Sample records for enhancing detection capability

  1. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  2. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  3. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  4. Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates

    NASA Astrophysics Data System (ADS)

    Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward

    2002-02-01

    The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.

  5. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  6. Portable SERS sensor for malachite green and other small dye molecules

    NASA Astrophysics Data System (ADS)

    Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.

  7. A highly sensitive biological detection substrate based on TiO2 nanowires supporting gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying

    2011-12-01

    Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.

  8. A comparison of line enhancement techniques: applications to guide-wire detection and respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Bismuth, Vincent; Vancamberg, Laurence; Gorges, Sébastien

    2009-02-01

    During interventional radiology procedures, guide-wires are usually inserted into the patients vascular tree for diagnosis or healing purpose. These procedures are monitored with an Xray interventional system providing images of the interventional devices navigating through the patient's body. The automatic detection of such tools by image processing means has gained maturity over the past years and enables applications ranging from image enhancement to multimodal image fusion. Sophisticated detection methods are emerging, which rely on a variety of device enhancement techniques. In this article we reviewed and classified these techniques into three families. We chose a state of the art approach in each of them and built a rigorous framework to compare their detection capability and their computational complexity. Through simulations and the intensive use of ROC curves we demonstrated that the Hessian based methods are the most robust to strong curvature of the devices and that the family of rotated filters technique is the most suited for detecting low CNR and low curvature devices. The steerable filter approach demonstrated less interesting detection capabilities and appears to be the most expensive one to compute. Finally we demonstrated the interest of automatic guide-wire detection on a clinical topic: the compensation of respiratory motion in multimodal image fusion.

  9. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  10. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  11. Ultra-Sensitive Photoreceiver Boosts Data Transmission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA depends on advanced, ultra-sensitive photoreceivers and photodetectors to provide high-data communications and pinpoint image-detection and -recognition capabilities from great distances. In 2003, Epitaxial Technologies LLC was awarded a Small Business Innovation Research (SBIR) contract from Goddard Space Flight Center to address needs for advanced sensor components. Epitaxial developed a photoreciever capable of single proton sensitivity that is also smaller, lighter, and requires less power than its predecessor. This receiver operates in several wavelength ranges; will allow data rate transmissions in the terabit range; and will enhance Earth-based missions for remote sensing of crops and other natural resources, including applications for fluorescence and phosphorescence detection. Widespread military and civilian applications are anticipated, especially through enhancing fiber optic communications, laser imaging, and laser communications.

  12. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    PubMed

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  13. Assembling substrate-less plasmonic metacrystals at the oil/water interface for multiplex ultratrace analyte detection.

    PubMed

    Lee, Yih Hong; Lee, Hiang Kwee; Ho, Jonathan Yong Chew; Yang, Yijie; Ling, Xing Yi

    2016-08-15

    Current substrate-less SERS platforms are limited to uncontrolled aggregation of plasmonic nanoparticles or quasi-crystalline arrays of spherical nanoparticles, with no study on how the lattice structures formed by nanoparticle self-assembly affect their detection capabilities. Here, we organize Ag octahedral building blocks into two large-area plasmonic metacrystals at the oil/water interface, and investigate their in situ SERS sensing capabilities. Amphiphilic octahedra assemble into a hexagonal close-packed metacrystal, while hydrophobic octahedra assemble into an open square metacrystal. The lower packing density square metacrystal gives rise to much stronger SERS enhancement than the denser packing hexagonal metacrystal, arising from the larger areas of plasmonic hotspots within the square metacrystal at the excitation wavelength. We further demonstrate the ability of the square metacrystal to achieve quantitative ultratrace detection of analytes from both the aqueous and organic phases. Detection limits are at the nano-molar levels, with analytical enhancement factors reaching 10(8). In addition, multiplex detection across both phases can be achieved in situ without any loss of signal quantitation.

  14. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles

    PubMed Central

    Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.

    2015-01-01

    The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788

  15. Tip-enhanced near-field optical microscopy

    PubMed Central

    Mauser, Nina; Hartschuh, Achim

    2013-01-01

    Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed. PMID:24100541

  16. Error Detection Processes during Observational Learning

    ERIC Educational Resources Information Center

    Badets, Arnaud; Blandin, Yannick; Wright, David L.; Shea, Charles H.

    2006-01-01

    The purpose of this experiment was to determine whether a faded knowledge of results (KR) frequency during observation of a model's performance enhanced error detection capabilities. During the observation phase, participants observed a model performing a timing task and received KR about the model's performance on each trial or on one of two…

  17. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  18. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  19. Implementing GPS into Pave-IR.

    DOT National Transportation Integrated Search

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  20. Fusion solution for soldier wearable gunfire detection systems

    NASA Astrophysics Data System (ADS)

    Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin

    2012-06-01

    Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.

  1. NEXT GENERATION AERIAL REFUELING: CRITICAL CAPABILITY FOR PENETRATING CHINESE DENIED ENVIRONMENTS

    DTIC Science & Technology

    2015-10-26

    defensive systems capability reduces aircraft damage, saves aircrew lives and keeps the tanker engaged in supplying a critical resource to the...legacy KC- 135. Additionally, there are requirement for a defensive system , which enhances the pilots situational awareness. The defensive system ...1 The ALR-69(V) is the world’s first all-digital radar warning receiver (RWR). The RWR system detects, identifies

  2. Non-volatile analysis in fruits by laser resonant ionization spectrometry: application to resveratrol (3,5,4'-trihydroxystilbene) in grapes

    NASA Astrophysics Data System (ADS)

    Montero, C.; Orea, J. M.; Soledad Muñoz, M.; Lobo, R. F. M.; González Ureña, A.

    A laser desorption (LD) coupled with resonance-enhanced multiphoton ionisation (REMPI) and time-of-flight mass spectrometry (TOFMS) technique for non-volatile trace analysis compounds is presented. Essential features are: (a) an enhanced desorption yield due to the mixing of metal powder with the analyte in the sample preparation, (b) a high resolution, great sensitivity and low detection limit due to laser resonant ionisation and mass spectrometry detection. Application to resveratrol content in grapes demonstrated the capability of the analytical method with a sensitivity of 0.2 pg per single laser shot and a detection limit of 5 ppb.

  3. Development and Application of Advanced Ophthalmic Imaging Technology to Enhance Military Ocular Health Capabilities

    DTIC Science & Technology

    2009-04-01

    active military personnel and veterans, are affected by three major blinding diseases of the retina and optic nerve: diabetic retinopathy , age-related...disease is detected early. New advanced detection methods are available, but are only interpretable by very experienced specialists. The goal of this...consist of several steps [1-3]: feature detection ; transform model estimation; optimization function design; and optimization strategies. We do not

  4. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  5. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  6. X-ray position detector and implementation in a mirror pointing servo system

    DOEpatents

    Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.

    2016-04-05

    An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.

  7. On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Zalyalov, A. N.

    2013-05-01

    The reliability of communications reporting observations of neutron flux enhancements in thunderstorm atmosphere is analyzed. The analysis is motivated by the fact that the employed gas-discharge counters on the basis of reactions 3He( n, p)3H and 10B( n; 4He, γ)7Li detect not only neutrons but any penetrating radiations. Photonuclear reactions are capable of accounting for the possible amplifications of neutron flux in thunder-storm atmosphere since in correlation with thunderstorms γ-ray flashes were repeatedly observed with spectra extending high above the threshold of photonuclear reactions in air. By numerical simulations, it was demonstrated that γ-ray pulses detected in thunderstorm atmosphere are capable of generating photonuclear neutrons in numbers sufficient to be detected even at sea level.

  8. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  9. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    PubMed

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  10. Signal-enhancement reflective pulse oximeter with Fresnel lens

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  11. Progress in magnetic sensor technology for sea mine detection

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.

    1997-07-01

    A superconducting magnetic-field gradiometer developed in the 1980's has been demonstrated infusion with acoustic sensors to enhance shallow water sea mine detection and classification, especially for buried mine detection and the reduction of acoustic false alarm rates. This sensor incorporated niobium bulk and wire superconducting components cooled by liquid helium to a temperature of 4 degrees K. An advanced superconducting gradiometer prototype is being developed to increase sensitivity and detection range. This sensor features all thin film niobium superconducting components and a new liquid helium cooling concept. In the late 1980's, a new class of 'high Tc' superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen. The use of liquid nitrogen refrigeration offers new opportunities for this sensor technology, providing significant reduction in the size of sensor packages and in the requirements for cryogenic support and logistics. As a result of this breakthrough, a high Tc sensor concept using liquid nitrogen refrigeration has been developed for mine reconnaissance applications and a test article of that concept is being fabricated and evaluated. In addition to these developments in sensor technology, new signal processing approaches and recent experimental results have ben obtained to demonstrate an enhanced D/C capability. In this paper, these recent advances in sensor development and new results for an enhanced D/C capability will be reviewed and a current perspective on the role of magnetic sensors for mine detection and classification will be addressed.

  12. Shrink-induced silica multiscale structures for enhanced fluorescence from DNA microarrays.

    PubMed

    Sharma, Himanshu; Wood, Jennifer B; Lin, Sophia; Corn, Robert M; Khine, Michelle

    2014-09-23

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30-45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays.

  13. Shrink-Induced Silica Multiscale Structures for Enhanced Fluorescence from DNA Microarrays

    PubMed Central

    2015-01-01

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30–45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays. PMID:25191785

  14. Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-06-04

    We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.

  15. Enhancing a Simple MODIS Cloud Mask Algorithm for the Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, Michael J.; Oreopoulos, Lazarous

    2011-01-01

    The presence of clouds in images acquired by the Landsat series of satellites is usually an undesirable, but generally unavoidable fact. With the emphasis of the program being on land imaging, the suspended liquid/ice particles of which clouds are made of fully or partially obscure the desired observational target. Knowing the amount and location of clouds in a Landsat scene is therefore valuable information for scene selection, for making clear-sky composites from multiple scenes, and for scheduling future acquisitions. The two instruments in the upcoming Landsat Data Continuity Mission (LDCM) will include new channels that will enhance our ability to detect high clouds which are often also thin in the sense that a large fraction of solar radiation can pass through them. This work studies the potential impact of these new channels on enhancing LDCM's cloud detection capabilities compared to previous Landsat missions. We revisit a previously published scheme for cloud detection and add new tests to capture more of the thin clouds that are harder to detect with the more limited arsenal channels. Since there are no Landsat data yet that include the new LDCM channels, we resort to data from another instrument, MODIS, which has these bands, as well as the other bands of LDCM, to test the capabilities of our new algorithm. By comparing our revised scheme's performance against the performance of the official MODIS cloud detection scheme, we conclude that the new scheme performs better than the earlier scheme which was not very good at thin cloud detection.

  16. Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering

    PubMed Central

    Liu, Jikun; White, Ian; DeVoe, Don L.

    2011-01-01

    The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579

  17. International-Aerial Measuring System (I-AMS) Training Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, andmore » provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.« less

  18. Deep neural network-based bandwidth enhancement of photoacoustic data.

    PubMed

    Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K

    2017-11-01

    Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Backscatter X-Ray Development for Space Vehicle Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-01

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  20. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  1. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  2. New Developments of Broadband Cavity Enhanced Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2013-06-01

    In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao, H. Linnartz Appl. Phys. Lett. {101}(9), 091111 2012.

  3. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    PubMed

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.

    PubMed

    Liu, Xin; Lebedkin, Sergei; Besser, Heino; Pfleging, Wilhelm; Prinz, Stephan; Wissmann, Markus; Schwab, Patrick M; Nazarenko, Irina; Guttmann, Markus; Kappes, Manfred M; Lemmer, Uli

    2015-01-27

    Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.

  5. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays

    PubMed Central

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T.

    2011-01-01

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer. PMID:22109210

  6. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  7. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays.

    PubMed

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T

    2011-11-07

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.

  8. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  9. Principle, system, and applications of tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia

    2012-08-01

    Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.

  10. Width-Increased Dual-Pump Enhanced Coherent Anti-Stokes Raman Spectroscopy (WIDECARS)

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Wheeler, Jeffrey L.; Danehy, Paul M.

    2010-01-01

    WIDECARS is a dual-pump coherent anti-Stokes Raman Spectroscopy technique that is capable of simultaneously measuring temperature and species mole fractions of N2, O2, H2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature.

  11. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  12. Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement.

    PubMed

    Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad

    2017-08-01

    Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.

  13. Diagnostic capability of gadoxetate disodium-enhanced liver MRI for diagnosis of hepatocellular carcinoma: comparison with multi-detector CT.

    PubMed

    Toyota, Naoyuki; Nakamura, Yuko; Hieda, Masashi; Akiyama, Naoko; Terada, Hiroaki; Matsuura, Noriaki; Nishiki, Masayo; Kono, Hirotaka; Kohno, Hiroshi; Irei, Toshimitsu; Yoshikawa, Yukinobu; Kuraoka, Kazuya; Taniyama, Kiyomi; Awai, Kazuo

    2013-09-01

    The purpose of this study was to evaluate the diagnostic capability of gadoxetate disodium (Gd-EOB)-MRI for the detection of hepatocellular carcinoma (HCC) compared with multidetector CT (MDCT). Fifty patients with 57 surgically proven HCCs who underwent Gd-EOB-MRI and MDCT from March 2008 to June 2011 were evaluated. Two observers evaluated MR and CT on a lesion-by-lesion basis. We analyzed sensitivity by grading on a 5-point scale, the degree of arterial enhancement and the differences in histological grades in the diffusion-weighted images (DWI). The results showed that the sensitivity of Gd-EOB-MRI was higher than that of MDCT especially for HCCs that were 1 cm in diameter or smaller. The hepatobiliary phase was useful for the detecting of small HCC. We had few cases in which it was difficult to judge HCC in the arterial enhancement between MRI and MDCT. In the diffusion-weighted image, well differentiated HCC tended to show a low signal intensity, and poorly differentiated HCC tended to show a high signal intensity. In moderately differentiated HCC's, the mean diameter of the high signal intensity group was larger than that of the low signal intensity group (24.5 mm vs. 15.8 mm). In conclusion, Gd-EOB-MRI tended to show higher sensitivity compared to MDCT in the detection of HCC.

  14. Detecting insider activity using enhanced directory virtualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwan; Claycomb, William R.

    2010-07-01

    Insider threats often target authentication and access control systems, which are frequently based on directory services. Detecting these threats is challenging, because malicious users with the technical ability to modify these structures often have sufficient knowledge and expertise to conceal unauthorized activity. The use of directory virtualization to monitor various systems across an enterprise can be a valuable tool for detecting insider activity. The addition of a policy engine to directory virtualization services enhances monitoring capabilities by allowing greater flexibility in analyzing changes for malicious intent. The resulting architecture is a system-based approach, where the relationships and dependencies between datamore » sources and directory services are used to detect an insider threat, rather than simply relying on point solutions. This paper presents such an architecture in detail, including a description of implementation results.« less

  15. Saliva surface-enhanced Raman spectroscopy for noninvasive optical detection of nasopharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Lin, Xueliang; Ge, Xiaosong; Xu, Zhihong; Zheng, Zuci; Huang, Wei; Hong, Quanxing; Lin, Duo

    2016-10-01

    The early cancer detection is of great significance to increase the patient's survival rate and reduce the risk of cancer development. Surface enhanced Raman spectroscopy (SERS) technique, a rapid, convenient, nondestructive optical detection method, can provide a characteristic "fingerprint" information of target substances, even achieving single molecule detection. Its ultra-high detection sensitivity has made it become one of the most potential biochemical detection methods. Saliva, a multi-constituent oral fluid, contains the bio-markers which is capable of reflecting the systemic health condition of human, showing promising potential as an effect medium for disease monitoring. Compared with the serum samples, the collection and processing of saliva is safer, more convenient and noninvasive. Thus, saliva test is becoming the hotspot issues of the noninvasive cancer research field. This review highlights and analyzes current application progress within the field of SERS saliva test in cancer detection. Meanwhile, the primary research results of SERS saliva for the noninvasive differentiation of nasopharyngeal cancer, normal and rhinitis obtained by our group are shown.

  16. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    PubMed

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  17. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    DOEpatents

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  18. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  19. Plasmonic gold nanostar for biomedical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan

    2014-03-01

    Cancer has become one of most significant death reasons and causes approximately 7.9 million human deaths worldwide each year. The challenge to detect cancer at an early stage makes cancer-related biomarkers sensing attract more and more research interest and efforts. Surface-enhanced Raman scattering (SERS) provides a promising method for various biomarkers (DNA, RNA, protein, et al.) detection due to its high sensitivity, specificity and capability for multiple analytes detection. Raman spectroscopy is a non-destructive photon-scattering technique, which provides molecule-specific information on molecular vibrational energy levels. SERS takes advantage of plasmonic effects and can enhance Raman signal up to 1015 at "hot spots". Due to its excellent sensitivity, SERS has been capable of achieving single-molecule detection limit. Local pH environment has been identified to be a potential biomarker for cancer diagnosis since solid cancer contains highly acidic environments. A near-infrared (NIR) SERS nanoprobe based on gold nanostars for pH sensing is developed for future cancer detection. Near-infrared (NIR) light is more suitable for in vivo applications because of its low attenuation rate and tissue auto fluorescence. SERS spectrum of pH reporter under various pH environments is monitored and used for pH sensing. Furthermore, density functional theory (DFT) calculation is performed to investigate Raman spectra changes with pH at the molecular level. The study demonstrates that SERS is a sensitive tool to monitor minor molecular structural changes due to local pH environment for cancer detection.

  20. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  1. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a negligible change to the signal. Chapter 3 is devoted to the development and characterization of new CNT-Yarn Microelectrodes (CNTYME) which display a beneficial enhancement in sensitivity and reduction in both electron transfer kinetics and overpotential. Chapter 4 introduces the high-speed dopamine detection capabilities of CNTYMEs, almost two orders of magnitude faster than at CFMEs without any compromise in electrochemical sensitivity, and discusses how adsorption and desorption relate to this phenomenon.

  2. An enhanced MMW and SMMW/THz imaging system performance prediction and analysis tool for concealed weapon detection and pilotage obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.

    2015-10-01

    The U.S. Army Research Laboratory (ARL) has continued to develop and enhance a millimeter-wave (MMW) and submillimeter- wave (SMMW)/terahertz (THz)-band imaging system performance prediction and analysis tool for both the detection and identification of concealed weaponry, and for pilotage obstacle avoidance. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). Further development of this tool that includes a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures was reported on at the 2011 SPIE Europe Security and Defence Symposium (Prague). This paper provides a comprehensive review of a newly enhanced MMW and SMMW/THz imaging system analysis and design tool that now includes an improved noise sub-model for more accurate and reliable performance predictions, the capability to account for postcapture image contrast enhancement, and the capability to account for concealment material backscatter with active-illumination- based systems. Present plans for additional expansion of the model's predictive capabilities are also outlined.

  3. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.

  4. NanoCluster Beacons as reporter probes in rolling circle enhanced enzyme activity detection

    NASA Astrophysics Data System (ADS)

    Juul, Sissel; Obliosca, Judy M.; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Imphean, Darren M.; Knudsen, Birgitta R.; Ho, Yi-Ping; Leong, Kam W.; Yeh, Hsin-Chih

    2015-04-01

    As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics.As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics. Electronic supplementary information (ESI) available: The detailed steps of NCB preparation, REEAD assay and STEM imaging. The sequences of the sNCB and the REEAD substrate. See DOI: 10.1039/c5nr01705j

  5. Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor.

    PubMed

    Zhang, Jingle; Fu, Haiwei; Ding, Jijun; Zhang, Min; Zhu, Yi

    2017-11-01

    A graphene-oxide-coated interferometric microfiber-sensor-based polarization-maintaining optical fiber is proposed for highly sensitive detecting for ethanol vapor concentration at room temperature in this paper. The strong sensing capability of the sensor to detect the concentration of ethanol vapor is demonstrated, taking advantage of the evanescent field enhancement and gas absorption of a graphene-oxide-coated microfiber. The transmission spectrum of the sensor varies with concentrations of ethanol vapor, and the redshift of the transmission spectrum has been analyzed for the concentration range from 0 to 80 ppm with sensitivity as high as 0.138 nm/ppm. The coated graphene oxide layer induces the evanescent field enhancement and gas selective adsorption, which improves sensitivity and selectivity of the microfiber gas sensor for ethanol vapor detection.

  6. Structured-illumination reflectance imaging coupled with spiral phase transform for bruise detection and three-dimensional geometry reconstruction of apples

    USDA-ARS?s Scientific Manuscript database

    Structured-illumination reflectance imaging (SIRI) is a new, promising imaging technique with enhanced, versatile capabilities for quality evaluation of food products. SIRI enables simultaneous acquisition of higher-contrast/resolution and better depth-controlled intensity and phase images for detec...

  7. Nano-immunoassay with improved performance for detection of cancer biomarkers

    DOE PAGES

    Krasnoslobodtsev, Alexey V.; Torres, Maria P.; Kaur, Sukhwinder; ...

    2015-01-01

    Nano-immunoassay utilizing surface-enhanced Raman scattering (SERS) effect is a promising analytical technique for the early detection of cancer. In its current standing the assay is capable of discriminating samples of healthy individuals from samples of pancreatic cancer patients. Further improvements in sensitivity and reproducibility will extend practical applications of the SERS-based detection platforms to wider range of problems. In this report, we discuss several strategies designed to improve performance of the SERS-based detection system. We demonstrate that reproducibility of the platform is enhanced by using atomically smooth mica surface as a template for preparation of capture surface in SERS sandwichmore » immunoassay. Furthermore, the assay's stability and sensitivity can be further improved by using either polymer or graphene monolayer as a thin protective layer applied on top of the assay addresses. The protective layer renders the signal to be more stable against photo-induced damage and carbonaceous contamination.« less

  8. Investigation of the detection of shallow tunnels using electromagnetic and seismic waves

    NASA Astrophysics Data System (ADS)

    Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.

    2007-04-01

    Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.

  9. Detection of orbital angular momentum using a photonic integrated circuit.

    PubMed

    Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-06-20

    Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.

  10. 75 FR 49949 - Notice of Lodging of Consent Decree Under The Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under The Clean Water Act Notice is... Southern District of Texas. In this action, the United States alleges civil claims under the Clean Water...) improve pipeline operation and integrity management practices, and (3) enhance leak detection capabilities...

  11. Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays

    PubMed Central

    Lee, Kuang-Li; Huang, Jhih-Bin; Chang, Jhih-Wei; Wu, Shu-Han; Wei, Pei-Kuen

    2015-01-01

    Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances for a transverse magnetic-polarized wave. An ultrasmall linewidth is formed due to the enhanced Fano coupling between the cavity resonance mode in nanoslits and surface plasmon resonance mode on periodic metallic surface. With an optimal slit length and width, the full width at half-maximum bandwidth of the Fano mode is only 3.68 nm. The wavelength sensitivity is 926 nm/RIU for 60-nm-width and 1,000-nm-period nanoslits. The figure of merit is up to 252. The obtained value is higher than the theoretically estimated upper limits of the prism-coupling SPR sensors and the previously reported record high figure-of-merit in array sensors. In addition, the structure has an ultrahigh intensity sensitivity up to 48,117%/RIU. PMID:25708955

  12. Enhanced photothermal lens using a photonic crystal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yunfei; Liu, Longju; Zhao, Xiangwei

    2016-08-15

    A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PCmore » substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.« less

  13. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  14. Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth.

    PubMed

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-03-28

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.

  15. Detect-to-treat: development of analysis of bacilli spores in nasal mucus by surfaced-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Farquharson, Stuart

    2004-12-01

    As the war on terrorism in Afghanistan and Iraq continue, future attacks both abroad and in the U.S.A. are expected. In an effort to aid civilian and military personnel, we have been investigating the potential of using a surface-enhanced Raman spectroscopy (SERS) sampling device to detect Bacillus anthracis spores in nasal swab samples. Such a device would be extremely beneficial to medical responders and management in assessing the extent of a bioterrorist attack and making detect-to-treat decisions. The disposable sample device consists of a glass capillary filled with a silver-doped sol-gel that is capable of extracting dipicolinic acid (DPA), a chemical signature of Bacilli, and generating SERS spectra. The sampling device and preliminary measurements of DPA extracted from spores and nasal mucus will be presented.

  16. Development of a QCL based IR polarimetric system for the stand-off detection and location of IEDs

    NASA Astrophysics Data System (ADS)

    Stokes, Robert J.; Normand, Erwan L.; Carrie, Iain D.; Foulger, Brian; Lewis, Colin

    2009-09-01

    Following the development of point sensing improvised explosive device (IED) technology[1] Cascade Technologies have initial work in the development of equivalent stand-off capability. Stand-off detection of IEDs is a very important technical requirement that would enable the safe identification and quantification of hazardous materials prior to a terrorist attack. This could provide advanced warning of potential danger allowing evacuation and mitigation measures to be implemented. With support from the UK government, Cascade Technologies is currently investigating technology developments aimed at addressing the above stand-off IED detection capability gap. To demonstrate and validate the concept, a novel stand-off platform will target the detection and identification of common high vapor pressure IED precursor compounds, such as hydrogen peroxide (H2O2), emanating from a point source. By actively probing a scene with polarized light, the novel platform will offer both enhanced selectivity and sensitivity as compared to traditional hyperspectral sensors, etc. The presentation will highlight the concept of this novel detection technique as well as illustrating preliminary results.

  17. Advances in Doppler recognition for ground moving target indication

    NASA Astrophysics Data System (ADS)

    Kealey, Paul G.; Jahangir, Mohammed

    2006-05-01

    Ground Moving Target Indication (GMTI) radar provides a day/night, all-weather, wide-area surveillance capability to detect moving vehicles and personnel. Current GMTI radar sensors are limited to only detecting and tracking targets. The exploitation of GMTI data would be greatly enhanced by a capability to recognize accurately the detections as significant classes of target. Doppler classification exploits the differential internal motion of targets, e.g. due to the tracks, limbs and rotors. Recently, the QinetiQ Bayesian Doppler classifier has been extended to include a helicopter class in addition to wheeled, tracked and personnel classes. This paper presents the performance for these four classes using a traditional low-resolution GMTI surveillance waveform with an experimental radar system. We have determined the utility of an "unknown output decision" for enhancing the accuracy of the declared target classes. A confidence method has been derived, using a threshold of the difference in certainties, to assign uncertain classifications into an "unknown class". The trade-off between fraction of targets declared and accuracy of the classifier has been measured. To determine the operating envelope of a Doppler classification algorithm requires a detailed understanding of the Signal-to-Noise Ratio (SNR) performance of the algorithm. In this study the SNR dependence of the QinetiQ classifier has been determined.

  18. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.

  19. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels.

    PubMed

    Nikitin, M P; Orlov, A V; Sokolov, I L; Minakov, A A; Nikitin, P I; Ding, J; Bader, S D; Rozhkova, E A; Novosad, V

    2018-06-21

    Geometrically confined magnetic particles due to their unique response to external magnetic fields find a variety of applications, including magnetic guidance, heat and drug delivery, magneto-mechanical actuation, and contrast enhancement. Highly sensitive detection and imaging techniques based on the nonlinear properties of nanomagnets were recently proposed as innovative strong-translational potential methods applicable in complex, often opaque, biological systems. Here we report on the significant enhancement of the detection capability using optical-lithography-defined, ferromagnetic iron-nickel alloy disk-shaped particles. We show that an irreversible transition between strongly non-collinear (vortex) and single domain states, driven by an alternating magnetic field, translates into a nonlinear magnetic response that enables ultrasensitive detection of these particles. The record sensitivity of ∼3.5 × 10-9 emu, which is equivalent to ∼39 pg of magnetic material is demonstrated at room temperature for arrays of patterned disks. We also show that unbound disks suspended in the aqueous buffer can be successfully detected and quantified in real-time when administered into a live animal allowing for tracing of their biodistribution. The use of nanoscale ferromagnetic particles with engineered nonlinear properties opens prospects for further enhancing the sensitivity, scalability, and tunability of noise-free magnetic tag detection in high-background environments for various applications spanning from biosensing and medical imaging to anti-counterfeiting technologies.

  20. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  1. Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Yu; Cunningham, Brian T.

    2014-04-01

    We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery. Electronic supplementary information (ESI) available: Fabrication of PNA substrates, fabrication details of the flow cell, details of FDTD simulation, characterization of the scattering volume, and detection of diltiazem diluted in DI water and PBS. See DOI: 10.1039/c4nr00027g

  2. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE PAGES

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.; ...

    2016-06-27

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  3. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  4. Dual-excitation wavelength resonance Raman explosives detector

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.

    2013-05-01

    Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.

  5. Ultra-Sensitive Lab-on-a-Chip Detection of Sudan I in Food using Plasmonics-Enhanced Diatomaceous Thin Film.

    PubMed

    Kong, Xianming; Squire, Kenny; Chong, Xinyuan; Wang, Alan X

    2017-09-01

    Sudan I is a carcinogenic compound containing an azo group that has been illegally utilized as an adulterant in food products to impart a bright red color to foods. In this paper, we develop a facile lab-on-a-chip device for instant, ultra-sensitive detection of Sudan I from real food samples using plasmonics-enhanced diatomaceous thin film, which can simultaneously perform on-chip separation using thin layer chromatography (TLC) and highly specific sensing using surface-enhanced Raman scattering (SERS) spectroscopy. Diatomite is a kind of nature-created photonic crystal biosilica with periodic pores and was used both as the stationary phase of the TLC plate and photonic crystals to enhance the SERS sensitivity. The on-chip chromatography capability of the TLC plate was verified by isolating Sudan I in a mixture solution containing Rhodamine 6G, while SERS sensing was achieved by spraying gold colloidal nanoparticles into the sensing spot. Such plasmonics-enhanced diatomaceous film can effectively detect Sudan I with more than 10 times improvement of the Raman signal intensity than commercial silica gel TLC plates. We applied this lab-on-a-chip device for real food samples and successfully detected Sudan I in chili sauce and chili oil down to 1 ppm, or 0.5 ng/spot. This on-chip TLC-SERS biosensor based on diatomite biosilica can function as a cost-effective, ultra-sensitive, and reliable technology for screening Sudan I and many other illicit ingredients to enhance food safety.

  6. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    NASA Astrophysics Data System (ADS)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  7. Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices.

    PubMed

    Liang, Linlin; Lan, Feifei; Yin, Xuemei; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2017-09-15

    Convenient biosensor for simultaneous multi-analyte detection was increasingly required in biological analysis. A novel flower-like silver (FLS)-enhanced fluorescence/visual bimodal platform for the ultrasensitive detection of multiple miRNAs was successfully constructed for the first time based on the principle of multi-channel microfluidic paper-based analytical devices (µPADs). Fluorophore-functionalized DNA 1 (DNA 1 -N-CDs) was combined with FLS, which was hybridized with quencher-carrying strand (DNA 2 -CeO 2 ) to form FLS-enhanced fluorescence biosensor. Upon the addition of the target miRNA, the fluorescent intensity of DNA 1 -N-CDs within the proximity of the FLS was strengthened. The disengaged DNA/CeO 2 complex could result in color change after joining H 2 O 2 , leading to real-time visual detection of miRNA firstly. If necessary, then the fluorescence method was applied for a accurate determination. In this strategy, the growth of FLS in µPADs not only reduced the background fluorescence but also provided an enrichment of "hot spots" for surface enhanced fluorescence detection of miRNAs. Results also showed versatility of the FLS in the enhancement of sensitivity and selectivity of the miRNA biosensor. Remarkably, this biosensor could detect as low as 0.03fM miRNA210 and 0.06fM miRNA21. Interestingly, the proposed biosensor also possessed good capability of recycling in three cycles upon change of the supplementation of DNA 2 -CeO 2 and visual substitutive device. This method opened new opportunities for further studies of miRNA related bioprocesses and will provide a new instrument for simultaneous detection of multiple low-level biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detection and Identification: Instrumentation and Calibration for Air/Liquid/Surface-borne Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.

    2013-04-01

    Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.

  9. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH(-) chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection.

    PubMed

    Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua

    2004-10-08

    The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.

