Science.gov

Sample records for enhancing extracellular atp

  1. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants1[OPEN

    PubMed Central

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-01-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg2+ as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. PMID:26224801

  2. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Homeostasis of Extracellular ATP in Human Erythrocytes*

    PubMed Central

    Montalbetti, Nicolas; Leal Denis, Maria F.; Pignataro, Omar P.; Kobatake, Eiry; Lazarowski, Eduardo R.; Schwarzbaum, Pablo J.

    2011-01-01

    We explored the intra- and extracellular processes governing the kinetics of extracellular ATP (ATPe) in human erythrocytes stimulated with agents that increase cAMP. Using the luciferin-luciferase reaction in off-line luminometry we found both direct adenylyl cyclase activation by forskolin and indirect activation through β-adrenergic stimulation with isoproterenol-enhanced [ATP]e in a concentration-dependent manner. A mixture (3V) containing a combination of these agents and the phosphodiesterase inhibitor papaverine activated ATP release, leading to a 3-fold increase in [ATP]e, and caused increases in cAMP concentration (3-fold for forskolin + papaverine, and 10-fold for 3V). The pannexin 1 inhibitor carbenoxolone and a pannexin 1 blocking peptide (10Panx1) decreased [ATP]e by 75–84%. The residual efflux of ATP resulted from unavoidable mechanical perturbations stimulating a novel, carbenoxolone-insensitive pathway. In real-time luminometry experiments using soluble luciferase, addition of 3V led to an acute increase in [ATP]e to a constant value of ∼1 pmol × (106 cells)−1. A similar treatment using a surface attached luciferase (proA-luc) triggered a rapid accumulation of surface ATP levels to a peak concentration of 2.4 pmol × (106 cells)−1, followed by a slower exponential decay (t½ = 3.7 min) to a constant value of 1.3 pmol × (106 cells)−1. Both for soluble luciferase and proA-luc, ATP efflux was fully blocked by carbenoxolone, pointing to a 3V-induced mechanism of ATP release mediated by pannexin 1. Ecto-ATPase activity was extremely low (∼28 fmol × (106 cells min)−1), but nevertheless physiologically relevant considering the high density of erythrocytes in human blood. PMID:21921036

  4. Extracellular ATP signaling in plants

    PubMed Central

    Tanaka, Kiwamu; Gilroy, Simon; Jones, Alan M.; Stacey, Gary

    2016-01-01

    Extracellular adenosine-5′-triphosphate (ATP) induces a number of cellular responses in plants and animals. Some of the molecular components for purinergic signaling in animal cells appear to be lacking in plant cells, although some cellular responses are similar in both systems [e.g. increased levels of cytosolic free calcium, nitric oxide (NO), and reactive oxygen species (ROS)]. The purpose of this review is to compare and contrast purinergic signaling mechanisms in animal and plant cells. This comparison will aid our overall understanding of plant physiology and also provide details of the general fundamentals of extracellular ATP signaling in eukaryotes. PMID:20817461

  5. Release of extracellular ATP by bacteria during growth

    PubMed Central

    2013-01-01

    Background Adenosine triphosphate (ATP) is used as an intracellular energy source by all living organisms. It plays a central role in the respiration and metabolism, and is the most important energy supplier in many enzymatic reactions. Its critical role as the energy storage molecule makes it extremely valuable to all cells. Results We report here the detection of extracellular ATP in the cultures of a variety of bacterial species. The levels of the extracellular ATP in bacterial cultures peaked around the end of the log phase and decreased in the stationary phase of growth. Extracellular ATP levels were dependent on the cellular respiration as bacterial mutants lacking cytochrome bo oxidase displayed lower extracellular ATP levels. We have also shown that Escherichia coli (E. coli) and Salmonella actively depleted extracellular ATP and an ATP supplement in culture media enhanced the stationary survival of E. coli and Salmonella. In addition to E. coli and Salmonella the presence of the extracellular ATP was observed in a variety of bacterial species that contain human pathogens such as Acinetobacter, Pseudomonas, Klebsiella and Staphylococcus. Conclusion Our results indicate that extracellular ATP is produced by many bacterial species during growth and extracellular ATP may serve a role in the bacterial physiology. PMID:24364860

  6. Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes

    PubMed Central

    Denis, María Florencia Leal; Incicco, J. Jeremías; Espelt, María Victoria; Verstraeten, Sandra V.; Pignataro, Omar P.; Lazarowski, Eduardo R.; Schwarzbaum, Pablo J.

    2014-01-01

    SUMMARY Background The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). Methods Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. Results Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10 μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. Conclusions MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. General Significance Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation. PMID:23742824

  7. Dynamic regulation of extracellular ATP in Escherichia coli.

    PubMed

    Alvarez, Cora Lilia; Corradi, Gerardo; Lauri, Natalia; Marginedas-Freixa, Irene; Leal Denis, María Florencia; Enrique, Nicolás; Mate, Sabina María; Milesi, Verónica; Ostuni, Mariano Anibal; Herlax, Vanesa; Schwarzbaum, Pablo Julio

    2017-04-04

    We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [(32)P]Pi released from [γ-(32)P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-(32)P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1-1 µM). Exposure to MST7 and MEL enhanced ATP release by 3-7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6-7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.

  8. Enhancement of Muscle T Regulatory Cells and Improvement of Muscular Dystrophic Process in mdx Mice by Blockade of Extracellular ATP/P2X Axis.

    PubMed

    Gazzerro, Elisabetta; Baldassari, Simona; Assereto, Stefania; Fruscione, Floriana; Pistorio, Angela; Panicucci, Chiara; Volpi, Stefano; Perruzza, Lisa; Fiorillo, Chiara; Minetti, Carlo; Traggiai, Elisabetta; Grassi, Fabio; Bruno, Claudio

    2015-12-01

    Infiltration of immune cells and chronic inflammation substantially affect skeletal and cardiac muscle degeneration in Duchenne muscular dystrophy. In the immune system, extracellular adenosine triphosphate (ATP) released by dying cells is sensed as a danger associated molecular pattern through P2 purinergic receptors. Specifically, the P2X7 subtype has a prominent role in regulating immune system physiology and contributes to inflammasome activation also in muscle cells. Here, we show that in vivo blockade of the extracellular ATP/P2X purinergic signaling pathway by periodate-oxidized ATP delayed the progression of the dystrophic phenotype and dampened the local inflammatory response in mdx mice, a spontaneous mouse model of dystrophin deficiency. Reduced infiltration of leukocytes and macrophages and decreased expression of IL-6 were revealed in the muscles of periodate-oxidized ATP-treated mdx mice. Concomitantly, an increase in Foxp3(+) immunosuppressive regulatory T cells was observed and correlated with enhanced myofiber regeneration. Moreover, we detected reduced concentrations of profibrotic cytokines, including transforming growth factor-β and connective tissue growth factor, in muscles of periodate-oxidized ATP-treated mdx mice. The improvement of inflammatory features was associated with increased strength and reduced necrosis, thus suggesting that pharmacologic purinergic antagonism altering the adaptive immune component in the muscle infiltrates might represent a promising therapeutic approach in Duchenne muscular dystrophy.

  9. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation.

    PubMed

    Weihs, Anna M; Fuchs, Christiane; Teuschl, Andreas H; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G; Sitte, Harald H; Rünzler, Dominik

    2014-09-26

    Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Shock Wave Treatment Enhances Cell Proliferation and Improves Wound Healing by ATP Release-coupled Extracellular Signal-regulated Kinase (ERK) Activation*

    PubMed Central

    Weihs, Anna M.; Fuchs, Christiane; Teuschl, Andreas H.; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G.; Sitte, Harald H.; Rünzler, Dominik

    2014-01-01

    Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. PMID:25118288

  11. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization.

    PubMed

    Liang, Cuiyue; Tian, Jiang; Lam, Hon-Ming; Lim, Boon Leong; Yan, Xiaolong; Liao, Hong

    2010-02-01

    Purple acid phosphatases (PAPs) play diverse physiological roles in plants. In this study, we purified a novel PAP, PvPAP3, from the roots of common bean (Phaseolus vulgaris) grown under phosphate (Pi) starvation. PvPAP3 was identified as a 34-kD monomer acting on the specific substrate, ATP, with a broad pH range and a high heat stability. The activity of PvPAP3 was insensitive to tartrate, indicating that PvPAP3 is a PAP-like protein. Amino acid sequence alignment and phylogenetic analysis suggest that PvPAP3 belongs to the group of plant PAPs with low molecular mass. Transient expression of 35S:PvPAP3-green fluorescent protein in onion (Allium cepa) epidermal cells verified that it might anchor on plasma membrane and be secreted into apoplast. Pi starvation led to induction of PvPAP3 expression in both leaves and roots of common bean, and expression of PvPAP3 was strictly dependent on phosphorus (P) availability and duration of Pi starvation. Furthermore, induction of PvPAP3 expression was more rapid and higher in a P-efficient genotype, G19833, than in a P-inefficient genotype, DOR364, suggesting possible roles of PvPAP3 in P efficiency in bean. In vivo analysis using a transgenic hairy root system of common bean showed that both growth and P uptake of bean hairy roots from the PvPAP3 overexpression transgenic lines were significantly enhanced when ATP was supplied as the sole external P source. Taken together, our results suggest that PvPAP3 is a novel PAP that might function in the adaptation of common bean to P deficiency, possibly through enhancing utilization of extracellular ATP as a P source.

  12. The dark side of extracellular ATP in kidney diseases.

    PubMed

    Solini, Anna; Usuelli, Vera; Fiorina, Paolo

    2015-05-01

    Intracellular ATP is the most vital source of cellular energy for biologic systems, whereas extracellular ATP is a multifaceted mediator of several cell functions via its interaction, in an autocrine or paracrine manner, with P2 purinergic receptors expressed on the cell surface. These ionotropic and metabotropic P2 purinergic receptors modulate a variety of physiologic events upon the maintenance of a highly sensitive "set point," the derangement of which may lead to the development of key pathogenic mechanisms during acute and chronic diseases. Growing evidence suggests that extracellular ATP signaling via P2 purinergic receptors may be involved in different renal pathologic conditions. For these reasons, investigators and pharmaceutical companies are actively exploring novel strategies to antagonize or block these receptors with the goal of reducing extracellular ATP production or accelerating extracellular ATP clearance. Targeting extracellular ATP signaling, particularly through the P2X7 receptor, has considerable translational potential, given that novel P2X7-receptor inhibitors are already available for clinical use (e.g., CE224,535, AZD9056, and GSK1482160). This review summarizes the current evidence regarding the involvement of extracellular ATP and its P2 purinergic receptor-mediated signaling in physiologic and pathologic processes in the kidney; potential therapeutic options targeting extracellular ATP purinergic receptors are analyzed as well.

  13. Apyrases, extracellular ATP and the regulation of growth.

    PubMed

    Clark, Greg; Roux, Stanley J

    2011-12-01

    Although no definitive receptor for extracellular ATP (eATP) has been identified in plants, there is now stronger physiological evidence that the effects of eATP on plant growth are mediated by a receptor, or, as in animals, by multiple receptors. Recent papers clarify how extracellular nucleotides induce changes in [Ca(2+)](cyt), and the production of nitric oxide (NO) and reactive oxygen species. They document links between eATP signaling and the synthesis or transport of hormones, and they reveal that applied nucleotides can regulate the aperture of stomates, which release ATP when stimulated by light and hormones. Ectoapyrases (ecto-nucleoside triphosphate-diphosphohydrolase) help control both the diverse signaling changes and downstream growth changes induced by extracellular nucleotides by limiting their concentration in the extracellular matrix (ECM). Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Apyrase Functions in Plant Phosphate Nutrition and Mobilizes Phosphate from Extracellular ATP1

    PubMed Central

    Thomas, Collin; Sun, Yu; Naus, Katie; Lloyd, Alan; Roux, Stanley

    1999-01-01

    ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose. PMID:9952450

  15. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU)

    PubMed Central

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases. PMID:27196432

  16. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU).

    PubMed

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  17. Regulation of Extracellular ATP in Human Erythrocytes Infected with Plasmodium falciparum

    PubMed Central

    Alvarez, Cora Lilia; Schachter, Julieta; de Sá Pinheiro, Ana Acacia; Silva, Leandro de Souza; Verstraeten, Sandra Viviana; Persechini, Pedro Muanis; Schwarzbaum, Pablo Julio

    2014-01-01

    In human erythrocytes (h-RBCs) various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics) depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages). A “3V” mixture containing isoproterenol (β-adrenergic agonist), forskolin (adenylate kinase activator) and papaverine (phosphodiesterase inhibitor) was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs), t-RBCs (trophozoite-infected RBCs) and s-RBCs (schizont-infected RBCs) showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe]) increased nonlinearly with parasitemia (from 2 to 12.5%). Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs) showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83–87% for h-RBCs and 63–74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300–900 nM) and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO) was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation

  18. Differential modulation by extracellular ATP of carotid chemosensory responses.

    PubMed

    Spergel, D; Lahiri, S

    1993-06-01

    The possibility that the carotid body has ATP surface receptors that mediate O2 chemoreception was tested. To distinguish between the event(s) initiating chemoreception and those at the neurotransmitter level, we also tested the chemosensory response to nicotine before and after ATP administration. Carotid bodies from cats anesthetized with pentobarbital sodium were perfused and superfused in vitro with modified Tyrode solution (PCO2 < 1 Torr, pH 7.4, 36 degrees C) equilibrated at PO2 > 400 or approximately 150 Torr while chemosensory discharge was recorded extracellularly. ATP and adenosine 5'-[gamma-thio]triphosphate stimulated discharge with similar dose dependence, whereas adenosine had little effect. ATP infusion for > or = 2 min evoked an initial stimulation of discharge followed by a decline to baseline (desensitization). Desensitization did not affect the response to hypoxia (perfusate flow interruption) but inhibited the response to nicotine (4-nmol pulse). Therefore, 1) the carotid body has surface ATP receptors that may mediate the chemosensory response to nicotine but not to hypoxia and 2) nicotinic receptors are not required for carotid body O2 chemoreception.

  19. Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance

    PubMed Central

    Shang, Zhonglin; Laohavisit, Anuphon

    2009-01-01

    Extracellular ATP has been found to elevate cytosolic free Ca2+ in Arabidopsis thaliana and trigger gene transcription, suggesting that it acts as a plant cell regulator. Recent findings place extracellular ATP upstream of Arabidopsis thaliana NADPH oxidase activity and plasma membrane Ca2+-permeable channels in the root epidermis. Here we show that increasing extracellular ATP concentration evokes a larger but more irregular Ca2+ influx conductance in root epidermal protoplasts. This may help modulate changes in cytosolic free Ca2+ as a second messenger and help explain the dose-dependent effects of extracellular ATP on cell function. The receptors for ATP and the downstream plasma membrane Ca2+ channels remain unknown at the protein or gene level. No equivalents of animal ATP receptors have been identified in higher plant genomes. We propose here that annexins could perceive extracellular ATP and participate in Ca2+ influx. PMID:19826233

  20. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain.

    PubMed

    Masuda, Takahiro; Ozono, Yui; Mikuriya, Satsuki; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Iwatsuki, Ken; Uneyama, Hisayuki; Ichikawa, Reiko; Salter, Michael W; Tsuda, Makoto; Inoue, Kazuhide

    2016-08-12

    Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain.

  1. Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells

    PubMed Central

    Prosdocimo, Domenick A.; Douglas, Dezmond C.; Romani, Andrea M.; O'Neill, W. Charles; Dubyak, George R.

    2009-01-01

    Extracellular inorganic pyrophosphate (PPi) is a potent suppressor of physiological calcification in bone and pathological calcification in blood vessels. Ectonucleotide pyrophosphatase/phosphodiesterases (eNPPs) generate PPi via the hydrolysis of ATP released into extracellular compartments by poorly understood mechanisms. Here we report that cultured vascular smooth muscle cells (VSMC) from rat aorta generate extracellular PPi via an autocrine mechanism that involves ATP release tightly coupled to eNPP activity. The nucleotide analog β,γ-methylene ATP (MeATP or AMPPCP) was used to selectively suppress ATP metabolism by eNPPs but not the CD39-type ecto-ATPases. In the absence of MeATP, VSMC generated extracellular PPi to accumulate ≥600 nM within 2 h while steadily maintaining extracellular ATP at 1 nM. Conversely, the presence of MeATP completely suppressed PPi accumulation while increasing ATP accumulation. Probenecid, which inhibits PPi efflux dependent on ANK, a putative PPi transporter or transport regulator, reduced extracellular PPi accumulation by approximately twofold. This indicates that autocrine ATP release coupled to eNPP activity comprises ≥50% of the extracellular PPi-generating capacity of VSMC. The accumulation of extracellular PPi and ATP was markedly attenuated by reduced temperature but was insensitive to brefeldin A, which suppresses constitutive exocytosis of Golgi-derived secretory vesicles. The magnitude of extracellular PPi accumulation in VSMC cultures increased with time postplating, suggesting that ATP release coupled to PPi generation is upregulated as cultured VSMC undergo contact-inhibition of proliferation or deposit extracellular matrix. PMID:19193865

  2. Evidence for Extracellular ATP as a Stress Signal in a Single-Celled Organism

    PubMed Central

    Sivaramakrishnan, Venketesh

    2015-01-01

    ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium. Release of micromolar ATP could be detected during cell swelling and regulatory cell volume decrease (RVD) phases during hypotonic challenge. Scavenging ATP with apyrase caused profound cell swelling and loss of RVD. Apyrase-induced swelling could be rescued by 100 μM βγ-imidoATP. N-Ethylmalemide (NEM), an inhibitor of vesicular exocytosis, caused heightened cell swelling, loss of RVD, and inhibition of ATP release. Amoebas with impaired contractile vacuole (CV) fusion (drainin knockout [KO] cells) displayed increased swelling but intact ATP release. One hundred micromolar Gd3+ caused cell swelling while blocking any recovery by βγ-imidoATP. ATP release was 4-fold higher in the presence of Gd3+. Cell swelling was associated with an increase in intracellular nitric oxide (NO), with NO-scavenging agents causing cell swelling. Swelling-induced NO production was inhibited by both apyrase and Gd3+, while NO donors rescued apyrase- and Gd3+-induced swelling. These data suggest extracellular ATP released during cell swelling is an important signal that elicits RVD. Though the cell surface receptor for ATP in Dictyostelium remains elusive, we suggest ATP operates through a Gd3+-sensitive receptor that is coupled with intracellular NO production. PMID:26048010

  3. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  4. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  5. Dexamethasone Enhances ATP-Induced Inflammatory Responses in Endothelial Cells

    PubMed Central

    Ding, Yi; Gao, Zhan-Guo; Jacobson, Kenneth A.

    2010-01-01

    The purinergic nucleotide ATP is released from stressed cells and is implicated in vascular inflammation. Glucocorticoids are essential to stress responses and are used therapeutically, yet little information is available that describes the effects of glucocorticoids on ATP-induced inflammation. In a human microvascular endothelial cell line, extracellular ATP-induced interleukin (IL)-6 secretion in a dose- and time-dependent manner. When cells were pretreated with dexamethasone, a prototypic glucocorticoid, ATP-induced IL-6 production was enhanced in a time- and dose-dependent manner. Mifepristone, a glucocorticoid receptor antagonist, blocked these effects. ATP-induced IL-6 release was significantly inhibited by a phospholipase C inhibitor [1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)] (63.2 ± 3%, p < 0.001) and abolished by a p38 mitogen-activated protein kinase inhibitor [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB 203580)] (88 ± 1%, p < 0.001). Cells treated with dexamethasone induced mRNA expression of the purinergic P2Y2 receptor (P2Y2R) 1.8- ± 0.1-fold and, when stimulated with ATP, enhanced Ca2+ release and augmented IL-6 mRNA expression. Silencing of the P2Y2R by its small interfering RNA decreased ATP-induced IL-6 production by 81 ± 1% (p < 0.001). Dexamethasone enhanced the transcription rate of P2Y2R mRNA and induced a dose-related increase in the activity of the P2Y2R promoter. Furthermore, dexamethasone-enhanced ATP induction of adhesion molecule transcription and augmented the release of IL-8. Dexamethasone leads to an unanticipated enhancement of endothelial inflammatory mediator production by extracellular ATP via a P2Y2R-dependent mechanism. These data define a novel positive feedback loop of glucocorticoids and ATP-induced endothelial inflammation. PMID:20826566

  6. Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation.

    PubMed

    Trabanelli, Sara; Ocadlíková, Darina; Gulinelli, Sara; Curti, Antonio; Salvestrini, Valentina; Vieira, Rodolfo de Paula; Idzko, Marco; Di Virgilio, Francesco; Ferrari, Davide; Lemoli, Roberto M

    2012-08-01

    It has been reported that ATP inhibits or stimulates lymphoid cell proliferation depending on the cellular subset analyzed. In this study, we show that ATP exerts strikingly opposite effects on anti-CD3/CD28-activated and regulatory CD4(+) T cells (T(regs)), based on nucleotide concentration. We demonstrate that physiological concentrations of extracellular ATP (1-50 nM) do not affect activated CD4(+) T cells and T(regs). Conversely, higher ATP concentrations have a bimodal effect on activated CD4(+) T cells. Whereas 250 nM ATP stimulates proliferation, cytokine release, expression of adhesion molecules, and adhesion, 1 mM ATP induces apoptosis and inhibits activated CD4(+) T cell functions. The expression analysis and pharmacological profile of purinergic P2 receptors for extracellular nucleotides suggest that activated CD4(+) T cells are induced to apoptosis via the upregulation and engagement of P2X7R and P2X4R. On the contrary, 1 mM ATP enhances proliferation, adhesion, migration, via P2Y2R activation, and immunosuppressive ability of T(regs). Similar results were obtained when activated CD4(+) T cells and T(regs) were exposed to ATP released by necrotized leukemic cells. Taken together, our results show that different concentrations of extracellular ATP modulate CD4(+) T cells according to their activated/regulatory status. Because extracellular ATP concentration highly increases in fast-growing tumors or hyperinflamed tissues, the manipulation of purinergic signaling might represent a new therapeutic target to shift the balance between activated CD4(+) T cells and T(regs).

  7. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Hein, Martina; Petersen, Frank; Thon, Lutz; Adam, Dieter; Bulfone-Paus, Silvia

    2005-04-01

    Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.

  8. Continuous intravenous infusion of ATP in humans yields large expansions of erythrocyte ATP pools but extracellular ATP pools are elevated only at the start followed by rapid declines.

    PubMed

    Rapaport, Eliezer; Salikhova, Anna; Abraham, Edward H

    2015-06-01

    The pharmacokinetics of adenosine 5'-triphosphate (ATP) was investigated in a clinical trial that included 15 patients with advanced malignancies (solid tumors). ATP was administered by continuous intravenous infusions of 8 h once weekly for 8 weeks. Three values of blood ATP levels were determined. These were total blood (erythrocyte) and blood plasma (extracellular) ATP pools along with the initial rate of release of ATP into the blood plasma. We found that values related to erythrocyte ATP pools showed great variability (diversity) among individuals (standard deviation of about 30-40% of mean at baseline). It was discovered that erythrocyte baseline ATP pool sizes are unique to each individual and that they fall within a narrow range in each individual. At the end of an 8 h continuous intravenous infusion of ATP, intracellular erythrocyte ATP pools were increased in the range of 40-60% and extracellular ATP declined from elevated levels achieved at the beginning and middle of the infusion, to baseline levels. The ability of erythrocytes to sequester exogenously administered ATP to this degree, after its initial conversion to adenosine in the blood plasma is unexpected, considering that some of the adenosine is likely to have been degraded by in vivo catabolic activities or taken up by organs. The data suggest that administration of ATP by short-term intravenous infusions, of up to 4 h, may be a favorable way for elevating extracellular ATP pools. A large fraction of the total exogenously administered ATP is sequestered into the intracellular compartments of the erythrocytes after an 8 h intravenous infusion. Erythrocytes loaded with ATP are known to release their ATP pools by the application of previously established agents or conditions applied locally or globally to circulating erythrocytes. Rapid degradation of intravenously administered ATP to adenosine and subsequent accumulation of ATP inside erythrocytes indicate the existence of very effective mechanisms

  9. Extracellular ATP and P2Y Receptor Activation Induce a Proinflammatory Host Response in the Human Urinary Tract▿

    PubMed Central

    Säve, Susanne; Persson, Katarina

    2010-01-01

    Extracellular ATP can be released by many cell types under conditions of cellular stress and signals through activation of purinergic receptors. Bladder uroepithelial cells grown in vitro have previously been shown to release ATP in response to stretch. In the present study, we investigated ATP release from uroepithelial cells infected with bacteria and the effect of ATP on the host cell proinflammatory interleukin 8 (IL-8) response. The human kidney epithelial cell line A498 and the human uroepithelial cell line UROtsa were grown in culture and stimulated by the uropathogenic Escherichia coli (UPEC) IA2 strain or the stable ATP analogue ATP-γ-S. ATP and IL-8 levels were measured in cell culture medium with a luciferin-luciferase assay and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that UPEC infection of uroepithelial cells for 1 h significantly increased (P < 0.01) the extracellular ATP levels. ATP-γ-S (10 and 100 μM) stimulated release of IL-8 from UROtsa and A498 cells after 6 and 24 h. Experiments with different purinoceptor agonists suggested that P2Y receptors, and not P2X receptors, were responsible for the ATP-γ-S-induced IL-8 release. The potency profile further suggested involvement of P2Y1, P2Y2, and/or P2Y11 receptors, and reverse transcription-PCR (RT-PCR) studies confirmed that the cells expressed these receptors. The amount of IL-8 released increased 12-fold in UPEC-infected cells, and apyrase, an enzyme that degrades ATP, reduced this increase by approximately 50%. The present study suggests that enhanced ATP release and P2Y receptor activation during urinary tract infection may represent a novel, non-TLR4-mediated mechanism for production of proinflammatory IL-8 in human urinary tract epithelial cells. PMID:20515921

  10. Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis.

    PubMed

    Sperlágh, B; Mergl, Z; Jurányi, Z; Vizi, E S; Makara, G B

    1999-03-01

    It is now widely accepted that ATP functions as a signalling substance in the nervous system. The presence of P2 receptors mediating the action of extracellular ATP in brain regions involved in hormonal regulation raises the possibility that a similar role for ATP might also exist in the neuroendocrine system. In this study, the release from the rat isolated neurohypophysis preparation of endogenous ATP, oxytocin and vasopressin (AVP) were measured simultaneously using luciferin-luciferase and RIA techniques. After 70 min preperfusion, electrical field stimulation caused a rapid increase in the amount of ATP in the effluent and the release of AVP and oxytocin also increased stimulation-dependently. Inhibition of voltage-dependent Na+ channels by tetrodotoxin (1 microM) reduced the stimulation-evoked release of AVP and oxytocin; however, the evoked release of ATP remained unaffected. The effect of endogenous ATP on the hormone secretion was tested by suramin (300 microM), the P2 receptor antagonist. Suramin significantly increased the release of AVP, and the release of oxytocin was also enhanced. ATP, when applied to the superfusing medium, decreased the release of AVP, but not that of oxytocin, and its effect was prevented by suramin. ATP (60 nmol), added to the tissues, was readily decomposed to ADP, AMP and adenosine measured by HPLC combined with ultraviolet light detection, and the kinetic parameters of the enzymes responsible for inactivation of ATP (ectoATPase and ecto5'-nucleotidase) were also determined (Km=264+/-2.7 and 334+/-165 microM and vmax=6.7+/-1.1 and 2.54+/-0.24 nmol/min per preparation (n=3) for ectoATPase and ecto5'-nucleotidase respectively). Taken together, our data demonstrate the stimulation-dependent release, P2 receptor-mediated action and extracellular metabolism of endogenous ATP in the posterior lobe of the hypophysis and indicate its role, as a paracrine regulator, in the local control of hormone secretion.

  11. Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator.

