direct filtration process. The transformation and transportation of As, Fe, and Mn in the filter bed were also investigated. The in situ FMBO increased the As removal efficiency by 20-50% to keep the residual As below 10 μg/L. The optimum FMBO dosage was determined to be 0.55 mg/L with the Fe/Mn ratio as 10:1. The removal of Fe, Mn, turbidity, and particles was also improved to a large extent. The in situ FMBO favored the transformation of soluble As, Fe, and Mn into the solid phases, benefiting the removal of these pollutants by the subsequent filtration. Moreover, the deposited precipitates onto the filter media were characterized, as indicated by the analyses of SEM/EDS and particle size distribution. The long-term experiments exhibited decreased head loss growth and prolonged run length, suggesting an enhanced pollutant catching capacity of the filter media. The full-scale field study with a flow of 10,000 m3/d confirmed positive effects of in situ FMBO on As removal, with the average effluent As concentration reduced from 20 μg/L to 6 μg/L (reagent cost=0.006 ¥/m3). PMID:23017236

  3. Enhanced arsenic removal by in situ formed Fe-Mn binary oxide in the aeration-direct filtration process.

    PubMed

    Wu, Kun; Liu, Rui-Ping; Liu, Hui-Juan; Lan, Hua-Chun; Qu, Jiu-Hui

    2012-11-15

    Field studies were conducted to evaluate the feasibility of an in situ formed Fe-Mn binary oxide (in situ FMBO) for improving arsenic (As) removal in the aeration-direct filtration process. The transformation and transportation of As, Fe, and Mn in the filter bed were also investigated. The in situ FMBO increased the As removal efficiency by 20-50% to keep the residual As below 10 μg/L. The optimum FMBO dosage was determined to be 0.55 mg/L with the Fe/Mn ratio as 10:1. The removal of Fe, Mn, turbidity, and particles was also improved to a large extent. The in situ FMBO favored the transformation of soluble As, Fe, and Mn into the solid phases, benefiting the removal of these pollutants by the subsequent filtration. Moreover, the deposited precipitates onto the filter media were characterized, as indicated by the analyses of SEM/EDS and particle size distribution. The long-term experiments exhibited decreased head loss growth and prolonged run length, suggesting an enhanced pollutant catching capacity of the filter media. The full-scale field study with a flow of 10,000 m3/d confirmed positive effects of in situ FMBO on As removal, with the average effluent As concentration reduced from 20 μg/L to 6 μg/L (reagent cost=0.006 ¥/m3).

  4. Enhanced Removal of Arsenic and Antimony in the Mining Site by Calcined γ-Fe2O3/Layered Double Hydroxide Nanocomposite

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong

    2016-04-01

    Arsenic (As) and Antimony (Sb) have been recognized as harmful contaminants in aquatic environment due to its high toxicity and carcinogenicity. Especially, the contamination of arsenic in the mining areas is considered as a serious emerging environmental issue in Korea. Due to the hazardous effect of arsenic, the United States Environmental Protection Agency (US EPA) regulated maximum contamination level of arsenic to 10 μg/L in drinking water. The harmful effect on human health by excessive intake of antimony was also reported by previous studies, and severe contamination level (100 - 7,000 μg/L) of antimony reported in surface and groundwater of abandoned mining area in China and Slovakia. Therefore, US EPA regulated maximum contaminants level of antimony in drinking water to 6 μg/L. In order to remove anionic contaminants in drinking water, various type of nanomaterials have been developed. Layered double hydroxide (LDH) is the artificial anionic clay that is based on the layered structure of positively charged brucite-like layers with interlayers of anions. The LDH is one of the promising nanomaterials for the removal of anionic contaminants because it has high selectivity for arsenic, phosphate, chromium and antimony. However, the biggest problem of LDH for wastewater treatment is that the particles cannot be easily separated after the removal of contaminants. In this study, magnetic nanoparticles (γ-Fe2O3) supported LDH nanocomposite (γ-Fe2O3/LDH) was investigated to enhance magnetic particle recovery and removal efficiency for arsenic and antimony. The calcined γ-Fe2O3/LDH nanocomposites synthesized by co-precipitation method, and the crystallographic properties of maghemite (γ-Fe2O3) and layered structure of LDH were confirmed by X-ray diffraction. The nano-sized γ-Fe2O3 (30 to 50 nm) was stably attached on the surface of LDH (100 to 150 nm) and O1s spectrum by X-ray photoelectron spectroscopy (XPS) explained that there are both physical and

  5. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide.

    PubMed

    He, Jin-Hua; Li, Yu-Min; Li, Yu-Guang; Xie, Xing-Yi; Wang, Li; Chun, Shun-Yi; Cheng, Wu-Jia

    2013-05-01

    The aim of this study was to investigate the effect of a eukaryotic expression vector expressing hsa-miR-203 on the sensitivity of K562 leukemia cells to arsenic trioxide (ATO) and the possible mechanism of action. The eukaryotic expression vector expressing the hsa-miR-203 plasmid (PmiR-203) was transfected into K562 cells using Lipofectamine 2000. bcr/abl 3' untranslated region (UTR) and bcr/abl mutated 3'UTR dual luciferase report vectors (psi-CHECK-2) were used to validate the regulation of bcr/abl by miR-203. The inhibitory effects of ATO and PmiR-203, used singly or in combination, on cell proliferation were detected by MTT assay. Apoptosis of the K562 cells was detected by flow cytometry using double-staining with Annexin V and propidium iodide (PI). The activities of caspase-3 and caspase-9 were detected by a colorimetric method and the cytochrome c protein levels were detected by western blotting. When used in combination with PmiR-203, the IC50 of ATO was reduced from 6.49 to 2.45 μg/ml and the sensitivity of cells to ATO increased 2.64-fold. In addition, PmiR-203 and ATO caused growth inhibition, apoptosis and G1-phase arrest in K562 cells. Furthermore, PmiR-203 significantly promoted ATO-mediated growth inhibition and apoptosis, affecting the G1 phase. JC-1 fluorescent staining revealed that the membrane potential of the mitochondria had changed. The activities of caspase-3 and caspase-9 increased, the expression levels of cytochrome c were upregulated and the expression level of bcr/abl mRNA was significantly suppressed. Furthermore, the dual-luciferase reporter vector, containing tandem miR-203 binding sites from the bcr/abl 3'UTR, demonstrated that bcr/abl was directly regulated by miR-203. PmiR-203 sensitized K562 leukemia cells to ATO by inducing apoptosis and downregulating bcr/ abl gene levels. The induction of apoptosis may occur through the mitochondrial pathway. The combination of ATO and PmiR-203 presents therapeutic potential for chronic

  6. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.

    PubMed

    Allende, K Lizama; Fletcher, T D; Sun, G

    2011-01-01

    The presence of arsenic and heavy metals in drinking water sources poses a serious health risk due to chronic toxicological effects. Constructed wetlands have the potential to remove arsenic and heavy metals, but little is known about pollutant removal efficiency and reliability of wetlands for this task. This lab-scale study investigated the use of vertical subsurface flow constructed wetlands for removing arsenic, boron, copper, zinc, iron and manganese from synthetic wastewater. Gravel, limestone, zeolite and cocopeat were employed as wetland media. Conventional gravel media only showed limited capability in removing arsenic, iron, copper and zinc; and it showed virtually no capability in removing manganese and boron. In contrast, alternative wetland media: cocopeat, zeolite and limestone, demonstrated significant efficiencies--in terms of percentage removal and mass rate per m3 of wetland volume--for removing arsenic, iron, manganese, copper and zinc; their ability to remove boron, in terms of mass removal rate, was also higher than that of the gravel media. The overall results demonstrated the potential of using vertical flow wetlands to remove arsenic and metals from contaminated water, having cocopeat, zeolite or limestone as supporting media.

  7. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.

    PubMed

    Allende, K Lizama; Fletcher, T D; Sun, G

    2011-01-01

    The presence of arsenic and heavy metals in drinking water sources poses a serious health risk due to chronic toxicological effects. Constructed wetlands have the potential to remove arsenic and heavy metals, but little is known about pollutant removal efficiency and reliability of wetlands for this task. This lab-scale study investigated the use of vertical subsurface flow constructed wetlands for removing arsenic, boron, copper, zinc, iron and manganese from synthetic wastewater. Gravel, limestone, zeolite and cocopeat were employed as wetland media. Conventional gravel media only showed limited capability in removing arsenic, iron, copper and zinc; and it showed virtually no capability in removing manganese and boron. In contrast, alternative wetland media: cocopeat, zeolite and limestone, demonstrated significant efficiencies--in terms of percentage removal and mass rate per m3 of wetland volume--for removing arsenic, iron, manganese, copper and zinc; their ability to remove boron, in terms of mass removal rate, was also higher than that of the gravel media. The overall results demonstrated the potential of using vertical flow wetlands to remove arsenic and metals from contaminated water, having cocopeat, zeolite or limestone as supporting media. PMID:22049756

  8. Arsenic poisoning.

    PubMed

    Schoolmeester, W L; White, D R

    1980-02-01

    Arsenic poisoning continues to require awareness of its diverse clinical manifestations. Industry is the major source of arsenic exposure. Although epidemiologic studies strongly contend that arsenic is carcinogenic, there are little supportive research data. Arsenic poisoning, both acute and chronic, is often overlooked initially in the evaluation of the patient with multisystem disease, but once it is suspected, many accurate methods are available to quantitate the amount and duration of exposure. Treatment with dimercaprol remains the mainstay of therapy, and early treatment is necessary to prevent irreversible complications.

  9. A Phytoremediation Strategy for Arsenic

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  10. Enhanced and Stabilized Arsenic Retention in Microcosms through the Microbial Oxidation of Ferrous Iron by Nitrate

    PubMed Central

    SUN, JING; CHILLRUD, STEVEN N.; MAILLOUX, BRIAN J.; STUTE, MARTIN; SINGH, RAJESH; DONG, HAILIANG; LEPRE, CHRISTOPHER J.; BOSTICK, BENJAMIN C.

    2016-01-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II)(aq)(as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II)(aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6 – 7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  11. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.

    PubMed

    Sun, Jing; Chillrud, Steven N; Mailloux, Brian J; Stute, Martin; Singh, Rajesh; Dong, Hailiang; Lepre, Christopher J; Bostick, Benjamin C

    2016-02-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6-7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers.

  12. Using a Solid Oxidizing Media to Enhance Arsenic (As[III]) Removal at a Very Small System

    EPA Science Inventory

    An adsorptive media system at the LEADS Head Start School (LHSS) Building in Buckeye Lake, OH, one of the 50 U.S. EPA Arsenic Removal Technology Demonstration sites, was relocated, after modifications, to Plainview Christian School in Plain City, OH to help bring the non-transien...

  13. Factors controlling arsenic adsorption in the environment

    SciTech Connect

    Wilkie, J.A.; Hering, J.G.

    1995-12-01

    Recent epidemiological studies on arsenic report that the cancer risk associated with arsenic at the current maximum contaminant level (MCL) of 50 {mu}g/L is much greater than previously believed. In response to these findings, the U.S. Environmental Protection Agency intends to decrease the MCL to between 2 and 20 {mu}g/L. The efficiency of arsenic removal in water treatment and the ambient levels of arsenic in source waters are both strongly influenced by the extent of arsenic adsorption to oxide surfaces. An investigation of ft factors controlling arsenic adsorption is crucial to evaluate properly the effectiveness of arsenic removal technologies such as enhanced coagulation. This study examined the effects of the following parameters on arsenic adsorption to preformed hydrous ferric oxide: arsenic oxidation state, initial arsenic concentration, pH and the presence of sulfate. The studies were carried out over initial arsenic concentrations between 2.5 and 100 {mu}g/L (0.33 and 1.34 {mu}M).

  14. Evaluation of Redox Conditions and Enhanced Arsenic Mobility from Waste Disposal in a Complex Fractured Crystalline-Rock Aquifer, Raymond, New Hampshire, USA (Note: article rewritten under new title)

    EPA Science Inventory

    (Note: This entry is no longer valid; the paper was rewritten and submitted to a different journal.) This paper highlights some methods that can be used at a local scale to assess whether waste disposal activities are responsible for enhanced arsenic mobility through redox-contro...

  15. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from < 5 μg L⁻¹ to 5.04-7.37 mg L⁻¹ As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg⁻¹ As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  16. Microbial responses to environmental arsenic.

    PubMed

    Páez-Espino, David; Tamames, Javier; de Lorenzo, Víctor; Cánovas, David

    2009-02-01

    Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.

  17. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    PubMed

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration.

  18. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  19. Hijacking membrane transporters for arsenic phytoextraction.

    PubMed

    LeBlanc, Melissa S; McKinney, Elizabeth C; Meagher, Richard B; Smith, Aaron P

    2013-01-10

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.

  20. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    SciTech Connect

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na; Choe, Tae-Boo; Hong, Seok-Il; Yi, Jae-Youn; Hwang, Sang-Gu; Lee, Hyun-Gyu; Lee, Yun-Han; Park, In-Chul

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  1. Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.

    PubMed

    Duan, Guilan; Kamiya, Takehiro; Ishikawa, Satoru; Arao, Tomohito; Fujiwara, Toru

    2012-01-01

    Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops. PMID:22107880

  2. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  3. Arsenic geochemistry of groundwater in Southeast Asia.

    PubMed

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  4. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    PubMed

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. PMID:24762567

  5. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand.

    PubMed

    Chintakovid, Watchara; Visoottiviseth, Pornsawan; Khokiattiwong, Somkiat; Lauengsuchonkul, Siriporn

    2008-02-01

    Nugget marigold, a triploid hybrid between American (Tagetes erecta L.) and French (Tagetes patula) marigolds, is a marketed flowering plant with a good ability in arsenic phytoremediation. During field trial in an arsenic-polluted area in Thailand, arsenic was found mostly in leaves (46.2%) while flowers contained the lowest arsenic content (5.8%). Arsenic species in aqueous extracts of nugget marigolds were determined by HPLC-UV-HG-QF-AAS. Inorganic arsenics, arsenite and arsenate, were the main arsenic chemical species found in roots, stems, and leaves of marigolds with accumulated arsenic. Nugget marigolds from experimental plots not only accumulated high levels of arsenic but also grew well in arsenic-contaminated areas. Phosphate fertilizer enhanced arsenic uptake when the plants were in the flowering stage. Arsenic remediation using nugget marigolds could also provide economic benefits to the remediators through marketing flowers. Therefore, marigolds should be considered as a potential economic crop for phytoremediation. PMID:17904614

  6. Arsenic carcinogenesis in the skin.

    PubMed

    Yu, Hsin-Su; Liao, Wei-Ting; Chai, Chee-Yin

    2006-09-01

    Chronic arsenic poisoning is a world public health issue. Long-term exposure to inorganic arsenic (As) from drinking water has been documented to induce cancers in lung, urinary bladder, kidney, liver and skin in a dose-response relationship. Oxidative stress, chromosomal abnormality and altered growth factors are possible modes of action in arsenic carcinogenesis. Arsenic tends to accumulate in the skin. Skin hyperpigmentation and hyperkeratosis have long been known to be the hallmark signs of chronic As exposure. There are significant associations between these dermatological lesions and risk of skin cancer. The most common arsenic-induced skin cancers are Bowen's disease (carcinoma in situ), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Arsenic-induced Bowen's disease (As-BD) is able to transform into invasive BCC and SCC. Individuals with As-BD are considered for more aggressive cancer screening in the lung and urinary bladder. As-BD provides an excellent model for studying the early stages of chemical carcinogenesis in human beings. Arsenic exposure is associated with G2/M cell cycle arrest and DNA aneuploidy in both cultured keratinocytes and As-BD lesions. These cellular abnormalities relate to the p53 dysfunction induced by arsenic. The characteristic clinical figures of arsenic-induced skin cancer are: (i) occurrence on sun-protected areas of the body; (ii) multiple and recrudescent lesions. Both As and UVB are able to induce skin cancer. Arsenic treatment enhances the cytotoxicity, mutagenicity and clastogenicity of UV in mammalian cells. Both As and UVB induce apoptosis in keratinocytes by caspase-9 and caspase-8 signaling, respectively. Combined UVB and As treatments resulted in the antiproliferative and proapoptotic effects by stimulating both caspase pathways in the keratinocytes. UVB irradiation inhibited mutant p53 and ki-67 expression, as well as increased in the number of apoptotic cells in As-BD lesions which resulted in an

  7. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    PubMed

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  8. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  9. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways.

    PubMed

    Ho, Sheng-Yow; Wu, Wei-Jr; Chiu, Hui-Wen; Chen, Yi-An; Ho, Yuan-Soon; Guo, How-Ran; Wang, Ying-Jan

    2011-09-01

    The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.

  10. Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in Artemisia annua, a Medicinal Plant as Revealed by Homology-Based Proteomics

    PubMed Central

    Pandey, Sarita; Shrivastava, Alok Kumar; Pandey Rai, Shashi

    2014-01-01

    This paper provides the first proteomic evidence of arsenic (As) tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100 μM As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150 μM treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100 μM As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H) oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants. PMID:24868464

  11. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  12. Earth Abides Arsenic Biotransformations

    PubMed Central

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  13. Arsenic intoxication, a hemorheologic view.

    PubMed

    Bollini, A; Huarte, M; Hernández, G; Bazzoni, G; Piehl, L; Mengarelli, G; de Celis, E Rubín; Rasia, M

    2010-01-01

    Arsenic (As) is a toxic semi-metal of wide distribution in nature. People living in regions where drinking water contains large quantities of arsenic, have an unusually high likelihood of developing blood-vessel diseases, but little is known about the mechanisms involved, i.e. the blood rheologic alterations that would contribute to the circulatory obstruction. Erythrocytes are the main target cells for arsenic compounds systemically absorbed and their cell membrane is the first place against the toxic. In this paper we have examined the in vitro effect of arsenic (As(V)) on the rheologic properties of human erythrocytes in relation with membrane fluidity and internal microviscosity. According to our present results, As(V) treatment produces oxidative degradation of membrane lipids and alteration of internal microviscosity. These red blood cells (RBCs) membrane and cytoplasmic structural damage consequently alters RBCs rheologic properties: an alteration of the RBCs discoid shape to stomatocytes, a diminution of erythrocyte deformability and an enhancement of osmotic fragility and cell aggregability. These effects impaired blood fluid behaviour that contribute to obstruct peripheral circulation and provides anemia, both clinic evidences typical of arsenic cronic intoxication.

  14. Arsenic Trioxide Overcomes Rapamycin-Induced Feedback Activation of AKT and ERK Signaling to Enhance the Anti-Tumor Effects in Breast Cancer

    PubMed Central

    Guilbert, Cynthia; Annis, Matthew G.; Dong, Zhifeng; Siegel, Peter M.; Miller, Wilson H.; Mann, Koren K.

    2013-01-01

    Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways. PMID:24392034

  15. THE CELLUAR METABOLISM OF ARSENIC

    EPA Science Inventory

    Because the methylation of arsenic produces intermediates and terminal products that exceed inorganic arsenic in potency as enzyme inhibitors, cytotoxins, and genotoxins, the methylation of arsenic is properly regarded as an activation process. The methylation of arsenic is an e...

  16. Chem I Supplement: Arsenic and Old Myths.

    ERIC Educational Resources Information Center

    Sarquis, Mickey

    1979-01-01

    Describes the history of arsenic, the properties of arsenic, production and uses of arsenicals, arsenic in the environment; toxic levels of arsenic, arsenic in the human body, and the Marsh Test. (BT)

  17. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  18. Identification of QTLs that enhance the nutritional value of rice grain and limit accumulation of undesirable elements such as arsenic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research into the mineral contents of cereal grains and vegetables is motivated by interest in improving their nutritional value. Biofortification refers to natural enhancement of grain/food products through traditional breeding. Since this approach does not require genetic engineering, it is acce...

  19. The ecology of arsenic.

    PubMed

    Oremland, Ronald S; Stolz, John F

    2003-05-01

    Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.

  20. Impact of Arsenic Toxicity on Black Gram and Its Amelioration Using Phosphate

    PubMed Central

    Sharma, Yogesh Kumar

    2013-01-01

    The toxicity of arsenic in soil and ground water is one of the most important environmental problems particularly in South-East Asia. Arsenic-polluted irrigation water creates hazard in soil environment and also in crop quality. In the present study, response of black gram (Vigna mungo L.) to arsenic with or without phosphate application was investigated. Arsenic-treated plants showed reduction in their growth and pigment content. Arsenic significantly enhanced lipid peroxidation, electrolyte leakage, and level of proline showing oxidative stress. Arsenic toxicity was associated with an increase in the activities of antioxidative enzymes like superoxide dismutase, peroxidase, and ascorbate peroxidase whereas catalase activity decreased at higher arsenic dose. Joint application of phosphate with arsenic resulted in significant alterations in most of the parameters tested under the purview of arsenic treatment alone which lead to better growth in black gram. PMID:23970978

  1. Arsenic and cardiovascular disease.

    PubMed

    States, J Christopher; Srivastava, Sanjay; Chen, Yu; Barchowsky, Aaron

    2009-02-01

    Chronic arsenic exposure is a worldwide health problem. Although arsenic-induced cancer has been widely studied, comparatively little attention has been paid to arsenic-induced vascular disease. Epidemiological studies have shown that chronic arsenic exposure is associated with increased morbidity and mortality from cardiovascular disease. In addition, studies suggest that susceptibility to arsenic-induced vascular disease may be modified by nutritional factors in addition to genetic factors. Recently, animal models for arsenic-induced atherosclerosis and liver sinusoidal endothelial cell dysfunction have been developed. Initial studies in these models show that arsenic exposure accelerates and exacerbates atherosclerosis in apolipoprotein E-knockout mice. Microarray studies of liver mRNA and micro-RNA abundance in mice exposed in utero suggest that a permanent state of stress is induced by the arsenic exposure. Furthermore, the livers of the arsenic-exposed mice have activated pathways involved in immune responses suggesting a pro-hyperinflammatory state. Arsenic exposure of mice after weaning shows a clear dose-response in the extent of disease exacerbation. In addition, increased inflammation in arterial wall is evident. In response to arsenic-stimulated oxidative signaling, liver sinusoidal endothelium differentiates into a continuous endothelium that limits nutrient exchange and waste elimination. Data suggest that nicotinamide adenine dinucleotide phosphate oxidase-derived superoxide or its derivatives are essential second messengers in the signaling pathway for arsenic-stimulated vessel remodeling. The recent findings provide future directions for research into the cardiovascular effects of arsenic exposure.

  2. Arsenic and Cardiovascular Disease

    PubMed Central

    States, J. Christopher; Srivastava, Sanjay; Chen, Yu; Barchowsky, Aaron

    2009-01-01

    Chronic arsenic exposure is a worldwide health problem. Although arsenic-induced cancer has been widely studied, comparatively little attention has been paid to arsenic-induced vascular disease. Epidemiological studies have shown that chronic arsenic exposure is associated with increased morbidity and mortality from cardiovascular disease. In addition, studies suggest that susceptibility to arsenic-induced vascular disease may be modified by nutritional factors in addition to genetic factors. Recently, animal models for arsenic-induced atherosclerosis and liver sinusoidal endothelial cell dysfunction have been developed. Initial studies in these models show that arsenic exposure accelerates and exacerbates atherosclerosis in apolipoprotein E–knockout mice. Microarray studies of liver mRNA and micro-RNA abundance in mice exposed in utero suggest that a permanent state of stress is induced by the arsenic exposure. Furthermore, the livers of the arsenic-exposed mice have activated pathways involved in immune responses suggesting a pro-hyperinflammatory state. Arsenic exposure of mice after weaning shows a clear dose-response in the extent of disease exacerbation. In addition, increased inflammation in arterial wall is evident. In response to arsenic-stimulated oxidative signaling, liver sinusoidal endothelium differentiates into a continuous endothelium that limits nutrient exchange and waste elimination. Data suggest that nicotinamide adenine dinucleotide phosphate oxidase–derived superoxide or its derivatives are essential second messengers in the signaling pathway for arsenic-stimulated vessel remodeling. The recent findings provide future directions for research into the cardiovascular effects of arsenic exposure. PMID:19015167

  3. Arsenic: the forgotten poison?

    PubMed

    Barton, E N; Gilbert, D T; Raju, K; Morgan, O S

    1992-03-01

    Chronic arsenic poisoning is an uncommon cause of peripheral neuropathy in Jamaica. A patient with this disorder is described. The insidious nature of chronic arsenic poisoning, with its disabling complications, is emphasised.

  4. Toxic Substances Portal- Arsenic

    MedlinePlus

    ... industrial applications. Organic arsenic compounds are used as pesticides, primarily on cotton fields and orchards. top What ... as copper or lead smelting, wood treating, or pesticide application. top How can arsenic affect my health? ...

  5. Arsenic Trioxide Injection

    MedlinePlus

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  6. Cryptic exposure to arsenic.

    PubMed

    Rossy, Kathleen M; Janusz, Christopher A; Schwartz, Robert A

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity. PMID:16394429

  7. Cryptic exposure to arsenic.

    PubMed

    Rossy, Kathleen M; Janusz, Christopher A; Schwartz, Robert A

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  8. Arsenic and atherosclerosis.

    PubMed

    Simeonova, Petia P; Luster, Michael I

    2004-08-01

    Epidemiological studies have demonstrated a correlation between environmental or occupational arsenic exposure and a risk of vascular diseases related to atherosclerosis. Studies summarized in this review suggest that arsenic induces endothelial dysfunction, including inflammatory and coagulating activity as well as impairs nitric oxide (NO) balance. This may provide the pathophysiological basis for atherogenic potential of arsenic. Consistent with these data, arsenic accelerates atherosclerosis in apolipoprotein E (ApoE) deficient mice, a model of human atherosclerosis.

  9. ARSENIC SOURCES AND ASSESSMENT

    EPA Science Inventory

    Recent research has identified a number of potential and current links between environmental arsenic releases and the management of operational and abandoned landfills. Many landfills will receive an increasing arsenic load due to the disposal of arsenic-bearing solid residuals ...

  10. Arsenic in Food

    MedlinePlus

    ... inorganic forms. The FDA has been measuring total arsenic concentrations in foods, including rice and juices, through its Total Diet Study program ... readily take up much arsenic from the ground, rice is different because it takes ... has high levels of less toxic organic arsenic. Do organic foods ...

  11. The carcinogenicity of arsenic.

    PubMed Central

    Pershagen, G

    1981-01-01

    A carcinogenic role of inorganic arsenic has been suspected for nearly a century. Exposure to inorganic arsenic compounds occurs in some occupational groups, e.g., among smelter workers and workers engaged in the production and use of arsenic containing pesticides. Substantial exposure can also result from drinking water in certain areas and the use of some drugs. Tobacco and wine have had high As concentrations due to the use of arsenic containing pesticides. Inorganic arsenic compounds interfere with DNA repair mechanisms and an increased frequency of chromosomal aberrations have been observed among exposed workers and patients. Epidemiological data show that inorganic arsenic exposure can cause cancer of the lung and skin. The evidence of an etiologic role of arsenic for angiosarcoma of the liver is highly suggestive; however, the association between arsenic and cancer of other sites needs further investigation. No epidemiological data are available on exposure to organic arsenic compounds and cancer. Animal carcinogenicity studies involving exposure to various inorganic and organic arsenic compounds by different routes have been negative, with the possible exception of some preliminary data regarding lung cancer and leukemia. Some studies have indicated an increased mortality from lung cancer in populations living near point emission sources of arsenic into the air. The role of arsenic cannot be evaluated due to lack of exposure data. Epidemiological data suggest that the present WHO standard for drinking water (50 micrograms As/l.) provides only a small safety margin with regard to skin cancer. PMID:7023936

  12. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    PubMed

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  13. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    PubMed

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.