  10. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornemann, Andrea, E-mail: andrea.hornemann@ptb.de; Hoehl, Arne, E-mail: arne.hoehl@ptb.de; Ulm, Gerhard, E-mail: gerhard.ulm@ptb.de

    Bio-diagnostic assays of high complexity rely on nanoscaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. High throughput performance requires the simultaneous detection of various analytes combined with appropriate bioassay components. Nanoparticle induced sensitivity enhancement, and subsequent multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are fitting well these purposes. SEIRA constitutes an ideal platform to isolate the vibrational signatures of targeted bioassay and active molecules. The potential of several targeted biolabels, here fluorophore-labeled antibody conjugates, chemisorbed onto low-cost biocompatible gold nano-aggregates substrates have been explored for their use in assay platforms. Dried films were analyzedmore » by synchrotron radiation based FTIR/SEIRA spectro-microscopy and the resulting complex hyperspectral datasets were submitted to automated statistical analysis, namely Principal Components Analysis (PCA). The relationships between molecular fingerprints were put in evidence to highlight their spectral discrimination capabilities. We demonstrate that robust spectral encoding via SEIRA fingerprints opens up new opportunities for fast, reliable and multiplexed high-end screening not only in biodiagnostics but also in vitro biochemical imaging.« less

  12. System and method for ultrasonic tomography

    DOEpatents

    Haddad, Waleed Sami

    2002-01-01

    A system and method for doing both transmission mode and reflection mode three-dimensional ultrasonic imagining. The multimode imaging capability may be used to provide enhanced detectability of cancer tumors within human breast, however, similar imaging systems are applicable to a number of other medical problems as well as a variety of non-medical problems in non-destructive evaluation (NDE).

  13. Depth enhancement of ion sensitized data

    DOEpatents

    Lamartine, Bruce C.

    2001-01-01

    A process of fabricating a durable data storage medium is disclosed, the durable data storage medium capable of storing, digital or alphanumeric characters as well as graphical shapes or characters. Additionally, a durable data storage medium including a substrate having etched characters therein is disclosed, the substrate characterized as containing detectable residual amounts of ions used in the preparation process.

  14. From Data to Knowledge — Faster: GOES Early Fire Detection System to Inform Operational Wildfire Response and Management

    NASA Astrophysics Data System (ADS)

    Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.

    2014-12-01

    Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.

  15. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis

    PubMed Central

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-01-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  16. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis.

    PubMed

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-04-07

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC.

  17. Aligned Silver Nanorod Array as SERS Substrates for Viral Sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Shanmukh, Saratchandra; Chaney, Stephen B.; Jones, Les; Dluhy, Richard A.; Tripp, Ralph A.

    2006-03-01

    The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (˜10^9) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, as well as the polarization of the excitation laser beam. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. The applicability of this substrate to the detection of bioagents has been investigated by looking several viruses, such as Adenovirus, HIV, Rhinovirus and Respiratory Syncytial Virus (RSV), at low quantities (˜0.5uL). Different viruses have different fingerprint Raman spectrum. The detection of virus presented in infected cells has also been demonstrated.

  18. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  19. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    PubMed

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthetic aperture in terahertz in-line digital holography for resolution enhancement.

    PubMed

    Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong

    2016-01-20

    Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography.

  1. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  2. A rapid detection method of Escherichia coli by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Peng, Yankun; Xu, Tianfeng

    2015-05-01

    Conventional microbiological detection and enumeration methods are time-consuming, labor-intensive, and giving retrospective information. The objectives of the present work are to study the capability of surface enhanced Raman scattering (SERS) to detect Escherichia coli (E. coli) using the presented silver colloidal substrate. The obtained results showed that the adaptive iteratively reweighed Penalized Least Squares (airPLS) algorithm could effectively remove the fluorescent background from original Raman spectra, and Raman characteristic peaks of 558, 682, 726, 1128, 1210 and 1328 cm-1 could be observed stably in the baseline corrected SERS spectra of all studied bacterial concentrations. The detection limit of SERS could be determined to be as low as 0.73 log CFU/ml for E. coli with the prepared silver colloidal substrate. The quantitative prediction results using the intensity values of characteristic peaks were not good, with the correlation coefficients of calibration set and cross validation set of 0.99 and 0.64, respectively.

  3. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  4. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  5. DDDAS for space applications

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Pham, Khanh D.; Shen, Dan; Chen, Genshe

    2018-05-01

    The dynamic data-driven applications systems (DDDAS) paradigm is meant to inject measurements into the execution model for enhanced systems performance. One area off interest in DDDAS is for space situation awareness (SSA). For SSA, data is collected about the space environment to determine object motions, environments, and model updates. Dynamically coupling between the data and models enhances the capabilities of each system by complementing models with data for system control, execution, and sensor management. The paper overviews some of the recent developments in SSA made possible from DDDAS techniques which are for object detection, resident space object tracking, atmospheric models for enhanced sensing, cyber protection, and information management.

  6. Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders.

    PubMed

    Işil, Çağatay; Yorulmaz, Mustafa; Solmaz, Berkan; Turhan, Adil Burak; Yurdakul, Celalettin; Ünlü, Selim; Ozbay, Ekmel; Koç, Aykut

    2018-04-01

    Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image patches and their corresponding manual truth image patches in order to learn the transformation between them. Following training, the designed network reconstructs denoised and resolution-enhanced image patches for unseen input.

  7. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    PubMed

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  8. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    PubMed

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  9. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  10. DNA origami nanopores: developments, challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Hernández-Ainsa, Silvia; Keyser, Ulrich F.

    2014-11-01

    DNA nanotechnology has enabled the construction of DNA origami nanopores; synthetic nanopores that present improved capabilities for the area of single molecule detection. Their extraordinary versatility makes them a new and powerful tool in nanobiotechnology for a wide range of important applications beyond molecular sensing. In this review, we briefly present the recent developments in this emerging field of research. We discuss the current challenges and possible solutions that would enhance the sensing capabilities of DNA origami nanopores. Finally, we anticipate novel avenues for future research and highlight a range of exciting ideas and applications that could be explored in the near future.

  11. A microRNA detection system based on padlock probes and rolling circle amplification

    PubMed Central

    Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen

    2006-01-01

    The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19–24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA. PMID:16888321

  12. A microRNA detection system based on padlock probes and rolling circle amplification.

    PubMed

    Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen

    2006-09-01

    The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19-24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA.

  13. Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin

    2007-08-01

    The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.

  14. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering.

    PubMed

    Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Das, Gobind; Zaccaria, Remo Proietti; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco; Di Fabrizio, Enzo

    2014-04-16

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Riaz, Farhan; Saeed, Omer; Hassan, Ali; Khan, Muazzam; Alam, Muhammad S.

    2017-05-01

    A fully invariant system helps in resolving difficulties in object detection when camera or object orientation and position are unknown. In this paper, the proposed correlation filter based mechanism provides the capability to suppress noise, clutter and occlusion. Minimum Average Correlation Energy (MACE) filter yields sharp correlation peaks while considering the controlled correlation peak value. Difference of Gaussian (DOG) Wavelet has been added at the preprocessing stage in proposed filter design that facilitates target detection in orientation variant cluttered environment. Logarithmic transformation is combined with a DOG composite minimum average correlation energy filter (WMACE), capable of producing sharp correlation peaks despite any kind of geometric distortion of target object. The proposed filter has shown improved performance over some of the other variant correlation filters which are discussed in the result section.

  16. Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles

    PubMed Central

    Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon

    2014-01-01

    A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867

  17. Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor.

    PubMed

    Wu, Hsin-Yu; Cunningham, Brian T

    2014-05-21

    We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml(-1)) well below typical administered dosages (mg ml(-1)). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.

  18. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay.

    PubMed

    Li, Ming; Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao; Barman, Ishan

    2015-07-01

    Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.

  19. Completing and sustaining IMS network for the CTBT Verification Regime

    NASA Astrophysics Data System (ADS)

    Meral Ozel, N.

    2015-12-01

    The CTBT International Monitoring System is to be comprised of 337 facilities located all over the world for the purpose of detecting and locating nuclear test explosions. Major challenges remain, namely the completion of the network where most of the remaining stations have either environmental, logistical and/or political issues to surmont (89% of the stations have already been built) and the sustainment of a reliable and state-of the-art network covering 4 technologies - seismic, infrasound , hydroacoustic and radionuclide. To have a credible and trustworthy verification system ready for entry into force of the Treaty, the CTBTO is protecting and enhancing its investment of its global network of stations and is providing effective data to the International Data Centre (IDC) and Member States. Regarding the protection of the CTBTO's investment and enhanced sustainment of IMS station operations, the IMS Division is enhancing the capabilities of the monitoring system by applying advances in instrumentation and introducing new software applications that are fit for purpose. Some examples are the development of noble gas laboratory systems to process and analyse subsoil samples, development of a mobile noble gas system for onsite inspection purposes, optimization of Beta Gamma detectors for Xenon detection, assessing and improving the efficiency of wind noise reduction systems for infrasound stations, development and testing of infrasound stations with a self-calibrating capability, and research into the use of modular designs for the hydroacoustic network.

  20. Detection of fresh bruises in apples by structured-illumination reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yuzhen; Li, Richard; Lu, Renfu

    2016-05-01

    Detection of fresh bruises in apples remains a challenging task due to the absence of visual symptoms and significant chemical alterations of fruit tissues during the initial stage after the fruit have been bruised. This paper reports on a new structured-illumination reflectance imaging (SIRI) technique for enhanced detection of fresh bruises in apples. Using a digital light projector engine, sinusoidally-modulated illumination at the spatial frequencies of 50, 100, 150 and 200 cycles/m was generated. A digital camera was then used to capture the reflectance images from `Gala' and `Jonagold' apples, immediately after they had been subjected to two levels of bruising by impact tests. A conventional three-phase demodulation (TPD) scheme was applied to the acquired images for obtaining the planar (direct component or DC) and amplitude (alternating component or AC) images. Bruises were identified in the amplitude images with varying image contrasts, depending on spatial frequency. The bruise visibility was further enhanced through post-processing of the amplitude images. Furthermore, three spiral phase transform (SPT)-based demodulation methods, using single and two images and two phase-shifted images, were proposed for obtaining AC images. Results showed that the demodulation methods greatly enhanced the contrast and spatial resolution of the AC images, making it feasible to detect the fresh bruises that, otherwise, could not be achieved by conventional imaging technique with planar or uniform illumination. The effectiveness of image enhancement, however, varied with spatial frequency. Both 2-image and 2-phase SPT methods achieved the performance similar to that by conventional TPD. SIRI technique has demonstrated the capability of detecting fresh bruises in apples, and it has the potential as a new imaging modality for enhancing food quality and safety detection.

  1. Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Ingram, John M.; Lo, Edsanter

    2008-04-01

    The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.

  2. Utilizing Intrinsic Properties of Polyaniline to Detect Nucleic Acid Hybridization through UV-Enhanced Electrostatic Interaction.

    PubMed

    Sengupta, Partha Pratim; Gloria, Jared N; Amato, Dahlia N; Amato, Douglas V; Patton, Derek L; Murali, Beddhu; Flynt, Alex S

    2015-10-12

    Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.

  3. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    PubMed

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  4. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface

    PubMed Central

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states. PMID:26046669

  5. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  6. Autonomous collection of dynamically-cued multi-sensor imagery

    NASA Astrophysics Data System (ADS)

    Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott

    2011-05-01

    The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.

  7. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  8. Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2012-02-01

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.

  9. Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.

    NASA Technical Reports Server (NTRS)

    Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.

    1973-01-01

    Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.

  10. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  11. Tackling the Challenge of the Aging Society: Detecting and Preventing Cognitive and Physical Decline through Games and Consumer Technologies

    PubMed Central

    An, Ji-Young; Heshmati, Almas

    2017-01-01

    Objectives This study seeks to review some of the approaches employed to address health and well-being issues in the elderly population. Methods This article reviews and analyses a range of projects and approaches designed for the elderly population and aimed at preserving and/or enhancing physical and cognitive capabilities in later life. Results Various intervention measures have been developed across the globe to preserve and/or enhance physical and cognitive capabilities of the elderly population. A selection of these measures is described in this article. Conclusions Approaches which combine games psychology and mechanics with enabling technologies designed to engage, influence and motivate elderly people can encourage healthy active aging lifestyles. Healthy active aging helps to realise a double dividend of reduced healthcare costs and an improved quality of life for the elder citizen. PMID:28523206

  12. Systems-Level Synthetic Biology for Advanced Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less

  13. FELIN: tailored optronics and systems solutions for dismounted combat

    NASA Astrophysics Data System (ADS)

    Milcent, A. M.

    2009-05-01

    The FELIN French modernization program for dismounted combat provides the Armies with info-centric systems which dramatically enhance the performances of the soldier and the platoon. Sagem now has available a portfolio of various equipments, providing C4I, data and voice digital communication, and enhanced vision for day and night operations, through compact high performance electro-optics. The FELIN system provides the infantryman with a high-tech integrated and modular system which increases significantly their detection, recognition, identification capabilities, their situation awareness and information sharing, and this in any dismounted close combat situation. Among the key technologies used in this system, infrared and intensified vision provide a significant improvement in capability, observation performance and protection of the ground soldiers. This paper presents in detail the developed equipments, with an emphasis on lessons learned from the technical and operational feedback from dismounted close combat field tests.

  14. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  15. Market Assessment of Forward-Looking Turbulence Sensing Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Sousa-Poza, Andres

    2001-01-01

    In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.

  16. Strengthening global health security capacity--Vietnam demonstration project, 2013.

    PubMed

    Tran, Phu Dac; Vu, Long Ngoc; Nguyen, Hien Tran; Phan, Lan Trong; Lowe, Wayne; McConnell, Michelle S; Iademarco, Michael F; Partridge, Jeffrey M; Kile, James C; Do, Trang; Nadol, Patrick J; Bui, Hien; Vu, Diep; Bond, Kyle; Nelson, David B; Anderson, Lauren; Hunt, Kenneth V; Smith, Nicole; Giannone, Paul; Klena, John; Beauvais, Denise; Becknell, Kristi; Tappero, Jordan W; Dowell, Scott F; Rzeszotarski, Peter; Chu, May; Kinkade, Carl

    2014-01-31

    Over the past decade, Vietnam has successfully responded to global health security (GHS) challenges, including domestic elimination of severe acute respiratory syndrome (SARS) and rapid public health responses to human infections with influenza A(H5N1) virus. However, new threats such as Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A(H7N9) present continued challenges, reinforcing the need to improve the global capacity to prevent, detect, and respond to public health threats. In June 2012, Vietnam, along with many other nations, obtained a 2-year extension for meeting core surveillance and response requirements of the 2005 International Health Regulations (IHR). During March-September 2013, CDC and the Vietnamese Ministry of Health (MoH) collaborated on a GHS demonstration project to improve public health emergency detection and response capacity. The project aimed to demonstrate, in a short period, that enhancements to Vietnam's health system in surveillance and early detection of and response to diseases and outbreaks could contribute to meeting the IHR core capacities, consistent with the Asia Pacific Strategy for Emerging Diseases. Work focused on enhancements to three interrelated priority areas and included achievements in 1) establishing an emergency operations center (EOC) at the General Department of Preventive Medicine with training of personnel for public health emergency management; 2) improving the nationwide laboratory system, including enhanced testing capability for several priority pathogens (i.e., those in Vietnam most likely to contribute to public health emergencies of international concern); and 3) creating an emergency response information systems platform, including a demonstration of real-time reporting capability. Lessons learned included awareness that integrated functions within the health system for GHS require careful planning, stakeholder buy-in, and intradepartmental and interdepartmental coordination and communication.

  17. A Proposed Defect Tracking Model for Classifying the Inserted Defect Reports to Enhance Software Quality Control

    PubMed Central

    Khedr, Ayman E.; Sayed, Mostafa

    2013-01-01

    CONFLICT OF INTEREST: NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality. PMID:24039334

  18. Health management system for rocket engines

    NASA Technical Reports Server (NTRS)

    Nemeth, Edward

    1990-01-01

    The functional framework of a failure detection algorithm for the Space Shuttle Main Engine (SSME) is developed. The basic algorithm is based only on existing SSME measurements. Supplemental measurements, expected to enhance failure detection effectiveness, are identified. To support the algorithm development, a figure of merit is defined to estimate the likelihood of SSME criticality 1 failure modes and the failure modes are ranked in order of likelihood of occurrence. Nine classes of failure detection strategies are evaluated and promising features are extracted as the basis for the failure detection algorithm. The failure detection algorithm provides early warning capabilities for a wide variety of SSME failure modes. Preliminary algorithm evaluation, using data from three SSME failures representing three different failure types, demonstrated indications of imminent catastrophic failure well in advance of redline cutoff in all three cases.

  19. An integrated knowledge system for the Space Shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn

    1993-01-01

    A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.

  20. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  1. Bifurcation-enhanced ultrahigh sensitivity of a buckled cantilever

    PubMed Central

    An, Sangmin; Kim, Bongsu; Kwon, Soyoung; Moon, Geol; Lee, Manhee

    2018-01-01

    Buckling, first introduced by Euler in 1744 [Euler L (1744) Opera Omnia I 24:231], a sudden mechanical sideways deflection of a structural member under compressive stress, represents a bifurcation in the solution to the equations of static equilibrium. Although it has been investigated in diverse research areas, such a common nonlinear phenomenon may be useful to devise a unique mechanical sensor that addresses the still-challenging features, such as the enhanced sensitivity and polarization-dependent detection capability. We demonstrate the bifurcation-enhanced sensitive measurement of mechanical vibrations using the nonlinear buckled cantilever tip in ambient conditions. The cantilever, initially buckled with its tip pinned, flips its buckling near the bifurcation point (BP), where the buckled tip becomes softened. The enhanced mechanical sensitivity results from the increasing fluctuations, unlike the typical linear sensors, which facilitate the noise-induced buckling-to-flipping transition of the softened cantilever. This allows the in situ continuous or repeated single-shot detection of the surface acoustic waves of different polarizations without any noticeable wear of the tip. We obtained the sensitivity above 106 V(m/s)−1, a 1,000-fold enhancement over the conventional seismometers. Our results lead to development of mechanical sensors of high sensitivity, reproducibility, and durability, which may be applied to detect, e.g., the directional surface waves on the laboratory as well as the geological scale. PMID:29511105

  2. Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin.

    PubMed

    Zhang, Liying; Jin, Yang; Mao, Hui; Zheng, Lei; Zhao, Jiawei; Peng, Yan; Du, Shuhu; Zhang, Zhongping

    2014-08-15

    Trace penicilloic acid allergen frequently leads to various fatal immune responses to many patients, but it is still a challenge to directly discriminate and detect its residue in penicillin by a chemosensing way. Here, we report that silver-coated gold nanoparticles (Au@Ag NPs) exhibit a structure-selective hot-spot Raman enhancement capability for direct identification and detection of trace penicilloic acid in penicillin. It has been demonstrated that penicilloic acid can very easily link Au@Ag NPs together by its two carboxyl groups, locating itself spontaneously at the interparticle of Au@Ag NPs to form strong Raman hot-spot. At the critical concentration inducing the nanoparticle aggregation, Raman-enhanced effect of penicilloic acid is ~60,000 folds higher than that of penicillin. In particular, the selective Raman enhancement to the two carboxyl groups makes the peak of carboxyl group at C6 of penicilloic acid appear as a new Raman signal due to the opening of β-lactam ring of penicillin. The surface-enhanced Raman scattering (SERS) nanoparticle sensor reaches a sensitive limit lower than the prescribed 1.0‰ penicilloic acid residue in penicillin. The novel strategy to examine allergen is more rapid, convenient and inexpensive than the conventional separation-based assay methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ground Wave Emergency Network Final Operational Capability. Environmental Assessment for Northeastern Nevada Relay Node. Site No. RN 8W922NV

    DTIC Science & Technology

    1993-04-16

    enhancing system availability and ensuring that vital communications will be maintained. 1-1 c~o~ - MCDRMIT. NEADA.OREGN & DAHO 197 Ný 1-2, 2.0 ALTERNATIVES...detected, an explosion inside the shelter would be extremely unlikely due 2-7 to the high flash point of diesel fuel. If a tank at the GWEN station

  4. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  5. The Use of NanoTrap Particles as a Sample Enrichment Method to Enhance the Detection of Rift Valley Fever Virus

    PubMed Central

    Shafagati, Nazly; Narayanan, Aarthi; Baer, Alan; Fite, Katherine; Pinkham, Chelsea; Bailey, Charles; Kashanchi, Fatah; Lepene, Benjamin; Kehn-Hall, Kylene

    2013-01-01

    Background Rift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses. Results Screening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics. Conclusion This study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV. PMID:23861988

  6. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an outline of how these techniques can be used to superior detection of radioactive and fissile materials.

  7. The use of surface-enhanced Raman scattering for detecting molecular evidence of life in rocks, sediments, and sedimentary deposits.

    PubMed

    Bowden, Stephen A; Wilson, Rab; Cooper, Jonathan M; Parnell, John

    2010-01-01

    Raman spectroscopy is a versatile analytical technique capable of characterizing the composition of both inorganic and organic materials. Consequently, it is frequently suggested as a payload on many planetary landers. Only approximately 1 in every 10(6) photons are Raman scattered; therefore, the detection of trace quantities of an analyte dispersed in a sample matrix can be much harder to achieve. To overcome this, surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) both provide greatly enhanced signals (enhancements between 10(5) and 10(9)) through the analyte's interaction with the locally generated surface plasmons, which occur at a "roughened" or nanostructured metallic surface (e.g., Cu, Au, and Ag). Both SERS and SERRS may therefore provide a viable technique for trace analysis of samples. In this paper, we describe the development of SERS assays for analyzing trace amounts of compounds present in the solvent extracts of sedimentary deposits. These assays were used to detect biological pigments present in an Arctic microoasis (a small locale of elevated biological productivity) and its detrital regolith, characterize the pigmentation of microbial mats around hydrothermal springs, and detect fossil organic matter in hydrothermal deposits. These field study examples demonstrate that SERS technology is sufficiently mature to be applied to many astrobiological analog studies on Earth. Many current and proposed imaging systems intended for remote deployment already posses the instrumental components needed for SERS. The addition of wet chemistry sample processing facilities to these instruments could yield field-deployable analytical instruments with a broadened analytical window for detecting organic compounds with a biological or geological origin.

  8. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J; Yuldashev, B; Labov, S

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoringmore » and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.« less

  9. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    PubMed

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  10. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers

    PubMed Central

    Smolsky, Joseph; Kaur, Sukhwinder; Hayashi, Chihiro; Batra, Surinder K.; Krasnoslobodtsev, Alexey V.

    2017-01-01

    Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS. PMID:28085088

  11. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    NASA Astrophysics Data System (ADS)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-04-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.

  12. Laser Spot Center Detection and Comparison Test

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong

    2018-04-01

    High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.

  13. A simulation evaluation of the engine monitoring and control system display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1990-01-01

    The Engine Monitoring and Control System (E-MACS) display is a new concept for an engine instrument display, the purpose of which is to provide an enhanced means for a pilot to control and monitor aircraft engine performance. It provides graphically-presented information about performance capabilities, current performance, and engine component or subsystem operational conditions relative to nominal conditions. The concept was evaluated by sixteen pilot-subjects against a traditional, state-of-the-art electronic engine display format. The results of this evaluation showed a substantial pilot preference for the E-MACS display relative to the traditional display. The results of the failure detection portion of the evaluation showed a 100 percent detection rate for the E-MACS display relative to a 57 percent rate for the traditional display. From these results, it is concluded that by providing this type of information in the cockpit, a reduction in pilot workload and an enhanced ability for detecting degraded or off-nominal conditions is probable, thus leading to an increase in operational safety.

  14. Detection and measurement of the intracellular calcium variation in follicular cells.

    PubMed

    Herrera-Navarro, Ana M; Terol-Villalobos, Iván R; Jiménez-Hernández, Hugo; Peregrina-Barreto, Hayde; Gonzalez-Barboza, José-Joel

    2014-01-01

    This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i) the detection of the cell's nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca(2+). Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.

  15. Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells

    PubMed Central

    Herrera-Navarro, Ana M.; Terol-Villalobos, Iván R.; Jiménez-Hernández, Hugo; Peregrina-Barreto, Hayde; Gonzalez-Barboza, José-Joel

    2014-01-01

    This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i) the detection of the cell's nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal. PMID:25342958

  16. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    PubMed

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-11-01

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.

    2017-01-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065

  18. Recent advances of mid-infrared compact, field deployable sensors: principles and applications

    NASA Astrophysics Data System (ADS)

    Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek

    2016-04-01

    The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor system using a custom quartz tuning fork (QTF) with a new geometry and a QCL emitting at 2.913 THz [4]. Furthermore, two new approaches aimed to achieve enhanced detection sensitivities with QEPAS based sensing can be realized. The first method will make use of a compact optical power buildup cavity, which achieves significantly lower minimum detectable trace gas concentration levels of < 10 pptv. The second approach will use custom fabricated QTFs capable of improved detection sensitivity. Acknowledgements F.K. Tittel acknowledges support by the National Science Foundation (NSF) ERC MIRTHE award, the Robert Welch Foundation (Grant C-0586) and DOE ARPA-E Monitor Proram. L. Dong acknowledges support by NSF-China (Grant #s. 61275213, 61108030), J. Wojtas acknowledges support by The National Centre for Research and Development, Poland (project ID: 179616). References [1] L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin and F. K. Tittel;" Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser", Appl. Phys Lett. 108, 011106 (2016). [2] L. Dong, Y. Yu, C. Li, S. So, and F.K. Tittel, "Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass cell" Optics Express; 23, 19821-19830 (2015). [3] V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. Vitiello, and F.K. Tittel, "THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection", Opt. Exp. 23, 7574-7582 (2015). [4] A. Sampaolo, P. Patimisco, L. Dong , A. Geras, S, G. Scamarcio' T. Starecki, F.K Tittel, V. Spagnolo; "Quartz-Enhanced Photoacoustic Spectroscopy exploiting tuning fork overtone modes", Appl. Phys Lett. 107, 231102 (2015).

  19. Geographic applications of ERTS-1 data to landscape change

    NASA Technical Reports Server (NTRS)

    Rehder, J. B.

    1973-01-01

    The analysis of landscape change requires large area coverage on a periodic basis in order to analyze aggregate changes over an extended period of time. To date, only the ERTS program can provide this capability. Three avenues of experimentation and analysis are being used in the investigation: (1) a multi-scale sampling procedure utilizing aircraft imagery for ground truth and control; (2) a densitometric and computer analytical experiment for the analysis of gray tone signatures, comparisons and ultimately for landscape change detection and monitoring; and (3) an ERTS image enhancement procedure for the detection and analysis of photomorphic regions.

  20. Printed strain sensors for early damage detection in engineering structures

    NASA Astrophysics Data System (ADS)

    Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2018-05-01

    In this paper, we demonstrate the analysis of strain measurements recorded using a screen-printed sensors array bonded to a metal plate and subjected to high strains. The analysis was intended to evaluate the capabilities of the printed strain sensors to detect abnormal strain distribution before actual defects (cracks) in the analyzed structures appear. The results demonstrate that the developed device can accurately localize the enhanced strains at the very early stage of crack formation. The promising performance and low fabrication cost confirm the potential suitability of the printed strain sensors for applications within the framework of structural health monitoring (SHM).

  1. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).

    PubMed

    Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi

    2017-11-01

    To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  3. A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement.

    PubMed

    Wei, Xiaotong; Duan, Xiaolei; Zhou, Xiaoyan; Wu, Jiangling; Xu, Hongbing; Min, Xun; Ding, Shijia

    2018-06-07

    Herein, a dual channel surface plasmon resonance imaging (SPRi) biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on strand displacement amplification (SDA) and DNA-functionalized AuNP signal enhancement. In the presence of target miRNAs (miR-21 or miR-192), the miRNAs could specifically hybridize with the corresponding hairpin probes (H) and initiate the SDA, resulting in massive triggers. Subsequently, the two parts of the released triggers could hybridize with capture probes (CP) and DNA-functionalized AuNPs, assembling DNA sandwiches with great mass on the chip surface. A significantly amplified SPR signal readout was achieved. This established biosensing method was capable of simultaneously detecting multiplex miRNAs with a limit of detection down to 0.15 pM for miR-21 and 0.22 pM for miR-192. This method exhibited good specificity and acceptable reproducibility. Moreover, the developed method was applied to the determination of target miRNAs in a complex matrix. Thus, this developed SPRi biosensing method may present a potential alternative tool for miRNA detection in biomedical research and clinical diagnosis.

  4. Enhancement of Localized Surface Plasmon Resonance polymer based biosensor chips using well-defined glycopolymers for lectin detection.

    PubMed

    Jin, Yan; Wong, Kok Hou; Granville, Anthony Michael

    2016-01-15

    Poly(methyl methacrylate) polymer based Localized Surface Plasmon Resonance biosensor chips were successfully fabricated using glycopolymer brushes carrying glucose moieties for the detection of concanavalin A. Poly(pentafluorostyrene), with pre-determined polymer chain lengths, were synthesized via a reversible addition-fragmentation chain transfer polymerization technique. The synthesized poly(pentafluorostyrene), was subsequently converted into glycopolymers via a para-fluoro-thiol "click" reaction and grafted onto the surface of sensor chips. The "glycocluster effect" induced by pendent carbohydrate moieties enabled a stronger affinity for concanavalin A binding, which resulted in a dramatic expansion of the sensors' response range. It was discovered that the longer polymer brushes did not guarantee additional enhancements for the sensor chips. Instead, they could lead to higher detection limits. In this study, the limit of detection for the sensor chips was discovered to be 1.3nmolL(-1) with a saturated response at 1054.2nmolL(-1). In addition to the superior performance, the capabilities of the reported sensor chips can be easily manipulated to detect a diverse range of analytes by "clicking" various sensing elements onto the polymer brushes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The evolving role of new imaging methods in breast screening.

    PubMed

    Houssami, Nehmat; Ciatto, Stefano

    2011-09-01

    The potential to avert breast cancer deaths through screening means that efforts continue to identify methods which may enhance early detection. While the role of most new imaging technologies remains in adjunct screening or in the work-up of mammography-detected abnormalities, some of the new breast imaging tests (such as MRI) have roles in screening groups of women defined by increased cancer risk. This paper highlights the evidence and the current role of new breast imaging technologies in screening, focusing on those that have broader application in population screening, including digital mammography, breast ultrasound in women with dense breasts, and computer-aided detection. It highlights that evidence on new imaging in screening comes mostly from non-randomised studies that have quantified test detection capability as adjunct to mammography, or have compared measures of screening performance for new technologies with that of conventional mammography. Two RCTs have provided high-quality evidence on the equivalence of digital and conventional mammography and on outcomes of screen-reading complemented by CAD. Many of these imaging technologies enhance cancer detection but also increase recall and false positives in screening. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging.

    PubMed

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.

  7. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  8. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  9. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    PubMed

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  11. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors.

    PubMed

    Allec, N; Abbaszadeh, S; Karim, K S

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml(-1) in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  12. Polymeric nanoparticles for optical sensing.

    PubMed

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  13. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  14. New method for detection of gastric cancer by hyperspectral imaging: a pilot study

    NASA Astrophysics Data System (ADS)

    Kiyotoki, Shu; Nishikawa, Jun; Okamoto, Takeshi; Hamabe, Kouichi; Saito, Mari; Goto, Atsushi; Fujita, Yusuke; Hamamoto, Yoshihiko; Takeuchi, Yusuke; Satori, Shin; Sakaida, Isao

    2013-02-01

    We developed a new, easy, and objective method to detect gastric cancer using hyperspectral imaging (HSI) technology combining spectroscopy and imaging A total of 16 gastroduodenal tumors removed by endoscopic resection or surgery from 14 patients at Yamaguchi University Hospital, Japan, were recorded using a hyperspectral camera (HSC) equipped with HSI technology Corrected spectral reflectance was obtained from 10 samples of normal mucosa and 10 samples of tumors for each case The 16 cases were divided into eight training cases (160 training samples) and eight test cases (160 test samples) We established a diagnostic algorithm with training samples and evaluated it with test samples Diagnostic capability of the algorithm for each tumor was validated, and enhancement of tumors by image processing using the HSC was evaluated The diagnostic algorithm used the 726-nm wavelength, with a cutoff point established from training samples The sensitivity, specificity, and accuracy rates of the algorithm's diagnostic capability in the test samples were 78.8% (63/80), 92.5% (74/80), and 85.6% (137/160), respectively Tumors in HSC images of 13 (81.3%) cases were well enhanced by image processing Differences in spectral reflectance between tumors and normal mucosa suggested that tumors can be clearly distinguished from background mucosa with HSI technology.