    PubMed

    Chivasa, Stephen; Tomé, Daniel F A; Hamilton, John M; Slabas, Antoni R

    2011-03-01

    Extracellular ATP is an important signal molecule required to cue plant growth and developmental programs, interactions with other organisms, and responses to environmental stimuli. The molecular targets mediating the physiological effects of extracellular ATP in plants have not yet been identified. We developed a well characterized experimental system that depletes Arabidopsis cell suspension culture extracellular ATP via treatment with the cell death-inducing mycotoxin fumonisin B1. This provided a platform for protein profile comparison between extracellular ATP-depleted cells and fumonisin B1-treated cells replenished with exogenous ATP, thus enabling the identification of proteins regulated by extracellular ATP signaling. Using two-dimensional difference in-gel electrophoresis and matrix-assisted laser desorption-time of flight MS analysis of microsomal membrane and total soluble protein fractions, we identified 26 distinct proteins whose gene expression is controlled by the level of extracellular ATP. An additional 48 proteins that responded to fumonisin B1 were unaffected by extracellular ATP levels, confirming that this mycotoxin has physiological effects on Arabidopsis that are independent of its ability to trigger extracellular ATP depletion. Molecular chaperones, cellular redox control enzymes, glycolytic enzymes, and components of the cellular protein degradation machinery were among the extracellular ATP-responsive proteins. A major category of proteins highly regulated by extracellular ATP were components of ATP metabolism enzymes. We selected one of these, the mitochondrial ATP synthase β-subunit, for further analysis using reverse genetics. Plants in which the gene for this protein was knocked out by insertion of a transfer-DNA sequence became resistant to fumonisin B1-induced cell death. Therefore, in addition to its function in mitochondrial oxidative phosphorylation, our study defines a new role for ATP synthase β-subunit as a pro-cell death

  12. Negative feedback of extracellular ADP on ATP release in goldfish hepatocytes: a theoretical study.

    PubMed

    Chara, Osvaldo; Pafundo, Diego E; Schwarzbaum, Pablo J

    2010-06-21

    A mathematical model was built to account for the kinetic of extracellular ATP (ATPe) and extracellular ADP (ADPe) concentrations from goldfish hepatocytes exposed to hypotonicity. The model was based on previous experimental results on the time course of ATPe accumulation, ectoATPase activity, and cell viability [Pafundo et al., 2008]. The kinetic of ATPe is controlled by a lytic ATP flux, a non-lytic ATP flux, and ecto-ATPase activity, whereas ADPe kinetic is governed by a lytic ADP flux and both ecto-ATPase and ecto-ADPase activities. Non-lytic ATPe efflux was included as a diffusion equation modulated by ATPe activation (positive feedback) and ADPe inhibition (negative feedback). The model yielded physically meaningful and stable steady-state solutions, was able to fit the experimental time evolution of ATPe and simulated the concomitant kinetic of ADPe. According to the model during the first minute of hypotonicity the concentration of ATPe is mainly governed by both lytic and non-lytic ATP efflux, with almost no contribution from ecto-ATPase activity. Later on, ecto-ATPase activity becomes important in defining the time dependent decay of ATPe levels. ADPe inhibition of the non-lytic ATP efflux was strong, whereas ATPe activation was minimal. Finally, the model was able to predict the consequences of partial inhibition of ecto-ATPase activity on the ATPe kinetic, thus emulating the exposure of goldfish cells to hypotonic medium in the presence of the ATP analog AMP-PCP. The model predicts this analog to both inhibit ectoATPase activity and increase non-lytic ATP release.

  13. Electrophysiological effects of extracellular ATP on Necturus gallbladder epithelium

    PubMed Central

    1991-01-01

    The effects of addition of ATP to the mucosal bathing solution on transepithelial, apical, and basolateral membrane voltages and resistances in Necturus gallbladder epithelium were determined. Mucosal ATP (100 microM) caused a rapid hyperpolarization of both apical (Vmc) and basolateral (Vcs) cell membrane voltages (delta Vm = 18 +/- 1 mV), a fall in transepithelial resistance (Rt) from 142 +/- 8 to 122 +/- 7 omega.cm2, and a decrease in fractional apical membrane resistance (fRa) from 0.93 +/- 0.02 to 0.83 +/- 0.03. The rapid initial hyperpolarization of Vmc and Vcs was followed by a slower depolarization of cell membrane voltages and a lumen-negative change in transepithelial voltage (Vms). This phase also included an additional decrease in fRa. Removal of the ATP caused a further depolarization of membrane voltages followed by a hyperpolarization and then a return to control values. fRa fell to a minimum after removal of ATP and then returned to control values as the cell membrane voltages repolarized. Similar responses could be elicited by ADP but not by adenosine. The results of two-point cable experiments revealed that ATP induced an initial increase in cell membrane conductance followed by a decrease. Transient elevations of mucosal solution [K+] induced a larger depolarization of Vmc and Vcs during exposure to ATP than under control conditions. Reduction of mucosal solution [Cl-] induced a slow hyperpolarization of Vmc and Vcs before exposure to ATP and a rapid depolarization during exposure to ATP. We conclude that ATP4- is the active agent and that it causes a concentration-dependent increase in apical and basolateral membrane K+ permeability. In addition, an apical membrane electrodiffusive Cl- permeability is activated by ATP4-. PMID:1713948

  14. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP.

    PubMed

    Perruzza, Lisa; Gargari, Giorgio; Proietti, Michele; Fosso, Bruno; D'Erchia, Anna Maria; Faliti, Caterina Elisa; Rezzonico-Jost, Tanja; Scribano, Daniela; Mauri, Laura; Colombo, Diego; Pellegrini, Giovanni; Moregola, Annalisa; Mooser, Catherine; Pesole, Graziano; Nicoletti, Mauro; Norata, Giuseppe Danilo; Geuking, Markus B; McCoy, Kathy D; Guglielmetti, Simone; Grassi, Fabio

    2017-03-14

    The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh) cell abundance in the Peyer's patches (PPs) of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help.

  15. Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

    PubMed Central

    Vroman, Rozan; Klaassen, Lauw J.; Howlett, Marcus H.C.; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-01-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation

  16. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells

    PubMed Central

    Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia

    2014-01-01

    In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2×7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2×7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2×7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling—p53 increase, AMPK activation, and PARP cleavage—as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. PMID:25103241

  17. The relationship between constitutive ATP release and its extracellular metabolism in isolated rat kidney glomeruli.

    PubMed

    Karczewska, J; Martyniec, L; Dzierzko, G; Stepiński, J; Angielski, S

    2007-06-01

    ATP and adenosine are important extracellular regulators of glomerular functions. In this study, ATP release from glomeruli suspension and its extracellular metabolism were investigated. Basal extraglomerular ATP concentration (1nM) increased several fold during inhibition of ecto-ATPase activity, reflecting the basal ATP release rate. Mechanical perturbation increased the amounts of ATP released from glomeruli. ATP added to glomeruli was almost completely degraded within 20 minutes. In that time, AMP was the main product of extracellular ATP metabolism. Significant accumulation of AMP was observed after 5 min (194 +/-16 microM) and 20 min (271 +/-11 microM), whereas at the same time concentration of adenosine was only 10 muM. A competitive inhibitor of ecto-5-nucleotidase alpha-beta-methylene-ADP (AOPCP), decreased extraglomerular ATP and adenosine concentration by 80% and 50%, respectively. Similarly, AMP (100 microM) also markedly reduced extraglomerular ATP accumulation, whereas IMP, its deamination product, was not effective. P1, P5-diadenosine pentaphosphate (Ap5A) - an inhibitor of ecto-adenylate kinase prevented significantly the disappearance of ATP from extraglomerular media caused by AMP. These findings demonstrate that the decrease in extracellular ATP concentration observed after addition of AOPCP or AMP is caused by the presence of ecto-adenylate kinase activity in the glomeruli. The enzyme catalyses reversible reaction 2ADP<->ATP+AMP, and a rise in the AMP concentration can lead to fall in ATP level. The present study provides evidence the extraglomerular accumulation of ATP reflects both release of ATP from glomeruli cells and its metabolism by ecto-enzymes. Our data suggest that AMP, produced from ATP in the Bowman's capsular space, might plays a dual role as a substrate for ecto-adenylate kinase and ecto-nucleotidase reactions being responsible for the regulation of intracapsular ATP and adenosine concentration. We conclude that AMP degrading and

  18. Extracellular ATP a New Player in Cancer Metabolism: NSCLC Cells Internalize ATP In Vitro and In Vivo Using Multiple Endocytic Mechanisms.

    PubMed

    Qian, Yanrong; Wang, Xuan; Li, Yunsheng; Cao, Yanyang; Chen, Xiaozhuo

    2016-11-01

    Intratumoral extracellular ATP concentrations are 1000 times higher than those in normal tissues of the same cell origin. However, whether or not cancer cells use the abundant extracellular ATP was unknown until we recently reported that cancer cells internalize ATP. The internalized ATP was found to substantially increase intracellular ATP concentration and promote cell proliferation and drug resistance in cancer cells. Here, using a nonhydrolyzable fluorescent ATP (NHF-ATP), radioactive and regular ATP, coupled with high and low molecular weight dextrans as endocytosis tracers and fluorescence microscopy and ATP assays, cultured human NSCLC A549 and H1299 cells as well as A549 tumor xenografts were found to internalize extracellular ATP at concentrations within the reported intratumoral extracellular ATP concentration range. In addition to macropinocytosis, both clathrin- and caveolae-mediated endocytosis significantly contribute to the ATP internalization, which led to an approximately 30% (within 45 minutes) or more than 50% (within 4 hours) increase in intracellular ATP levels after ATP incubation. This increase could not be accounted for by either purinergic receptor signaling or increased intracellular ATP synthesis rates in the ATP-treated cancer cells. These new findings significantly deepen our understanding of the Warburg effect by shedding light on how cancer cells in tumors, which are heterogeneous for oxygen and nutrition supplies, take up extracellular ATP and use the internalized ATP to perform multiple previously unrecognized functions of biological importance. They strongly suggest the existence of ATP sharing among cancer and stromal cells in tumors and simultaneously identify multiple new anticancer targets.

  19. Effect of extra aeration on extracellular enzyme activities and ATP concentration of dairy Pseudomonas fluorescens.

    PubMed

    Jaspe, A; Palacios, P; Fernández, L; Sanjosé, C

    2000-03-01

    The effect of forced aeration on extracellular enzyme synthesis during batch growth of a Pseudomonas fluorescens strain of dairy origin on pyruvate mineral salts medium at 7 degrees C was studied. Measurement of oxygen tension, electron micrographs to estimate cell volume, luciferase determination of ATP and plate counts were performed in the course of incubation. Cells from the stationary phase of growth had lower energy status (in terms of intracellular ATP concentration) in the cultures receiving surplus aeration. Those cells produced three times more extracellular proteinase and lipase than control cells. Onset time for production of both enzymes coincided with a sharp fall of intracellular ATP levels.

  20. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain

    PubMed Central

    Masuda, Takahiro; Ozono, Yui; Mikuriya, Satsuki; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Iwatsuki, Ken; Uneyama, Hisayuki; Ichikawa, Reiko; Salter, Michael W.; Tsuda, Makoto; Inoue, Kazuhide

    2016-01-01

    Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain. PMID:27515581

  1. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    PubMed Central

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop

  2. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    PubMed Central

    Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  3. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE PAGES

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; ...

    2016-09-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  4. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    PubMed

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches.

  5. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection

    PubMed Central

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A.; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M.; Piacentini, Mauro; Gougeon, Marie-Lise

    2011-01-01

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. PMID:21859844

  6. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal

    PubMed Central

    Ding, Qinfeng; Tan, Kai Soo

    2016-01-01

    Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach

  7. Kinetics of extracellular ATP from goldfish hepatocytes: a lesson from mathematical modeling.

    PubMed

    Chara, Osvaldo; Pafundo, Diego E; Schwarzbaum, Pablo J

    2009-07-01

    In goldfish hepatocytes, hypotonic exposure leads to cell swelling, followed by a compensatory shrinkage termed RVD. It has been previously shown that ATP is accumulated in the extracellular medium of swollen cells in a non-linear fashion, and that extracellular ATP (ATPe) is an essential intermediate to trigger RVD. Thus, to understand how RVD proceeds in goldfish hepatocytes, we developed two mathematical models accounting for the experimental ATPe kinetics reported recently by Pafundo et al. in Am. J. Physiol. 294, R220-R233, 2008. Four different equations for ATPe fluxes were built to account for the release of ATP by lytic (J(L)) and nonlytic mechanisms (J(NL)), ATPe diffusion (J(D)), and ATPe consumption by ectonucleotidases (J(V)). Particular focus was given to J(NL), defined as the product of a time function (J(R)) and a positive feedback mechanism whereby ATPe amplifies J(NL). Several J (R) functions (Constant, Step, Impulse, Gaussian, and Lognormal) were studied. Models were tested without (model 1) or with (model 2) diffusion of ATPe. Mathematical analysis allowed us to get a general expression for each of the models. Subsequently, by using model dependent fit (simulations) as well as model analysis at infinite time, we observed that: - use of J(D) does not lead to improvements of the models. - Constant and Step time functions are only applicable when J(R)=0 (and thus, J(NL)=0), so that the only source of ATPe would be J(L), a result incompatible with experimental data. - use of impulse, Gaussian, and lognormal J(R)s in the models led to reasonable good fits to experimental data, with the lognormal function in model 1 providing the best option. Finally, the predictive nature of model 1 loaded with a lognormal J(R) was tested by simulating different putative in vivo scenarios where J(V) and J(NL) were varied over ample ranges.

  8. Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism.

    PubMed

    George, Jimmy; Gonçalves, Francisco Q; Cristóvão, Gonçalo; Rodrigues, Lisa; Meyer Fernandes, José Roberto; Gonçalves, Teresa; Cunha, Rodrigo A; Gomes, Catarina A

    2015-09-01

    Microglia rely on their ability to proliferate in the brain parenchyma to sustain brain innate immunity and participate in the reaction to brain damage. We now studied the influence of different danger signals activating microglia, both internal (typified by glutamate, associated with brain damage) and external (using a bacterial lipopolysaccharide, LPS), on the proliferation of microglia cells. We found that LPS (100 ng/mL) increased, whereas glutamate (0.5 mM) decreased proliferation. Notably, LPS decreased whereas glutamate increased the extracellular levels of ATP. In contrast, LPS increased whereas glutamate decreased the extracellular catabolism of ATP into adenosine through ecto-nucleotidases and ecto-5'-nucleotidase. Finally, apyrase (degrades extracellular ATP) abrogated glutamate-induced inhibition of microglia proliferation; conversely, inhibitors of ecto-nucleotidases (ARL67156 or α,β-methylene ADP) and adenosine deaminase (degrades extracellular adenosine) abrogated the LPS-induced increase of microglia proliferation, which was blocked by a selective A2A receptor antagonist, SCH58261 (50 nM). Overall, these results highlight the importance of the extracellular purinergic metabolism to format microglia proliferation and influence the spatio-temporal profile of neuroinflammation in different conditions of brain damage.

  9. [Identification of a new pro-invasion factor in tumor microenvironment: progress in function and mechanism of extracellular ATP].

    PubMed

    Fang, W G; Tian, X X

    2017-04-18

    Up to 90% of all cancer related morbidity and mortality can be attributed to metastasis. In recent years the study of tumor microenvironment, its cellular and molecular components, and how they can affect neoplastic progression toward metastasis, has become a hot focus in cancer research. Accumulated evidence shows that the formation of metastasis is a multi-step sequential process, in which, the tumor cells continuously interact with the host microenvironment. Host derived factors, i.e. growth factors/inhibitors, angiogenic factors, chemokines, etc. together with different types of host cells, play important roles in the tumor progression towards metastasis. The interaction between the tumor cells and host microenvironment determines the fate of metastasis. The reveal of this interaction mechanism provides us an opportunity to find effective mode of interference and develop novel anti-metastasis drugs. In this review, we have summarized our work on a new pro-invasion factor identified in tumor microenvironment and how it affects tumor invasion and metastass. Adenosine triphosphate (ATP), the key intracellular energy currency, accumulates within the tumor microenvironment and is closely involved in cancer cell metabolism and in antitumor immunity. The established role of ATP as a growth modulator and a proinflammatory mediator endues ATP and other purines with potential players in host-tumor interaction. Our study demonstrated that extracellular ATP stimulated human cancer invasion in in vitro tests. Increased migration and invasive ability across Matrigel was observed in some human carcinoma cell lines, including the prostate, breast, colon, melanoma and lung, when stimulated with ATP or its analogues. ATP enhanced the motility of cancer cells via increasing the amount and length of lamellipodia and filopodia, which were necessary for the cell motility. Significant increase in Rac1 and Cdc42 activities was observed. Using cDNA microarray we found that the

  10. Extracellular ATP signaling via P2X(4) receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation.

    PubMed

    Kwon, Hyuck Joon

    2012-09-01

    Prechondrogenic condensation is the most critical process in skeletal patterning. A previous study demonstrated that ATP oscillations driven by Ca(2+) oscillations play a critical role in prechondrogenic condensation by inducing oscillatory secretion. However, it remains unknown what mechanisms initiate the Ca(2+)-driven ATP oscillations, mediate the link between Ca(2+) and ATP oscillations, and then result in oscillatory secretion in chondrogenesis. This study has shown that extracellular ATP signaling was required for both ATP oscillations and prechondrogenic condensation. Among P2 receptors, the P2X(4) receptor revealed the strongest expression level and mediated ATP oscillations in chondrogenesis. Moreover, blockage of P2X(4) activity abrogated not only chondrogenic differentiation but also prechondrogenic condensation. In addition, both ATP oscillations and secretion activity depended on cAMP/PKA signaling but not on K(ATP) channel activity and PKC or PKG signaling. This study proposes that Ca(2+)-driven ATP oscillations essential for prechondrogenic condensation is initiated by extracellular ATP signaling via P2X(4) receptor and is mediated by cAMP/PKA signaling and that cAMP/PKA signaling induces oscillatory secretion to underlie prechondrogenic condensation, in cooperation with Ca(2+) and ATP oscillations.

  11. Clarifying binding difference of ATP and ADP to extracellular signal-regulated kinase 2 by using molecular dynamics simulations.

    PubMed

    Chen, Jianzhong

    2017-04-01

    Extracellular signal-regulated kinase 2 is a promising target for designs and development of anticancer drugs. Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann method were applied to study binding difference of ADP and ATP to extracellular signal-regulated kinase 2. The results prove that the binding ability of ATP to extracellular signal-regulated kinase 2 is stronger than that of ADP. Principal component analysis performed by using molecular dynamics trajectories suggests that binding of ADP and ATP to extracellular signal-regulated kinase 2 change motion directions of two helices α1 and α2. Residue-based free energy decomposition method was adopted to calculate contributions of separate residues to associations of ADP and ATP with extracellular signal-regulated kinase 2. The results show that ADP and ATP produce strong CH-π interactions with five residues Ile29, Val37, Ala50, Leu105, and Leu154. In addition, five hydrogen bonding interactions of ADP and ATP with residues Lys52, Gln103, Asp104, and Met106 also stabilize bindings of ADP and ATP to extracellular signal-regulated kinase 2. Overall, the CH-π interactions of ATP with five residues Ile29, Val37, Ala50, Leu105, and Leu154 are stronger than ADP. This study is expected to contribute a significant theoretical hint for designs of anticancer drugs targeting extracellular signal-regulated kinase 2. © 2016 John Wiley & Sons A/S.

  12. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway

    PubMed Central

    Ma, Lihua; Trinh, Thu; Ren, Yanfang; Dirksen, Robert T.; Liu, Xiuxin

    2016-01-01

    ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain. PMID:27706204

  13. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    PubMed Central

    Medina-Castellanos, Elizabeth; Esquivel-Naranjo, Edgardo U.; Heil, Martin; Herrera-Estrella, Alfredo

    2014-01-01

    The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca2+, and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals. PMID:25484887

  14. Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation.

    PubMed

    Orriss, Isabel R; Key, Michelle L; Hajjawi, Mark O R; Arnett, Timothy R

    2013-01-01

    Previous studies have shown that exogenous ATP (>1 µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PP(i)). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5 U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2 P(i)). Addition of 0.5 U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5 U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PP(i)-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation.

  15. Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells.

    PubMed

    Sueldo, Daniela J; Foresi, Noelia P; Casalongué, Claudia A; Lamattina, Lorenzo; Laxalt, Ana M

    2010-03-01

    *In animals and plants, extracellular ATP exerts its effects by regulating the second messengers Ca(2+), nitric oxide (NO) and reactive oxygen species (ROS). In animals, phospholipid-derived molecules, such as diacylglycerol, phosphatidic acid (PA) and inositol phosphates, have been associated with the extracellular ATP signaling pathway. The involvement of phospholipids in extracellular ATP signaling in plants, as it is established in animals, is unknown. *In vivo phospholipid signaling upon extracellular ATP treatment was studied in (32)P(i)-labeled suspension-cultured tomato (Solanum lycopersicum) cells. *Here, we report that, in suspension-cultured tomato cells, extracellular ATP induces the formation of the signaling lipid phosphatidic acid. Exogenous ATP at doses of 0.1 and 1 mM induce the formation of phosphatidic acid within minutes. Studies on the enzymatic sources of phosphatidic acid revealed the participation of both phospholipase D and C in concerted action with diacylglycerol kinase. *Our results suggest that extracellular ATP-mediated nitric oxide production is downstream of phospholipase C/diacylglycerol kinase activation.

  16. ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance.

    PubMed

    Yu, Ning; Zhao, Hong-Bo

    2008-11-01

    Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.

  17. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages

    PubMed Central

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-01-01

    HIV type 1 (HIV-1) infects CD4+ T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as “Trojan horses” carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages. PMID:26056317

  18. Cholinergic modulation of extracellular ATP-induced cytoplasmic calcium concentrations in cochlear outer hair cells.

    PubMed

    Wikström, M A; Lawoko, G; Heilbronn, E

    1998-01-01

    Outer hair cells (OHC) of the mammalian cochlea modulate the inner hair cell (IHC) mechanoelectrical transduction of sound. They are contacted by synapsing efferent neurons from the CNS, their main efferent neurotransmitter being acetylcholine (ACh). OHC function and in particular their control of [Ca2+]i is highly important and is modulated by ACh and also by other substances including extracellular (EC) ATP. OHC carry at their efferent synapse a not yet completely identified neuronal type of ionotropic ACh receptor (AChR), with an unusual pharmacology, which is, in vivo and in vitro, reversibly blocked by alpha-bungarotoxin (alpha-bgtx). The AChR mediates a fast influx of Ca2+ into OHC which, in turn, activates a closeby located outwardly-directed Ca(2+)-dependent K(+)-channel, thus shortly hyperpolarizing the cell. A cloned homomeric alpha 9 nAChR mimicks the function and pharmacology of this receptor. We here report results from a study designed to observe only slower effects triggered by EC ATP and the ACh-AChR system. EC presence of ATP at OHC increases [Ca2+]i by activating both P2x and P2y purinoceptors and also by indirect activation of OHC L-type Ca(2+)-channels. The L-type channel activation is responsible for a large part of the [Ca2+]i increase. Simultaneous EC presence of ACh and ATP at OHC was found to depress ATP-induced effects on OHC [Ca2+]i, an effect that is completely blocked in the presence of alpha-bgtx. Our observations suggest that the ACh-AChR system is involved in the modulation of the observed EC ATP-triggered events; possibly the OHC AChR is able to act both in its well known rapid ionotropic way, but also, perhaps after modification in a slower, metabotropic way interfering with the EC ATP-induced [Ca2+]i increase.

  19. Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro-thrombotic and anti-thrombotic molecules.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2015-12-01

    Vascular endothelial contributes to the metabolism and interconversion of extracellular adenine nucleotides via ecto-ATPase/ADPase (CD39) and ecto-5'nucleotidase (CD73) activities. These enzymes collectively dephosphorylate ATP, ADP, and AMP with the production of additional adenosine. In the vascular system, adenine nucleotides (ATP and ADP) and nucleoside adenosine represent an important class of extracellular molecules involved in modulating the processes linked to vascular thrombosis exerting various effects in platelets. Yet, the mechanisms by which the extracellular ATP metabolism in the local environment trigger pro-thrombotic and anti-thrombotic states are yet to be fully elucidated. In this article, the relative contribution of extracellular ATP metabolism in platelet regulation is explored.

  20. Time course of the initial [Ca2+]i response to extracellular ATP in smooth muscle depends on [Ca2+]e and ATP concentration.

    PubMed Central

    Mahoney, M G; Slakey, L L; Benham, C D; Gross, D J

    1998-01-01

    In response to extracellular application of 50 microM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca2+]i to peak [Ca2+]i within 5 s. The time from stimulus to the peak of the [Ca2+]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 microM and below, the time to the [Ca2+]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca2+, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 microM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl- ion efflux with a time course similar to the [Ca2+]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca2+ release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca2+ response are dominated by upstream signal cascade components. PMID:9746547

  1. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release.

    PubMed

    Zimmermann, Herbert

    2016-03-01

    Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.

  2. Secretion of adenylate kinase 1 is required for extracellular ATP synthesis in C2C12 myotubes

    PubMed Central

    Choo, Hyo-Jung; Kim, Bong-Woo; Kwon, Oh-Bong; Lee, Chang Seok; Choi, Jong-Soon

    2008-01-01

    Extracellular ATP (exATP) has been known to be a critical ligand regulating skeletal muscle differentiation and contractibility. ExATP synthesis was greatly increased with the high level of adenylate kinase 1 (AK1) and ATP synthase β during C2C12 myogenesis. The exATP synthesis was abolished by the knock-down of AK1 but not by that of ATP synthase β in C2C12 myotubes, suggesting that AK1 is required for exATP synthesis in myotubes. However, membrane-bound AK1β was not involved in exATP synthesis because its expression level was decreased during myogenesis in spite of its localization in the lipid rafts that contain various kinds of receptors and mediate cell signal transduction, cell migration, and differentiation. Interestingly, cytoplasmic AK1 was secreted from C2C12 myotubes but not from C2C12 myoblasts. Taken together all these data, we can conclude that AK1 secretion is required for the exATP generation in myotubes. PMID:18446060

  3. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium.

    PubMed Central

    Mason, S. J.; Paradiso, A. M.; Boucher, R. C.

    1991-01-01

    1 The role of extracellular nucleotides in regulation of ion transport activities (short circuit current, Isc) of human respiratory epithelia was studied. 2 Application of nucleotides to the apical or basolateral membrane of human nasal epithelium induced a concentration-dependent increase in Isc. 3 The rank order of potency of purine- or pyrimidine-induced changes in Isc of normal human nasal epithelium when applied to the apical membrane (UTP greater than or equal to ATP greater than ATP gamma S greater than 2MeSATP greater than ADP beta S much greater than beta gamma MeATP greater than or equal to alpha beta MeATP) or basolateral membrane (2MeSATP greater than UTP greater than ATP greater than ATP gamma S greater than alpha beta MeATP greater than beta gamma MeATP) is consistent with involvement of a P2 purinoceptor. A similar rank order of potencies was observed for nucleotide effects on intracellular calcium measured by Fura-2 fluorescence using microspectrofluorimetry. 4 Similar nucleotide potency in the regulation of ion transport and intracellular calcium in cystic fibrosis (CF) airway epithelium (UTP greater than or equal to ATP) was observed, suggesting purinoceptors might be used to stimulate ion transport processes that would promote hydration of airway secretions and facilitate their clearance from CF lungs. 5 These data provide evidence for the regulation of ion transport by P2 purinoceptors in normal and cystic fibrosis human airway epithelium. PMID:1718521

  4. Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors.