  14. Case studies--arsenic.

    PubMed

    Chou, C H Selene J; De Rosa, Christopher T

    2003-08-01

    Arsenic is found naturally in the environment. People may be exposed to arsenic by eating food, drinking water, breathing air, or by skin contact with soil or water that contains arsenic. In the U.S., the diet is a predominant source of exposure for the general population with smaller amounts coming from drinking water and air. Children may also be exposed to arsenic because of hand to mouth contact or eating dirt. In addition to the normal levels of arsenic in air, water, soil, and food, people could by exposed to higher levels in several ways such as in areas containing unusually high natural levels of arsenic in rocks which can lead to unusually high levels of arsenic in soil or water. People living in an area like this could take in elevated amounts of arsenic in drinking water. Workers in an occupation that involves arsenic production or use (for example, copper or lead smelting, wood treatment, pesticide application) could be exposed to elevated levels of arsenic at work. People who saw or sand arsenic-treated wood could inhale/ingest some of the sawdust which contains high levels of arsenic. Similarly, when pressure-treated wood is burned, high levels of arsenic could be released in the smoke. In agricultural areas where arsenic pesticides were used on crops the soil could contain high levels of arsenic. Some hazardous waste sites contain large quantities of arsenic. Arsenic ranks #1 on the ATSDR/EPA priority list of hazardous substances. Arsenic has been found in at least 1,014 current or former NPL sites. At the hazardous waster sites evaluated by ATSDR, exposure to arsenic in soil predominated over exposure to water, and no exposure to air had been recorded. However, there is no information on morbidity or mortality from exposure to arsenic in soil at hazardous waste sites. Exposure assessment, community and tribal involvement, and evaluation and surveillance of health effects are among the ATSDR future Superfund research program priority focus areas

  15. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  16. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  17. Arsenic Exposure and Subclinical Endpoints of Cardiovascular Diseases

    PubMed Central

    Wu, Fen; Molinaro, Peter; Chen, Yu

    2014-01-01

    Mechanistic evidence suggests that arsenic exposure from drinking water increases the production of reactive oxygen species and influences inflammatory responses and endothelial nitric oxide homeostasis. These arsenic-induced events may lead to endothelial dysfunction that increases the risk of atherosclerosis and cardiovascular disease. We reviewed accumulating epidemiologic evidence that evaluated the association between arsenic exposure and intermediate markers and subclinical measures that predict future cardiovascular risk. Cross-sectional studies have indicated positive associations between high or low-to-moderate levels of arsenic exposure with indices of subclinical atherosclerosis, QT interval prolongation, and circulating markers of endothelial dysfunction. The evidence is limited for other intermediate endpoints such as markers of oxidative stress and inflammation, QT dispersion, and lipid profiles. Prospective studies are needed to enhance the causal inferences of arsenic's effects on subclinical endpoints of cardiovascular disease, especially at lower arsenic exposure levels. PMID:25013752

  18. Arsenic: homicidal intoxication

    SciTech Connect

    Massey, E.W.; Wold, D.; Heyman, A.

    1984-07-01

    Arsenic-induced deaths have been known to occur from accidental poisoning, as a result of medical therapy, and from intentional poisonings in homicide and suicide. Twenty-eight arsenic deaths in North Carolina from 1972 to 1982 included 14 homicides and seven suicides. In addition, 56 hospitalized victims of arsenic poisoning were identified at Duke Medical Center from 1970 to 1980. Four case histories of arsenic poisoning in North Carolina are presented and clinical manifestations are discussed. In view of the continued widespread use of arsenic in industry and agriculture, and its ubiquity in the environment, arsenic poisoning will continue to occur. A need for knowledge of its toxicity and of the clinical manifestations of acute and chronic arsenic poisoning will also continue.

  19. Arsenic cardiotoxicity: An overview.

    PubMed

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.

  20. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  1. [Late skin symptoms of arsenic poisoning in the arsenic endemy in Bugac-Alsómonostor].

    PubMed

    Nagy, G; Korom, I

    1983-07-01

    The population in an arsenic polluted area of Hungary was studied in respect of dermatological signs. Melanosis was observed in 23,75 per cent and keratosis in 10,83 per cent. Vitiligo has been present in 3 per cent of the population being partly associated to melanosis and partly independent. The observations suggest that arsenic does not only induce malignant neoplasms but also enhances development of benign skin tumours.

  2. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  3. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention. PMID:27136608

  4. Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by dietary phosphate.

    PubMed

    Majumdar, Sangita; Karmakar, Subhra; Maiti, Anasuya; Choudhury, Monalisa; Ghosh, Aniruddha; Das, Asankur Sekhar; Mitra, Chandan

    2011-01-01

    The present study was aimed to test the hypothesis that inorganic phosphate may reduce arsenic toxicity by decreasing its intestinal transference. Co-administration of inorganic phosphate (6.56 M) and arsenic (6.07 mM) in the intestinal loops of rats, in situ, caused significant reduction of arsenic transference. Short-term arsenic exposure (3mg/kg body weight/day for 30 days) caused liver damage evidenced by activities of liver enzymes and necroinflammatory changes. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)-ATPase, a decrease in mitochondrial calcium content, changes in indices of hepatic mitochondrial oxidative stress and iNOS expression. Arsenic also increased hepatic caspase 3 activity and DNA fragmentation. All these apoptosis-related molecular changes caused by arsenic could be alleviated by supplementation with inorganic phosphate, which likely suggests a protective role of phosphate against arsenic-induced hepatotoxic changes.

  5. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention.

  6. Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by dietary phosphate.

    PubMed

    Majumdar, Sangita; Karmakar, Subhra; Maiti, Anasuya; Choudhury, Monalisa; Ghosh, Aniruddha; Das, Asankur Sekhar; Mitra, Chandan

    2011-01-01

    The present study was aimed to test the hypothesis that inorganic phosphate may reduce arsenic toxicity by decreasing its intestinal transference. Co-administration of inorganic phosphate (6.56 M) and arsenic (6.07 mM) in the intestinal loops of rats, in situ, caused significant reduction of arsenic transference. Short-term arsenic exposure (3mg/kg body weight/day for 30 days) caused liver damage evidenced by activities of liver enzymes and necroinflammatory changes. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)-ATPase, a decrease in mitochondrial calcium content, changes in indices of hepatic mitochondrial oxidative stress and iNOS expression. Arsenic also increased hepatic caspase 3 activity and DNA fragmentation. All these apoptosis-related molecular changes caused by arsenic could be alleviated by supplementation with inorganic phosphate, which likely suggests a protective role of phosphate against arsenic-induced hepatotoxic changes. PMID:21787675

  7. Arsenic biomethylation by photosynthetic organisms

    PubMed Central

    Ye, Jun; Rensing, Christopher; Rosen, Barry P.; Zhu, Yong-Guan

    2013-01-01

    Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing ‘smart’ photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food. PMID:22257759

  8. Arsenic trioxide suppresses liver X receptor β and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor α in HepG2 cells.

    PubMed

    Cheng, Tain-Junn; Lin, Shu-Wen; Chen, Chih-Wei; Guo, How-Ran; Wang, Ying-Jang

    2016-10-25

    Chronic arsenic exposure is associated with cerebrovascular disease and the formation of atherosclerotic lesions. Our previous study demonstrated that arsenic trioxide (ATO) exposure was associated with atherosclerotic lesion formation through alterations in lipid metabolism in the reverse cholesterol transport process. In mouse livers, the expression of the liver X receptor β (LXR-β) and the cholesteryl ester transfer protein (CETP) was suppressed without any changes to the lipid profile. The aim of this study was to elucidate whether ATO contributes to atherosclerotic lesions by suppressing LXR-β and CETP levels in hepatocytes. HepG2 cells, human hepatocytes, were exposed to different ATO concentrations in vitro. Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The liver X receptor α (LXR-α), LXR-β, sterol regulatory element-binding protein-1c (SREBP-1c) and CETP protein levels were measured by Western blotting, and their mRNA levels were measured by real-time PCR. Cholesterol efflux was analyzed by flow cytometry. The results showed ATO inhibited LXR-β mRNA and protein levels with a subsequent decrease in SREBP-1c protein levels and reduced cholesterol efflux from HepG2 cells into the extracellular space without influencing LXR-α mRNA and protein levels. CETP protein levels of HepG2 cells were significantly elevated under arsenic exposure. Transfection of LXR-β shRNA did not change CETP protein levels, implying that there is no cross-talk between LXR-β and CETP. In conclusion, arsenic not only inhibits LXR-β and SREBP-1c mRNA and protein levels but also independently increases CETP protein levels in HepG2 cells. PMID:27622732

  9. Response to the Commentary on "Arsenic mobility in the arsenic-contaminated Yangzonghai Lake in China".

    PubMed

    Li, Shiyu; Yang, Changliang; Liu, Kai

    2015-10-01

    This is the response to "Commentary on 'Arsenic mobility in the arsenic-contaminated Yangzonghai Lake in China' by Changliang Yang et al. [Ecotoxicology and Environmental Safety, 107(2014)321-327]" (by Jing Chen et al.). To doubts and questions raised by Chen et al., we give further explanations and provide more relevant evidences. The water temperature stratification existed in Lake Yangzonghai in summer, and affected by which arsenic concentration with water depth was uneven and peaked in the bottom layer in summer. In the case of adding carbon source (glucose) and maintaining anerobic state, enhanced microbial activity promoted the release of arsenic from sediment to water which was observed in the laboratory experiments. Errors might exist in sampling, determination and calculation, but they would not change the main conclusions of the article.

  10. Acute arsenic intoxication.

    PubMed

    Campbell, J P; Alvarez, J A

    1989-12-01

    The diagnosis of acute arsenic poisoning should be considered in any patient presenting with severe gastrointestinal complaints. Signs and symptoms include nausea, vomiting, colicky abdominal pain and profuse, watery diarrhea. Hypotension, fluid and electrolyte disturbances, mental status changes, electrocardiographic abnormalities, respiratory failure and death can result. Quantitative measurement of 24-hour urinary arsenic excretion is the only reliable laboratory test to confirm arsenic poisoning. Treatment includes gastric emesis or lavage, chelation therapy, electrolyte and fluid replacement, and cardiorespiratory support.

  11. [Chronic arsenic poisoning].

    PubMed

    Lozano Armando, V; Ochoa Angel, A

    1979-01-01

    A case of chronic arsenic intoxication due to ingestion of contaminated water for several years is reported. The main symptoms were keratosis palmaris et plantaris, confetti - Like dyschromias in chest, post - necrotic liver cirrhosis multiple intraepithelial epidermoid carcinomas and invasive epidermoid carcinoma. The epidemiologic study showed high concentration of arsenic in the water of the well used by the patient; likewise, chronic arsenicalism was found in the whole family and in several neighbors who consumed water from the same well.

  12. Arsenic compounds and cancer.

    PubMed

    Axelson, O

    1980-01-01

    Exposure to arsenic compounds has been epidemiologically associated with various types of cancers, particularly cancer of the lung among copper smelters and pesticide workers, whereas skin cancers and liver angiosarcomas have been associated with ingestion of arsenic for treatment of skin disorders, especially psoriasis. Attempts to reproduce cancer in animals have been mainly unsuccessful, however. Experimental evidence suggests that arsenic inhibits DNA repair; this might help to explain the somewhat conflicting observations from epidemiologic studies and animal experiments with regard to carcinogenicity, and perhaps also cardiovascular morbidity related to arsenic exposure. PMID:7463514

  13. Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells.

    PubMed

    Watanabe, Takayuki; Ohta, Yuki; Mizumura, Ayano; Kobayashi, Yayoi; Hirano, Seishiro

    2011-06-01

    It has been suggested that arsenic (+3 oxidation state) methyltransferase (AS3MT) plays a critical role in methylation of arsenic, and that arsenic-glutathione conjugate is a substrate for AS3MT-catalyzed methylation of arsenic. However, the mechanism of arsenic methylation in cells is not fully understood. Here, we have constructed T-REx-CHO-hAS3MTtr cells that transiently overexpress human AS3MT in response to tetracycline. The decreases in cell viability after exposure to sodium arsenite were greater in tetracycline-treated cells (tet(+) cells) than in untreated cells (tet(-) cells). Concentration of total cellular arsenic was significantly higher in tet(+) cells than in tet(-) cells. Speciation analyses of arsenic metabolites in whole cell lysates and cell culture medium were performed using both HepG2 cells and T-REx-CHO-hAS3MTtr cells. Speciation analyses of arsenic metabolites in lysates of T-REx-CHO-hAS3MTtr cells revealed that dimethylated arsenicals were the predominant arsenic metabolites in tet(+) cells, while methylated metabolites were not found in tet(-) cells. In contrast, less amount of methylated arsenic metabolites were found in the HepG2 cell lysates, and monomethylated trivalent arsenicals were the predominant methylated arsenic metabolites. Arsenate was found in the culture medium after 24 h culture with arsenite. A larger amount of arsenate was found in the culture medium of tet(+) or tet(-) cells compared to HepG2 cells. These findings indicated that AS3MT expression enhanced the cytotoxic effect of arsenite in tet(+) cells because these cells accumulated more arsenic metabolites than did the tet(-) cells, and accordingly, the tet(+) cells were more susceptible to arsenic than were the tet(-) cells. Oxidation--reduction of arsenic may be implicated in the toxic effects of arsenite.

  14. Arsenic removal from flowing irrigation water in bangladesh: impacts of channel properties.

    PubMed

    Lineberger, Ethan M; Badruzzaman, A Borhan M; Ali, M Ashraf; Polizzotto, Matthew L

    2013-11-01

    Across Bangladesh, dry-season irrigation with arsenic-contaminated well water is loading arsenic onto rice paddies, leading to increased arsenic concentrations in plants, diminished crop yields, and increased human health risks. As irrigation water flows through conveyance channels between wells and rice fields, arsenic concentrations change over space and time, indicating that channels may provide a location for removing arsenic from solution. However, few studies have systematically evaluated the processes controlling arsenic concentrations in irrigation channels, limiting the ability to manipulate these systems and enhance arsenic removal from solution. The central goal of this study was to quantify how channel design affected removal of dissolved arsenic from flowing irrigation water. Field experiments were conducted in Bangladesh using a chemically constant source of arsenic-contaminated irrigation water and an array of constructed channels with varying geometries. The resulting hydraulic conditions affected the quantity of arsenic removed from solution within the channels by promoting known hydrogeochemical processes. Channels three times the width of control channels removed ∼3 times the mass of arsenic over 32 min of flowing conditions, whereas negligible arsenic removal was observed in tarp-lined channels, which prevented soil-water contact. Arsenic removal from solution was ∼7 times higher in a winding, 200-m-long channel than in the straight, 45-m-long control channels. Arsenic concentrations were governed by oxidative iron-arsenic coprecipitation within the water column, sorption to soils, and phosphate competition. Collectively, these results suggest that better design and management of irrigation channels may play a part in arsenic mitigation strategies for rice fields in Southern Asia. PMID:25602413

  15. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  16. Arsenic (Environmental Health Student Portal)

    MedlinePlus

    ... Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Arsenic The Basics Arsenic is an element that exists naturally in the Earth’s crust. Small amounts of arsenic are found in some rock, soil, water, and air. When arsenic combines with ...

  17. Acute arsenic ingestion.

    PubMed

    Levin-Scherz, J K; Patrick, J D; Weber, F H; Garabedian, C

    1987-06-01

    A 21-year-old man presented in shock after ingesting 2 g of arsenic trioxide. He died within 37 hours despite intensive treatment that included intramuscular dimercaprol and hemodialysis. Hemodynamic and laboratory data are presented illustrating the multisystem toxicities of inorganic arsenic. Hemodialysis, previously described as an effective therapeutic adjunct, was shown to be ineffective in this case.

  18. [Multiple bowenoid arsenic keratoses].

    PubMed

    Leyh, F; Rothlaender, J P

    1985-01-01

    Case report of multiple keratoses and chronic lymphatic leukemia after arsenic poisoning 30 years ago during a one-year exposure to copper acetoarsenate in a pesticide factory. Absorption through the skin with local arsenic skin damage is discussed. Etretinate therapy (1 mg/kg b. w.) was ineffective.

  19. [Acute arsenic poisoning].

    PubMed

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment.

  20. [Acute arsenic poisoning].

    PubMed

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment. PMID:25486670

  1. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  2. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  3. An update on arsenic

    SciTech Connect

    Malachowski, M.E. )

    1990-09-01

    Arsenic poisoning is more than just a medical curiosity. Cases of acute and chronic intoxication continue to occur in the United States. Much is now known about the biochemical mechanisms of injury, which has led to a rational basis for therapy. Most importantly, however, the clinician must stay alert to correctly diagnose and treat cases of arsenic poisoning.23 references.

  4. ARSENIC AND OHIO UTILITIES

    EPA Science Inventory

    The presentation provides information on arsenic removal drinking water treatment systems that are likely to be used in Ohio for arsenic removal. Because most Ohio ground water contain significant amounts of iron, iron removal processes will play a major role in treating Ohio gro...

  5. Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study.

    PubMed

    Stucker, Valerie K; Williams, Kenneth H; Robbins, Mark J; Ranville, James F

    2013-06-01

    Stimulating microbial growth through the use of acetate injection wells at the former uranium mill site in Rifle, Colorado, USA, has been shown to decrease dissolved uranium (VI) concentrations through bacterial reduction to immobile uranium (IV). Bioreduction also changed the redox chemistry of site groundwater, altering the mobility of several other redox-sensitive elements present in the subsurface, including iron, sulfur, and arsenic. Following acetate amendment at the site, elevated concentrations of arsenic in the groundwater were observed. Ion chromatography-inductively coupled plasma-mass spectrometry was used to determine the aqueous arsenic speciation. Upgradient samples, unexposed to acetate, showed low levels of arsenic (≈1 μM), with greater than 90% as arsenate (As[V]) and a small amount of arsenite (As[III]). Downgradient acetate-stimulated water samples had much higher levels of arsenic (up to 8 μM), and 4 additional thioarsenic species were present under sulfate-reducing conditions. These thioarsenic species demonstrate a strong correlation between arsenic release and sulfide concentrations in groundwater, and their formation may explain the elevated total arsenic concentrations. An alternative remediation approach, enhanced flushing of uranium, was accomplished by addition of bicarbonate and did not result in highly elevated arsenic concentrations.

  6. Acute arsenic intoxication from environmental arsenic exposure

    SciTech Connect

    Franzblau, A.; Lilis, R. )

    1989-11-01

    Reports of acute arsenic poisoning arising from environmental exposure are rare. Two cases of acute arsenic intoxication resulting from ingestion of contaminated well water are described. These patients experienced a variety of problems: acute gastrointestinal symptoms, central and peripheral neurotoxicity, bone marrow suppression, hepatic toxicity, and mild mucous membrane and cutaneous changes. Although located adjacent to an abandoned mine, the well water had been tested for microorganisms only and was found to be safe. Regulations for testing of water from private wells for fitness to drink are frequently nonexistent, or only mandate biologic tests for microorganisms. Well water, particularly in areas near mining activity, should be tested for metals.

  7. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    PubMed Central

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  8. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    SciTech Connect

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  9. Arsenic and liver disease.

    PubMed

    Guha Mazumder, D N

    2001-06-01

    The hepatotoxic action of arsenic, when used as a therapeutic agent, has long been recognised. Data on liver involvement following chronic exposure to arsenic-contaminated water are scanty. The nature and degree of liver involvement are reported on the basis of hospital based studies in patients who consumed arsenic contaminated drinking water for one to 15 years. Two hundred forty-eight patients with evidence of chronic arsenic toxicity underwent clinical and laboratory examination including liver function tests and hepatitis B surface antigen (HBsAg) status. Liver biopsy was done in 69 cases; in 29 patients, liver arsenic content was estimated by neutron activation analysis. Hepatomegaly was present in 190 of 248 patients (76.6%). Non-cirrhotic portal fibrosis was the predominant lesion (91.3%) in liver histology. The maximum arsenic content in liver was 6 mg/kg (mean 1.46 [0.42], control value 0.16 [0.04]; p <0.001); it was undetected in 6 of 29 samples studied. The largest number of patients with liver disease due to chronic arsenicosis from drinking arsenic contaminated water are reported. Non-cirrhotic portal fibrosis is the predominant lesion in this population. Hepatic fibrosis has also been demonstrated due to long term arsenic toxicity in an animal model. Initial biochemical evidence of hepatic membrane damage, probably due to reduction of glutathione and antioxidant enzymes, may be seen by 6 months. Continued arsenic feeding resulted in fatty liver with serum aminotransferases elevated at 12 months and hepatic fibrosis at 15 months.

  10. Environmental biochemistry of arsenic

    SciTech Connect

    Tamaki, S.; Frankenberger, W.T. Jr. )

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  11. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost. PMID:12696647

  12. Chronic Arsenic poisoning.

    PubMed

    Ahsan, Tasnim; Zehra, Kaneez; Munshi, Alia; Ahsan, Samiah

    2009-02-01

    Chronic Arsenic Toxicity may have varied clinical presentations ranging from non-cancerous manifestations to malignancy of skin and different internal organs. Dermal lesions such as hyper pigmentation and hyperkeratosis, predominantly over palms and soles are diagnostic of Chronic Arsenicosis. We report two cases from a family living in Sukkur who presented with classical skin lesions described in Chronic Arsenicosis. The urine, nail and hair samples of these patients contained markedly elevated levels of arsenic. Also the water samples from their household and the neighbouring households were found to have alarming levels of inorganic Arsenic.

  13. Attenuation of arsenic neurotoxicity by curcumin in rats

    SciTech Connect

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  14. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    PubMed

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils. PMID:27337912

  15. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    PubMed

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  16. Arsenic, stem cells, and the developmental basis of adult cancer.

    PubMed

    Tokar, Erik J; Qu, Wei; Waalkes, Michael P

    2011-03-01

    That chemical insults or nutritive changes during in utero and/or postnatal life can emerge as diseases much later in life are now being accepted as a recurring phenomenon. In this regard, inorganic arsenic is a multisite human carcinogen found at high levels in the drinking water of millions of people, although it has been difficult until recently to produce tumors in rodents with this metalloid. A mouse transplacental model has been developed where maternal exposure to inorganic arsenic either acts as a complete carcinogen or enhances carcinogenic response to other agents given subsequently in the offspring, producing tumors during adulthood. Similarly, human data now have emerged showing that arsenic exposure during the in utero period and/or in early life is associated with cancer in adulthood. The mouse arsenic transplacental model produces tumors or enhances response to other agents in multiple strains and tissues, including sites concordant with human targets of arsenic carcinogenesis. It is now believed that cancer often is a stem cell (SC)-based disease, and there is no reason to think cancer induced by developmental chemical exposure is any different. Indeed, arsenic impacts human SC population dynamics in vitro by blocking exit into differentiation pathways and whereby creating more key targets for transformation. In fact, during in vitro malignant transformation, arsenic causes a remarkable survival selection of SCs, creating a marked overabundance of cancer SCs (CSCs) compared with other carcinogens once a cancer phenotype is obtained. In addition, skin cancers produced following in utero arsenic exposure in mice are highly enriched in CSCs. Thus, arsenic impacts key, long-lived SC populations as critical targets to cause or facilitate later oncogenic events in adulthood as a possible mechanism of developmental basis of adult disease.

  17. Arsenic, Stem Cells, and the Developmental Basis of Adult Cancer

    PubMed Central

    Tokar, Erik J.; Qu, Wei; Waalkes, Michael P.

    2011-01-01

    That chemical insults or nutritive changes during in utero and/or postnatal life can emerge as diseases much later in life are now being accepted as a recurring phenomenon. In this regard, inorganic arsenic is a multisite human carcinogen found at high levels in the drinking water of millions of people, although it has been difficult until recently to produce tumors in rodents with this metalloid. A mouse transplacental model has been developed where maternal exposure to inorganic arsenic either acts as a complete carcinogen or enhances carcinogenic response to other agents given subsequently in the offspring, producing tumors during adulthood. Similarly, human data now have emerged showing that arsenic exposure during the in utero period and/or in early life is associated with cancer in adulthood. The mouse arsenic transplacental model produces tumors or enhances response to other agents in multiple strains and tissues, including sites concordant with human targets of arsenic carcinogenesis. It is now believed that cancer often is a stem cell (SC)–based disease, and there is no reason to think cancer induced by developmental chemical exposure is any different. Indeed, arsenic impacts human SC population dynamics in vitro by blocking exit into differentiation pathways and whereby creating more key targets for transformation. In fact, during in vitro malignant transformation, arsenic causes a remarkable survival selection of SCs, creating a marked overabundance of cancer SCs (CSCs) compared with other carcinogens once a cancer phenotype is obtained. In addition, skin cancers produced following in utero arsenic exposure in mice are highly enriched in CSCs. Thus, arsenic impacts key, long-lived SC populations as critical targets to cause or facilitate later oncogenic events in adulthood as a possible mechanism of developmental basis of adult disease. PMID:21071725

  18. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  19. Complementary arsenic speciation methods: A review

    NASA Astrophysics Data System (ADS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  20. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment.

    PubMed

    Bose, Purnendu; Sharma, Archana

    2002-11-01

    Widespread arsenic contamination of groundwater has been reported of late in Bangladesh and West Bengal state of India. On the basis of arsenic geochemistry, three probable mechanisms have been cited for arsenic mobility in aquifers of West Bengal and Bangladesh. First, mobilization of arsenic due to the oxidation of arsenic-bearing pyrite minerals. Second, dissolution of arsenic-contaminated iron oxy-hydroxides (FeOOH) due to onset of reducing conditions in the subsurface. Third, due to the release of arsenic sorbed to aquifer minerals by competitive exchange with phosphate ions, that migrates into aquifers due to application of fertilizer to surface soil. Based on the review of field data from the affected region, it appears that the second mechanism described above is the most probable. Two reduction processes associated with this mechanism were investigated, viz., reduction of iron oxy-hydroxide to iron (II), which results in the mobilization of arsenic, and reduction of arsenic (V) to arsenic (III), which may enhance mobility of arsenic under certain conditions. These reactions, in the opinion of some researchers, are possible in subsurface environments mainly through microbial intervention. However, through the data presented in this paper, it has been demonstrated that above red-ox reactions involving iron and arsenic are also possible through predominantly abiotic pathways. While these results do not necessarily imply that abiotic red-ox processes are dominant in all subsurface environments containing iron and arsenic, it is entirely possible that abiotic interactions as described here may be responsible for a substantial amount of transformations involving iron and arsenic in anoxic subsurface environments.

  1. The effectiveness of educational interventions to enhance the adoption of fee-based arsenic testing in Bangladesh: a cluster randomized controlled trial.

    PubMed

    George, Christine Marie; Inauen, Jennifer; Rahman, Sheikh Masudur; Zheng, Yan

    2013-07-01

    Arsenic (As) testing could help 22 million people, using drinking water sources that exceed the Bangladesh As standard, to identify safe sources. A cluster randomized controlled trial was conducted to evaluate the effectiveness of household education and local media in the increasing demand for fee-based As testing. Randomly selected households (N = 452) were divided into three interventions implemented by community workers: 1) fee-based As testing with household education (HE); 2) fee-based As testing with household education and a local media campaign (HELM); and 3) fee-based As testing alone (Control). The fee for the As test was US$ 0.28, higher than the cost of the test (US$ 0.16). Of households with untested wells, 93% in both intervention groups HE and HELM purchased an As test, whereas only 53% in the control group. In conclusion, fee-based As testing with household education is effective in the increasing demand for As testing in rural Bangladesh.