  15. Fabrication and testing of a standoff trace explosives detection system

    NASA Astrophysics Data System (ADS)

    Waterbury, Robert; Rose, Jeremy; Vunck, Darius; Blank, Thomas; Pohl, Ken; Ford, Alan; McVay, Troy; Dottery, Ed

    2011-05-01

    In order to stop the transportation of materials used for IED manufacture, a standoff checkpoint explosives detection system (CPEDS) has recently been fabricated. The system incorporates multi-wavelength Raman spectroscopy and laser induced breakdown spectroscopy (LIBS) modalities with a LIBS enhancement technique called TEPS to be added later into a single unit for trace detection of explosives at military checkpoints. Newly developed spectrometers and other required sensors all integrated with a custom graphical user interface for producing simplified, real-time detection results are also included in the system. All equipment is housed in a military ruggedized shelter for potential deployment intheater for signature collection. Laboratory and performance data, as well as the construction of the CPEDS system and its potential deployment capabilities, will be presented in the current work.

  16. Protocol for Future Amino Acid Analyses of Samples Returned by the Stardust Mission

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Doty, J. H., III; Matrajt, G.; Dworkin, J. P.

    2006-01-01

    We have demonstrated that LC-ToF-MS coupled with UV fluorescence detection is a powerful tool for the detection of amino acids in meteorite extracts. Using this new analytical technique we were able to identify the extraterrestrial amino acid AIB extracted from fifteen 20 micron sized Murchison meteorite grains. We found that the amino acid contamination levels in Stardust aerogels was much lower than the levels observed in the Murchison meteorite. In addition, the alpha-dialkyl amino acids AIB and isovaline which are the most abundant amino acids in Murchison were not detected in the aerogel above blank levels. We are currently integrating LIF detection capability to our existing nanoflow LC-ToF-MS for enhanced sensitivity required for the analysis of amino acids in Stardust samples.

  17. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2017-08-01

    Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sensitive Detection of Protein and miRNA Cancer Biomarkers using Silicon-Based Photonic Crystals and A Resonance Coupling Laser Scanning Platform

    PubMed Central

    George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T.

    2013-01-01

    Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels (“enhanced excitation”) and the spatially biased funneling of fluorophore emissions through coupling to PC resonances (“enhanced extraction”), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couples fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 minute. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-α and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM. PMID:23963502

  19. Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Kim, G.; Om, A. S.; Mun, J. H.

    2007-03-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency was used for the detection experiments. The biosensor was able to detect 106 CFU/mL in phosphate buffered saline (PBS) with a detection time of 3 minutes. Additional use of nanoparticles significantly enhanced the detection performance. By using the nanoparticles the biosensor could detect 104 CFU/mL of Salmonella enteritidis in PBS and 105 CFU/mL of cells in milk.

  20. Overview of IMS infrasound station and engineering projects

    NASA Astrophysics Data System (ADS)

    Marty, J.; Doury, B.; Kramer, A.; Martysevich, P.

    2015-12-01

    The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) has a continuous interest in enhancing its capability in acoustic source detection, localization and characterization. The infrasound component of the International Monitoring System (IMS) constitutes the only worldwide ground-based infrasound network. It consists of sixty stations, among which forty-eight are already certified and continuously transmit data to the International Data Centre (IDC) in Vienna, Austria. Each infrasound station is composed of an array of infrasound sensors capable of measuring micro-pressure changes produced at ground level by infrasonic waves. The characteristics of infrasonic waves are computed in near real-time by IDC automatic detection software and are used as an input to IDC source categorization and localization algorithms. The PTS is continuously working towards the completion and sustainment of the IMS infrasound network. The objective of this presentation is to review the main activities performed in the IMS infrasound network over the last five years. This includes construction, installation, certification, major upgrade and revalidation activities. Major technology development projects to improve the reliability and robustness of IMS infrasound stations as well as their compliance with IMS Operational Manual requirements will also be presented. This includes advances in array geometry, wind noise reduction, system calibration, meteorological data as well as power and communication infrastructures. Finally the impact of all these changes on the overall detection capability of the IMS infrasound network will be highlighted.

  1. Smart bricks for strain sensing and crack detection in masonry structures

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo

    2018-01-01

    The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.

  2. On the enhanced detectability of GPS anomalous behavior with relative entropy

    NASA Astrophysics Data System (ADS)

    Cho, Jeongho

    2016-10-01

    A standard receiver autonomous integrity monitoring (RAIM) technique for the global positioning system (GPS) has been dedicated to provide an integrity monitoring capability for safety-critical GPS applications, such as in civil aviation for the en-route (ER) through non-precision approach (NPA) or lateral navigation (LNAV). The performance of the existing RAIM method, however, may not meet more stringent aviation requirements for availability and integrity during the precision approach and landing phases of flight due to insufficient observables and/or untimely warning to the user beyond a specified time-to-alert in the event of a significant GPS failure. This has led to an enhanced RAIM architecture ensuring stricter integrity requirement by greatly decreasing the detection time when a satellite failure or a measurement error has occurred. We thus attempted to devise a user integrity monitor which is capable of identifying the GPS failure more rapidly than a standard RAIM scheme by incorporating the RAIM with the relative entropy, which is a likelihood ratio approach to assess the inconsistence between two data streams, quite different from a Euclidean distance. In addition, the delay-coordinate embedding technique needs to be considered and preprocessed to associate the discriminant measure obtained from the RAIM with the relative entropy in the new RAIM design. In simulation results, we demonstrate that the proposed user integrity monitor outperforms the standard RAIM with a higher level of detection rate of anomalies which could be hazardous to the users in the approach or landing phase and is a very promising alternative for the detection of deviations in GPS signal. The comparison also shows that it enables to catch even small anomalous gradients more rapidly than a typical user integrity monitor.

  3. Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.

    2011-06-01

    Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.

  4. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    NASA Astrophysics Data System (ADS)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  5. A digital flight control system verification laboratory

    NASA Technical Reports Server (NTRS)

    De Feo, P.; Saib, S.

    1982-01-01

    A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.

  6. Studying Cold Nuclear Matter with the MPC-EX of PHENIX

    NASA Astrophysics Data System (ADS)

    Grau, Nathan; Phenix Collaboration

    2017-09-01

    Highly asymmetric collision systems, such as d+Au, provide a unique environment to study cold nuclear matter. Potential measurements range from pinning down the modification of the nuclear wave function, i.e. saturation, to studying final state interactions, i.e. energy loss. The PHENIX experiment has enhanced the muon piston calorimeter (MPC) with a silicon-tungsten preshower, the MPC-EX. With its fine segmentation the MPC-EX extends the photon detection capability at 3 < | η | < 3.8. In this talk we review the current status of the detector, its calibration, and its identification capabilities using the 2016 d+Au dataset. We also discuss the specific physics observables the MPC-EX can measure.

  7. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  8. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  9. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  10. Infrared point sensors for homeland defense applications

    NASA Astrophysics Data System (ADS)

    Thomas, Ross C.; Carter, Michael T.; Homrighausen, Craig L.

    2004-03-01

    We report recent progress toward the development of infrared point sensors for the detection of chemical warfare agents and explosive related chemicals, which pose a significant threat to both health and environment. Technical objectives have focused on the development of polymer sorbents to enhance the infrared response of these hazardous organic compounds. For example, infrared point sensors which part-per-billion detection limits have been developed that rapidlypartition chemical warfare agents and explosive related chemicals into polymer thin films with desirable chemical and physical properties. These chemical sensors demonstrate novel routes to reversible sensing of hazardous organic compounds. The development of small, low-power, sensitive, and selective instruments employing these chemical sensors would enhance the capabilities of federal, state, and local emergency response to incidents involving chemical terrorism. Specific applications include chemical defense systems for military personnel and homeland defense, environmental monitors for remediation and demilitarization, and point source detectors for emergency and maintenance response teams.

  11. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes

    PubMed Central

    Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio

    2015-01-01

    Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499

  12. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  13. State-of-the-art Instruments for Detecting Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.

    2003-01-01

    In the coming decades, state-of-the-art spacecraft-based instruments that can detect key components associated with life as we know it on Earth will directly search for extinct or extant extraterrestrial life in our solar system. Advances in our analytical and detection capabilities, especially those based on microscale technologies, will be important in enhancing the abilities of these instruments. Remote sensing investigations of the atmospheres of extrasolar planets could provide evidence of photosynthetic-based life outside our solar system, although less advanced life will remain undetectable by these methods. Finding evidence of extraterrestrial life would have profound consequences both with respect to our understanding of chemical and biological evolution, and whether the biochemistry on Earth is unique in the universe.

  14. Electromagnetic geophysical tunnel detection experiments---San Xavier Mine Facility, Tucson, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayland, J.R.; Lee, D.O.; Shope, S.M.

    1991-02-01

    The objective of this work is to develop a general method for remotely sensing the presence of tunneling activities using one or more boreholes and a combination of surface sources. New techniques for tunnel detection and location of tunnels containing no metal and of tunnels containing only a small diameter wire have been experimentally demonstrated. A downhole magnetic dipole and surface loop sources were used as the current sources. The presence of a tunnel causes a subsurface scattering of the field components created by the source. Ratioing of the measured responses enhanced the detection and location capability over that producedmore » by each of the sources individually. 4 refs., 18 figs., 2 tabs.« less

  15. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  16. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica.

    PubMed

    Squire, Kenneth; Kong, Xianming; LeDuff, Paul; Rorrer, Gregory L; Wang, Alan X

    2018-05-16

    Fluorescence biosensing is one of the most established biosensing methods, particularly fluorescence spectroscopy and microscopy. These are two highly sensitive techniques but require high grade electronics and optics to achieve the desired sensitivity. Efforts have been made to implement these methods using consumer grade electronics and simple optical setups for applications such as point-of-care diagnostics, but the sensitivity inherently suffers. Sensing substrates, capable of enhancing fluorescence are thus needed to achieve high sensitivity for such applications. In this paper, we demonstrate a photonic crystal-enhanced fluorescence immunoassay biosensor using diatom biosilica, which consists of silica frustules with sub-100 nm periodic pores. Utilizing the enhanced local optical field, the Purcell effect and increased surface area from the diatom photonic crystals, we create ultrasensitive immunoassay biosensors that can significantly enhance fluorescence spectroscopy as well as fluorescence imaging. Using standard antibody-antigen-labeled antibody immunoassay protocol, we experimentally achieved 100× and 10× better detection limit with fluorescence spectroscopy and fluorescence imaging respectively. The limit of detection of the mouse IgG goes down to 10 -16 M (14 fg/mL) and 10 -15 M (140 fg/mL) for the two respective detection modalities, virtually sensing a single mouse IgG molecule on each diatom frustule. The effectively enhanced fluorescence imaging in conjunction with the simple hot-spot counting analysis method used in this paper proves the great potential of diatom fluorescence immunoassay for point-of-care biosensing. Scanning electron microscope image of biosilica diatom frustule that enables significant enhancement of fluorescence spectroscopy and fluorescence image. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  18. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  19. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  20. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  1. Surface-Enhanced Raman Optical Data Storage system

    DOEpatents

    Vo-Dinh, T.

    1994-06-28

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  2. Surface-enhanced raman optical data storage system

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  3. Telemetry-Enhancing Scripts

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.

    2009-01-01

    Scripts Providing a Cool Kit of Telemetry Enhancing Tools (SPACKLE) is a set of software tools that fill gaps in capabilities of other software used in processing downlinked data in the Mars Exploration Rovers (MER) flight and test-bed operations. SPACKLE tools have helped to accelerate the automatic processing and interpretation of MER mission data, enabling non-experts to understand and/or use MER query and data product command simulation software tools more effectively. SPACKLE has greatly accelerated some operations and provides new capabilities. The tools of SPACKLE are written, variously, in Perl or the C or C++ language. They perform a variety of search and shortcut functions that include the following: Generating text-only, Event Report-annotated, and Web-enhanced views of command sequences; Labeling integer enumerations with their symbolic meanings in text messages and engineering channels; Systematic detecting of corruption within data products; Generating text-only displays of data-product catalogs including downlink status; Validating and labeling of commands related to data products; Performing of convenient searches of detailed engineering data spanning multiple Martian solar days; Generating tables of initial conditions pertaining to engineering, health, and accountability data; Simplified construction and simulation of command sequences; and Fast time format conversions and sorting.

  4. Detection of carbon monoxide pollution from cities and wildfires on regional and urban scales: the benefit of CO column retrievals from SCIAMACHY 2.3 µm measurements under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen

    2018-05-01

    In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.

  5. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase.

    PubMed

    Vukomanovic, Dragic; Rahman, Mona N; Jia, Zongchao; Nakatsu, Kanji

    2017-01-01

    Carbon monoxide (CO) formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2). Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR); CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR) were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide) detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  6. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay† †Electronic supplementary information (ESI) available: Fig. S1–S7 and Table S1. See DOI: 10.1039/c5sc01054c Click here for additional data file.

    PubMed Central

    Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao

    2015-01-01

    Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test. PMID:26405519

  7. Microcontroller-based real-time QRS detection.

    PubMed

    Sun, Y; Suppappola, S; Wrublewski, T A

    1992-01-01

    The authors describe the design of a system for real-time detection of QRS complexes in the electrocardiogram based on a single-chip microcontroller (Motorola 68HC811). A systematic analysis of the instrumentation requirements for QRS detection and of the various design techniques is also given. Detection algorithms using different nonlinear transforms for the enhancement of QRS complexes are evaluated by using the ECG database of the American Heart Association. The results show that the nonlinear transform involving multiplication of three adjacent, sign-consistent differences in the time domain gives a good performance and a quick response. When implemented with an appropriate sampling rate, this algorithm is also capable of rejecting pacemaker spikes. The eight-bit single-chip microcontroller provides sufficient throughput and shows a satisfactory performance. Implementation of multiple detection algorithms in the same system improves flexibility and reliability. The low chip count in the design also favors maintainability and cost-effectiveness.

  8. Fringe projection application for surface variation analysis on helical shaped silicon breast

    NASA Astrophysics Data System (ADS)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  9. SERS detection and targeted ablation of lymphoma cells using functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Qian; Cao, Fei; Feng, Chao; Zhao, Yan; Wang, Xiuhong

    2016-03-01

    Lymphoma is a heterogeneous group of malignancies of the lymphoid tissue, and is prevalent worldwide affecting both children and adults with a high mortality rate. There is in dire need of accurate and noninvasive approaches for early detection of the disease. Herein, we report a facile way to fabricate silver nanoparticle based nanoprobe by incorporating the corner-stone immunotherapeutic drug Rituxan for simultaneous detection and ablation of lymphoma cells in vitro. The fabricated nanoprobe can detect CD20 positive single lymphoma cell by surface enhanced Raman scattering technique with high specificity. The engineered nanoprobe retains the same antibody property as intact drug via Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) analysis. The nanoprobe efficiently eradicates lymphoma cells in vitro. By integrating the advantages of sensitive SERS detection with targeted ablation capabilities of immunotherapeutic drug through site specificity, this nanoprobe can be applied as outstanding tools in living imaging, cancer diagnosis and treatment.

  10. An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin.

    PubMed

    Vergara, Daniele; Bianco, Monica; Pagano, Rosanna; Priore, Paola; Lunetti, Paola; Guerra, Flora; Bettini, Simona; Carallo, Sonia; Zizzari, Alessandra; Pitotti, Elena; Giotta, Livia; Capobianco, Loredana; Bucci, Cecilia; Valli, Ludovico; Maffia, Michele; Arima, Valentina; Gaballo, Antonio

    2018-06-11

    Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred μl of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Enhanced Microbial Detection Capabilities by a Rapid Portable Instrument

    NASA Technical Reports Server (NTRS)

    Morris, Heather; Monaco, Lisa; Wainwright, Norm; Steele, Andrew; Damon, Michael; Schenk, Alison; Stimpson, Eric; Maule, Jake; Effinger, Michael

    2010-01-01

    We present data describing a progression of continuing technology development - from expanding the detection capabilities of the current PTS unit to re-outfitting the instrument with a protein microarray increasing the number of detectable compounds. To illustrate the adaptability of the cartridge format, on-orbit operations data from the ISS demonstrate the detection of the fungal cell wall compound beta-glucan using applicable LOCAD-PTS cartridges. LOCAD-PTS is a handheld device consisting of a spectrophotometer, an onboard pumping mechanism, and data storage capabilities. A suite of interchangeable cartridges lined with four distinct capillaries allow a hydrated sample to mix with necessary reagents in the channels before being pumped to the optical well for spectrophotometric analysis. The reagents housed in one type of cartridge trigger a reaction based on the Limulus Amebocyte Lysate (LAL) assay, which results in the release of paranitroaniline dye. The dye is measured using a 395 nm filter. The LAL assay detects the Gram-negative bacterial cell wall molecule, endotoxin or lipopolysaccharide (LPS). The more dye released, the greater the concentration of endotoxin in the sample. Sampling, quantitative analysis, and data retrieval require less than 20 minutes. This is significantly faster than standard culture-based methods, which require at least a 24 hour incubation period.Using modified cartridges, we demonstrate the detection of Gram negative bacteria with protein microarray technology. Additionally, we provide data from multiple field tests where both standard and advanced PTS technologies were used. These tests investigate the transfer of target microbial molecules from one surface to another. Collectively, these data demonstrate that the new cartridges expand the number of compounds detected by LOCAD-PTS, while maintaining the rapid, in situ analysis characteristic of the instrument. The unit provides relevant data for verifying sterile sample collection protocols, which are critical for conducting accurate scientific experiments during future missions to the Moon and Mars.

  12. Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors

    NASA Astrophysics Data System (ADS)

    Takalkar, Sunitha

    Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme and DNA molecules simultaneously thus resulting in the enormous amplification of the colorimetric signal. This CNT-enzyme label thus aided the ultra-sensitive detection of pancreatic cancer (PC) biomarker miRNA 210 and PC biomarker panel (miRNA 16, miRNA 21 and miRNA 196a). All these LFBs were also applied in the field of real sample detection.

  13. Runway Incursion Prevention for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  14. Runway Incursion Prevention System for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel III, Lawrence J.

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  15. General review of multispectral cooled IR development at CEA-Leti, France

    NASA Astrophysics Data System (ADS)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  16. Engineering Novel Detectors and Sensors for MRI

    PubMed Central

    Qian, Chunqi; Zabow, Gary; Koretsky, Alan

    2013-01-01

    Increasing detection sensitivity and image contrast have always been major topics of research in MRI. In this perspective, we summarize two engineering approaches to make detectors and sensors that have potential to extend the capability of MRI. The first approach is to integrate miniaturized detectors with a wireless powered parametric amplifier to enhance the detection sensitivity of remotely coupled detectors. The second approach is to microfabricate contrast agents with encoded multispectral frequency shifts, whose properties can be specified and fine-tuned by geometry. These two complementary approaches will benefit from the rapid development in nanotechnology and microfabrication which should enable new opportunities for MRI. PMID:23245489

  17. Spectroscopic thermoacoustic imaging of water and fat composition

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.

    2012-07-01

    During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.

  18. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  19. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  20. Journal Club: Comparison of assessment of preoperative pulmonary vasculature in patients with non-small cell lung cancer by non-contrast- and 4D contrast-enhanced 3-T MR angiography and contrast-enhanced 64-MDCT.

    PubMed

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Sugimura, Kazuro

    2014-03-01

    The purpose of this article is to prospectively and directly compare the capabilities of non-contrast-enhanced MR angiography (MRA), 4D contrast-enhanced MRA, and contrast-enhanced MDCT for assessing pulmonary vasculature in patients with non-small cell lung cancer (NSCLC) before surgical treatment. A total of 77 consecutive patients (41 men and 36 women; mean age, 71 years) with pathologically proven and clinically assessed stage I NSCLC underwent thin-section contrast-enhanced MDCT, non-contrast-enhanced and contrast-enhanced MRA, and surgical treatment. The capability for anomaly assessment of the three methods was independently evaluated by two reviewers using a 5-point visual scoring system, and final assessment for each patient was made by consensus of the two readers. Interobserver agreement for pulmonary arterial and venous assessment was evaluated with the kappa statistic. Then, sensitivity, specificity, and accuracy for the detection of anomalies were directly compared among the three methods by use of the McNemar test. Interobserver agreement for pulmonary artery and vein assessment was substantial or almost perfect (κ=0.72-0.86). For pulmonary arterial and venous variation assessment, there were no significant differences in sensitivity, specificity, and accuracy among non-contrast-enhanced MRA (pulmonary arteries: sensitivity, 77.1%; specificity, 97.4%; accuracy, 87.7%; pulmonary veins: sensitivity, 50%; specificity, 98.5%; accuracy, 93.2%), 4D contrast-enhanced MRA (pulmonary arteries: sensitivity, 77.1%; specificity, 97.4%; accuracy, 87.7%; pulmonary veins: sensitivity, 62.5%; specificity, 100.0%; accuracy, 95.9%), and thin-section contrast-enhanced MDCT (pulmonary arteries: sensitivity, 91.4%; specificity, 89.5%; accuracy, 90.4%; pulmonary veins: sensitivity, 50%; specificity, 100.0%; accuracy, 95.9%) (p>0.05). Pulmonary vascular assessment of patients with NSCLC before surgical resection by non-contrast-enhanced MRA can be considered equivalent to that by 4D contrast-enhanced MRA and contrast-enhanced MDCT.

  1. Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma

    PubMed Central

    Piccolo, Claudia Lucia; Galluzzo, Michele; Ianniello, Stefania; Sessa, Barbara; Trinci, Margherita

    2016-01-01

    Baseline ultrasound is essential in the early assessment of patients with a huge haemoperitoneum undergoing an immediate abdominal surgery; nevertheless, even with a highly experienced operator, it is not sufficient to exclude parenchymal injuries. More recently, a new ultrasound technique using second generation contrast agents, named contrast-enhanced ultrasound (CEUS) has been developed. This technique allows all the vascular phase to be performed in real time, increasing ultrasound capability to detect parenchymal injuries, enhancing some qualitative findings, such as lesion extension, margins and its relationship with capsule and vessels. CEUS has been demonstrated to be almost as sensitive as contrast-enhanced CT in the detection of traumatic injuries in patients with low-energy isolated abdominal trauma, with levels of sensitivity and specificity up to 95%. Several studies demonstrated its ability to detect lesions occurring in the liver, spleen, pancreas and kidneys and also to recognize active bleeding as hyperechoic bands appearing as round or oval spots of variable size. Its role seems to be really relevant in paediatric patients, thus avoiding a routine exposure to ionizing radiation. Nevertheless, CEUS is strongly operator dependent, and it has some limitations, such as the cost of contrast media, lack of panoramicity, the difficulty to explore some deep regions and the poor ability to detect injuries to the urinary tract. On the other hand, it is timesaving, and it has several advantages, such as its portability, the safety of contrast agent, the lack to ionizing radiation exposure and therefore its repeatability, which allows follow-up of those traumas managed conservatively, especially in cases of fertile females and paediatric patients. PMID:26607647

  2. Vibration characteristics and damage detection in a suspension bridge

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh

    2016-08-01

    Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.

  3. Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au-Ag nanoparticles for high sensitive detection of melamine in milk powder.

    PubMed

    Li, Junrong; Zhang, Guannan; Wang, Lihua; Shen, Aiguo; Hu, Jiming

    2015-08-01

    In this work, we suggest a chitosan-modified popcorn-like Au-Ag nanoparticles (CSPNPs) based assay for high sensitive detection of melamine, in which CSPNPs not only provide with an intrinsic peroxidase-like activity but also act as surface enhanced Raman scattering (SERS) substrates. CSPNPs can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to the charge transfer complex (CTC), which contributes to a tremendous surface-enhanced resonant Raman scattering (SERRS) signals with 632.8 nm laser excitation. The target molecule melamine can generate an additional compound with H2O2, which means the available amount of H2O2 for the oxidation of TMB reduced. Correspondingly, the SERRS intensity of CTC is decreased. The decreased Raman intensity is proportional to the concentration of melamine over a wide range from 10 nM to 50 μM (R(2)=0.989), with a limit of detection (LOD) of 8.51 nM. Moreover, the proposed highly selective method is fully capable of rapid, separation-free detection of melamine in milk powder. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  5. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  6. Design and testing of artifact-suppressed adaptive histogram equalization: a contrast-enhancement technique for display of digital chest radiographs.

    PubMed

    Rehm, K; Seeley, G W; Dallas, W J; Ovitt, T W; Seeger, J F

    1990-01-01

    One of the goals of our research in the field of digital radiography has been to develop contrast-enhancement algorithms for eventual use in the display of chest images on video devices with the aim of preserving the diagnostic information presently available with film, some of which would normally be lost because of the smaller dynamic range of video monitors. The ASAHE algorithm discussed in this article has been tested by investigating observer performance in a difficult detection task involving phantoms and simulated lung nodules, using film as the output medium. The results of the experiment showed that the algorithm is successful in providing contrast-enhanced, natural-looking chest images while maintaining diagnostic information. The algorithm did not effect an increase in nodule detectability, but this was not unexpected because film is a medium capable of displaying a wide range of gray levels. It is sufficient at this stage to show that there is no degradation in observer performance. Future tests will evaluate the performance of the ASAHE algorithm in preparing chest images for video display.

  7. Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Clausen, L. B. N.; Fear, R. C.; Robinson, T. R.; Yeoman, T. K.

    2009-09-01

    Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR.

  8. Phosphodiesterase (PDE5) inhibition assay for rapid detection of erectile dysfunction drugs and analogs in sexual enhancement products.

    PubMed

    Santillo, Michael F; Mapa, Mapa S T

    2018-02-28

    Products marketed as dietary supplements for sexual enhancement are frequently adulterated with phosphodiesterase-5 (PDE5) inhibitors, which are erectile dysfunction drugs or their analogs that can cause adverse health effects. Due to widespread adulteration, a rapid screening assay was developed to detect PDE5 inhibitors in adulterated products. The assay employs fluorescence detection and is based on measuring inhibition of PDE5 activity, the pharmacological mechanism shared among the adulterants. Initially, the assay reaction scheme was established and characterized, followed by analysis of 9 representative PDE5 inhibitors (IC 50 , 0.4-4.0 ng mL -1 ), demonstrating sensitive detection in matrix-free solutions. Next, dietary supplements serving as matrix blanks (n = 25) were analyzed to determine matrix interference and establish a threshold value; there were no false positives. Finally, matrix blanks were spiked with 9 individual PDE5 inhibitors, along with several mixtures. All 9 adulterants were successfully detected (≤ 5 % false negative rate; n = 20) at a concentration of 1.00 mg g -1 , which is over 5 times lower than concentrations commonly encountered in adulterated products. A major distinction of the PDE5 inhibition assay is the ability to detect adulterants without prior knowledge of their chemical structures, demonstrating a broad-based detection capability that can address a continuously evolving threat of new adulterants. The PDE5 inhibition assay can analyze over 40 samples simultaneously within 15 minutes and involves a single incubation step and simple data analysis, all of which are advantageous for combating the widespread adulteration of sex-enhancement products. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  9. Stand-off detection of explosives vapors by resonance-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Ida; Ceco, Ema; Ehlerding, Anneli; Östmark, Henric

    2013-06-01

    This paper describes a system for stand-off vapor detection based on Resonant Raman spectroscopy, RRS. The system is a step towards a RRS LIDAR (Light Detection And Ranging) system, capable of detecting vapors from explosives and explosives precursors at long distances. The current system was used to detect the vapor of nitromethane and mononitrotoluene outdoors in the open air, at a stand-off distance of 11-13 meters. Also, the signal dependence upon irradiation wavelength and sample concentration was studied in controlled laboratory conditions. A tunable Optical Parametric Oscillator pumped by an Nd:YAG laser, with a pulse length of 6 ns, was operated in the UV range of interest, 210-400 nm, illuminating the sample vapor. The backscattered Raman signal was collected by a telescope and a roundto- slit optical fiber was used to transmit collected light to the spectrometer with minimum losses. A gated intensified charge-coupled device (ICCD) registered the spectra. The nitromethane cross section was resonance enhanced more than a factor 30 700, when measured at 220 nm, compared to the 532 nm value. The results show that a decrease in concentration can have a positive effect on the sensitivity of the system, due to a decrease in absorption and selfabsorption in the sample.

  10. Broadband Processing in a Noisy Shallow Ocean Environment: A Particle Filtering Approach

    DOE PAGES

    Candy, J. V.

    2016-04-14

    Here we report that when a broadband source propagates sound in a shallow ocean the received data can become quite complicated due to temperature-related sound-speed variations and therefore a highly dispersive environment. Noise and uncertainties disrupt this already chaotic environment even further because disturbances propagate through the same inherent acoustic channel. The broadband (signal) estimation/detection problem can be decomposed into a set of narrowband solutions that are processed separately and then combined to achieve more enhancement of signal levels than that available from a single frequency, thereby allowing more information to be extracted leading to a more reliable source detection.more » A Bayesian solution to the broadband modal function tracking, pressure-field enhancement, and source detection problem is developed that leads to nonparametric estimates of desired posterior distributions enabling the estimation of useful statistics and an improved processor/detector. In conclusion, to investigate the processor capabilities, we synthesize an ensemble of noisy, broadband, shallow-ocean measurements to evaluate its overall performance using an information theoretical metric for the preprocessor and the receiver operating characteristic curve for the detector.« less

  11. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    PubMed

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  12. Hydrogen peroxide sensor based on carbon nanowalls grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tomatsu, Masakazu; Hiramatsu, Mineo; Foord, John S.; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Takeda, Keigo; Hori, Masaru

    2017-06-01

    Fabrication of an electrochemical sensor for hydrogen peroxide (H2O2) detection was demonstrated. H2O2 is a major messenger molecule in various redox-dependent cellular signaling transductions. Therefore, sensitive detection of H2O2 is greatly important in health inspection and environmental protection. Carbon nanowalls (CNWs) are composed of few-layer graphenes standing almost vertically on a substrate forming a three-dimensional structure. In this work, CNWs were used as a platform for H2O2 sensing, which is based on the large surface area of conducting carbon and surface decoration with platinum (Pt) nanoparticles (NPs). CNWs were grown on carbon fiber paper (CFP) by inductively coupled plasma-enhanced chemical vapor deposition to increase the surface area. Then, the CNW surface was decorated with Pt-NPs by the reduction of H2PtCl6. Cyclic voltammetry results indicate that the Pt-decorated CNW/CFP electrode possesses excellent electrocatalytic activity for the reduction of H2O2. Amperometric responses indicate the high-sensitivity detection capability of the Pt-decorated CNW/CFP electrode for H2O2.

  13. Implications of directed energy for SETI

    NASA Astrophysics Data System (ADS)

    Lubin, Philip

    2016-09-01

    We compute the detectability of directed-energy (DE) sources from distant civilizations that may exist. Recent advances in our own DE technology suggest that our eventual capabilities will radically enhance our capacity to broadcast our presence and hence allow us to ponder the reverse case of detection. We show that DE systems are detectable at vast distances, possibly across the entire horizon, which profoundly alters conceivable search strategies for extra-terrestrial, technologically-advanced civilizations. Even modest searches are extremely effective at detecting or constraining many civilization classes. A single civilization anywhere in our galaxy of comparable technological advancement to our own can be detected with near unity probability with a cluster of 0.1 m telescopes on Earth. A 1 m class telescope can detect a single civilization anywhere in the Andromeda galaxy. A search strategy is proposed using small Earth-based telescopes to observe 1012-1020 stellar and planetary systems. Such observations could address whether there exist other civilizations which are broadcasting with similar or more advanced DE capability. We show that such searches have near-unity probability of detecting comparably advanced civilizations anywhere in our galaxy within a few years, assuming the civilization: (1) adopts a simple "intelligent targeting" beacon strategy; (2) is beaconing at a wavelength we can detect; (3) broadcast the beacon long enough for the light to reach Earth now. In this blind-beacon, blind-search strategy, the civilization need not know where we are nor do we need to know where they are. The same basic strategy can be extended to extragalactic distances.