    PubMed

    Jun, Dong-Jae; Kim, Jaeyoon; Jung, Sang-Yong; Song, Ran; Noh, Ji-Hyun; Park, Yong-Soo; Ryu, Sung-Ho; Kim, Joung-Hun; Kong, Young-Yun; Chung, Jun-Mo; Kim, Kyong-Tai

    2007-12-28

    Extracellular ATP has recently been identified as an important regulator of cell death in response to pathological insults. When SN4741 cells, which are dopaminergic neurons derived from the substantia nigra of transgenic mouse embryos, are exposed to ATP, cell death occurs. This cell death is associated with prominent cell swelling, loss of ER integrity, the formation of many large cytoplasmic vacuoles, and subsequent cytolysis and DNA release. In addition, the cleavage of caspase-3, a hallmark of apoptosis, is induced by ATP treatment. However, caspase inhibitors do not overcome ATP-induced cell death, indicating that both necrosis and apoptosis are associated with ATP-induced cell death and suggesting that a necrotic event might override the apoptotic process. In this study we also found that P2X(7) receptors (P2X(7)Rs) are abundantly expressed in SN4741 cells, and both ATP-induced swelling and cell death are reversed by pretreatment with the P2X(7)Rs antagonist, KN62, or by knock-down of P2X(7)Rs with small interfering RNAs. Therefore, extracellular ATP release from injured tissues may act as an accelerating factor in necrotic SN4741 dopaminergic cell death via P2X(7)Rs.

  5. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    PubMed Central

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  6. Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages.

    PubMed

    Murgia, M; Pizzo, P; Steinberg, T H; Di Virgilio, F

    1992-12-15

    Extracellular ATP (ATPo) is known to be cytotoxic to many cell types through a mechanism which is largely unknown. Very recently this nucleotide has been shown to cause cell death by apoptosis, probably by interacting with specific cell-surface receptors. In the present study we have investigated the mechanism of ATPo-dependent cytotoxicity in the macrophage-like mouse cell line J774. It has been previously reported that in this cell type ATPo activates trans-membrane Ca2+ and Na+ fluxes and a drastic increase in the plasma-membrane permeability to hydrophilic solutes smaller than 900 Da. These changes are followed by cell swelling and lysis. We show in the present study that, although this nucleotide triggers a rise in the cytoplasmic Ca2+ concentration, neither cell swelling nor lysis is Ca(2+)-dependent. Furthermore, cell lysis is not dependent on Na+ influx, as it is not prevented by iso-osmotic replacement of extracellular Na+ with choline or N-methylglucamine. On the contrary, ATPo-dependent cytotoxicity, but not the ATPo-dependent increase in plasma-membrane permeability, is completely abrogated in sucrose medium. Under our experimental conditions ATPo does not cause DNA fragmentation in J774 cells. We conclude from these findings that ATPo does not cause apoptosis of J774 macrophages and promotes a Ca(2+)- and Na(+)-independent colloido-osmotic lysis.

  7. Hyperpolization-activated Ca(2+) channels in guard cell plasma membrane are involved in extracellular ATP-promoted stomatal opening in Vicia faba.

    PubMed

    Wang, Fang; Jia, Juanjuan; Wang, Yufang; Wang, Weixia; Chen, Yuling; Liu, Ting; Shang, Zhonglin

    2014-09-01

    Extracellular ATP (eATP) plays essential roles in plant growth, development, and stress tolerance. Extracellular ATP-regulated stomatal movement of Arabidopsis thaliana has been reported. Here, ATP was found to promote stomatal opening of Vicia faba in a dose-dependent manner. Three weakly hydrolysable ATP analogs (adenosine 5'-O-(3-thio) triphosphate (ATPγS), 3'-O-(4-benzoyl) benzoyl adenosine 5'-triphosphate (Bz-ATP) and 2-methylthio-adenosine 5'-triphosphate (2meATP)) showed similar effects, indicating that ATP acts as a signal molecule rather than an energy charger. ADP promoted stomatal opening, while AMP and adenosine did not affect stomatal movement. An ATP-promoted stomatal opening was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI), the reductant dithiothreitol (DTT) or the Ca(2+) channel blockers GdCl3 and LaCl3. A hyperpolarization-activated Ca(2+) channel was detected in plasma membrane of guard cell protoplast. Extracellular ATP and weakly hydrolyzable ATP analogs activated this Ca(2+) channel significantly. Extracellular ATP-promoted Ca(2+) channel activation was markedly inhibited by DPI or DTT. These results indicated that eATP may promote stomatal opening via reactive oxygen species that regulate guard cell plasma membrane Ca(2+) channels.

  8. ATP-enhanced peroxidase-like activity of gold nanoparticles.

    PubMed

    Shah, Juhi; Purohit, Rahul; Singh, Ragini; Karakoti, Ajay Singh; Singh, Sanjay

    2015-10-15

    Gold nanoparticles (AuNPs) are known to possess intrinsic biological peroxidase-like activity that has applications in development of numerous biosensors. The reactivity of the Au atoms at the surface of AuNPs is critical to the performance of such biosensors, yet little is known about the effect of biomolecules and ions on the peroxidase-like activity. In this work, the effect of ATP and other biologically relevant molecules and ions over peroxidase-like activity of AuNPs are described. Contrary to the expectation that nanoparticles exposed to biomolecules may lose the catalytic property, ATP and ADP addition enhanced the peroxidase-like activity of AuNPs. The catalytic activity was unaltered by the addition of free phosphate, sulphate and carbonate anions however, addition of ascorbic acid to the reaction mixture diminished the intrinsic peroxidase-like activity of AuNPs, even in the presence of ATP and ADP. In contrast to AuNPs, ATP did not synergize and improve the peroxidase activity of the natural peroxidase enzyme, horseradish peroxidase.

  9. Critical Involvement of Extracellular ATP Acting on P2RX7 Purinergic Receptors in Photoreceptor Cell Death

    PubMed Central

    Notomi, Shoji; Hisatomi, Toshio; Kanemaru, Takaaki; Takeda, Atsunobu; Ikeda, Yasuhiro; Enaida, Hiroshi; Kroemer, Guido; Ishibashi, Tatsuro

    2011-01-01

    Stressed cells release ATP, which participates in neurodegenerative processes through the specific ligation of P2RX7 purinergic receptors. Here, we demonstrate that extracellular ATP and the more specific P2RX7 agonist, 2′- and 3′-O-(4-benzoylbenzoyl)-ATP, both induce photoreceptor cell death when added to primary retinal cell cultures or when injected into the eyes from wild-type mice, but not into the eyes from P2RX7−/− mice. Photoreceptor cell death was accompanied by the activation of caspase-8 and -9, translocation of apoptosis-inducing factor from mitochondria to nuclei, and TUNEL-detectable chromatin fragmentation. All hallmarks of photoreceptor apoptosis were prevented by premedication or co-application of Brilliant Blue G, a selective P2RX7 antagonist that is already approved for the staining of internal limiting membranes during ocular surgery. ATP release is up-regulated by nutrient starvation in primary retinal cell cultures and seems to be an initializing event that triggers primary and/or secondary cell death via the positive feedback loop on P2RX7. Our results encourage the potential application of Brilliant Blue G as a novel neuroprotective agent in retinal diseases or similar neurodegenerative pathologies linked to excessive extracellular ATP. PMID:21983632

  10. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice.

    PubMed

    Kawamura, Masahito; Gachet, Christian; Inoue, Kazuhide; Kato, Fusao

    2004-12-01

    ATP is an important cell-to-cell signaling molecule mediating the interactions between astrocytes and neurons in the CNS. In the hippocampal slices, ATP suppresses excitatory transmission mostly through activation of adenosine A1 receptors, because the ectoenzyme activity for the extracellular breakdown of ATP to adenosine is high in slice preparations in contrast to culture environments. Because the hippocampus is also rich in the expression of P2 receptors activated specifically by ATP, we examined whether ATP modulates neuronal excitability in the acute slice preparations independently of adenosine receptors. Although ATP decreased the frequency of spontaneously occurring EPSCs in the CA3 pyramidal neurons through activation of adenosine A1 receptors, ATP concurrently increased the frequency of IPSCs in a manner dependent on action potential generation. This effect was mediated by P2Y1 receptors because (1) 2-methylthio-ATP (2meSATP) was the most potent agonist, (2) 2'-deoxy-N6-methyladenosine-3',5'-bisphosphate diammonium (MRS2179) abolished this effect, and (3) this increase in IPSC frequency was not observed in the transgenic mice lacking P2Y1 receptor proteins. Application of 2meSATP elicited MRS2179-sensitive time- and voltage-dependent inward currents in the interneurons, which depolarized the cell to firing threshold. Also, it increased [Ca2+]i in both astrocytes and interneurons, but, unlike the former effect, the latter was entirely dependent on Ca2+ entry. Thus, in hippocampal slices, in addition to activating A1 receptors of the excitatory terminals after being converted to adenosine, ATP activates P2Y1 receptors in the interneurons, which is linked to activation of unidentified excitatory conductance, through mechanisms distinct from those in the astrocytes.

  11. Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop.

    PubMed

    Herold, Christopher L; Qi, Ai-Dong; Harden, T Kendall; Nicholas, Robert A

    2004-03-19

    UTP is a potent full agonist at both the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor. In contrast, ATP is a potent full agonist at the rP2Y(4) receptor but is a similarly potent competitive antagonist at the hP2Y(4) receptor. To delineate the structural determinants of agonism versus antagonism in these species homologues, we expressed a series of human/rat P2Y(4) receptor chimeras in 1321N1 human astrocytoma cells and assessed the capacity of ATP and UTP to mobilize intracellular Ca(2+). Replacement of the NH(2) terminus of the hP2Y(4) receptor with the corresponding region of the rP2Y(4) receptor resulted in a receptor that was activated weakly by ATP, whereas replacement of the second extracellular loop (EL2) of the hP2Y(4) receptor with that of the rP2Y(4) receptor yielded a chimeric receptor that was activated fully by UTP and near fully by ATP, albeit with lower potencies than those observed at the rP2Y(4) receptor. These potencies were increased, and ATP was converted to a full agonist by replacing both the NH(2) terminus and EL2 in the hP2Y(4) receptor with the corresponding regions from the rP2Y(4) receptor. Mutational analysis of the five divergent amino acids in EL2 between the two receptors revealed that three amino acids, Asn-177, Ile-183, and Leu-190, contribute to the capacity of EL2 to impart ATP agonism. Taken together, these results suggest that the second extracellular loop and the NH(2) terminus form a functional motif that plays a key role in determining whether ATP functions as an agonist or antagonist at mammalian P2Y(4) receptors.

  12. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    PubMed

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  13. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels

    PubMed Central

    Wei, Shipeng; Roessler, Bryan C.; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L.; Kirk, Kevin L.

    2015-01-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.—Wei, S., Roessler, B. C., Icyuz, M., Chauvet, S., Tao, B., Hartman IV, J. L., Kirk, K. L. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. PMID:26606940

  14. Modulation by extracellular ATP of L-type calcium channels in guinea-pig single sinoatrial nodal cell.

    PubMed Central

    Qi, A. D.; Kwan, Y. W.

    1996-01-01

    1. The effects of extracellular adenosine 5'-triphosphate ([ATP]zero) on the L-type Ca2+ channel currents in guinea-pig single sinoatrial nodal (SAN) cells, isolated by enzymatic dissociation, were investigated by use of whole-cell patch-clamp techniques. 2. The application of [ATP]zero (2 microM-1 mM) produced an inhibitory effect on the L-type Ca2+ channel current peak amplitude (10 mM Ba2+ as charge carrier) in a concentration-dependent and reversible manner with an IC50 of 100 microM and a Hill coefficient of 1.83. 3. The presence of the adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microM) and 8-phenyltheophylline (10 microM) did not affect the [ATP]zero-induced inhibition of the Ca2+ channel currents. Adenosine (100 microM) had little effect on the basal Ca2+ channel currents. Adenosine 500 microM, caused 23% inhibition of the Ca2+ channel current, which was abolished by 0.1 microM DPCPX. 4. The presence of the P2-purinoceptor antagonists, suramin (1, 10 and 100 microM), reactive blue 2 (1 and 10 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 50 and 100 microM) failed to affect the inhibitory action of [ATP]zero on Ca2+ channel currents. 5. The relative rank order of potency of different nucleotides and nucleosides, at a concentration of 100 microM, on the inhibition of the Ca2+ channel currents is as follows: adenosine 5'-triphosphate (ATP) = alpha,beta-methylene-ATP (alpha,beta MeATP) > > 2-methylthioATP (2-MeSATP) > or = adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) > > uridine 5'-triphosphate (UTP) = adenosine 5'-diphosphate (ADP) > adenosine 5'-monophosphate (AMP) > or = adenosine. 6. These results suggest that [ATP]zero may play an important role in the heart beat by inhibiting the L-type Ca2+ channel currents in single SAN cells. This inhibitory effect is not due to the formation of adenosine resulting from the enzymatic degradation of [ATP]zero. Based on the relative order of inhibitory

  15. Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors.

    PubMed

    Shinozaki, Youichi; Koizumi, Schuichi; Ishida, Seiichi; Sawada, Jun-Ichi; Ohno, Yasuo; Inoue, Kazuhide

    2005-01-15

    Oxidative stress is the main cause of neuronal damage in traumatic brain injury, hypoxia/reperfusion injury, and neurodegenerative disorders. Although extracellular nucleosides, especially adenosine, are well known to protect against neuronal damage in such pathological conditions, the effects of these nucleosides or nucleotides on glial cell damage remain largely unknown. We report that ATP but not adenosine protects against the cell death of cultured astrocytes induced by hydrogen peroxide (H2O2). ATP ameliorated the H2O2-induced decrease in cell viability of astrocytes in an incubation time- and concentration-dependent fashion. Protection by ATP was inhibited by P2 receptor antagonists and was mimicked by P2Y1 receptor agonists but not by adenosine. The expressions of P2Y1 mRNAs and functional P2Y1 receptors in astrocytes were confirmed. Thus, ATP, acting on P2Y1 receptors in astrocytes, showed a protective action against H2O2. The astrocytic protection by the P2Y1 receptor agonist 2-methylthio-ADP was inhibited by an intracellular Ca2+ chelator and a blocker of phospholipase C, indicating the involvement of intracellular signals mediated by Gq/11-coupled P2Y1 receptors. The ATP-induced protection was inhibited by cycloheximide, a protein synthesis inhibitor, and it took more than 12 h for the onset of the protective action. In the DNA microarray analysis, ATP induced a dramatic upregulation of various oxidoreductase genes. Taken together, ATP acts on P2Y1 receptors coupled to Gq/11, resulting in the upregulation of oxidoreductase genes, leading to the protection of astrocytes against H2O2.

  16. Induction of extracellular ATP mediates increase in intracellular thioredoxin in RAW264.7 cells exposed to low-dose γ-rays.

    PubMed

    Ohshima, Yasuhiro; Kitami, Akihiro; Kawano, Ayumi; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2011-09-15

    We previously showed that low doses (0.25-0.5 Gy) of γ-rays elevated thioredoxin (Trx-1) in various organs of mice after whole-body irradiation. Also, it is reported that extracellular ATP, which is released in response to various stresses, regulates the expression of intracellular antioxidants through activation of P2 receptors. We have recently found that low-dose γ-rays induce ATP release from the exposed cells. However, it is not yet clear whether the radiation-induced extracellular ATP modulates the cellular redox balance. Here, we investigated whether γ-ray irradiation-induced release of extracellular ATP contributes to the induction of the cellular antioxidant Trx-1, using mouse macrophage-like RAW264.7 cells. Irradiation with γ-rays or exogenously added ATP increased the expression of Trx-1, and in both cases the increase was blocked by pretreatment with an ectonucleotidase, apyrase. Then, the involvement of ATP-dependent reactive oxygen species (ROS) generation in the increase in antioxidant capacity was examined. ATP stimulation promoted the generation of intracellular ROS and also increased Trx-1 expression. The increase in Trx-1 expression was significantly suppressed by pretreatment of the cells with antioxidants. In conclusion, the γ-ray irradiation-induced release of extracellular ATP may, at least in part, contribute to the production of ROS via purinergic signaling, leading to promotion of intracellular antioxidants as an adaptive response to an oxidative stress.

  17. Intracellular lucifer yellow leakage from Novikoff cells in the presence of ATP or low extracellular Ca: evidence for hemi-gap junction channels.

    PubMed

    Liu, T F; Li, H Y; Atkinson, M M; Johnson, R G

    1995-01-01

    Lucifer Yellow was microinjected into Novikoff hepatoma cells and leakage was investigated under treatment with ATP (5 mM) and EGTA (5 mM) in the culture medium. In control conditions, there was no leakage in single or paired cells, except a few cases which showed very slow leakage (defined as slope < -0.0007/sec). Slow leakage rate (slope > -0.0008 but < -0.009/sec) and quick leakage rate (slope > -0.01) of intracellular dye were not seen. Dye transfer between cell pairs after Lucifer Yellow was injected into one cell was divided into two groups: quick transfer rates (4 cases, slope = -0.151 +0.0032) and slow transfer rates (15 cases, slope = -0.041 +0.0018). Under ATP treatment the intracellular dye leakage was observed in single cells (16 of 31 cases) and in cell pairs (20 of 57 cases). Extracellular low Ca2+ (EGTA treatment) enhanced the dye leakage much more: 30 of 40 cases in single cells and 21 of 36 cases in cell pairs. The leakage rates of intracellular dye under these treatments were similar to the transfer rates of the dye between cell pairs with quick and slow rates. It is suggested that the dye leakage from Novikoff cells under treatment with ATP or low [Ca2+]o shares the same mechanism as dye transfer through gap junctions, suggesting that the hemichannels in the plasma membrane can be opened under certain conditions.

  18. The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin

    PubMed Central

    2014-01-01

    Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor observed in the populations of southern China and Southeast Asia. However, little is known about the effects of purinergic signal on the behavior of NPC cells. This study analyzed the effects of ATP on the growth and migration of NPC cells, and further investigated the potential mechanisms during the effects. Methods Cell viability was estimated by MTT assay. Transwell assay was utilized to assess the motility of NPC cells. Cell cycle and apoptosis were detected by flow cytometry analysis. Changes in OPN, P2Y2 and p65 expression were assessed by western blotting analysis or immunofluorescence. The effects of ATP and P2Y2 on promoter activity of OPN were analyzed by luciferase activity assay. The binding of p65 to the promoter region of OPN was examined by ChIP assay. Results An MTT assay indicated that ATP inhibited the proliferation of NPC cells in time- and dose-dependent manners, and a Transwell assay showed that extracellular ATP inhibited the motility of NPC cells. We further investigated the potential mechanisms involved in the inhibitory effect of extracellular ATP on the growth of NPC cells and found that extracellular ATP could reduce Bcl-2 and p-AKT levels while elevating Bax and cleaved caspase-3 levels in NPC cells. Decreased levels of p65 and osteopontin were also detected in the ATP-treated NPC cells. We demonstrated that extracellular ATP inhibited the growth of NPC cells via p65 and osteopontin and verified that P2Y2 overexpression elevated the inhibitory effect of extracellular ATP on the proliferation of NPC cells. Moreover, a dual luciferase reporter assay showed that the level of osteopontin transcription was inhibited by extracellular ATP and P2Y2. ATP decreased the binding of p65 to potential sites in the OPN promoter region in NPC cells. Conclusion This study indicated that extracellular ATP inhibited the growth of NPC cells via P2Y2, p65 and OPN. ATP could be a promising

  19. The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin.

    PubMed

    Yang, Guang; Zhang, Shenghong; Zhang, Yanling; Zhou, Qiming; Peng, Sheng; Zhang, Tao; Yang, Changfu; Zhu, Zhenyu; Zhang, Fujun

    2014-06-24

    Nasopharyngeal carcinoma (NPC) is a common malignant tumor observed in the populations of southern China and Southeast Asia. However, little is known about the effects of purinergic signal on the behavior of NPC cells. This study analyzed the effects of ATP on the growth and migration of NPC cells, and further investigated the potential mechanisms during the effects. Cell viability was estimated by MTT assay. Transwell assay was utilized to assess the motility of NPC cells. Cell cycle and apoptosis were detected by flow cytometry analysis. Changes in OPN, P2Y2 and p65 expression were assessed by western blotting analysis or immunofluorescence. The effects of ATP and P2Y2 on promoter activity of OPN were analyzed by luciferase activity assay. The binding of p65 to the promoter region of OPN was examined by ChIP assay. An MTT assay indicated that ATP inhibited the proliferation of NPC cells in time- and dose-dependent manners, and a Transwell assay showed that extracellular ATP inhibited the motility of NPC cells. We further investigated the potential mechanisms involved in the inhibitory effect of extracellular ATP on the growth of NPC cells and found that extracellular ATP could reduce Bcl-2 and p-AKT levels while elevating Bax and cleaved caspase-3 levels in NPC cells. Decreased levels of p65 and osteopontin were also detected in the ATP-treated NPC cells. We demonstrated that extracellular ATP inhibited the growth of NPC cells via p65 and osteopontin and verified that P2Y2 overexpression elevated the inhibitory effect of extracellular ATP on the proliferation of NPC cells. Moreover, a dual luciferase reporter assay showed that the level of osteopontin transcription was inhibited by extracellular ATP and P2Y2. ATP decreased the binding of p65 to potential sites in the OPN promoter region in NPC cells. This study indicated that extracellular ATP inhibited the growth of NPC cells via P2Y2, p65 and OPN. ATP could be a promising agent serving as an adjuvant in the

  20. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.

  2. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca2+ signals and an IL-6 autocrine loop

    PubMed Central

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique

    2014-01-01

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  3. An enhanced molecular dynamics study of HPPK-ATP conformation space exploration and ATP binding to HPPK.

    PubMed

    Su, Li; Cukier, Robert I

    2009-03-12

    HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) catalyzes the transfer of pyrophosphate from ATP to HP (6-hydroxymethyl-7,8-dihydropterin). This first reaction in the folate biosynthetic pathway is an important target for potential antimicrobial agents. In this work, the mechanism by which HPPK traps and binds ATP is studied by molecular dynamics (MD)-based methods. Based on the ternary crystal structure of HPPK with an ATP mimic and HP, a complex of ATPMg(2) and HPPK is simulated and found to undergo small conformational changes with conventional MD, as does also conventional MD when started from the apo crystal structure. The introduction of restraints in the MD that serve to move HPPK-ATP from its ternary complex (closed) to apo-like (open) forms shows that throughout the restraint path ATP remains bound to HPPK. That ATP remains bound suggests that there is an ensemble of conformations with ATP bound to HPPK that span the apo to more ligand-bound-like conformations, consistent with the pre-existing equilibrium hypothesis of ligand binding, whereby a ligand can select from and bind to a broad range of protein conformations. In the apo-like conformations, ATPMg(2) remains bound to HPPK through a number of mainly salt-bridge-like interactions between several negatively charged residues and the two magnesium cations. The introduction of a reweight method that enhances the sampling of MD by targeting explicit terms in the force field helps define the interactions that bind ATP to HPPK. Using the reweight method, conformational and center of mass motions of ATP, driven by the breaking and making of hydrogen bonds and salt bridges, are identified that lead to ATP separating from HPPK. An elastic normal mode (ENM) approach to opening the ternary complex and closing the apo crystal structures was carried out. The ENM analysis of the apo structure analysis shows one mode that does have a closing motion of HPPK loops, but the direction does not correlate

  4. Influence of vortex speed on fresh versus stored platelet aggregation in the absence and presence of extracellular ATP.

    PubMed

    Soslau, G; Schechner, A J; Alcasid, P J; Class, R

    2000-01-15

    Platelets are subjected to vastly differing shear forces under laminar and nonlaminar flow patterns throughout the tortuous cardiovascular system. Different activation pathways appear to be associated with platelet adhesion and aggregation under high shear rates vs. low shear rates. We found that platelets continue to aggregate at very low stirring rates (100 RPM) and low shear forces although significantly less than at high stirring rates (1000 RPM). These conditions may model vortices encountered in vivo, such as downstream of partially occluded blood vessels. The extent of agonist-induced platelet aggregation, at varying stir rates, remained essentially unchanged between 1200 and 600 RPM. This was true for both freshly prepared and stored platelets even though the extent of aggregation was significantly reduced with stored platelets. Agonists used were thrombin, thrombin receptor activating peptide (TRAP), SFLLRNP, the thromboxane A2 mimetic, U46619, plus epinephrine and ADP+epinephrine. At lower stir rates (100-400 RPM), little or no difference in aggregation levels was observed between fresh and stored platelets, depending upon agonist used. This may indicate that old and young platelets, in vivo, would be equally active at vessel walls exposed to blood flowing through a slow vortex at low shear rates. ATP, released from activated platelets, may act as a potent regulator of platelet aggregation within a vortex where the resident time of platelets and bioactive molecules is greater than in laminar flow regions. High levels of extracellular ATP (100 microM) inhibited agonist-induced aggregation of fresh platelets to a greater extent than stored platelets, except with ADP+epinephrine where the converse was observed. Inhibition, in general, appeared to be inversely related to stir rates. Low levels of extracellular ATP (10 nM, 1 microM) generally stimulated agonist-induced aggregations independent of stir rates and to a greater extent with stored platelets than

  5. Rat, Mouse, and Primate Models of Chronic Glaucoma Show Sustained Elevation of Extracellular ATP and Altered Purinergic Signaling in the Posterior Eye

    PubMed Central

    Lu, Wennan; Hu, HuiLing; Sévigny, Jean; Gabelt, B'Ann T.; Kaufman, Paul L.; Johnson, Elaine C.; Morrison, John C.; Zode, Gulab S.; Sheffield, Val C.; Zhang, Xiulan; Laties, Alan M.; Mitchell, Claire H.

    2015-01-01

    Purpose. The cellular mechanisms linking elevated IOP with glaucomatous damage remain unresolved. Mechanical strains and short-term increases in IOP can trigger ATP release from retinal neurons and astrocytes, but the response to chronic IOP elevation is unknown. As excess extracellular ATP can increase inflammation and damage neurons, we asked if sustained IOP elevation was associated with a sustained increase in extracellular ATP in the posterior eye. Methods. No ideal animal model of chronic glaucoma exists, so three different models were used. Tg-MyocY437H mice were examined at 40 weeks, while IOP was elevated in rats following injection of hypertonic saline into episcleral veins and in cynomolgus monkeys by laser photocoagulation of the trabecular meshwork. The ATP levels were measured using the luciferin-luciferase assay while levels of NTPDase1 were assessed using qPCR, immunoblots, and immunohistochemistry. Results. The ATP levels were elevated in the vitreal humor of rats, mice, and primates after a sustained period of IOP elevation. The ecto-ATPase NTPDase1 was elevated in optic nerve head astrocytes exposed to extracellular ATP for an extended period. NTPDase1 was also elevated in the retinal tissue of rats, mice, and primates, and in the optic nerve of rats, with chronic elevation in IOP. Conclusions. A sustained elevation in extracellular ATP, and upregulation of NTPDase1, occurs in the posterior eye of rat, mouse, and primate models of chronic glaucoma. This suggests the elevation in extracellular ATP may be sustained in chronic glaucoma, and implies a role for altered purinergic signaling in the disease. PMID:26024091

  6. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    DTIC Science & Technology

    1986-01-01

    amphibian sympathetic ganglion to inhibit the M current (8). ATP may affect - . dorsal root terminals in the toad spinal cord (343), and function...Perfusion Twenty-five frogs (Rana pipiens and Rana temporaria) were •de individually sacrificed by decapitation and pithing the spinal cord . During...various nucleosides and nucleotides on the isolated toad spinal cord . Gen. Pharmacol. 9:239-247, 1978. 344. Phillis, J.W. and Wu, P.H. The role of

  7. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction.