  2. The Effectiveness of Educational Interventions to Enhance the Adoption of Fee-Based Arsenic Testing in Bangladesh: A Cluster Randomized Controlled Trial

    PubMed Central

    George, Christine Marie; Inauen, Jennifer; Rahman, Sheikh Masudur; Zheng, Yan

    2013-01-01

    Arsenic (As) testing could help 22 million people, using drinking water sources that exceed the Bangladesh As standard, to identify safe sources. A cluster randomized controlled trial was conducted to evaluate the effectiveness of household education and local media in the increasing demand for fee-based As testing. Randomly selected households (N = 452) were divided into three interventions implemented by community workers: 1) fee-based As testing with household education (HE); 2) fee-based As testing with household education and a local media campaign (HELM); and 3) fee-based As testing alone (Control). The fee for the As test was US$ 0.28, higher than the cost of the test (US$ 0.16). Of households with untested wells, 93% in both intervention groups HE and HELM purchased an As test, whereas only 53% in the control group. In conclusion, fee-based As testing with household education is effective in the increasing demand for As testing in rural Bangladesh. PMID:23716409

  3. The effectiveness of educational interventions to enhance the adoption of fee-based arsenic testing in Bangladesh: a cluster randomized controlled trial.

    PubMed

    George, Christine Marie; Inauen, Jennifer; Rahman, Sheikh Masudur; Zheng, Yan

    2013-07-01

    Arsenic (As) testing could help 22 million people, using drinking water sources that exceed the Bangladesh As standard, to identify safe sources. A cluster randomized controlled trial was conducted to evaluate the effectiveness of household education and local media in the increasing demand for fee-based As testing. Randomly selected households (N = 452) were divided into three interventions implemented by community workers: 1) fee-based As testing with household education (HE); 2) fee-based As testing with household education and a local media campaign (HELM); and 3) fee-based As testing alone (Control). The fee for the As test was US$ 0.28, higher than the cost of the test (US$ 0.16). Of households with untested wells, 93% in both intervention groups HE and HELM purchased an As test, whereas only 53% in the control group. In conclusion, fee-based As testing with household education is effective in the increasing demand for As testing in rural Bangladesh. PMID:23716409

  4. Arsenic Exposure at Low-to-Moderate Levels and Skin Lesions, Arsenic Metabolism, Neurological Functions, and Biomarkers for Respiratory and Cardiovascular Diseases: Review of Recent Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    PubMed Central

    Chen, Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2012-01-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35–75 million people. Although it is evident that high levels (> 300 µg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10–300 µg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 µg/L, mean 99 µg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention. PMID:19371619

  5. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    SciTech Connect

    Chen Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 {mu}g/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 {mu}g/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 {mu}g/L, mean 99 {mu}g/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  6. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh.

    PubMed

    Chen, Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H; Ahsan, Habibul

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (>300 microg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 microg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominantly at low-to-moderate levels (0.1 to 864 microg/L, mean 99 microg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention. PMID:19371619

  7. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh.

    PubMed

    Chen, Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H; Ahsan, Habibul

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (>300 microg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 microg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominantly at low-to-moderate levels (0.1 to 864 microg/L, mean 99 microg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  8. PATHWAY OF INORGANIC ARSENIC METABOLISM

    EPA Science Inventory

    A remarkable aspect of the metabolism of inorganic arsenic in humans is its conversion to methylated metabolites. These metabolites account for most of the arsenic found in urine after exposure to inorganic arsenic. At least some of the adverse health effects attributed to inor...

  9. PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC

    EPA Science Inventory

    PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC.

    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder and kidney. In contrast,
    there is no accepted experimental animal model of inorganic arsenic carcinogenesis.
    Proposed mechanisms/modes of action for a...

  10. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater.

    PubMed

    Meliker, Jaymie R; Slotnick, Melissa J; Avruskin, Gillian A; Haack, Sheridan K; Nriagu, Jerome O

    2009-02-01

    Arsenic concentrations exceeding 10 microg/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination.

  11. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  12. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  13. Plants as useful vectors to reduce environmental toxic arsenic content.

    PubMed

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  14. Plants as useful vectors to reduce environmental toxic arsenic content.

    PubMed

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  15. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    PubMed Central

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  16. Genotoxicity of arsenical compounds.

    PubMed

    Gebel, T W

    2001-03-01

    With respect to global human health hazard, arsenic (As) is one of the most important environmental single substance toxicants. Currently, millions of people all over the world are exposed to the ubiquitous element in exposure levels leading to long-term toxicity, in particular cancer. Unfortunately, it has not been elucidated up to now how As mechanistically leads to the induction of neoplasia. Besides its tumorigenic potential, As has been shown to be genotoxic in a wide variety of different experimental set-ups and biological endpoints. In vitro, the element was shown to induce chromosomal mutagenicity like micronuclei, chromosome aberrations, and sister chromatid exchanges. It mainly acts clastogenic but also has an aneugenic potential. Instead, its potential to induce point mutations is very low in bacterial as well as in mammalian cell systems. However, in combined exposure with point mutagens in vitro, As was shown to enhance the frequency of chemical mutations in a synergistic manner. Additionally, As was shown to induce chromosome aberrations and micronuclei in vivo in experiments with mice. After long-term exposure to As-contaminated drinking water, the great majority of human biomonitoring studies found elevated frequencies of DNA lesions like micronuclei or chromosome aberrations. Respective occupational studies are few. Like it is the case for As carcinogenicity, it is not known through which mechanism the genotoxicity of As is mediated, although the data available indicate that As may act indirectly on DNA, i.e. via mechanisms like interference of regulation of DNA repair or integrity. Because of the indirect mode of action, it has been discussed as well that As's genotoxicity may underlie a sublinear dose-response relationship. However, various problems like non-standardized test systems and experimental variability make it impossible to prove such statement. Basically, to be able to improve risk assessment, it is of crucial importance to

  17. Interstitial injection in silicon after high-dose, low-energy arsenic implantation and annealing

    SciTech Connect

    Tsamis, C.; Skarlatos, D.; BenAssayag, G.; Claverie, A.; Lerch, W.; Valamontes, V.

    2005-11-14

    In this work, we investigate the interstitial injection into the silicon lattice due to high-dose, low-energy arsenic implantation. The approach consists in monitoring the diffusion of the arsenic profile as well as of the boron profile in buried {delta}-doped layers, when amounts of the as-implanted arsenic profile are removed by low-temperature wet silicon etching. The experimental results indicate that the contribution of the implantation damage to the transient enhanced diffusion of boron, and thus the interstitial injection, is not the main one. On the contrary, interstitial generation due to arsenic clustering seems to be more important for the present conditions.

  18. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition.

    PubMed

    Chen, Zheng; Wang, Yuanpeng; Xia, Dong; Jiang, Xiuli; Fu, Dun; Shen, Liang; Wang, Haitao; Li, Qing Biao

    2016-07-01

    Biochar derived from the pyrolysis at 500 °C with fresh biogas slurry and residue, was conducted to investigate its potential role in mediating the speciation and mobilization of As(V) and Fe(III) from arsenic-contaminated tailing mine sediment, with consideration of the changes in microbial populations and dissolved organic matter (DOM). The reduction of As(V) (10-13%) and Fe(III) (12-17%) were partly in response to biochar abiotically causing desorption and reduction effect, but were predominantly (87-90% and 83-88% for As(V) and Fe(III)) attributed to biochar stimulating biological reduction. The level of As(III) released from sediment upon biochar amendment (656.35±89.25 μg L(-1)) was significantly higher than the level released without biochar amendment (98.06±19.38 μg L(-1)) after 49 days incubation. Although a low level of Fe(II) (0.81±0.07 mg L(-1)) was determined in the solution when amending with biochar, most of released Fe(II) (166.25±40.25 mg L(-1)) was formed as biochar-Fe(II)minerals composite. More importantly, biochar stimulated the DOM bioavailability in association with bacterial activities mediating As(V) and Fe(III) reduction. High-throughput sequencing results indicated biochar application shifted the soil microbial community and increased the relative abundance of As(V)-/Fe(III)-reducing bacteria, mostly Geobacter, Anaeromyxobacter, Desulfosporosinus and Pedobacter. The discovery of biochar-bacteria-DOM consortium may broaden new understanding into speciation and mobilization of metals, which arouses attention to exploit feasible bioremediation for metal-contaminated sediment. PMID:26954472

  19. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  20. [Arsenic - Poison or medicine?].

    PubMed

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine.

  1. Arsenic: The Silent Killer

    SciTech Connect

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  2. Chronic arsenic poisoning.

    PubMed

    Hall, Alan H

    2002-03-10

    Symptomatic arsenic poisoning is not often seen in occupational exposure settings. Attempted homicide and deliberate long-term poisoning have resulted in chronic toxicity. Skin pigmentation changes, palmar and plantar hyperkeratoses, gastrointestinal symptoms, anemia, and liver disease are common. Noncirrhotic portal hypertension with bleeding esophageal varices, splenomegaly, and hypersplenism may occur. A metallic taste, gastrointestinal disturbances, and Mee's lines may be seen. Bone marrow depression is common. 'Blackfoot disease' has been associated with arsenic-contaminated drinking water in Taiwan; Raynaud's phenomenon and acrocyanosis also may occur. Large numbers of persons in areas of India, Pakistan, and several other countries have been chronically poisoned from naturally occurring arsenic in ground water. Toxic delirium and encephalopathy can be present. CCA-treated wood (chromated copper arsenate) is not a health risk unless burned in fireplaces or woodstoves. Peripheral neuropathy may also occur. Workplace exposure or chronic ingestion of arsenic-contaminated water or arsenical medications is associated with development of skin, lung, and other cancers. Treatment may incklude the use of chelating agents such as dimercaprol (BAL), dimercaptosuccinic acid (DMSA), and dimercaptopanesulfonic acid (DMPS).

  3. Matrix modification with silver for the electrothermal atomization of arsenic and selenium

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    Silver as a matrix modifier is shown to improve the carbon-rod atomization of both arsenic and selenium for atomic absorption spectrometry. Compared to nickel, the efficiency of silver is greater for arsenic and about the same for selenium. Silver fulfils two functions in its reaction, namely stabilization during the ashing stage and enhancement of absorbance in the final atomization. ?? 1981.

  4. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.

    PubMed

    Azizur Rahman, M; Hasegawa, H; Mahfuzur Rahman, M; Mazid Miah, M A; Tasmin, A

    2008-02-01

    Although human exposure to arsenic is thought to be caused mainly through arsenic-contaminated underground drinking water, the use of this water for irrigation enhances the possibility of arsenic uptake into crop plants. Rice is the staple food grain in Bangladesh. Arsenic content in straw, grain and husk of rice is especially important since paddy fields are extensively irrigated with underground water having high level of arsenic concentration. However, straw and husk are widely used as cattle feed. Arsenic concentration in rice grain was 0.5+/-0.02 mg kg(-1) with the highest concentrations being in grains grown on soil treated with 40 mg As kg(-1) soil. With the average rice consumption between 400 and 650 g/day by typical adults in the arsenic-affected areas of Bangladesh, the intake of arsenic through rice stood at 0.20-0.35 mg/day. With a daily consumption of 4 L drinking water, arsenic intake through drinking water stands at 0.2mg/day. Moreover, when the rice plant was grown in 60 mg of As kg(-1) soil, arsenic concentrations in rice straw were 20.6+/-0.52 at panicle initiation stage and 23.7+/-0.44 at maturity stage, whereas it was 1.6+/-0.20 mg kg(-1) in husk. Cattle drink a considerable amount of water. So alike human beings, arsenic gets deposited into cattle body through rice straw and husk as well as from drinking water which in turn finds a route into the human body. Arsenic intake in human body from rice and cattle could be potentially important and it exists in addition to that from drinking water. Therefore, a hypothesis has been put forward elucidating the possible food chain pathways through which arsenic may enter into human body. PMID:17346792

  5. Inorganic arsenic toxicosis in cattle.

    PubMed

    Riviere, J E; Boosinger, T R; Everson, R J

    1981-03-01

    In 4 occurrences of arsenic poisoning in cattle, the principal clinical sign was acute hemorrhagic diarrhea attributable to hemorrhagic gastroenteritis. Arsenic concentrations in the liver, kidney and rumen contents varied. In one occurrence, arsenic in the hair of affected survivors was assayed at 0.8-3.40 ppm, vs 0.09-0.10 ppm in randomly selected control samples of hair. Sudden death was the only clinical sign in another occurrence in which gastric contents contained arsenic at 671 ppm. In another occurrence, arsenic poisoning caused lesions similar to those of salmonellosis.

  6. Mechanisms Pertaining to Arsenic Toxicity

    PubMed Central

    Singh, Amrit Pal; Goel, Rajesh Kumar; Kaur, Tajpreet

    2011-01-01

    Arsenic is an environmental pollutant and its contamination in the drinking water is considered as a serious worldwide environmental health threat. The chronic arsenic exposure is a cause of immense health distress as it accounts for the increased risk of various disorders such as cardiovascular abnormalities, diabetes mellitus, neurotoxicity, and nephrotoxicity. In addition, the exposure to arsenic has been suggested to affect the liver function and to induce hepatotoxicity. Moreover, few studies demonstrated the induction of carcinogenicity especially cancer of the skin, bladder, and lungs after the chronic exposure to arsenic. The present review addresses diverse mechanisms involved in the pathogenesis of arsenic-induced toxicity and end-organ damage. PMID:21976811

  7. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany

    NASA Astrophysics Data System (ADS)

    Huang, J.-H.; Matzner, E.

    2006-04-01

    porewaters were found in the growing season, suggesting an enhancing risk of arsenic transport of ground- and surface-waters under these conditions.

  8. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO

    USGS Publications Warehouse

    Rhine, E.D.; Onesios, K.M.; Serfes, M.E.; Reinfelder, J.R.; Young, L.Y.

    2008-01-01

    Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 ??g L-1, with a maximum of 215 ??g L-1. In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers. ?? 2008 American Chemical Society.

  9. Arsenical peripheral neuropathy.

    PubMed

    Mathew, Liberty; Vale, Allister; Adcock, Jane E

    2010-02-01

    A 49-year-old white man returned urgently to the UK after spending 3 months in Goa. He had a several week history of vomiting, weight loss, a widespread desquamating skin rash, and symptoms and signs of a progressive painful sensorimotor neuropathy. He had a mild normocytic anaemia and lymphopenia. Nerve conduction studies revealed a severe predominantly axonal large fibre sensorimotor neuropathy, confirmed on subsequent sural nerve biopsy. Once he had left Goa most of his symptoms started to rapidly settle although the neuropathic symptoms remained severe. Arsenic poisoning was suspected. A spot urine arsenic concentration was 300 microg/l, confirming the diagnosis. He was treated with chelation therapy. Deliberate arsenic poisoning was highly likely.

  10. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  11. Environmental source of arsenic exposure.

    PubMed

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  12. Environmental Source of Arsenic Exposure

    PubMed Central

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  13. Environmental source of arsenic exposure.

    PubMed

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  14. Arsenic levels in Oregon waters.

    PubMed

    Stoner, J C; Whanger, P D; Weswig, P H

    1977-08-01

    The arsenic content of well water in certain areas of Oregon can range up to 30 to 40 times the U.S.P.H.S. Drinking Water Standard of 1962, where concentrations in excess of 50 ppb are grounds for rejection. The elevated arsenic levels in water are postulated to be due to volcanic deposits. Wells in central Lane County, Oregon, that are known to contain arsenic rich water are in an area underlain by a particular group of sedimentary and volcanic rocks, which geologists have named the Fischer formation. The arsenic levels in water from wells ranged from no detectable amounts to 2,000 ppb. In general the deeper wells contained higher arsenic water. The high arsenic waters are characterized by the small amounts of calcium and magnesium in relation to that of sodium, a high content of boron, and a high pH. Water from some hot springs in other areas of Oregon was found to range as high as 900 ppb arsenic. Arsenic blood levels ranged from 32 ppb for people living in areas where water is low in arsenic to 250 ppb for those living in areas where water is known to contain high levels of arsenic. Some health problems associated with consumption of arsenic-rich water are discussed.

  15. Effect of a chemical mixture on dermal penetration of arsenic and nickel in male pig in vitro.

    PubMed

    Turkall, Rita M; Skowronski, Gloria A; Suh, Duck H; Abdel-Rahman, Mohamed S

    2003-04-11

    The effect of a chemical mixture on the dermal penetration of arsenic or nickel was assessed by applying arsenic-73 or nickel-63 alone or with the chemical mixture to dermatomed male pig skin samples in flow-through diffusion cells. The chemical mixture consisted of chloroform, phenanthrene, and toluene for arsenic penetration studies and phenol, toluene, and trichloroethylene (TCE) for nickel studies. These are predominant chemicals found at hazardous waste sites. Arsenic and nickel bind to skin after dermal exposure. Total penetration of arsenic and nickel in the chemical mixture were significantly increased by 33% and 20% compared to arsenic and nickel alone, respectively. While more radioactivity penetrated skin with chemical treatment than metal alone, significantly less radioactivity was loosely adsorbed to skin and could be easily washed off from the skin surface with soap and water. The results of this study indicate that the potential health risk from dermal exposure to arsenic or nickel is enhanced if other chemicals are present.

  16. The Effects of Boron on Arsenic-Induced Lipid Peroxidation and Antioxidant Status in Male and Female Rats.

    PubMed

    Kucukkurt, Ismail; Ince, Sinan; Demirel, Hasan Huseyin; Turkmen, Ruhi; Akbel, Erten; Celik, Yasemin

    2015-12-01

    The aim of the present study was to investigate the possible protective effects of boron, an antioxidant agent, against arsenic-induced oxidative stress in male and female rats. In total, 42 Wistar albino male and female rats were divided into three equal groups: The animals in the control group were given normal drinking water, the second group was given drinking water with 100 mg/L arsenic, and the third group was orally administered drinking water with 100 mg/kg boron together with arsenic. At the end of the 28-day experiment, arsenic increased lipid peroxidation and damage in the tissues of rats. However, boron treatment reversed this arsenic-induced lipid peroxidation and activities of antioxidant enzymes in rats. Moreover, boron exhibited a protective action against arsenic-induced histopathological changes in the tissues of rats. In conclusion, boron was found to be effective in protecting rats against arsenic-induced lipid peroxidation by enhancing antioxidant defense mechanisms.

  17. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  18. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  19. Arsenic removal by coagulation

    SciTech Connect

    Scott, K.N.; Green, J.F.; Do, H.D.; McLean, S.J.

    1995-04-01

    This study evaluated the removal of naturally occurring arsenic in a full-scale (106-mgd) conventional treatment plant. When the source water was treated with 3--10 mg/L of ferric chloride or 6, 10, or 20 mg/L of alum, arsenic removal was 81--96% (ferric chloride) and 23--71% (alum). Metal concentrations in the sludge produced during this study were below the state`s current hazardous waste levels at all coagulant dosages. No operational difficulties were encountered.

  20. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  1. Biochemistry of arsenic detoxification.

    PubMed

    Rosen, Barry P

    2002-10-01

    All living organisms have systems for arsenic detoxification. The common themes are (a) uptake of As(V) in the form of arsenate by phosphate transporters, (b) uptake of As(III) in the form of arsenite by aquaglyceroporins, (c) reduction of As(V) to As(III) by arsenate reductases, and (d) extrusion or sequestration of As(III). While the overall schemes for arsenic resistance are similar in prokaryotes and eukaryotes, some of the specific proteins are the products of separate evolutionary pathways.

  2. Arsenic and Selenium

    NASA Astrophysics Data System (ADS)

    Plant, J. A.; Kinniburgh, D. G.; Smedley, P. L.; Fordyce, F. M.; Klinck, B. A.

    2003-12-01

    Arsenic (As) and selenium (Se) have become increasingly important in environmental geochemistry because of their significance to human health. Their concentrations vary markedly in the environment, partly in relation to geology and partly as a result of human activity. Some of the contamination evident today probably dates back to the first settled civilizations which used metals.Arsenic is in group 15 of the periodic table (Table 1) and is usually described as a metalloid. It has only one stable isotope, 75As. It can exist in the -III, -I, 0, III, and V oxidation states (Table 2).

  3. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    EPA Science Inventory

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  4. Sequence of exposure to cadmium and arsenic determines the extent of toxic effects in male Fischer rats.

    PubMed

    Hochadel, J F; Waalkes, M P

    1997-01-15

    Arsenic and cadmium are both priority hazardous substances and human carcinogens. Although there is the potential for simultaneous exposure to both metals, the interactions of cadmium and arsenic are not well defined. We examined the toxicity of these metals when given alone or in alternating sequence to adult male Fischer rats. In the first study, a non-toxic dose of arsenic (22.5 micromol NaAsO2/kg, s.c.) was given 24 h before cadmium (10, 20, or 30 micromol CdCl2/kg, s.c.) and toxicity was assessed 24 h later. Arsenic pretreatment markedly reduced mortality in rats given the high dose of cadmium (9 survivors/10 treated) compared to rats given cadmium alone (2/10). Arsenic pretreatment also reduced cadmium-induced hepatotoxicity, as indicated by serum glutamic oxalacetic transaminase (SGOT) activity, and markedly reduced cadmium-induced testicular hemorrhagic necrosis. Arsenic pretreatment produced an 8-fold increase in hepatic levels of metallothionein (MT), a metal-binding protein often associated with cadmium tolerance. In the second study, a non-toxic dose of cadmium (3 micromol CdCl2/kg, s.c.) was given 24 h before arsenic (68, 79, 84, or 90 micro/mol NaAsO2/kg. s.c.) and toxicity was assessed 24 h later. Cadmium pretreatment did not alter the lethality of the high dose of arsenic and had no effect on arsenic-induced hepatotoxicity. Although cadmium pretreatment had no effect on arsenic toxicity, it produced large increases in hepatic MT (26-fold) before the arsenic challenge and greatly enhanced MT induction after the challenge. Thus, even though both arsenic and cadmium induce MT synthesis, only arsenic pretreatment protects against cadmium intoxication, and cadmium pretreatment does not effect arsenic toxicity. Thus, toxic interactions of arsenic and cadmium appear to depend on the sequence of exposure.

  5. Sequence of exposure to cadmium and arsenic determines the extent of toxic effects in male Fischer rats.

    PubMed

    Hochadel, J F; Waalkes, M P

    1997-01-15

    Arsenic and cadmium are both priority hazardous substances and human carcinogens. Although there is the potential for simultaneous exposure to both metals, the interactions of cadmium and arsenic are not well defined. We examined the toxicity of these metals when given alone or in alternating sequence to adult male Fischer rats. In the first study, a non-toxic dose of arsenic (22.5 micromol NaAsO2/kg, s.c.) was given 24 h before cadmium (10, 20, or 30 micromol CdCl2/kg, s.c.) and toxicity was assessed 24 h later. Arsenic pretreatment markedly reduced mortality in rats given the high dose of cadmium (9 survivors/10 treated) compared to rats given cadmium alone (2/10). Arsenic pretreatment also reduced cadmium-induced hepatotoxicity, as indicated by serum glutamic oxalacetic transaminase (SGOT) activity, and markedly reduced cadmium-induced testicular hemorrhagic necrosis. Arsenic pretreatment produced an 8-fold increase in hepatic levels of metallothionein (MT), a metal-binding protein often associated with cadmium tolerance. In the second study, a non-toxic dose of cadmium (3 micromol CdCl2/kg, s.c.) was given 24 h before arsenic (68, 79, 84, or 90 micro/mol NaAsO2/kg. s.c.) and toxicity was assessed 24 h later. Cadmium pretreatment did not alter the lethality of the high dose of arsenic and had no effect on arsenic-induced hepatotoxicity. Although cadmium pretreatment had no effect on arsenic toxicity, it produced large increases in hepatic MT (26-fold) before the arsenic challenge and greatly enhanced MT induction after the challenge. Thus, even though both arsenic and cadmium induce MT synthesis, only arsenic pretreatment protects against cadmium intoxication, and cadmium pretreatment does not effect arsenic toxicity. Thus, toxic interactions of arsenic and cadmium appear to depend on the sequence of exposure. PMID:9020510

  6. Efficacy of arsenic filtration by Kanchan arsenic filter in Nepal.

    PubMed

    Singh, Anjana; Smith, Linda S; Shrestha, Shreekrishna; Maden, Narendra

    2014-09-01

    Groundwater arsenic contamination has caused a significant public health burden in lowland regions of Nepal. For arsenic mitigation purposes, the Kanchan Arsenic Filter (KAF) was developed and validated for use in 2003 after pilot studies showed its effectiveness in removing arsenic. However, its efficacy in field conditions operating for a long period has been scarcely observed. In this study, we observe the efficacy of KAFs running over 6 months in highly arsenic-affected households in Nawalparasi district. We assessed pair-wise arsenic concentrations of 62 randomly selected household tubewells before filtration and after filtration via KAFs. Of 62 tubewells, 41 had influent arsenic concentration exceeding the Nepal drinking water quality standard value (50 μg/L). Of the 41 tubewells having unsafe arsenic levels, KAFs reduced arsenic concentration to the safe level for only 22 tubewells, an efficacy of 54%. In conclusion, we did not find significantly high efficacy of KAFs in reducing unsafe influent arsenic level to the safe level under the in situ field conditions.

  7. Efficacy of arsenic filtration by Kanchan arsenic filter in Nepal.

    PubMed

    Singh, Anjana; Smith, Linda S; Shrestha, Shreekrishna; Maden, Narendra

    2014-09-01

    Groundwater arsenic contamination has caused a significant public health burden in lowland regions of Nepal. For arsenic mitigation purposes, the Kanchan Arsenic Filter (KAF) was developed and validated for use in 2003 after pilot studies showed its effectiveness in removing arsenic. However, its efficacy in field conditions operating for a long period has been scarcely observed. In this study, we observe the efficacy of KAFs running over 6 months in highly arsenic-affected households in Nawalparasi district. We assessed pair-wise arsenic concentrations of 62 randomly selected household tubewells before filtration and after filtration via KAFs. Of 62 tubewells, 41 had influent arsenic concentration exceeding the Nepal drinking water quality standard value (50 μg/L). Of the 41 tubewells having unsafe arsenic levels, KAFs reduced arsenic concentration to the safe level for only 22 tubewells, an efficacy of 54%. In conclusion, we did not find significantly high efficacy of KAFs in reducing unsafe influent arsenic level to the safe level under the in situ field conditions. PMID:25252363

  8. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake.

    PubMed

    Xu, Pengliang; Christie, Peter; Liu, Yu; Zhang, Junling; Li, Xiaolin

    2008-11-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg(-1)) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.

  9. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.

    PubMed

    Ike, M; Miyazaki, T; Yamamoto, N; Sei, K; Soda, S

    2008-01-01

    The presence of arsenic in groundwater has been of great public concern because of its high toxicity. For purification of arsenic-contaminated groundwater, bacterial oxidation of arsenite, As(III), with a chemical adsorption process was examined in this study. After As(III) oxidation to arsenate, As(V), arsenic is easily removable from contaminated groundwater because As(V) is more adsorptive to absorbents than As(III). By acclimation to As(III) of high concentrations, a mixed culture of heterotrophic bacteria with high As(III)-oxidizing activity was obtained from a soil sample that was free from contamination. With initial concentration up to 1,500 mg l(-1) As(III), the mixed culture showed high As(III)-oxidizing activity at pH values of 7-10 and at temperatures of 25-35 degrees C. The mixed culture contained several genera of heterotrophic As(III)-oxidizing and arsenic-tolerant bacteria: Haemophilus, Micrococcus, and Bacillus. Activated alumina was added to the basal salt medium containing 75 mg l(-1) As(III) before and after bacterial oxidation. Arsenic removal by activated alumina was greatly enhanced by bacterial oxidation of As(III) to As(V). The isotherms of As(III) and As(V) onto activated alumina verified that bacterial As(III) oxidation is a helpful pretreatment process for the conventional adsorption process for arsenic removal.

  10. Arsenic and diabetes: current perspectives.

    PubMed

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Tsai, Keh Sung; Yang, Rong Sen; Liu, Shing Hwa

    2011-09-01

    Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure

  11. Early earth: Arsenic and primordial life

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas R.