  14. Enhanced Training by a Systemic Governance of Force Capabilities, Tasks, and Processes

    DTIC Science & Technology

    2013-06-01

    18th ICCRTS “C2 in Underdeveloped, Degraded and Denied Operational Environments” Enhanced Training by a Systemic Governance of Force Capabilities...TITLE AND SUBTITLE Enhanced Training by a Systemic Governance of Force Capabilities, Tasks, and Processes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...assess, evaluate and accredit the Swedish forces. This paper presents a Systemic Governance of Capabilities, Tasks, and Processes applied to the

  15. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  16. Plasmonic nanofocusing of light in an integrated silicon photonics platform.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2011-07-04

    The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

  17. Image enhancement based on in vivo hyperspectral gastroscopic images: a case study

    NASA Astrophysics Data System (ADS)

    Gu, Xiaozhou; Han, Zhimin; Yao, Liqing; Zhong, Yunshi; Shi, Qiang; Fu, Ye; Liu, Changsheng; Wang, Xiguang; Xie, Tianyu

    2016-10-01

    Hyperspectral imaging (HSI) has been recognized as a powerful tool for noninvasive disease detection in the gastrointestinal field. However, most of the studies on HSI in this field have involved ex vivo biopsies or resected tissues. We proposed an image enhancement method based on in vivo hyperspectral gastroscopic images. First, we developed a flexible gastroscopy system capable of obtaining in vivo hyperspectral images of different types of stomach disease mucosa. Then, depending on a specific object, an appropriate band selection algorithm based on dependence of information was employed to determine a subset of spectral bands that would yield useful spatial information. Finally, these bands were assigned to be the color components of an enhanced image of the object. A gastric ulcer case study demonstrated that our method yields higher color tone contrast, which enhanced the displays of the gastric ulcer regions, and that it will be valuable in clinical applications.

  18. Review of terahertz technology development at INO

    NASA Astrophysics Data System (ADS)

    Dufour, Denis; Marchese, Linda; Terroux, Marc; Oulachgar, Hassane; Généreux, Francis; Doucet, Michel; Mercier, Luc; Tremblay, Bruno; Alain, Christine; Beaupré, Patrick; Blanchard, Nathalie; Bolduc, Martin; Chevalier, Claude; D'Amato, Dominic; Desroches, Yan; Duchesne, François; Gagnon, Lucie; Ilias, Samir; Jerominek, Hubert; Lagacé, François; Lambert, Julie; Lamontagne, Frédéric; Le Noc, Loïc; Martel, Anne; Pancrati, Ovidiu; Paultre, Jacques-Edmond; Pope, Tim; Provençal, Francis; Topart, Patrice; Vachon, Carl; Verreault, Sonia; Bergeron, Alain

    2015-10-01

    Over the past decade, INO has leveraged its expertise in the development of uncooled microbolometer detectors for infrared imaging to produce terahertz (THz) imaging systems. By modifying its microbolometer-based focal plane arrays to enhance absorption in the THz bands and by developing custom THz imaging lenses, INO has developed a leading-edge THz imaging system, the IRXCAM-THz-384 camera, capable of exploring novel applications in the emerging field of terahertz imaging and sensing. Using appropriate THz sources, results show that the IRXCAM-THz-384 camera is able to image a variety of concealed objects of interest for applications such as non-destructive testing and weapons detections. By using a longer wavelength (94 GHz) source, it is also capable of sensing the signatures of various objects hidden behind a drywall panel. This article, written as a review of THz research at INO over the past decade, describes the technical components that form the IRXCAM-THz-384 camera and the experimental setup used for active THz imaging. Image results for concealed weapons detection experiments, an exploration of wavelength choice on image quality, and the detection of hidden objects behind drywall are also presented.

  19. Enhancing the Sensitivity of Fluorescence Bronchoscopy for Early Lung Cancer Detection Using a Fluorescent Deoxyglucose Analog

    DTIC Science & Technology

    2013-11-01

    overexpression of glucose transporters ( Gluts ) and the increased activity of mitochondria- bound hexokinases in tumors (5, 6). Since 1976, 2-(fluorine-18...glucose transport through the cell membrane via Gluts has been reported as an important factor in the increase of FDG uptake in malignant tumors (5). In...capabilities of bronchoscopy without substantially increasing cost. Although there has been no work evaluating the use of 2-NBDG for lung cancer

  20. Promising New Photon Detection Concepts for High-Resolution Clinical and Preclinical PET

    PubMed Central

    Levin, Craig S.

    2013-01-01

    The ability of PET to visualize and quantify regions of low concentration of PET tracer representing subtle cellular and molecular signatures of disease depends on relatively complex biochemical, biologic, and physiologic factors that are challenging to control, as well as on instrumentation performance parameters that are, in principle, still possible to improve on. Thus, advances to the latter can somewhat offset barriers of the former. PET system performance parameters such as spatial resolution, contrast resolution, and photon sensitivity contribute significantly to PET’s ability to visualize and quantify lower concentrations of signal in the presence of background. In this report we present some technology innovations under investigation toward improving these PET system performance parameters. We focus particularly on a promising advance known as 3-dimensional position-sensitive detectors, which are detectors capable of distinguishing and measuring the position, energy, and arrival time of individual interactions of multi-interaction photon events in 3 dimensions. If successful, these new strategies enable enhancements such as the detection of fewer diseased cells in tissue or the ability to characterize lower-abundance molecular targets within cells. Translating these advanced capabilities to the clinic might allow expansion of PET’s roles in disease management, perhaps to earlier stages of disease. In preclinical research, such enhancements enable more sensitive and accurate studies of disease biology in living subjects. PMID:22302960

  1. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  2. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  3. Six degree of freedom sensor

    DOEpatents

    Vann, Charles S.

    1999-01-01

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing.

  4. Six degree of freedom sensor

    DOEpatents

    Vann, C.S.

    1999-03-16

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

  5. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.

    PubMed

    Upadhyayula, Venkata K K

    2012-02-17

    There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips and nano-clinics for optical diagnostics and targeted therapy, can play an important role in the diagnosis and treatment of cancer. These techniques can also be used to provide efficient drug delivery for treatment of other diseases, with increased sensitivity and specificity. Similarly, enhanced stand-off detection, classification, identification and surveillance techniques, for comprehensive civilian and military target protection and enhanced space situational awareness can open new frontiers of research and applications in the defence arena and homeland security. For instance, the development of potential imaging sensor architectures, enhanced remote sensing systems, ladars, lidars and radars can provide data capable of ensuring continuous monitoring of various imaging/physical/chemical parameters under different operating conditions, using both active and passive detection principles, reconfigurable and scalable focal plane array architectures, reliable systems for stand-off detection of explosives, and enhanced airport security. The above areas pose challenging problems to the technical community and indicate an ever-growing need for innovative and auspicious solutions. We would like to thank all authors for their valuable contributions, without which this special issue would not have become reality.

  7. Composite Materials NDE Using Enhanced Leaky Lamb Wave Dispersion Data Acquisition Method

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mal, Ajit; Lih, Shyh-Shiuh; Chang, Zensheu

    1999-01-01

    The leaky Lamb wave (LLW) technique is approaching a maturity level that is making it an attractive quantitative NDE tool for composites and bonded joints. Since it was first observed in 1982, the phenomenon has been studied extensively, particularly in composite materials. The wave is induced by oblique insonification using a pitch-catch arrangement and the plate wave modes are detected by identifying minima in the reflected spectra to obtain the dispersion data. The wave behavior in multi-orientation laminates has been well documented and corroborated experimentally with high accuracy. The sensitivity of the wave to the elastic constants of the material and to the boundary conditions led to the capability to measure the elastic properties of bonded joints. Recently, the authors significantly enhanced the LLW method's capability by increasing the speed of the data acquisition, the number of modes that can be identified and the accuracy of the data inversion. In spite of the theoretical and experimental progress, methods that employ oblique insonification of composites are still not being applied as standard industrial NDE methods. The authors investigated the issues that are hampering the transition of the LLW to industrial applications and identified 4 key issues. The current capability of the method and the nature of these issues are described in this paper.

  8. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    PubMed

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  9. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.

    PubMed

    Sinha, Sudarson Sekhar; Jones, Stacy; Pramanik, Avijit; Ray, Paresh Chandra

    2016-12-20

    Surface-enhanced Raman spectroscopy (SERS) fingerprinting is highly promising for identifying disease markers from complex mixtures of clinical sample, which has the capability to take medical diagnoses to the next level. Although vibrational frequency in Raman spectra is unique for each biomolecule, which can be used as fingerprint identification, it has not been considered to be used routinely for biosensing due to the fact that the Raman signal is very weak. Contemporary SERS has been demonstrated to be an excellent analytical tool for practical label-free sensing applications due its ability to enhance Raman signals by factors of up to 10 8 -10 14 orders of magnitude. Although SERS was discovered more than 40 years ago, its applications are still rare outside the spectroscopy community and it is mainly due to the fact that how to control, manipulate and amplify light on the "hot spots" near the metal surface is in the infancy stage. In this Account, we describe our contribution to develop nanoachitecture based highly reproducible and ultrasensitive detection capability SERS platform via low-cost synthetic routes. Using one-dimensional (1D) carbon nanotube (CNT), two-dimensional (2D) graphene oxide (GO), and zero-dimensional (0D) plasmonic nanoparticle, 0D to 3D SERS substrates have been designed, which represent highly powerful platform for biological diagnosis. We discuss the major design criteria we have used to develop robust SERS substrate to possess high density "hot spots" with very good reproducibility. SERS enhancement factor for 3D SERS substrate is about 5 orders of magnitude higher than only plasmonic nanoparticle and more than 9 orders of magnitude higher than 2D GO. Theoretical finite-difference time-domain (FDTD) stimulation data show that the electric field enhancement |E| 2 can be more than 2 orders of magnitude in "hot spots", which suggests that SERS enhancement factors can be greater than 10 4 due to the formation of high density "hot spots" in 3D substrate. Next, we discuss the utilization of nanoachitecture based SERS substrate for ultrasensitive and selective diagnosis of infectious disease organisms such as drug resistance bacteria and mosquito-borne flavi-viruses that cause significant health problems worldwide. SERS based "whole-organism fingerprints" has been used to identify infectious disease organisms even when they are so closely related that they are difficult to distinguish. The detection capability can be as low as 10 CFU/mL for methicillin-resistant Staphylococcus aureus (MRSA) and 10 PFU/mL for Dengue virus (DENV) and West Nile virus (WNV). After that, we introduce exciting research findings by our group on the applications of nanoachitecture based SERS substrate for the capture and fingerprint detection of rotavirus from water and Alzheimer's disease biomarkers from whole blood sample. The SERS detection limit for β-amyloid (Aβ proteins) and tau protein using 3D SERS platform is several orders of magnitude higher than the currently used technology in clinics. Finally, we highlight the promises, major challenges and prospect of nanoachitecture based SERS in biomedical diagnosis field.

  10. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis

    PubMed Central

    2016-01-01

    Conspectus Surface-enhanced Raman spectroscopy (SERS) fingerprinting is highly promising for identifying disease markers from complex mixtures of clinical sample, which has the capability to take medical diagnoses to the next level. Although vibrational frequency in Raman spectra is unique for each biomolecule, which can be used as fingerprint identification, it has not been considered to be used routinely for biosensing due to the fact that the Raman signal is very weak. Contemporary SERS has been demonstrated to be an excellent analytical tool for practical label-free sensing applications due its ability to enhance Raman signals by factors of up to 108–1014 orders of magnitude. Although SERS was discovered more than 40 years ago, its applications are still rare outside the spectroscopy community and it is mainly due to the fact that how to control, manipulate and amplify light on the “hot spots” near the metal surface is in the infancy stage. In this Account, we describe our contribution to develop nanoachitecture based highly reproducible and ultrasensitive detection capability SERS platform via low-cost synthetic routes. Using one-dimensional (1D) carbon nanotube (CNT), two-dimensional (2D) graphene oxide (GO), and zero-dimensional (0D) plasmonic nanoparticle, 0D to 3D SERS substrates have been designed, which represent highly powerful platform for biological diagnosis. We discuss the major design criteria we have used to develop robust SERS substrate to possess high density “hot spots” with very good reproducibility. SERS enhancement factor for 3D SERS substrate is about 5 orders of magnitude higher than only plasmonic nanoparticle and more than 9 orders of magnitude higher than 2D GO. Theoretical finite-difference time-domain (FDTD) stimulation data show that the electric field enhancement |E|2 can be more than 2 orders of magnitude in “hot spots”, which suggests that SERS enhancement factors can be greater than 104 due to the formation of high density “hot spots” in 3D substrate. Next, we discuss the utilization of nanoachitecture based SERS substrate for ultrasensitive and selective diagnosis of infectious disease organisms such as drug resistance bacteria and mosquito-borne flavi-viruses that cause significant health problems worldwide. SERS based “whole-organism fingerprints” has been used to identify infectious disease organisms even when they are so closely related that they are difficult to distinguish. The detection capability can be as low as 10 CFU/mL for methicillin-resistant Staphylococcus aureus (MRSA) and 10 PFU/mL for Dengue virus (DENV) and West Nile virus (WNV). After that, we introduce exciting research findings by our group on the applications of nanoachitecture based SERS substrate for the capture and fingerprint detection of rotavirus from water and Alzheimer’s disease biomarkers from whole blood sample. The SERS detection limit for β-amyloid (Aβ proteins) and tau protein using 3D SERS platform is several orders of magnitude higher than the currently used technology in clinics. Finally, we highlight the promises, major challenges and prospect of nanoachitecture based SERS in biomedical diagnosis field. PMID:27993003

  11. Environmental enrichment enhances cognitive flexibility in C57BL/6 mice on a touchscreen reversal learning task.

    PubMed

    Zeleznikow-Johnston, Ariel; Burrows, Emma L; Renoir, Thibault; Hannan, Anthony J

    2017-05-01

    Environmental enrichment (EE) is any positive modification of the 'standard housing' (SH) conditions in which laboratory animals are typically held, usually involving increased opportunity for cognitive stimulation and physical activity. EE has been reported to enhance baseline performance of wild-type animals on traditional cognitive behavioural tasks. Recently, touchscreen operant testing chambers have emerged as a way of performing rodent cognitive assays, providing greater reproducibility, translatability and automatability. Cognitive tests in touchscreen chambers are performed over numerous trials and thus experimenters have the power to detect subtle enhancements in performance. We used touchscreens to analyse the effects of EE on reversal learning, visual discrimination and hippocampal-dependent spatial pattern separation and working memory. We hypothesized that EE would enhance the performance of mice on cognitive touchscreen tasks. Our hypothesis was partially supported in that EE induced enhancements in cognitive flexibility as observed in visual discrimination and reversal learning improvements. However, no other significant effects of EE on cognitive performance were observed. EE decreased the activity level of mice in the touchscreen chambers, which may influence the enrichment level of the animals. Although we did not see enhancements on all hypothesized parameters, our testing paradigm is capable of detecting EE-induced improved cognitive flexibility in mice, which has implications for both understanding the mechanisms of EE and improving screening of putative cognitive-enhancing therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe.

    PubMed

    Ma, Changbei; Lv, Xiaoyuan; Wang, Kemin; Jin, Shunxin; Liu, Haisheng; Wu, Kefeng; Zeng, Weimin

    2017-11-02

    Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.

  13. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  14. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages.

    PubMed

    Charbgoo, Fahimeh; Ramezani, Mohammad; Darroudi, Majid

    2017-10-15

    Cerium oxide nanoparticles (CNPs) contain several properties such as catalytic activity, fluorescent quencher and electrochemical, high surface area, and oxygen transfer ability, which have attracted considerable attention in developing high-sensitive biosensors. CNPs can be used as a whole sensor or a part of recognition or transducer element. However, reports have shown that applying these nanoparticles in sensor design could remarkably enhance detection sensitivity. CNP's outstanding properties in biosensors which go from high catalytic activity and surface area to oxygen transfer and fluorescent quenching capabilities are also highlighted. Herein, we discuss the advantages and disadvantages of CNPs-based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemoluminescent regarding the detection of small organic chemicals, metal ions and biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Monitoring Fires from Space: a case study in transitioning from research to applications

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.

    2012-12-01

    This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research domain, has now been successfully moved to an operational home at the UN FAO, as the Global Fire Information Management System (GFIMS). With a view to operational data continuity, the Suomi-NPP/JPSS VIIRS system was also designed with a fire detection capability, and is providing promising results for fire monitoring both from the standard operational production system and experimental product enhancements. International coordination on fire observations and outreach has been successfully developed under the GOFC GOLD program.

  16. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  17. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    PubMed Central

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  18. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    PubMed

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  19. New optical method for enhanced detection of colon cancer by capsule endoscopy

    NASA Astrophysics Data System (ADS)

    AnkriEqually Contributed, Rinat; Peretz, Dolev; Motiei, Menachem; Sella-Tavor, Osnat; Popovtzer, Rachela

    2013-09-01

    PillCam®COLON capsule endoscopy (CE), a non-invasive diagnostic tool of the digestive tract, has dramatically changed the diagnostic approach and has become an attractive alternative to the conventional colonoscopy for early detection of colorectal cancer. However, despite the significant progress and non-invasive detection capability, studies have shown that its sensitivity and specificity is lower than that of conventional colonoscopy. This work presents a new optical detection method, specifically tailored to colon cancer detection and based on the well-known optical properties of immune-conjugated gold nanorods (GNRs). We show, on a colon cancer model implanted in a chick chorioallantoic membrane (CAM), that this detection method enables conclusive differentiation between cancerous and normal tissues, where neither the distance between the light source and the intestinal wall, nor the background signal, affects the monitored signal. This optical method, which can easily be integrated in CE, is expected to reduce false positive and false negative results and improve identification of tumors and micro metastases.

  20. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Duy Dao, Thang; Nagao, Tadaaki

    2017-03-01

    We fabricated large-area metallic (Al and Au) nanoantenna arrays on Si substrates using cost-effective colloidal lithography with different micrometer-sized polystyrene spheres. Variation of the sphere size leads to tunable plasmon resonances in the middle infrared (MIR) range. The enhanced near-fields allow us to detect the surface phonon polaritons in the natural SiO2 thin layers. We demonstrated further tuning capability of the resonances by employing dry etching of the Si substrates with the nanoantennas acting as the etching masks. The effective refractive index of the nanoantenna surroundings is efficiently decreased giving rise to blueshifts of the resonances. In addition, partial removal of the Si substrates elevates the nanoantennas from the high-refractive-index substrates making more enhanced near-fields accessible for molecular sensing applications as demonstrated here with surface-enhanced infrared absorption (SEIRA) spectroscopy for a thin polymer film. We also directly compared the plasmonic enhancement from the Al and Au nanoantenna arrays.

  1. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    PubMed

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  3. Robotic astrobiology - prospects for enhancing scientific productivity of mars rover missions

    NASA Astrophysics Data System (ADS)

    Ellery, A. A.

    2018-07-01

    Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

  4. M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection.

    PubMed

    Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang

    2018-03-28

    A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.

  5. Interrelationships Between Receiver/Relative Operating Characteristics Display, Binomial, Logit, and Bayes' Rule Probability of Detection Methodologies

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2014-01-01

    Unknown risks are introduced into failure critical systems when probability of detection (POD) capabilities are accepted without a complete understanding of the statistical method applied and the interpretation of the statistical results. The presence of this risk in the nondestructive evaluation (NDE) community is revealed in common statements about POD. These statements are often interpreted in a variety of ways and therefore, the very existence of the statements identifies the need for a more comprehensive understanding of POD methodologies. Statistical methodologies have data requirements to be met, procedures to be followed, and requirements for validation or demonstration of adequacy of the POD estimates. Risks are further enhanced due to the wide range of statistical methodologies used for determining the POD capability. Receiver/Relative Operating Characteristics (ROC) Display, simple binomial, logistic regression, and Bayes' rule POD methodologies are widely used in determining POD capability. This work focuses on Hit-Miss data to reveal the framework of the interrelationships between Receiver/Relative Operating Characteristics Display, simple binomial, logistic regression, and Bayes' Rule methodologies as they are applied to POD. Knowledge of these interrelationships leads to an intuitive and global understanding of the statistical data, procedural and validation requirements for establishing credible POD estimates.

  6. In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules.

    PubMed

    Liu, Huiqiao; Li, Qiang; Li, Mingmin; Ma, Sisi; Liu, Dingbin

    2017-05-02

    Single-molecule detection using surface-enhanced Raman spectroscopy (SERS) has attracted increasing attention in chemical and biomedical analysis. However, it remains a major challenge to probe single biomolecules by means of SERS hot spots owing to the small volume of hot spots and their random distribution on substrates. We here report an in situ hot-spot assembly method as a general strategy for probing single biomolecules. As a proof-of-concept, this proposed strategy was successfully used for the detection of single microRNA-21 (miRNA-21, a potential cancer biomarker) at the single-cell level, showing great capability in differentiating the expression of miRNA-21 in single cancer cells from normal cells. This approach was further extended to single-protein detection. The versatility of the strategy opens an exciting avenue for single-molecule detection of biomarkers of interest and thus holds great promise in a variety of biological and biomedical applications.

  7. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    PubMed Central

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant results. PMID:27537079

  8. Local ablation therapy with contrast-enhanced ultrasonography for hepatocellular carcinoma: a practical review

    PubMed Central

    Kim, Tae Kyoung; Khalili, Korosh; Jang, Hyun-Jung

    2015-01-01

    A successful program for local ablation therapy for hepatocellular carcinoma (HCC) requires extensive imaging support for diagnosis and localization of HCC, imaging guidance for the ablation procedures, and post-treatment monitoring. Contrast-enhanced ultrasonography (CEUS) has several advantages over computed tomography/magnetic resonance imaging (CT/MRI), including real-time imaging capability, sensitive detection of arterial-phase hypervascularity and washout, no renal excretion, no ionizing radiation, repeatability, excellent patient compliance, and relatively low cost. CEUS is useful for image guidance for isoechoic lesions. While contrast-enhanced CT/MRI is the standard method for the diagnosis of HCC and post-ablation monitoring, CEUS is useful when CT/MRI findings are indeterminate or CT/MRI is contraindicated. This article provides a practical review of the role of CEUS in imaging algorithms for pre- and post-ablation therapy for HCC. PMID:26169081

  9. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Securitymore » Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence, specific capabilities, and use of local aerial radiation detection systems would be critical in planning the response, even before federal assets arrive on the scene. The relationship between local and federal aerial assets and the potential role for the further use of the MARS training and expanded AMS Reachback capabilities in facilitating such interactions will be discussed.« less

  10. Ion Beam Analysis of Diffusion in Diamondlike Carbon Films

    NASA Astrophysics Data System (ADS)

    Chaffee, Kevin Paul

    The van de Graaf accelerator facility at Case Western Reserve University was developed into an analytical research center capable of performing Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis for hydrogen profiling, Proton Enhanced Scattering, and ^4 He resonant scattering for ^{16 }O profiling. These techniques were applied to the study of Au, Na^+, Cs ^+, and H_2O water diffusion in a-C:H films. The results are consistent with the fully constrained network model of the microstructure as described by Angus and Jansen.

  11. Estimation of trends

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The application of statistical methods to recorded ozone measurements. The effects of a long term depletion of ozone at magnitudes predicted by the NAS is harmful to most forms of life. Empirical prewhitening filters the derivation of which is independent of the underlying physical mechanisms were analyzed. Statistical analysis performs a checks and balances effort. Time series filters variations into systematic and random parts, errors are uncorrelated, and significant phase lag dependencies are identified. The use of time series modeling to enhance the capability of detecting trends is discussed.

  12. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  13. Sol-gel chemical sensors for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Farquharson, Stuart; Kwon, Hueong-Chan; Shahriari, Mahmoud R.; Rainey, Petrie M.

    1999-02-01

    Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection. Unfortunately, the inability of SERS to perform quantitative chemical analysis has slowed its general use in laboratories. This is largely due to the difficulty of manufacturing either active surfaces that yield reproducible enhancements, or surfaces that are capable of reversible chemical adsorption, or both. In an effort to meet this need, we have developed metal-doped sol-gels that provide surface-enhancement of Raman scattering. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increases the interaction between the analyte and metal particles. This eliminates the need to concentrate the analyte on the surface by evaporating the solvent. The sol-gel is easily coated on a variety of surfaces, such as fiber optics, glass slides, or glass tubing, and can be designed into sample flow systems. Here we present the development of both gold- and silver-doped sol-gels, which have been used to coat the inside walls of glass sample vials for SERS applications. The performance of the metal-doped sol-gels was evaluated using p-aminobenzoic acid, to establish enhancement factors, detection limits, dynamic response range, reversibility, reproducibility, and suitability to commercial spectrometers. Measurements of trace chemicals, such as adenine and cocaine, are also presented.

  14. Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu

    2018-03-01

    The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.

  15. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.

  16. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification.

    PubMed

    Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2011-03-15

    Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    PubMed

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  18. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  19. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    PubMed Central

    MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie

    2015-01-01

    In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638

  20. Surface-Enhanced Raman Spectroscopy: Substrates and Analyzers You Can Use

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Sengupta, Atanu; Huang, Hermes; Farquharson, Stuart

    2010-08-01

    Following the recognition of the surface-enhanced Raman scattering effect in 1977, there was an explosion of research aimed at understanding this phenomenon of molecular interactions with nano-scale particles, and more than 1000 papers were published by 1982. Since the mid-1990's there has been a resurgence in SERS-based research with the detection of single-molecules and the acknowledgement of "hot-spots". These measurements provoked new examination of SERS theory with a focus on the structure of these hot spots: fractal clusters, edges, or inter-particle gaps. Meanwhile, Real-Time Analyzers has been developing SERS-active sample systems and analyzers to exploit this phenomenon for trace chemical analysis. This presentation reviews the analytical capabilities and limitations for many of the SERS-active substrates, as well as RTA's metal-doped sol-gels. The latter includes the use of the sol-gels in sample systems and analyzers, and their application to poisons in water supplies, food contamination, drug and explosives detection and proteomics.

  1. Noninvasive detection of nasopharyngeal carcinoma based on saliva proteins using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xueliang; Lin, Duo; Ge, Xiaosong; Qiu, Sufang; Feng, Shangyuan; Chen, Rong

    2017-10-01

    The present study evaluated the capability of saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy (SERS) for noninvasive detection of nasopharyngeal carcinoma (NPC). A rapid and convenient protein purification method based on cellulose acetate membrane was developed. A total of 659 high-quality SERS spectra were acquired from purified proteins extracted from the saliva samples of 170 patients with pathologically confirmed NPC and 71 healthy volunteers. Spectral analysis of those saliva protein SERS spectra revealed specific changes in some biochemical compositions, which were possibly associated with NPC transformation. Furthermore, principal component analysis combined with linear discriminant analysis (PCA-LDA) was utilized to analyze and classify the saliva protein SERS spectra from NPC and healthy subjects. Diagnostic sensitivity of 70.7%, specificity of 70.3%, and diagnostic accuracy of 70.5% could be achieved by PCA-LDA for NPC identification. These results show that this assay based on saliva protein SERS analysis holds promising potential for developing a rapid, noninvasive, and convenient clinical tool for NPC screening.

  2. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.

    PubMed

    Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E

    2010-02-16

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.

  3. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals

    PubMed Central

    Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.

    2010-01-01

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764

  4. Radiation hard blocked tunneling band {GaAs}/{AlGaAs} superlattice long wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Wen, C. P.; Reiner, P.; Tu, C. W.; Hou, H. Q.

    1996-09-01

    We have developed a novel multiple quantum well (MQW) long wavelength infrared (LWIR) detector which can operate in a photovoltaic detection mode with an intrinsic event discrimination (IED) capability. The detector was constructed using the {GaAs}/{AlGaAs} MQW technology to form a blocked tunneling band superlattice structure with a 10.2 micron wavelength and 2.2 micron bandwidth. The detector exhibited Schottky junction and photovoltaic detection characteristics with extremely low dark current and low noise as a result of a built-in tunneling current blocking layer structure. In order to enhance quantum efficiency, a built-in electric field was created by grading the doping concentration of each quantum well in the MQW region. The peak responsivity of the detector was 0.4 amps/W with a measured detectivity of 6.0 × 10 11 Jones. The external quantum efficiency was measured to be 4.4%. The detector demonstrated an excellent intrinsic event discrimination capability due to the presence of a p-type GaAs hole collector layer, which was grown on top of the n-type electron emitter region of the MQW detector. The best results show that an infrared signal which is as much as 100 times smaller than coincident nuclear radiation induced current can be distinguished and extracted from the noise signal. With this hole collector structure, our detector also demonstrated two-color detection.

  5. Passive Euro-American terahertz camera (PEAT-CAM): passive indoor THz imaging at video rates for security applications

    NASA Astrophysics Data System (ADS)

    Luukanen, Arttu; Grönberg, Leif; Helistö, Panu; Penttilä, Jari S.; Seppä, Heikki; Sipola, Hannu; Dietlein, Charles R.; Grossman, Erich N.

    2007-04-01

    The objective of this program is to demonstrate a system capable of passive indoors detection and identification of concealed threat items hidden underneath the clothing of non-cooperative subjects from a stand-off distance of several meters. To meet this difficult task, we are constructing an imaging system utilising superconducting ultrawideband antenna-coupled microbolometers, coupled to innovative room temperature read-out electronics, and operated within a cryogen-free pulse tube refrigerator. Previously, we have demonstrated that these devices are capable of a Noise Equivalent Temperature Difference (NETD) of 125 mK over a pre-detection bandwidth from 0.2-1 THz using a post-detection integration time of 30 ms. Further improvements on our devices are reducing this number to a few tens of mK. Such an exquisite sensitivity is necessary in order to achieve the undoubtedly stringent requirements for low false positive alarm rate combined with high probability of detection dictated by the application. Our technological approach allows for excellent per frame NETD (objective 0.5 K or below at 30 Hz frame rate), and is also amenable to multispectral (colour) imagery that enhances the discrimination of innocuous objects against real threats. In the paper we present results obtained with an 8-pixel subarray from our linear array of 128 pixels constructed using a modular approach. Two-dimensional imaging will be achieved by the use of conical scanning.

  6. The Chandra Source Catalog 2.0

    NASA Astrophysics Data System (ADS)

    Evans, Ian N.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Miller, Joseph; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The current version of the Chandra Source Catalog (CSC) continues to be well utilized by the astronomical community. Usage over the past year has continued to average more than 15,000 searches per month. Version 1.1 of the CSC, released in 2010, includes properties and data for 158,071 detections, corresponding to 106,586 distinct X-ray sources on the sky. The second major release of the catalog, CSC 2.0, will be made available to the user community in early 2018, and preliminary lists of detections and sources are available now. Release 2.0 will roughly triple the size of the current version of the catalog to an estimated 375,000 detections, corresponding to ~315,000 unique X-ray sources. Compared to release 1.1, the limiting sensitivity for compact sources in CSC 2.0 is significantly enhanced. This improvement is achieved by using a two-stage approach that involves stacking (co-adding) multiple observations of the same field prior to source detection, and then using an improved source detection approach that enables us to detect point source down to ~5 net counts on-axis for exposures shorter than ~15 ks. In addition to enhanced source detection capabilities, improvements to the Bayesian aperture photometry code included in release 2.0 provides robust photometric probability density functions (PDFs) in crowded fields even for low count detections. All post-aperture photometry properties (e.g., hardness ratios, source variability) work directly from the PDFs in release 2.0. CSC 2.0 also adds a Bayesian Blocks analysis of the multi-band aperture photometry PDFs to identify multiple observations of the same source that have similar photometric properties, and therefore can be analyzed simultaneously to improve S/N.We briefly describe these and other updates that significantly enhance the scientific utility of CSC 2.0 when compared to the earlier catalog release.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  7. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  8. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations.