    PubMed

    Giniatullin, A; Petrov, A; Giniatullin, R

    2015-01-29

    Adenosine 5'-triphosphate (ATP) is the main co-transmitter accompanying the release of acetylcholine from motor nerve terminals. Previously, we revealed the direct inhibitory action of extracellular ATP on transmitter release via redox-dependent mechanism. However, the receptor mechanism of ATP action and ATP-induced sources of reactive oxygen sources (ROS) remained not fully understood. In the current study, using microelectrode recordings of synaptic currents from the frog neuromuscular junction, we analyzed the receptor subtype involved in synaptic action of ATP, receptor coupling to NADPH oxidase and potential location of ATP receptors within the lipid rafts. Using subtype-specific antagonists, we found that the P2Y13 blocker 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde did not prevent the depressant action of ATP. In contrast, the P2Y12 antagonist 2-methylthioadenosine 5'-monophosphate abolished the inhibitory action of ATP, suggesting the key role of P2Y12 receptors in ATP action. As the action of ATP is redox-dependent, we also tested potential involvement of the NADPH oxidase, known as a common inducer of ROS. The depressant action of extracellular ATP was significantly reduced by diphenyleneiodonium chloride and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, two structurally different inhibitors of NADPH oxidase, indicating that this enzyme indeed mediates the action of ATP. Since the location and activity of various receptors are often associated with lipid rafts, we next tested whether ATP-driven inhibition depends on lipid rafts. We found that the disruption of lipid rafts with methyl-beta-cyclodextrin reduced and largely delayed the action of ATP. Taken together, these data revealed key steps in the purinergic control of synaptic transmission via P2Y12 receptors associated with lipid rafts, and identified NADPH oxidase as the main source of ATP-induced inhibitory ROS at the neuromuscular

  8. Extracellular ATP is involved in dsRNA-induced MUC5AC production via P2Y2R in human airway epithelium.

    PubMed

    Shishikura, Yutaka; Koarai, Akira; Aizawa, Hiroyuki; Yamaya, Mutsuo; Sugiura, Hisatoshi; Watanabe, Mika; Hashimoto, Yuichiro; Numakura, Tadahisa; Makiguti, Tomonori; Abe, Kyoko; Yamada, Mituhiro; Kikuchi, Toshiaki; Hoshikawa, Yasushi; Okada, Yoshinori; Ichinose, Masakazu

    2016-09-27

    In response to tissue damage or inflammation, adenosine-5'-triphosphate (ATP) is released into the extracellular compartment and has been demonstrated to augment inflammation via purinergic P2 receptors (P2Rs). Recently, ATP has been shown to be increased in the airways of COPD patients. In the present study, we examined the possible involvement of extracellular ATP in airway mucus hypersecretion during viral-induced COPD exacerbations. The involvement of extracellular ATP in the release of a major airway mucin, MUC5AC, and its signal pathway was examined after stimulation with polyinosine-polycytidylic acid [poly(I:C)], a synthetic analog of dsRNA to mimic viral infection, and rhinovirus (RV) infection in NCI-H292 cells and differentiated airway epithelial cells from COPD patients. Treatment with poly(I:C) significantly increased the amount of extracellular ATP and induced MUC5AC release in NCI-H292 cells. Pre-treatment with a pannexin channel inhibitor, carbenoxolone (CBX), reduced the amount of extracellular ATP and suppressed MUC5AC release from poly(I:C)-treated cells. Pre-treatment with the P2R antagonist suramin significantly reduced the expression and release of MUC5AC. The inhibitory effects of CBX and suramin on the release of ATP and/or MUC5AC were replicated with RV infection. Pre-treatment with suramin also significantly reduced the expression and amount of extracellular EGFR ligands and the phosphorylation of EGFR and ERK in poly(I:C)-treated cells. In addition, pre-treatment with a P2Y2 receptor siRNA significantly suppressed the poly(I:C)-potentiated EGFR ligands and MUC5AC release. After poly(I:C) stimulation, the expression of MUC5AC in the differentiated cells from COPD patients was significantly higher than those from healthy subjects and the values of MUC5AC expression were inversely related with forced expiratory volume in 1 s (FEV1) % predicted. The inhibitory effects of CBX and suramin on poly(I:C)-potentiated MUC5AC expression were

  9. Activation of the P2Y2 receptor regulates bone cell function by enhancing ATP release.

    PubMed

    Orriss, Isabel R; Guneri, Dilek; Hajjawi, Mark O R; Shaw, Kristy; Patel, Jessal J; Arnett, Timothy R

    2017-06-01

    Bone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone mineralisation, the functional effects of this receptor in osteoclasts remain unknown. This investigation used the P2Y2 receptor knockout (P2Y2R(-)(/)(-) ) mouse model to investigate the role of this receptor in bone. MicroCT analysis of P2Y2R(-/-) mice demonstrated age-related increases in trabecular bone volume (≤48%), number (≤30%) and thickness (≤17%). In vitro P2Y2R(-/-) osteoblasts displayed a 3-fold increase in bone formation and alkaline phosphatase activity, whilst P2Y2R(-/-) osteoclasts exhibited a 65% reduction in resorptive activity. Serum cross-linked C-telopeptide levels (CTX, resorption marker) were also decreased (≤35%). The resorption defect in P2Y2R(-/-) osteoclasts was rescued by the addition of exogenous ATP, suggesting that an ATP deficit could be a key factor in the reduced function of these cells. In agreement, we found that basal ATP release was reduced up to 53% in P2Y2R(-/-) osteoclasts. The P2Y2 receptor agonists, UTP and 2-thioUTP, increased osteoclast activity and ATP release in wild-type but not in P2Y2R(-/-) cells. This indicates that the P2Y2 receptor may regulate osteoclast function indirectly by promoting ATP release. UTP and 2-thioUTP also stimulate ATP release from osteoblasts suggesting that the P2Y2 receptor exerts a similar function in these cells. Taken together, our findings are consistent with the notion that the primary action of P2Y2 receptor signalling in bone is to regulate extracellular ATP levels. © 2017 Society for Endocrinology.

  10. Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes.

    PubMed Central

    Zoeteweij, J P; van de Water, B; de Bont, H J; Mulder, G J; Nagelkerke, J F

    1992-01-01

    Isolated rat hepatocytes were incubated with extracellular ATP to induce a prolonged increase in intracellular Ca2+ ([Ca2+]i) and a loss of viability within 2 h. By using video-intensified fluorescence microscopy, the effects of exposure to extracellular ATP on [Ca2+]i, mitochondrial membrane potential (MMP) and cell viability were determined simultaneously in individual living hepatocytes. The increase in [Ca2+]i on exposure to ATP was followed by a decreasing MMP; there were big differences between individual cells. Complete loss of the MMP occurred before cell death was observed. Omission of K+ from the incubation medium decreased the cytotoxicity of ATP; under these conditions, intracellular K+ was decreased by more than 80%. Treatment with nigericin also depleted intracellular K+ and decreased ATP-induced toxicity. Protection against loss of viability by means of a decrease in intracellular [K+] was reflected by maintenance of the MMP. These observations suggest that ATP-induced cell death may be caused by a mechanism that has been described for isolated mitochondria: after an increase in Ca2+ levels, a K+ influx into mitochondria is induced, which finally disrupts the MMP and leads to cell death. PMID:1445265

  11. Extracellular ATP induces cytoplasmic and nuclear Ca2+ transients via P2Y2 receptor in human biliary epithelial cancer cells (Mz-Cha-1).

    PubMed

    Elsing, Christoph; Georgiev, Tihomir; Hübner, Christian A; Boger, Regina; Stremmel, Wolfgang; Schlenker, Thorsten

    2012-09-01

    Extracellular nucleotides such as adenosine triphosphate (ATP) play a role in biliary epithelial cell function. Since nucleotide receptors are potential targets for various diseases related to epithelial cell dysfunction and cancer, the purpose of this study was to investigate the expression and to functionally characterize the nucleotide receptor subtypes in biliary epithelial cancer cells (Mz-Cha-1). Extracellular ATP dose-dependently resulted in an intracellular Ca(2+) increase (mean effective concentration (EC(50)) 40 μM). Uridine triphosphate (UTP) produced a similar Ca(2+) response and cross-desensitation was observed. The rank order of tested agonists was ATP=UTP> adenosine>ADP=AMP>α,β-methylene-ATP. This confirms the functional expression of purinoceptor P2Y2 and P2Y4 in biliary epithelial cancer cell membranes. mRNAs for P2Y1, P2Y2, P2Y4 and P2Y6 purinergic receptor subtypes were found, whereas western blot analysis suggested only the expression of P2Y2 receptors. Confocal imaging and nuclear staining was used to compartmentalize ATP-induced cytosolic and nuclear Ca(2+)-transients, indicating a role for secretory ATP in regulating nuclear function, by increasing nuclear Ca(2+) concentrations. These data define the expression profile of P2Y receptors on human biliary epithelial cancer cells and indicate P2Y2 receptors as being potential targets in new treatment strategies for biliary cancer.

  12. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  13. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  14. Effect of extracellular adenosine 5'-triphosphate on cryopreserved epididymal cat sperm intracellular ATP concentration, sperm quality, and in vitro fertilizing ability.

    PubMed

    Thuwanut, Paweena; Arya, Nlin; Comizzoli, Pierre; Chatdarong, Kaywalee

    2015-09-15

    Intracellular adenosine 5'-triphosphate (ATP) is essential for supporting sperm function in the fertilization process. During cryopreservation, damage of sperm mitochondrial membrane usually leads to compromised production of intracellular ATP. Recently, extracellular ATP (ATPe) was introduced as a potent activator of sperm motility and fertilizing ability. This study aimed to evaluate (1) levels of intracellular ATP in frozen-thawed epididymal cat sperm after incubation with ATPe and (2) effects of ATPe on epididymal cat sperm parameters after freezing and thawing. Eighteen male cats were included. For each replicate, epididymal sperm from two cats were pooled to one sample (N = 9). Each pooled sample was cryopreserved with the Tris-egg yolk extender into three straws. After thawing, the first and second straws were incubated with 0-, 1.0-, or 2.5-mM ATPe for 10 minutes and evaluated for sperm quality at 10 minutes, 1, 3, and 6 hours after thawing and fertilizing ability. The third straw was evaluated for intracellular ATP concentration in control and with 2.5-mM ATPe treatment. Higher concentration of intracellular sperm ATP was observed in the samples treated with 2.5-mM ATPe compared to the controls (0.339 ± 0.06 μg/2 × 10(6) sperm vs. 0.002 ± 0.003 μg/2 × 10(6) sperm, P ≤ 0.05). In addition, incubation with 2.5-mM ATPe for 10 minutes promoted sperm motility (56.7 ± 5.0 vs. 53.3 ± 4.4%, P ≤ 0.05) and progressive motility (3.1 ± 0.2 vs. 2.8 ± 0.4, P ≤ 0.05), mitochondrial membrane potential (36.4 ± 5.5 vs. 28.7 ± 4.8%, P ≤ 0.05), and blastocyst rate (36.1 ± 7.0 and 28.8 ± 7.4%, P ≤ 0.05) compared with the controls. In contrast, ATPe remarkably interfered acrosome integrity after 6 hours of postthawed incubation. In sum, the present finding that optimal incubation time of postthaw epididymal cat sperm under proper ATPe condition might constitute a rationale for the studies on other endangered wild felids regarding sperm quality and embryo

  15. Extracellular ATP signaling is mediated by H₂O₂ and cytosolic Ca²⁺ in the salt response of Populus euphratica cells.

    PubMed

    Sun, Jian; Zhang, Xuan; Deng, Shurong; Zhang, Chunlan; Wang, Meijuan; Ding, Mingquan; Zhao, Rui; Shen, Xin; Zhou, Xiaoyang; Lu, Cunfu; Chen, Shaoliang

    2012-01-01

    Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na⁺ compartmentation, Na⁺/H⁺ exchange across the plasma membrane (PM), K⁺ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to Na⁺/H⁺ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H₂O₂ and cytosolic Ca²⁺ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H₂O₂ and cytosolic Ca²⁺, which are required for the up-regulation of genes linked to Na⁺/H⁺ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.

  16. Sustained depolarization-induced propagation of [Ca2+]i oscillations in cultured DRG neurons: the involvement of extracellular ATP and P2Y receptor activation.

    PubMed

    Zeng, Yan; Lv, Xiao-hua; Zeng, Shao-qun; Tian, Shun-lian; Li, Man; Shi, Jing

    2008-11-06

    Recently emerging evidence implicates a number of neuroactive substances and their receptors in mediating complex cell-to-cell communications in the ganglia. In the present study, we characterized the nonsynaptic chemical coupling mediated by extracellular ATP in dorsal root ganglia (DRG) neuron cultures by using the real time imaging of ATP, whole-cell patch clamping, in conjunction with confocal calcium imaging. Sustained depolarization by electrical stimulation evoked intracellular Ca2+ concentrations ([Ca2+]i) oscillations in individual DRG neurons, and subsequent ATP-dependent propagation [Ca2+]i oscillations to surrounding non-stimulated neighbors. [Ca2+]i oscillations were suppressed by inositol-1,4,5-trisphosphate (IP3) receptor antagonist 2-APB, but not ryanodine. The propagation of [Ca2+]i oscillations was prevented by the presence of the ATP-degrading enzyme, apyrase, and completely abolished by the blockase of G protein-coupled purinergic receptors-PLC-IP3 pathway with suramin, U73122 or 2-APB. In parallel, sustained depolarization elicited robust ATP release and diffusion from the stimulation site. Moreover, exogenous application of ATP to DRG cultures in large concentration elicits the [Ca2+]i oscillations in most neurons. Taken together, this data demonstrates that sustained membrane depolarization elicited ATP release, acting through a highly sensitive P2Y receptors/IP3-mediated signaling pathway to mediate the propagation of intercellular Ca2+ signaling, which suggest a novel signaling pathway for neuronal communication in DRG.

  17. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells

    PubMed Central

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Virgilio, Francesco Di; Pezzi, Annalisa; Cavo, Michele

    2017-01-01

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2×7R is the most consistently expressed by tumors. P2×7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2×7R. Here, we show that P2×7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2×7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo. Overall, our results demonstrate that P2×7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML. PMID:27980223

  18. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    PubMed

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  19. Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy

    PubMed Central

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497

  20. Proceedings of Biological Actions of Extracellular ATP Conference Held in Philadelphia, Pennsylvania on 27-19 November 1990. (Annals of the New York Academy of Sciences. Volume 603)

    DTIC Science & Technology

    1990-12-16

    black, tce abstract or supplements tht older repors I is assumed tobe unlimited Biologial Actions of ~ Extracellular ATP Editors ~ i7?~ George R. Dubyak...NUCLEOTIDES Overview Purinergic Mechanisms G. BURNSTOCK Department of Anatomy and Developmental Biology University College London London WCIE 6BT...membranes"""’ Molecular Biology of Receptors The general direction that mo t receptor studies are taking at present is to clone the receptor following

  1. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses.

    PubMed

    Kouzaki, Hideaki; Iijima, Koji; Kobayashi, Takao; O'Grady, Scott M; Kita, Hirohito

    2011-04-01

    The molecular mechanisms underlying the initiation of innate and adaptive proallergic Th2-type responses in the airways are not well understood. IL-33 is a new member of the IL-1 family of molecules that is implicated in Th2-type responses. Airway exposure of naive mice to a common environmental aeroallergen, the fungus Alternaria alternata, induces rapid release of IL-33 into the airway lumen, followed by innate Th2-type responses. Biologically active IL-33 is constitutively stored in the nuclei of human airway epithelial cells. Exposing these epithelial cells to A. alternata releases IL-33 extracellularly in vitro. Allergen exposure also induces acute extracellular accumulation of a danger signal, ATP; autocrine ATP sustains increases in intracellular Ca(2+) concentration and releases IL-33 through activation of P2 purinergic receptors. Pharmacological inhibitors of purinergic receptors or deficiency in the P2Y2 gene abrogate IL-33 release and Th2-type responses in the Alternaria-induced airway inflammation model in naive mice, emphasizing the essential roles for ATP and the P2Y(2) receptor. Thus, ATP and purinergic signaling in the respiratory epithelium are critical sensors for airway exposure to airborne allergens, and they may provide novel opportunities to dampen the hypersensitivity response in Th2-type airway diseases such as asthma.

  2. Extracellular ATP stimulates the early growth response protein 1 (Egr-1) via a protein kinase C-dependent pathway in the human osteoblastic HOBIT cell line.

    PubMed Central

    Pines, Alex; Romanello, Milena; Cesaratto, Laura; Damante, Giuseppe; Moro, Luigi; D'andrea, Paola; Tell, Gianluca

    2003-01-01

    Extracellular nucleotides exert an important role in controlling cell physiology by activating intracellular signalling cascades. Osteoblast HOBIT cells express P2Y(1) and P2Y(2) G-protein-coupled receptors, and respond to extracellular ATP by increasing cytosolic calcium concentrations. Early growth response protein 1 (Egr-1) is a C(2)H(2)-zinc-finger-containing transcriptional regulator responsible for the activation of several genes involved in the control of cell proliferation and apoptosis, and is thought to have a central role in osteoblast biology. We show that ATP treatment of HOBIT cells increases Egr-1 protein levels and binding activity via a mechanism involving a Ca(2+)-independent protein kinase C isoform. Moreover, hypotonic stress and increased medium turbulence, by inducing ATP release, result in a similar effect on Egr-1. Increased levels of Egr-1 protein expression and activity are achieved at very early times after stimulation (5 min), possibly accounting for a rapid way for changing the osteoblast gene-expression profile. A target gene for Egr-1 that is fundamental in osteoblast physiology, COL1A2, is up-regulated by ATP stimulation of HOBIT cells in a timescale that is compatible with that of Egr-1 activation. PMID:12729460

  3. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa

    SciTech Connect

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou

    2016-10-26

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses inArabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein,Camelina sativalectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space groupC222 orC2221, with unit-cell parametersa= 94.7,b= 191.5,c= 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.

  4. Cell-based delivery of dATP via gap junctions enhances cardiac contractility.

    PubMed

    Lundy, Scott D; Murphy, Sean A; Dupras, Sarah K; Dai, Jin; Murry, Charles E; Laflamme, Michael A; Regnier, Michael

    2014-07-01

    The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a promising strategy to treat myocardial infarction and reverse heart failure, but to date the contractile benefit in most studies remains modest. We have previously shown that the nucleotide 2-deoxyadenosine triphosphate (dATP) can substitute for ATP as the energy substrate for cardiac myosin, and increasing cellular dATP content by globally overexpressing ribonucleotide reductase (R1R2) can dramatically enhance cardiac contractility. Because dATP is a small molecule, we hypothesized that it would diffuse readily between cells via gap junctions and enhance the contractility of neighboring coupled wild type cells. To test this hypothesis, we performed studies with the goals of (1) validating gap junction-mediated dATP transfer in vitro and (2) investigating the use of R1R2-overexpressing hPSC-CMs in vivo as a novel strategy to increase cardiac function. We first performed intracellular dye transfer studies using dATP conjugated to fluorescein and demonstrated rapid gap junction-mediated transfer between cardiomyocytes. We then cocultured wild type cardiomyocytes with either cardiomyocytes or fibroblasts overexpressing R1R2 and saw more than a twofold increase in the extent and rate of contraction of wild type cardiomyocytes. Finally, we transplanted hPSC-CMs overexpressing R1R2 into healthy uninjured rat hearts and noted an increase in fractional shortening from 41±4% to 53±5% just five days after cell transplantation. These findings demonstrate that dATP is an inotropic factor that spreads between cells via gap junctions. Our data suggest that transplantation of dATP-producing hPSC-CMs could significantly increase the effectiveness of cardiac cell therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity

    PubMed Central

    O’Brien III, William G.; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-01-01

    Erythrocytes are the key target in 5′-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3−/− mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism. PMID:26249166

  6. Extracellular adenosine triphosphate and adenosine in cancer.

    PubMed

    Stagg, J; Smyth, M J

    2010-09-30

    Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.

  7. Role of extracellular ATP and P2 receptor signaling in regulating renal cyst growth and interstitial inflammation in polycystic kidney disease

    PubMed Central

    Rangan, Gopi

    2013-01-01

    Polycystic kidney diseases (PKD) are a group of inherited ciliopathies in which the formation and growth of multiple cysts derived from the distal nephron and collecting duct leads to the disruption of normal kidney architecture, chronic interstitial inflammation/fibrosis and hypertension. Kidney failure is the most life-threatening complication of PKD, and is the consequence of cyst expansion, renal interstitial disease and loss of normal kidney tissue. Over the last decade, accumulating evidence suggests that the autocrine and paracrine effects of ATP (through its receptor family P2X and P2Y), could be detrimental for the progression of PKD. (2009). In vitro, ATP-P2 signaling promotes cystic epithelial cell proliferation, chloride-driven fluid secretion and apoptosis. Furthermore, dysfunction of the polycystin signal transduction pathways promotes the secretagogue activity of extracellular ATP by activating a calcium-activated chloride channel via purinergic receptors. Finally, ATP is a danger signal and could potentially contribute to interstitial inflammation associated with PKD. These data suggest that ATP-P2 signaling worsens the progression of cyst enlargement and interstitial inflammation in PKD. PMID:23966953

  8. Creatine supplementation enhances anaerobic ATP synthesis during a single 10 sec maximal handgrip exercise.

    PubMed

    Kurosawa, Yuko; Hamaoka, Takafumi; Katsumura, Toshihito; Kuwamori, Masasuke; Kimura, Naoto; Sako, Takayuki; Chance, Britton

    2003-02-01

    Forearm muscles of twelve healthy male subjects (age = 22.3 +/- 1.1 years (mean +/- S.E.)) were examined during a 10 sec maximal dynamic handgrip exercise (Ex10) using 31-phosphorus magnetic resonance spectroscopy before and after ingestion with 30 g creatine (Cr) monohydrate or placebo per day for 14 days. Cr supplementation produced a 11.5 +/- 4.6% increase in the resting muscle phosphocreatine (PCr) concentration and a 65.0 +/- 4.2% increase in the PCr degradation during Ex10. ATP synthesis rate through PCr hydrolysis and total anaerobic ATP synthesis rate during Ex10 increased from 0.64 +/- 0.08 (pre-value) to 0.86 +/- 0.14 mmol/kg ww/sec (post-value, p < 0.05) and from 0.97 +/- 0.16 (pre-value) to 1.33 +/- 0.27 mmol/kg ww/sec (post-value, p < 0.05), respectively. An increase in total anaerobic ATP synthesis during Ex10 after Cr supplementation positively correlated with the increase in ATP synthesis through PCr hydrolysis. Cr supplementation produced a 15.1 +/- 3.8% increase in the mean power output during Ex10. There was no significant difference in the mean power output per unit of total anaerobic ATP synthesis during Ex10 between before and after Cr supplementation. ATP synthesis rate through PCr hydrolysis positively correlated with mean power output during Ex10 in all twelve subjects after treatment (r = 0.58, p < 0.05). The results suggest that Cr supplementation enhanced PCr degradation during Ex10. It is strongly indicated that an improvement in performance during Ex10 was associated with the increased PCr availability for the synthesis of ATP.

  9. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP.

    PubMed

    Martín-Estebané, María; Navascués, Julio; Sierra-Martín, Ana; Martín-Guerrero, Sandra M; Cuadros, Miguel A; Carrasco, María-Carmen; Marín-Teva, José L

    2017-01-01

    Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the

  10. Increased levels of extracellular ATP in glaucomatous retinas: Possible role of the vesicular nucleotide transporter during the development of the pathology

    PubMed Central

    Pérez de Lara, María J.; Guzmán-Aránguez, Ana; de la Villa, Pedro; Díaz-Hernández, Juan Ignacio; Miras-Portugal, María Teresa

    2015-01-01

    Purpose To study retinal extracellular ATP levels and to assess the changes in the vesicular nucleotide transporter (VNUT) expression in a murine model of glaucoma during the development of the disease. Methods Retinas were obtained from glaucomatous DBA/2J mice at 3, 9, 15, and 22 months together with C57BL/6J mice used as age-matched controls. To study retinal nucleotide release, the retinas were dissected and prepared as flattened whole mounts and stimulated in Ringer buffer with or without 59 mM KCl. To investigate VNUT expression, sections of the mouse retinas were evaluated with immunohistochemistry and western blot analysis using newly developed antibodies against VNUT. All images were examined and photographed under confocal microscopy. Electroretinogram (ERG) recordings were performed on the C57BL/6J and DBA/2J mice to analyze the changes in the electrophysiological response; a decrease in the scotopic threshold response was observed in the 15-month-old DBA/2J mice. Results In the 15-month-old control and glaucomatous mice, electrophysiological changes of 42% were observed. In addition, 50% increases in the intraocular pressure (IOP) were observed when the pathology was fully established. The responses in the retinal ATP net release as the pathology progressed varied from 0.32±0.04 pmol/retina (3 months) to 1.10±0.06 pmol/retina (15 months; threefold increase). Concomitantly, VNUT expression was significantly increased during glaucoma progression in the DBA/2J mice (58%) according to the immunohistochemical and western blot analysis. Conclusions These results may indicate a possible correlation between retinal dysfunction and increased levels of extracellular ATP and nucleotide transporter. These data support an excitotoxicity role for ATP via P2X7R in glaucoma. This modified cellular environment could contribute to explaining the functional and biochemical alterations observed during the development of the pathology. PMID:26392744

  11. Extracellular Genomic DNA Mediates Enhancement of Xylella fastidiosa Biofilm Formation in Vitro

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) produces extracellular DNA in PD3 liquid medium. This extracellular DNA could enhance biofilm formation, a factor in successful establishment of Xf in planta. The relative amounts of extracellular DNA were positively correlated with planktonic growth and biofilm formation in ...

  12. Neoamphimedine circumvents metnase-enhanced DNA topoisomerase IIα activity through ATP-competitive inhibition.

    PubMed

    Ponder, Jessica; Yoo, Byong Hoon; Abraham, Adedoyin D; Li, Qun; Ashley, Amanda K; Amerin, Courtney L; Zhou, Qiong; Reid, Brian G; Reigan, Philip; Hromas, Robert; Nickoloff, Jac A; LaBarbera, Daniel V

    2011-01-01

    Type IIα DNA topoisomerase (TopoIIα) is among the most important clinical drug targets for the treatment of cancer. Recently, the DNA repair protein Metnase was shown to enhance TopoIIα activity and increase resistance to TopoIIα poisons. Using in vitro DNA decatenation assays we show that neoamphimedine potently inhibits TopoIIα-dependent DNA decatenation in the presence of Metnase. Cell proliferation assays demonstrate that neoamphimedine can inhibit Metnase-enhanced cell growth with an IC(50) of 0.5 μM. Additionally, we find that the apparent K(m) of TopoIIα for ATP increases linearly with higher concentrations of neoamphimedine, indicating ATP-competitive inhibition, which is substantiated by molecular modeling. These findings support the continued development of neoamphimedine as an anticancer agent, particularly in solid tumors that over-express Metnase.

  13. Neoamphimedine Circumvents Metnase-Enhanced DNA Topoisomerase IIα Activity Through ATP-Competitive Inhibition

    PubMed Central

    Ponder, Jessica; Yoo, Byong Hoon; Abraham, Adedoyin D.; Li, Qun; Ashley, Amanda K.; Amerin, Courtney L.; Zhou, Qiong; Reid, Brian G.; Reigan, Philip; Hromas, Robert; Nickoloff, Jac A.; LaBarbera, Daniel V.

    2011-01-01

    Type IIα DNA topoisomerase (TopoIIα) is among the most important clinical drug targets for the treatment of cancer. Recently, the DNA repair protein Metnase was shown to enhance TopoIIα activity and increase resistance to TopoIIα poisons. Using in vitro DNA decatenation assays we show that neoamphimedine potently inhibits TopoIIα-dependent DNA decatenation in the presence of Metnase. Cell proliferation assays demonstrate that neoamphimedine can inhibit Metnase-enhanced cell growth with an IC50 of 0.5 μM. Additionally, we find that the apparent Km of TopoIIα for ATP increases linearly with higher concentrations of neoamphimedine, indicating ATP-competitive inhibition, which is substantiated by molecular modeling. These findings support the continued development of neoamphimedine as an anticancer agent, particularly in solid tumors that over-express Metnase. PMID:22163192

  14. Magnesium inhibits the calcification of the extracellular matrix in tendon-derived stem cells via the ATP-P2R and mitochondrial pathways.