    2014-11-01

    Some modern microorganisms derive energy from the oxidation and reduction of arsenic. The association of arsenic with organic cellular remains in 2.7-billion-year-old stromatolites hints at arsenic-based metabolisms at the dawn of life.

  12. Arsenic in shrimp from Kuwait

    SciTech Connect

    Bou-Olayan, A.H.; Al-Yakoob, S.; Al-Hossaini, M.

    1995-04-01

    Arsenic is ubiquitous in the environment and can accumulate in food via contaminated soil, water or air. It enters the food chain through dry and wet atmospheric deposition. Combustion of oil and coal, use of arsenical fertilizers and pesticides and smelting of ores contributes significantly to the natural background of arsenic in soils and sediments. The metal can be transferred from soil to man through plants. In spite of variation in acute, subacute, and chronic toxic effects to plants and animals, evidence of nutritional essentiality of arsenic for rats, goats, and guinea pigs has been suggested, but has not been confirmed for humans. Adverse toxic effects of arsenic as well as its widespread distribution in the environment raises concern about levels of arsenic in man`s diet. Higher levels of arsenic in the diet can result in a higher accumulation rate. Arsenic levels in marine organisms are influenced by species differences, size of organism, and human activities. Bottom dwellers such as shrimp, crab, and lobster accumulate more arsenic than fish due to their frequent contact with bottom sediments. Shrimp constitute approximately 30% of mean total seafood consumption in Kuwait. This study was designed to determine the accumulation of arsenic in the commercially important jinga shrimp (Metapenaeus affinis) and grooved tiger prawn (Penaeus semisulcatus). 13 refs., 3 figs., 1 tab.

  13. Arsenic Content in American Wine.

    PubMed

    Wilson, Denise

    2015-10-01

    Recent studies that have investigated arsenic content in juice, rice, milk, broth (beef and chicken), and other foods have stimulated an interest in understanding how prevalent arsenic contamination is in the U.S. food and beverage supply. The study described here focused on quantifying arsenic levels in wine. A total of 65 representative wines from the top four wine-producing states in the U.S. were analyzed for arsenic content. All samples contained arsenic levels that exceeded the U.S. Environmental Protection Agency (U.S. EPA) exposure limit for drinking water of 10 parts per billion (ppb) and all samples contained inorganic arsenic. The average arsenic detected among all samples studied was 23.3 ppb. Lead, a common co-contaminant to arsenic, was detected in 58% of samples tested, but only 5% exceeded the U.S. EPA exposure limit for drinking water of 15 ppb. Arsenic levels in American wines exceeded those found in other studies involving water, bottled water, apple juice, apple juice blend, milk, rice syrup, and other beverages. When taken in the context of consumption patterns in the U.S., the pervasive presence of arsenic in wine can pose a potential health risk to regular adult wine drinkers. PMID:26591333

  14. Acute and chronic arsenic toxicity.

    PubMed

    Ratnaike, R N

    2003-07-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water.

  15. Acute and chronic arsenic toxicity

    PubMed Central

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water. PMID:12897217

  16. Bengal arsenic, an archive of Himalaya orogeny and paleohydrology.

    PubMed

    Guillot, Stephane; Charlet, Laurent

    2007-10-01

    Holocene groundwater in many districts of the West Bengal and parts of Bangladesh are enriched in arsenic enhancing poisoning effect on humans. One of the main problems to depict the source of arsenic is that this element is very mobile and can be easily removed and recombined from the source during alteration processes, transport and mobilization in sediments. The Ganga-Brahmaputra river system mainly contributed to the buildup of the Bengal fan, which is considered one of the largest modern deltas of the world, then the possible source of the As has probably to be search within the Himalayan belt. We propose that the Indus-Tsangpo suture zone dominated by arc-related rocks and more particularly by large volume of serpentinites enriched in arsenic could be one of the primary source of arsenic. The fact that, the present day arsenic concentration in the main Himalayan river, and particularly the Siang-Brahmaputra river system is not so high as expected can be explained by strong aridic conditions present day prevailing in the Indus-Suture zone and do not favored the weathering of serpentinites into As rich-smectite and Fe-hydroxydes. For the Ganga basin, the original source of arsenic has to be search in the weathering of arc related rocks in the Indus-Tsangpo suture zone followed by its intermediate storage into the sediments of the Siwalik foreland basin, playing the role of arsenic reservoir from Miocene to Pleistocene. Intense tectonic activity in the front of the Himalayan belt associated with high rainfall conditions during the Holocene allowed the arsenic to be remobilized and transported toward the Bay of Bengal.

  17. Bengal arsenic, an archive of Himalaya orogeny and paleohydrology.

    PubMed

    Guillot, Stephane; Charlet, Laurent

    2007-10-01

    Holocene groundwater in many districts of the West Bengal and parts of Bangladesh are enriched in arsenic enhancing poisoning effect on humans. One of the main problems to depict the source of arsenic is that this element is very mobile and can be easily removed and recombined from the source during alteration processes, transport and mobilization in sediments. The Ganga-Brahmaputra river system mainly contributed to the buildup of the Bengal fan, which is considered one of the largest modern deltas of the world, then the possible source of the As has probably to be search within the Himalayan belt. We propose that the Indus-Tsangpo suture zone dominated by arc-related rocks and more particularly by large volume of serpentinites enriched in arsenic could be one of the primary source of arsenic. The fact that, the present day arsenic concentration in the main Himalayan river, and particularly the Siang-Brahmaputra river system is not so high as expected can be explained by strong aridic conditions present day prevailing in the Indus-Suture zone and do not favored the weathering of serpentinites into As rich-smectite and Fe-hydroxydes. For the Ganga basin, the original source of arsenic has to be search in the weathering of arc related rocks in the Indus-Tsangpo suture zone followed by its intermediate storage into the sediments of the Siwalik foreland basin, playing the role of arsenic reservoir from Miocene to Pleistocene. Intense tectonic activity in the front of the Himalayan belt associated with high rainfall conditions during the Holocene allowed the arsenic to be remobilized and transported toward the Bay of Bengal. PMID:17952779

  18. The Arsenic crisis in Bangladesh (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, C.; Ashfaque, K.; Neumann, R. B.; Badruzzaman, B.; Ali, A.

    2010-12-01

    The Ganges Delta suffers from water-borne disease. Arsenic in the groundwater pumped from drinking water wells is causing severe and widespread disease, and these wells were installed, in part, to avoid pathogens in the surface water supply. I will discuss the hydrogeologic controls of arsenic concentrations in groundwater, specifically the role of enhanced groundwater circulation driven by irrigation pumping and the effects of the solute loads transported into aquifers with recharge through different surface features, such as rice fields, rivers, and ponds. I will contrast the approaches taken in Southeast Asia for studying groundwater contamination with methods used in the U.S. I will compare findings from several sites in the region and consider how improved models of the coupled hydrologic and biogeochemical system can be used to provide safer water.

  19. Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh.

    PubMed

    Raqib, Rubhana; Ahmed, Sultan; Sultana, Rokeya; Wagatsuma, Yukiko; Mondal, Dinesh; Hoque, A M Waheedul; Nermell, Barbro; Yunus, Mohammed; Roy, Shantonu; Persson, Lars Ake; Arifeen, Shams El; Moore, Sophie; Vahter, Marie

    2009-03-28

    Chronic exposure to arsenic, a potent carcinogen and toxicant, via drinking water is a worldwide public health problem. Because little is known about early-life effects of arsenic on immunity, we evaluated the impact of in utero exposure on infant immune parameters and morbidity in a pilot study. Pregnant women were enrolled at 6-10 weeks of gestation in Matlab, a rural area of Bangladesh, extensively affected by arsenic contamination of tubewell water. Women (n=140) delivering at local clinics were included in the study. Anthropometry and morbidity data of the pregnant women and their children, as well as infant thymic size by sonography were collected. Maternal urine and breast milk were collected for immune marker and arsenic assessment. Maternal urinary arsenic during pregnancy showed significant negative correlation with interleukin-7 (IL-7) and lactoferrin (Ltf) in breast milk and child thymic index (TI). Urinary arsenic was also positively associated with fever and diarrhea during pregnancy and acute respiratory infections (ARI) in the infants. The effect of arsenic exposure on ARI was only evident in male children. The findings suggest that in utero arsenic exposure impaired child thymic development and enhanced morbidity, probably via immunosuppression. The effect seemed to be partially gender dependent. Arsenic exposure also affected breast milk content of trophic factors and maternal morbidity.

  20. Protective effect of N-acetylcysteine against arsenic-induced depletion in vivo of carbohydrate.

    PubMed

    Pal, Sudipta; Chatterjee, Ajay Kumar

    2004-05-01

    N-acetylcysteine (NAC), a synthetic aminothiol, possesses antioxidative and cytoprotective properties. The present study evaluates the effect of NAC supplementation on arsenic-induced depletion in vivo of carbohydrates. Arsenic (as sodium arsenite) treatment (i.p.) of male Wistar rats (120-140 g b.w.) at a dose of 5.55 mg/kg body weight (35% of LD50) per day for a period of 30 days produced a significant decrease in blood glucose level (hypoglycemia) and a fall in liver glycogen and pyruvic acid contents. The free amino acid nitrogen content of liver increased while that of kidney decreased after arsenic treatment. Arsenic also enhanced the liver lactate dehydrogenase activity whereas glucose 6-phosphatase activity in both liver and kidney decreased significantly following arsenic treatment. Transaminase activities in liver and kidney were not significantly altered except the glutamate-pyruvate transaminase activity that was reduced in kidney after arsenic treatment. Oral administration of NAC (163.2 mg/kg/day) for last 7 days of treatment prevented the arsenic-induced hypoglycemia and glycogenolytic effects to an appreciable extent. There was also recovery of liver pyruvic acid as well as liver and kidney free amino acid nitrogen content after NAC supplementation. Arsenic-induced alteration of glucose 6-phosphatase activity in both liver and kidney was also counteracted by NAC. It is suggested that carbohydrate depletion in vivo due to exposure to arsenic can be counteracted by NAC supplementation.

  1. Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor.

    PubMed

    Choe, Se-In; Gravelat, Fabrice N; Al Abdallah, Qusai; Lee, Mark J; Gibbs, Bernard F; Sheppard, Donald C

    2012-06-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter).

  2. Stress-related gene expression in mice treated with inorganic arsenicals.

    PubMed

    Liu, J; Kadiiska, M B; Liu, Y; Lu, T; Qu, W; Waalkes, M P

    2001-06-01

    Arsenic (As) is an environmental chemical of high concern for human health. Acute toxicity of arsenic is dependent on its chemical forms and proximity to high local arsenic concentrations is one of the mechanisms for cell death. This study was designed to define acute arsenic-induced stress-related gene expression in vivo. Mice were injected sc with either sodium arsenite [As(III), 100 micromol/kg], sodium arsenate [As(V), 300 micromol/kg], or saline. To examine stress-related gene expression, livers were removed 3 h after arsenic injection for RNA and protein extraction. The Atlas Mouse Stress/Toxicology array revealed that the expression of genes related to stress, DNA damage, and metabolism was altered by acute arsenic treatments. Expression of heme oxygenase 1 (HO-1), a hallmark for arsenic-induced stress, was increased 10-fold, along with increases in heat shock protein-60 (HSP60), DNA damage inducible protein GADD45, and the DNA excision repair protein ERCC1. Downregulation of certain cytochrome P450 enzymes occurred with arsenic treatment. Multiprobe RNase protection assay revealed the activation of the c-Jun/AP-1 transcription complex after arsenic treatments. Western blot analysis further confirmed the enhanced production of arsenic-induced stress proteins such as HO-1, HSP70, HSP90, metallothionein, the metal-responsive transcription factor MTF-1, nuclear factor kappa B and c-Jun/AP-1. Increases in caspase-1 and cytokines such as tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 were also evident. In summary, this study profiled the gene expression pattern in mice treated with inorganic arsenicals, which adds to our understanding of acute arsenic poisoning and toxicity.

  3. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.

    PubMed

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A; Rentsch, Doris; Schroeder, Julian I; Lee, Youngsook; Martinoia, Enrico

    2010-12-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.

  4. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    SciTech Connect

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.

  5. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters

    PubMed Central

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G.; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A.; Rentsch, Doris; Schroeder, Julian I.; Lee, Youngsook; Martinoia, Enrico

    2010-01-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC–metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]–PC2 transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)–PC2 transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs. PMID:21078981

  6. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    SciTech Connect

    Zhang Zhuo; Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok; Yao Hua; Li Wenqi; Budhraja, Amit; Li Li; Shelton, Brent J.; Tucker, Thomas; Arnold, Susanne M.; Shi Xianglin

    2011-10-15

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  7. Identification of an arsenic tolerant double mutant with a thiol-mediated component and increased arsenic tolerance in phyA mutants.

    PubMed

    Sung, Dong-Yul; Lee, David; Harris, Hugh; Raab, Andrea; Feldmann, Jörg; Meharg, Andrew; Kumabe, Bryan; Komives, Elizabeth A; Schroeder, Julian I

    2007-03-01

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.

  8. Identification of An Arsenic Tolerant Double Mutant With a Thiol-Mediated Component And Increased Arsenic Tolerance in PhyA Mutants

    SciTech Connect

    Sung, D.Y.; Lee, D.; Harris, H.; Raab, A.; Feldmann, J.; Meharg, A.; Kumabe, B.; Komives, E.A.; Schroeder, J.I.; /SLAC, SSRL /Sydney U. /Aberdeen U. /UC, San Diego

    2007-04-06

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.

  9. Identification of an arsenic tolerant double mutant with a thiol-mediated component and increased arsenic tolerance in phyA mutants.

    PubMed

    Sung, Dong-Yul; Lee, David; Harris, Hugh; Raab, Andrea; Feldmann, Jörg; Meharg, Andrew; Kumabe, Bryan; Komives, Elizabeth A; Schroeder, Julian I

    2007-03-01

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5. PMID:17335514

  10. Arsenic Exposure and Toxicology: A Historical Perspective

    PubMed Central

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J.

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve. PMID:21750349

  11. Arsenic poisoning in dairy cattle from naturally occurring arsenic pyrites.

    PubMed

    Hopkirk, R G

    1987-10-01

    An outbreak of arsenic poisoning occurred in which most of a 200 cow dairy herd were affected and six died. The source of the arsenic was naturally occurring arsenic pyrites from the Waiotapu Stream, near Rotorua. Arsenic levels in the nearby soil were as high as 6618 ppm. There was little evidence to suggest that treatment affected the course of the disease. Haematology was of little use in diagnosis, post-mortem signs were not always consistent and persistence of the element in the liver appeared short. Control of further outbreaks have been based on practical measures to minimise the intake of contaminated soil and free laying water by the stock. PMID:16031332

  12. Arsenic poisoning in dairy cattle from naturally occurring arsenic pyrites.

    PubMed

    Hopkirk, R G

    1987-10-01

    An outbreak of arsenic poisoning occurred in which most of a 200 cow dairy herd were affected and six died. The source of the arsenic was naturally occurring arsenic pyrites from the Waiotapu Stream, near Rotorua. Arsenic levels in the nearby soil were as high as 6618 ppm. There was little evidence to suggest that treatment affected the course of the disease. Haematology was of little use in diagnosis, post-mortem signs were not always consistent and persistence of the element in the liver appeared short. Control of further outbreaks have been based on practical measures to minimise the intake of contaminated soil and free laying water by the stock.

  13. Environmental aspects of arsenic toxicity.

    PubMed

    Peters, G R; McCurdy, R F; Hindmarsh, J T

    1996-01-01

    The toxicity of arsenic and its long history of use in human culture has resulted in widespread concern about the natural and anthropogenic levels of arsenic in our environment. In this article, an overview of the current environmental status of arsenic is presented. A brief history of the usage of this element is followed by a discussion of the current applications. Both natural as well as anthropogenic sources of input are described and discussed in terms of their relative impact on the Earth's environment. Numerous control mechanisms for arsenic exist in the environment, and the major processes involved (physical, chemical, and biological) are highlighted. Natural cycling of this element through the various environmental compartments (air, water, soil, and biota) are described as well as some current methods for the removal of arsenic from natural and industrial waters. Finally, a brief overview of the most common methods for the analysis of arsenic in environmental samples is presented.

  14. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    NASA Astrophysics Data System (ADS)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  15. Moonshine-related arsenic poisoning.

    PubMed

    Gerhardt, R E; Crecelius, E A; Hudson, J B

    1980-02-01

    Twelve sequential cases of arsenic poisoning were reviewed for possible sources of ingestion. Contaminated illicit whiskey (moonshine) appeared to be the source in approximately 50% of the patients. An analysis of.confiscated moonshine revealed that occasional specimens contained high levels of arsenic as a contaminant. Although arsenic poisoning occurs relatively infrequently, contaminated moonshine may be an important cause of the poisoning in some areas of the country.

  16. Arsenic poisoning of Bangladesh groundwater

    NASA Astrophysics Data System (ADS)

    Nickson, Ross; McArthur, John; Burgess, William; Ahmed, Kazi Matin; Ravenscroft, Peter; Rahmanñ, Mizanur

    1998-09-01

    In Bangladesh and West Bengal, alluvial Ganges aquifers used for public water supply are polluted with naturally occurring arsenic, which adversely affects the health of millions of people. Here we show that the arsenic derives from the reductive dissolution of arsenic-rich iron oxyhydroxides, which in turn are derived from weathering of base-metal sulphides. This finding means it should now be possible, by sedimentological study of the Ganges alluvial sediments, to guide the placement of new water wells so they will be free of arsenic.

  17. Arsenic content of homeopathic medicines

    SciTech Connect

    Kerr, H.D.; Saryan, L.A.

    1986-01-01

    In order to test the widely held assumption that homeopathic medicines contain negligible quantities of their major ingredients, six such medicines labeled in Latin as containing arsenic were purchased over the counter and by mail order and their arsenic contents measured. Values determined were similar to those expected from label information in only two of six and were markedly at variance in the remaining four. Arsenic was present in notable quantities in two preparations. Most sales personnel interviewed could not identify arsenic as being an ingredient in these preparations and were therefore incapable of warning the general public of possible dangers from ingestion. No such warnings appeared on the labels.

  18. Can folate intake reduce arsenic toxicity?

    PubMed

    Kile, Molly L; Ronnenberg, Alayne G

    2008-06-01

    Arsenic-contaminated groundwater is a global environmental health concern. Inorganic arsenic is a known carcinogen, and epidemiologic studies suggest that persons with impaired arsenic metabolism are at increased risk for certain cancers, including skin and bladder carcinoma. Arsenic metabolism involves methylation to monomethylarsonic acid and dimethylarsinic acid (DMA) by a folate-dependent process. Persons possessing polymorphisms in certain genes involved in folate metabolism excrete a lower proportion of urinary arsenic as DMA, which may influence susceptibility to arsenic toxicity. A double-blind placebo-controlled trial in a population with low plasma folate observed that after 12 weeks of folic acid supplementation, the proportion of total urinary arsenic excreted as DMA increased and blood arsenic concentration decreased, suggesting an improvement in arsenic metabolism. Although no studies have directly shown that high folate intake reduces the risk of arsenic toxicity, these findings provide evidence to support an interaction between folate and arsenic metabolism.

  19. [Subacute arsenic poisoning].

    PubMed

    Ghariani, M; Adrien, M L; Raucoules, M; Bayle, J; Jacomet, Y; Grimaud, D

    1991-01-01

    A cas is reported of a 23-year-old man who voluntarily took a massive dose of arsenic (at least 8 g). In spite of the ingested amount and the acute nature of the poisoning, the patient survived 8 days. Gastrointestinal, neurologic and cardiac features were predominant including nausea, vomiting, choleroid diarrhoea, encephalopathy, peripheral neuropathy, and finally a fatal toxic cardiomyopathy. Metabolic acidosis, moderate cytolysis and an anticoagulant effect were also observed. This unique characteristic was partly due to a circulating anticoagulant with prothrombinase activity, as well as direct antivitamin K activity. Postmortem examination revealed: a congestive oesophagitis; a necrosing gastritis involving all the stomach wall; diffuse hepatic steatosis; skin lesions with vascular congestion and dermoepidermal detachment; discrete subepicardial congestive lesions. Arsenic was found in all tissues.

  20. Bovine arsenic toxicosis.

    PubMed

    Neiger, Regg; Nelson, Nicole; Miskimins, Dale; Caster, Jim; Caster, Larry

    2004-09-01

    A ranch in central South Dakota had a number of dead calves because of arsenic poisoning. The clinical picture included diarrhea, central nervous system signs, and death. Gross necropsy findings included adequate body fat, stomachs full of normal-appearing ingesta, and large amounts of greenish brown watery fluid in the intestine and colon. Microscopically there was severe lymphoid tissue necrosis in the mesenteric lymph nodes and gut-associated lymphoid tissue. Chemical analysis of kidneys showed no significant amounts of lead; however, kidney arsenic concentrations were 25 to 44 ppm. The source was a small pile of Paris Green (common name for cupric acetoarsenite) found in an old dump site in the pasture.

  1. INFLUENCE OF DIETARY ARSENIC ON URINARY ARSENIC METABOLITE EXCRETION

    EPA Science Inventory

    Influence of Dietary Arsenic on Urinary Arsenic Metabolite Excretion

    Cara L. Carty, M.S., Edward E. Hudgens, B.Sc., Rebecca L. Calderon, Ph.D., M.S.P.H., Richard Kwok, M.S.P.H., Epidemiology and Biomarkers Branch/HSD, NHEERL/US EPA; David J. Thomas, Ph.D., Pharmacokinetics...

  2. Homicidal arsenic poisoning.

    PubMed

    Duncan, Andrew; Taylor, Andrew; Leese, Elizabeth; Allen, Sam; Morton, Jackie; McAdam, Julie

    2015-07-01

    The case of a 50-year-old man who died mysteriously after being admitted to hospital is reported. He had raised the possibility of being poisoned prior to his death. A Coroner's post-mortem did not reveal the cause of death but this was subsequently established by post-mortem trace element analysis of liver, urine, blood and hair all of which revealed very high arsenic concentrations.

  3. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  4. Atypical porcine enterovirus encephalomyelitis: possible interraction between enteroviruses and arsenicals.

    PubMed

    Pass, D A; Forman, A J; Connaughton, I D; Gillick, J C; Cutler, R S

    1979-10-01

    Porcine enteroviruses were isolated from weaner pigs that had nervous signs and mild non-suppurative meningoencephalomyelitis and ganglioneuritis. The clinical signs and lesions were not typical of enterovirus infection and it is believed that an organic arsenical present in feed enhanced pathogenicity of enteroviruses. Severe non-suppurative polioencephalomyelitis and ganglioneuritis were produced in gnotobiotic pigs by oral inoculation of the viruses.

  5. Arsenic hazards to humans, plants, and animals from gold mining.

    PubMed

    Eisler, Ronald

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially enhanced leaching. Arsenic concentrations near gold mining operations are elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 microg/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg DW in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7,700 mg/kg DW in sediments, and 21,000 mg/ kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg BW in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1-10 mg As/kg BW or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19-48 microg As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) > 1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3-28 mg of water-soluble As/L (equivalent to about 25-85 mg total As/kg soil) and at atmospheric concentrations > 3.9 microg As/m3. Gold miners had a number of arsenic-associated health problems, including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 microg/L (range, 2.2-106.0 microg/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in their urine. Proposed arsenic criteria to protect human

  6. Arsenic hazards to humans, plants, and animals from gold mining

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially-enhanced leaching. Arsenic concentrations near gold mining operations were elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 ug/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg dry weight (DW) in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7700 mg/kg DW in sediments, and 21,000 mg/kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg body weight (BW) in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1 to 10 mg As/kg BW, or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19 to 48 ug As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) >1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3 to 28 mg of water-soluble As/L (equivalent to about 25 to 85 mg total As/kg soil) and at atmospheric concentrations >3.9 ug As/m3. Gold miners had a number of arsenic-associated health problems including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 ug/L (range 2.2-106.0 ug/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in urine. Proposed arsenic criteria to protect

  7. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    PubMed

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  8. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests.

    PubMed

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-12-01

    A greenhouse experiment was conducted to evaluate the effectiveness of diammonium phosphate (DAP), single superphosphate (SSP) and two growing cycles on arsenic removal by Chinese Brake Fern (Pteris vittata L.) from an arsenic contaminated Typic Haplustept of the Indian state of West Bengal. After harvest of Pteris vittata the total, Olsen's extractable and other five soil arsenic fractions were determined. The total biomass yield of P. vittata ranged from 10.7 to 16.2 g pot(-1) in first growing cycle and from 7.53 to 11.57 g pot(-1) in second growing cycle. The frond arsenic concentrations ranged from 990 to 1374 mg kg(-1) in first growing cycle and from 875 to 1371 mg kg(-1) in second growing cycle. DAP was most efficient in enhancing biomass yield, frond and root arsenic concentrations and total arsenic removal from soil. After first growing cycle, P. vittata reduced soil arsenic by 10 to 20%, while after two growing cycles Pteris reduced it by 18 to 34%. Among the different arsenic fractions, Fe-bound arsenic dominated over other fractions. Two successive harvests with DAP as the phosphate fertilizer emerged as the promising management strategy for amelioration of arsenic contaminated soil of West Bengal through phyotoextraction by P. vittata. PMID:22908659

  9. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    PubMed

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution. PMID:21692537

  10. Green tea extract alleviates arsenic-induced biochemical toxicity and lipid peroxidation in rats.

    PubMed

    Messarah, Mahfoud; Saoudi, Mongi; Boumendjel, Amel; Kadeche, Lilia; Boulakoud, Mohamed Salah; El Feki, Abdelfattah

    2013-05-01

    The present work was undertaken to evaluate the protective effect of an aqueous extract of green tea (GT, Camellia sinensis) leaves against arsenic (NaAsO₂)-induced biochemical toxicity and lipid peroxidation production in experimental rats. The treatment with arsenic exhibited a significant increase in some serum hepatic and renal biochemical parameters (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total protein, albumin, bilirubin, cholesterol, urea and creatinine). But the co-administration of GT has increased the level of plasmatic concentration of biochemical parameters. Exposure of rats to arsenic caused also a significant increase in liver, kidney and testicular thiobarbituric acid reactive substances compared to control. However, the co-administration of GT was effective in reducing its level. To conclude, our data suggest that arsenic exposure enhanced an oxidative stress by disturbing the tissue antioxidant defense system, but the GT co-administration alleviates the toxicity induced by arsenic exposure.

  11. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.).

    PubMed

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J; Dudel, E Gert

    2014-01-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices. PMID:24821134

  12. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)

    PubMed Central

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J.; Dudel, E. Gert

    2014-01-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices. PMID:24821134

  13. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J.; Dudel, E. Gert

    2014-05-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.

  14. Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite

    NASA Astrophysics Data System (ADS)

    Zhu, Wenyi; Young, Lily Y.; Yee, Nathan; Serfes, Michael; Rhine, E. Danielle; Reinfelder, John R.