    PubMed

    Tian, Kai; Chen, Xiaowei; Luan, Binquan; Singh, Prashant; Yang, Zhiyu; Gates, Kent S; Lin, Mengshi; Mustapha, Azlin; Gu, Li-Qun

    2018-05-22

    Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.

  9. Immuno-analysis of microparticles: probing at the limits of detection

    PubMed Central

    Latham, Sharissa L.; Tiberti, Natalia; Gokoolparsadh, Naveena; Holdaway, Karen; Olivier Couraud, Pierre; Grau, Georges E. R.; Combes, Valery

    2015-01-01

    Microparticle (MP) research is clouded by debate regarding the accuracy and validity of flow cytometry (FCM) as an analytical methodology, as it is influenced by many variables including the pre-analytical conditions, instruments physical capabilities and detection parameters. This study utilises a simplistic in vitro system for generating MP, and through comparative analysis with immuno-electron microscopy (Immuno-EM) assesses the strengths and limitations of probe selection and high-sensitivity FCM. Of the markers examined, MP were most specifically labelled with phosphatidylserine ligands, annexin V and lactadherin, although only ~60% MP are PS positive. Whilst these two ligands detect comparable absolute MP numbers, they interact with the same population in distinct manners; annexin V binding is enhanced on TNF induced MP. CD105 and CD54 expression were, as expected, consistent and enhanced following TNF activation respectively. Their labelling however accounted for as few as 30–40% of MP. The greatest discrepancies between FCM and I-EM were observed in the population solely labelled for the surface antigen. These findings demonstrate that despite significant improvements in resolution, high-sensitivity FCM remains limited in detecting small-size MP expressing low antigen levels. This study highlights factors to consider when selecting endothelial MP probes, as well as interpreting and representing data. PMID:26553743

  10. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  11. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a circular optical path, similar to an acoustic wave guided along the wall of St. Paul's Cathedral. These so called whispering gallery modes (WGM) propagate with little loss, so that even a whisper can be heard on the other side of the gallery. In the optical case, the light beam can travel many thousand times around the inside of the microsphere before being scattered or absorbed, thereby making numerous interactions with an analyte molecule, bound to microsphere from surrounding sample solution. The most part of the light intensity, however, remains inside the microsphere, just below the reflecting glass surface, resulting in a relatively weak interaction between the light and the bound molecule. To enhance this interaction further, we attach tiny 42 nm x 12 nm gold nanorods to the glass surface. When passing a nanorod, the lightwave induces oscillations of conduction electrons, resulting in so called plasmon resonance. These nanorod plasmons greatly enhance the light intensity on the nanorod, so that the interaction of the light with a molecule attached to the nanorod is also enhanced[4-6]. This enhanced interaction results in an increase in sensitivity by more than a factor of one thousand, putting our experiments of single DNA molecule detection within reach. For the specific detection of nucleic acids, we attach single-stranded DNA to the nanorod and immerse our device in a liquid solution. When a matching, i.e. complementary DNA fragment binds from solution to the "bait" on the nanorod, the enhanced interaction with the light results in an observable shift of the WGM wavelength. Since light propagates in a WGM only for a very precise resonance wavelength or frequency, this shift can be detected with great accuracy[3]. On our current biosensor platform, we detect wavelength shifts with an accuracy of less than one femtometer, resulting in an extremely high sensitivity for biosensing, which we leverage for the specific detection of single 8 mer oligonucleotides as well as the detection of less than 1 kDa intercalating small molecules[1]. [1] M. D. Baaske, M. R. Foreman, and F. Vollmer, "Single molecule nucleic acid interactions monitored on a label-free microcavity biosensing platform," Nature Nanotechnology, vol. 9, pp. 933-939, 2014. [2] Y. Wu, D. Y. Zhang, P. Yin, and F. Vollmer, "Ultraspecific and Highly Sensitive Nucleic Acid Detection by Integrating a DNA Catalytic Network with a Label-Free Microcavity," Small, vol. 10, pp. 2067-2076, 2014. [3] M. R. Foreman, W.-L. Jin, and F. Vollmer, "Optimizing Detection Limits in Whispering Gallery Mode Biosensing," Optics Express, vol. 22, pp. 5491-5511, 2014. [4] M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, "Nanoparticle-based protein detection by optical shift of a resonant microcavity," Applied Physics Letters, vol. 99, Aug 2011. [5] M. R. Foreman and F. Vollmer, "Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles," New Journal of Physics, vol. 15, p. 083006, Aug 2013. [6] M. R. Foreman and F. Vollmer "Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection" Phys. Rev. A 88, 023831 (2013).

  12. The Fourier-Kelvin Stellar Interferometer (FKSI): Infrared Detection and Characterization of Exozodiacal Dust to Super-Earths, A Progress Report

    NASA Technical Reports Server (NTRS)

    Danchi, W.

    2010-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a structurally connected infrared space interferometer with 0.5 m diameter telescopes on a 12.5 m baseline, and is passively cooled to approx.60K. The FKSI operates in the thermal infrared from 3-8 microns in a nulling (or starlight suppressing) mode for the detection and characterization of exoplanets, debris disks, extrasolar zodiacal dust levels. The FKSI will have the highest angular resolution of any infrared space instrument ever made with its nominal resolution of 40 mas at a 5 micron center wavelength. This resolution exceeds that of Spitzer by a factor of 38 and JWST by a factor of 5. The FKSI mission is conceived as a "probe class" or "mid-sized" strategic mission that utilizes technology advances from flagship projects like JWST, SIM, Spitzer, and the technology programs of TPF-I/Darwin. During the past year we began investigating an enhanced version of FKSI with 1-2 m diameter telescopes, passively cooled to 40K, on a 20-m baseline, with a sunshade giving a +/- 45 degree Field-of-Regard. This enhanced design is capable of detecting and characterizing the atmospheres of many 2 Earth-radius super-Earths and a few Earth-twins. We will report progress on the design of the enhanced mission concept and current status of the technologies needed for this mission.

  13. Detection of alprazolam with a lab on paper economical device integrated with urchin like Ag@ Pd shell nano-hybrids.

    PubMed

    Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Mathur, Ashish; Pn, Anoop Krishna; Pundir, C S

    2017-11-01

    We present results of the studies relating to fabrication of a microfluidic biosensor chip based on urchin like Ag@ Pd shell nano-hybrids that is capable of sensing alprazolam through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of alprazolam present in buffer solutions at clinically relevant concentrations. Methylene blue (MB) was also doped as redox transition substance for sensing alprazolam. Nano-hybrids modified EμPAD showed wide linear range 1-300ng/ml and low detection limit of 0.025ng/l. Low detection limit can further enhance its suitability for forensic application. Nano-hybrids modified EμPAD was also employed for determination of drug in real samples such as human urine. Reported facile lab paper approach integrated with urchin like Ag@ Pd shell nano-hybrids could be well applied for the determination of serum metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    PubMed

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  15. Comparing the Detection of Iron-Based Pottery Pigment on a Carbon-Coated Sherd by SEM-EDS and by Micro-XRF-SEM

    PubMed Central

    Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.

    2014-01-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333

  16. Navy Exploitation of SeaWiFS and MODIS Satellite Imagery for Detection of Desert Dust Storms Over Land and Water

    NASA Astrophysics Data System (ADS)

    Miller, S. D.

    2002-12-01

    The United States Navy gives serious consideration to the subject of dust detection. In a recent study of Naval aviation mishaps over the period 1990-1998 (Cantu, 2001), it was found that 70% were associated with visibility problems and accounted for annual equipment losses of nearly 50 million dollars. This figure does not include the tax dollars lost in jettisoned or off-target ordnance owing to obscured targets or failure of laser-guided systems in the presence of significant dust. Nor can it account for the loss of life during a subset of these mishaps. As such, a strong research emphasis has been placed on detecting and quantifying dust over data-sparse/denied parts of the world. The prolific and complex dust climatology of Southwest Asia has posed considerable challenges to Navy operations over the course of Operation Enduring Freedom. In an effort to support the ongoing needs of the Meteorology/Oceanography (METOC) officers afloat, the Satellite Applications Section of the Naval Research Laboratory (NRL) Marine Meteorology Division has developed a novel approach to enhancing significant dust events that appeals to high spatial and spectral resolution satellite data currently available from state of the art ocean/atmospheric radiometers. This paper summarizes progress made on daytime enhancements of desert dust storms over both land and ocean using multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS; aboard Earth Observing System Terra and Aqua platforms) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; aboard the NASA/Orbimage SeaStar platform). The approach leverages the multi-spectral visible capability of these sensors to distinguish dust from clouds over water bodies, and the high spatial resolution required to refine the fine-scale structures that often accompany these events. The MODIS algorithm combines this information with that of several near-to-far infrared channels, taking advantage of unique spectral properties of dust found in these regimes, to extend the capability to detection of dust over land (bright backgrounds). An account for enhancement contamination in the presence of sun glint is also provided in these products. The SeaWiFS and MODIS telemetries are made available to NRL in near real-time, with product turn-around ranging from 3-6 hours from initial capture. An unprecedented intra-agency collaboration forged between NOAA, NASA (Goddard Space Flight Center), and the Department of Defense has resulted in the recent availability of a global Terra MODIS data stream, with the companion Aqua telemetry soon to follow. Preliminary METOC feedback regarding these products has been overwhelmingly positive, and provides the impetus for continued refinement. Examples of the current product's capabilities and limitations will be presented.

  17. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.

  18. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    NASA Astrophysics Data System (ADS)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR field trials, most recently at Exercise Empire Challenge in China Lake CA, and at Trial Quest in Norway. Those exercises provided further opportunities to investigate operator interactions. The paper concludes with recommendations for future work in operator interface design.

  19. In vitro biomechanical properties, fluorescence imaging, surface-enhanced Raman spectroscopy, and photothermal therapy evaluation of luminescent functionalized CaMoO4:Eu@Au hybrid nanorods on human lung adenocarcinoma epithelial cells

    PubMed Central

    Li, Qifei; Parchur, Abdul K.; Zhou, Anhong

    2016-01-01

    Abstract Highly dispersible Eu3+-doped CaMoO4@Au-nanorod hybrid nanoparticles (HNPs) exhibit optical properties, such as plasmon resonances in the near-infrared region at 790 nm and luminescence at 615 nm, offering multimodal capabilities: fluorescence imaging, surface-enhanced Raman spectroscopy (SERS) detection and photothermal therapy (PTT). HNPs were conjugated with a Raman reporter (4-mercaptobenzoic acid), showing a desired SERS signal (enhancement factor 5.0 × 105). The HNPs have a heat conversion efficiency of 25.6%, and a hyperthermia temperature of 42°C could be achieved by adjusting either concentration of HNPs, or laser power, or irradiation time. HNPs were modified with antibody specific to cancer biomarker epidermal growth factor receptor, then applied to human lung cancer (A549) and mouse hepatocyte cells (AML12), and in vitro PTT effect was studied. In addition, the biomechanical properties of A549 cells were quantified using atomic force microscopy. This study shows the potential applications of these HNPs in fluorescence imaging, SERS detection, and PTT with good photostability and biocompatibility. PMID:27877887

  20. Application of speed-enhanced spatial domain correlation filters for real-time security monitoring

    NASA Astrophysics Data System (ADS)

    Gardezi, Akber; Bangalore, Nagachetan; Al-Kandri, Ahmed; Birch, Philip; Young, Rupert; Chatwin, Chris

    2011-11-01

    A speed enhanced space variant correlation filer which has been designed to be invariant to change in orientation and scale of the target object but also to be spatially variant, i.e. the filter function becoming dependant on local clutter conditions within the image. The speed enhancement of the filter is due to the use of optimization techniques employing low-pass filtering to restrict kernel movement to be within regions of interest. The detection and subsequent identification capability of the two-stage process has been evaluated in highly cluttered backgrounds using both visible and thermal imagery acquired from civil and defense domains along with associated training data sets for target detection and classification. In this paper a series of tests have been conducted in multiple scenarios relating to situations that pose a security threat. Performance matrices comprised of peak-to-correlation energy (PCE) and peak-to-side lobe ratio (PSR) measurements of the correlation output have been calculated to allow the definition of a recognition criterion. The hardware implementation of the system has been discussed in terms of Field Programmable Gate Array (FPGA) chipsets with implementation bottle necks and their solution being considered.

  1. Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun

    2010-06-01

    Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)

  2. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    PubMed

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.

  3. Quasi-resonance enhancement of laser-induced-fluorescence diagnosis of endometriosis

    NASA Astrophysics Data System (ADS)

    Hill, Ralph H., Jr.; Vancaillie, Thierry G.

    1990-05-01

    Endometriosis, a common disease in women in the reproductive age group, is defined pathologically by the presence of endometrial tissue (inner lining of the uterus) outside the uterus. The displaced tissue is histologically identical to endometrium. In addition to being a highly prevalent disease, this disease is associated with many distressing and debilitating symptoms. Motivated by the need to improve diagnosis by endoscopic imaging instrumentation, we have previously used several drugs to cause selective laser-induced fluorescence of active surgically induced endometriosis in the rabbit model in vivo using ultraviolet-wavelength (351.1 and 363.8 nm) excitation from an argon-ion laser. In the present study we have investigated methods of enhancing differentiation between normal and abnormal tissue by using other excitation wavelengths. In addition to an enhanced capability for detecting abnormal tissue, there are several other advantages associated with using visible-wavelength excitation, such as deeper penetration into the tissue, as well as increased equipment performance, reliability, versatility, and availability. The disadvantage is that because only wavelengths longer than the excitation wavelength can be used for detection, some of the spectral information is lost. Because human endomeiriosis samples were somewhat limited in quantity, as well as specimen size, we used normal ovarian tissue for the laser-induced-fluorescence differentiation-enhancement studies. Positive enhancement of the laser-induced- fluorescence differentiation was found in human ovarian tissue in vitro utilizing 514.5-nm excitation from an argonion laser. Additionally, preliminary verification of this concept was accomplished in active surgically induced endometriosis in the rabbit model in vivo with visible argon-ion laser excitation of two tetracycline-based drugs. Future experiments with other drug treatments and excitation/detection parameters are planned.

  4. Incorporating atmospheric uncertainties into estimates of the detection capability of the IMS infrasound network

    NASA Astrophysics Data System (ADS)

    Le Pichon, Alexis; Ceranna, Lars; Taillepied, Doriane

    2015-04-01

    To monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a dedicated network is being deployed. Multi-year observations recorded by the International Monitoring System (IMS) infrasound network confirm that its detection capability is highly variable in space and time. Today, numerical modeling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. Previous studies estimated the radiated source energy from remote observations using frequency dependent attenuation relation and state-of-the-art specifications of the stratospheric wind. In order to account for a realistic description of the dynamic structure of the atmosphere, model predictions are further enhanced by wind and temperature error distributions as measured in the framework of the ARISE project (http://arise-project.eu/). In the context of the future verification of the CTBT, these predictions quantify uncertainties in the spatial and temporal variability of the IMS infrasound network performance in higher resolution, and will be helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.

  5. Incorporating atmospheric uncertainties into estimates of the detection capability of the IMS infrasound network

    NASA Astrophysics Data System (ADS)

    Le Pichon, Alexis; Blanc, Elisabeth; Rüfenacht, Rolf; Kämpfer, Niklaus; Keckhut, Philippe; Hauchecorne, Alain; Ceranna, Lars; Pilger, Christoph; Ross, Ole

    2014-05-01

    To monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a dedicated network is being deployed. Multi-year observations recorded by the International Monitoring System (IMS) infrasound network confirm that its detection capability is highly variable in space and time. Today, numerical modeling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. Previous studies estimated the radiated source energy from remote observations using frequency dependent attenuation relation and state-of-the-art specifications of the stratospheric wind. In order to account for a realistic description of the dynamic structure of the atmosphere, model predictions are further enhanced by wind and temperature error distributions as measured in the framework of the ARISE project (http://arise-project.eu/). In the context of the future verification of the CTBT, these predictions quantify uncertainties in the spatial and temporal variability of the IMS infrasound network performance in higher resolution, and will be helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.

  6. Low-cost thermal-IR imager for an Earth observation microsatellite

    NASA Astrophysics Data System (ADS)

    Oelrich, Brian D.; Underwood, Craig I.

    2017-11-01

    A new class of thermal infrared (TIR) Earth Observation (EO) data will become available with the flight of miniature TIR EO instruments in a multiple micro-satellite constellation. This data set will provide a unique service for those wishing to analyse trends or rapidly detect anomalous changes in the TIR characteristics of the Earth's surface or atmosphere (e.g. fire detection). Following a preliminary study of potential mission applications, uncooled commercial-off-the-shelf (COTS) technology was selected to form the basis of a low-cost, compact instrument capable of complementing existing visible and near IR EO capabilities on a sub-100kg Surrey micro-satellite. The preliminary 2-3 kg instrument concept has been designed to yield a 325 m ground sample distance over a 200 km swath width from a constellation altitude of 700 km. The radiometric performance, enhanced with time-delayed integration (TDI), is expected to yield a NETD less than 0.5 K for a 300 K ground scene. Fabrication and characterization of a space-ready instrument is planned for late 2004.

  7. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, L. J.; Bogue, Rodney K.

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration, the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar (light detection and ranging) for Advanced In-Flight Measurements was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This report describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges by lidar on board the NASA Airborne Science DC-8 (McDonnell Douglas Corporation, Long Beach, California) airplane during two flights. The examples in this report compare lidar-predicted mountain waves and wave-induced turbulence to subsequent airplane-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  8. Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics.

    PubMed

    Wang, Yang; Ruan, Qingyu; Lei, Zhi-Chao; Lin, Shui-Chao; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong

    2018-04-17

    Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads-antibody-antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 μL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases.

  9. In situ surface-enhanced Raman scattering monitoring of reduction of 4-nitrothiophenol on bifunctional metallic nanostructure

    NASA Astrophysics Data System (ADS)

    Du, Pan; Zhang, Xin; Yin, Hongjun; Zhao, Yongmei; Liu, Luo; Wu, Zhenglong; Xu, Haijun

    2018-03-01

    Bifunctional Au/Ag nanoparticle-decorated silicon nanowire arrays (Au/Ag@SiNWAs) were prepared using a facile wet chemical method. This surface-enhanced Raman scattering (SERS) substrate not only showed excellent reutilization capabilities by the simple NaBH4 washing, but also could reach a detection limit for drop-dried rhodamine 6G molecules as low as 10-16 M. More importantly, this substrate could be used to monitor the in situ reduction of 4-nitrothiophenol by NaBH4 using SERS spectroscopy. Our findings demonstrate that the bifunctional substrate can serve as a powerful system for the real-time in situ SERS monitoring of catalytic reactions, which should be beneficial for new catalyst exploration.

  10. Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T1 shortening

    NASA Astrophysics Data System (ADS)

    Bruckman, Michael A.; Yu, Xin; Steinmetz, Nicole F.

    2013-11-01

    Magnetic resonance imaging (MRI) is a noninvasive imaging technique capable of obtaining high-resolution anatomical images of the body. Major drawbacks of MRI are the low contrast agent sensitivity and inability to distinguish healthy tissue from diseased tissue, making early detection challenging. To address this technological hurdle, paramagnetic contrast agents have been developed to increase the longitudinal relaxivity, leading to an increased signal-to-noise ratio. This review focuses on methods and principles that enabled the design and engineering of nanoparticles to deliver contrast agents with enhanced ionic relaxivities. Different engineering strategies and nanoparticle platforms will be compared in terms of their manufacturability, biocompatibility properties, and their overall potential to make an impact in clinical MR imaging.

  11. Interfacial Engineering of Hierarchical Transition Metal Oxide Heterostructures for Highly Sensitive Sensing of Hydrogen Peroxide.

    PubMed

    Zhang, Wen; Fan, Guozheng; Yi, Huan; Jia, Gan; Li, Zhaosheng; Yuan, Chunwei; Bai, Yunfei; Fu, Degang

    2018-05-01

    Hydrogen peroxide (H 2 O 2 ) is a major messenger molecule in cellular signal transduction. Direct detection of H 2 O 2 in complex environments provides the capability to illuminate its various biological functions. With this in mind, a novel electrochemical approach is here proposed by integrating a series of CoO nanostructures on CuO backbone at electrode interfaces. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction, and X-ray photoelectron spectroscopy demonstrate successful formation of core-shell CuO-CoO hetero-nanostructures. Theoretical calculations further confirm energy-favorable adsorption of H 2 O 2 on surface sites of CuO-CoO heterostructures. Contributing to the efficient electron transfer path and enhanced capture of H 2 O 2 in the unique leaf-like CuO-CoO hierarchical 3D interface, an optimal biosensor-based CuO-CoO-2.5 h electrode exhibits an ultrahigh sensitivity (6349 µA m m -1 cm -2 ), excellent selectivity, and a wide detection range for H 2 O 2 , and is capable of monitoring endogenous H 2 O 2 derived from human lung carcinoma cells A549. The synergistic effects for enhanced H 2 O 2 adsorption in integrated CuO-CoO nanostructures and performance of the sensor suggest a potential for exploring pathological and physiological roles of reactive oxygen species like H 2 O 2 in biological systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gas electron multiplier (GEM) enhanced ionization chamber for fluorescence detector

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Kuczewski, A.

    2007-11-01

    Detecting dilute elements in thin materials using extended X-ray absorption fluorescence spectroscopy (EXAFS) method requires a detector capable of high count rate and low noise. For detection of dilute elements, the fluorescence signal amplitude is often overcome by the presence of noise or background interference. In this paper we have used a gas ionization chamber enhanced by a gas electron multiplier (GEM) to amplify the primary ionized electrons due to the X-ray fluorescence of a dilute element. The GEM provides an essentially noise free electron amplification of the signal primary photoelectrons. It provides a larger output current prior to the electronic amplification, allowing a lower gain amplifier with lower electronic circuit noise contribution and hence improved S/ N ratio. In addition, since the signal is produced only by electrons, and not from ion motion, the detector is capable of recording rapidly changing signals. Iron in an arbitrary tree leaf was used as a test sample. This sample was measured using our detector SUBRSAB, and also with Lytle and passivated implanted planar silicon (PIPS) detectors. An improvement in the signal amplitude by a factor of 20 and a factor of 2 are recorded for the proposed detector with respect to the Lytle and PIPS detectors, respectively. Although the gain in signal over the PIPS detector is small for this detector, its lack of sensitivity to light and its low and temperature-independent dark current are further advantages.

  13. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection.

    PubMed

    Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok

    2010-03-01

    Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.

  14. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.

    2017-08-01

    Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.

  16. Listening to membrane potential: photoacoustic voltage-sensitive dye recording.

    PubMed

    Zhang, Haichong K; Yan, Ping; Kang, Jeeun; Abou, Diane S; Le, Hanh N D; Jha, Abhinav K; Thorek, Daniel L J; Kang, Jin U; Rahmim, Arman; Wong, Dean F; Boctor, Emad M; Loew, Leslie M

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  17. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  18. Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view.

    PubMed

    Afifi, Maha; Lee, Elizabeth; Lukens, Lewis; Swanton, Clarence

    2015-09-01

    Far red light is known to penetrate soil and delay seed germination. Thiamethoxam as a seed treatment has been observed to enhance seed germination. No previous work has explored the effect of thiamethoxam on the physiological response of buried maize seed when germinating in the presence of above-ground weeds. We hypothesised that the changes in red:far red reflected from above-ground weeds would be detected by maize seed phytochrome and delay seed germination by decreasing the level of GA and increasing ABA. We further hypothesised that thiamethoxam would overcome this delay in germination. Thiamethoxam enhanced seed germination in the presence of above-ground weeds by increasing GA signalling and downregulating DELLA protein and ABA signalling genes. An increase in amylase activity and a degradation of starch were also observed. Far red reflected from the above-ground weeds was capable of penetrating below the soil surface and was detected by maize seed phytochrome. Thiamethoxam altered the effect of far red on seed germination by stimulating GA and inhibiting ABA synthesis. This is the first study to suggest that the mode of action of thiamethoxam involves both GA synthesis and ABA inhibition. © 2014 Society of Chemical Industry.

  19. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  20. Lead field theory provides a powerful tool for designing microelectrode array impedance measurements for biological cell detection and observation.

    PubMed

    Böttrich, Marcel; Tanskanen, Jarno M A; Hyttinen, Jari A K

    2017-06-26

    Our aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues. We propose the application of electromagnetic lead field theory and reciprocity for MEA design and measurement result interpretation. Further, we simulated impedance spectroscopy (IS) with two- and four-electrode setups and a biological cell to illustrate the tool in the assessment of the capabilities of given MEA electrode constellations for detecting cells on or in the vicinity of the microelectrodes. The results show the power of the lead field theory in electromagnetic simulations of cell-microelectrode systems depicting the fundamental differences of two- and four-electrode IS measurement configurations to detect cells. Accordingly, the use in MEA system design is demonstrated by assessing the differences between the two- and four-electrode IS configurations. Further, our results show how cells affect the lead fields in these MEA system, and how we can utilize the differences of the two- and four-electrode setups in cell detection. The COMSOL simulator model is provided freely in public domain as open source. Lead field theory can be successfully applied in MEA design for the IS based assessment of biological cells providing the necessary visualization and insight for MEA design. The proposed method is expected to enhance the design and usability of automated cell and tissue manipulation systems required for bioreactors, which are intended for the automated production of cell and tissue grafts for medical purposes. MEA systems are also intended for toxicology to assess the effects of chemicals on living cells. Our results demonstrate that lead field concept is expected to enhance also the development of such methods and devices.

  1. Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE

    NASA Astrophysics Data System (ADS)

    Roy, Soumya S.; Stevanato, Gabriele; Rayner, Peter J.; Duckett, Simon B.

    2017-12-01

    Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼ 3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.

  2. Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE.

    PubMed

    Roy, Soumya S; Stevanato, Gabriele; Rayner, Peter J; Duckett, Simon B

    2017-12-01

    Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15 N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15 N signal enhancement within 2 s of RF pulsing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by loop-mediated isothermal amplification (LAMP).

    PubMed

    Grab, Dennis J; Nikolskaia, Olga V; Inoue, Noboru; Thekisoe, Oriel M M; Morrison, Liam J; Gibson, Wendy; Dumler, J Stephen

    2011-08-01

    The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3) per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay. For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3) parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards. This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.

  4. Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica†

    PubMed Central

    Kong, Xianming; Xi, Yuting; LeDuff, Paul; Li, Erwen; Liu, Ye; Cheng, Li-Jing; Rorrer, Gregory L.; Tan, Hua; Wang, Alan X.

    2016-01-01

    Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106–107) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10−17 g trinitrotoluene from only 200 nanoliter solution. PMID:27714122

  5. Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects

    NASA Astrophysics Data System (ADS)

    Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.

    2018-02-01

    We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.

  6. Science & Technology Review May 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide III, M B

    2006-04-03

    This month's issue has the following articles: (1) Science and Technology Help the Nation Counter Terrorism--Commentary by Raymond J. Juzaitis; (2) Imagers Provide Eyes to See Gamma Rays--Gamma-ray imagers provide increased radiation detection capabilities and enhance the nation's arsenal for homeland security; (3) Protecting the Nation's Livestock--Foot-and-mouth disease could devastate America's livestock; a new assay provides a rapid means to detect it; (4) Measures for Measures--Laboratory physicists combine emissivity and reflectivity to achieve highly accurate temperature measurements of metal foils; and (5) Looping through the Lamb Shift--Livermore scientists measured a small perturbation in the spectra of highly ionized uranium--the firstmore » measurement of the two-loop Lamb shift in a bound state.« less

  7. i-TED: A novel concept for high-sensitivity (n,γ) cross-section measurements

    NASA Astrophysics Data System (ADS)

    Domingo-Pardo, C.

    2016-07-01

    A new method for measuring (n , γ) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features γ-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture γ-rays arising from the sample under study and background γ-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.

  8. Distant touch hydrodynamic imaging with an artificial lateral line.

    PubMed

    Yang, Yingchen; Chen, Jack; Engel, Jonathan; Pandya, Saunvit; Chen, Nannan; Tucker, Craig; Coombs, Sheryl; Jones, Douglas L; Liu, Chang

    2006-12-12

    Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment.

  9. The Potential of Sonic IR to Inspect Aircraft Components Traditionally Inspected with Fluorescent Penetrant and or Magnetic Particle Inspection

    NASA Astrophysics Data System (ADS)

    DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.

    2006-03-01

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.

  10. Optical coherence tomography in the diagnosis of dysplasia and adenocarcinoma in Barret's esophagus

    NASA Astrophysics Data System (ADS)

    Gladkova, N. D.; Zagaynova, E. V.; Zuccaro, G.; Kareta, M. V.; Feldchtein, F. I.; Balalaeva, I. V.; Balandina, E. B.

    2007-02-01

    Statistical analysis of endoscopic optical coherence tomography (EOCT) surveillance of 78 patients with Barrett's esophagus (BE) is presented in this study. The sensitivity of OCT device in retrospective open detection of early malignancy (including high grade dysplasia and intramucosal adenocarcinoma (IMAC)) was 75%, specificity 82%, diagnostic accuracy - 80%, positive predictive value- 60%, negative predictive value- 87%. In the open recognition of IMAC sensitivity was 81% and specificity were 85% each. Results of a blind recognition with the same material were similar: sensitivity - 77%, specificity 85%, diagnostic accuracy - 82%, positive predictive value- 70%, negative predictive value- 87%. As the endoscopic detection of early malignancy is problematic, OCT holds great promise in enhancing the diagnostic capability of clinical GI endoscopy.

  11. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  12. Prototype high resolution multienergy soft x-ray array for NSTX.

    PubMed

    Tritz, K; Stutman, D; Delgado-Aparicio, L; Finkenthal, M; Kaita, R; Roquemore, L

    2010-10-01

    A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T(e) in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.

  13. Carbon nanotube-based labels for highly sensitive colorimetric and aggregation-based visual detection of nucleic acids

    NASA Astrophysics Data System (ADS)

    Lee, Ai Cheng; Ye, Jian-Shan; Ngin Tan, Swee; Poenar, Daniel P.; Sheu, Fwu-Shan; Kiat Heng, Chew; Meng Lim, Tit

    2007-11-01

    A novel carbon nanotube (CNT) derived label capable of dramatic signal amplification of nucleic acid detection and direct visual detection of target hybridization has been developed. Highly sensitive colorimetric detection of human acute lymphocytic leukemia (ALL) related oncogene sequences amplified by the novel CNT-based label was demonstrated. Atomic force microscope (AFM) images confirmed that a monolayer of horseradish peroxidase and detection probe molecules was immobilized along the carboxylated CNT carrier. The resulting CNT labels significantly enhanced the nucleic acid assay sensitivity by at least 1000 times compared to that of conventional labels used in enzyme-linked oligosorbent assay (ELOSA). An excellent detection limit of 1 × 10-12 M (60 × 10-18 mol in 60 µl) and a four-order wide dynamic range of target concentration were achieved. Hybridizations using these labels were coupled to a concentration-dependent formation of visible dark aggregates. Targets can thus be detected simply with visual inspection, eliminating the need for expensive and sophisticated detection systems. The approach holds promise for ultrasensitive and low cost visual inspection and colorimetric nucleic acid detection in point-of-care and early disease diagnostic application.

  14. Evaluation of immunomagnetic separation for the detection of Salmonella in surface waters by polymerase chain reaction.