    PubMed

    Yue, Jiaji; Jin, Shanzi; Li, Yaqiang; Zhang, Li; Jiang, Wenwei; Yang, Chunxi; Du, Jiang

    2016-09-09

    Tendon calcification has been widely regarded by researchers to result from the osteogenic differentiation of Tendon-Derived Stem Cells (TDSCs) and ectopic mineralization caused by the calcification of cellular matrix. Recent studies have revealed a correlation between the Mg(2+)/Ca(2+) balance and the degeneration or calcification of tendon tissues. Furthermore, the ATP-P2X/P2Y receptor pathway has been shown to play a decisive role in the process of calcification, with calcium exportation from mitochondria and calcium oscillations potentially representing the cohesive signal produced by this pathway. Our previous study demonstrated that matrix calcification is inhibited by magnesium. In this study, we examined the effects of extracellular Mg(2+) on the deposition of calcium phosphate matrix and cellular pathways in TDSCs. The suppression of the export of calcium from mitochondria has also been detected. We found that a high concentration of extracellular Mg(2+) ([Mg(2+)]e) inhibited the mineralization of the extracellular matrix in TDSCs and that 100 μM ATP reversed this inhibitory effect in vitro. In addition, the spontaneous release of ATP was inhibited by high [Mg(2+)]e levels. A high [Mg(2+)]e suppressed the expression of P2X4, P2X5 and P2X7 and activated the expression of P2Y1, P2Y2, P2Y4 and P2Y14. The interaction between Mg(2+) and Ca(2+) is therefore contradictory, Mg(2+) inhibits mitochondrial calcium concentrations, meanwhile it reverses the opening of mPTP that is induced by Ca(2+). JC-1 staining verified the protective effect of Mg(2+) on mitochondrial membrane potential and the decrease induced by Ca(2+). Taken together, these results indicate that high [Mg(2+)]e interferes with the expression of P2 receptors, resulting in decreased extracellular mineralization. The balance between Mg(2+) and Ca(2+) influences mitochondrial calcium exportation and provides another explanation for the mechanism underlying matrix calcification in TDSCs. Copyright

  15. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session.

    PubMed

    Moritz, Cesar Eduardo Jacintho; Teixeira, Bruno Costa; Rockenbach, Liliana; Reischak-Oliveira, Alvaro; Casali, Emerson André; Battastini, Ana Maria Oliveira

    2017-02-01

    Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.

  16. A familial ATP13A2 mutation enhances alpha-synuclein aggregation and promotes cell death.

    PubMed

    Lopes da Fonseca, Tomás; Pinho, Raquel; Outeiro, Tiago F

    2016-07-15

    Aberrant protein-protein interactions are a common pathological hallmark among neurodegenerative diseases, including Parkinson's disease (PD). Thus far, mutations in more than 20 genes have been associated with PD. These genes encode for proteins involved in distinct intracellular pathways, complicating our understanding of the precise molecular mechanisms underlying the disease. Recent reports suggested that the endolysosomal protein ATP13A2 can determine the fate of alpha-synuclein (α-Syn), although no consensus has yet been reached on the mechanisms underlying this effect. Here, we describe, for the first time, the deleterious effect arising from the interaction between the ATP13A2 familial mutant Dup22 with α-Syn. We show that this ATP13A2 mutant can enhance α-Syn oligomerization and aggregation in cell culture. Additionally, we report the accumulation of both proteins in abnormal endoplasmic reticulum membranous structures and the activation of the protein kinase RNA-like endoplasmic reticulum kinase pathway. Ultimately, our data bring new insight into the molecular mechanisms underlying the interplay of these two proteins, opening novel perspectives for therapeutic intervention.

  17. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force

    PubMed Central

    Glasser, Nathaniel R.; Kern, Suzanne E.

    2014-01-01

    Summary While many studies have explored the growth of Pseudomonas aeruginosa, comparatively few have focused on its survival. Previously, we reported that endogenous phenazines support the anaerobic survival of P. aeruginosa, yet the physiological mechanism underpinning survival was unknown. Here, we demonstrate that phenazine redox cycling enables P. aeruginosa to oxidize glucose and pyruvate into acetate, which promotes survival by coupling acetate and ATP synthesis through the activity of acetate kinase. By measuring intracellular NAD(H) and ATP concentrations, we show that survival is correlated with ATP synthesis, which is tightly coupled to redox homeostasis during pyruvate fermentation but not during arginine fermentation. We also show that ATP hydrolysis is required to generate a proton-motive force using the ATP synthase complex during fermentation. Together, our results suggest that phenazines enable maintenance of the proton-motive force by promoting redox homeostasis and ATP synthesis. This work demonstrates the more general principle that extracellular redox-active molecules, such as phenazines, can broaden the metabolic versatility of microorganisms by facilitating energy generation. PMID:24612454

  18. Extracellular Xylella fastidiosa genomic DNA enhances biofilm formation in vitro

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) is a Gram negative, xylem-limited bacterium that causes Pierce’s Disease (PD) of grapevine, as well as other diseases of economically important crops and landscape plants. Many bacteria produce large amounts of extracellular DNA, which may function as a matrix component in b...

  19. Extracellular dGMP enhances Deinococcus radiodurans tolerance to oxidative stress.

    PubMed

    Li, Mingfeng; Sun, Hongxing; Feng, Qiong; Lu, Huiming; Zhao, Ye; Zhang, Hui; Xu, Xin; Jiao, Jiandong; Wang, Liangyan; Hua, Yuejin

    2013-01-01

    Free extracellular DNA provides nutrition to bacteria and promotes bacterial evolution by inducing excessive mutagenesis of the genome. To understand the influence of extracellular DNA fragments on D. radiodurans, we investigated cell growth and survival after extracellular DNA or dNMPs treatment. The results showed that the extracellular DNA fragments inhibited the growth of D. radiodurans. Interestingly, dGMP, a DNA component, enhanced D. radiodurans tolerance to H(2)O(2) and gamma-radiation significantly. Further experiments indicated that extracellular dGMP stimulated the activity of one catalase (KatA, DR1998), and induced gene transcription including the extracellular nuclease (drb0067). When this only extracellular nuclease gene (drb0067) in D. radiodurans was deleted, the mutant strain showed more sensitive to H(2)O(2) and gamma-radiation than the wild type strain. These results suggest that DRB0067 plays an important role in oxidative stress resistance. Taken together, we proposed a new anti-oxidation mechanism in D. radiodurans. This mechanism acts to increase expression levels of DRB0067 which then secretes active nuclease to degrade extracellular DNA fragments. The extracellular nuclease has a two-fold benefit, creating more free dNTPs for further cell protection and the removal of extracellular DNA fragments.

  20. Differential MR Delayed Enhancement Patterns of Chronic Myocardial Infarction between Extracellular and Intravascular Contrast Media

    PubMed Central

    Wang, Jian; Xiang, Bo; Lin, Hung Yu; Liu, Hongyu; Freed, Darren; Arora, Rakesh C.; Tian, Ganghong

    2015-01-01

    Objectives Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. Materials and Methods Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. Results Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn’t significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. Conclusions Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly

  1. Differential MR delayed enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media.

    PubMed

    Wang, Jian; Xiang, Bo; Lin, Hung Yu; Liu, Hongyu; Freed, Darren; Arora, Rakesh C; Tian, Ganghong

    2015-01-01

    Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn't significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels

  2. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  3. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions

    PubMed Central

    Rifkind, Joseph M.; Mohanty, Joy G.; Nagababu, Enika

    2015-01-01

    Hemoglobin (Hb) continuously undergoes autoxidation producing superoxide which dismutates into hydrogen peroxide (H2O2) and is a potential source for subsequent oxidative reactions. Autoxidation is most pronounced under hypoxic conditions in the microcirculation and for unstable dimers formed at reduced Hb concentrations. In the red blood cell (RBC), oxidative reactions are inhibited by an extensive antioxidant system. For extracellular Hb, whether from hemolysis of RBCs and/or the infusion of Hb-based blood substitutes, the oxidative reactions are not completely neutralized by the available antioxidant system. Un-neutralized H2O2 oxidizes ferrous and ferric Hbs to Fe(IV)-ferrylHb and OxyferrylHb, respectively. FerrylHb further reacts with H2O2 producing heme degradation products and free iron. OxyferrylHb, in addition to Fe(IV) contains a free radical that can undergo additional oxidative reactions. Fe(III)Hb produced during Hb autoxidation also readily releases heme, an additional source for oxidative stress. These oxidation products are a potential source for oxidative reactions in the plasma, but to a greater extent when the lower molecular weight Hb dimers are taken up into cells and tissues. Heme and oxyferryl have been shown to have a proinflammatory effect further increasing their potential for oxidative stress. These oxidative reactions contribute to a number of pathological situations including atherosclerosis, kidney malfunction, sickle cell disease, and malaria. The toxic effects of extracellular Hb are of particular concern with hemolytic anemia where there is an increase in hemolysis. Hemolysis is further exacerbated in various diseases and their treatments. Blood transfusions are required whenever there is an appreciable decrease in RBCs due to hemolysis or blood loss. It is, therefore, essential that the transfused blood, whether stored RBCs or the blood obtained by an Autologous Blood Recovery System from the patient, do not further increase

  4. Interaction of extracellular domain 2 of the human retina-specific ATP-binding cassette transporter (ABCA4) with all-trans-retinal.

    PubMed

    Biswas-Fiss, Esther E; Kurpad, Deepa S; Joshi, Kinjalben; Biswas, Subhasis B

    2010-06-18

    The retina-specific ATP-binding cassette (ABC) transporter, ABCA4, is essential for transport of all-trans-retinal from the rod outer segment discs in the retina and is associated with a broad range of inherited retinal diseases, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. A unique feature of the ABCA subfamily of ABC transporters is the presence of highly conserved, long extracellular loops or domains (ECDs) with unknown function. The high degree of sequence conservation and mapped disease-associated mutations in these domains suggests an important physiological significance. Conformational analysis using CD spectroscopy of purified, recombinant ECD2 protein demonstrated that it has an ordered and stable structure composed of 27 +/- 3% alpha-helix, 20 +/- 3% beta-pleated sheet, and 53 +/- 3% coil. Significant conformational changes were observed in disease-associated mutant proteins. Using intrinsic tryptophan fluorescence emission spectrum of ECD2 polypeptide and fluorescence anisotropy, we have demonstrated that this domain specifically interacts with all-trans-retinal. Furthermore, the retinal interaction appeared preferential for the all-trans-isomer and was directly measurable through fluorescence anisotropy analysis. Our results demonstrate that the three macular degeneration-associated mutations lead to significant changes in the secondary structure of the ECD2 domain of ABCA4, as well as in its interaction with all-trans-retinal.

  5. Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin

    PubMed Central

    Wong, Ada Hang-Heng; Vazquez-Ortiz, Guelaguetza; Chen, Weiping; Xu, Xiaoling; Deng, Chu-Xia

    2016-01-01

    Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiomolybdate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors' unique molecular adaptations. PMID:27806319

  6. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  7. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard.

    PubMed

    LeDuc, Danika L; AbdelSamie, Manal; Móntes-Bayon, Maria; Wu, Carol P; Reisinger, Sarah J; Terry, Norman

    2006-11-01

    A major goal of our selenium (Se) phytoremediation research is to use genetic engineering to develop fast-growing plants with an increased ability to tolerate, accumulate, and volatilize Se. To this end we incorporated a gene (encoding selenocysteine methyltransferase, SMT) from the Se hyperaccumulator, Astragalus bisulcatus, into Indian mustard (LeDuc, D.L., Tarun, A.S., Montes-Bayón, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M., Neuhierl, B., Böck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiol. 135, 377-383.). The resulting transgenic plants successfully enhanced Se phytoremediation in that the plants tolerated and accumulated Se from selenite significantly better than wild type. However, the advantage conferred by the SMT enzyme was much less when Se was supplied as selenate. In order to enhance the phytoremediation of selenate, we developed double transgenic plants that overexpressed the gene encoding ATP sulfurylase (APS) in addition to SMT, i.e., APSxSMT. The results showed that there was a substantial improvement in Se accumulation from selenate (4 to 9 times increase) in transgenic plants overexpressing both APS and SMT.

  8. Designing an extracellular matrix protein with enhanced mechanical stability

    PubMed Central

    Ng, Sean P.; Billings, Kate S.; Ohashi, Tomoo; Allen, Mark D.; Best, Robert B.; Randles, Lucy G.; Erickson, Harold P.; Clarke, Jane

    2007-01-01

    The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by ≈20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions. PMID:17535921

  9. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette) transporters gene enrichment in typhoid fever-infected Nigerian children.

    PubMed

    Khoo, Sok Kean; Petillo, David; Parida, Mrutyunjaya; Tan, Aik Choon; Resau, James H; Obaro, Stephen K

    2011-09-13

    also be obtained from acute vs. convalescent phase during typhoid fever infection. We found novel down-regulation of ABC (ATP-binding cassette) transporters genes such as ABCA7, ABCC5, and ABCD4 and ATPase activity as the highest enriched pathway. We identified unique extracellular components and ABC transporters gene enrichments in typhoid fever-infected Nigerian children, which have never been reported. These enriched gene clusters may represent novel targeted pathways to improve diagnostic, prognostic, therapeutic and next-generation vaccine strategies for typhoid fever in Africa.

  10. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.

    PubMed

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2011-11-01

    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  11. INTRACELLULAR DELIVERY OF ATP ENHANCED HEALING PROCESS IN FULL-THICKNESS SKIN WOUNDS IN DIABETIC RABBITS

    PubMed Central

    Wang, Jianpu; Wan, Rong; Mo, Yiqun; Li, Ming; Zhang, Qunwei; Chien, Sufan

    2010-01-01

    Background Small unilamellar lipid vesicles were used to encapsulate adenosine triphosphate (ATP-vesicles) for intracellular energy delivery and were tested for diabetic skin wounds in rabbits. Methods Diabetes was induced by alloxan. The mean peak blood glucose concentration was 505 mg/dl. One ear was created ischemic and eighty full-thickness wounds were created in 10 animals. ATP-vesicles or saline was used and their healing was compared. Results On the non-ischemic ears, mean closure time for ATP-vesicles-treated wounds was 13.7 days vs 16.4 days for saline-treated wounds (p<0.05). On the ischemic ears, mean closure time for ATP-vesicles-treated wounds was 15.3 days vs 19.3 days for saline-treated wounds (p<0.01). Histological study indicated better healing and re-epithelialization in the ATP-vesicles-treated wounds. Conclusions Intracellular delivery of ATP accelerated the healing process of diabetic skin wounds on ischemic and non-ischemic rabbit ears. The mechanisms deserve further study but may be related to improved cellular energy supplies. PMID:20609726

  12. Enhanced Detection of Cancer Biomarkers in Blood-Borne Extracellular Vesicles Using Nanodroplets and Focused Ultrasound.

    PubMed

    Paproski, Robert J; Jovel, Juan; Wong, Gane Ka-Shu; Lewis, John D; Zemp, Roger J

    2017-01-01

    The feasibility of personalized medicine approaches will be greatly improved by the development of noninvasive methods to interrogate tumor biology. Extracellular vesicles shed by solid tumors into the bloodstream have been under recent investigation as a source of tumor-derived biomarkers such as proteins and nucleic acids. We report here an approach using submicrometer perfluorobutane nanodroplets and focused ultrasound to enhance the release of extracellular vesicles from specific locations in tumors into the blood. The released extracellular vesicles were enumerated and characterized using micro flow cytometry. Only in the presence of nanodroplets could ultrasound release appreciable levels of tumor-derived vesicles into the blood. Sonication of HT1080-GFP tumors did not increase the number of circulating tumor cells or the metastatic burden in the tumor-bearing embryos. A variety of biological molecules were successfully detected in tumor-derived extracellular vesicles, including cancer-associated proteins, mRNAs, and miRNAs. Sonication of xenograft HT1080 fibrosarcoma tumors released extracellular vesicles that contained detectable RAC1 mRNA with the highly tumorigenic N92I mutation known to exist in HT1080 cells. Deep sequencing serum samples of embryos with sonicated tumors allowed the identification of an additional 13 known heterozygous mutations in HT1080 cells. Applying ultrasound to HT1080 tumors increased tumor-derived DNA in the serum by two orders of magnitude. This work is the first demonstration of enhanced extracellular vesicle release by ultrasound stimulation and suggests that nanodroplets/ultrasound offers promise for genetic profiling of tumor phenotype and aggressiveness by stimulating the release of extracellular vesicles. Cancer Res; 77(1); 3-13. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Conjugation of extracellular matrix proteins to basal lamina analogs enhances keratinocyte attachment.

    PubMed

    Bush, Katie A; Downing, Brett R; Walsh, Sarah E; Pins, George D

    2007-02-01

    The dermal-epidermal junction of skin contains extracellular matrix proteins that are involved in initiating and controlling keratinocyte signaling events such as attachment, proliferation, and terminal differentiation. To characterize the relationship between extracellular matrix proteins and keratinocyte attachment, a biomimetic design approach was used to precisely tailor the surface of basal lamina analogs with biochemistries that emulate the native biochemical composition found at the dermal-epidermal junction. A high-throughput screening device was developed by our laboratory that allows for the simultaneous investigation of the conjugation of individual extracellular matrix proteins (e.g. collagen type I, collagen type IV, laminin, or fibronectin) as well as their effect on keratinocyte attachment, on the surface of an implantable collagen membrane. Fluorescence microscopy coupled with quantitative digital image analyses indicated that the extracellular matrix proteins adsorbed to the collagen-GAG membranes in a dose-dependent manner. To determine the relationship between extracellular matrix protein signaling cues and keratinocyte attachment, cells were seeded on protein-conjugated collagen-GAG membranes and a tetrazolium-based colorimetric assay was used to quantify viable keratinocyte attachment. Our results indicate that keratinocyte attachment was significantly enhanced on the surfaces of collagen membranes that were conjugated with fibronectin and type IV collagen. These findings define a set of design parameters that will enhance keratinocyte binding efficiency on the surface of collagen membranes and ultimately improve the rate of epithelialization for dermal equivalents.

  14. A Common Molecular Motif Characterizes Extracellular Allosteric Enhancers of GPCR Aminergic Receptors and Suggests Enhancer Mechanism of Action

    PubMed Central

    Bernstein, Robert Root; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918

  15. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation.

    PubMed Central

    McCarthy, J E; Schairer, H U; Sebald, W

    1985-01-01

    The c, b and delta subunit genes of the Escherichia coli atp operon were cloned individually in an expression vector between the tac fusion promoter and the galK gene. The relative rates of subunit synthesis directed by the cloned genes were similar in vitro and in vivo and compared favourably with the subunit stoichiometry of the assembled proton-translocating ATP synthase of E. coli in vivo. The rate of synthesis of subunit c was at least six times that of subunit b and 18 times that of subunit delta. Progressive shortening of the long intercistronic sequence lying upstream of the subunit c gene showed that maximal expression of this gene is dependent upon the presence of a sequence stretching greater than 20 bp upstream of the Shine-Dalgarno site. This sequence thus acts to enhance the rate of translational initiation. The possibility that similar sequences might perform the same function in other operons of E. coli and bacteriophage lambda is also discussed. Translation of the subunit b cistron is partially coupled to translation of the preceding subunit c cistron. In conclusion, the expression of all the atp operon genes could be adjusted to accommodate the subunit requirements of ATP synthase assembly primarily by means of mechanisms which control the efficiency of translational initiation and re-initiation at the respective cistron start codons. Images Fig. 3. Fig. 4. PMID:2862030

  16. Extracellular phosphates enhance activities of voltage-gated proton channels and production of reactive oxygen species in murine osteoclast-like cells.

    PubMed

    Li, Guangshuai; Miura, Katsuyuki; Kuno, Miyuki

    2017-02-01

    Osteoclasts are highly differentiated bone-resorbing cells and play a significant role in bone remodelling. In the resorption pit, inorganic phosphate (Pi) concentrations increase because of degradation of hydroxyapatite. We studied effects of extracellular Pi on voltage-gated H(+) channels in osteoclast-like cells derived from a macrophage cell line (RAW264). Extracellular Pi (1.25-20 mM) increased the H(+) channel currents dose dependently and reversibly. The Pi-induced increases were attenuated by removal of extracellular Na(+) and by phosphonoformic acid, a blocker of Na(+)-dependent Pi transporters. Pi increased the maximal conductance, decreased activation time constant, increased deactivation time constant, and shifted the conductance-voltage relationship to more negative voltages. The most marked change was enhanced gating which was mainly caused by elevation of intracellular Pi levels. The Pi-induced enhanced gating was partially inhibited by protein kinase C (PKC) inhibitors, GF109203X and staurosporine, indicating that PKC-mediated phosphorylation was involved in part. The increase in the maximal conductance was mainly due to accompanying decrease in intracellular pH. These effects of Pi were not affected by intracellular Mg(2+), bafilomycin A1 (V-ATPase inhibitor) and removal of intracellular ATP. Extracellular Pi also upregulated reactive oxygen species (ROS). Diphenyleneiodonium chloride, an inhibitor of NADPH oxidases, decreased ROS production and partially attenuated the enhanced gating. In the cells during later passages where osteoclastogenesis declined, H(+) channel activities and ROS production were both modest. These results suggest that, in osteoclasts, ambient Pi is a common enhancer for H(+) channels and ROS production and that potentiation of H(+) channels may help ROS production.

  17. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1

    PubMed Central

    Frenguelli, Bruno G; Wigmore, Geoffrey; Llaudet, Enrique; Dale, Nicholas

    2007-01-01

    Abstract Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain. PMID:17459147

  18. Extracellular ATP and P2Y2 receptors mediate intercellular Ca2+ waves induced by mechanical stimulation in submandibular gland cells: role of mitochondrial regulation of store operated Ca2+ entry

    PubMed Central

    Ryu, Shin-Young; Peixoto, Pablo M.; Won, Jong-Hak; Yule, David I.; Kinnally, Kathleen W.

    2009-01-01

    SUMMARY Coordination of Ca2+ signaling among cells contributes to synchronization of salivary gland cell function. However, mechanisms that underlie this signaling remain elusive. Here, intercellular Ca2+ waves (ICW) in submandibular gland cells were investigated using fura-2 fluorescence imaging. Mechanical stimulation of single cells induced ICW propagation from the stimulated cells through ~7 layers of cells or ~120 μm. Our findings indicate that an extracellular ATP-dependent pathway is involved because the purinergic receptor antagonist suramin and the ATP hydrolyzing enzyme apyrase blocked ICW propagation. However, the gap junction uncoupler oleamide had no effect. ATP is released from mechanically stimulated cells possibly through opening of mechanosensitive maxi-anion channels, and does not appear to be directly linked to cytosolic Ca2+. The ICW is propagated by diffusing ATP, which activates purinergic receptors in neighboring cells. This purinergic signaling induces a Ca2+ transient that is dependent on Ca2+ release via IP3 receptors in the ER and store operated Ca2+ entry (SOCE). Finally, inhibition of mitochondrial Ca2+ uptake modified ICW indicating an important role of these organelles in this phenomenon. These studies increase our understanding of purinergic receptor signaling in salivary gland cells, and its role as a coordination mechanism of Ca2+ signals induced by mechanical stimulation. PMID:20022109

  19. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages.

    PubMed

    Jin, Xueting; Sviridov, Denis; Liu, Ying; Vaisman, Boris; Addadi, Lia; Remaley, Alan T; Kruth, Howard S

    2016-12-01

    We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1(+/+) macrophages but not by ABCA1(-/-) macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1(-/-) macrophages. Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1. © 2016 American Heart Association, Inc.

  20. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  1. ATP-binding cassette transporter enhances tolerance to DDT in Tetrahymena.

    PubMed

    Ning, YingZhi; Dang, Huai; Liu, GuangLong; Xiong, Jie; Yuan, DongXia; Feng, LiFang; Miao, Wei

    2015-03-01

    The reuse of dichlorodiphenyltrichloroethane (DDT) as an indoor residual spray was permitted by the World Health Organization in 2007, and approximately 14 countries still use DDT to control disease vectors. The extensive exposure of insects to DDT has resulted in the emergence of DDT resistance, especially in mosquitoes, and the mechanism for this resistance in mosquitoes has been widely reported. Spraying can also introduce DDT directly into surface water, and DDT can subsequently accumulate in microorganisms, but the mechanism for the resistance to DDT degradation in microorganisms is unclear. Using whole-genome microarray analysis, we detected an abcb15 gene that was up-regulated in a specific manner by DDT treatment in T. thermophile. The deduced ABCB15 peptide sequence had two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs) to form the structure TMD-NBD-TMD-NBD, and each NBD contained three conserved motifs: Walker-A, C-loop, and Walker-B, which indicated the T. thermophila abcb15 was a typical ABC transporter gene. The expression of ABCB15 fused with a C-terminal green fluorescent protein was found to be on the periphery of the cell, suggesting that ABCB15 was a membrane pump protein. In addition, cells with abcb15 partially knocked down (abcb15-KD) grew slower than wild-type cells in the presence of 256 mg L(-1) DDT, indicating the tolerance of abcb15-KD strain to DDT exposure was decreased. Thus, we suggest that in Tetrahymena, the membrane pump protein encoded by ABCT gene abcb15 can enhance the tolerance to DDT and protect cells from this exogenous toxin by efficiently pumping it to the extracellular space.

  2. Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats.

    PubMed

    Murillo-Rodríguez, Eric; Haro, Reyes; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Drucker-Colín, René

    2007-01-25

    Modafinil (MOD) is a wakefulness-promoting drug that improves the alertness levels in narcolepsy; however, the molecular mechanism of action remains to be elucidated. We found that after a single icv injection of MOD (10 microg/5 microl) the extracellular levels of dopamine (DA) and l-DOPA collected from the nucleus accumbens were increased and decreased, respectively. Separately, the icv administration of MOD (10 microg/5 microl) to rats enhanced wakefulness (W) whereas diminished sleep during 4h. Lastly, the alertness induced by MOD was partially antagonized by the sleep-inducing endocannabinoid anandamide (ANA). We conclude that MOD enhances the extracellular levels of DA, promotes W and its effects on sleep are partially blocked by ANA.

  3. Purinergic signaling in early inflammatory events of the foreign body response: modulating extracellular ATP as an enabling technology for engineered implants and tissues.

    PubMed

    Rhett, J Matthew; Fann, Stephen A; Yost, Michael J

    2014-10-01

    Purinergic signaling is a ubiquitous and vital aspect of mammalian biology in which purines--mainly adenosine triphosphate (ATP)--are released from cells through loss of membrane integrity (cell death), exocytosis, or transport/diffusion across membrane channels, and exert paracrine or autocrine signaling effects through three subclasses of well-characterized receptors: the P1 adenosine receptors, the P2X ionotropic nucleotide receptors, and the P2Y metabotropic receptors. ATP and its metabolites are released by damaged and stressed cells in injured tissues. The early events of wound healing, hemostasis, and inflammation are highly regulated by these signals through activation of purinergic receptors on platelets and neutrophils. Recent data have demonstrated that ATP signaling is of particular importance to targeting leukocytes to sites of injury. This is particularly relevant to the subject of implanted medical devices, engineered tissues, and grafts as all these technologies elicit a wound healing response with varying degrees of encapsulation, rejection, extrusion, or destruction of the tissue or device. Here, we review the biology of purinergic signaling and focus on ATP release and response mechanisms that pertain to the early inflammatory phase of wound healing. Finally, therapeutic options are explored, including a new class of peptidomimetic drugs based on the ATP-conductive channel connexin43.