    2008-11-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O 2), hypoxic (2% O 2, 98% N 2), and anoxic (5% H 2, 95% N 2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  15. Cytotoxicity patterns of arsenic trioxide exposure on HaCaT keratinocytes

    PubMed Central

    Udensi, Udensi K; Graham-Evans, Barbara E; Rogers, Christian; Isokpehi, Raphael D

    2011-01-01

    Background Arsenic is a ubiquitous environmental toxicant, and abnormalities of the skin are the most common outcomes of long-term, low-dose, chronic arsenic exposure. If the balance between keratinocyte proliferation, differentiation, and death is perturbed, pathologic changes of the epidermis may result, including psoriasis, atopic dermatitis, and certain forms of ichthyosis. Therefore, research investigations using in vitro human epidermal cells could help elucidate cellular and molecular processes in keratinocytes affected by arsenic. Data from such investigations could also provide the basis for developing cosmetic intervention for skin diseases caused by arsenic. Methods The viability of HaCaT keratinocyte cultures with or without prior exposure to low-dose arsenic trioxide was compared for varying concentrations of arsenic trioxide over a time course of 14 days because in untreated control cultures, approximately 2 weeks is required to complete cell differentiation. Long-term cultures were established by culturing HaCaT cells on collagen IV, and cells were subsequently exposed to 0 parts per million (ppm), 1 ppm, 5 ppm, 7.5 ppm, 10 ppm, and 15 ppm of arsenic trioxide. The percentages of viable cells as well as DNA damage after exposure were determined on Day 2, Day 5, Day 8, and Day 14. Results Using both statistical and visual analytics approaches for data analysis, we have observed a biphasic response at a 5 ppm dose with cell viability peaking on Day 8 in both chronic and acute exposures. Further, a low dose of 1 ppm arsenic trioxide enhanced HaCaT keratinocyte proliferation, whereas doses above 7.5 ppm inhibited growth. Conclusion The time course profiling of arsenic trioxide cytotoxicity using long-term HaCaT keratinocyte cultures presents an approach to modeling the human epidermal cellular responses to varying doses of arsenic trioxide treatment or exposure. A low dose of arsenic trioxide appears to aid cell growth but concomitantly disrupts the DNA

  16. Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite

    USGS Publications Warehouse

    Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  17. Confounding variables in the environmental toxicology of arsenic.

    PubMed

    Gebel, T

    2000-04-01

    Arsenic is one of the most important global environmental toxicants. For example, in regions of West Bengal and Inner Mongolia, more than 100000 persons are chronically exposed to well water often strongly contaminated with As. Unfortunately, a toxicologically safe risk assessment and standard setting, especially for long-term and low-dose exposures to arsenic, is not possible. One reason is that the key mechanism of arsenic's tumorigenicity still is not elucidated. Experimental data indicate that either DNA repair inhibition or DNA methylation status alteration may be causal explanations. Moreover, when comparing epidemiological data, it cannot be ruled out that the susceptibility to arsenic's carcinogenicity may be different between Mexican and Taiwanese people. Some other studies indicate that some Andean populations do not develop skin cancer after long-term exposure to As. It is not known yet how this resistance could be mediated. Finally, the situation is even more complicated when taking into consideration that there are several compounds suspected to modulate the chronic environmental toxicity of arsenic, variables that may either enhance or suppress the in vivo genotoxicity and carcinogenicity of the metalloid. Among them are nutritional factors like selenium and zinc as well as drinking water co-contaminants like antimony. Further, yet unidentified factors influencing the body burden and/or the excretion of arsenic are possibly prevailing: preliminary data from own human biomonitoring studies showed a peaking of As in urine samples of non-exposed people which was not caused by elevated exposure to As through seafood consumption. The relevance of these putative confounding variables cannot be finally evaluated yet. Further experimental as well as epidemiological studies are needed to answer these questions. This would help to conduct a toxicologically improved risk assessment, especially for low-dose and long-term exposures to arsenic.

  18. Unusual manifestations of arsenic intoxication.

    PubMed

    Zaloga, G P; Deal, J; Spurling, T; Richter, J; Chernow, B

    1985-05-01

    A patient with arsenic intoxication is reported, who presented with a variety of gastrointestinal and neurologic disturbances including unilateral facial nerve palsy and acute symptomatic pancreatitis, neither of which have been previously described as sequelae of arsenic poisoning. The patient also suffered hematologic, dermatologic, and cardiopulmonary complications. A review of the literature about this interesting problem is also presented.

  19. Acute arsenical poisoning in Dunedin.

    PubMed

    Gillies, A J; Taylor, A J

    1979-05-23

    Four cases of acute poisoning with arsenic are described. Although no new approach to therapy is proposed it is suggested from the data of arsenic recovery from the dialysate of one of the patients studied, that peritoneal dialysis is unlikely to be satisfactory.

  20. Arsenic Is A Genotoxic Carcinogen

    EPA Science Inventory

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  1. Arsenic Removal from Drinking Water

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...

  2. TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The United States Environmental Protection Agency (US EPA) recently reduced the arsenic maximum contaminant level (MCL) from 0.050 mg/L to 0.010 mg/L. In order to increase arsenic outreach efforts, a summary of the new rule, related health risks, treatment technologies, and desig...

  3. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    EPA Science Inventory

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  4. Arsenic Mobility and Groundwater Extraction in Bangladesh

    NASA Astrophysics Data System (ADS)

    Harvey, Charles F.; Swartz, Christopher H.; Badruzzaman, A. B. M.; Keon-Blute, Nicole; Yu, Winston; Ali, M. Ashraf; Jay, Jenny; Beckie, Roger; Niedan, Volker; Brabander, Daniel; Oates, Peter M.; Ashfaque, Khandaker N.; Islam, Shafiqul; Hemond, Harold F.; Ahmed, M. Feroze

    2002-11-01

    High levels of arsenic in well water are causing widespread poisoning in Bangladesh. In a typical aquifer in southern Bangladesh, chemical data imply that arsenic mobilization is associated with recent inflow of carbon. High concentrations of radiocarbon-young methane indicate that young carbon has driven recent biogeochemical processes, and irrigation pumping is sufficient to have drawn water to the depth where dissolved arsenic is at a maximum. The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.

  5. Arsenic causes aortic dysfunction and systemic hypertension in rats: Augmentation of angiotensin II signaling.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kandasamy, Kannan; Choudhury, Soumen; Kutty, Harikumar Sankaran; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2015-07-25

    The groundwater pollutant arsenic can cause various cardiovascular disorders. Angiotensin II, a potent vasoconstrictor, plays an important role in vascular dysfunction by promoting changes in endothelial function, vascular reactivity, tissue remodeling and oxidative stress. We investigated whether modulation of angiotensin II signaling and redox homeostasis could be a mechanism contributing to arsenic-induced vascular disorder. Rats were exposed to arsenic at 25, 50 and 100ppm of sodium arsenite through drinking water consecutively for 90 days. Blood pressure was recorded weekly. On the 91st day, the rats were sacrificed for blood collection and isolation of thoracic aorta. Angiotensin converting enzyme and angiotensin II levels were assessed in plasma. Aortic reactivity to angiotensin II was assessed in organ-bath system. Western blot of AT1 receptors and G protein (Gαq/11), ELISA of signal transducers of MAP kinase pathway and reactive oxygen species (ROS) generation were assessed in aorta. Arsenic caused concentration-dependent increase in systolic, diastolic and mean arterial blood pressure from the 10th, 8th and 7th week onwards, respectively. Arsenic caused concentration-dependent enhancement of the angiotensin II-induced aortic contractile response. Arsenic also caused concentration-dependent increase in the plasma levels of angiotensin II and angiotensin converting enzyme and the expression of aortic AT1 receptor and Gαq/11 proteins. Arsenic increased aortic protein kinase C activity and the concentrations of protein tyrosine kinase, extracellular signal-regulated kinase-1/2 and vascular endothelial growth factor. Further, arsenic increased aortic mRNA expression of Nox2, Nox4 and p22phox, NADPH oxidase activity and ROS generation. The results suggest that arsenic-mediated enhancement of angiotensin II signaling could be an important mechanism in the arsenic-induced vascular disorder, where ROS could augment the angiotensin II signaling through activation

  6. Total arsenic in rice milk.

    PubMed

    Shannon, Ron; Rodriguez, Jose M

    2014-01-01

    Rice milk and its by-products were tested for total arsenic concentration. Total arsenic concentration was determined using graphite-furnace atomic absorption spectrometry. The arsenic concentrations ranged from 2.7 ± 0.3 to 17.9 ± 0.5 µg L(-1). Rice milk and its by-products are not clearly defined as food, water or milk substitute. The US Environmental Protection Agency (EPA), the European Union (EU) and the World Health Organization (WHO) have set a level of 10 µg L(-1) for total arsenic concentrations in drinking water. The EU and the US regulatory agencies do not provide any guidelines on total arsenic concentrations in foods. This study provides us with a starting point to address this issue in the State of Mississippi, USA.

  7. Uncertainties drive arsenic rule delay

    SciTech Connect

    Pontius, F.W.

    1995-04-01

    The US Environmental Protection Agency (USEPA) is under court order to sign a proposed rule for arsenic by Nov. 30, 1995. The agency recently announced that it will not meet this deadline, citing the need to gather additional information. Development of a National Interim Primary Drinking Water Regulation for arsenic has been delayed several times over the past 10 years because of uncertainties regarding health issues and costs associated with compliance. The early history of development of the arsenic rule has been reviewed. Only recent developments are reviewed here. The current maximum contaminant level (MCL) for arsenic in drinking water is 0.05 mg/L. This MCL was set in 1975, based on the 1962 US Public Health Standards. The current Safe Drinking Water Act (SDWA) requires that the revised arsenic MCL be set as close to the MCL goal (MCLG) as is feasible using best technology, treatment techniques, or other means and taking cost into consideration.

  8. Arsenic in rain and the Atmospheric mass balance of arsenic

    NASA Astrophysics Data System (ADS)

    Andreae, Meinrat O.

    1980-08-01

    An attempt to construct a mass balance of arsenic in the world atmosphere showed that the published data on arsenic concentrations in rain were not compatible with measured values of atmospheric concentrations at remote sites and with estimates of arsenic fluxes into the atmosphere. To resolve this problem, samples of rainwater and snow from eight sites in California, Washington, and Hawaii were analyzed for arsenite, arsenate, and methylated forms of arsenic. The inorganic species were detectable in most samples, but no methylated forms were present above the detection limit of 0.2 ppt. Between October 1976 and March 1978, 43 samples of rain were collected at three locations near the coast in La Jolla. No significant differences between these sites were evident. The average concentration, weighted for rainfall amounts, was 0.007 ppb arsenite and 0.012 ppb arsenate, giving a total concentration of 0.019 ppb As. The samples from Kauai gave an average total arsenic identical to that from La Jolla. This suggests that the La Jolla samples, most of which were collected during strong onshore flow of air from the Pacific, represent very clean air. During some periods of pollutant buildup, values up to 0.59 ppb were found in La Jolla. In a few samples, on the other hand, the arsenic concentrations were below the detection limit of 0.004 ppb. Comparable values were also found in samples of snow from Norden, California, a site at 2225 m elevation in the Sierra Nevada. These values fit well with concentrations modeled on the basis of aerosol analyses from remote sites. The average arsenic concentration at Anacortes Island, Washington, was significantly higher: 1.06 ppb with 88% of the arsenic in the form of arsenite. This value can be explained by a Gaussian plume model with the Tacoma smelter at its origin. This plant, which is 154 krn from the sampling site, emits ˜180 kg of arsenic per day in the form of arsenic trioxide, which is transported northward by the prevailing

  9. Diapause as escape strategy to exposure to toxicants: response of Brachionus calyciforus to arsenic.

    PubMed

    Aránguiz-Acuña, Adriana; Serra, Manuel

    2016-05-01

    Invertebrate organisms commonly respond to environmental fluctuation by entering diapause. Production of diapause in monogonont rotifers involves a previous switch from asexual to partial sexual reproduction. Although zooplankton have been used in ecotoxicological assays, often their true vulnerability to toxicants is underestimated by not incorporating the sexual phase. We experimentally analyzed traits involved in sexual reproduction and diapause in the cyclically parthenogenetic freshwater rotifer, Brachionus calyciflorus, exposed to arsenic, a metalloid naturally found in high concentrations in desert zones, focusing on the effectiveness of diapause as an escape response in the face of an adverse condition. Addition of sublethal concentrations of arsenic modified the pattern of diapause observed in the rotifer: investment in diapause with arsenic addition peaked earlier and higher than in non-toxicant conditions, which suggests that sexual investment could be enhanced in highly stressed environmental conditions by increased responsiveness to stimulation. Nevertheless, eggs produced in large amount with arsenic, were mostly low quality, and healthy-looking eggs had lower hatching success, therefore it is unclear whether this pattern is optimum in an environment with arsenic, or if rather arsenic presence in water bodies disturbs the optimal allocation of offspring entering diapause. We observed high accumulation of arsenic in organisms exposed to constant concentration after several generations, which suggests that arsenic may be accumulated transgenerationally. The sexual phase in rotifers may be more sensitive to environmental conditions than the asexual one, therefore diapause attributes should be considered in ecotoxicological assessment because of its ecological and evolutionary implications on lakes biodiversity. PMID:26897746

  10. Mitigation of arsenic-mediated renal oxidative stress in rat by Pleurotus florida lectin.

    PubMed

    Bera, Asit Kumar; Rana, Tanmoy; Das, Subhashree; Bhattacharya, Debasis; Pan, Diganta; Bandyopadhyay, Subhasish; Das, Subrata Kumar

    2011-08-01

    Oyster mushroom, Pleurotus florida is regarded as one of the popular food with biopharmaceutical properties. Here, the study aimed to investigate the antioxidative effects of mushroom (Pleurotus florida) lectin against arsenic-induced nephrotoxicity in rats. Animals were divided into four groups; Group 1 was control. Groups 2, 3 and 4 were exposed to arsenic (20 parts per million [ppm] in drinking water), arsenic plus oral supplementation of ascorbic acid (25 mg/kg body weight) and arsenic plus oral supplementation of mushroom lectin (150 mg/kg body weight) respectively. Both ascorbic acid and mushroom lectin prevented the arsenic-mediated growth retardation and normalized the elevated kidney weight. Disrupted activities of superoxide dismutase (SOD) and catalase (CAT) and enhanced lipid peroxidation (LPO), protein carbonyl (PC) and nitric oxides (NO) production in kidney caused by arsenic could also be maintained towards normalcy by supplementation of mushroom lectin and ascorbic acid. These antioxidative effects were exhibited in a time-dependant manner. Further, arsenic-mediated down-regulation of messenger RNA (mRNA) expression of superoxide dismutase 2 (SOD(2)) gene was obstructed by these agents. Thus it was found that mushroom lectin reversed the effect of arsenic-mediated oxidative stress in a time-dependent manner.

  11. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water

    SciTech Connect

    Biswas, Debabrata; Banerjee, Mayukh; Sen, Gargi; Das, Jayanta K.; Banerjee, Apurba; Sau, T.J.; Pandit, Sudipta; Giri, A.K. Biswas, Tuli

    2008-07-01

    Arsenic contamination in drinking water is one of the biggest natural calamities, which has become an imperative threat to human health throughout the world. Abbreviation of erythrocyte lifespan leading to the development of anemia is a common sequel in arsenic exposed population. This study was undertaken to explore the mechanism of cell death in human erythrocytes during chronic arsenic exposure. Results revealed transformation of smooth discoid red cells into evaginated echinocytic form in the exposed individuals. Further distortion converted reversible echinocytes to irreversible spheroechinocytes. Arsenic toxicity increased membrane microviscosity along with an elevation of cholesterol/phospholipid ratio, which hampered the flexibility of red cell membrane and made them less deformable. Significant increase in the binding of merocyanine 540 with erythrocyte membrane due to arsenic exposure indicated disruption of lipid packing in the outer leaflet of the cell membrane resulting from altered transbilayer phospholipid asymmetry. Arsenic induced eryptosis was characterized by cell shrinkage and exposure of phosphatidylserine at the cell surface. Furthermore, metabolic starvation with depletion of cellular ATP triggered apoptotic removal of erythrocytes from circulation. Significant decrease in reduced glutathione content indicating defective antioxidant capacity was coupled with enhancement of malondialdehyde and protein carbonyl levels, which pointed to oxidative damage to erythrocyte membrane. Arsenic toxicity intervened into red cell membrane integrity eventually leading to membrane destabilization and hemoglobin release. The study depicted the involvement of both erythrophagocytosis and hemolysis in the destruction of human erythrocytes during chronic arsenic exposure.

  12. [Investigation of chronic arsenic poisoning caused by high arsenic coal pollution].

    PubMed

    Zhou, D X

    1993-05-01

    This article reports the results of an investigation on environmental arsenic pollution and chronic arsenic poisoning in a rural area. Exploitation of high arsenic coal caused drinking and irrigating water to be polluted by arsenic and burning of this coal caused severe environmental arsenic pollution including air, food, soil and drinking well water. 1548 villagers in 47 villages suffered from chronic arsenic poisoning who used this coal in daily life. The polluted air and food were mainly responsible, while the polluted drinking water and skin absorption played some part in poisoning. When arsenic level in coal is as high as 100mg/kg, we should consider the possibility of environmental arsenic pollution and chronic arsenic poisoning in exposed population. The high arsenic coal's distribution is very uneven. When controlling the disease, it is important to remember monitoring the quantity of arsenic coal outside the arsenic coal mining area. PMID:8243176

  13. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  14. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  15. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal.

  16. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal. PMID:16256172

  17. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    PubMed Central

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment. PMID:22269298

  18. Protection of arsenic-induced hepatic disorder by arjunolic acid.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2007-11-01

    Arsenic is one of the ubiquitous environmental pollutants, which affects nearly all organ systems. The present study has been carried out to investigate the hepatoprotective role of arjunolic acid, a triterpenoid saponin, against arsenic-induced oxidative damages in murine livers. Administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly reduced the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase and glutathione peroxidase as well as depleted the level of reduced glutathione and total thiols. In addition, sodium arsenite also increased the activities of serum marker enzymes, alanine transaminase and alkaline phosphatase, enhanced DNA fragmentation, protein carbonyl content, lipid peroxidation end-products and the level of oxidized glutathione. Studies with arjunolic acid show that in vitro it possesses free radical-scavenging and in vivo antioxidant activities. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration prevents the alterations of the activities of all antioxidant indices and levels of the other parameters studied. Histological studies revealed less centrilobular necrosis in the liver treated with arjunolic acid prior to arsenic intoxication compared to the liver treated with the toxin alone. Effects of a known antioxidant, vitamin C, have been included in the study as a positive control. In conclusion, the results suggest that arjunolic acid possesses the ability to attenuate arsenic-induced oxidative stress in murine liver probably via its antioxidant activity.

  19. Levels of arsenic in Indian opium eaters.

    PubMed

    Narang, A P; Chawla, L S; Khurana, S B

    1987-11-01

    Intake of opium is very common in India. The contraband material is generally contaminated with arsenic. Most often opium eaters present with neuropathy and hepatomegaly. Arsenic was estimated in serum, urine, nails and hair of opium eaters with and without neuropathy. Arsenic was also estimated in various opium samples. Arsenic was significantly higher in serum, urine, nails and hair of opium addicts when compared to controls. The opium samples analysed showed varyingly high amounts of arsenic.

  20. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1994-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  1. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  2. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1995-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  3. Osteoresorptive arsenic intoxication.

    PubMed

    Dani, Sergio Ulhoa

    2013-04-01

    A 47-year-old woman consulted her dermatologist complaining whole body dermatitis, urticaria and irritating bullous eruptions on the plantar and side surfaces of her feet. She had had multiple hypopigmented spots on her skin since her early adulthood. The patient was treated with topical medication without significant improvement of symptoms. One year later she suffered a myocardial infarction, accompanied by refractory anaemia. At the age of 49, a breast cancer was diagnosed and shortly thereafter her last menstruation occurred. At age 50years, upon complaint of weight loss despite normal food intake, Hashimoto thyroiditis with latent hyperthyroidism, vitamin D insufficiency with secondary hyperparathyroidism, and poikilocytic anaemia with anisochromia, hypochromia, anisocytosis, elliptocytes, drepanocytes, dacryocytes, acanthocytes, echinocytes, schizocytes, stomatocytes and target cells were diagnosed. The osteodensitometric and laboratory examinations revealed osteoporosis with sustained elevation of urinary Dipyridinolin-crosslinks (u-Dpd), and urinary arsenic (u-As) of 500μg/l (equivalent to 0.5 parts per million-ppm, 2.5μg/mg creatinine/dl, u-As: Phosphate of 26μg/mmol; the estimated bone As:P and As/kg body weight were 500μg/g and 11.3mg/kg, respectively). Thalassemia, immunoglobinopathy and iron deficiency were excluded. Supplementation with oral vitamin D and calcium, and antiresorptive therapy with intravenous zolendronate normalised the u-Dpd, significantly decreased the urinary arsenic concentration, and cured the anemia and the urticaria. A diagnosis of osteoresorptive arsenic intoxication (ORAI) was established. PMID:23337042

  4. Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors.

    PubMed

    Kikoin, Konstantin; Drechsler, Stefan-Ludwig; Koepernik, Klaus; Málek, Jiři; van den Brink, Jeroen

    2015-07-14

    Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell.

  5. Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors

    PubMed Central

    Kikoin, Konstantin; Drechsler, Stefan-Ludwig; Koepernik, Klaus; Málek, Jiři; van den Brink, Jeroen

    2015-01-01

    Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell. PMID:26169486

  6. Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors.

    PubMed

    Kikoin, Konstantin; Drechsler, Stefan-Ludwig; Koepernik, Klaus; Málek, Jiři; van den Brink, Jeroen

    2015-01-01

    Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell. PMID:26169486

  7. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated ars...

  8. A Potential Synergy between Incomplete Arsenic Methylation Capacity and Demographic Characteristics on the Risk of Hypertension: Findings from a Cross-Sectional Study in an Arsenic-Endemic Area of Inner Mongolia, China

    PubMed Central

    Li, Yongfang; Wang, Da; Li, Xin; Zheng, Quanmei; Sun, Guifan

    2015-01-01

    Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects) residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%), primary methylation index (PMI) and secondary methylation index (SMI) were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI) and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors. PMID:25837203

  9. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic.

    PubMed

    Cánovas, David; Vooijs, Riet; Schat, Henk; de Lorenzo, Víctor

    2004-12-01

    Aspergillus sp. P37 is an arsenate-hypertolerant fungus isolated from a river in Spain with a long history of contamination with metals. This strain is able to grow in the presence of 0.2 M arsenate, i.e. 20-fold higher than the reference strain, Aspergillus nidulans TS1. Although Aspergillus sp. P37 reduces As(V) to As(III), which is slowly pumped out of the cell, the measured efflux of oxyanions is insufficient to explain the high tolerance levels of this strain. To gain an insight into this paradox, the accumulation of acid-soluble thiol species in Aspergillus sp. P37 when exposed to arsenic was compared with that of the arsenic-sensitive A. nidulans TS1 strain. Increasing levels of arsenic in the medium did not diminish the intracellular pool of reduced glutathione in Aspergillus sp. P37, in sharp contrast with the decline of glutathione in A. nidulans under the same conditions. Furthermore, concentrations of arsenic that were inhibitory for the sensitive A. nidulans strain (e.g. 50 mM and above) provoked a massive formation of vacuoles filled with thiol species. Because the major fraction of the cellular arsenic was present as the glutathione conjugate As(GS)3, it is plausible that the arsenic-hypertolerant phenotype of Aspergillus sp. P37 is in part due to an enhanced capacity to maintain a large intracellular glutathione pool under conditions of arsenic exposure and to sequester As(GS)3 in vacuoles. High pressure liquid chromatography analysis of cell extracts revealed that the contact of Aspergillus sp. P37 (but not A. nidulans) with high arsenic concentrations (> or =150 mM) induced the production of small quantities of a distinct thiol species indistinguishable from plant phytochelatin-2. Yet, we argue that phytochelatins do not explain arsenic resistance in Aspergillus, and we advocate the role of As(GS)3 complexes in arsenic detoxification.

  10. Perturbation of Defense Pathways by Low-Dose Arsenic Exposure in Zebrafish Embryos

    PubMed Central

    Mattingly, Carolyn J.; Hampton, Thomas H.; Brothers, Kimberly M.; Griffin, Nina E.; Planchart, Antonio

    2009-01-01

    Background Exposure to arsenic is a critical risk factor in the complex interplay among genetics, the environment, and human disease. Despite the potential for in utero exposure, the mechanism of arsenic action on vertebrate development and disease is unknown. Objectives The objective of this study was to identify genes and gene networks perturbed by arsenic during development in order to enhance understanding of the molecular mechanisms of arsenic action. Methods We exposed zebrafish embryos at 0.25–1.25 hr postfertilization to 10 or 100 ppb arsenic for 24 or 48 hr. We then used total RNA to interrogate genome microarrays and to test levels of gene expression changes by quantitative real-time polymerase chain reaction (QPCR). Computational analysis was used to identify gene expression networks perturbed by arsenic during vertebrate development. Results We identified a set of 99 genes that responded to low levels of arsenic. Nineteen of these genes were predicted to function in a common regulatory network that was significantly associated with immune response and cancer (p < 10−41). Arsenic-mediated expression changes were validated by QPCR. Conclusions In this study we demonstrated that arsenic significantly down-regulates expression levels of multiple genes potentially critical for regulating the establishment of an immune response. The data also provide molecular evidence consistent with phenotypic observations reported in other model systems. Additional mechanistic studies will help explain molecular events regulating early stages of the immune system and long-term consequences of arsenic-mediated perturbation of this system during development. PMID:19590694

  11. Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms.

    PubMed

    Tuulaikhuu, Baigal-Amar; Bonet, Berta; Guasch, Helena

    2016-02-15

    Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+As) and biofilm with arsenic (B+As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5 ± 7.5 μg/L for +As treatment and 34.4 ± 1.4 μg/L for B+As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150 μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5 μg As/L.

  12. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic.

    PubMed

    Cánovas, David; Vooijs, Riet; Schat, Henk; de Lorenzo, Víctor

    2004-12-01

    Aspergillus sp. P37 is an arsenate-hypertolerant fungus isolated from a river in Spain with a long history of contamination with metals. This strain is able to grow in the presence of 0.2 M arsenate, i.e. 20-fold higher than the reference strain, Aspergillus nidulans TS1. Although Aspergillus sp. P37 reduces As(V) to As(III), which is slowly pumped out of the cell, the measured efflux of oxyanions is insufficient to explain the high tolerance levels of this strain. To gain an insight into this paradox, the accumulation of acid-soluble thiol species in Aspergillus sp. P37 when exposed to arsenic was compared with that of the arsenic-sensitive A. nidulans TS1 strain. Increasing levels of arsenic in the medium did not diminish the intracellular pool of reduced glutathione in Aspergillus sp. P37, in sharp contrast with the decline of glutathione in A. nidulans under the same conditions. Furthermore, concentrations of arsenic that were inhibitory for the sensitive A. nidulans strain (e.g. 50 mM and above) provoked a massive formation of vacuoles filled with thiol species. Because the major fraction of the cellular arsenic was present as the glutathione conjugate As(GS)3, it is plausible that the arsenic-hypertolerant phenotype of Aspergillus sp. P37 is in part due to an enhanced capacity to maintain a large intracellular glutathione pool under conditions of arsenic exposure and to sequester As(GS)3 in vacuoles. High pressure liquid chromatography analysis of cell extracts revealed that the contact of Aspergillus sp. P37 (but not A. nidulans) with high arsenic concentrations (> or =150 mM) induced the production of small quantities of a distinct thiol species indistinguishable from plant phytochelatin-2. Yet, we argue that phytochelatins do not explain arsenic resistance in Aspergillus, and we advocate the role of As(GS)3 complexes in arsenic detoxification. PMID:15364940

  13. Increased aquaglyceroporin 9 expression disrupts arsenic resistance in human lung cancer cells.

    PubMed

    Miao, Zhi-Feng; Chang, Eddy Essen; Tsai, Feng-Yuan; Yeh, Szu-Ching; Wu, Chia-Fang; Wu, Kuen-Yuh; Wang, Chien-Jen; Tsou, Tsui-Chun

    2009-03-01

    Resistance to chemotherapy is one of the major problems in treatment responses of lung cancer. This study explored the mechanism underlying the arsenic resistance of lung cancer. Four lung cancer cells with different proliferation activity were characterized for cytotoxicity, arsenic influx/efflux, and arsenic effects on intracellular glutathione and 8-hydroxy-2'-deoxyguanosine (8-OHdG) production. Our data revealed that relative proliferation potency of these cells was H1299>A549>CL3>H1355. Moreover, A549, H1299, and H1355 were markedly resistant to As(2)O(3) with IC50 approximately 100 microM, whereas CL3 was sensitive to As(2)O(3) with IC50 approximately 11.8 microM. After treatment with the respective As(2)O(3) at IC50, arsenic influx/efflux activity in CL3 was comparable to those in the other three arsenic-resistant cells. However, differences in glutathione levels and 8-OHdG production were also detected either before or after arsenic treatment, indicating that a certain degree of variation in anti-oxidative systems and/or 8-OHdG repair activity existed in these cell lines. By transfection of an aquaglyceroporin 9 (AQP9) gene, we showed that increased AQP9 expression significantly enhanced arsenic uptake and disrupted arsenic resistance of A549. The present study strongly suggests that membrane transporters responsible for arsenic uptake, such as AQP9, may play a critical role in development of arsenic resistance in human lung cancer cells.