    PubMed

    Hsu, Chao-Yu; Hsu, Bing-Mu; Chang, Tien-Yu; Hsu, Tsui-Kang; Shen, Shu-Min; Chiu, Yi-Chou; Wang, Hung-Jen; Ji, Wen-Tsai; Fan, Cheng-Wei; Chen, Jyh-Larng

    2014-09-19

    Salmonella spp. is associated with fecal pollution and capable of surviving for long periods in aquatic environments. Instead of the traditional, time-consuming biochemical detection, polymerase chain reaction (PCR) allows rapid identification of Salmonella directly concentrated from water samples. However, prevalence of Salmonella may be underestimated because of the vulnerability of PCR to various environmental chemicals like humic acid, compounded by the fact that various DNA polymerases have different susceptibility to humic acid. Because immunomagnetic separation (IMS) theoretically could isolate Salmonella from other microbes and facilitate removal of aquatic PCR inhibitors of different sizes, this study aims to compare the efficiency of conventional PCR combined with immunomagnetic separation (IMS) for Salmonella detection within a moderately polluted watershed. In our study, the positive rate was increased from 17.6% to 47% with nearly ten-fold improvement in the detection limit. These results suggest the sensitivity of Salmonella detection could be enhanced by IMS, particularly in low quality surface waters. Due to its effects on clearance of aquatic pollutants, IMS may be suitable for most DNA polymerases for Salmonella detection.

  15. Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells

    PubMed Central

    Metzler, Philipp; Pilarczyk, Götz; Bobu, Vladimir; Kriz, Wilhelm; Hosser, Hiltraud; Fleckenstein, Jens; Krufczik, Matthias; Bestvater, Felix; Wenz, Frederik; Hausmann, Michael

    2018-01-01

    Localization microscopy has shown to be capable of systematic investigations on the arrangement and counting of cellular uptake of gold nanoparticles (GNP) with nanometer resolution. In this article, we show that the application of specially modified RNA targeting gold nanoparticles (“SmartFlares”) can result in ring like shaped GNP arrangements around the cell nucleus. Transmission electron microscopy revealed GNP accumulation in vicinity to the intracellular membrane structures including them of the endoplasmatic reticulum. A quantification of the radio therapeutic dose enhancement as a proof of principle was conducted with γH2AX foci analysis: The application of both—SmartFlares and unmodified GNPs—lead to a significant dose enhancement with a factor of up to 1.2 times the dose deposition compared to non-treated breast cancer cells. This enhancement effect was even more pronounced for SmartFlares. Furthermore, it was shown that a magnetic field of 1 Tesla simultaneously applied during irradiation has no detectable influence on neither the structure nor the dose enhancement dealt by gold nanoparticles. PMID:29346397

  16. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    DOE PAGES

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; ...

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less

  17. Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu

    2006-01-01

    Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.

  18. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    NASA Astrophysics Data System (ADS)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect. Upon hybridization with their complimentary target DNAs, hairpin structures were opened and the fluorescence enhancement from each GNR sensing spot was measured by fluorescence scanning. We demonstrated multiple DNA sequences were simultaneously detected at a picomolar level with high-throughput capability using the ordered GNR array biochip.

  19. Focus on Mechanical Failures: Mechanisms and Detection. Proceedings of the Meeting (45th) of the Mechanical Failures Prevention Group Held in Annapolis, Maryland on April 9 - 11, 1999

    DTIC Science & Technology

    1991-04-04

    solution to this immediate problem and, as the technology developed, opened doors to applied tribology for advanced maintenance through Mechanical Systems...Integrity Management. The development of other technologies as well enhanced Spectron’s capability, but it was the major advances in electronics and...strain gages will also be studied. The results of this program will provide a basis for future work in the area of advanced sensor technology . ONCUBSIONS

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hao, E-mail: hc000211@ohio.edu; Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701; Cummings, Marvin

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beammore » attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hao; Cummings, Marvin L.; Shirato, Nozomi

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the requiredmore » beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.« less

  2. Engine throat/nozzle optics for plume spectroscopy

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Duncan, D. B.

    1991-01-01

    The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.

  3. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian

    2018-01-01

    Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.

  4. Enhanced AIS receiver design for satellite reception

    NASA Astrophysics Data System (ADS)

    Clazzer, Federico; Lázaro, Francisco; Plass, Simon

    2016-12-01

    The possibility to detect Automatic Identification System (AIS) messages from low earth orbit (LEO) satellites paves the road for a plurality of new and unexplored services. Besides worldwide tracking of vessels, maritime traffic monitoring, analysis of vessel routes employing big data, and oceans monitoring are just few of the fields, where satellite-aided AIS is beneficial. Designed for ship-to-ship communication and collision avoidance, AIS satellite reception performs poorly in regions with a high density of vessels. This calls for the development of advanced satellite AIS receivers able to improve the decoding capabilities. In this context, our contribution focuses on the introduction of a new enhanced AIS receiver design and its performance evaluation. The enhanced receiver makes use of a coherent receiver for the low signal-to-noise ratio (SNR) region, while for medium to high SNRs, a differential Viterbi receiver is used. Additional novelty of our work is in the exploitation of previously decoded packets from one vessel that is still under the LEO reception range, to improve the vessel detection probability. The assessment of the performance against a common receiver is done making the use of a simple and tight model of the medium access (MAC) layer and the multi-packet reception (MPR) matrix for physical layer (PHY) representation. Performance results show the benefits of such enhanced receiver, especially when it is bundled with successive interference cancellation (SIC).

  5. APOBEC4 Enhances the Replication of HIV-1

    PubMed Central

    Hofmann, Henning; Hanschmann, Kay-Martin; Mühlebach, Michael D.; Schumann, Gerald G.; König, Renate; Cichutek, Klaus; Häussinger, Dieter; Münk, Carsten

    2016-01-01

    APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters. PMID:27249646

  6. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  7. Comprehensive two-dimensional gas chromatography with flame ionization and time-of-flight mass spectrometry detection: qualitative and quantitative analysis of West Australian sandalwood oil.

    PubMed

    Shellie, Robert; Marriott, Philip; Morrison, Paul

    2004-09-01

    The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.

  8. Band-Moment Compression of AVIRIS Hyperspectral Data and its Use in the Detection of Vegetation Stress

    NASA Technical Reports Server (NTRS)

    Estep, L.; Davis, B.

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data were collected over the site in 224 bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to reduce data load while maintaining or enhancing algorithm performance for vegetation stress detection, band-moment compression and analysis was applied to the AVIRIS image cube. The results indicated that band-moment techniques compress the AVIRIS dataset significantly while retaining the capability of detecting environmentally induced vegetation stress.

  9. The BEFWM system for detection and phase conjugation of a weak laser beam

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2007-09-01

    Real environmental conditions, such as atmospheric turbulence and aero-optics effects, make practical implementation of the object-in-the-loop (TIL) algorithm a very difficult task, especially when the system is set to operate with a signal from the diffuse surface image-resolved object. The problem becomes even more complex since for the remote object the intensity of the returned signal is extremely low. This presentation discusses the results of an analysis and experimental verification of a thresholdless coherent signal receiving system, capable not only in high-sensitivity detection of an ultra weak object-scattered light, but also in its high-gain amplification and phase conjugation. The process of coherent detection by using the Brillouin Enhanced Four Wave Mixing (BEFWM) enables retrieval of complete information on the received signal, including accurate measurement of its wavefront. This information can be used for direct real-time control of the adaptive mirror.

  10. On deception detection in multi-agent systems and deception intent

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Li, Deqing; Yuan, Xiuqing

    2008-04-01

    Deception detection plays an important role in the military decision-making process, but detecting deception is a challenging task. The deception planning process involves a number of human factors. It is intent-driven where intentions are usually hidden or not easily observable. As a result, in order to detect deception, any adversary model must have the capability to capture the adversary's intent. This paper discusses deception detection in multi-agent systems and in adversary modeling. We examined psychological and cognitive science research on deception and implemented various theories of deception within our approach. First, in multi-agent expert systems, one detection method uses correlations between agents to predict reasonable opinions/responses of other agents (Santos & Johnson, 2004). We further explore this idea and present studies that show the impact of different factors on detection success rate. Second, from adversary modeling, our detection method focuses on inferring adversary intent. By combining deception "branches" with intent inference models, we can estimate an adversary's deceptive activities and at the same time enhance intent inference. Two major kinds of deceptions are developed in this approach in different fashions. Simulative deception attempts to find inconsistency in observables, while dissimulative deception emphasizes the inference of enemy intentions.

  11. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    PubMed

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  13. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging.

    PubMed

    Gurton, Kristan P; Felton, Melvin

    2012-09-24

    We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances. Results span a three-year time period in which three different LWIR polarimetric camera systems are used. All three polarimetric imaging platforms used a spinning-achromatic-retarder (SAR) design capable of achieving high polarimetric frame rates and good radiometric throughput without the loss of spatial resolution inherent in other optical designs. Receiver-operating-characteristic (ROC) analysis and a standardized contrast parameter are used to compare detectability between conventional LWIR thermal and polarimetric imagery. Results suggest improved detectability, regardless of geographic location or soil type.

  14. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection.

    PubMed

    Wang, Lijiang; Liu, Qingjun; Hu, Zhaoying; Zhang, Yuanfan; Wu, Chunsheng; Yang, Mo; Wang, Ping

    2009-05-15

    A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.

  15. Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source

    NASA Astrophysics Data System (ADS)

    Fujii, Hayato; Setiadi, Agung; Kuwahara, Yuji; Akai-Kasaya, Megumi

    2017-09-01

    Stochastic resonance (SR) is an intrinsic noise usage system for small-signal sensing found in various living creatures. The noise-enhanced signal transmission and detection system, which is probabilistic but consumes low power, has not been used in modern electronics. We demonstrated SR in a summing network based on a single-walled carbon nanotube (SWNT) device that detects small subthreshold signals with very low current flow. The nonlinear current-voltage characteristics of this SWNT device, which incorporated Cr electrodes, were used as the threshold level of signal detection. The adsorption of redox-active polyoxometalate molecules on SWNTs generated additional noise, which was utilized as a self-noise source. To form a summing network SR device, a large number of SWNTs were aligned parallel to each other between the electrodes, which increased the signal detection ability. The functional capabilities of the present small-size summing network SR device, which rely on dense nanomaterials and exploit intrinsic spontaneous noise at room temperature, offer a glimpse of future bio-inspired electronic devices.

  16. Harnessing Raman spectroimmunoassay for detection of serological breast cancer markers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barman, Ishan; Li, Ming

    2017-02-01

    Two critical, unmet needs in breast cancer are the early detection of cancer metastasis and recurrence, and the sensitive assessment of temporal changes in tumor burden in response to therapy. The present research is directed towards developing a non-invasive, ultrasensitive and specific tool that provides a comprehensive real-time picture of the metastatic tumor burden and provides a radically new route to address these overarching challenges. As the continuing search for better diagnostic and prognostic clues has shifted away from a singular focus on primary tumor lesions, circulating and disseminated biomarkers have surfaced as attractive candidates due to the intrinsic advantages of a non-invasive, repeatable "liquid biopsy" procedure. However, a reproducible, facile blood-based test for diagnosis and follow-up of breast cancer has yet to be incorporated into a clinical laboratory assay due to the limitations of existing assays in terms of sensitivity, extensive sample processing requirements and, importantly, multiplexing capability. Here, by architecting nano-structured probes for detection of specific molecular species, we engineer a novel plasmon-enhanced Raman spectroscopic platform that offers a paradigmatic shift from the capabilities of today's diagnostic test platforms. Specifically, quantitative single-droplet serum tests reveal ultrasensitive and multiplexed detection of three key breast cancer biomarkers, cancer antigen 15-3 (CA15-3), CA27-29 and carcinoembryonic antigen (CEA), over several order of magnitude range of biomarker concentration and clear segmentation of the sera between normal and metastatic cancer levels.

  17. Performance characterization of a combined material identification and screening algorithm

    NASA Astrophysics Data System (ADS)

    Green, Robert L.; Hargreaves, Michael D.; Gardner, Craig M.

    2013-05-01

    Portable analytical devices based on a gamut of technologies (Infrared, Raman, X-Ray Fluorescence, Mass Spectrometry, etc.) are now widely available. These tools have seen increasing adoption for field-based assessment by diverse users including military, emergency response, and law enforcement. Frequently, end-users of portable devices are non-scientists who rely on embedded software and the associated algorithms to convert collected data into actionable information. Two classes of problems commonly encountered in field applications are identification and screening. Identification algorithms are designed to scour a library of known materials and determine whether the unknown measurement is consistent with a stored response (or combination of stored responses). Such algorithms can be used to identify a material from many thousands of possible candidates. Screening algorithms evaluate whether at least a subset of features in an unknown measurement correspond to one or more specific substances of interest and are typically configured to detect from a small list potential target analytes. Thus, screening algorithms are much less broadly applicable than identification algorithms; however, they typically provide higher detection rates which makes them attractive for specific applications such as chemical warfare agent or narcotics detection. This paper will present an overview and performance characterization of a combined identification/screening algorithm that has recently been developed. It will be shown that the combined algorithm provides enhanced detection capability more typical of screening algorithms while maintaining a broad identification capability. Additionally, we will highlight how this approach can enable users to incorporate situational awareness during a response.

  18. Pulsed magnetic flux leakage method for hairline crack detection and characterization

    NASA Astrophysics Data System (ADS)

    Okolo, Chukwunonso K.; Meydan, Turgut

    2018-04-01

    The Magnetic Flux leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Testing (NDT), extensively used for evaluating defects both on the surface and far-surface of pipeline structures. However the conventional techniques are not capable of estimating their approximate size, location and orientation, hence an additional transducer is required to provide the extra information needed. This research is aimed at solving the inevitable problem of granular bond separation which occurs during manufacturing, leaving pipeline structures with miniature cracks. It reports on a quantitative approach based on the Pulsed Magnetic Flux Leakage (PMFL) method, for the detection and characterization of the signals produced by tangentially oriented rectangular surface and far-surface hairline cracks. This was achieved through visualization and 3D imaging of the leakage field. The investigation compared finite element numerical simulation with experimental data. Experiments were carried out using a 10mm thick low carbon steel plate containing artificial hairline cracks with various depth sizes, and different features were extracted from the transient signal. The influence of sensor lift-off and pulse width variation on the magnetic field distribution which affects the detection capability of various hairline cracks located at different depths in the specimen is explored. The findings show that the proposed technique can be used to classify both surface and far-surface hairline cracks and can form the basis for an enhanced hairline crack detection and characterization for pipeline health monitoring.

  19. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  20. Contrast-enhanced MR imaging of the brain using T1-weighted FLAIR with BLADE compared with a conventional spin-echo sequence.

    PubMed

    Naganawa, Shinji; Satake, Hiroko; Iwano, Shingo; Kawai, Hisashi; Kubota, Seiji; Komada, Tomohiro; Kawamura, Minako; Sakurai, Yasuo; Fukatsu, Hiroshi

    2008-02-01

    The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.

  1. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    PubMed

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spectroscopic Characteristic and Analytical Capability of Ar-N₂ Inductively Coupled Plasma in Axially Viewing Optical Emission Spectrometry.

    PubMed

    Ohata, Masaki

    2016-01-01

    The spectroscopic characteristics and analytical capability of argon-nitrogen (Ar-N2) inductively coupled plasma (ICP) in axially viewing optical emission spectrometry (OES) were examined and figures of merit were determined in the present study. The spectroscopic characteristics such as the emission intensity profile and the excitation temperature observed from the analytical zone of Ar-N2 ICP in axially viewing ICPOES, in order to elucidate the enhancement of the emission intensity of elements obtained in our previous study, were evaluated and compared to those of the standard ICP. The background and emission intensities of elements as well as their excitation behavior for both atom and ion lines were also examined. As results, a narrower emission intensity profile and an increased excitation temperature as well as enhancements for both background and emission intensities of elements, which could be due to the ICP shrunken as well as the enhancement of the interaction between the central channel of the ICP and samples introduced, were observed for Ar-N2 ICP in axially viewing OES. In addition, the elements with relatively higher excitation and ionization energies such as As, Bi, Cd, Ni, P, and Zn revealed larger enhancements of the emission intensities as well as improved limits of detection (LODs), which were also attributed to the enhanced interaction between Ar-N2 ICP and the samples. Since the Ar-N2 ICP could be obtained easily only by the addition of a small amount of N2 gas to the Ar plasma gas of the standard ICP and no optimization on the alignment between Ar-N2 ICP and the spectrometer in commercially available ICPOES instruments was needed, it could be utilized as simple and optional excitation and ionization sources in axially viewing ICPOES.

  3. Resourcing interventions enhance psychology support capabilities in special operations forces.

    PubMed

    Myatt, Craig A; Auzenne, J W

    2012-01-01

    This study provides an examination of approaches to United States Government (USG) resourcing interventions on a national scale that enhance psychology support capabilities in the Special Operations Forces (SOF) community. A review of Congressional legislation and resourcing trends in the form of authorizations and appropriations since 2006 demonstrates how Congress supported enhanced psychology support capabilities throughout the Armed Forces and in SOF supporting innovative command interests that address adverse affects of operations tempo behavioral effects (OTBE). The formulation of meaningful metrics to address SOF specific command interests led to a personnel tempo (PERSTEMPO) analysis in response to findings compiled by the Preservation of the Force and Families (POTFF) Task Force. The review of PERSTEMPO data at subordinate command and unit levels enhances the capability of SOF leaders to develop policy and guidance on training and operational planning that mitigates OTBE and maximizes resourcing authorizations. A major challenge faced by the DoD is in providing behavioral healthcare that meets public and legislative demands while proving suitable and sustainable at all levels of military operations: strategic, operational, and tactical. Current legislative authorizations offer a mechanism of command advocacy for resourced multi-functional program development that enhances psychology support capabilities while reinforcing SOF readiness and performance. 2012.

  4. Near real-time space-time cluster analysis for detection of enteric disease outbreaks in a community setting.

    PubMed

    Glatman-Freedman, Aharona; Kaufman, Zalman; Kopel, Eran; Bassal, Ravit; Taran, Diana; Valinsky, Lea; Agmon, Vered; Shpriz, Manor; Cohen, Daniel; Anis, Emilia; Shohat, Tamy

    2016-08-01

    To enhance timely surveillance of bacterial enteric pathogens, space-time cluster analysis was introduced in Israel in May 2013. Stool isolation data of Salmonella, Shigella, and Campylobacter from patients of a large Health Maintenance Organization were analyzed weekly by ArcGIS and SaTScan, and cluster results were sent promptly to local departments of health (LDOHs). During eighteen months, we identified 52 Shigella sonnei clusters, two Salmonella clusters, and no Campylobacter clusters. S. sonnei clusters lasted from one to 33 days and included three to 30 individuals. Thirty-one (60%) of the S. sonnei clusters were known to LDOHs prior to cluster analysis. Clusters not previously known by the LDOHs prompted epidemiologic investigations. In 31 of the 37 (84%) confirmed clusters, educational institutes (nursery schools, kindergartens, and a primary school) were involved. Cluster analysis demonstrated capability to complement enteric disease surveillance. Scaling up the system can further enhance timely detection and control of outbreaks. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  5. Late diagenetic indicators of buried oil and gas: II, Direct detection experiment at Cement and Garza oil fields, Oklahoma and Texas, using enhanced LANDSAT I and II images

    USGS Publications Warehouse

    Donovan, Terrence J.; Termain, Patricia A.; Henry, Mitchell E.

    1979-01-01

    The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite are the major alteration phenomena at Cement. The bedrock alterations are partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters biased by detailed ground truth were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation. Similar techniques were applied at a secondary test site (Garza oil field, Texas), where similar alterations in surface rocks occur. Enhanced LANDSAT images resolved the alteration zone to a biased interpreter and some individual altered outcrops could be mapped using higher resolution SKYLAB color and conventional black and white aerial photographs suggesting repeat experiments with LANDSAT C and D.

  6. Self-recovery fragile watermarking algorithm based on SPHIT

    NASA Astrophysics Data System (ADS)

    Xin, Li Ping

    2015-12-01

    A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.

  7. Enhancing student awareness and faculty capabilities in transportation

    DOT National Transportation Integrated Search

    2007-12-01

    The Civil, Architectural, and Environmental Engineering (CArEE) Department requests support from the MST UTC to fund activities related to enhancing student awareness of transportation issues and faculty capabilities in select areas of transportation...

  8. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  9. Recording membrane potential changes through photoacoustic voltage sensitive dye

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.

    2017-03-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.

  10. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  11. a Framework of Change Detection Based on Combined Morphologica Features and Multi-Index Classification

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, S.; Yang, D.

    2017-09-01

    Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.

  12. Late diagenetic indicators of buried oil and gas. 2: Direct detection experiment at Cement and Garza fields, Oklahoma and Texas, using enhanced LANDSAT 1 and 2 images

    NASA Technical Reports Server (NTRS)

    Donovan, T. J.; Termain, P. A.; Henry, M. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite were the major alteration phenomena at Cement. The bedrock alterations were partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters, biased by detailed ground truth, were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation.

  13. Identical synchronization of chaotic secure communication systems with channel induced coherence resonance

    NASA Astrophysics Data System (ADS)

    Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.

    2016-05-01

    This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.

  14. Methods for molecular surveillance of influenza.

    PubMed

    Wang, Ruixue; Taubenberger, Jeffery K

    2010-05-01

    Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable progress on the detection and molecular characterization of influenza virus infections in clinical, mammalian, domestic poultry and wild bird samples in recent years. The application of these techniques, including reverse transcriptase-PCR, real-time PCR, microarrays and other nucleic acid sequencing-based amplifications, have greatly enhanced the capability for surveillance and characterization of influenza viruses.

  15. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  16. SERS-based viral fingerprinting: current capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Driskell, J. D.; Abell, J. L.; Dluhy, R. A.; Zhao, Y.-P.; Tripp, R. A.

    2010-04-01

    Silver nanorod array substrates are fabricated by oblique angle deposition and characterized for optimal SERS performance. Using UV-visible-NIR spectrophotometry we show that the nanorods have a transverse surface plasmon resonance mode at ~357 nm and a broad absorbance spanning 600-800 nm when excited along the longitudinal direction. We demonstrate that SERS enhancement is optimized using an excitation wavelength of 633 or 785 nm. The large area uniformity in SERS signal (<10% variation) and reproducibility among preparations (<15% variation) provides a unique opportunity for SERS-based whole-organism fingerprinting. Egg prepared avian influenza virus and clinical sputum samples of human influenza virus were investigated to demonstrate SERS-based detection of a virus in a complex sample matrix and to assess the effect of different background matrices on the detection of similar viruses.

  17. Nanoplasmonic sensors for biointerfacial science.

    PubMed

    Jackman, Joshua A; Rahim Ferhan, Abdul; Cho, Nam-Joon

    2017-06-19

    In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.

  18. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.

    PubMed

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C

    2017-10-30

    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  19. Surface modification of the TiO2 nanoparticle surface enables fluorescence monitoring of aggregation and enhanced photoreactivity.

    PubMed

    Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias

    2013-01-01

    Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.

  20. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  1. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  2. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection.

    PubMed

    Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.

  3. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  4. Hyperspectral imaging applied to forensic medicine

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.; Oliver, William R.

    2000-03-01

    Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.

  5. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  6. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    PubMed

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  7. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.

    PubMed

    Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna

    2010-10-15

    Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Bridging the health security divide: department of defense support for the global health security agenda.

    PubMed

    Moudy, Robin M; Ingerson-Mahar, Michael; Kanter, Jordan; Grant, Ashley M; Fisher, Dara R; Jones, Franca R

    2014-01-01

    In 2011, President Obama addressed the United Nations General Assembly and urged the global community to come together to prevent, detect, and fight every kind of biological danger, whether a pandemic, terrorist threat, or treatable disease. Over the past decade, the United States and key international partners have addressed these dangers through a variety of programs and strategies aimed at developing and enhancing countries' capacity to rapidly detect, assess, report, and respond to acute biological threats. Despite our collective efforts, however, an increasingly interconnected world presents heightened opportunities for human, animal, and zoonotic diseases to emerge and spread globally. Further, the technical capabilities required to develop biological agents into a weapon are relatively low. The launch of the Global Health Security Agenda (GHSA) provides an opportunity for the international community to enhance the linkages between the health and security sectors, accelerating global efforts to prevent avoidable epidemics and bioterrorism, detect threats early, and respond rapidly and effectively to biological threats. The US Department of Defense (DoD) plays a key role in achieving GHSA objectives through its force health protection, threat reduction, and biodefense efforts at home and abroad. This article focuses on GHSA activities conducted in the DoD Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense.

  9. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    PubMed Central

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-01-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004

  10. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    NASA Astrophysics Data System (ADS)

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-10-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  11. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound.

    PubMed

    Pope, Ava G; Wu, Gongting; McWhorter, Frances Y; Merricks, Elizabeth P; Nichols, Timothy C; Czernuszewicz, Tomasz J; Gallippi, Caterina M; Oldenburg, Amy L

    2013-10-21

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml(-1) Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  12. High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device.

    PubMed

    Garai, Ellis; Sensarn, Steven; Zavaleta, Cristina L; Van de Sompel, Dominique; Loewke, Nathan O; Mandella, Michael J; Gambhir, Sanjiv S; Contag, Christopher H

    2013-09-01

    Topical application and quantification of targeted, surface-enhanced Raman scattering (SERS) nanoparticles offer a new technique that has the potential for early detection of epithelial cancers of hollow organs. Although less toxic than intravenous delivery, the additional washing required to remove unbound nanoparticles cannot necessarily eliminate nonspecific pooling. Therefore, we developed a real-time, ratiometric imaging technique to determine the relative concentrations of at least two spectrally unique nanoparticle types, where one serves as a nontargeted control. This approach improves the specific detection of bound, targeted nanoparticles by adjusting for working distance and for any nonspecific accumulation following washing. We engineered hardware and software to acquire SERS signals and ratios in real time and display them via a graphical user interface. We report quantitative, ratiometric imaging with nanoparticles at pM and sub-pM concentrations and at varying working distances, up to 50 mm. Additionally, we discuss optimization of a Raman endoscope by evaluating the effects of lens material and fiber coating on background noise, and theoretically modeling and simulating collection efficiency at various working distances. This work will enable the development of a clinically translatable, noncontact Raman endoscope capable of rapidly scanning large, topographically complex tissue surfaces for small and otherwise hard to detect lesions.

  13. Comparative assessment of amphibious hearing in pinnipeds.

    PubMed

    Reichmuth, Colleen; Holt, Marla M; Mulsow, Jason; Sills, Jillian M; Southall, Brandon L

    2013-06-01

    Auditory sensitivity in pinnipeds is influenced by the need to balance efficient sound detection in two vastly different physical environments. Previous comparisons between aerial and underwater hearing capabilities have considered media-dependent differences relative to auditory anatomy, acoustic communication, ecology, and amphibious life history. New data for several species, including recently published audiograms and previously unreported measurements obtained in quiet conditions, necessitate a re-evaluation of amphibious hearing in pinnipeds. Several findings related to underwater hearing are consistent with earlier assessments, including an expanded frequency range of best hearing in true seals that spans at least six octaves. The most notable new results indicate markedly better aerial sensitivity in two seals (Phoca vitulina and Mirounga angustirostris) and one sea lion (Zalophus californianus), likely attributable to improved ambient noise control in test enclosures. An updated comparative analysis alters conventional views and demonstrates that these amphibious pinnipeds have not necessarily sacrificed aerial hearing capabilities in favor of enhanced underwater sound reception. Despite possessing underwater hearing that is nearly as sensitive as fully aquatic cetaceans and sirenians, many seals and sea lions have retained acute aerial hearing capabilities rivaling those of terrestrial carnivores.

  14. Evaluating the automated blood glucose pattern detection and case-retrieval modules of the 4 Diabetes Support System.

    PubMed

    Schwartz, Frank L; Vernier, Stanley J; Shubrook, Jay H; Marling, Cynthia R

    2010-11-01

    We have developed a prototypical case-based reasoning system to enhance management of patients with type 1 diabetes mellitus (T1DM). The system is capable of automatically analyzing large volumes of life events, self-monitoring of blood glucose readings, continuous glucose monitoring system results, and insulin pump data to detect clinical problems. In a preliminary study, manual entry of large volumes of life-event and other data was too burdensome for patients. In this study, life-event and pump data collection were automated, and then the system was reevaluated. Twenty-three adult T1DM patients on insulin pumps completed the five-week study. A usual daily schedule was entered into the database, and patients were only required to upload their insulin pump data to Medtronic's CareLink® Web site weekly. Situation assessment routines were run weekly for each participant to detect possible problems, and once the trial was completed, the case-retrieval module was tested. Using the situation assessment routines previously developed, the system found 295 possible problems. The enhanced system detected only 2.6 problems per patient per week compared to 4.9 problems per patient per week in the preliminary study (p=.017). Problems detected by the system were correctly identified in 97.9% of the cases, and 96.1% of these were clinically useful. With less life-event data, the system is unable to detect certain clinical problems and detects fewer problems overall. Additional work is needed to provide device/software interfaces that allow patients to provide this data quickly and conveniently. © 2010 Diabetes Technology Society.

  15. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.

    PubMed

    Hakonen, Aron; Andersson, Per Ola; Stenbæk Schmidt, Michael; Rindzevicius, Tomas; Käll, Mikael

    2015-09-17

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Detecting small scale CO2 emission structures using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen

    2016-04-01

    Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology

  17. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  18. Hybrid optofluidic biosensors

    NASA Astrophysics Data System (ADS)

    Parks, Joshua W.

    Optofluidics, born of the desire to create a system containing microfluidic environments with integrated optical elements, has seen dramatic increases in popularity over the last 10 years. In particular, the application of this technology towards chip based molecular sensors has undergone significant development. The most sensitive of these biosensors interface liquid- and solid-core antiresonant reflecting optical waveguides (ARROWs). These sensor chips are created using conventional silicon microfabrication. As such, ARROW technology has previously been unable to utilize state-of-the-art microfluidic developments because the technology used--soft polydimethyl siloxane (PDMS) micromolded chips--is unamenable to the silicon microfabrication workflows implemented in the creation of ARROW detection chips. The original goal of this thesis was to employ hybrid integration, or the connection of independently designed and fabricated optofluidic and microfluidic chips, to create enhanced biosensors with the capability of processing and detecting biological samples on a single hybrid system. After successful demonstration of this paradigm, this work expanded into a new direction--direct integration of sensing and detection technologies on a new platform with dynamic, multi-dimensional photonic re-configurability. This thesis reports a number of firsts, including: • 1,000 fold optical transmission enhancement of ARROW optofluidic detection chips through thermal annealing, • Detection of single nucleic acids on a silicon-based ARROW chip, • Hybrid optofluidic integration of ARROW detection chips and passive PDMS microfluidic chips, • Hybrid optofluidic integration of ARROW detection chips and actively controllable PDMS microfluidic chips with integrated microvalves, • On-chip concentration and detection of clinical Ebola nucleic acids, • Multimode interference (MMI) waveguide based wavelength division multiplexing for detection of single influenza virions, • All PDMS platform created from monolithically integrated solid- and liquid-core waveguides with single particle detection efficiency and directly integrated microvalves, featuring: ∘ Tunable/tailorable PDMS MMI waveguides, ∘ Lightvalves (optical switch/fluidic microvalve) with the ability to dynamically control light and fluid flow simultaneously, ∘ Lightvalve trap architecture with the ability to physically trap, detect, and analyze single biomolecules.