  4. Extracellular Matrix Formation Enhances the Ability of Streptococcus pneumoniae to Cause Invasive Disease

    PubMed Central

    Trappetti, Claudia; Ogunniyi, Abiodun D.; Oggioni, Marco R.; Paton, James C.

    2011-01-01

    During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease. PMID:21611130

  5. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers

    PubMed Central

    Castellani, Stefano; Orlando, Clara; Carbone, Annalucia; Di Gioia, Sante; Conese, Massimo

    2016-01-01

    Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions. PMID:27886077

  6. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers.

    PubMed

    Castellani, Stefano; Orlando, Clara; Carbone, Annalucia; Di Gioia, Sante; Conese, Massimo

    2016-11-23

    Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions.

  7. Neutrophils from subjects with chronic obstructive lung disease show enhanced chemotaxis and extracellular proteolysis.

    PubMed

    Burnett, D; Chamba, A; Hill, S L; Stockley, R A

    1987-11-07

    Peripheral polymorphonuclear leucocytes (PMN) from subjects with emphysema or bronchiectasis digested significantly more iodine-125-labelled fibronectin (on average, 250% and 280%, respectively) than did those from control subjects. PMN from patients with bronchiectasis contained significantly more of the serine proteinase elastase than did the control cells, which may have contributed to their greater extracellular proteolysis. PMN from patients with emphysema, but not those with bronchiectasis, showed enhanced chemotaxis (on average 260%) in response to a chemotactic peptide compared with control cells. Thus, PMN from subjects with chronic obstructive lung diseases can digest more extracellular connective tissue protein than PMN from healthy subjects. This behaviour suggests a mechanism for the pathological tissue damage associated with these disorders. Furthermore, the sensitivity to chemotactic factors of PMN from emphysematous patients would contribute to the larger numbers of these cells in their lung tissues, thus increasing further the proteolytic burden in the lungs.

  8. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics*

    PubMed Central

    Naito, Tomoki; Takatsu, Hiroyuki; Miyano, Rie; Takada, Naoto; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543–33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology. PMID:25947375

  9. Increased membrane localization of pannexin1 in human corneal synaptosomes causes enhanced stimulated ATP release in chronic diabetes mellitus

    PubMed Central

    Cui, Hao; Liu, Ying; Qin, Limin; Wang, Liqiang; Huang, Yifei

    2016-01-01

    Abstract In the present study, we investigated the potential changes in the corneal nerve terminals in non–insulin-dependent diabetes mellitus of moderate duration. The dissected corneas were subjected to a protocol of ultracentrifugation to obtain synaptosomes of sensory nerve terminals. Within these nerve varicosities, 2 major mechanisms were examined, viz., alterations of the mechanosensitive channel pannexin1 and ATP release on stimulation of these terminals. We hypothesized that altered cellular location and function of the pannexin channel may contribute to altered mechanosensitivity of the cornea, which in turn may affect wound healing and primary visual function of the cornea. The chief rationale for focusing on examining the pannexin channel is due to its role in mechanosensitivity, as well as its glycosylation property. Pannexin1 remains unchanged between diabetic subjects in comparison to nondiabetic controls. However, lectin immunoassay showed that pannexin1 is significantly more glycosylated in diabetic corneal synaptosomes. Membrane biotinylation assay showed that membrane localization of pannexin1 is significantly enhanced in diabetic samples. Furthermore, S-nitrosylation of the glyco-pannexin1 is significantly decreased in comparison to pannexin1 obtained from corneal varicosities of normoglycemic subjects. The diabetic corneal synaptosomes show enhanced ATP release after potassium chloride stimulation, when compared to controls. Furthermore, we have shown that S-nitrosylation of pannexin1 actually diminishes the ability of pannexin1 to release ATP. Thus, much like the peripheral nerves, the corneal nerves also show increased hypersensitivity in diabetes of chronic duration. All of these pathological changes may cumulatively alter corneal function in diabetes. PMID:27930505

  10. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Kohrt, Dawn; Talukder, Munya; Michelini, Elisa; Cevenini, Luca; Roda, Aldo; Grossel, Martha J

    2015-09-01

    Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. We previously reported the approximately 2-fold enhanced activity and 1.4-fold greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomole levels of ATP. In addition, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and living cells with 4.4-fold and approximately 3.0-fold greater sensitivity, respectively. PLG2 could be an improved alternative to Promega's luc2 for reporter and imaging applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications

    PubMed Central

    Branchini, Bruce R.; Southworth, Tara L.; Fontaine, Danielle M.; Kohrt, Dawn; Talukder, Munya; Michelini, Elisa; Cevenini, Luca; Roda, Aldo; Grossel, Martha J.

    2015-01-01

    Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications including gene reporter assays, whole-cell biosensor measurements and in vivo imaging. We have previously reported the ~2-fold enhanced activity and 1.4-greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomol levels of ATP. Additionally, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and in living cells offering an improved alternative to Promega’s luc2 for reporter and imaging applications. PMID:26049097

  12. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  13. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  14. Irradiation Enhances Hippocampus-Dependent Cognition in Mice Deficient in Extracellular Superoxide Dismutase

    PubMed Central

    Raber, Jacob; Villasana, Laura; Rosenberg, Jenna; Zou, Yani; Huang, Ting Ting; Fike, John R.

    2009-01-01

    The effects of ionizing irradiation on the brain are associated with oxidative stress. While oxidative stress following irradiation is generally viewed as detrimental for hippocampal function, it might have beneficial effects as part of an adaptive or preconditioning response to a subsequent challenge. Here we show that in contrast to what is seen in wild-type mice, irradiation enhances hippocampus-dependent cognitive measures in mice lacking extracellular superoxide dismutase. These outcomes were associated with genotype-dependent effects on measures of oxidative stress. When cortices and hippocampi were analyzed for nitrotyrosine formation as an index of oxidative stress, the levels were chronically elevated in mice lacking extracellular superoxide dismutase. However, irradiation caused a greater increase in nitrotyrosine levels in wild-type mice than mice lacking extracellular superoxide dismutase. These paradoxical genotype-dependent effects of irradiation on measures of oxidative stress and cognitive function underscore potential beneficial effects associated with chronic oxidative stress if it exists prior to a secondary insult such as irradiation. PMID:20020436

  15. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones

    PubMed Central

    Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H.; Nakamura, Ryuhei

    2013-01-01

    Extracellular redox-active compounds, flavins and other quinones, have been hypothesized to play a major role in the delivery of electrons from cellular metabolic systems to extracellular insoluble substrates by a diffusion-based shuttling two-electron-transfer mechanism. Here we show that flavin molecules secreted by Shewanella oneidensis MR-1 enhance the ability of its outer-membrane c-type cytochromes (OM c-Cyts) to transport electrons as redox cofactors, but not free-form flavins. Whole-cell differential pulse voltammetry revealed that the redox potential of flavin was reversibly shifted more than 100 mV in a positive direction, in good agreement with increasing microbial current generation. Importantly, this flavin/OM c-Cyts interaction was found to facilitate a one-electron redox reaction via a semiquinone, resulting in a 103- to 105-fold faster reaction rate than that of free flavin. These results are not consistent with previously proposed redox-shuttling mechanisms but suggest that the flavin/OM c-Cyts interaction regulates the extent of extracellular electron transport coupled with intracellular metabolic activity. PMID:23576738

  16. Enrofloxacin enhances the formation of neutrophil extracellular traps in bovine granulocytes.

    PubMed

    Jerjomiceva, Natalja; Seri, Hisham; Völlger, Lena; Wang, Yanming; Zeitouni, Nathalie; Naim, Hassan Y; von Köckritz-Blickwede, Maren

    2014-01-01

    Several antibiotics are known for their ability to accumulate in neutrophils and thereby modulate the antimicrobial functions of those cells. This study demonstrates for the first time that an antibiotic, namely the fluoroquinolone enrofloxacin, enhances the formation of bovine neutrophil extracellular traps (NETs). Pharmacologically inactivated NADPH oxidase or peptidyl-arginine deiminase-4 distinctly reduced enrofloxacin-induced NET formation. Additionally, when cells were treated with cytochalasin D or nocodazole, the enrofloxacin-mediated NET induction was abolished, indicating that besides oxidative burst and histone citrullination also actin and microtubule polymerization are involved in this process.

  17. Enrofloxacin enhances the formation of neutrophil extracellular traps in bovine granulocytes

    PubMed Central

    Jerjomiceva, Natalja; Seri, Hisham; Völlger, Lena; Wang, Yanming; Zeitouni, Nathalie; Naim, Hassan Y.; von Köckritz-Blickwede, Maren

    2014-01-01

    Several antibiotics are known for their ability to accumulate in neutrophils and thereby modulate the antimicrobial functions of those cells. This manuscript demonstrates for the first time that an antibiotic, namely the fluoroquinolone enrofloxacin, enhances the formation of bovine neutrophil extracellular traps (NETs). When pharmacologically inactivating NADPH oxidase or peptidylarginine deiminase-4, enrofloxacin-induced NET-formation was distinctly reduced. Additionally, when treating the cells with cytochalasin D or nocodazole, the enrofloxacin-mediated NET-induction was abolished, indicating that besides oxidative burst and histone citrullination also the actin and microtubule polymerization are involved in this process. PMID:24642685

  18. "Click" immobilization of a VEGF-mimetic peptide on decellularized endothelial extracellular matrix to enhance angiogenesis.

    PubMed

    Wang, Lin; Zhao, Meirong; Li, Siheng; Erasquin, Uriel J; Wang, Hao; Ren, Li; Chen, Changyi; Wang, Yingjun; Cai, Chengzhi

    2014-06-11

    We show that coating of decellularized extracellular matrix (DC-ECM) on substrate surfaces is an efficient way to generate a platform mimicking the native ECM environment. Moreover, the DC-ECM can be modified with a peptide (QK) mimicking vascular endothelial growth factor without apparently compromising its integrity. The modification was achieved through metabolic incorporation of a "clickable" handle to DC-ECM followed by rapid attachment of the QK peptide with an azido tag using copper-catalyzed click reaction. The attachment of the QK peptide on to DC-ECM in this way further enhanced the angiogenic responses (formation of branched tubular networks) of endothelial cells.

  19. ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages.

    PubMed

    Jehle, Andreas W; Gardai, Shyra J; Li, Suzhao; Linsel-Nitschke, Patrick; Morimoto, Konosuke; Janssen, William J; Vandivier, R William; Wang, Nan; Greenberg, Steven; Dale, Benjamin M; Qin, Chunbo; Henson, Peter M; Tall, Alan R

    2006-08-14

    The mammalian ATP-binding cassette transporters A1 and A7 (ABCA1 and -A7) show sequence similarity to CED-7, a Caenorhabditis elegans gene that mediates the clearance of apoptotic cells. Using RNA interference or gene targeting, we show that knock down of macrophage ABCA7 but not -A1 results in defective engulfment of apoptotic cells. In response to apoptotic cells, ABCA7 moves to the macrophage cell surface and colocalizes with the low-density lipoprotein receptor-related protein 1 (LRP1) in phagocytic cups. The cell surface localization of ABCA7 and LRP1 is defective in ABCA7-deficient cells. C1q is an opsonin of apoptotic cells that acts via phagocyte LRP1 to induce extracellular signal-regulated kinase (ERK) signaling. We show that ERK signaling is required for phagocytosis of apoptotic cells and that ERK phosphorylation in response to apoptotic cells or C1q is defective in ABCA7-deficient cells. These studies reveal a major role of ABCA7 and not -A1 in the clearance of apoptotic cells and therefore suggest that ABCA7 is an authentic orthologue of CED-7.

  20. ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages

    PubMed Central

    Jehle, Andreas W.; Gardai, Shyra J.; Li, Suzhao; Linsel-Nitschke, Patrick; Morimoto, Konosuke; Janssen, William J.; Vandivier, R. William; Wang, Nan; Greenberg, Steven; Dale, Benjamin M.; Qin, Chunbo; Henson, Peter M.; Tall, Alan R.

    2006-01-01

    The mammalian ATP-binding cassette transporters A1 and A7 (ABCA1 and -A7) show sequence similarity to CED-7, a Caenorhabditis elegans gene that mediates the clearance of apoptotic cells. Using RNA interference or gene targeting, we show that knock down of macrophage ABCA7 but not -A1 results in defective engulfment of apoptotic cells. In response to apoptotic cells, ABCA7 moves to the macrophage cell surface and colocalizes with the low-density lipoprotein receptor–related protein 1 (LRP1) in phagocytic cups. The cell surface localization of ABCA7 and LRP1 is defective in ABCA7-deficient cells. C1q is an opsonin of apoptotic cells that acts via phagocyte LRP1 to induce extracellular signal–regulated kinase (ERK) signaling. We show that ERK signaling is required for phagocytosis of apoptotic cells and that ERK phosphorylation in response to apoptotic cells or C1q is defective in ABCA7-deficient cells. These studies reveal a major role of ABCA7 and not -A1 in the clearance of apoptotic cells and therefore suggest that ABCA7 is an authentic orthologue of CED-7. PMID:16908670

  1. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation.

    PubMed

    Jiang, Shuang; Zhang, Yu; Zheng, Jin-Hua; Li, Xia; Yao, You-Li; Wu, Yan-Ling; Song, Shun-Zong; Sun, Peng; Nan, Ji-Xing; Lian, Li-Hua

    2017-03-01

    Purinergic receptor P2x7 (P2x7R) is a key modulator of liver inflammation and fibrosis. The present study aimed to investigate the role of P2x7R in hepatic stellate cells activation. Lipopolysaccharide (LPS) or the conditioned medium (CM) from LPS-stimulated RAW 264.7 mouse macrophages was supplemented to human hepatic stellate cells, LX-2 for 24h and P2x7R selective antagonist A438079 (10μM) was supplemented to LX-2 cells 1h before LPS or CM stimulation. In addition LX-2 cells were primed with LPS for 4h and subsequently stimulated for 30min with 3mM of adenosine 5'-triphosphate (ATP). A438079 was supplemented to LX-2 cells 10min prior to ATP. Directly treated with LPS on LX-2 cells, mRNA expressions of interleukin (IL)-1β, IL-18 and IL-6 were increased, as well as mRNA expressions of P2x7R, caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and NOD-like receptor family, pyrin domain containing 3 (NLRP3) mRNA. LPS also increased α-smooth muscle actin (α-SMA) and type I collagen mRNA expressions, as well as collagen deposition. Interestingly treatment of LX-2 cells with LPS-activated CM exhibited the greater increase of above factors than those in LX-2 cells directly treated with LPS. Pretreatment of A438079 on LX-2 cells stimulated by LPS or LPS-activated CM both suppressed IL-1β mRNA expression. LPS combined with ATP dramatically increased protein synthesis and cleavage of IL-1β and its mRNA level than those in HSC treated with LPS or ATP alone. Additionally LX-2 cells primed with LPS and subsequently stimulated for 30min with ATP greatly increased mRNA and protein expression of caspase-1, NLRP3 and P2x7R, as well as liver fibrosis markers, α-SMA and type I collagen. These events were remarkably suppressed by A438079 pretreatment. siRNA against P2x7R reduced protein expression of NLRP3 and α-SMA, and suppressed deposition and secretion of type I collagen. The involvement of P2X7R-mediated NLRP3 inflammasome activation in IL-1

  2. HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7

    PubMed Central

    Tanaka, Nobukiyo; Abe-Dohmae, Sumiko; Iwamoto, Noriyuki; Fitzgerald, Michael L.; Yokoyama, Shinji

    2011-01-01

    We recently reported that the endogenous ATP-binding cassette transporter (ABC) A7 strongly associates with phagocytosis, being regulated by sterol regulatory element binding protein 2. We therefore examined the effect of statins on phagocytosis in vitro and in vivo through the SREBP-ABCA7. Phagocytosis was found to be enhanced by pravastatin, rosuvastatin and simvastatin and cyclodextrin in J774 macrophages, as cellular cholesterol was reduced and expressions of the cholesterol-related genes were modulated, including an increase of ABCA7 mRNA and decrease of ABCA1 mRNA. Conversely, knock-down of ABCA7 expression by siRNA ablated enhancement of phagocytosis by statins. In vivo, pravastatin enhanced phagocytosis in wild-type mice, but not in ABCA7-knockout mice. We thus concluded that statins enhance phagocytosis through the SREBP-ABCA7 pathway. These findings provide a molecular basis for enhancement of the host-defense system by statins showing that one of their “pleiotropic” effects is in fact achieved through their reaction to a primary target. PMID:21762915

  3. Extracellular Ca(2+)-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells.

    PubMed

    Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto

    2015-08-15

    Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. N-cadherin enhances APP dimerization at the extracellular domain and modulates Aβ production.

    PubMed

    Asada-Utsugi, Megumi; Uemura, Kengo; Noda, Yasuha; Kuzuya, Akira; Maesako, Masato; Ando, Koichi; Kubota, Masakazu; Watanabe, Kiwamu; Takahashi, Makio; Kihara, Takeshi; Shimohama, Shun; Takahashi, Ryosuke; Berezovska, Oksana; Kinoshita, Ayae

    2011-10-01

    Sequential processing of amyloid precursor protein (APP) by β- and γ-secretase leads to the generation of amyloid-β (Aβ) peptides, which plays a central role in Alzheimer's disease pathogenesis. APP is capable of forming a homodimer through its extracellular domain as well as transmembrane GXXXG motifs. A number of reports have shown that dimerization of APP modulates Aβ production. On the other hand, we have previously reported that N-cadherin-based synaptic contact is tightly linked to Aβ production. In the present report, we investigated the effect of N-cadherin expression on APP dimerization and metabolism. Here, we demonstrate that N-cadherin expression facilitates cis-dimerization of APP. Moreover, N-cadherin expression led to increased production of Aβ as well as soluble APPβ, indicating that β-secretase-mediated cleavage of APP is enhanced. Interestingly, N-cadherin expression affected neither dimerization of C99 nor Aβ production from C99, suggesting that the effect of N-cadherin on APP metabolism is mediated through APP extracellular domain. We confirmed that N-cadherin enhances APP dimerization by a novel luciferase-complementation assay, which could be a platform for drug screening on a high-throughput basis. Taken together, our results suggest that modulation of APP dimerization state could be one of mechanisms, which links synaptic contact and Aβ production. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Cedrol Enhances Extracellular Matrix Production in Dermal Fibroblasts in a MAPK-Dependent Manner

    PubMed Central

    Jin, Mu Hyun; Park, Sun Gyoo; Hwang, Yul-Lye; Lee, Min-Ho; Jeong, Nam-Ji; Roh, Seok-Seon; Lee, Young; Kim, Chang Deok

    2012-01-01

    Background The extracellular matrix (ECM) produced by dermal fibroblasts supports skin structure, and degradation and/or reduced production of ECM are the main causes of wrinkle formation. Objective The aim of this study was to identify the active ingredient that enhances ECM production in dermal fibroblasts. Methods Polarity-based fractionation was used to isolate the active ingredient from natural extracts, and the effects of cedrol (isolated from Pterocarpus indicusirginia) on ECM production in cultured human dermal fibroblasts was investigated by reverse transcription-polymerase chain reaction, enzyme linked immunosorbent assay, and Western blot analysis. Results Cedrol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was markedly increased by cedrol, indicating that enhanced ECM production is linked to activation of intracellular signaling cascades. Conclusion These results indicate that cedrol stimulates ECM production, with possible applications to the maintenance of skin texture. PMID:22363150

  6. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  7. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis

    PubMed Central

    Nakase, Ikuhiko; Noguchi, Kosuke; Fujii, Ikuo; Futaki, Shiroh

    2016-01-01

    Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained. PMID:27748399

  8. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  9. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440.

    PubMed

    D'Alvise, Paul W; Sjøholm, Ole R; Yankelevich, Tatiana; Jin, Yujie; Wuertz, Stefan; Smets, Barth F

    2010-11-01

    Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid-specific stains revealed differences in the production of extracellular polymeric substances: TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNase I treatment. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads to increased biofilm formation by production of eDNA. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    PubMed

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.

  12. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis.

    PubMed

    Reiner, Agnes T; Ferrer, Nicolas-Guillermo; Venugopalan, Priyamvada; Lai, Ruenn Chai; Lim, Sai Kiang; Dostálek, Jakub

    2017-10-09

    The sensitive analysis of small lipid extracellular vesicles (EVs) by using a grating-coupled surface plasmon resonance (GC-SPR) biosensor has been reported. In order to enable the analysis of trace amounts of EVs present in complex liquid samples, the target analyte is pre-concentrated on the sensor surface by using magnetic nanoparticles and its affinity binding is probed by wavelength interrogation of SPR. The GC-SPR has been demonstrated to allow for the implementation of efficient pulling of EVs to the sensor surface by using magnetic nanoparticles and an external magnetic field gradient applied through the sensor chip. This approach overcomes slow diffusion-limited mass transfer and greatly enhances the measured sensor response. The specific detection of different EV populations secreted from mesenchymal stem cells is achieved with a SPR sensor chip modified with antibodies against the surface marker CD81 and magnetic nanoparticles binding the vesicles via annexin V and cholera toxin B chain.

  13. Enhancement of rat bladder contraction by artificial sweeteners via increased extracellular Ca{sup 2+} influx

    SciTech Connect

    Dasgupta, Jaydip; Elliott, Ruth A. . E-mail: rae5@leicester.ac.uk; Doshani, Angie; Tincello, Douglas G.

    2006-12-01

    Introduction: Consumption of carbonated soft drinks has been shown to be independently associated with the development of overactive bladder symptoms (OR 1.62, 95% CI 1.18, 2.22) [Dallosso, H.M., McGrother, C.W., Matthews, R.J., Donaldson, M.M.K., 2003. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: a longitudinal study in women. BJU Int. 92, 69-77]. We evaluated the effects of three artificial sweeteners, acesulfame K, aspartame and sodium saccharin, on the contractile response of isolated rat detrusor muscle strips. Methods: Strips of detrusor muscle were placed in an organ bath and stimulated with electrical field stimulation (EFS) in the absence and presence of atropine, and with {alpha},{beta} methylene ATP, potassium, calcium and carbachol. Results: Sweeteners 10{sup -7} M to 10{sup -2} M enhanced the contractile response to 10 Hz EFS compared to control (p < 0.01). The atropine-resistant response to EFS was marginally increased by acesulfame K 10{sup -6} M, aspartame 10{sup -7} M and sodium saccharin 10{sup -7} M. Acesulfame K 10{sup -6} M increased the maximum contractile response to {alpha},{beta} methylene ATP by 35% ({+-} 9.6%) (p < 0.05) and to KCl by 12% ({+-} 3.1%) (p < 0.01). Sodium saccharin also increased the response to KCl by 37% ({+-} 15.2%) (p < 0.05). These sweeteners shifted the calcium concentration-response curves to the left. Acesulfame K 10{sup -6} M increased the log EC{sub 5} from -2.79 ({+-} 0.037) to -3.03 ({+-} 0.048, p < 0.01) and sodium saccharin 10{sup -7} M from -2.74 ({+-} 0.03) to 2.86 ({+-} 0.031, p < 0.05). The sweeteners had no significant effect on the contractile response to carbachol but they did increase the amplitude of spontaneous bladder contractions. Discussion: These results suggest that low concentrations of artificial sweeteners enhanced detrusor muscle contraction via modulation of L-type Ca{sup +2} channels.

  14. Insulin fails to enhance mTOR phosphorylation, mitochondrial protein synthesis, and ATP production in human skeletal muscle without amino acid replacement.

    PubMed

    Barazzoni, Rocco; Short, Kevin R; Asmann, Yan; Coenen-Schimke, Jill M; Robinson, Matthew M; Nair, K Sreekumaran

    2012-11-01

    Systemic insulin administration causes hypoaminoacidemia by inhibiting protein degradation, which may in turn inhibit muscle protein synthesis (PS). Insulin enhances muscle mitochondrial PS and ATP production when hypoaminoacidemia is prevented by exogenous amino acid (AA) replacement. We determined whether insulin would stimulate mitochondrial PS and ATP production in the absence of AA replacement. Using l-[1,2-¹³C]leucine as a tracer, we measured the fractional synthetic rate of mitochondrial as well as sarcoplasmic and mixed muscle proteins in 18 participants during sustained (7-h) insulin or saline infusion (n = 9 each). We also measured muscle ATP production, mitochondrial enzyme activities, mRNA levels of mitochondrial genes, and phosphorylation of signaling proteins regulating protein synthesis. The concentration of circulating essential AA decreased during insulin infusion. Mitochondrial, sarcoplasmic, and mixed muscle PS rates were also lower during insulin (2-7 h) than during saline infusions despite increased mRNA levels of selected mitochondrial genes. Under these conditions, insulin did not alter mitochondrial enzyme activities and ATP production. These effects were associated with enhanced phosphorylation of Akt but not of protein synthesis activators mTOR, p70(S6K), and 4EBP1. In conclusion, sustained physiological hyperinsulinemia without AA replacement did not stimulate PS of mixed muscle or protein subfractions and did not alter muscle mitochondrial ATP production in healthy humans. These results support that insulin and AA act in conjunction to stimulate muscle mitochondrial function and mitochondrial protein synthesis.

  15. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    PubMed Central

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-01-01

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084

  16. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors.

    PubMed

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-12-29

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation.

  17. Wound-induced ATP release and EGF receptor activation in epithelial cells

    PubMed Central

    Yin, Jia; Xu, Keping; Zhang, Jing; Kumar, Ashok; Yu, Fu-Shin X.

    2007-01-01

    Summary We have shown previously that wounding of human corneal epithelial (HCE) cells resulted in epidermal growth factor receptor (EGFR) transactivation through ectodomain shedding of heparin-binding EGF-like growth factor (HB-EGF). However, the initial signal to trigger these signaling events in response to cell injury remains elusive. In the present study, we investigated the role of ATP released from the injured cells in EGFR transactivation in HCE cells as well as in BEAS 2B cells, a bronchial epithelial cell line. Wounding of epithelial monolayer resulted in the release of ATP into the culture medium. The wound-induced rapid activation of phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) pathways in HCE cells was attenuated by eliminating extracellular ATP, ADP and adenosine. The nonhydrolyzable ATP analog ATP-γ-S induced rapid and sustained EGFR activation that depended on HB-EGF shedding and ADAM (a disintegrin and metalloproteinase). Targeting pathways leading to HB-EGF shedding and EGFR activation attenuated ATP-γ-S-enhanced closure of small scratch wounds. The purinoceptor antagonist reactive blue 2 decreased wound closure and attenuated ATP-γ-S induced HB-EGF shedding. Taken together, our data suggest that ATP, released upon epithelial injury, acts as an early signal to trigger cell responses including an increase in HB-EGF shedding, subsequent EGFR transactivation and its downstream signaling, resulting in wound healing. PMID:17284517

  18. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation.

    PubMed

    Menning, Kristy J; Menon, Balaraj B; Fox, Gordon; Scott, Kathleen M

    2016-03-01

    The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.

  19. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    PubMed Central

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  20. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.

    PubMed

    Pammi, Mohan; Liang, Rong; Hicks, John; Mistretta, Toni-Ann; Versalovic, James

    2013-11-14

    Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.

  1. Performance of Rodent Spermatozoa Over Time Is Enhanced by Increased ATP Concentrations: The Role of Sperm Competition.