  14. Adverse health effects due to arsenic exposure: Modification by dietary supplementation of jaggery in mice

    SciTech Connect

    Singh, Nrashant; Kumar, D.; Lal, Kewal; Raisuddin, S.; Sahu, Anand P.

    2010-02-01

    Populations of villages of eastern India and Bangladesh and many other parts of the world are exposed to arsenic mainly through drinking water. Due to non-availability of safe drinking water they are compelled to depend on arsenic-contaminated water. Generally, poverty level is high in those areas and situation is compounded by the lack of proper nutrition. The hypothesis that the deleterious health effects of arsenic can be prevented by modification of dietary factors with the availability of an affordable and indigenous functional food jaggery (sugarcane juice) has been tested in the present study. Jaggery contains polyphenols, vitamin C, carotene and other biologically active components. Arsenic as sodium-m-arsenite at low (0.05 ppm) and high (5 ppm) doses was orally administered to Swiss male albino mice, alone and in combination with jaggery feeding (250 mg/mice), consecutively for 180 days. The serum levels of total antioxidant, glutathione peroxidase and glutathione reductase were substantially reduced in arsenic-exposed groups, while supplementation of jaggery enhanced their levels in combined treatment groups. The serum levels of interleukin-1beta, interleukin-6 and TNF-alpha were significantly increased in arsenic-exposed groups, while in the arsenic-exposed and jaggery supplemented groups their levels were normal. The comet assay in bone marrow cells showed the genotoxic effects of arsenic, whereas combination with jaggery feeding lessened the DNA damage. Histopathologically, the lung of arsenic-exposed mice showed the necrosis and degenerative changes in bronchiolar epithelium with emphysema and thickening of alveolar septa which was effectively antagonized by jaggery feeding. These results demonstrate that jaggery, a natural functional food, effectively antagonizes many of the adverse effects of arsenic.

  15. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Srivastava, Pranay; Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Dhuriya, Yogesh K; Chauhan, Lalit K S; Dwivedi, Hari N; Pant, Aditiya B; Khanna, Vinay K

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20mg/kg body weight, p.o) and curcumin (100mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. PMID:24952339

  16. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Srivastava, Pranay; Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Dhuriya, Yogesh K; Chauhan, Lalit K S; Dwivedi, Hari N; Pant, Aditiya B; Khanna, Vinay K

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20mg/kg body weight, p.o) and curcumin (100mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin.

  17. Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms.

    PubMed

    Tuulaikhuu, Baigal-Amar; Bonet, Berta; Guasch, Helena

    2016-02-15

    Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+As) and biofilm with arsenic (B+As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5 ± 7.5 μg/L for +As treatment and 34.4 ± 1.4 μg/L for B+As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150 μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5 μg As/L. PMID:26657392

  18. Arsenic behavior in newly drilled wells

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2003-01-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 ??g/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 ??m) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells. ?? 2003 Elsevier Science Ltd. All rights reserved.

  19. Arsenic in water treatment.

    SciTech Connect

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  20. Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to Daphnia magna: The role of certain arsenic species.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Allam, Ahmed A; Ajarem, Jamaan; Wei, Zhongbo; Wang, Zuoyao

    2016-07-01

    As a type of emerging nanomaterial, hydroxylated multiwalled carbon nanotubes (OH-MWCNTs) may interact with other pollutants in the aquatic environments and further influence their toxicity, transport, and fate. Thus, evaluation of toxicity to arsenic in the presence of CNTs needs to receive much more attention. The present study was conducted to explore the underlying mechanisms of OH-MWCNT-induced arsenic (As[III] and As[V]) toxicity changes in the aquatic organism Daphnia magna at different pH levels. The most toxic species for As(III) and As(V) to D. magna were found to be H2 AsO3 (-) and H2 AsO4 (-) . It appeared that the pH values were of greatest importance when the biological toxicity of As(III) and As(V) was compared. Furthermore, the effects of OH-MWCNTs on arsenic toxicity to D. magna indicated that the presence of OH-MWCNTs could enhance the toxicity of arsenic. The interactions of arsenic with OH-MWCNTs were further investigated by conducting adsorption experiments. The adsorption capacity of As(V) by OH-MWCNTs was found to be higher than that of As(III). To conclude, adsorption of certain arsenic species onto OH-MWCNTs is crucial for a reliable interpretation of enhanced toxicity. Environ Toxicol Chem 2016;35:1852-1859. © 2016 SETAC.

  1. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    PubMed

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  2. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    SciTech Connect

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-10-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress.

  3. Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation of Yap, a Hippo signaling-related protein

    SciTech Connect

    Li, Changzhao; Srivastava, Ritesh K.; Elmets, Craig A.; Afaq, Farrukh; Athar, Mohammad

    2013-09-06

    Highlights: •Arsenic activates canonical Hippo signaling pathway and up-regulates αCatenin in the skin. •Arsenic activates transcriptional activity of Yap by its nuclear translocation. •Yap is involved in the disruption of tight/adherens junctions in arsenic-exposed animals. -- Abstract: Arsenic exposure in humans causes a number of toxic manifestations in the skin including cutaneous neoplasm. However, the mechanism of these alterations remains elusive. Here, we provide novel observations that arsenic induced Hippo signaling pathway in the murine skin. This pathway plays crucial roles in determining organ size during the embryonic development and if aberrantly activated in adults, contributes to the pathogenesis of epithelial neoplasm. Arsenic treatment enhanced phosphorylation-dependent activation of LATS1 kinase and other Hippo signaling regulatory proteins Sav1 and MOB1. Phospho-LATS kinase is known to catalyze the inactivation of a transcriptional co-activator, Yap. However, in arsenic-treated epidermis, we did not observed its inactivation. Thus, as expected, unphosphorylated-Yap was translocated to the nucleus in arsenic-treated epidermis. Yap by binding to the transcription factors TEADs induces transcription of its target genes. Consistently, an up-regulation of Yap-dependent target genes Cyr61, Gli2, Ankrd1 and Ctgf was observed in the skin of arsenic-treated mice. Phosphorylated Yap is important in regulating tight and adherens junctions through its binding to αCatenin. We found disruption of these junctions in the arsenic-treated mouse skin despite an increase in αCatenin. These data provide evidence that arsenic-induced canonical Hippo signaling pathway and Yap-mediated disruption of tight and adherens junctions are independently regulated. These effects together may contribute to the carcinogenic effects of arsenic in the skin.

  4. Arsenic uptake and metabolism in plants.

    PubMed

    Zhao, F J; Ma, J F; Meharg, A A; McGrath, S P

    2009-03-01

    Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified. PMID:19207683

  5. Arsenic uptake and metabolism in plants.

    PubMed

    Zhao, F J; Ma, J F; Meharg, A A; McGrath, S P

    2009-03-01

    Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.

  6. [Arsenic as an environmental problem].

    PubMed

    Jensen, K

    2000-12-01

    Chronic exposure to arsenic through drinking water is known in different continents. Arsenic compounds from disintegrating rock may be solubilized after reduction by organic material, and harmful concentrations of arsenic may be found in surface water as well as in water from drilled wells. Because of well drilling since the sixties in the Ganges delta numerous millions of people have been exposed to toxic amounts, and hundreds of thousands demonstrate signs of chronic poisoning. A changed water technology and chemical precipitation of arsenic in the drinking water can reduce the size of the problem, but the late sequelae i.e. malignant disease are incalculable. Indications for antidotal treatment of exposed individuals have not yet been outlined.

  7. Groundwater arsenic contamination throughout China.

    PubMed

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  8. THE PATHWAY OF ARSENIC METABLISM

    EPA Science Inventory

    The Pathway of Arsenic Methylation

    David J. Thomas, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC

    Understanding ...

  9. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    PubMed

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health.

  10. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    PubMed

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health. PMID:27049126

  11. Arsenic removal by ferric chloride

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S.

    1996-04-01

    Bench-scale studies were conducted in model freshwater systems to investigate how various parameters affected arsenic removal during coagulation with ferric chloride and arsenic adsorption onto preformed hydrous ferric oxide. Parameters included arsenic oxidation state and initial concentration, coagulant dosage or adsorbent concentration, pH, and the presence of co-occurring inorganic solutes. Comparison of coagulation and adsorption experiments and of experimental results with predictions based on surface complexation modeling demonstrated that adsorption is an important (though not the sole) mechanism governing arsenic removal during coagulation. Under comparable conditions, better removal was observed with arsenic(V) [As(V)] than with arsenic(III) [As(III)] in both coagulation and adsorption experiments. Below neutral pH values, As(III) removal-adsorption was significantly decreased in the presence of sulfate, whereas only a slight decrease in As(V) removal-adsorption was observed. At high pH, removal-adsorption of As(V) was increased in the presence of calcium. Removal of As(V) during coagulation with ferric chloride is both more efficient and less sensitive than that of As(III) to variations in source water composition.

  12. Arsenic Toxicity in Male Reproduction and Development.

    PubMed

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-12-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity. PMID:26973968

  13. Arsenic Toxicity in Male Reproduction and Development.

    PubMed

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-12-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity.

  14. Arsenic Toxicity to Juvenile Fish: Effects of Exposure Route, Arsenic Speciation, and Fish Species

    EPA Science Inventory

    Arsenic toxicity to juvenile rainbow trout and fathead minnows was evaluated in 28-day tests using both dietborne and waterborne exposures, both inorganic and organic arsenic species, and both a live diet and an arsenic-spiked pellet diet. Effects of inorganic arsenic on rainbow...

  15. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    ERIC Educational Resources Information Center

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  16. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats.

    PubMed

    Mershiba, Sam Daniel; Dassprakash, M Velayutham; Saraswathy, Sundara Dhakshinamurthy

    2013-05-01

    Arsenic has a long history as a potent human poison, chronic exposure over a period of time may result in the manifestation of toxicity in practically all systems of the body. In the present investigation the efficacy of naringenin (NRG), a naturally occurring citrus flavanone against arsenic-induced hepatotoxic and nephrotoxic manifestations have been studied in rats. Arsenic trioxide was administered orally at the dose of 2 mg/kg/day with or without combination of NRG (20 or 50 mg/kg/day) for 28 days. At the end of the experimental period the hepatic and renal dysfunction was evaluated by histological examination, serum biomarkers and markers of oxidative stress; lipid peroxidation (LPO), reduced glutathione (GSH) and antioxidant enzymes. Arsenic intoxication increased serum bilirubin, urea, uric acid and creatinine levels, additionally enhanced the activities of hepatic marker enzymes aspartate transaminase, alanine transaminase and alkaline phosphatase. Also, the hepatic and renal tissues showed a marked elevation in LPO levels with a decrease in GSH content and the activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase on arsenic treatment. Simultaneous treatment with NRG restored the activities of serum biomarkers and antioxidant enzymes in the tissues in a dose-dependent manner. Furthermore, the histopathological studies confirmed the protective effect of NRG co-treatment by reducing the pathological changes due to arsenic intoxication in both liver and kidney. Thus, our present study demonstrates that NRG has a potential to protect arsenic-induced oxidative hepatic and renal dysfunction.

  17. Anticancer Activity of Small Molecule and Nanoparticulate Arsenic(III) Complexes

    PubMed Central

    Swindell, Elden P.; Hankins, Patrick L.; Chen, Haimei; Miodragović, Ðenana U.; O'Halloran, Thomas V.

    2014-01-01

    Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e. arsenous acid) leads to complete remission of certain types of leukemia. Since FDA approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia (APL) in 2000, it has become a front line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely short plasma half-lives and narrow therapeutic window. PMID:24147771

  18. Rapid oxidation and immobilization of arsenic by contact glow discharge plasma in acidic solution.

    PubMed

    Jiang, Bo; Hu, Ping; Zheng, Xing; Zheng, Jingtang; Tan, Minghui; Wu, Mingbo; Xue, Qinzhong

    2015-04-01

    Arsenic is a priority pollutant in aquatic ecosystem and therefore the remediation of arsenic-bearing wastewater is an important environmental issue. This study unprecedentedly reported simultaneous oxidation of As(III) and immobilization of arsenic can be achieved using contact glow discharge process (CGDP). CGDP with thinner anodic wire and higher energy input were beneficial for higher As(V) production efficiency. Adding Fe(II) in CGDP system significantly enhanced the oxidation rate of As(III) due to the generations of additional OH and Fe(IV) species, accompanied with which arsenic can be simultaneously immobilized in one process. Arsenic immobilization can be favorably obtained at solution pH in the range of 4.0-6.0 and Fe(II) concentration from 250 to 1000 μM. The presence of organics (i.e., oxalic acid, ethanol and phenol) retarded the arsenic immobilization by scavenging OH or complexing Fe(III) in aqueous solution. On the basis of these results, a mechanism was proposed that the formed ionic As(V) rapidly coprecipitated with Fe(III) ions or was adsorbed on the ferric oxyhydroxides with the formation of amorphous ferric arsenate-bearing ferric oxyhydroxides. This CGDP-Fenton system was of great interest for engineered systems concerned with the remediation of arsenic containing wastewater. PMID:25600320

  19. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

    PubMed

    Ma, Jian Feng; Yamaji, Naoki; Mitani, Namiki; Xu, Xiao-Yan; Su, Yu-Hong; McGrath, Steve P; Zhao, Fang-Jie

    2008-07-22

    Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.

  20. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic

    PubMed Central

    Cooper, KL; Yager, JW; Hudson, LG

    2014-01-01

    The rise of melanoma incidence in the United States is a growing public health concern. A limited number of epidemiology studies suggest an association between arsenic levels and melanoma risk. Arsenic acts as a co-carcinogen with ultraviolet radiation (UVR) for the development of squamous cell carcinoma and proposed mechanisms include generation of oxidative stress by arsenic and UVR and inhibition of UVR-induced DNA repair by arsenic. In this study, we investigate similarities and differences in response to arsenic and UVR in keratinocytes and melanocytes. Normal melanocytes are markedly more resistant to UVR-induced cytotoxicity than normal keratinocytes, but both cell types are equally sensitive to arsenite. Melanocytes were more resistant to arsenite and UVR stimulation of superoxide production than keratinocytes, but the concentration of arsenite necessary to inhibit the activity of the DNA repair protein poly(ADP-ribose)polymerase and enhance retention of UVR-induced DNA damage was essentially equivalent in both cell types. These findings suggest that although melanocytes are less sensitive than keratinocytes to initial UVR-mediated DNA damage, both of these important target cells in the skin share a mechanism related to arsenic inhibition of DNA repair. These findings suggest that concurrent chronic arsenic exposure could promote retention of unrepaired DNA damage in melanocytes and act as a co-carcinogen in melanoma. PMID:24270004

  1. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].

    PubMed

    Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing

    2013-04-01

    Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.

  2. Can Environmental Microbes Mobilize and Oxidize Arsenic from Shale into Groundwater?

    NASA Astrophysics Data System (ADS)

    Rhine, E.; Onesios, K. M.; Serfes, M. E.; Reinfelder, J. R.; Shu, W.; Young, L. Y.

    2007-12-01

    Elevated levels of arsenic are found in New Jersey well water in the Newark Basin where 15% of the wells tested exceed 10 μg/L, to a maximum of 215 μg/L. The source may be from the weathering of pyrite (FeS2) found in the black shale, which can contain up to 4% arsenic by weight. We hypothesize that microorganisms found in the environment can oxidize sulfide in the pyrite to release the bound arsenic, and in addition, that microbes can oxidize As(III) to As(V) to further enhance the mobilization of the arsenic released from the shale. To examine this, cultures were established with weathered black shale from an outcrop of the Newark Basin's Lockatong formation. A chemoautotrophic As(III)-oxidizer, strain WAO, was isolated, physiologically and phylogenetically characterized, and based on 16S rDNA sequence analysis it is most closely related to the genus Bosea. In the presence of the mineral arsenopyrite (FeAsS) strain WAO releases arsenic and sulfur with oxidation of stoichiometric amounts to arsenate and sulfate. Strain WAO also displays preferential colonization of the pyrite surface on sections of arsenic-bearing black shale from the Lockatong formation. These observations suggest that microbial mobilization can be a mechanism for arsenic release into groundwater in the Newark Basin and elsewhere as well.

  3. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. PMID:23466730

  4. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    PubMed

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years. PMID:25666567

  5. Locating and estimating air emissions from sources of arsenic and arsenic compounds. Final report

    SciTech Connect

    1998-06-01

    This document describes the properties of arsenic and arsenic compounds as air pollutants, defines production and use patterns, identifies source categories of air emissions, and provides emission factors. Arsenic is emitted as an air pollutant from external combustion boilers, municipal and hazardous waste incineration, primary copper and zinc smelting, glass manufacturing, copper ore mining, and primary and secondary lead smelting. Emissions of arsenic from these activities are due to the presence of trace amounts of arsenic in fuels and materials being processed. In such cases, the emissions may be quite variable because the trace presence of arsenic is not constant. Arsenic emissions also occur from agricultural chemical production and application, and also from metal processing due to the use of arsenic in these activities. In addition to the arsenic source information, information is provided that specifies how individual sources of arsenic may be tested to quantify air emissions.

  6. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  7. Removing arsenic from copper smelter gases

    NASA Astrophysics Data System (ADS)

    Dalewski, Frank

    1999-09-01

    The pyrometallurgical processing of nonferrous minerals found in association with sulfur and arsenic generates arsenic-bearing SO2 gases. Effective process gas cleaning presents technical problems due to the high volatility of the As2O3 compound and the elevated dew point of the sulfur-trioxidecontaining SO2 gas. Critical factors for gascleaning technology selection pertaining to technical feasibility, economic acceptability, and environmental compatibility are the arsenic-to-sulfur ratio in the feed material, the operating parameters of the pyrometallurgical and gas cooling process, the admissible arsenic concentration of the SO2 gas after arsenic elimination, and the most suitable form of the arsenic-bearing output material. Depending on these factors, the bulk of the arsenic can be eliminated from the process gas in concentrated form according to either the dry or wet method, after which final arsenic removal from the process gas to below the required admissible level must take place in a wet electrostatic precipitator.

  8. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1993-01-01

    Methods for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

  9. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1993-04-20

    Methods are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

  10. Arsenic in the aetiology of cancer.

    PubMed

    Tapio, Soile; Grosche, Bernd

    2006-06-01

    Arsenic, one of the most significant hazards in the environment affecting millions of people around the world, is associated with several diseases including cancers of skin, lung, urinary bladder, kidney and liver. Groundwater contamination by arsenic is the main route of exposure. Inhalation of airborne arsenic or arsenic-contaminated dust is a common health problem in many ore mines. This review deals with the questions raised in the epidemiological studies such as the dose-response relationship, putative confounders and synergistic effects, and methods evaluating arsenic exposure. Furthermore, it describes the metabolic pathways of arsenic, and its biological modes of action. The role of arsenic in the development of cancer is elucidated in the context of combined epidemiological and biological studies. However, further analyses by means of molecular epidemiology are needed to improve the understanding of cancer aetiology induced by arsenic.

  11. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  12. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.

  13. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. PMID:26874625

  14. Acute arsenic poisoning in two siblings.

    PubMed

    Lai, Melisa W; Boyer, Edward W; Kleinman, Monica E; Rodig, Nancy M; Ewald, Michele Burns

    2005-07-01

    We report a case series of acute arsenic poisoning of 2 siblings, a 4-month-old male infant and his 2-year-old sister. Each child ingested solubilized inorganic arsenic from an outdated pesticide that was misidentified as spring water. The 4-month-old child ingested a dose of arsenic that was lethal despite extraordinary attempts at arsenic removal, including chelation therapy, extracorporeal membrane oxygenation, exchange transfusion, and hemodialysis. The 2-year-old fared well with conventional therapy.

  15. Arsenic round the world: a review.

    PubMed

    Mandal, Badal Kumar; Suzuki, Kazuo T

    2002-08-16

    This review deals with environmental origin, occurrence, episodes, and impact on human health of arsenic. Arsenic, a metalloid occurs naturally, being the 20th most abundant element in the earth's crust, and is a component of more than 245 minerals. These are mostly ores containing sulfide, along with copper, nickel, lead, cobalt, or other metals. Arsenic and its compounds are mobile in the environment. Weathering of rocks converts arsenic sulfides to arsenic trioxide, which enters the arsenic cycle as dust or by dissolution in rain, rivers, or groundwater. So, groundwater contamination by arsenic is a serious threat to mankind all over the world. It can also enter food chain causing wide spread distribution throughout the plant and animal kingdoms. However, fish, fruits, and vegetables primarily contain organic arsenic, less than 10% of the arsenic in these foods exists in the inorganic form, although the arsenic content of many foods (i.e. milk and dairy products, beef and pork, poultry, and cereals) is mainly inorganic, typically 65-75%. A few recent studies report 85-95% inorganic arsenic in rice and vegetables, which suggest more studies for standardisation. Humans are exposed to this toxic arsenic primarily from air, food, and water. Thousands and thousands of people are suffering from the toxic effects of arsenicals in many countries all over the world due to natural groundwater contamination as well as industrial effluent and drainage problems. Arsenic, being a normal component of human body is transported by the blood to different organs in the body, mainly in the form of MMA after ingestion. It causes a variety of adverse health effects to humans after acute and chronic exposures such as dermal changes (pigmentation, hyperkeratoses, and ulceration), respiratory, pulmonary, cardiovascular, gastrointestinal, hematological, hepatic, renal, neurological, developmental, reproductive, immunologic, genotoxic, mutagenetic, and carcinogenic effects. Key research

  16. Arsenic round the world: a review.

    PubMed

    Mandal, Badal Kumar; Suzuki, Kazuo T

    2002-08-16

    This review deals with environmental origin, occurrence, episodes, and impact on human health of arsenic. Arsenic, a metalloid occurs naturally, being the 20th most abundant element in the earth's crust, and is a component of more than 245 minerals. These are mostly ores containing sulfide, along with copper, nickel, lead, cobalt, or other metals. Arsenic and its compounds are mobile in the environment. Weathering of rocks converts arsenic sulfides to arsenic trioxide, which enters the arsenic cycle as dust or by dissolution in rain, rivers, or groundwater. So, groundwater contamination by arsenic is a serious threat to mankind all over the world. It can also enter food chain causing wide spread distribution throughout the plant and animal kingdoms. However, fish, fruits, and vegetables primarily contain organic arsenic, less than 10% of the arsenic in these foods exists in the inorganic form, although the arsenic content of many foods (i.e. milk and dairy products, beef and pork, poultry, and cereals) is mainly inorganic, typically 65-75%. A few recent studies report 85-95% inorganic arsenic in rice and vegetables, which suggest more studies for standardisation. Humans are exposed to this toxic arsenic primarily from air, food, and water. Thousands and thousands of people are suffering from the toxic effects of arsenicals in many countries all over the world due to natural groundwater contamination as well as industrial effluent and drainage problems. Arsenic, being a normal component of human body is transported by the blood to different organs in the body, mainly in the form of MMA after ingestion. It causes a variety of adverse health effects to humans after acute and chronic exposures such as dermal changes (pigmentation, hyperkeratoses, and ulceration), respiratory, pulmonary, cardiovascular, gastrointestinal, hematological, hepatic, renal, neurological, developmental, reproductive, immunologic, genotoxic, mutagenetic, and carcinogenic effects. Key research

  17. Arsenic intoxication associated with tubulointerstitial nephritis.

    PubMed

    Prasad, G V; Rossi, N F

    1995-08-01

    Arsenic poisoning is an often unrecognized cause of renal insufficiency. We report a case of tubulointerstitial nephritis associated with an elevated urinary arsenic concentration. Removal of the putative source of arsenic resulted in symptomatic improvement, resolution of abnormal abdominal radiographs, and stabilization of renal function. This case emphasizes the importance of heavy metal screening in patients with multisystem complaints and tubulointerstitial nephritis.

  18. Arsenic Metabolism and Distribution in Developing Organisms

    EPA Science Inventory

    A growing body of evidence suggests that exposure to inorganic arsenic during early life has long term adverse effects. The extent of exposure to inorganic arsenic and its methylated metabolites in utero is determined not only by the rates of formation and transfer of arsenicals...

  19. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  20. TYPES OF ARSENIC AND TREATMENT OPTIONS

    EPA Science Inventory

    Presentation will discuss the state-of-the-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies...

  1. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  2. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  3. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD... New Animal Drugs § 556.60 Arsenic. (a) (b) Tolerances. The tolerances for total residue of combined arsenic (calculated as As) are: (1) Turkeys—(i) Muscle and eggs: 0.5 parts per million (ppm). (ii)...

  4. Linking Arsenic Metabolism and Toxic Effects

    EPA Science Inventory

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  5. GROUND WATER TREATMENT PROCESSES FOR ARSENIC REMOVAL

    EPA Science Inventory

    In 1975 EPA established a maximum contaminant level (MCL) for arsenic at 0.05 mg/L. In 1996, Congress amended the SDWA and these amendments required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. The Agency proposed...

  6. Arsenic Exposure and Toxicology: A Historical Perspective

    EPA Science Inventory

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, in various forms, has also been used as a pesticide and a ch...

  7. Arsenic - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Arsenic URL of this page: https://medlineplus.gov/languages/arsenic.html Other topics A-Z A B C ... V W XYZ List of All Topics All Arsenic - Multiple Languages To use the sharing features on ...

  8. Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats.

    PubMed

    Muthumani, M; Miltonprabu, S

    2015-06-25

    Arsenic (As) is a well-known human carcinogen and a potent hepatotoxin. Environmental exposure to arsenic imposes a serious health hazard to humans and other animals worldwide. Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiological and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than the curcumin. It has been reported that THC has antioxidant efficacy attributable to the presence of identical β-diketone of 3rd and 5th substitution in heptane moiety. In the present study, rats were orally treated with arsenic alone (5 mg kg(-1) bw/day) with THC (80 mg kg(-1) bw/day) for 28 days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances. And also elevated levels of serum cholesterol, triglycerides, free fatty acids and phospholipids were observed in arsenic intoxicated rats. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)ATPase and a decrease in mitochondrial calcium content. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase along with non-enzymatic antioxidant such as reduced glutathione. Administration of THC exhibited significant reversal of arsenic induced toxicity in hepatic tissue. All these changes were supported by the reduction of arsenic concentration and histopathological observations of the liver. These results suggest that THC has a protective effect over arsenic induced toxicity in rat.