  19. Oxide materials for spintronic device applications

    NASA Astrophysics Data System (ADS)

    Prestgard, Megan Campbell

    Spintronic devices are currently being researched as next-generation alternatives to traditional electronics. Electronics, which utilize the charge-carrying capabilities of electrons to store information, are fundamentally limited not only by size constraints, but also by limits on current flow and degradation, due to electro-migration. Spintronics devices are able to overcome these limitations, as their information storage is in the spin of electrons, rather than their charge. By using spin rather than charge, these current-limiting shortcomings can be easily overcome. However, for spintronic devices to be fully implemented into the current technology industry, their capabilities must be improved. Spintronic device operation relies on the movement and manipulation of spin-polarized electrons, in which there are three main processes that must be optimized in order to maximize device efficiencies. These spin-related processes are: the injection of spin-polarized electrons, the transport and manipulation of these carriers, and the detection of spin-polarized currents. In order to enhance the rate of spin-polarized injection, research has been focused on the use of alternative methods to enhance injection beyond that of a simple ferromagnetic metal/semiconductor injector interface. These alternatives include the use of oxide-based tunnel barriers and the modification of semiconductors and insulators for their use as ferromagnetic injector materials. The transport of spin-polarized carriers is heavily reliant on the optimization of materials' properties in order to enhance the carrier mobility and to quench spin-orbit coupling (SOC). However, a certain degree of SOC is necessary in order to allow for the electric-field, gate-controlled manipulation of spin currents. Spin detection can be performed via both optical and electrical techniques. Using electrical methods relies on the conversion between spin and charge currents via SOC and is often the preferred method for device-based applications. This dissertation presents experimental results on the use of oxides for fulfilling the three spintronic device requirements. In the case of spin injection, the study of dilute magnetic dielectrics (DMDs) shows the importance of doping on the magnetic properties of the resulting tunnel barriers. The study of spin transport in ZnO has shown that, even at room temperature, the spin diffusion length is relatively long, on the order of 100 nm. These studies have also probed the spin relaxation mechanics in ZnO and have shown that Dyakonov-Perel spin relaxation, operating according to Fermi-Dirac statistics, is the dominant spin relaxation mechanism in zinc oxide. Finally, spin detection in ZnO has shown that, similar to other semiconductors, by modifying the resistivity of the ZnO thin films, the spin Hall angle (SHA) can be enhanced to nearly that of metals. This is possible by enhancing extrinsic SOC due to skew-scattering from impurities as well as phonons. In addition, thermal spin injection has also been detected using ZnO, which results support the independently measured inverse spin-Hall effect studies. The work represented herein illustrates that oxide materials have the potential to enhance spintronic device potential in all processes pertinent to spintronic applications.

  20. Evaluation of LANDSAT MSS vs TM simulated data for distinguishing hydrothermal alteration

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Kahle, A. B.; Madura, D. P.; Soha, J. M.

    1978-01-01

    The LANDSAT Follow-On (LFO) data was simulated to demonstrate the mineral exploration capability of this system for segregating different types of hydrothermal alteration and to compare this capability with that of the existing LANDSAT system. Multispectral data were acquired for several test sites with the Bendix 24-channel MSDS scanner. Contrast enhancements, band ratioing, and principal component transformations were used to process the simulated LFO data for analysis. For Red Mountain, Arizona, the LFO data allowed identification of silicified areas, not identifiable with LANDSAT 1 and 2 data. The improved LFO resolution allowed detection of small silicic outcrops and of a narrow silicified dike. For Cuprite - Ralston, Nevada, the LFO spectral bands allowed discrimination of argillic and opalized altered areas; these could not be spectrally discriminated using LANDSAT 1 and 2 data. Addition of data from the 1.3- and 2.2- micrometer regions allowed better discriminations of hydrothermal alteration types.

  1. Processing of Cryo-EM Movie Data.

    PubMed

    Ripstein, Z A; Rubinstein, J L

    2016-01-01

    Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further. © 2016 Elsevier Inc. All rights reserved.

  2. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  3. Target Detection Routine (TADER). User’s Guide.

    DTIC Science & Technology

    1987-09-01

    o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set

  4. Research for new UAV capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  5. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.

  6. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  7. Cross delay line sensor characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, Israel J; Remelius, Dennis K; Tiee, Joe J

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less

  8. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap development process, findings, and recommendation

  9. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis.

    PubMed

    Zhang, Qiyang; Gong, Maojun

    2016-06-10

    Flow-gated capillary electrophoresis (CE) coupled with microdialysis has become an important tool for in vivo bioanalytical measurements because it is capable of performing rapid and efficient separations of complex biological mixtures thus enabling high temporal resolution in chemical monitoring. However, the limit of detection (LOD) is often limited to a micro- or nano-molar range while many important target analytes have picomolar or sub-nanomolar levels in brain and other tissues. To enhance the capability of flow-gated CE for catecholamine detection, a novel and simple on-line sample preconcentration method was developed exclusively for fluorescent derivatives of catecholamines that were fluorogenically derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The effective preconcentration coupled with the sensitive laser-induced fluorescence (LIF) detection lowered the LOD down to 20pM for norepinephrine (NE) and 50pM for dopamine (DA) at 3-fold of S/N ratio, and the signal enhancement was estimated to be over 100-fold relative to normal injection when standard analytes were dissolved in artificial cerebrospinal fluid (aCSF). The basic focusing principle is novel since the sample plug contains borate while the background electrolyte (BGE) is void of borate. This strategy took advantage of the complexation between diols and borate, through which one negative charge was added to the complex entity. The sample derivatization mixture was electrokinetically injected into a capillary via the flow-gated injection, and then NE and DA derivatives were selectively focused to a narrow zone by the reversible complexation. Separation of NE and DA derivatives was executed by incoming surfactants of cholate and deoxycholate mixed in the front BGE plug. This on-line preconcentration method was finally applied to the detection of DA in rat cerebrospinal fluid (CSF) via microdialysis and on-line derivatization. It is anticipated that the method would be valuable for in vivo monitoring of DA and NE in various brain regions of live animals on flow-gated CE or microchip platforms. Published by Elsevier B.V.

  10. Novel Raman Techniques for Imaging and Sensing

    NASA Astrophysics Data System (ADS)

    Edwards, Perry S.

    Raman scattering spectroscopy is extensively demonstrated as a label-free, chemically selective sensing and imaging technique for a multitude of chemical and biological applications. The ability to detect "fingerprint" spectral signatures of individual molecules, without the need to introduce chemical labelers, makes Raman scattering a powerful sensing technique. However, spectroscopy based on spontaneous Raman scattering traditionally suffers from inherently weak signals due to small Raman scattering cross-sections. Thus, considerable efforts have been put forth to find pathways towards enhancing Raman signals to bolster sensitivity for detecting small concentrations of molecules or particles. The development of coherent Raman techniques that can offer orders of magnitude increase in signal have garnered significant interest in recent years for their application in imaging; such techniques include coherent anti-Stokes Raman scattering and stimulated Raman scattering. Additionally, methods to enhance the local field of either the pump or generated Raman signal, such as through surface enhanced Raman scattering, have been investigated for their orders of magnitude improvement in sensitivity and single molecule sensing capability. The work presented in this dissertation describes novel techniques for performing high speed and highly sensitive Raman imaging as well as sensing applications towards bioimaging and biosensing. Coherent anti-Stokes Raman scattering (CARS) is combined with holography to enable recording of high-speed (single laser shot), wide field CARS holograms which can be used to reconstruct the both the amplitude and the phase of the anti-Stokes field therefore allowing 3D imaging. This dissertation explores CARS holography as a viable label-free bio-imaging technique. A Raman scattering particle sensing system is also developed that utilizes wave guide properties of optical fibers and ring-resonators to perform enhanced particle sensing. Resonator-enhanced particle sensing is experimentally examined as a new method for enhancing Raman scattering from particles interacting with circulating optical fields within both a fiber ring-cavity and whispering gallery mode microtoroid microresonators. The achievements described in this dissertation include: (1) Demonstration of the bio-imaging capability of CARS holography by recording of CARS holograms of subcellular components in live cancer (HeLa) cells. (2) Label-free Raman microparticle sensing using a tapered optical fibers. A tapered fiber can guide light to particles adsorbed on the surface of the taper to generate scattered Raman signal which can be collected by a microRaman detection system. (3) Demonstration of the proof of concept of resonator-enhanced Raman spectroscopy in a fiber ring resonator consisting of a section of fiber taper. (4) A method for locking the pump laser to the resonate frequencies of a resonator. This is demonstrated using a fiber ring resonator and microtoroid microresonators. (5) Raman scattered signal from particles adhered to microtoroid microresonators is acquired using 5 seconds of signal integration time and with the pump laser locked to a cavity resonance. (6) Theoretical analysis is performed that indicates resonator-enhanced Raman scattering from microparticles adhered to microresonators can be achieved with the pump laser locked to the frequency of a high-Q cavity resonant mode.

  11. Minimum Detectable Dose as a Measure of Bioassay Programme Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.

    2003-01-01

    This paper suggests that minimum detectable dose (MDD) be used to describe the capability of bioassay programs for which intakes are expected to be rare. This allows expression of the capability in units that correspond directly to primary dose limits. The concept uses the well-established analytical statistic minimum detectable amount (MDA) as the starting point and assumes MDA detection at a prescribed time post intake. The resulting dose can then be used as an indication of the adequacy or capability of the program for demonstrating compliance with the performance criteria. MDDs can be readily tabulated or plotted to demonstrate themore » effectiveness of different types of monitoring programs. The inclusion of cost factors for bioassay measurements can allow optimisation.« less

  12. Minimum detectable dose as a measure of bioassay programme capability.

    PubMed

    Carbaugh, E H

    2003-01-01

    This paper suggests that minimum detectable dose (MDD) be used to describe the capability of bioassay programmes for which intakes are expected to be rare. This allows expression of the capability in units that correspond directly to primary dose limits. The concept uses the well established analytical statistic minimum detectable amount (MDA) as the starting point, and assumes MDA detection at a prescribed time post-intake. The resulting dose can then be used as an indication of the adequacy or capability of the programme for demonstrating compliance with the performance criteria. MDDs can be readily tabulated or plotted to demonstrate the effectiveness of different types of monitoring programmes. The inclusion of cost factors for bioassay measurements can allow optimisation.

  13. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  14. Real-time terahertz near-field microscope.

    PubMed

    Blanchard, F; Doi, A; Tanaka, T; Hirori, H; Tanaka, H; Kadoya, Y; Tanaka, K

    2011-04-25

    We report a terahertz near-field microscope with a high dynamic range that can capture images of a 370 x 740 μm2 area at 35 frames per second. We achieve high spatial resolution (14 μm corresponding to λ/30 for a center frequency at 0.7 THz) on a large area by combining two novel techniques: terahertz generation by tilted-pulse-front excitation and electro-optic balanced imaging detection using a thin crystal. To demonstrate the microscope capability, we reveal the field enhancement at the gap position of a dipole antenna after the irradiation of a terahertz pulse.

  15. Two-dimensional NMR spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  16. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  17. Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement

    PubMed Central

    Singh, Manpreet; Truong, Johnson; Reeves, W. Brian; Hahm, Jong-in

    2017-01-01

    Protein biomarkers, especially cytokines, play a pivotal role in the diagnosis and treatment of a wide spectrum of diseases. Therefore, a critical need for advanced cytokine sensors has been rapidly growing and will continue to expand to promote clinical testing, new biomarker development, and disease studies. In particular, sensors employing transduction principles of various optical modalities have emerged as the most common means of detection. In typical cytokine assays which are based on the binding affinities between the analytes of cytokines and their specific antibodies, optical schemes represent the most widely used mechanisms, with some serving as the gold standard against which all existing and new sensors are benchmarked. With recent advancements in nanoscience and nanotechnology, many of the recently emerging technologies for cytokine detection exploit various forms of nanomaterials for improved sensing capabilities. Nanomaterials have been demonstrated to exhibit exceptional optical properties unique to their reduced dimensionality. Novel sensing approaches based on the newly identified properties of nanomaterials have shown drastically improved performances in both the qualitative and quantitative analyses of cytokines. This article brings together the fundamentals in the literature that are central to different optical modalities developed for cytokine detection. Recent advancements in the applications of novel technologies are also discussed in terms of those that enable highly sensitive and multiplexed cytokine quantification spanning a wide dynamic range. For each highlighted optical technique, its current detection capabilities as well as associated challenges are discussed. Lastly, an outlook for nanomaterial-based cytokine sensors is provided from the perspective of optimizing the technologies for sensitivity and multiplexity as well as promoting widespread adaptations of the emerging optical techniques by lowering high thresholds currently present in the new approaches. PMID:28241443

  18. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-04-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  19. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-06-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  20. Local Leak Detection and Health Monitoring of Pressurized Tanks

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  1. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging

    NASA Astrophysics Data System (ADS)

    Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui

    2012-03-01

    The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields.

  2. Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential.

    PubMed

    Stolarczyk, Jacek K; Deak, Andras; Brougham, Dermot F

    2016-07-01

    The current state of the art in the use of colloidal methods to form nanoparticle assemblies, or clusters (NPCs) is reviewed. The focus is on the two-step approach, which exploits the advantages of bottom-up wet chemical NP synthesis procedures, with subsequent colloidal destabilization to trigger assembly in a controlled manner. Recent successes in the application of functional NPCs with enhanced emergent collective properties for a wide range of applications, including in biomedical detection, surface enhanced Raman scattering (SERS) enhancement, photocatalysis, and light harvesting, are highlighted. The role of the NP-NP interactions in the formation of monodisperse ordered clusters is described and the different assembly processes from a wide range of literature sources are classified according to the nature of the perturbation from the initial equilibrium state (dispersed NPs). Finally, the future for the field and the anticipated role of computational approaches in developing next-generation functional NPCs are briefly discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    NASA Astrophysics Data System (ADS)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (<10 nm) possess advantages for surface enhanced Raman scattering (SERS) via the synergic effects of nanogaps and efficient decoupling from the substrate through an elevated three-dimensional (3D) design. In this work, we demonstrate a pattern-transfer-free process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  4. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity.

    PubMed

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-09-11

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

  5. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity

    PubMed Central

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-01-01

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities. PMID:25208580

  6. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    PubMed

    Wang, Cheng; Yu, Jie; Kallen, Caleb B

    2008-01-01

    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  7. CAPABILITIES AND SKILLS*

    PubMed Central

    Heckman, James J.; Corbin, Chase O.

    2016-01-01

    This paper discusses the relevance of recent research on the economics of human development to the work of the Human Development and Capability Association. The recent economics of human development brings insights about the dynamics of skill accumulation to an otherwise static literature on capabilities. Skills embodied in agents empower people. Enhanced skills enhance opportunities and hence promote capabilities. We address measurement problems common to both the economics of human development and the capability approach. The economics of human development analyzes the dynamics of preference formation, but is silent about which preferences should be used to evaluate alternative policies. This is both a strength and a limitation of the approach. PMID:28261378

  8. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  9. Loop-mediated isothermal amplification assay for detection of Haemophilus influenzae type b in cerebrospinal fluid.

    PubMed

    Kim, Dong Wook; Kilgore, Paul Evan; Kim, Eun Jin; Kim, Soon Ae; Anh, Dang Duc; Seki, Mitsuko

    2011-10-01

    Haemophilus influenzae type b (Hib) is one of the leading causes of meningitis in developing countries. To establish and evaluate a novel loop-mediated isothermal amplification (LAMP) assay for Hib, we designed a LAMP primer set targeting the Hib-specific capsulation locus. LAMP detected 10 copies of purified DNA in a 60-min reaction. This indicated that the detection limit of LAMP was >100-fold lower than the detection limits of both a PCR for the detection of bexA and a nested PCR for Hib (Hib PCR). No H. influenzae, other than Hib or control bacteria, was detected. Linear determination ranged from 10 to 1,000,000 microorganisms per reaction mixture using real-time turbidimetry. We evaluated the Hib LAMP assay using a set of 52 randomly selected cerebrospinal fluid (CSF) specimens obtained from children with suspected meningitis. For comparison, the CSF specimens were tested using a conventional Hib PCR assay. Hib was detected in 30 samples using LAMP and in 22 samples using the Hib PCR assay. The Hib PCR showed a clinical sensitivity of 73.3% and a clinical specificity of 100% relative to the Hib LAMP assay. These results suggest that further development and evaluation of the Hib LAMP will enhance the global diagnostic capability for Hib detection.

  10. Enhanced Deployment Strategy for Role-based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    NASA Astrophysics Data System (ADS)

    Gendreau, Audrey

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research, a model used to deploy intrusion detection capability on a Local Area Network (LAN), in the literature, was extended to develop a role-based hierarchical agent deployment algorithm for a WSN. The resulting model took into consideration the monitoring capability, risk, deployment distribution cost, and monitoring cost associated with each node. Changing the original LAN methodology approach to model a cluster-based sensor network depended on the ability to duplicate a specific parameter that represented the monitoring capability. Furthermore, other parameters derived from a LAN can elevate costs and risk of deployment, as well as jeopardize the success of an application on a WSN. A key component of the approach presented in this research was to reduce the costs when established clusterheads in the network were found to be capable of hosting additional detection agents. In addition, another cost savings component of the study addressed the reduction of vulnerabilities associated with deployment of agents to high volume nodes. The effectiveness of the presented method was validated by comparing it against a type of a power-based scheme that used each node's remaining energy as the deployment value. While available energy is directly related to the model used in the presented method, the study deliberately sought out nodes that were identified with having superior monitoring capability, cost less to create and sustain, and are at low-risk of an attack. This work investigated improving the efficiency of an intrusion detection system (IDS) by using the proposed model to deploy monitoring agents after a temperature sensing application had established the network traffic flow to the sink. The same scenario was repeated using a power-based IDS to compare it against the proposed model. To identify a clusterhead's ability to host monitoring agents after the temperature sensing application terminated, the deployed IDS utilized the communication history and other network factors in order to rank the nodes. Similarly, using the node's communication history, the deployed power-based IDS ranked nodes based on their remaining power. For each individual scenario, and after the IDS application was deployed, the temperature sensing application was run for a second time. This time, to monitor the temperature sensing agents as the data flowed towards the sink, the network traffic was rerouted through the new intrusion detection clusterheads. Consequently, if the clusterheads were shared, the re-routing step was not preformed. Experimental results in this research demonstrated the effectiveness of applying a robust deployment metric to improve upon the energy efficiency of a deployed application in a multi-application WSN. It was found that in the scenarios with the intrusion detection application that utilized the proposed model resulted in more remaining energy than in the scenarios that implemented the power-based IDS. The algorithm especially had a positive impact on the small, dense, and more homogeneous networks. This finding was reinforced by the smaller percentage of new clusterheads that was selected. Essentially, the energy cost of the route to the sink was reduced because the network traffic was rerouted through fewer new clusterheads. Additionally, it was found that the intrusion detection topology that used the proposed approach formed smaller and more connected sets of clusterheads than the power-based IDS. As a consequence, this proposed approach essentially achieved the research objective for enhancing energy use in a multi-application WSN.

  11. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  12. Using superconducting undulator for enhanced imaging capabilities of MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yampolsky, Nikolai

    MaRIE x-ray free electron laser (FEL) is envisioned to deliver a burst of closely spaced in time pulses for enabling the capability of studying the dynamic processes in a sample. MaRIE capability can be largely enhanced using the superconducting undulator, which has the capability of doubling its period. This technology will allow reaching the photon energy as low as ~200-500 eV. As a result, the MaRIE facility will have a broader photon energy range enabling a larger variety of experiments. The soft x-ray capability is more likely to achieve the 3D imaging of dynamic processes in noncrystal materials than themore » hard x-ray capability alone.« less

  13. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.

    PubMed

    Zhang, He; Hu, Xinjiang; Fu, Xin

    2014-07-15

    This study reports the development of an aptamer-mediated microfluidic beads-based sensor for multiple analytes detection and quantification using multienzyme-linked nanoparticle amplification and quantum dots labels. Adenosine and cocaine were selected as the model analytes to validate the assay design based on strand displacement induced by target-aptamer complex. Microbeads functionalized with the aptamers and modified electron rich proteins were arrayed within a microfluidic channel and were connected with the horseradish peroxidases (HRP) and capture DNA probe derivative gold nanoparticles (AuNPs) via hybridization. The conformational transition of aptamer induced by target-aptamer complex contributes to the displacement of functionalized AuNPs and decreases the fluorescence signal of microbeads. In this approach, increased binding events of HRP on each nanosphere and enhanced mass transport capability inherent from microfluidics are integrated for enhancing the detection sensitivity of analytes. Based on the dual signal amplification strategy, the developed aptamer-based microfluidic bead array sensor could discriminate as low as 0.1 pM of adenosine and 0.5 pM cocaine, and showed a 500-fold increase in detection limit of adenosine compared to the off-chip test. The results proved the microfluidic-based method was a rapid and efficient system for aptamer-based targets assays (adenosine (0.1 pM) and cocaine (0.5 pM)), requiring only minimal (microliter) reagent use. This work demonstrated the successful application of aptamer-based microfluidic beads array sensor for detection of important molecules in biomedical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering

    PubMed Central

    Feng, Simin; dos Santos, Maria Cristina; Carvalho, Bruno R.; Lv, Ruitao; Li, Qing; Fujisawa, Kazunori; Elías, Ana Laura; Lei, Yu; Perea-López, Nestor; Endo, Morinobu; Pan, Minghu; Pimenta, Marcos A.; Terrones, Mauricio

    2016-01-01

    As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (EF) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule’s vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10−11 M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps. PMID:27532043

  15. Flux enhancement of slow-moving particles by Sun or Jupiter: Can they be detected on Earth?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patla, Bijunath R.; Nemiroff, Robert J.; Hoffmann, Dieter H. H.

    Slow-moving particles capable of interacting solely with gravity might be detected on Earth as a result of the gravitational lensing induced focusing action of the Sun. The deflection experienced by these particles is inversely proportional to the square of their velocities, and as a result their focal lengths will be shorter. We investigate the velocity dispersion of these slow-moving particles, originating from distant point-like sources, for imposing upper and lower bounds on the velocities of such particles in order for them to be focused onto Earth. Stars, distant galaxies, and cluster of galaxies, etc., may all be considered as point-likemore » sources. We find that fluxes of such slow-moving and non-interacting particles must have speeds between ∼0.01 and .14 times the speed of light, c. Particles with speeds less than ∼0.01c will undergo way too much deflection to be focused, although such individual particles could be detected. At the caustics, the magnification factor could be as high as ∼10{sup 6}. We impose lensing constraints on the mass of these particles in order for them to be detected with large flux enhancements that are greater than 10{sup –9} eV. An approximate mass density profile for Jupiter is used to constrain particle velocities for lensing by Jupiter. We show that Jupiter could potentially focus particles with speeds as low as ∼0.001c, which the Sun cannot.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschke, Clemens M., E-mail: clemens.hentschke@gmail.com; Tönnies, Klaus D.; Beuing, Oliver

    Purpose: The early detection of cerebral aneurysms plays a major role in preventing subarachnoid hemorrhage. The authors present a system to automatically detect cerebral aneurysms in multimodal 3D angiographic data sets. The authors’ system is parametrizable for contrast-enhanced magnetic resonance angiography (CE-MRA), time-of-flight magnetic resonance angiography (TOF-MRA), and computed tomography angiography (CTA). Methods: Initial volumes of interest are found by applying a multiscale sphere-enhancing filter. Several features are combined in a linear discriminant function (LDF) to distinguish between true aneurysms and false positives. The features include shape information, spatial information, and probability information. The LDF can either be parametrized bymore » domain experts or automatically by training. Vessel segmentation is avoided as it could heavily influence the detection algorithm. Results: The authors tested their method with 151 clinical angiographic data sets containing 112 aneurysms. The authors reach a sensitivity of 95% with CE-MRA data sets at an average false positive rate per data set (FP{sub DS}) of 8.2. For TOF-MRA, we achieve 95% sensitivity at 11.3 FP{sub DS}. For CTA, we reach a sensitivity of 95% at 22.8 FP{sub DS}. For all modalities, the expert parametrization led to similar or better results than the trained parametrization eliminating the need for training. 93% of aneurysms that were smaller than 5 mm were found. The authors also showed that their algorithm is capable of detecting aneurysms that were previously overlooked by radiologists. Conclusions: The authors present an automatic system to detect cerebral aneurysms in multimodal angiographic data sets. The system proved as a suitable computer-aided detection tool to help radiologists find cerebral aneurysms.« less

  17. TBEST model enhancements : parcel level demographic data capabilities and exploration of enhanced trip attraction capabilities.

    DOT National Transportation Integrated Search

    2011-09-01

    "FDOT, in pursuit of its role to assist in providing public transportation services in Florida, has made a substantial : research investment in a travel demand forecasting tool for public transportation known as Transit Boardings : Estimation and Sim...

  18. Higher-Order Neural Networks Recognize Patterns

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen

    1996-01-01

    Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.

  19. Towards Enhanced Underwater Lidar Detection via Source Separation

    NASA Astrophysics Data System (ADS)

    Illig, David W.

    Interest in underwater optical sensors has grown as technologies enabling autonomous underwater vehicles have been developed. Propagation of light through water is complicated by the dual challenges of absorption and scattering. While absorption can be reduced by operating in the blue-green region of the visible spectrum, reducing scattering is a more significant challenge. Collection of scattered light negatively impacts underwater optical ranging, imaging, and communications applications. This thesis concentrates on the ranging application, where scattering reduces operating range as well as range accuracy. The focus of this thesis is on the problem of backscatter, which can create a "clutter" return that may obscure submerged target(s) of interest. The main contributions of this thesis are explorations of signal processing approaches to increase the separation between the target and backscatter returns. Increasing this separation allows detection of weak targets in the presence of strong scatter, increasing both operating range and range accuracy. Simulation and experimental results will be presented for a variety of approaches as functions of water clarity and target position. This work provides several novel contributions to the underwater lidar field: 1. Quantification of temporal separation approaches: While temporal separation has been studied extensively, this work provides a quantitative assessment of the extent to which both high frequency modulation and spatial filter approaches improve the separation between target and backscatter. 2. Development and assessment of frequency separation: This work includes the first frequency-based separation approach for underwater lidar, in which the channel frequency response is measured with a wideband waveform. Transforming to the time-domain gives a channel impulse response, in which target and backscatter returns may appear in unique range bins and thus be separated. 3. Development and assessment of statistical separation: The first investigations of statistical separation approaches for underwater lidar are presented. By demonstrating that target and backscatter returns have different statistical properties, a new separation axis is opened. This work investigates and quantifies performance of three statistical separation approaches. 4. Application of detection theory to underwater lidar: While many similar applications use detection theory to assess performance, less development has occurred in the underwater lidar field. This work applies these concepts to statistical separation approaches, providing another perspective in which to assess performance. In addition, by using detection theory approaches, statistical metrics can be used to associate a level of confidence in each ranging measurement. 5. Preliminary investigation of forward scatter suppression: If backscatter is sufficiently suppressed, forward scattering becomes a performance-limiting factor. This work presents a proof-of-concept demonstration of the potential for statistical separation approaches to suppress both forward and backward scatter. These results provide a demonstration of the capability that signal processing has to improve separation between target and backscatter. Separation capability improves in the transition from temporal to frequency to statistical separation approaches, with the statistical separation approaches improving target detection sensitivity by as much as 30 dB. Ranging and detection results demonstrate the enhanced performance this would allow in ranging applications. This increased performance is an important step in moving underwater lidar capability towards the requirements of the next generation of sensors.

  20. Meeting the future metro network challenges and requirements by adopting programmable S-BVT with direct-detection and PDM functionality

    NASA Astrophysics Data System (ADS)

    Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier

    2017-07-01

    In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.

  1. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa, E-mail: fatemi.mostafa@mayo.edu

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped withmore » a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that ultimately may allow US-based real-time intraoperative dosimetry.« less

  2. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    PubMed Central

    Mehrmohammadi, Mohammad; Alizad, Azra; Kinnick, Randall R.; Davis, Brian J.; Fatemi, Mostafa

    2014-01-01

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that ultimately may allow US-based real-time intraoperative dosimetry. PMID:25186418

  3. Short non-coding RNAs as bacteria species identifiers detected by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John

    2008-04-01

    Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.

  4. Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection

    NASA Astrophysics Data System (ADS)

    Wang, Pu

    Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically reliable SERS quantification approach using the hybrid platform was proposed. The SERS mapping based approach not only leverages the ultra-sensitivity but also minimizes the spot-to-spot variations. Feasibility of biomedical diagnosis with the hybrid platform was exploited by colon cancer cell sensing and time-dependent SERS of amyloid beta protein monomer. The capabilities of the platform are demonstrated by colon cancer cell detection in simulated body fluid background with cell concentration down to 50 cells /mL. Sensitivity of 95% was evidenced by Principle Components Analysis (PCA). Besides, a noticeable evolution profile of the Abeta SERS peaks was observed and attributed to the Abeta configurational change. Taken together, the results suggested the graphene-plasmonic hybrid platform can potentially deliver a biomedical detection and diagnostic imaging platform with superior sensitivity and resolution.

  5. Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.

    2016-09-01

    Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.

  6. Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors

    NASA Astrophysics Data System (ADS)

    Elster, Jennifer L.; Jones, Mark E.; Evans, Mishell K.; Lenahan, Shannon M.; Boyce, Christopher A.; Velander, William H.; VanTassell, Roger

    2000-05-01

    A novel system incorporating optical fiber extrinsic Fabry- Perot interferometric (EFPI)-based sensors for rapid detection of biological targets is presented. With the appropriate configuration, the EFPI senor is able to measure key environmental parameters by monitoring the interferometric fringes resulting from an optical path differences of reflected signals. The optical fiber EFPI sensor has been demonstrated for strain, pressure, and temperature measurements and can be readily modified for refractive index measurements by allowing solutions to flow into an open cavity. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings containing ligands within this cavity, specific binding of target molecules can be accomplished. As target molecules bind to the coating, there is an increased density within the film, causing a measurable refractive index change that correlates to the concentration of detected target molecules. This sensor platform offers enhanced sensing capabilities for clinical diagnostics, pharmaceutical screening, environmental monitoring, food pathogen detection, biological warfare agent detection, and industrial bioprocessing. Promising applications also exist for process monitoring within the food/beverage, petroleum, and chemical industry.

  7. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River Basin of China

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan

    2017-04-01

    Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7±21.1 mm/yr), considerably higher than GLDAS ET (461.7±29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.

  8. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan

    2017-01-01

    Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7 ± 21.1 mm/yr), considerably higher than GLDAS ET (461.7 ± 29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.

  9. Network capability estimation. Vela network evaluation and automatic processing research. Technical report. [NETWORTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, N.S.

    1976-09-24

    NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less

  10. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    NASA Astrophysics Data System (ADS)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  11. The limitations of point of care testing for pandemic influenza: what clinicians and public health professionals need to know.

    PubMed

    Hatchette, Todd F; Bastien, Nathalie; Berry, Jody; Booth, Tim F; Chernesky, Max; Couillard, Michel; Drews, Steven; Ebsworth, Anthony; Fearon, Margaret; Fonseca, Kevin; Fox, Julie; Gagnon, Jean-Nicolas; Guercio, Steven; Horsman, Greg; Jorowski, Cathy; Kuschak, Theodore; Li, Yan; Majury, Anna; Petric, Martin; Ratnam, Sam; Smieja, Marek; Van Caeseele, Paul

    2009-01-01

    As the world prepares for the next influenza pandemic, governments have made significant funding commitments to vaccine development and antiviral stockpiling. While these are essential components to pandemic response, rapid and accurate diagnostic testing remains an often neglected cornerstone of pandemic influenza preparedness. Clinicians and Public Health Practitioners need to understand the benefits and drawbacks of different influenza tests in both seasonal and pandemic settings. Culture has been the traditional gold standard for influenza diagnosis but requires from 1-10 days to generate a positive result, compared to nucleic acid detection methods such as real time reverse transcriptase polymerase chain reaction (RT-PCR). Although the currently available rapid antigen detection kits can generate results in less than 30 minutes, their sensitivity is suboptimal and they are not recommended for the detection of novel influenza viruses. Until point-of-care (POC) tests are improved, PILPN recommends that the best option for pandemic influenza preparation is the enhancement of nucleic acid-based testing capabilities across Canada.

  12. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS

    PubMed Central

    2015-01-01

    We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared to dead-ended nanohole arrays, suspended nanohole arrays capable of flow-through detection increased the measured SERS signal intensity by 50 times. For directed transport of analytes, we present a novel methodology utilizing surface tension to generate spontaneous flow through the nanoholes with flow rates of 1 μL/min, obviating the need for external pumps or microfluidic interconnects. Using this method for SERS, we obtained a 50 times higher signal as compared to diffusion-limited transport and could detect 100 pM 4-mercaptopyridine. The suspended nanohole substrates presented herein possess a uniform and reproducible geometry and show the potential for improved analyte transport and SERS detection. PMID:25678744

  13. Remote air lasing for trace detection

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Michael, James B.; Miles, Richard B.