    PubMed

    Tourmente, Maximiliano; Villar-Moya, Pilar; Varea-Sánchez, María; Luque-Larena, Juan J; Rial, Eduardo; Roldan, Eduardo R S

    2015-09-01

    Sperm viability, acrosome integrity, motility, and swimming velocity are determinants of male fertility and exhibit an extreme degree of variation among closely related species. Many of these sperm parameters are associated with sperm ATP content, which has led to predictions of trade-offs between ATP content and sperm motility and velocity. Selective pressures imposed by sperm competition have been proposed as evolutionary causes of this pattern of diversity in sperm traits. Here, we examine variation in sperm viability, acrosome integrity, motility, swimming velocity, and ATP content over time, among 18 species of closely related muroid rodents, to address the following questions: (a) Do sperm from closely related species vary in ATP content after a period of incubation? (b) Are these differences in ATP levels related to differences in other sperm traits? (c) Are differences in ATP content and sperm performance over time explained by the levels of sperm competition in these species? Our results revealed a high degree of interspecific variability in changes in sperm ATP content, acrosome integrity, sperm motility and swimming velocity over time. Additionally, species with high sperm competition levels were able to maintain higher levels of sperm motility and faster sperm swimming velocity when they were incubated under conditions that support sperm survival. Furthermore, we show that the maintenance of such levels of sperm performance is correlated with the ability of sperm to sustain high concentrations of intracellular ATP over time. Thus, sperm competition may have an important role maximizing sperm metabolism and performance and, ultimately, the fertilizing capacity of spermatozoa.

  2. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.

    PubMed

    Yong, Yang-Chun; Yu, Yang-Yang; Yang, Yun; Liu, Jing; Wang, Jing-Yuan; Song, Hao

    2013-02-01

    The microbial fuel cell (MFC), is a promising environmental biotechnology for harvesting electricity energy from organic wastes. However, low bacterial membrane permeability of electron shuttles is a limiting factor that restricts the electron shuttle-mediated extracellular electron transfer (EET) from bacteria to electrodes, thus the electricity power output of MFCs. To this end, we heterologously expressed a porin protein OprF from Pseudomonas aeruginosa PAO1 into Escherichia coli, which dramatically increased its membrane permeability, delivering a much higher current output in MFCs than its parental strain (BL21). We found that the oprF-expression strain showed more efficient EET than its parental strain. More strikingly, the enhanced membrane permeability also rendered the oprF-expression strain an efficient usage of riboflavin as the electron shuttle, whereas its parental strain was incapable of. Our results substantiated that membrane permeability is crucial for the efficient EET, and indicated that the expression of synthetic porins could be an efficient strategy to enhance bioelectricity generation by microorganisms (including electrogenic bacteria) in MFCs.

  3. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex.

    PubMed

    Happel, Max F K; Niekisch, Hartmut; Castiblanco Rivera, Laura L; Ohl, Frank W; Deliano, Matthias; Frischknecht, Renato

    2014-02-18

    During brain maturation, the occurrence of the extracellular matrix (ECM) terminates juvenile plasticity by mediating structural stability. Interestingly, enzymatic removal of the ECM restores juvenile forms of plasticity, as for instance demonstrated by topographical reconnectivity in sensory pathways. However, to which degree the mature ECM is a compromise between stability and flexibility in the adult brain impacting synaptic plasticity as a fundamental basis for learning, lifelong memory formation, and higher cognitive functions is largely unknown. In this study, we removed the ECM in the auditory cortex of adult Mongolian gerbils during specific phases of cortex-dependent auditory relearning, which was induced by the contingency reversal of a frequency-modulated tone discrimination, a task requiring high behavioral flexibility. We found that ECM removal promoted a significant increase in relearning performance, without erasing already established-that is, learned-capacities when continuing discrimination training. The cognitive flexibility required for reversal learning of previously acquired behavioral habits, commonly understood to mainly rely on frontostriatal circuits, was enhanced by promoting synaptic plasticity via ECM removal within the sensory cortex. Our findings further suggest experimental modulation of the cortical ECM as a tool to open short-term windows of enhanced activity-dependent reorganization allowing for guided neuroplasticity.

  4. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex

    PubMed Central

    Happel, Max F. K.; Niekisch, Hartmut; Castiblanco Rivera, Laura L.; Ohl, Frank W.; Deliano, Matthias; Frischknecht, Renato

    2014-01-01

    During brain maturation, the occurrence of the extracellular matrix (ECM) terminates juvenile plasticity by mediating structural stability. Interestingly, enzymatic removal of the ECM restores juvenile forms of plasticity, as for instance demonstrated by topographical reconnectivity in sensory pathways. However, to which degree the mature ECM is a compromise between stability and flexibility in the adult brain impacting synaptic plasticity as a fundamental basis for learning, lifelong memory formation, and higher cognitive functions is largely unknown. In this study, we removed the ECM in the auditory cortex of adult Mongolian gerbils during specific phases of cortex-dependent auditory relearning, which was induced by the contingency reversal of a frequency-modulated tone discrimination, a task requiring high behavioral flexibility. We found that ECM removal promoted a significant increase in relearning performance, without erasing already established—that is, learned—capacities when continuing discrimination training. The cognitive flexibility required for reversal learning of previously acquired behavioral habits, commonly understood to mainly rely on frontostriatal circuits, was enhanced by promoting synaptic plasticity via ECM removal within the sensory cortex. Our findings further suggest experimental modulation of the cortical ECM as a tool to open short-term windows of enhanced activity-dependent reorganization allowing for guided neuroplasticity. PMID:24550310

  5. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control.

    PubMed

    Chen, Wen-Bo; Nie, Yao; Xu, Yan; Xiao, Rong

    2014-04-01

    Pullulanase was extracellularly produced with an engineered Escherichia coli with a combined strategy. When auto-induction instead of isopropyl β-D-1-thiogalactopyranoside (IPTG) induction method was implemented, we observed increased extracellular activity (4.2 U ml(-1)) and cell biomass (7.95 g DCW l(-1)). Subsequent investigation of temperature effect on fermentation showed cultivation performed at 25 °C presented the highest extracellular titer and cell biomass. In order to reduce the extended production period, we developed a two-stage temperature control strategy. Its application not only reduced the production period from 72 to 36 h, but also further enhanced the yield of extracellular pullulanase. Finally, with a view to releasing more intracellular pullulanase, we altered cell membrane permeability with various medium additives. As a result, extracellular titer was elevated to 68.23 U ml(-1), nearly 35-fold higher than that with IPTG induction method. The combined strategy developed here may be useful for the production of other extracellular proteins by recombinant E. coli.

  6. ATP release through pannexon channels

    PubMed Central

    Dahl, Gerhard

    2015-01-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed ‘pannexon’. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  7. Bifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation.

    PubMed

    Nishiyama, Keita; Yamamoto, Yuji; Sugiyama, Makoto; Takaki, Takashi; Urashima, Tadasu; Fukiya, Satoru; Yokota, Atsushi; Okada, Nobuhiko; Mukai, Takao

    2017-10-03

    Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. We studied the role of the extracellular sialidase (SiaBb2, 835 amino acids [aa]) from Bifidobacterium bifidum ATCC 15696 in mucosal surface adhesion and carbohydrate catabolism. Human milk oligosaccharides (HMOs) or porcine mucin oligosaccharides as the sole carbon source enhanced B. bifidum growth. This was impaired in a B. bifidum ATCC 15696 strain harboring a mutation in the siabb2 gene. Mutant cells in early to late exponential growth phase also showed decreased adhesion to human epithelial cells and porcine mucin relative to the wild-type strain. These results indicate that SiaBb2 removes sialic acid from HMOs and mucin for metabolic purposes and may promote bifidobacterial adhesion to the mucosal surface. To further characterize SiaBb2-mediated bacterial adhesion, we examined the binding of His-tagged recombinant SiaBb2 peptide to colonic mucins and found that His-SiaBb2 as well as a conserved sialidase domain peptide (aa 187 to 553, His-Sia) bound to porcine mucin and murine colonic sections. A glycoarray assay revealed that His-Sia bound to the α2,6-linked but not to the α2,3-linked sialic acid on sialyloligosaccharide and blood type A antigen [GalNAcα1-3(Fucα1-2)Galβ] at the nonreducing termini of sugar chains. These results suggest that the sialidase domain of SiaBb2 is responsible for this interaction and that the protein recognizes two distinct carbohydrate structures. Thus, SiaBb2 may be involved in Bifidobacterium-mucosal surface interactions as well as in the assimilation of a variety of sialylated carbohydrates.IMPORTANCE Adhesion to the host mucosal surface and carbohydrate assimilation are important for bifidobacterium colonization and survival in the host gastrointestinal tract. In this study, we investigated the mechanistic basis for B. bifidum extracellular sialidase (SiaBb2)-mediated adhesion. SiaBb2 cleaved sialyl-human milk oligosaccharides and mucin

  8. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C.

    PubMed

    Su, Lingqia; Jiang, Qi; Yu, Lingang; Wu, Jing

    2017-02-08

    Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.

  9. Galectin-3 enhances extracellular matrix associations and wound healing in monkey corneal epithelium.

    PubMed

    Fujii, Atsuko; Shearer, Thomas R; Azuma, Mitsuyoshi

    2015-08-01

    Poor healing of epithelial wounds in cornea is a major clinical problem, leading to persistent epithelial defects and ulceration. The primary cause is poor cell migration over the wound. Carbohydrate-binding protein galectin-3 binds to extracellular matrixes (ECMs) and promotes lamellipodia formation by cross-linking to α3 integrin. Recombinant galectin-3 also facilitates wound healing in the rodent cornea. The purposes of the present experiments were to: (1) establish epithelial wound healing models in monkey corneal explant culture, the models more relevant to human, (2) evaluate the healing effect of galectin-3 in our models, and (3) determine if galectin-3 enhances cell adhesion by interacting with ECMs on corneal surface and their ligand integrins. Monkey corneas with central wounds produced by sodium hydroxide (NaOH) or n-heptanol were incubated with or without recombinant galectin-3. The defected area was stained with sodium fluorescein. Primary isolated corneal epithelial cells from monkey were cultured with or without galectin-3 on plates coated with ECMs or integrins, and the number of adhering cells was counted. Galectin-3 expression in various eye tissues was visualized by immunoblotting. NaOH caused loss of epithelial cells and basement membrane. n-Heptanol removed epithelial cells, but the basement membrane was retained. These corneal defects spontaneously became smaller in a time-dependent manner. Exogenous galectin-3 enhanced wound healing in both NaOH and n-heptanol models. Galectin-3 also enhanced cell adhesion onto the major ECMs found in the basement and Bowman's membranes and onto integrins. Relatively high levels of galectin-3 were detected in corneal and conjunctival epithelium, but tear fluid contained negligible galactin-3. These results suggested that the enhanced binding of epithelial cells to ECMs and integrins caused by galectin-3 might promote cell migration over wounded corneal surfaces. Since tear fluid contained relatively low

  10. Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix.

    PubMed

    Sadr, Nasser; Pippenger, Benjamin E; Scherberich, Arnaud; Wendt, David; Mantero, Sara; Martin, Ivan; Papadimitropoulos, Adam

    2012-07-01

    Materials based on synthetic polymers can be extensively tailored in their physical properties but often suffer from limited biological functionality. Here we tested the hypothesis that the biological performance of 3D synthetic polymer-based scaffolds can be enhanced by extracellular matrix (ECM) deposited by cells in vitro and subsequently decellularized. The hypothesis was tested in the context of bone graft substitutes, using polyesterurethane (PEU) foams and mineralized ECM laid by human mesenchymal stromal cells (hMSC). A perfusion-based bioreactor system was critically employed to uniformly seed and culture hMSC in the scaffolds and to efficiently decellularize (94% DNA reduction) the resulting ECM while preserving its main organic and inorganic components. As compared to plain PEU, the decellularized ECM-polymer hybrids supported the osteoblastic differentiation of newly seeded hMSC by up-regulating the mRNA expression of typical osteoblastic genes (6-fold higher bone sialoprotein; 4-fold higher osteocalcin and osteopontin) and increasing calcium deposition (6-fold higher), approaching the performance of ceramic-based materials. After ectopic implantation in nude mice, the decellularized hybrids induced the formation of a mineralized matrix positively immunostained for bone sialoprotein and resembling an immature osteoid tissue. Our findings consolidate the perspective of bioreactor-based production of ECM-decorated polymeric scaffolds as off-the-shelf materials combining tunable physical properties with the physiological presentation of instructive biological signals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Superficial Zone Extracellular Matrix Extracts Enhance Boundary Lubrication of Self-Assembled Articular Cartilage

    PubMed Central

    Peng, Gordon; McNary, Sean M.; Athanasiou, Kyriacos A.; Reddi, A. Hari

    2015-01-01

    Objective Previous work has shown that increasing the production of boundary lubricant, superficial zone protein (SZP), did not reduce the friction coefficient of self-assembled articular cartilage constructs and was possibly due to poor retention of the lubricant. The aim of this investigation was to reduce the friction coefficient of self-assembled articular cartilage constructs through enhancing SZP retention by the exogenous addition of extracellular matrix (ECM) extracted from the superficial zone of native articular cartilage. Design Superficial zone cartilage was shaved from juvenile bovine femoral condyles using a dermatome, minced finely with razor blades, extracted with 4 M guanidine-hydrochloride, buffer exchanged with culture medium, and added directly to the culture medium of self-assembled articular cartilage constructs at low (10 µg/mL) and high (100 µg/mL) concentrations for 4 weeks. Biochemical and biomechanical properties were determined at the conclusion of 4 weeks culture. Results ECM treatment increased compressive and tensile stiffness of self-assembled articular cartilage constructs and decreased the friction coefficient. Glycosaminoglycan content decreased and collagen content increased significantly in self-assembled constructs by the ECM treatment. Conclusions Friction coefficients of self-assembled articular cartilage constructs were reduced by adding extracted superficial zone ECM into the culture medium of self-assembled articular cartilage constructs. PMID:27375841

  12. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances.

    PubMed

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Zeng, Raymond J; Li, Wen-Wei; Yu, Han-Qing

    2013-10-15

    Phosphorus-accumulating organisms are considered to be the key microorganisms in the enhanced biological phosphorus removal (EBPR) process. A large amount of phosphorus is found in the extracellular polymeric substances (EPS) matrix of these microorganisms. However, the roles of EPS in phosphorus removal have not been fully understood. In this study, the phosphorus in the EBPR sludge was fractionated and further analyzed using quantitative (31)P nuclear magnetic resonance spectroscopy. The amounts and forms of phosphorus in EPS as well as their changes in an anaerobic-aerobic process were also investigated. EPS could act as a reservoir for phosphorus in the anaerobic-aerobic process. About 5-9% of phosphorus in sludge was reserved in the EPS at the end of the aerobic phase and might further contribute to the phosphorus removal. The chain length of the intracellular long-chain polyphosphate (polyP) decreased in the anaerobic phase and then recovered under aerobic conditions. However, the polyP in the EPS had a much shorter chain length than the intracellular polyP in the whole cycle. The migration and transformation of various forms of phosphorus among microbial cells, EPS, and bulk liquid were also explored. On the basis of these results, a model with a consideration of the roles of EPS was proposed, which is beneficial to elucidate the mechanism of phosphorus removal in the EBPR system.

  14. A Strategy to Enhance Secretion of Extracellular Matrix Components by Stem Cells: Relevance to Tissue Engineering.

    PubMed

    Krishnamoorthy, Navaneethakrishnan; Tseng, Yuan-Tsan; Gajendrarao, Poornima; Sarathchandra, Padmini; McCormack, Ann; Carubelli, Ivan; Sohier, Jerome; Latif, Najma; Chester, Adrian H; Yacoub, Magdi H

    2017-07-19

    The ability of cells to secrete extracellular matrix proteins is an important property in the repair, replacement, and regeneration of living tissue. Cells that populate tissue-engineered constructs need to be able to emulate these functions. The motifs, KTTKS or palmitoyl-KTTKS (peptide amphiphile), have been shown to stimulate production of collagen and fibronectin in differentiated cells. Molecular modeling was used to design different forms of active peptide motifs to enhance the efficacy of peptides to increase collagen and fibronectin production using terminals KTTKS/SKTTK/SKTTKS connected by various hydrophobic linkers, V4A3/V4A2/A4G3. Molecular dynamic simulations showed SKTTKS-V4A3-SKTTKS (P3), with palindromic (SKTTKS) motifs and SKTTK-V4A2-KTTKS (P5), maintained structural integrity and favorable surface electrostatic distributions that are required for functionality. In vitro studies showed that peptides, P3 and P5, showed low toxicity to human adipose-derived stem cells (hADSCs) and significantly increased the production of collagen and fibronectin in a concentration-dependent manner compared with the original active peptide motif. The 4-day treatment showed that stem cell markers of hADSCs remained stable with P3. The molecular design of novel peptides is a promising strategy for the development of intelligent biomaterials to guide stem cell function for tissue engineering applications.

  15. Extracellular Hb Enhances Cardiac Toxicity in Endotoxemic Guinea Pigs: Protective Role of Haptoglobin

    PubMed Central

    Baek, Jin Hyen; Zhang, Xiaoyuan; Williams, Matthew C.; Schaer, Dominik J.; Buehler, Paul W.; D’Agnillo, Felice

    2014-01-01

    Endotoxemia plays a major causative role in the myocardial injury and dysfunction associated with sepsis. Extracellular hemoglobin (Hb) has been shown to enhance the pathophysiology of endotoxemia. In the present study, we examined the myocardial pathophysiology in guinea pigs infused with lipopolysaccharide (LPS), a Gram-negative bacterial endotoxin, and purified Hb. We also examined whether the administration of the Hb scavenger haptoglobin (Hp) could protect against the effects observed. Here, we show that Hb infusion following LPS administration, but not either insult alone, increased myocardial iron deposition, heme oxygenase-1 expression, phagocyte activation and infiltration, as well as oxidative DNA damage and apoptosis assessed by 8-hydroxy-2'-deoxyguanosine (8-OHdG) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) immunostaining, respectively. Co-administration of Hp significantly attenuated the myocardial events induced by the combination of LPS and Hb. These findings may have relevant therapeutic implications for the management of sepsis during concomitant disease or clinical interventions associated with the increased co-exposures to LPS and Hb, such as trauma, surgery or massive blood transfusions. PMID:24691127

  16. Cystic Fibrosis Transmembrane Conductance Regulator–associated ATP Release Is Controlled by a Chloride Sensor

    PubMed Central

    Jiang, Qinshi; Mak, Daniel; Devidas, Sreenivas; Schwiebert, Erik M.; Bragin, Alvina; Zhang, Yulong; Skach, William R.; Guggino, William B.; Foskett, J. Kevin; Engelhardt, John F.

    1998-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl− that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl− conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl− conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl− binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl−. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung. PMID:9813087

  17. miR-133a enhances the sensitivity of Hep-2 cells and vincristine-resistant Hep-2v cells to cisplatin by downregulating ATP7B expression.

    PubMed

    Wang, Xurui; Zhu, Wei; Zhao, Xiaodong; Wang, Ping

    2016-06-01

    The expression levels of the copper transporter P-type adenosine triphosphatase (ATP7B) are known correlate with tumor cell sensitivity to cisplatin. However, the mechanisms underlying cisplatin resistance remained poorly understood. Therefore, in the present study, we treated Hep-2 cells and in-house-developed vincristine-resistant Hep-2v cells with 50, 100, or 200 µM cisplatin and assessed cell viability after 24 or 48 h. Hep-2v cells were shown to be resistant to 50-200 µM cisplatin. Furthermore, using immunofluorescence staining and western blot analysis, we noted that ATP7B, but not copper-transporting ATPase 1 (ATP7A), expression was significantly increased in Hep-2v cells, and this increase was maintained at a higher level compared with Hep-2 cells. As ATP7B is a target of microRNA 133a (miR‑133a), the ability of miR‑133a to influence cisplatin sensitivity in Hep-2v cells was then assessed by CCK-8 assay. We noted that miR‑133a expression was lower in both Hep-2 and Hep-2v cells compared with epithelial NP69 cells. Following treatment with 50 µM cisplatin, in Hep-2v cells expressing exogenous miR‑133a we noted reduced ATP7B expression, and these cells had a significantly lower survival rate compared with the control. The present study demonstrates that miR‑133a enhances the sensitivity of multidrug-resistant Hep-2v cells to cisplatin by downregulating ATP7B expression.

  18. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.

    PubMed

    Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin

    2016-04-01

    S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.

  19. Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels.

    PubMed

    Dal-Secco, Daniela; Cunha, Thiago M; Freitas, Andressa; Alves-Filho, José Carlos; Souto, Fabrício O; Fukada, Sandra Y; Grespan, Renata; Alencar, Nylane M N; Neto, Alberto F; Rossi, Marcos A; Ferreira, Sérgio H; Hothersall, John S; Cunha, Fernando Q

    2008-09-15

    In this study, we have addressed the role of H(2)S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H(2)S synthesis inhibitors, dl-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H(2)S donors, NaHS or Lawesson's reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB(4). Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K(ATP)(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K(ATP)(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H(2)S augments neutrophil adhesion and locomotion, by a mechanism dependent on K(ATP)(+) channels.

  20. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  1. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid.

    PubMed

    Huang, Xiang-Feng; Shen, Yi; Luo, Hui-Juan; Liu, Jia-Nan; Liu, Jia

    2017-09-19

    Oleaginous yeast Cryptococcus curvatus MUCL 29819, an acid-tolerant lipid producer, was tested to spill lipids extracellularly using different concentrations of acetic acid as carbon source. Extracellular lipids were released when the yeast was cultured with acetic acid exceeding 20g/L. The highest production of lipid (5.01g/L) was obtained when the yeast was cultured with 40g/L acetic acid. When the yeast was cultivated with moderate concentration (20g/L) of acetic acid, lipid production was further increased by 49.6% through preculture with 40g/L acetic acid as stimulant. When applying high concentration (40g/L) of acetic acid as carbon source in sequencing batch cultivation, extracellular lipids accounted up to 50.5% in the last cycle and the extracellular lipids reached 5.43g/L through the whole process. This study provides an effective strategy to enhance extracellular lipid production and facilitate the recovery of microbial lipids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.

    PubMed

    Coskuner, Orkid; Murray, Ian V J

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.

  3. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    PubMed Central

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN siRNA. The cytokines, EMMPRIN and MMP9 were examined by the RP-PCR and ELISA, respectively, undergoing the silence of EMMPRIN siRNA. Moreover, the western blot assay was also used to test the phosphorylated MAPK in the murine macrophages after silenced by the EMMPRIN siRNA. The EMMPRIN was activated, with lipopolysaccharide stimulation and treated with the MAPK inhibitor, to evaluate whether the MAPK participates in the EMMPRIN-triggered drug resistance. The results indicated that the EMMPRIN expression was elevated in the infected BALB/c at 3 or 5 days post-infection. Silence of EMMPRIN Enhanced the Production of pro-inflammatory cytokines in PA keratitis. Silence of EMMPRIN significantly up-regulated Th1-type cytokines IFN-γ, IL-12, and IL-18, but down-regulated Th2-type cytokines IL-4, IL-5, and IL-10. MMP9 was increased in the cells with rEMMPRIN treatment. EMMPRIN inhibits pro-inflammatory cytokine production via a MAPK signaling pathway. In conclusion, EMMPRIN promotes host resistance against pseudomonas aeruginosa infection via MAPK signaling pathway. PMID:28078032

  4. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    NASA Astrophysics Data System (ADS)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2015-10-01

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu2+/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  5. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.

    PubMed

    Shalabaeva, Victoria; Lovato, Laura; La Rocca, Rosanna; Messina, Gabriele C; Dipalo, Michele; Miele, Ermanno; Perrone, Michela; Gentile, Francesco; De Angelis, Francesco

    2017-01-01

    Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS). This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA), we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS) for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization of cell culture

  6. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  7. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia

    PubMed Central

    Koyanagi, Satoru; Kusunose, Naoki; Taniguchi, Marie; Akamine, Takahiro; Kanado, Yuki; Ozono, Yui; Masuda, Takahiro; Kohro, Yuta; Matsunaga, Naoya; Tsuda, Makoto; Salter, Michael W.; Inoue, Kazuhide; Ohdo, Shigehiro

    2016-01-01

    Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain. PMID:27739425

  8. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia.

    PubMed

    Koyanagi, Satoru; Kusunose, Naoki; Taniguchi, Marie; Akamine, Takahiro; Kanado, Yuki; Ozono, Yui; Masuda, Takahiro; Kohro, Yuta; Matsunaga, Naoya; Tsuda, Makoto; Salter, Michael W; Inoue, Kazuhide; Ohdo, Shigehiro

    2016-10-14

    Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain.

  9. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo.

    PubMed

    Dennis, S Connor; Berkland, Cory J; Bonewald, Lynda F; Detamore, Michael S

    2015-06-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's "ideal" osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the "hard" or "bony" callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., "pro-" or "soft" callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native "raw" materials and ECM-based designs that

  10. Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo

    PubMed Central

    Dennis, S. Connor; Berkland, Cory J.; Bonewald, Lynda F.

    2015-01-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's “ideal” osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the “hard” or “bony” callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., “pro-” or “soft” callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native “raw” materials

  11. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole.

    PubMed

    Wu, T; Wright, K; Hurst, S F; Morrison, C J

    2000-05-01

    We examined the production of secreted aspartyl proteinase (Sap), a putative virulence factor of Candida albicans, by a series of 17 isolates representing a single strain obtained from the oral cavity of an AIDS patient before and after the development of clinical and in vitro resistance to fluconazole. Isolates were grown in Sap-inducing yeast carbon base-bovine serum albumin medium containing 0, 0.25, 0.5, or 1 MIC of fluconazole, and cultures were sampled daily for 14 days to determine extracellular Sap activity by enzymatic degradation of bovine serum albumin. Extracellular Sap activity was significantly decreased in a dose-dependent manner for the most fluconazole-susceptible isolate (MIC, 1.0 microg/ml) and significantly increased in a dose-dependent manner for the most fluconazole-resistant isolate (MIC, >64 microg/ml). Enhanced extracellular Sap production could not be attributed to cell death or nonspecific release of Sap, because there was no reduction in the number of CFU and no significant release of enolase, a constitutive enzyme of the glycolytic pathway. Conversely, intracellular Sap concentrations were significantly increased in a dose-dependent manner in the most fluconazole-susceptible isolate and decreased in the most fluconazole-resistant isolate. Enhanced Sap production correlated with the overexpression of a gene encoding a multidrug resistance (MDR1) efflux pump occurring in these isolates. These data indicate that exposure to subinhibitory concentrations of fluconazole can result in enhanced extracellular production of Sap by isolates with the capacity to overexpress MDR1 and imply that patients infected with these isolates and subsequently treated with suboptimal doses of fluconazole may experience enhanced C. albicans virulence in vivo.

  13. ATP-P2Y2-β-catenin axis promotes cell invasion in breast cancer cells.

    PubMed

    Zhang, Jiang-Lan; Liu, Ying; Yang, Hui; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2017-07-01

    Extracellular adenosine 5'-triphosphate (ATP), secreted by living cancer cells or released by necrotic tumor cells, plays an important role in tumor invasion and metastasis. Our previous study demonstrated that ATP treatment in vitro could promote invasion in human prostate cancer cells via P2Y2, a preferred receptor for ATP, by enhancing EMT process. However, the pro-invasion mechanisms of ATP and P2Y2 are still poorly studied in breast cancer. In this study, we found that P2Y2 was highly expressed in breast cancer cells and associated with human breast cancer metastasis. ATP could promote the in vitro invasion of breast cancer cells and enhance the expression of β-catenin as well as its downstream target genes CD44, c-Myc and cyclin D1, while P2Y2 knockdown attenuated above ATP-driven events in vitro and in vivo. Furthermore, iCRT14, a β-catenin/TCF complex inhibitor, could also suppress ATP-driven migration and invasion in vitro. These results suggest that ATP promoted breast cancer cell invasion via P2Y2-β-catenin axis. Thus blockade of the ATP-P2Y2-β-catenin axis could suppress the invasive and metastatic potential of breast cancer cells and may serve as potential targets for therapeutic interventions of breast cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase.