  9. Regeneration of Commercial SCR Catalysts: Probing the Existing Forms of Arsenic Oxide.

    PubMed

    Li, Xiang; Li, Junhua; Peng, Yue; Si, Wenzhe; He, Xu; Hao, Jiming

    2015-08-18

    To investigate the poisoning and regeneration of SCR catalysts, fresh and arsenic-poisoned commercial V2O5-WO3/TiO2 catalysts are researched in the context of deactivation mechanisms and regeneration technology. The results indicate that the forms of arsenic oxide on the poisoned catalyst are related to the proportion of arsenic (As) on the catalyst. When the surface coverage of (V+W+As) is lower than 1, the trivalent arsenic species (As(III)) is the major component, and this species prefers to permeate into the bulk-phase channels. However, at high As concentrations, pentavalent arsenic species (As(IV)) cover the surface of the catalyst. Although both arsenic species lower the NOx conversion, they affect the formation of N2O differently. In particular, N2O production is limited when trivalent arsenic species predominate, which may be related to As2O3 clogging the pores of the catalyst. In contrast, the pentavalent arsenic oxide species (As2O5) possess several As-OH groups. These As-OH groups could not only enhance the ability of the catalyst to become reduced, but also provide several Brønsted acid sites with weak thermal stability that promote the formation of N2O. Finally, although our novel Ca(NO3)2-based regeneration method cannot completely remove As2O3 from the micropores of the catalyst, this approach can effectively wipe off surface arsenic oxides without a significant loss of the catalyst's active components.

  10. Regeneration of Commercial SCR Catalysts: Probing the Existing Forms of Arsenic Oxide.

    PubMed

    Li, Xiang; Li, Junhua; Peng, Yue; Si, Wenzhe; He, Xu; Hao, Jiming

    2015-08-18

    To investigate the poisoning and regeneration of SCR catalysts, fresh and arsenic-poisoned commercial V2O5-WO3/TiO2 catalysts are researched in the context of deactivation mechanisms and regeneration technology. The results indicate that the forms of arsenic oxide on the poisoned catalyst are related to the proportion of arsenic (As) on the catalyst. When the surface coverage of (V+W+As) is lower than 1, the trivalent arsenic species (As(III)) is the major component, and this species prefers to permeate into the bulk-phase channels. However, at high As concentrations, pentavalent arsenic species (As(IV)) cover the surface of the catalyst. Although both arsenic species lower the NOx conversion, they affect the formation of N2O differently. In particular, N2O production is limited when trivalent arsenic species predominate, which may be related to As2O3 clogging the pores of the catalyst. In contrast, the pentavalent arsenic oxide species (As2O5) possess several As-OH groups. These As-OH groups could not only enhance the ability of the catalyst to become reduced, but also provide several Brønsted acid sites with weak thermal stability that promote the formation of N2O. Finally, although our novel Ca(NO3)2-based regeneration method cannot completely remove As2O3 from the micropores of the catalyst, this approach can effectively wipe off surface arsenic oxides without a significant loss of the catalyst's active components. PMID:26186082

  11. Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats.

    PubMed

    Muthumani, M; Miltonprabu, S

    2015-06-25

    Arsenic (As) is a well-known human carcinogen and a potent hepatotoxin. Environmental exposure to arsenic imposes a serious health hazard to humans and other animals worldwide. Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiological and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than the curcumin. It has been reported that THC has antioxidant efficacy attributable to the presence of identical β-diketone of 3rd and 5th substitution in heptane moiety. In the present study, rats were orally treated with arsenic alone (5 mg kg(-1) bw/day) with THC (80 mg kg(-1) bw/day) for 28 days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances. And also elevated levels of serum cholesterol, triglycerides, free fatty acids and phospholipids were observed in arsenic intoxicated rats. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)ATPase and a decrease in mitochondrial calcium content. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase along with non-enzymatic antioxidant such as reduced glutathione. Administration of THC exhibited significant reversal of arsenic induced toxicity in hepatic tissue. All these changes were supported by the reduction of arsenic concentration and histopathological observations of the liver. These results suggest that THC has a protective effect over arsenic induced toxicity in rat. PMID:25869292

  12. Arsenic removal by solar-driven membrane distillation: modeling and experimental investigation with a new flash vaporization module.

    PubMed

    Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi

    2013-01-01

    A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.

  13. Effects of Arsenic on Osteoblast Differentiation in Vitro and on Bone Mineral Density and Microstructure in Rats

    PubMed Central

    Wu, Cheng-Tien; Lu, Tung-Ying; Chan, Ding-Cheng; Tsai, Keh-Sung; Yang, Rong-Sen

    2014-01-01

    Background: Arsenic is a ubiquitous toxic element and is known to contaminate drinking water in many countries. Several epidemiological studies have shown that arsenic exposure augments the risk of bone disorders. However, the detailed effect and mechanism of inorganic arsenic on osteoblast differentiation of bone marrow stromal cells and bone loss still remain unclear. Objectives: We investigated the effects and mechanism of arsenic on osteoblast differentiation in vitro and evaluated bone mineral density (BMD) and bone microstructure in rats at doses relevant to human exposure from drinking water. Methods: We used a cell model of rat primary bone marrow stromal cells (BMSCs) and a rat model of long-term exposure with arsenic-contaminated drinking water, and determined bone microstructure and BMD in rats by microcomputed tomography (μCT). Results: We observed significant attenuation of osteoblast differentiation after exposure of BMSCs to arsenic trioxide (0.5 or 1 μM). After arsenic treatment during differentiation, expression of runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), and osteocalcin in BMSCs was inhibited and phosphorylation of enhanced extracellular signal-regulated kinase (ERK) was increased. These altered differentiation-related molecules could be reversed by the ERK inhibitor PD98059. Exposure of rats to arsenic trioxide (0.05 or 0.5 ppm) in drinking water for 12 weeks altered BMD and microstructure, decreased Runx2 expression, and increased ERK phosphorylation in bones. In BMSCs isolated from arsenic-treated rats, osteoblast differentiation was inhibited. Conclusions: Our results suggest that arsenic is capable of inhibiting osteoblast differentiation of BMSCs via an ERK-dependent signaling pathway and thus increasing bone loss. Citation: Wu CT, Lu TY, Chan DC, Tsai KS, Yang RS, Liu SH. 2014. Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats. Environ

  14. Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes.

    PubMed

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2007-12-01

    Arsenic is a potent environmental toxin. Present study has been designed to evaluate the protective role of taurine (2-aminoethanesulfonic acid) against arsenic induced cytotoxicity in murine hepatocytes. Sodium arsenite (NaAsO(2)) was chosen as the source of arsenic. Incubation of hepatocytes with the toxin (1 mM) for 2 h reduced the cell viability as well as intra-cellular antioxidant power. Increased activities of alanine transaminase (ALT) and alkaline phosphatase (ALP) due to toxin exposure confirmed membrane damage. Toxin treatment caused reduction in the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). In addition, the same treatment reduced the level of glutathione (GSH), elevated the level of oxidized glutathione (GSSG) and increased the extent of lipid peroxidation. Incubation of hepatocytes with taurine, both prior to and in combination with NaAsO(2), attenuated the extent of lipid peroxidation and enhanced the activities of enzymatic as well as non enzymatic antioxidants. Besides, taurine administration normalized the arsenic-induced enhanced levels of the marker enzymes ALT and ALP in hepatocytes. The cytoprotective activity of taurine against arsenic poisoning was found to be comparable to that of a known antioxidant, vitamin C. Combining all, the results suggest that taurine protects mouse hepatocytes against arsenic induced cytotoxicity.

  15. Soluble arsenic removal at water treatment plants

    SciTech Connect

    McNeill, L.S.; Edwards, M.

    1995-04-01

    Arsenic profiles were obtained from full-scale conventional treatment (coagulation, Fe-Mn oxidation, or softening) plants, facilitating testing of theories regarding arsenic removal. Soluble As(V) removal efficiency was controlled primarily by pH during coagulation, be Fe{sup +2} oxidation and Fe(OH){sub 3} precipitation during Fe-Mn oxidation, and by Mg(OH){sub 2} formation during softening. Insignificant soluble As(V) removal occurred during calcite precipitation at softening plants or during Mn{sup +2} oxidation-precipitation at Fe-Mn oxidation plants. The extent of soluble As(V) removal during coagulation and softening treatments was lower than expected. Somewhat surprisingly, during coagulation As(V) removal efficiencies were limited by particulate aluminum formation and removal, because much of the added coagulant was not removed by 0.45-{mu}m-pore-size filters. At one utility, reducing the coagulation pH from 7.4 to 6.8 (at constant alum dose) improved removal of particulate aluminum, thereby enhancing soluble As(V) removal during treatment.

  16. Groundwater arsenic in Chimaltenango, Guatemala.

    PubMed

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  17. Stress proteins induced by arsenic.

    PubMed

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  18. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  19. Influence of repeated preexposure to arsenic on acetaminophen-induced oxidative stress in liver of male rats.

    PubMed

    Manimaran, Ayyasamy; Sarkar, Souvendra Nath; Sankar, Palanisamy

    2010-02-01

    We evaluated whether repeated arsenic preexposure can increase acetaminophen-induced hepatic oxidative stress. Rats were exposed to arsenic (25 ppm; rat equivalent concentration of maximum groundwater contamination level) via drinking water for 28 days. Next day, they were given single oral administration of acetaminophen (420 or 1000 mg/kg b.w.). Hepatotoxicity was evaluated by assessing serum biomarkers, cytochrome-P450 (CYP) content, CYP3A4- and CYP2E1-dependent enzymes, lipid peroxidation and antioxidants. Arsenic or acetaminophen increased serum ALT and AST activities and depleted CYP. Arsenic decreased, but acetaminophen increased CYP-dependent enzyme activities. These agents independently increased lipid peroxidation and decreased antioxidants. Arsenic did not alter the effects of acetaminophen on serum biomarkers, caused further CYP depletion and decreased acetaminophen-mediated induction of drug-metabolizing enzymes. Arsenic enhanced the lower dose of acetaminophen-mediated lipid peroxidation and glutathione depletion with no further alterations in enzymatic antioxidants. However, arsenic attenuated the higher dose-mediated lipid peroxidation and glutathione depletion with improvement in glutathione peroxidase and glutathione reductase activities, further decrease in catalase and no alterations in superoxide dismutase and glutathione-S-transferase activities. Results show that arsenic preexposure increased the susceptibility of rats to hepatic oxidative stress induced by the lower dose of acetaminophen, but reduced the oxidative stress induced by the higher dose.

  20. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.

    PubMed

    Kashiwakura, Shunsuke; Ohno, Hajime; Matsubae-Yokoyama, Kazuyo; Kumagai, Yuichi; Kubo, Hiroshi; Nagasaka, Tetsuya

    2010-09-15

    Coal fly ash emitted from coal thermal power plants generally contains tens ppm of arsenic, one of the hazardous elements in coal, during combustion and their elution to soil or water has become a public concern. In this study, the acid washing process developed by the authors was applied to the removal of arsenic from coal fly ash. Laboratory- and bench-scale investigations on the dissolution behavior of arsenic from various coal fly ash samples into dilute H(2)SO(4) were conducted. Arsenic in the coal fly ash samples were dissolved into H(2)SO(4) solutions rapidly. However, its concentrations decreased with an increase in the pH of H(2)SO(4) solution in some cases. The species of arsenic in the dilute H(2)SO(4) was estimated as H(3)AsO(4), and its anionic species was considered to adsorb with the elevation of pH under the presence of ash particle. Such adsorption behavior was enhanced under the presence of Fe ion in the solution. The sufficient removal of arsenic was achieved by controlling pH and avoiding the adsorption of arsenic on the surface of coal fly ash particles, and the elution of arsenic from coal fly ash sample was successfully below the regulation limit.

  1. Mineral resource of the month: arsenic

    USGS Publications Warehouse

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  2. Merkel cell carcinoma and chronic arsenicism.

    PubMed

    Lien, H C; Tsai, T F; Lee, Y Y; Hsiao, C H

    1999-10-01

    Arsenic is a well-documented human carcinogen. Bowen's disease, squamous cell carcinoma, and basal cell carcinoma are the most common skin cancers found in patients exposed to arsenic over the long term. Merkel cell carcinoma has been documented in Taiwanese patients who resided in an endemic area of black foot disease, another condition found in patients with chronic arsenicism. We collected all cases of Merkel cell carcinoma diagnosed at two medical centers in Taiwan (N = 11) to find a possible association between chronic arsenicism and Merkel cell carcinoma. In our study 6 of the 11 patients were residents of the endemic areas for chronic arsenicism.

  3. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    USGS Publications Warehouse

    Wang, M.; Song, D.; Zheng, B.; Finkelman, R.B.; ,

    2008-01-01

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong. ?? 2008 New York Academy of Sciences.

  4. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    SciTech Connect

    Mingshi Wang; Dangyu Song; Baoshan Zheng; R.B. Finkelman

    2008-10-15

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong.

  5. Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation.

    PubMed

    Huq, S M Imamul; Joardar, J C; Parvin, S; Correll, Ray; Naidu, Ravi

    2006-09-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999-2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  6. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation

    PubMed Central

    Joardar, J.C.; Parvin, S.; Correll, Ray; Naidu, Ravi

    2006-01-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999–2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  7. Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation.

    PubMed

    Huq, S M Imamul; Joardar, J C; Parvin, S; Correll, Ray; Naidu, Ravi

    2006-09-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999-2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper.

  8. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  9. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles.

  10. Prenatal and developmental toxicology of arsenicals.

    PubMed

    Willhite, C C; Ferm, V H

    1984-01-01

    A variety of species, including the human, have been shown to be susceptible to the embryotoxic effects of inorganic arsenic. Malformations of the axial skeleton, neurocranium, viscerocranium, eyes, and genitourinary systems as well as prenatal death followed a bolus dose of trivalent or pentavalent inorganic arsenic. Trivalent arsenic was more teratogenic than pentavalent arsenic; in contrast, the methylated metabolites of arsenic possessed only limited teratogenic activity. Administration of inorganic arsenic to mammals results in concentration of arsenic within the placenta and small amounts are deposited within the embryo. Studies concerning the pathogenesis of arsenic-induced axial skeletal lesions revealed early failure of neural fold elevation and a subsequent, persistent failure of closure of the neural tube. Physical factors, drugs and heavy metals may modify the response to a teratogenic dose of inorganic arsenic. Medical problems associated with industrial or agricultural arsenicalism are most often typified by chronic exposure; future studies should emphasize those routes of administration and types of exposure that are characteristic of arsenic intoxication.

  11. Arsenic-cadmium interaction in rats.

    PubMed

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone. PMID:2219140

  12. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  13. Arsenic and bladder cancer: observations and suggestions.

    PubMed

    Radosavljević, Vladan; Jakovljević, Branko

    2008-10-01

    Arsenic from drinking water is a well-known risk factor for bladder cancer. The purpose of this paper is to systematize some important yet often overlooked facts considering the relationship between arsenic exposure and the occurrence of bladder cancer. Since the exposure to inorganic arsenic from food, inhaled air, and skin absorption as well as arsenic methylation ability are not fully investigated, our assumption is that the exposure of arsenic only from drinking water is underestimated and its role as a risk factor is highly overestimated. This paper proposes some qualitative and quantitative parameters of arsenic as a risk factor for bladder cancer. The recommended qualitative parameters of arsenic intake are first, pathways of exposure, and second, toxicity and metabolism. The suggested quantitative parameters of arsenic intake include amounts of arsenic absorbed in the body, duration of arsenic exposure, and duration of arsenic presence in the urinary bladder. This approach can be implemented in a systematic classification and explanation of various risk factors and their mutual interactions for other types of cancer or diseases in general.

  14. Arsenic immunotoxicity: a review.

    PubMed

    Dangleben, Nygerma L; Skibola, Christine F; Smith, Martyn T

    2013-01-01

    Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease. PMID:24004508

  15. Arsenic immunotoxicity: a review.

    PubMed

    Dangleben, Nygerma L; Skibola, Christine F; Smith, Martyn T

    2013-01-01

    Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease.

  16. Arsenic immunotoxicity: a review

    PubMed Central

    2013-01-01

    Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease. PMID:24004508

  17. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water

    PubMed Central

    2013-01-01

    Background Limited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Methods Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. Results As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). Conclusions This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential

  18. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1). PMID:12564892

  19. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    NASA Astrophysics Data System (ADS)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (<0.1 %) of the total arsenic present in soils or rice paddies is released via volatilization. Additionally, past studies often have not monitored arsenic release in the aqueous phase. Two main pathways for microbial arsenic volatilization are known and include methylation of arsenic during methanogenesis and methylation by arsenite S-adenosylmethionine methyltransferase. In this study, we compare the roles of these two pathways in arsenic volatilization and aqueous mobilization through mesocosm experiments with cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization

  20. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).

  1. System for removal of arsenic from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  2. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.

    PubMed

    Craw, D

    2005-02-01

    Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance

  3. Arsenic exposure and hepatitis E virus infection during pregnancy

    PubMed Central

    Heaney, Christopher D.; Kmush, Brittany; Navas-Acien, Ana; Francesconi, Kevin; Gössler, Walter; Schulze, Kerry; Fairweather, DeLisa; Mehra, Sucheta; Nelson, Kenrad E.; Klein, Sabra L.; Li, Wei; Ali, Hasmot; Shaikh, Saijuddin; Merrill, Rebecca D.; Wu, Lee; West, Keith P.; Christian, Parul; Labrique, Alain B.

    2015-01-01

    Background Arsenic has immunomodulatory properties and may have the potential to alter susceptibility to infection in humans. Objectives We aimed to assess the relation of arsenic exposure during pregnancy with immune function and hepatitis E virus (HEV) infection, defined as seroconversion during pregnancy and postpartum. Methods We assessed IgG seroconversion to HEV between 1st and 3rd trimester (TM) and 3 months postpartum (PP) among 1100 pregnancies in a multiple micronutrient supplementation trial in rural Bangladesh. Forty women seroconverted to HEV and were matched with 40 non-seroconverting women (controls) by age, parity and intervention. We assessed urinary inorganic arsenic plus methylated species (∑As) (µg/L) at 1st and 3rd TM and plasma cytokines (pg/mL) at 1st and 3rd TM and 3 months PP. Results HEV seroconverters’ urinary ∑As was elevated throughout pregnancy. Non-seroconverters’ urinary ∑As was similar to HEV seroconverters at 1st TM but declined at 3rd TM. The adjusted odds ratio (95% confidence interval) of HEV seroconversion was 2.17 (1.07, 4.39) per interquartile range (IQR) increase in average-pregnancy urinary ∑As. Increased urinary ∑As was associated with increased concentrations of IL-2 during the 1st and 3rd TM and 3 months PP among HEV seroconverters but not non-seroconverters. Conclusions The relation of urinary arsenic during pregnancy with incident HEV seroconversion and with IL-2 levels among HEV-seroconverting pregnant women suggests arsenic exposure during pregnancy may enhance susceptibility to HEV infection. PMID:26186135

  4. Arsenic distribution and speciation in Daphnia pulex.

    PubMed

    Caumette, Guilhem; Koch, Iris; Moriarty, Maeve; Reimer, Kenneth J

    2012-08-15

    Rat Lake, Yellowknife, Northwest Territories, is situated on arsenic-rich tailings from a historical gold mine. The abundant zooplankton species Daphnia pulex in this lake was used to study the impact of arsenic at the base of the freshwater food web; the speciation and distribution of arsenic in D. pulex and its food sources; and the origin of formation of organoarsenicals in freshwater systems. The arsenic concentration in lake water was measured as 0.25 mg L(-1), while the zooplankton organisms contained up to 35 mg kg(-1) d.w. arsenic. Plankton samples were analyzed for arsenic speciation, by using X-ray Absorption Near Edge Structure (XANES) on the whole, dried samples and High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) on water extracts. XANES data suggest that D. pulex mainly contain inorganic arsenicals with 56% of arsenic with +5 oxidation state and 10% of arsenic with +3 oxidation state, but also 34% of organoarsenic compounds that were identified with HPLC-ICP-MS as monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenosugars. The most abundant of the organoarsenicals was the glycerol sugar (Sugar 1). X-ray Fluorescence (XRF) mapping of D. pulex for arsenic distribution showed that arsenic was mainly distributed in the gut of the animal, where its concentration was ten times higher than in the surrounding tissues. Moreover, the analysis of residues from extractions targeting water-soluble and lipid-soluble arsenicals suggested that part of the measured arsenic signal comes from ingested sediments, phytoplankton, or other food sources. These food sources contain inorganic arsenic only, with As(V)-O in phytoplankton and As(III)-S in sediments, suggesting the possibility that the organoarsenicals compounds detected in the tissues of the organism are created by the Daphnia. PMID:22750169

  5. Metabolism of arsenic and its toxicological relevance.

    PubMed

    Watanabe, Takayuki; Hirano, Seishiro

    2013-06-01

    Arsenic is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the toxicity of arsenicals largely depends on the oxidoreduction states (trivalent or pentavalent) and methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. However, presently, the specifics of the metabolic pathway of inorganic arsenicals have yet to be confirmed. In mammals, there are two possible mechanisms that have been proposed for the metabolic pathway of inorganic arsenicals, oxidative methylation, and glutathione conjugation. Oxidative methylation, which was originally proposed in fungi, is based on findings that arsenite (iAs(III)) is sequentially converted to monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) in both humans and in laboratory animals such as mice and rats. However, recent in vitro observations have demonstrated that arsenic is only methylated in the presence of glutathione (GSH) or other thiol compounds, which strongly suggests that arsenic is methylated in trivalent forms. The glutathione conjugation mechanism is supported by findings that have shown that most intracellular arsenicals are trivalent and excreted from cells as GSH conjugates. Since non-conjugated trivalent arsenicals are highly reactive with thiol compounds and are easily converted to less toxic corresponding pentavalent arsenicals, the arsenic-glutathione conjugate stability may be the most important factor for determining the toxicity of arsenicals. In addition, "being a non-anionic form" also appears to be a determinant of the toxicity of oxo-arsenicals or thioarsenicals. The present review discusses both the metabolism of arsenic and the toxicity of arsenic metabolites.

  6. Managing hazardous pollutants in Chile: arsenic.

    PubMed

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  7. Managing hazardous pollutants in Chile: arsenic.

    PubMed

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  8. Evaluation of Arsenic Removal Technology: Arsenic Demonstration Program

    EPA Science Inventory

    Specific objectives of this program are to evaluate the reliability of the arsenic technologies of small scale systems; to gauge the simplicity of system operations, maintenance and operator skill; to determine the cost-effectiveness of the treatment technologies; and to characte...

  9. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    PubMed

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  10. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    PubMed

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process. PMID:26861378

  11. Investigating Arsenic Mobilization Mechanisms as well as Complexation Between Arsenic and Polysulfides Associated With a Bangladeshi Rice Paddy

    NASA Astrophysics Data System (ADS)

    Lin, T.; Kampalath, R.; Jay, J.

    2009-12-01

    The presence of arsenic in the groundwater has led to the largest environmental poisoning in history. Although it is a worldwide issue that affects numerous countries, including Taiwan, Bangladesh, India, China, Mexico, Peru, Australia, and the United States, the issue is of greatest concern in the West Bengal region. In the Ganges Delta, as many as 2 million people are diagnosed with arsenicosis each year. The World Health Organization (WHO) estimates 200,000 to 270,000 arsenic-induced cancer-related deaths in Bangladesh alone. More than 100 million people in the country consume groundwater that exceeds the WHO limit as 50% of the 8 million wells contain groundwater with more than 10 μg/L. Despite the tragic public health implications of this problem, we do not yet have a complete answer to the question of why dissolved arsenic concentrations are so high in the groundwater of the Ganges Delta. Since 1999, we have been intensively studying a field site in Munshiganj, Bangladesh with extremely high levels of arsenic in groundwater (up to 1.2 mg/L). Sediment cores were collected from two locations at the field site: 1) the rice paddy and 2) edge of a nearby irrigation pond. Recharge from irrigation ponds have recently been hypothesized to be an important site of arsenic mobilization. Recent work has proposed mineral dissolution under phosphorus-limited conditions as an important mechanism for arsenic mobilization. Using microcosms with paddy and pond sediment, we are comparing arsenic release via this mechanism with that resulting from reduction of iron hydroxides at our site. Concurrently, we are looking at enhanced solubility of As in the presence of polysulfides as the effects of elemental sulfur on As solubility have not been well researched. We hypothesize that the presence of elemental sulfur, and consequent formation of polysulfides, will substantially increase the solubility of orpiment in sulfidic water and that sorption of these complexes will

  12. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. PMID:26093797

  13. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level.

  14. The role of chelation in the treatment of arsenic and mercury poisoning.

    PubMed

    Kosnett, Michael J

    2013-12-01

    Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for more than half a century. Animal experiments and in some instances human data indicate that the dithiol chelators enhance arsenic and mercury excretion. Controlled animal experiments support a therapeutic role for these chelators in the prompt treatment of acute poisoning by arsenic and inorganic mercury salts. Treatment should be initiated as rapidly as possible (within minutes to a few hours), as efficacy declines or disappears as the time interval between metal exposure and onset of chelation increases. DMPS and DMSA, which have a higher therapeutic index than BAL and do not redistribute arsenic or mercury to the brain, offer advantages in clinical practice. Although chelation following chronic exposure to inorganic arsenic and inorganic mercury may accelerate metal excretion and diminish metal burden in some organs, potential therapeutic efficacy in terms of decreased morbidity and mortality is largely unestablished in cases of chronic metal intoxication.

  15. Acute arsenic poisoning treated by intravenous dimercaptosuccinic acid (DMSA) and combined extrarenal epuration techniques.

    PubMed

    Hantson, Philippe; Haufroid, Vincent; Buchet, Jean-Pierre; Mahieu, Paul

    2003-01-01

    Arsenic poisoning was diagnosed in a 26-year-old man who had been criminally intoxicated over the last two weeks preceding admission by the surreptitious oral administration of probably 10 g of arsenic trioxide (As2O3). The patient developed severe manifestations of toxic hepatitis and pancreatitis, and thereafter neurological disorders, respiratory distress, acute renal failure, and cardiovascular disturbances. In addition to supportive therapy, extrarenal elimination techniques and chelating agents were used. Dimercaprol (BAL) and dimercaptosuccinic acid (DMSA or succimer) were used simultaneously as arsenic chelating agents for two days, and thereafter DMSA was used alone. DMSA was administered by intravenous (20 mg/kg/d for five days, then 10 mg/kg/d for six days) and intraperitoneal route. Intravenous DMSA infusion was well tolerated and resulted in an increase in arsenic blood concentration immediately after the infusion. Continuous venovenous hemofiltration combined with hemodialysis, and peritoneal dialysis were proposed to enhance arsenic elimination. It was calculated that over an 11-day period 14.5 mg arsenic were eliminated by the urine, 26.7 mg by hemodialysis, 17.8 mg by peritoneal dialysis, and 7.8 mg by continuous venovenous hemofiltration. These amounts appeared negligible with regard to the probable ingested dose. The patient died on day 26 from the consequences of multiple organ failure, with subarachnoid hemorrhage and generalized infection caused by Aspergillus fumigatus.

  16. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed. PMID:16117113

  17. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed.

  18. Subacute arsenic exposure through drinking water reduces the pharmacodynamic effects of ketoprofen in male rats.

    PubMed

    Ahmad, Wasif; Prawez, Shahid; Chanderashekara, H H; Tandan, Surendra Kumar; Sankar, Palanisamy; Sarkar, Souvendra Nath

    2012-03-01

    We evaluated the modulatory role of the groundwater contaminant arsenic on the pharmacodynamic responses of the nonsteroidal analgesic-antipyretic drug ketoprofen and the major pro-inflammatory mediators linked to the mechanism of ketoprofen's therapeutic effects. Rats were pre-exposed to sodium arsenite (0.4, 4 and 40 ppm) through drinking water for 28 days. The pharmacological effects of orally administered ketoprofen (5 mg/kg) were evaluated the following day. Pain, inflammation and pyretic responses were, respectively, assessed through formalin-induced nociception, carrageenan-induced inflammation and lipopolysaccharide-induced pyrexia. Arsenic inhibited ketoprofen's analgesic, anti-inflammatory and antipyretic effects. Further, arsenic enhanced cyclooxygenase-1 and cyclooxygenase-2 activities and tumor necrosis factor-α, interleukin-1β and prostaglandin-E(2) production in hind paw muscle. These results suggest a functional antagonism of ketoprofen by arsenic. This may relate to arsenic-mediated local release of tumor necrosis factor-α and interleukin-1β, which causes cyclooxygenase induction and consequent prostaglandin-E(2) release. In conclusion, subacute exposure to environmentally relevant concentrations of arsenic through drinking water may aggravate pain, inflammation and pyrexia and thereby, may reduce the therapeutic efficacy of ketoprofen.