    2011-05-01

    We demonstrate coherent light propagating backwards from a remotely generated high gain air laser. A short ultraviolet laser pulse tuned to a two-photon atomic oxygen electronic resonance at 226 nm simultaneously dissociates the oxygen molecules in air and excites the resulting atomic oxygen fragments. Due to the focal depth of the pumping laser, a millimeter long region of high gain is created in air for the atomic oxygen stimulated emission at 845nm. We demonstrate that the gain in excess of 60 cm-1 is responsible for both forward and backwards emission of a strong, collimated, coherent laser beam. We present evidence for coherent emission and characterize the backscattered laser beam while varying the pumping conditions. The optical gain and directional emission allows for six orders of magnitude enhancement for the backscattered emission when compared with the fluorescence emission collected into the same solid angle. . This opens new opportunities for the remote detection capabilities of trace species, and provides much greater range for the detection of optical molecular and atomic features from a distant target.

  14. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    PubMed Central

    Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa

    2017-01-01

    Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850

  15. Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.

  16. The Dependence of the Cerean Exosphere on Solar Energetic Particle Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villarreal, M. N.; Russell, C. T.; Luhmann, J. G.

    2017-03-20

    Observations from Earth-based ground and orbiting telescopes indicate that the Ceres’s exosphere has a time-varying water component. Evidence of a transient atmosphere was also detected by Dawn upon its arrival, inferred from the response on the Gamma Ray and Neutron Detector. That atmosphere appeared shortly after the passage of a large enhancement in the local flux of high-energy solar protons. Solar proton events have highly variable fluxes over a range of proton energies from 10 s of keV to over 100 MeV and are capable of sputtering water ice at or near the surface. Herein, we examine the fluxes ofmore » solar energetic protons measured during Earth-based attempts to detect water vapor and OH in the Ceres’ atmosphere. We find that the presence of the cerean exosphere is correlated with the inferred presence of solar energetic protons at Ceres, consistent with the event detected by Dawn.« less

  17. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    PubMed

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  18. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.

    PubMed

    Zugaj, D; Chenet, A; Petit, L; Vaglio, J; Pascual, T; Piketty, C; Bourdes, V

    2018-02-04

    Currently, imaging technologies that can accurately assess or provide surrogate markers of the human cutaneous microvessel network are limited. Dynamic optical coherence tomography (D-OCT) allows the detection of blood flow in vivo and visualization of the skin microvasculature. However, image processing is necessary to correct images, filter artifacts, and exclude irrelevant signals. The objective of this study was to develop a novel image processing workflow to enhance the technical capabilities of D-OCT. Single-center, vehicle-controlled study including healthy volunteers aged 18-50 years. A capsaicin solution was applied topically on the subject's forearm to induce local inflammation. Measurements of capsaicin-induced increase in dermal blood flow, within the region of interest, were performed by laser Doppler imaging (LDI) (reference method) and D-OCT. Sixteen subjects were enrolled. A good correlation was shown between D-OCT and LDI, using the image processing workflow. Therefore, D-OCT offers an easy-to-use alternative to LDI, with good repeatability, new robust morphological features (dermal-epidermal junction localization), and quantification of the distribution of vessel size and changes in this distribution induced by capsaicin. The visualization of the vessel network was improved through bloc filtering and artifact removal. Moreover, the assessment of vessel size distribution allows a fine analysis of the vascular patterns. The newly developed image processing workflow enhances the technical capabilities of D-OCT for the accurate detection and characterization of microcirculation in the skin. A direct clinical application of this image processing workflow is the quantification of the effect of topical treatment on skin vascularization. © 2018 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.

  19. The Role of Percolation Theory in Developing Next Generation Smart Nanomaterials

    NASA Astrophysics Data System (ADS)

    Simien, Daneesh

    2016-01-01

    The incorporation of small volume fractions of nanoscale graphitic particles into varied base materials has been explored across fields ranging from automotive to aerospace to commercial plastics, with the goal of utilizing their enhanced thermal conductivity, electrical conductivity or mechanical strength. Percolation theory has emerged as a useful tool to aid in mapping and predicting the enhancement of properties based on the size and conductivity of incorporated single-walled carbon nanotubes relative to their less conductive base materials. These tools can aid researchers in the development of next generation smart nanomaterials. In this paper, we discuss the use of homogeneous fractions of length- or chirality-sorted single-walled carbon nanotubes (SWNTs) which are incorporated into thin film networks, and cement composites, and are evaluated in terms of their conductivity, mechanical properties and noise spectrum at critical percolation. We demonstrate that, near the percolation threshold, the conductivity of these highly characterized SWNT films exhibits a power law dependence on the network geometrical parameters. We also present our findings on the development of incorporated thin film SWNTs for the development of sensing technology for novel non-destructive failure diagnostic applications. SWNTs are able to be used as benign inclusions, capable of active sensing, when incorporated into cement-based composites for the purpose of detecting crack initiation. As such, we investigate the use of homogeneous length-sorted SWNTs that are randomly distributed in percolated networks capable of being an internal responsive net mechanism. Our findings demonstrate increased microstructure sensitivity of our networks for our shorter length nanotubes near their critical percolation threshold. This shows promise for the development of even more sensitive, embedded piezo-resistive SWNT-based sensors for preemptive failure detection technology.

  20. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  1. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    NASA Astrophysics Data System (ADS)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).

  2. Kestrel: force protection and Intelligence, Surveillance, and Reconnaissance (ISR) persistent surveillance on aerostats

    NASA Astrophysics Data System (ADS)

    Luber, David R.; Marion, John E.; Fields, David

    2012-05-01

    Logos Technologies has developed and fielded the Kestrel system, an aerostat-based, wide area persistent surveillance system dedicated to force protection and ISR mission execution operating over forward operating bases. Its development included novel imaging and stabilization capability for day/night operations on military aerostat systems. The Kestrel system's contribution is a substantial enhancement to aerostat-based, force protection systems which to date have relied on narrow field of view ball gimbal sensors to identify targets of interest. This inefficient mechanism to conduct wide area field of view surveillance is greatly enhanced by Kestrel's ability to maintain a constant motion imagery stare of the entire forward operating base (FOB) area. The Kestrel airborne sensor enables 360° coverage out to extended ranges which covers a city sized area at moderate resolution, while cueing a narrow field of view sensor to provide high resolution imagery of targets of interest. The ground station exploitation system enables operators to autonomously monitor multiple regions of interest in real time, and allows for backtracking through the recorded imagery, while continuing to monitor ongoing activity. Backtracking capability allows operators to detect threat networks, their CONOPS, and locations of interest. Kestrel's unique advancement has already been utilized successfully in OEF operations.

  3. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  4. Fault detection and identification in missile system guidance and control: a filtering approach

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.

    1996-03-01

    Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.

  5. Low-resolution ship detection from high-altitude aerial images

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  6. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jesus

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less

  8. Detection and identification of Huo-Xue-Hua-Yu decoction (HXHYD) using surface-enhanced Raman scattering (SERS) spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Lin, Jia; Chen, Rong; Feng, Shangyuan; Yu, Yun; Lin, Duo; Huang, Meizhen; Shi, Hong; Huang, Hao

    2015-04-01

    We have evaluated the capabilities of surface-enhanced Raman scattering (SERS) technology for analyzing two Huo-Xue-Hua-Yu decoctions (HXHYDs) prepared according to different prescriptions. The aim of this study was to evaluate the relevance of SERS technology applied to decoction of traditional Chinese medicines (TCM). HXHYD I was prepared according to the original prescription; the same preparation method was used for the HXHYD II, except for the crudeweight ratio described in the original prescription. There was no Raman signal in conventional Raman spectra of HXHYDs. Silver nanoparticles were directly mixed with HXHYDs to enhance the Raman scattering of biochemical constituents, and high quality SERS spectra were obtained. Significant differences in SERS spectra between HXHYD I and II can be observed, which showed special changes in the percentage of biochemical constituents in different decoctions. Principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to generate diagnostic algorithms for classification of SERS spectra of two HXHYDs, and showed that a diagnostic accuracy of 100% can be achieved. This work demonstrated that the SERS technique has potential for spectral characteristic detection for decoction of TCM with high sensitivity, and that this technique, combined with PCA-LDA, can be used for quality control of the extracted decoction of TCM and production management of Chinese herbal preparations.

  9. Advanced energy-resolving imaging detectors for applications at pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, Bruce; White, Brian

    NOVA Scientific herein reports results from the DOE SBIR Phase IIB project. We continue to move forward to enhance the effectiveness of very high spatial and timing resolution MCP position-sensitive detectors into the epithermal or “above-thermal” neutron energy range – where NOVA’s neutron-sensitive NeuViewTM MCPs are already widely acknowledged as highly effective for cold and thermal neutron energies. As a result of these developments, these increasingly accepted neutron detection devices will be better able to perform energy-resolved neutron detection and imaging at the growing number of highly advanced pulsed neutron sources internationally, detecting individual neutrons with a spatial resolution ofmore » down to ~25 µm, and able to uniquely provide simultaneous ultrafast timing resolution of ~100 ns, for cold, thermal, and now into the epithermal range. The pulsed structure of the new and more powerful neutron beams, enables measurement of neutron energies through the time-of-flight (TOF) method. Moreover, these recent new pulsed sources have increasingly made available intense fluxes of epithermal neutrons - something previously unavailable with reactor-based neutron sources. The unique capability of MCP detectors to measure the energy of each detected neutron provides a capability to conduct experiments across a very broad neutron energy range simultaneously – encompassing cold up into the epithermal range of energies. Simultaneous detection of multiple Bragg edges, for example, can enable highly useful measurements in crystallographic structure, strain, phase, texture, and compositional distribution. Enhancement of the MCP epithermal neutron response resulting from this program, combined with an earlier and separate DOE-funded SBIR/STTR program to commercialize larger area (>100 cm 2) format cold and thermal neutron-sensitive MCP imaging detectors, has potential utility in being employed as large array detectors, replacing what is currently used in large neutron scattering facilities. Moreover, a current Phase II STTR (with Oak Ridge Lab) to substantially improve gamma ray discrimination in MCP neutron detectors, will provide further synergies as well. Work at DOE’s Argonne National Laboratory and its Atomic Layer Deposition (ALD) group, guided by NOVA in a ‘Work-For-Others’ arrangement, has continued to aid progress in this Phase IIB SBIR program – helping enhance the sensitivity of NOVA’s MCP cold and thermal neutron detectors deeper into the epithermal neutron energy range. Using atomic layer deposition (ALD), we have continued to refine the application of submicron oxide films of neutron absorbing elements along the inner microchannel walls of the detector. Also in Phase IIB, we continued an ongoing scientific collaboration in neutron testing and full characterization of ongoing improvements to the MCP detectors, working with the neutron facilities (SNS/HFIR) and staff of the Detector Group at Oak Ridge National Laboratory. Moreover, our recent marketing studies suggest that successful commercialization of neutron-sensitive MCP detectors, will require that we provide a ‘user-friendly, turnkey’ detector system. Major progress has been made in our commercial offering of the MCP neutron detector approach, both in ‘demountable’ UHV flange-based as well as in vacuum-sealed or hermetically encapsulated devices. Both of these formats offer as a readout method, a proximity mounted delay line anode (DLA) readout capable of ultrafast event time-tagging.« less

  10. Enhanced subject-specific resting-state network detection and extraction with fast fMRI.

    PubMed

    Akin, Burak; Lee, Hsu-Lei; Hennig, Jürgen; LeVan, Pierre

    2017-02-01

    Resting-state networks have become an important tool for the study of brain function. An ultra-fast imaging technique that allows to measure brain function, called Magnetic Resonance Encephalography (MREG), achieves an order of magnitude higher temporal resolution than standard echo-planar imaging (EPI). This new sequence helps to correct physiological artifacts and improves the sensitivity of the fMRI analysis. In this study, EPI is compared with MREG in terms of capability to extract resting-state networks. Healthy controls underwent two consecutive resting-state scans, one with EPI and the other with MREG. Subject-level independent component analyses (ICA) were performed separately for each of the two datasets. Using Stanford FIND atlas parcels as network templates, the presence of ICA maps corresponding to each network was quantified in each subject. The number of detected individual networks was significantly higher in the MREG data set than for EPI. Moreover, using short time segments of MREG data, such as 50 seconds, one can still detect and track consistent networks. Fast fMRI thus results in an increased capability to extract distinct functional regions at the individual subject level for the same scan times, and also allow the extraction of consistent networks within shorter time intervals than when using EPI, which is notably relevant for the analysis of dynamic functional connectivity fluctuations. Hum Brain Mapp 38:817-830, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. A label-free colorimetric isothermal cascade amplification for the detection of disease-related nucleic acids based on double-hairpin molecular beacon.

    PubMed

    Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng

    2017-03-08

    K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS 2- by H 2 O 2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors.

    PubMed

    Chiavaioli, Francesco; Zubiate, Pablo; Del Villar, Ignacio; Zamarreño, Carlos R; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Arregui, Francisco J; Matias, Ignacio R; Baldini, Francesco

    2018-05-25

    The advent of optical fiber-based biosensors combined with that of nanotechnologies has provided an opportunity for developing in situ, portable, lightweight, versatile, and high-performance optical sensing platforms. We report on the generation of lossy mode resonances by the deposition of nanometer-thick metal oxide films on optical fibers, which makes it possible to measure precisely and accurately the changes in optical properties of the fiber-surrounding medium with very high sensitivity compared to other technology platforms, such as long period gratings or surface plasmon resonances, the gold standard in label-free and real-time biomolecular interaction analysis. This property, combined with the application of specialty structures such as D-shaped fibers, permits enhancing the light-matter interaction. SEM and TEM imaging together with X-EDS tool have been utilized to characterize the two films used, i.e., indium tin oxide and tin dioxide. Moreover, the experimental transmission spectra obtained after the deposition of the nanocoatings have been numerically corroborated by means of wave propagation methods. With the use of a conventional wavelength interrogation system and ad hoc developed microfluidics, the shift of the lossy mode resonance can be reliably recorded in response to very low analyte concentrations. Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by 3 orders of magnitude when compared with other fiber-based configurations. The biosensor has been regenerated several times by injecting sodium dodecyl sulfate, which proves the capability of sensor to be reused.

  13. MyShake: A smartphone seismic network for earthquake early warning and beyond

    PubMed Central

    Kong, Qingkai; Allen, Richard M.; Schreier, Louis; Kwon, Young-Woo

    2016-01-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics. PMID:26933682

  14. MyShake: A smartphone seismic network for earthquake early warning and beyond.

    PubMed

    Kong, Qingkai; Allen, Richard M; Schreier, Louis; Kwon, Young-Woo

    2016-02-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

  15. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection.

    PubMed

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-06-30

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC.

  16. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection

    PubMed Central

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-01-01

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC. PMID:26123281

  17. VERSE: a novel approach to detect virus integration in host genomes through reference genome customization.

    PubMed

    Wang, Qingguo; Jia, Peilin; Zhao, Zhongming

    2015-01-01

    Fueled by widespread applications of high-throughput next generation sequencing (NGS) technologies and urgent need to counter threats of pathogenic viruses, large-scale studies were conducted recently to investigate virus integration in host genomes (for example, human tumor genomes) that may cause carcinogenesis or other diseases. A limiting factor in these studies, however, is rapid virus evolution and resulting polymorphisms, which prevent reads from aligning readily to commonly used virus reference genomes, and, accordingly, make virus integration sites difficult to detect. Another confounding factor is host genomic instability as a result of virus insertions. To tackle these challenges and improve our capability to identify cryptic virus-host fusions, we present a new approach that detects Virus intEgration sites through iterative Reference SEquence customization (VERSE). To the best of our knowledge, VERSE is the first approach to improve detection through customizing reference genomes. Using 19 human tumors and cancer cell lines as test data, we demonstrated that VERSE substantially enhanced the sensitivity of virus integration site detection. VERSE is implemented in the open source package VirusFinder 2 that is available at http://bioinfo.mc.vanderbilt.edu/VirusFinder/.

  18. Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.

    2003-01-01

    The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.

  19. Micromechanics and Piezo Enhancements of HyperSizer

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.

    2006-01-01

    The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.

  20. 78 FR 70542 - Reserve Forces Policy Board (RFPB); Notice of Federal Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Forces Policy Board will take place. The purpose of the meeting is to obtain, review and evaluate information related to strategies, policies, and practices designed to improve and enhance the capabilities... related to strategies, policies, and practices designed to improve and enhance the capabilities...

  1. Analysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors

    PubMed Central

    Khaled, Abdul-Rahim A.; Vafai, Kambiz

    2011-01-01

    The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin beams is used to obtain the deflections. The obtained defections are validated against an accurate numerical solution utilizing finite element method with maximum deviation less than 10 percent. It is found that the ɛ-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. In addition, the ɛ-microcantilever assembly is found to produce larger deflection than the modified triangular microcantilever. This deflection enhancement is found to increase as the ɛ-assembly’s free length decreases for various types of force loading conditions. Consequently, the ɛ-microcantilever is shown to be superior in microsensing applications as it provides favorable high detection capability with a reduced susceptibility to external noises. Finally, this work paves a way for experimentally testing the ɛ-assembly to show whether detective potential of microsensors can be increased. PMID:22163694

  2. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors

    PubMed Central

    Feng, Shangyuan; Huang, Shaohua; Lin, Duo; Chen, Guannan; Xu, Yuanji; Li, Yongzeng; Huang, Zufang; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2015-01-01

    The capability of saliva protein analysis, based on membrane protein purification and surface-enhanced Raman spectroscopy (SERS), for detecting benign and malignant breast tumors is presented in this paper. A total of 97 SERS spectra from purified saliva proteins were acquired from samples obtained from three groups: 33 healthy subjects; 33 patients with benign breast tumors; and 31 patients with malignant breast tumors. Subtle but discernible changes in the mean SERS spectra of the three groups were observed. Tentative assignments of the saliva protein SERS spectra demonstrated that benign and malignant breast tumors led to several specific biomolecular changes of the saliva proteins. Multiclass partial least squares–discriminant analysis was utilized to analyze and classify the saliva protein SERS spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor patients, yielding diagnostic sensitivities of 75.75%, 72.73%, and 74.19%, as well as specificities of 93.75%, 81.25%, and 86.36%, respectively. The results from this exploratory work demonstrate that saliva protein SERS analysis combined with partial least squares–discriminant analysis diagnostic algorithms has great potential for the noninvasive and label-free detection of breast cancer. PMID:25609959

  3. Expanding veterinary biosurveillance in Washington, DC: The creation and utilization of an electronic-based online veterinary surveillance system.

    PubMed

    Hennenfent, Andrew; DelVento, Vito; Davies-Cole, John; Johnson-Clarke, Fern

    2017-03-01

    To enhance the early detection of emerging infectious diseases and bioterrorism events using companion animal-based surveillance. Washington, DC, small animal veterinary facilities (n=17) were surveyed to determine interest in conducting infectious disease surveillance. Using these results, an electronic-based online reporting system was developed and launched in August 2015 to monitor rates of canine influenza, canine leptospirosis, antibiotic resistant infections, canine parvovirus, and syndromic disease trends. Nine of the 10 facilities that responded expressed interest conducting surveillance. In September 2015, 17 canine parvovirus cases were reported. In response, a campaign encouraging regular veterinary preventative care was launched and featured on local media platforms. Additionally, during the system's first year of operation it detected 5 canine leptospirosis cases and 2 antibiotic resistant infections. No canine influenza cases were reported and syndromic surveillance compliance varied, peaking during National Special Security Events. Small animal veterinarians and the general public are interested in companion animal disease surveillance. The system described can serve as a model for establishing similar systems to monitor disease trends of public health importance in pet populations and enhance biosurveillance capabilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).

  5. An Automated Microfluidic Assay for Photonic Crystal Enhanced Detection and Analysis of an Antiviral Antibody Cancer Biomarker in Serum

    DOE PAGES

    Race, Caitlin M.; Kwon, Lydia E.; Foreman, Myles T.; ...

    2017-11-24

    Here, we report on the implementation of an automated platform for detecting the presence of an antibody biomarker for human papillomavirus-associated oropharyngeal cancer from a single droplet of serum, in which a nanostructured photonic crystal surface is used to amplify the output of a fluorescence-linked immunosorbent assay. The platform is comprised of a microfluidic cartridge with integrated photonic crystal chips that interfaces with an assay instrument that automates the introduction of reagents, wash steps, and surface drying. Upon assay completion, the cartridge interfaces with a custom laser-scanning instrument that couples light into the photonic crystal at the optimal resonance conditionmore » for fluorescence enhancement. The instrument is used to measure the fluorescence intensity values of microarray spots corresponding to the biomarkers of interest, in addition to several experimental controls that verify correct functioning of the assay protocol. In this work, we report both dose-response characterization of the system using anti-E7 antibody introduced at known concentrations into serum and characterization of a set of clinical samples from which results were compared with a conventional enzyme-linked immunosorbent assay (ELISA) performed in microplate format. Finally, the demonstrated capability represents a simple, rapid, automated, and high-sensitivity method for multiplexed detection of protein biomarkers from a low-volume test sample.« less

  6. An Automated Microfluidic Assay for Photonic Crystal Enhanced Detection and Analysis of an Antiviral Antibody Cancer Biomarker in Serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Race, Caitlin M.; Kwon, Lydia E.; Foreman, Myles T.

    Here, we report on the implementation of an automated platform for detecting the presence of an antibody biomarker for human papillomavirus-associated oropharyngeal cancer from a single droplet of serum, in which a nanostructured photonic crystal surface is used to amplify the output of a fluorescence-linked immunosorbent assay. The platform is comprised of a microfluidic cartridge with integrated photonic crystal chips that interfaces with an assay instrument that automates the introduction of reagents, wash steps, and surface drying. Upon assay completion, the cartridge interfaces with a custom laser-scanning instrument that couples light into the photonic crystal at the optimal resonance conditionmore » for fluorescence enhancement. The instrument is used to measure the fluorescence intensity values of microarray spots corresponding to the biomarkers of interest, in addition to several experimental controls that verify correct functioning of the assay protocol. In this work, we report both dose-response characterization of the system using anti-E7 antibody introduced at known concentrations into serum and characterization of a set of clinical samples from which results were compared with a conventional enzyme-linked immunosorbent assay (ELISA) performed in microplate format. Finally, the demonstrated capability represents a simple, rapid, automated, and high-sensitivity method for multiplexed detection of protein biomarkers from a low-volume test sample.« less

  7. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-02

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.

  8. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhaned Raman Spectrosocpy Based Trace Explosives Detection

    NASA Astrophysics Data System (ADS)

    Sree Satya Bharati, Moram; Byram, Chandu; Soma, Venugopal R.

    2018-03-01

    Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5 mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2, 4, 6-trinitrophenol (PA), 2, 4-dinitrotoluene (DNT) and a common dye methylene blue (MB) using the surface enhanced Raman spectroscopy (SERS) technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT) and few picograms in the case of a common dye molecule (MB). Typical enhancement factors achieved were estimated to be 104, 105 and 107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  9. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    PubMed

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  10. Analysis of geostationary satellite-derived cloud parameters associated with environments with high ice water content

    NASA Astrophysics Data System (ADS)

    de Laat, Adrianus; Defer, Eric; Delanoë, Julien; Dezitter, Fabien; Gounou, Amanda; Grandin, Alice; Guignard, Anthony; Fokke Meirink, Jan; Moisselin, Jean-Marc; Parol, Frédéric

    2017-04-01

    We present an evaluation of the ability of passive broadband geostationary satellite measurements to detect high ice water content (IWC > 1 g m-3) as part of the European High Altitude Ice Crystals (HAIC) project for detection of upper-atmospheric high IWC, which can be a hazard for aviation. We developed a high IWC mask based on measurements of cloud properties using the Cloud Physical Properties (CPP) algorithm applied to the geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Evaluation of the high IWC mask with satellite measurements of active remote sensors of cloud properties (CLOUDSAT/CALIPSO combined in the DARDAR (raDAR-liDAR) product) reveals that the high IWC mask is capable of detecting high IWC values > 1 g m-3 in the DARDAR profiles with a probability of detection of 60-80 %. The best CPP predictors of high IWC were the condensed water path, cloud optical thickness, cloud phase, and cloud top height. The evaluation of the high IWC mask against DARDAR provided indications that the MSG-CPP high IWC mask is more sensitive to cloud ice or cloud water in the upper part of the cloud, which is relevant for aviation purposes. Biases in the CPP results were also identified, in particular a solar zenith angle (SZA) dependence that reduces the performance of the high IWC mask for SZAs > 60°. Verification statistics show that for the detection of high IWC a trade-off has to be made between better detection of high IWC scenes and more false detections, i.e., scenes identified by the high IWC mask that do not contain IWC > 1 g m-3. However, the large majority of these detections still contain IWC values between 0.1 and 1 g m-3. Comparison of the high IWC mask against results from the Rapidly Developing Thunderstorm (RDT) algorithm applied to the same geostationary SEVIRI data showed that there are similarities and differences with the high IWC mask: the RDT algorithm is very capable of detecting young/new convective cells and areas, whereas the high IWC mask appears to be better capable of detecting more mature and ageing convection as well as cirrus remnants. The lack of detailed understanding of what causes aviation hazards related to high IWC, as well as the lack of clearly defined user requirements, hampers further tuning of the high IWC mask. Future evaluation of the high IWC mask against field campaign data, as well as obtaining user feedback and user requirements from the aviation industry, should provide more information on the performance of the MSG-CPP high IWC mask and contribute to improving the practical use of the high IWC mask.

  11. Weather Radars and Lidar for Observing the Atmosphere

    NASA Astrophysics Data System (ADS)

    (Vivek) Vivekanandan, J.

    2010-05-01

    The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.

  12. Applying a multi-replication framework to support dynamic situation assessment and predictive capabilities

    NASA Astrophysics Data System (ADS)

    Lammers, Craig; McGraw, Robert M.; Steinman, Jeffrey S.

    2005-05-01

    Technological advances and emerging threats reduce the time between target detection and action to an order of a few minutes. To effectively assist with the decision-making process, C4I decision support tools must quickly and dynamically predict and assess alternative Courses Of Action (COAs) to assist Commanders in anticipating potential outcomes. These capabilities can be provided through the faster-than-real-time predictive simulation of plans that are continuously re-calibrating with the real-time picture. This capability allows decision-makers to assess the effects of re-tasking opportunities, providing the decision-maker with tremendous freedom to make time-critical, mid-course decisions. This paper presents an overview and demonstrates the use of a software infrastructure that supports DSAP capabilities. These DSAP capabilities are demonstrated through the use of a Multi-Replication Framework that supports (1) predictivie simulations using JSAF (Joint Semi-Automated Forces); (2) real-time simulation, also using JSAF, as a state estimation mechanism; and, (3) real-time C4I data updates through TBMCS (Theater Battle Management Core Systems). This infrastructure allows multiple replications of a simulation to be executed simultaneously over a grid faster-than-real-time, calibrated with live data feeds. A cost evaluator mechanism analyzes potential outcomes and prunes simulations that diverge from the real-time picture. In particular, this paper primarily serves to walk a user through the process for using the Multi-Replication Framework providing an enhanced decision aid.

  13. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    PubMed

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    NASA Astrophysics Data System (ADS)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation.

  15. Better than fish on land? Hearing across metamorphosis in salamanders.

    PubMed

    Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob; Pedersen, Michael; Madsen, Peter Teglberg

    2015-03-07

    Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Human facial skin detection in thermal video to effectively measure electrodermal activity (EDA)

    NASA Astrophysics Data System (ADS)

    Kaur, Balvinder; Hutchinson, J. Andrew; Leonard, Kevin R.; Nelson, Jill K.

    2011-06-01

    In the past, autonomic nervous system response has often been determined through measuring Electrodermal Activity (EDA), sometimes referred to as Skin Conductance (SC). Recent work has shown that high resolution thermal cameras can passively and remotely obtain an analog to EDA by assessing the activation of facial eccrine skin pores. This paper investigates a method to distinguish facial skin from non-skin portions on the face to generate a skin-only Dynamic Mask (DM), validates the DM results, and demonstrates DM performance by removing false pore counts. Moreover, this paper shows results from these techniques using data from 20+ subjects across two different experiments. In the first experiment, subjects were presented with primary screening questions for which some had jeopardy. In the second experiment, subjects experienced standard emotion-eliciting stimuli. The results from using this technique will be shown in relation to data and human perception (ground truth). This paper introduces an automatic end-to-end skin detection approach based on texture feature vectors. In doing so, the paper contributes not only a new capability of tracking facial skin in thermal imagery, but also enhances our capability to provide non-contact, remote, passive, and real-time methods for determining autonomic nervous system responses for medical and security applications.

  17. Assessment of Southern California environment from ERTS-1

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.; Viellenave, J. H.

    1973-01-01

    ERTS-1 imagery is a useful source of data for evaluation of earth resources in Southern California. The improving quality of ERTS-1 imagery, and our increasing ability to enhance the imagery has resulted in studies of a variety of phenomena in several Southern California environments. These investigations have produced several significant results of varying detail. They include the detection and identification of macro-scale tectonic and vegetational patterns, as well as detailed analysis of urban and agricultural processes. The sequential nature of ERTS-1 imagery has allowed these studies to monitor significant changes in the environment. In addiation, some preliminary work has begun directed toward assessing the impact of expanding recreation, agriculture and urbanization into the fragile desert environment. Refinement of enhancement and mapping techniques and more intensive analysis of ERTS-1 imagery should lead to a greater capability to extract detailed information for more precise evaluations and more accurate monitoring of earth resources in Southern California.

  18. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanem, Eman; Raushel, Frank M.

    2005-09-01

    Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilizedmore » to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed.« less

  19. Enhancing Long-Term Motivation of Cardiac Patients by Applying Exergaming in Rehabilitation Training.

    PubMed

    Volmer, Joe; Burkert, Malte; Krumm, Heiko; Abodahab, Abdurrahman; Dinklage, Patrick; Feltmann, Marius; Kröger, Chris; Panta, Pernes; Schäfer, Felix; Scheidt, David; Sellung, Marcel; Singerhoff, Hauke; Steingrefer, Christofer; Schmidt, Thomas; Hoffmann, Jan-Dirk; Willemsen, Detlev; Reiss, Nils

    2017-01-01

    Although regular physical activities reduce mortality and increase quality of life many cardiac patients discontinue training due to lack of motivation, lack of time or having health concerns because of a too high training intensity. Therefore, we developed an exergaming based system to enhance long-term motivation in the context of rehabilitation training. We combined different hardware components such as vital sensors, a virtual reality headset, a motion detecting camera, a bicycle ergometer and a motion platform to create an immersive and fun experience for the training user without having to worry about any negative health impact. Our evaluation shows that the system is well accepted by the users and is capable of tackling the aforementioned reasons for an inactive lifestyle. The system is designed to be easily extensible, safe to use and enables professionals to adjust and to telemonitor the training at any time.

  20. Recent advances in quartz enhanced photoacoustic sensing

    NASA Astrophysics Data System (ADS)

    Patimisco, Pietro; Sampaolo, Angelo; Dong, Lei; Tittel, Frank K.; Spagnolo, Vincenzo

    2018-03-01

    This review aims to discuss the latest advancements in quartz-enhanced photoacoustic spectroscopy (QEPAS) based trace-gas sensing. Starting from the QEPAS basic physical principles, the most used QEPAS configurations will be described. This is followed by a detailed theoretical analysis and experimental study regarding the influence of quartz tuning forks (QTFs) geometry on their optoacoustic transducer performance. Furthermore, an overview of the latest developments in QEPAS trace-gas sensor technology employing custom QTFs will be reported. Results obtained by exploiting novel micro-resonator configurations, capable of increasing the QEPAS signal-to-noise ratio by more than two orders of magnitude and the utilization of QTF overtone flexural modes for QEPAS based sensing will be presented. A comparison of the QEPAS performance of different spectrophone configurations is reported based upon signal-to-noise ratio. Finally, a novel QEPAS approach allowing simultaneous dual-gas detection will be described.

Top