  19. The role of chelation in the treatment of arsenic and mercury poisoning.

    PubMed

    Kosnett, Michael J

    2013-12-01

    Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for more than half a century. Animal experiments and in some instances human data indicate that the dithiol chelators enhance arsenic and mercury excretion. Controlled animal experiments support a therapeutic role for these chelators in the prompt treatment of acute poisoning by arsenic and inorganic mercury salts. Treatment should be initiated as rapidly as possible (within minutes to a few hours), as efficacy declines or disappears as the time interval between metal exposure and onset of chelation increases. DMPS and DMSA, which have a higher therapeutic index than BAL and do not redistribute arsenic or mercury to the brain, offer advantages in clinical practice. Although chelation following chronic exposure to inorganic arsenic and inorganic mercury may accelerate metal excretion and diminish metal burden in some organs, potential therapeutic efficacy in terms of decreased morbidity and mortality is largely unestablished in cases of chronic metal intoxication. PMID:24178900

  20. Arsenic in Drinking Water-A Global Environmental Problem

    ERIC Educational Resources Information Center

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  1. Multisystem failure of the arsenic-poisoned patient.

    PubMed

    Hall, D; Beattie, D; Grossman, S; Campbell, C

    1991-01-01

    Due to the physiologic effects of arsenic on all body systems, the chronic arsenic-poisoned patient is a major nursing challenge. The critical care nurse provides valuable assessment and interventions that prevent major multisystem complications from arsenic toxicity.

  2. Chapter4: Toxicology and Epidemiology of Arsenic and its Compounds

    EPA Science Inventory

    Arsenic poses numerous environmental challenges, especially in the groundwater of Bangladesh and other developing nations. As a metalloid, arsenic has the properties of both a metal and a nonmetal. In organisms, metabolism of arsenic consists ofcomplex and multiple reduction and ...

  3. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    PubMed Central

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2013-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/ gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro (α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis. PMID:21134390

  4. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    SciTech Connect

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  5. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  6. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat.

    PubMed

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Le, X Chris

    2015-08-12

    Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation μg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 μg kg(-1)).

  7. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat.

    PubMed

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Le, X Chris

    2015-08-12

    Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation μg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 μg kg(-1)). PMID:26320952

  8. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice.

    PubMed

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L; Santra, Amal

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  9. Epidemiologic evidence of diabetogenic effect of arsenic.

    PubMed

    Tseng, Chin-Hsiao; Tseng, Ching-Ping; Chiou, Hung-Yi; Hsueh, Yu-Mei; Chong, Choon-Khim; Chen, Chien-Jen

    2002-07-01

    It is well documented that arsenic can lead to skin lesions, atherosclerotic diseases and cancers. The association between arsenic exposure and diabetes mellitus is a relatively new finding. Up to now, there are six epidemiologic reports linking diabetes mellitus with arsenic exposure from environmental and occupational sources. Two reports in Taiwan carried out in the blackfoot disease-hyperendemic villages, one cross-sectional and one prospective follow-up of the same cohort, indicate that arsenic exposure from drinking artesian well water is associated with prevalence and incidence of diabetes mellitus in a dose-responsive pattern. The observation of the relation between arsenic exposure and diabetes mellitus is further supported by studies carried out in Sweden and Bangladesh. In Sweden, case-control analyses of death records of copper smelters and glass workers revealed a trend of increasing diabetes mellitus with increasing arsenic exposure from inhalation. In Bangladesh, prevalence of diabetes mellitus among arsenic-exposed subjects with keratosis was about five times higher than unexposed subjects. Increasing trends of diabetes mellitus with indices of arsenic exposure in drinking water seems to be independent of the presence of skin lesions associated with arsenic exposure. Although these studies consistently show an association between arsenic exposure and diabetes mellitus, the weak study designs of cross-sectional or case-control, the use of glucosuria or diabetes death as diagnostic criteria and the lack of adjustment for possible confounders in some studies, are major limitations that may reduce the strength of the evidence. PMID:12076511

  10. Health Effects of Chronic Arsenic Exposure

    PubMed Central

    Hong, Young-Seoub; Song, Ki-Hoon; Chung, Jin-Yong

    2014-01-01

    Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments. PMID:25284195

  11. Arsenic Mobility Under Sulfate Reducing Conditions

    NASA Astrophysics Data System (ADS)

    Keimowitz, A. R.; Mailloux, B. J.; Cole, P.; Simpson, H. J.; Stute, M.; Chillrud, S. N.; Kujawinski, E. B.; Zheng, Y.

    2004-12-01

    At a former landfill site in southern Maine approximately 300 ppb arsenic has been observed in groundwater over the last two decades. Laboratory and field measurements support the hypothesis that this arsenic originates within the underlying glaciofluvial sediments containing natural arsenic at concentrations of approximately 6 ppm. Arsenic is mobilized under the landfill by reducing conditions induced by decomposition of organic-rich landfill leachate. The feasibility of arsenic removal by in situ oxidation was investigated with laboratory and pilot field experiments. The high redox buffering capacity of the aquifer solids makes this remediation strategy very difficult to accomplish. A more promising remediation strategy may involve the sequestration of arsenic through the formation of solid phase sulfides under sulfate-reducing conditions. To test this hypothesis, laboratory microcosm experiments were conducted with sediment from beneath the landfill. Acetate was added to the sediments to stimulate sulfate reducing conditions. Microcosms were monitored for changes to the solid and aqueous phase chemistry along with changes to the microbial community. The addition of acetate enabled the native microbial community to establish sulfate reducing conditions. The production of sulfide coincided with a decrease in the observed iron and arsenic concentrations. Over ten days, roughly 70 to 80% of the dissolved arsenic and >99% of the dissolved iron was removed from solution. Arsenic was subsequently partially remobilized, possibly due to continued sulfate reduction and an increase in pH. Results indicated that laboratory manipulations of the microbial community and subsurface redox state were able to lower the dissolved arsenic concentrations.

  12. Arsenic contamination in groundwater of Samta, Bangladesh.

    PubMed

    Yokota, H; Tanabe, K; Sezaki, M; Yano, Y; Hamabe, K; Yabuuchi, K; Tokunaga, H

    2002-01-01

    In March 1997, we analyzed the water of all tubewells used for drinking in Samta village in the Jessore district, Bangladesh. It has been confirmed from the survey that the arsenic contamination in Samta was one of the worst in the Ganges basin including West Bengal, India. 90% of the tubewells had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tubewells with higher arsenic concentrations of over 0.50 mg/l were distributed in the southern area with a belt-like shape from east to west, and the distribution of arsenic concentration showed gradual decreasing toward northern area of the village. In order to examine the characteristics of the arsenic distribution in Samta, we have performed investigations such as: 1) the characteristics of groundwater flow, 2) the distribution of arsenic in the ground, 3) the concentration of arsenic and the other dissolved materials in groundwater, and 4) the distribution of arsenic concentration of trivalence and pentavalence. This paper examines the mechanism of arsenic release to groundwater and explains the above-mentioned characteristics of the arsenic contamination in Samta through the investigations of the survey results for these years.

  13. Determination of arsenic compounds in earthworms

    SciTech Connect

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W.; Francesconi, K.

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  14. Arsenic removal from drinking water during coagulation

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.

    1997-08-01

    The efficiency of arsenic removal from source waters and artificial freshwaters during coagulation with ferric chloride and alum was examined in bench-scale studies. Arsenic(V) removal by either ferric chloride or alum was relatively insensitive to variations in source water composition below pH 8. At pH 8 and 9, the efficiency of arsenic(V) removal by ferric chloride was decreased in the presence of natural organic matter. The pH range for arsenic(V) removal with alum was more restricted than with ferric chloride. For source waters spiked with 20 {micro}g/L arsenic(V), final dissolved arsenic(V) concentrations in the product water of less than 2 {micro}g/L were achieved with both coagulants at neutral pH. Removal of arsenic(III) from source waters by ferric chloride was both less efficient and more strongly influenced by source water composition than removal of arsenic(V). The presence of sulfate (at pH 4 and 5) and natural organic matter (at pH 4 through 9) adversely affected the efficiency of arsenic(III) removal by ferric chloride. Arsenic(III) could not be removed from source waters by coagulation with alum.

  15. Sequestration of arsenic in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  16. Further evidence against a direct genotoxic mode of action for arsenic-induced cancer

    SciTech Connect

    Klein, Catherine B.; Leszczynska, Joanna; Hickey, Christina; Rossman, Toby G.

    2007-08-01

    Arsenic in drinking water, a mixture of arsenite and arsenate, is associated with increased skin and other cancers in Asia and Latin America, but not the United States. Arsenite alone in drinking water does not cause skin cancers in experimental animals; therefore, it is not a complete carcinogen in skin. We recently showed that low concentrations of arsenite enhanced the tumorigenicity of solar UV irradiation in hairless mice, suggesting arsenic cocarcinogenesis with sunlight in skin cancer and perhaps with different carcinogenic partners for lung and bladder tumors. Cocarcinogenic mechanisms could include blocking DNA repair, stimulating angiogenesis, altering DNA methylation patterns, dysregulating cell cycle control, induction of aneuploidy and blocking apoptosis. Arsenicals are documented clastogens but not strong mutagens, with weak mutagenic activity reported at highly toxic concentrations of inorganic arsenic. Previously, we showed that arsenite, but not monomethylarsonous acid (MMA[III]), induced delayed mutagenesis in HOS cells. Here, we report new data on the mutagenicity of the trivalent methylated arsenic metabolites MMA(III) and dimethylarsinous acid [DMA(III)] at the gpt locus in Chinese hamster G12 cells. Both methylated arsenicals seemed mutagenic with apparent sublinear dose responses. However, significant mutagenesis occurred only at highly toxic concentrations of MMA(III). Most mutants induced by MMA(III) and DMA(III) exhibited transgene deletions. Some non-deletion mutants exhibited altered DNA methylation. A critical discussion of cell survival leads us to conclude that clastogenesis occurs primarily at highly cytotoxic arsenic concentrations, casting further doubt as to whether a genotoxic mode of action (MOA) for arsenicals is supportable.

  17. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    PubMed

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.

  18. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  19. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats.

    PubMed

    Bhadauria, S; Flora, S J S

    2007-03-01

    Arsenic and its compounds cause adverse health effects in humans. Current treatment employs administration of thiol chelators, such as meso-2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating agents are compromised by number of limitations due to their lipophobic nature, particularly in case of chronic poisoning. Combination therapy is a new approach to ensure enhanced removal of metal from the body, reduced doses of potentially toxic chelators, and no redistribution of metal from one organ to another, following chronic metal exposure. The present study attempts to investigate dose-related effects of two thiol chelators, DMSA and one of its new analogues, monoisoamyl dimercaptosuccinic acid (MiADMSA), when administered in combination with the aim of achieving normalization of altered biochemical parameters suggestive of oxidative stress and depletion of inorganic arsenic following chronic arsenic exposure. Twenty-five adult male Wistar rats were given 25 ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 0.3 mmol/kg (orally) when administered individually or 0.15 mmol/kg and 0.3 mmol/kg (once daily for 5 consecutive days), respectively, when administered in combination. Arsenic exposure led to the inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) activity and depletion of glutathione (GSH) level. These changes were accompanied by significant depletion of hemoglobin, RBC and Hct as well as blood superoxide dismutase (SOD) acitivity. There was an increase in hepatic and renal levels of thiobarbituric acid-reactive substances, while GSH:GSSG ratio decreased significantly, accompanied by a significant increase in metallothionein (MT) in hepatocytes. DNA damage based on denaturing polyacrylamide gel electrophoresis revealed significant loss in the integrity of DNA extracted from the liver of arsenic

  20. Acute arsenical myopathy: morphological description.

    PubMed

    Fernandez-Sola, J; Nogue, S; Grau, J M; Casademont, J; Munne, P

    1991-01-01

    We describe the histological findings of the muscle in a case of acute voluntary massive arsenic intoxication resulting in severe rhabdomyolysis. The main features on muscle biopsy were perifascicular hypercontracted fibers, myofibrillar disruption, mitochondrial abnormalities and abundant cytoplasmic vacuoles containing lipids.

  1. Electrophysiological profile in arsenic neuropathy.

    PubMed

    Oh, S J

    1991-12-01

    Comprehensive electrophysiological studies were performed on 13 patients with arsenic neuropathy. The most prominent finding was a marked abnormality in sensory nerve conduction in the presence of moderate abnormalities in motor nerve conduction. The motor nerve conduction studies and needle EMG were typical of those seen in axonal degeneration which was confirmed by sural nerve biopsy.

  2. Phrenic neuropathy in arsenic poisoning.

    PubMed

    Bansal, S K; Haldar, N; Dhand, U K; Chopra, J S

    1991-09-01

    A patient presented with acute arsenic neuropathy with asymmetric bilateral phrenic nerve involvement. The clinical and roentgenographic observations of phrenic nerve dysfunction were confirmed by prolonged phrenic nerve conduction time. The patient made a significant recovery with d-penicillamine therapy.

  3. [Arsenic poisoning: a special gastroenteritis...].

    PubMed

    Ganster, F; Kuteifan, K; Mootien, Y; Harry, P; Guiot, P

    2009-06-01

    Arsenic (As) intoxication is nowadays extremely rare. Two cases of acute and chronic As criminal poisoning leading to death of a couple of retired people, are reported. Clinical presentation was simulating a gastro-enteritidis with fast evolution to refractory shock. Toxicological analysis confirmed this diagnostic, with respectively blood As concentrations at 579 and 21 765 microg/l for our two patients.

  4. Acute arsenic poisoning diagnosed late.

    PubMed

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months.

  5. The microbial genomics of arsenic.

    PubMed

    Andres, Jérémy; Bertin, Philippe N

    2016-03-01

    Arsenic, which is a major contaminant of many aquatic ecosystems worldwide, is responsible for serious public health issues. However, life has evolved various strategies for coping with this toxic element. In particular, prokaryotic organisms have developed processes enabling them to resist and metabolize this chemical. Studies based on genome sequencing and transcriptome, proteome and metabolome profiling have greatly improved our knowledge of prokaryotes' metabolic potential and functioning in contaminated environments. The increasing number of genomes available and the development of descriptive and comparative approaches have made it possible not only to identify several genetic determinants of the arsenic metabolism, but also to elucidate their phylogenetic distribution and their modes of regulation. In addition, studies using functional genomic tools have established the pleiotropic character of prokaryotes' responses to arsenic, which can be either common to several species or species-specific. These approaches also provide promising means of deciphering the functioning of microbial communities including uncultured organisms, the genetic transfers involved and the possible occurrence of metabolic interactions as well as the evolution of arsenic resistance and metabolism.

  6. Bimetallic nanoparticles for arsenic detection.

    PubMed

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic.

  7. Bimetallic nanoparticles for arsenic detection.

    PubMed

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  8. Arsenic Sorption in Dried Leaves

    NASA Astrophysics Data System (ADS)

    Silva, Gabriela C.; de Carvalho, Regina P.; Duarte, Grazielle; Santos, Mércia H.

    2005-10-01

    Biosorption is the retention of metal ions from aqueous solutions by biomasses. This phenomenon can be helpful in the design of alternative filters for the depollution of industrial and mining waste waters. The recovery of filtered metal ions can also be commercially interesting. Although many studies about the sorptive capacity of biomasses have been done for different metals, few have investigated sorption sites and mechanisms in these systems. We studied the retention of arsenic ions from aqueous solutions using dried lettuce leaves (L. sativa) as biomass. The toxic arsenic forms As(III) and As(V) are commonly found in mining waste waters. Early studies have shown that lettuce leaves have a good sorptive capacity for copper and iron ions, comparable to other sorbents such as activated carbon or ionic-exchange resins. Arsenic sorption by lettuce dried leaves was not found to be effective when in natura biomass was used. Sorptive capacity was improved and became comparable to the sorption of the other ions studied when the biomass was charged with Fe(III). The sorption mechanism of arsenic in Fe-charged biomass must be similar to the one proposed for As sorption by mineral clays, where As ions bind to Fe(III) atoms in the clay structure.

  9. Arsenic in a child's world.

    PubMed

    Pike-Paris, Ann

    2004-01-01

    Ten-year-old Tim P. presented at a local emergency room complaining of bloody diarrhea. Despite treatment, his diarrhea continued with additional symptoms of nausea, raspy voice, headaches, abdominal pain, tingling of the feet and hands, lethargy, and eczema. Do you recognize the health risks and clinical aspects of arsenic, and could you assist Tim and his family?

  10. Acute arsenic poisoning diagnosed late.

    PubMed

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months. PMID:26508422

  11. Arsenic chemistry in soils and sediments

    SciTech Connect

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved

  12. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    PubMed

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  13. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE INORGANIC ARSENIC METHYLATION PHENOTYPE

    EPA Science Inventory

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidence suggest that some of the adverse health effects associated with chronic exposure to in...

  14. ARE ALL ARSENIC EXPOSURES TOXIC? SUPPORTING REGIONAL RISK ASSESSMENTS THROUGH IMPROVED ARSENIC SPECIATION METHODOLOGY

    EPA Science Inventory

    Arsenic exposure assessments require the evaluation of the relative contribution of both media (water, food, etc.) and routes of exposure (ingestion, inhalation, dermal). For arsenic, the important media are predominately water and food and therefore, the route of concern for ...

  15. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    EPA Science Inventory

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  16. Role of Metabolism in Arsenic-Induced Toxicity: Identification and Quantification of Arsenic Metabolites in Tissues and Excreta

    EPA Science Inventory

    Arsenic is a known toxicant and carcinogen. Methylation of inorganic arsenic was once thought to be a detoxification mechanism because of the rapid excretion and relatively lower toxicity of the pentavalent organic arsenical metabolites. Advances in analytical chemistry have al...

  17. Metabolic interrelationships between arsenic and selenium.

    PubMed

    Levander, O A

    1977-08-01

    In 1938, Moxon discovered that arsenic protected against selenium toxicity. Since that time it has been shown that this protective effect of arsenic against selenium poisoning can be demonstrated in many different animal species under a wide variety of conditions. Antagonistic effects between arsenic and selenium have also been noted in teratologic experiments. Early metabolic studies showed that arsenic inhibited the expiration of volatile selenium compounds by rats injected with acutely toxic doses of both elements. This was puzzling since pulmonary excretion had long been regarded as a means by which animals could rid themselves of excess selenium. However, later work demonstrated that arsenic increased the biliary excretion of selenium. Not only did arsenic stimulate the excretion of selenium in the bile, but selenium also stimulated the excretion of arsenic in the bile. This increased biliary excretion of selenium caused by arsenic provides a reasonable rationale for the ability of arsenic to counteract the toxicity of selenium, although the chemical mechanism by which arsenic does this is not certain. The most satisfactory explanation is that these two elements react in the liver to form a detoxication conjugate which is then excreted into the bile. This is consistent with the fact that both arsenic and selenium each increase the biliary excretion of the other. Several other metabolic interactions between arsenic and selenium have been demonstrated in vitro, but their physiological significance is not clear. Although arsenic decreased selenium toxicity under most conditions, there is a pronounced synergistic toxicity between arsenic and two methylated selenium metabolites, trimethylselenonium ion or dimethyl selenide. The ecological consequences of these synergisms are largely unexplored, although it is likely that selenium methylation occurs in the environment. All attempts to promote or prevent selenium deficiency diseases in animals by feeding arsenic have

  18. Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes

    SciTech Connect

    Shinkai, Yasuhiro; Sumi, Daigo; Toyama, Takashi; Kaji, Toshiyuki; Kumagai, Yoshito

    2009-06-01

    Aquaporin (AQP) 9 is a member of the aquaglyceroporin subfamily of AQPs in the transfer of water and small solutes such as glycerol and arsenite. It is well recognized that arsenic toxicity is associated with intracellular accumulation of this metalloid. In the present study, we examined the contribution of AQP9 to the uptake of inorganic arsenite, thereby increasing arsenic-induced cytotoxicity in primary mouse hepatocytes. Pretreatment with sorbitol as a competitive inhibitor of AQP9 and siRNA-mediated knockdown of AQP9 resulted in a significant decrease of arsenite uptake in the cell and its cytotoxicity. Furthermore, overexpression of AQP9 in HEK293 cells led to the enhancement of intracellular arsenic concentration, resulting in enhanced cytotoxicity after arsenite exposure. These results suggest that AQP9 is a channel to define arsenite sensitivity in primary mouse hepatocytes.

  19. Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes.

    PubMed

    Shinkai, Yasuhiro; Sumi, Daigo; Toyama, Takashi; Kaji, Toshiyuki; Kumagai, Yoshito

    2009-06-01

    Aquaporin (AQP) 9 is a member of the aquaglyceroporin subfamily of AQPs in the transfer of water and small solutes such as glycerol and arsenite. It is well recognized that arsenic toxicity is associated with intracellular accumulation of this metalloid. In the present study, we examined the contribution of AQP9 to the uptake of inorganic arsenite, thereby increasing arsenic-induced cytotoxicity in primary mouse hepatocytes. Pretreatment with sorbitol as a competitive inhibitor of AQP9 and siRNA-mediated knockdown of AQP9 resulted in a significant decrease of arsenite uptake in the cell and its cytotoxicity. Furthermore, overexpression of AQP9 in HEK293 cells led to the enhancement of intracellular arsenic concentration, resulting in enhanced cytotoxicity after arsenite exposure. These results suggest that AQP9 is a channel to define arsenite sensitivity in primary mouse hepatocytes.

  20. An arsenic fluorescent compound as a novel probe to study arsenic-binding proteins.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Santos, Javier; Carbajal, María Laura; Amor, María Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-12-01

    Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.

  1. Sources, symptoms, and signs of arsenic poisoning.

    PubMed

    Hutton, J T; Christians, B L

    1983-09-01

    Arsenic poisoning continues to be a serious medical problem that may easily be overlooked or misdiagnosed. The broad constellation of symptoms and signs in arsenic poisoning, along with changing sources of this toxin, contributes to misdiagnosis. A re-examination of current potential sources was carried out. Sources were determined in 17 of 20 documented cases of arsenic poisoning. Fourteen cases resulted from ingestion of a single, commonly available, arsenic-containing ant killer. In contrast to earlier reports, this survey found that agricultural and industrial sources were relatively uncommon. A peculiar posturing of the hand is commonly seen in the early stages of arsenic poisoning prior to the development of Mee's lines or palmar hyperkeratosis. An illustrative case is reported that resulted from intermittent self-administration of an arsenic-containing ant killer in order to maintain a state of chronic invalidism.

  2. Arsenic--state of the art.

    PubMed

    Landrigan, P J

    1981-01-01

    Approximately 1.5 million workers in the United States are exposed to arsenic. Occupational exposure is primarily by inhalation. NIOSH recommends that time-integrated exposure to arsenic in air not exceed 2 micrograms/m3. Recent exposure is accurately measured by urine assay; urine arsenic concentrations above 50 micrograms/liter indicate increased absorption. Hair assay is a semiquantitative index of past exposure. Toxicity is associated primarily with the trivalent (3+) form of arsenic. Acute poisoning is caused most commonly by contaminated food or drink; it is rarely occupational. Chronic intoxication is characterized by dermatitis, hyperpigmentation, keratoses, peripheral neuropathy (primarily sensory), irritation of the upper and lower respiratory tract, and occasionally by hepatic toxicity and peripheral vasculopathy (blackfoot disease). Arsenic is not carcinogenic in animal species, but is mutagenic in Syrian hamster cells. In man, arsenic is known definitely to cause cancer of skin, lung, and liver (angiosarcoma) and possibly to cause lymphoma.

  3. Natural Antioxidants Against Arsenic-Induced Genotoxicity.

    PubMed

    Kumar, Munesh; Lalit, Minakshi; Thakur, Rajesh

    2016-03-01

    Arsenic is present in water, soil, and air in organic as well as in inorganic forms. However, inorganic arsenic is more toxic than organic and can cause many diseases including cancers in humans. Its genotoxic effect is considered as one of its carcinogenic actions. Arsenic can cause DNA strand breaks, deletion mutations, micronuclei formation, DNA-protein cross-linking, sister chromatid exchange, and DNA repair inhibition. Evidences indicate that arsenic causes DNA damage by generation of reactive free radicals. Nutritional supplementation of antioxidants has been proven highly beneficial against arsenic genotoxicity in experimental animals. Recent studies suggest that antioxidants protect mainly by reducing excess free radicals via restoring the activities of cellular enzymatic as well as non-enzymatic antioxidants and decreasing the oxidation processes such as lipid peroxidation and protein oxidation. The purpose of this review is to summarize the recent literature on arsenic-induced genotoxicity and its mitigation by naturally derived antioxidants in various biological systems.

  4. Method of arsenic removal from water

    DOEpatents

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  5. Carcinogenic, teratogenic, and mutagenic effects of arsenic.

    PubMed Central

    Bencko, V

    1977-01-01

    This review outlines briefly the history and present status of the problem of carcinogenic, teratogenic and mutagenic effects of arsenic. Discrepancies between clinical observations and positive results of epidemiological studies and the experimental induction of cancer by arsenic are discussed. The present knowledge of the mechanism of teratogenic and mutagenic effects of arsenic is analyzed. The growing importance of arsenic as an environmental pollutant is demonstrated. Continuation of throughly organized epidemiological studies in regions with excessive arsenic exposure of the population and standardization of an epidemiological approach to this problem on an international basis are recommended. New approaches in experimental studies of the carcinogenicity of arsenic in combination with other known or suspected carcinogens are recommended as well. PMID:908296

  6. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.

    PubMed

    Pavlík, Milan; Pavlíková, Daniela; Staszková, Ludmila; Neuberg, Marek; Kaliszová, Regina; Száková, Jirina; Tlustos, Pavel

    2010-09-01

    Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia.

  7. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere.

    PubMed

    Jia, Yan; Huang, Hai; Chen, Zheng; Zhu, Yong-Guan

    2014-01-21

    Arsenic (As) uptake by rice is largely determined by As speciation, which is strongly influenced by microbial activities. However, little is known about interactions between root and rhizosphere microbes, particularly on arsenic oxidation and reduction. In this study, two rice cultivars with different radial oxygen loss (ROL) ability were used to investigate the impact of microbially mediated As redox changes in the rhizosphere on As uptake. Results showed that the cultivar with higher ROL (Yangdao) had lower As uptake than that with lower ROL (Nongken). The enhancement of the rhizospheric effect on the abundance of the arsenite (As(III)) oxidase gene (aroA-like) was greater than on the arsenate (As(V)) reductase gene (arsC), and As(V) respiratory reductase gene (arrA), resulting in As oxidation and sequestration in the rhizosphere, particularly for cultivar Yangdao. The community of As(III)-oxidizing bacteria in the rhizosphere was dominated by α-Proteobacteria and β-Proteobacteria and was influenced by rhizospheric effects, rice straw application, growth stage, and cultivar. Application of rice straw into the soil increased As release and accumulation into rice plants. These results highlighted that uptake of As by rice is influenced by microbial processes, especially As oxidation in the rhizosphere, and these processes are influenced by root ROL and organic matter application. PMID:24383760

  8. Arsenic-induced responses in Pityrogramma calomelanos (L.) Link: Arsenic speciati