    PubMed

    González-Pecchi, Valentina; Valdés, Sara; Pons, Véronique; Honorato, Paula; Martinez, Laurent O; Lamperti, Liliana; Aguayo, Claudio; Radojkovic, Claudia

    2015-03-01

    Human endothelial progenitor cells (hEPC) correspond to a subtype of stem cells which, in the presence of angiogenic stimuli, can be mobilized from bone marrow to circulation and then recruited to the damaged endothelium, where they differentiate into mature endothelial cells. High-density lipoproteins (HDL) increase the level and functionality (proliferation, migration, differentiation, angiogenesis capacity) of circulating hEPC; however, the contribution of receptors for HDL and/or apolipoprotein A-I (apoA-I), the main HDL apolipoprotein, in these effects is still unclear. On mature endothelial cells, the cell surface F1-ATP synthase has been previously characterized as a high affinity receptor of apoA-I, whereas the scavenger receptor SR-BI mainly binds with fully lipidated HDL and displays a poor affinity for lipid-free apoA-I. Furthermore, it was shown that apoA-I binding to surface ATP synthase on mature endothelial cells promotes cell proliferation, whereas inhibits apoptosis. In this work, we aimed to determine the effect of apoA-I in the proliferation and the angiogenic capacity of early hEPC, and the contribution of the cell surface ATP synthase in these events. We first evidenced that early hEPC express the ATP synthase at the surface of nonpermeabilized cells, where it is not colocalized with MitoTracker, a mitochondria marker. ApoA-I (50 μg/mL) increases hEPC proliferation (+14.5%, p<0.001) and potentiates the effect of hEPC on a cellular model of angiogenesis, with an increase of +31% (p<0.01) in branch point counting and in tubule length. These effects of apoA-I were totally reversed in the presence of ATP synthase inhibitors, such as IF1 or oligomycin, whereas the inhibition of the HDL receptor, SR-BI, partially inhibits these events. These results provide the first evidence that surface ATP synthase is expressed on early hEPC, where it mediates apoA-I effects in hEPC proliferation and in angiogenesis. This knowledge could be helpful for future

  15. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    SciTech Connect

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M.; Mroue, Rana; Spencer, Virginia A.; Brownfield, Doug; Radisky, Derek C.; Bustamante, Carlos; Bissell, Mina J.

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.

  16. Bimodal Action of Protons on ATP Currents of Rat PC12 Cells

    PubMed Central

    Skorinkin, Andrei; Nistri, Andrea; Giniatullin, Rashid

    2003-01-01

    The mode of action of extracellular protons on ATP-gated P2X2 receptors remains controversial as either enhancement or depression of ATP-mediated currents has been reported. By investigating, at different pH, the electrophysiological effect of ATP on P2X2 receptors and complementing it with receptor modelling, the present study suggests a unified mechanism for both potentiation and inactivation of ATP receptors by protons. Our experiments on patch-clamped PC12 cells showed that, on the same cell, mild acidification potentiated currents induced by low ATP concentrations (<0.1 mM) and attenuated responses to high ATP concentrations (>1 mM) with emergence of current fading and rebound. To clarify the nature of the ATP/H+ interaction, we used the Ding and Sachs's “loop” receptor model which best describes the behavior of such receptors with two open states linked via one inactivated state. No effects by protons could be ascribed to H+-mediated open channel block. However, by assuming that protons facilitated binding of ATP to resting as well as open receptors, the model could closely replicate H+-induced potentiation of currents evoked by low ATP doses plus fading and rebound induced by high ATP doses. The latter phenomenon was due to receptor transition to the inactive state. The present data suggest that the high concentration of protons released with ATP (and catecholamines) from secretory vesicles may allow a dual action of H+ on P2X2 receptors. This condition might also occur on P2X2 receptors of central neurons exposed to low pH during ischemia. PMID:12810852

  17. ATP secretion in the male reproductive tract: essential role of CFTR

    PubMed Central

    Ruan, Ye Chun; Shum, Winnie W C; Belleannée, Clémence; Da Silva, Nicolas; Breton, Sylvie

    2012-01-01

    Extracellular ATP is essential for the function of the epididymis and spermatozoa, but ATP release in the epididymis remains uncharacterized. We investigated here whether epithelial cells release ATP into the lumen of the epididymis, and we examined the role of the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl− and HCO3− conducting ion channel known to be associated with male fertility, in this process. Immunofluorescence labelling of mouse cauda epididymidis showed expression of CFTR in principal cells but not in other epithelial cells. CFTR mRNA was not detectable in clear cells isolated by fluorescence-activated cell sorting (FACS) from B1-EGFP mice, which express enhanced green fluorescent protein (EGFP) exclusively in these cells in the epididymis. ATP release was detected from the mouse epididymal principal cell line (DC2) and increased by adrenaline and forskolin. Inhibition of CFTR with CFTRinh172 and transfection with CFTR-specific siRNAs in DC2 cells reduced basal and forskolin-activated ATP release. CFTR-dependent ATP release was also observed in primary cultures of mouse epididymal epithelial cells. In addition, steady-state ATP release was detected in vivo in mice, by measuring ATP concentration in a solution perfused through the lumen of the cauda epididymidis tubule and collected by cannulation of the vas deferens. Luminal CFTRinh172 reduced the ATP concentration detected in the perfusate. This study shows that CFTR is involved in the regulation of ATP release from principal cells in the cauda epididymidis. Given that mutations in CFTR are a leading cause of male infertility, we propose that defective ATP signalling in the epididymis might contribute to dysfunction of the male reproductive tract associated with these mutations. PMID:22711960

  18. Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2.

    PubMed

    Oh, Ju Hee; Lee, Jae Yoon; Joung, Seung Hee; Oh, Yoon Taek; Kim, Hong Sung; Lee, Na Kyung

    2015-12-01

    Insulin is one of the main factors affecting bone and energy metabolism, however, the direct effect of insulin on osteoclast differentiation remains unclear. Thus, in order to help elucidate that puzzle, the authors investigated the roles and regulatory mechanisms of insulin on osteoclasts differentiation. Co-stimulation with insulin and RANKL significantly enhanced the number of larger (>100 μm) osteoclastic cells and of TRAP-positive multinucleated cells compared with treatment by RANKL alone. Conversely, the insulin receptor shRNA markedly decreased osteoclast differentiation induced by insulin and RANKL. Insulin treatment significantly activated ERK1/2 MAP kinase as well as markedly induced the expression of NFATc1, an osteoclast marker gene, and Atp6v0d2, an osteoclast fusion-related gene. The pretreatment of PD98059, an ERK1/2 inhibitor, or insulin receptor shRNA effectively suppressed osteoclast differentiation and, in addition, blocked the expression of NFATc1 and Atp6vod2 induced by insulin stimulation. These data reveal insights into the regulation of osteoclast differentiation and fusion through ERK1/2 activation and the induction of NFATc1 and Atp6v0d2 by insulin.

  19. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    PubMed Central

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  20. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  1. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  2. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga.

    PubMed

    Schatz, Daniella; Rosenwasser, Shilo; Malitsky, Sergey; Wolf, Sharon G; Feldmesser, Ester; Vardi, Assaf

    2017-09-18

    Communication between microorganisms in the marine environment has immense ecological impact by mediating trophic-level interactions and thus determining community structure (1) . Extracellular vesicles (EVs) are produced by bacteria (2,3) , archaea (4) , protists (5) and metazoans, and can mediate pathogenicity (6) or act as vectors for intercellular communication. However, little is known about the involvement of EVs in microbial interactions in the marine environment (7) . Here we investigated the signalling role of EVs produced during interactions between the cosmopolitan alga Emiliania huxleyi and its specific virus (EhV, Phycodnaviridae) (8) , which leads to the demise of these large-scale oceanic blooms (9,10) . We found that EVs are highly produced during viral infection or when bystander cells are exposed to infochemicals derived from infected cells. These vesicles have a unique lipid composition that differs from that of viruses and their infected host cells, and their cargo is composed of specific small RNAs that are predicted to target sphingolipid metabolism and cell-cycle pathways. EVs can be internalized by E. huxleyi cells, which consequently leads to a faster viral infection dynamic. EVs can also prolong EhV half-life in the extracellular milieu. We propose that EVs are exploited by viruses to sustain efficient infectivity and propagation across E. huxleyi blooms. As these algal blooms have an immense impact on the cycling of carbon and other nutrients (11,12) , this mode of cell-cell communication may influence the fate of the blooms and, consequently, the composition and flow of nutrients in marine microbial food webs.Infection of the alga Emiliania huxleyi with its virus EhV results in the increased release of extracellular vesicles that impact viral decay and infection, suggesting that EhV exploits these extracellular vesicles for efficient viral infection during algal blooms.

  3. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC

    PubMed Central

    Hrabětová, Sabina; Masri, Daniel; Tao, Lian; Xiao, Fanrong; Nicholson, Charles

    2009-01-01

    The concentration of extracellular calcium plays a critical role in synaptic transmission and neuronal excitability as well as other physiological processes. The time course and extent of local fluctuations in the concentration of this ion largely depend on its effective diffusion coefficient (D*) and it has been speculated that fixed negative charges on chondroitin sulphate proteoglycans (CSPGs) and other components of the extracellular matrix may influence calcium diffusion because it is a divalent cation. In this study we used ion-selective microelectrodes combined with pressure ejection or iontophoresis of ions from a micropipette to quantify diffusion characteristics of neocortex and hippocampus in rat brain slices. We show that D* for calcium is less than the value predicted from the behaviour of the monovalent cation tetramethylammonium (TMA), a commonly used diffusion probe, but D* for calcium increases in both brain regions after the slices are treated with chondroitinase ABC, an enzyme that predominantly cleaves chondroitin sulphate glycans. These results suggest that CSPGs do play a role in determining the local diffusion properties of calcium in brain tissue, most likely through electrostatic interactions mediating rapid equilibrium binding. In contrast, chondroitinase ABC does not affect either the TMA diffusion or the extracellular volume fraction, indicating that the enzyme does not alter the structure of the extracellular space and that the diffusion of small monovalent cations is not affected by CSPGs in the normal brain ionic milieu. Both calcium and CSPGs are known to have many distinct roles in brain physiology, including brain repair, and our study suggests they may be functionally coupled through calcium diffusion properties. PMID:19546165

  4. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway.

    PubMed

    Chi, Yujing; Li, Jing; Li, Na; Chen, Zhenzhen; Ma, Liping; Peng, Weikang; Pan, Xiuying; Li, Mei; Yu, Weidong; He, Xiangjun; Geng, Bin; Cui, Qinghua; Liu, Yulan; Yang, Jichun

    2017-07-11

    FAM3A plays important roles in regulating hepatic glucose/lipid metabolism and the proliferation of VSMCs. This study determined the role and mechanism of FAM3A in the adipogenesis of 3T3-L1 preadipocytes. During the adipogenesis of 3T3-L1 preadipocytes, FAM3A expression was significantly increased. FAM3A overexpression enhanced 3T3-L1 preadipocyte adipogenesis with increased phosphorylated Akt (pAkt) level, whereas FAM3A silencing inhibited 3T3-L1 preadipocyte adipogenesis with reduced pAkt level. Moreover, FAM3A silencing reduced the expression and secretion of adipokines in 3T3-L1 cells. FAM3A protein is mainly located in mitochondrial fraction of 3T3-L1 cells and mouse adipose tissue. FAM3A overexpression increased, whereas FAM3A silencing decreased ATP production in 3T3-L1 preadipocytes. FAM3A-induced adipogenesis of 3T3-L1 preadipocytes was blunted by inhibitor of P2 receptor. In white adipose tissues of db/db and HFD-fed obese mice, FAM3A expression was reduced. One-month rosiglitazone administration upregulated FAM3A expression, and increased cellular ATP content and pAkt level in white adipose tissues of normal and obese mice. In conclusion, FAM3A enhances the adipogenesis of preadipocytes by activating ATP-P2 receptor-Akt pathway. Under obese condition, a decrease in FAM3A expression in adipose tissues plays important roles in the development of adipose dysfunction and type 2 diabetes.

  5. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway

    PubMed Central

    Li, Na; Chen, Zhenzhen; Ma, Liping; Peng, Weikang; Pan, Xiuying; Li, Mei; Yu, Weidong; He, Xiangjun; Geng, Bin; Cui, Qinghua; Liu, Yulan; Yang, Jichun

    2017-01-01

    FAM3A plays important roles in regulating hepatic glucose/lipid metabolism and the proliferation of VSMCs. This study determined the role and mechanism of FAM3A in the adipogenesis of 3T3-L1 preadipocytes. During the adipogenesis of 3T3-L1 preadipocytes, FAM3A expression was significantly increased. FAM3A overexpression enhanced 3T3-L1 preadipocyte adipogenesis with increased phosphorylated Akt (pAkt) level, whereas FAM3A silencing inhibited 3T3-L1 preadipocyte adipogenesis with reduced pAkt level. Moreover, FAM3A silencing reduced the expression and secretion of adipokines in 3T3-L1 cells. FAM3A protein is mainly located in mitochondrial fraction of 3T3-L1 cells and mouse adipose tissue. FAM3A overexpression increased, whereas FAM3A silencing decreased ATP production in 3T3-L1 preadipocytes. FAM3A-induced adipogenesis of 3T3-L1 preadipocytes was blunted by inhibitor of P2 receptor. In white adipose tissues of db/db and HFD-fed obese mice, FAM3A expression was reduced. One-month rosiglitazone administration upregulated FAM3A expression, and increased cellular ATP content and pAkt level in white adipose tissues of normal and obese mice. In conclusion, FAM3A enhances the adipogenesis of preadipocytes by activating ATP-P2 receptor-Akt pathway. Under obese condition, a decrease in FAM3A expression in adipose tissues plays important roles in the development of adipose dysfunction and type 2 diabetes. PMID:28515350

  6. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis

    SciTech Connect

    Cline, Gary W.; Pongratz, Rebecca L.; Zhao, Xiaojian; Papas, Klearchos K.

    2011-11-11

    to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media.

  7. Mechanism of enhancement of slow delayed rectifier current by extracellular sulfhydryl modification.

    PubMed

    Yao, J A; Jiang, M; Tseng, G N

    1997-07-01

    To explore the role of sulfhydryl (SH) groups in the function of cardiac slow delayed rectifier channels, we tested the effects of extracellular thimerosal (TMS, a hydrophilic SH modifier) on slow delayed rectifier current (IKs) induced by human IsK (hIsK) in oocytes and on the native IKs in canine ventricular myocytes. TMS (25 or 50 microM) had similar effects on the two currents: current amplitude increased, and there was an acceleration of activation and a slowing of deactivation. These effects showed little or no reversal after washout of TMS. The effects did not depend on intracellular Ca release or protein kinase activities but could be suppressed by dithiothreitol pretreatment. According to the current model of transmembrane topology, there is no cystein in the extracellular domain of hIsK. A likely candidate for TMS modification is the SH group on another subunit in oocyte cell membrane that interacts with IsK to form a functional channel. To explore the domain of hIsK involved in the interaction, extracellular serines of hIsK were mutated to cysteines at three locations: S37C (close to the transmembrane domain), S4C (close to the NH2-terminus), and S28C (in between). S37C and S28C mutations did not affect channel properties or hIsK response to TMS. On the other hand, S4C mutation reduced current expression even when S4C cRNA was injected at a quantity 50-fold higher than that of the other three proteins. Importantly, the response to TMS was markedly reduced in S4C compared with the other three proteins. Therefore, the NH2-terminus of hIsK may be involved in hIsK interaction with the SH-bearing subunit, and this interaction modulates slow delayed rectifier channel function.

  8. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production

    PubMed Central

    2012-01-01

    Background A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved. Results Both genomes were re-annotated, resulting in 14 fewer genes (net) in the PCA genome; 28 fewer (net) in the KN400 genome; and ca. 400 gene start and stop sites moved. 96% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP) between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb) were found in 3.6% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail. Conclusions The improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The electrically conductive pili appear

  9. In vitro enhancement of extracellular matrix formation as natural bioscaffold for stem cell culture

    NASA Astrophysics Data System (ADS)

    Naroeni, Aroem; Shalihah, Qonitha; Meilany, Sofy

    2017-02-01

    Growing cells in plastic with liquid media for in vitro study is very common but far from physiological. The use of scaffold materials is more biocompatible. Extracellular matrix provides tissue integrity which acts as a native scaffold for cell attachment and interaction, as well as it serves as a reservoir for growth factors. For this reason, we have developed natural scaffold from mice fibroblast to form a natural scaffold for stem cell culture. Fibroblasts were cultured under crowded condition and lysed to form natural scaffold. The natural scaffold formation was observed using immunofluorescence which then will be used and tested for stem cell propagation and differentiation.

  10. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  11. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    PubMed Central

    Hu, Y; Liu, X

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  12. A Novel Compound Rasatiol Isolated from Raphanus sativus Has a Potential to Enhance Extracellular Matrix Synthesis in Dermal Fibroblasts

    PubMed Central

    Roh, Seok-Seon; Park, Seung-Bae; Park, Seong-Mo; Choi, Byoung Wook; Lee, Min-Ho; Hwang, Yul-Lye; Kim, Chang Hun; Jeong, Hyun-Ah; Kim, Chang Deok

    2013-01-01

    Background The fibrous proteins of extracellular matrix (ECM) produced by dermal fibroblast contributes to the maintenance of connective tissue integrity. Objective This study is carried out to identify the bioactive ingredient from natural products that enhances ECM production in dermal fibroblasts. Methods Bioassay-directed fractionation was used to isolate the active ingredient from natural extracts. The effects of rasatiol (isolated from Raphanus sativus) on ECM production in primary cultured human dermal fibroblasts was investigated by enzyme linked immunosorbent assay and western blot analysis. Results Rasatiol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen, fibronectin and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was remarkably increased by rasatiol, indicating that enhanced ECM production is linked to the activation of intracellular signaling cascades. Conclusion These results indicate that rasatiol stimulates the fibrous components of ECM production, and may be applied to the maintenance of skin texture. PMID:24003274

  13. Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation.

    PubMed

    Ohta, Hitomi; Okamoto, Iwao; Hanaya, Toshiharu; Arai, Shigeyuki; Ohta, Tsunetaka; Fukuda, Shigeharu

    2006-08-01

    Mammalian hibernators are considered a natural model for resistance to ischemia-reperfusion injuries, and protective mechanisms against oxidative stress evoked by repeated hibernation-arousal cycles in these animals are increasingly the focus of experimental investigation. Here we show that extracellular catalase activity provides protection against oxidative stress during arousal from hibernation in Syrian hamster. To examine the serum antioxidant defense system, we first assessed the hibernation-arousal state-dependent change in serum attenuation of cytotoxicity induced by hydrogen peroxide. Serum obtained from hamsters during arousal from hibernation at a rectal temperature of 32 degrees C, concomitant with the period of increased oxidative stress, attenuated the cytotoxicity four-fold more effectively than serum from cenothermic control hamsters. Serum catalase activity significantly increased during arousal, whereas glutathione peroxidase activity decreased by 50%, compared with cenothermic controls. The cytoprotective effect of purified catalase at the concentration found in serum was also confirmed in a hydrogen peroxide-induced cytotoxicity model. Moreover, inhibition of catalase by aminotriazole led to an 80% loss of serum hydrogen peroxide scavenging activity. These results suggest that extracellular catalase is effective for protecting hibernators from oxidative stress evoked by arousal from hibernation.

  14. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    PubMed Central

    Villamor, Joji Grace; Kaschani, Farnusch; Colby, Tom; Oeljeklaus, Julian; Zhao, David; Kaiser, Markus; Patricelli, Matthew P.; van der Hoorn, Renier A. L.

    2013-01-01

    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding proteins. Our search for labeled peptides upon in-gel digest led to the discovery that the biotin moiety of the labeled peptides is oxidized. The in-gel analysis displayed kinase domains of two receptor-like kinases (RLKs) at a lower than expected molecular weight, indicating that these RLKs lost the extracellular domain, possibly as a result of receptor shedding. Analysis of modified peptides using a gel-free platform identified 242 different labeling sites for AcATP in the Arabidopsis proteome. Examination of each individual labeling site revealed a preference of labeling in ATP binding pockets for a broad diversity of ATP binding proteins. Of these, 24 labeled peptides were from a diverse range of protein kinases, including RLKs, mitogen-activated protein kinases, and calcium-dependent kinases. A significant portion of the labeling sites could not be assigned to known nucleotide binding sites. However, the fact that labeling could be competed with ATP indicates that these labeling sites might represent previously uncharacterized nucleotide binding sites. A plot of spectral counts against expression levels illustrates the high specificity of AcATP probes for protein kinases and known ATP binding proteins. This work introduces profiling of ATP binding activities of a large diversity of proteins in plant proteomes. The data have been deposited in ProteomeXchange with the identifier PXD000188. PMID:23722185

  15. Extracellular Signal-Regulated Kinase 1/2 Involvement in the Enhancement of Contextual Fear Conditioning by Nicotine

    PubMed Central

    Raybuck, Jonathan D.; Gould, Thomas J.

    2009-01-01

    Contextual fear conditioning is enhanced by nicotine, but the cellular mechanisms underlying this effect are unknown. Extracellular signal regulated kinase 1/2 (ERK 1/2) has been shown to play an integral role in the formation of contextual fear memories. As such, it is possible that ERK 1/2 is involved in the enhancement of contextual fear conditioning by nicotine. To determine whether ERK 1/2 plays a role in this enhancement, a dose of SL327 (a selective, systemic ERK 1/2 inhibitor) that is subthreshold for inhibiting contextual fear conditioning was coadministered with nicotine prior to training, testing, or both training and testing of contextual fear conditioning in C57BL/6 mice. When administered prior to training, this subthreshold dose of SL327 attenuated the enhancement of contextual fear conditioning by nicotine to levels similar to those of vehicle-treated animals. When administered prior to testing, the subthreshold dose of SL327 did not significantly alter conditioning. These results suggest that activation of ERK 1/2 by nicotine during acquisition leads to an enhancement of contextual fear conditioning. PMID:17907844

  16. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality.

    PubMed

    Iaffaldano, N; Paventi, G; Pizzuto, R; Di Iorio, M; Bailey, J L; Manchisi, A; Passarella, S

    2016-08-01

    This study examines whether and how helium-neon laser irradiation (at fluences of 3.96-9 J/cm(2)) of cryopreserved ram sperm helps improve semen quality. Pools (n = 7) of cryopreserved ram sperm were divided into four aliquots and subjected to the treatments: no irradiation (control) or irradiation with three different energy doses. After treatment, the thawed sperm samples were compared in terms of viability, mass and progressive sperm motility, osmotic resistance, as well as DNA and acrosome integrity. In response to irradiation at 6.12 J/cm(2), mass sperm motility, progressive motility and viability increased (P < 0.05), with no significant changes observed in the other investigated properties. In parallel, an increase (P < 0.05) in ATP content was detected in the 6.12 J/cm(2)-irradiated semen samples. Because mitochondria are the main cell photoreceptors with a major role played by cytochrome c oxidase (COX), the COX reaction was monitored using cytochrome c as a substrate in both control and irradiated samples. Laser treatment resulted in a general increase in COX affinity for its substrate as well as an increase in COX activity (Vmax values), the highest activity obtained for sperm samples irradiated at 6.12 J/cm(2) (P < 0.05). Interestingly, in these irradiated sperm samples, COX activity and ATP contents were positively correlated, and, more importantly, they also showed positive correlation with motility, suggesting that the improved sperm quality observed was related to mitochondria-laser light interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production.

    PubMed

    Khattab, A A; Bazaraa, W A

    2005-07-01

    Various strains of Aspergillus niger were screened for extracellular glucose oxidase (GOD) activity. The most effective producer, strain FS-3 (15.9 U mL(-1)), was mutagenized using UV-irradiation or ethyl methane sulfonate. Of the 400 mutants obtained, 32 were found to be resistant to 2-deoxy D: -glucose, and 17 of these exhibited higher GOD activities (from 114.5 to 332.1%) than the original FS-3 strain. Following determination of antifungal resistance of the highest producing mutants, four mutants were selected and used in protoplast fusions in three different intraspecific crosses. All fusants showed higher activities (from 285.5 to 394.2%) than the original strain. Moreover, of the 30 fusants isolated, 19 showed higher GOD activity than their corresponding higher-producing parent strain.

  18. Invasion-promoting extracellular matrix composition enhances photodynamic therapy response in 3D pancreatic cancer models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn M.; El-Hamidi, Hamid; Celli, Jonathan P.

    2017-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by extracellular matrix-rich stromal involvement, but it is not clear how ECM properties that affect invasiveness and chemotherapy response influence efficacy of photodynamic therapy (PDT). To disentangle the mechanical and biochemical effects of ECM composition, we measured the effects of various combinations of ECM proteins on growth behavior, invasive potential, and therapeutic response of multicellular 3D pancreatic tumor models. These spheroids were grown in attachment-free conditions before embedding in combinations of rheologically characterized collagen 1 and Matrigel combinations and treated with oxaliplatin chemotherapy and PDT. We find that cells invading from collagen-embedded tumor spheroids, the least rigid ECM substrate described here, displayed better response to PDT than to oxaliplatin chemotherapy. Overall, our results support that ECM-mediated invading PDAC populations remain responsive to PDT in conditions that induce chemoresistance.

  19. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells.

    PubMed

    Pazmandi, Kitti; Agod, Zsofia; Kumar, Brahma V; Szabo, Attila; Fekete, Tunde; Sogor, Viktoria; Veres, Agota; Boldogh, Istvan; Rajnavolgyi, Eva; Lanyi, Arpad; Bacsi, Attila

    2014-12-01

    Inflammation is associated with oxidative stress and characterized by elevated levels of damage-associated molecular pattern (DAMP) molecules released from injured or even living cells into the surrounding microenvironment. One of these endogenous danger signals is the extracellular mitochondrial DNA (mtDNA) containing evolutionary conserved unmethylated CpG repeats. Increased levels of reactive oxygen species (ROS) generated by recruited inflammatory cells modify mtDNA oxidatively, resulting primarily in accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) lesions. In this study, we examined the impact of native and oxidatively modified mtDNAs on the phenotypic and functional properties of plasmacytoid dendritic cells (pDCs), which possess a fundamental role in the regulation of inflammation and T cell immunity. Treatment of human primary pDCs with native mtDNA up-regulated the expression of a costimulatory molecule (CD86), a specific maturation marker (CD83), and a main antigen-presenting molecule (HLA-DQ) on the cell surface, as well as increased TNF-α and IL-8 production from the cells. These effects were more apparent when pDCs were exposed to oxidatively modified mtDNA. Neither native nor oxidized mtDNA molecules were able to induce interferon (IFN)-α secretion from pDCs unless they formed a complex with human cathelicidin LL-37, an antimicrobial peptide. Interestingly, simultaneous administration of a Toll-like receptor (TLR)9 antagonist abrogated the effects of both native and oxidized mtDNAs on human pDCs. In a murine model, oxidized mtDNA also proved a more potent activator of pDCs compared to the native form, except for induction of IFN-α production. Collectively, we demonstrate here for the first time that elevated levels of 8-oxoG bases in the extracellular mtDNA induced by oxidative stress increase the immunostimulatory capacity of mtDNA on pDCs.

  20. Real-time luminescence imaging of cellular ATP release.

    PubMed

    Furuya, Kishio; Sokabe, Masahiro; Grygorczyk, Ryszard

    2014-03-15

    Extracellular ATP and other purines are ubiquitous mediators of local intercellular signaling within the body. While the last two decades have witnessed enormous progress in uncovering and characterizing purinergic receptors and extracellular enzymes controlling purinergic signals, our understanding of the initiating step in this cascade, i.e., ATP release, is still obscure. Imaging of extracellular ATP by luciferin-luciferase bioluminescence offers the advantage of studying ATP release and distribution dynamics in real time. However, low-light signal generated by bioluminescence reactions remains the major obstacle to imaging such rapid processes, imposing substantial constraints on its spatial and temporal resolution. We have developed an improved microscopy system for real-time ATP imaging, which detects ATP-dependent luciferin-luciferase luminescence at ∼10 frames/s, sufficient to follow rapid ATP release with sensitivity of ∼10 nM and dynamic range up to 100 μM. In addition, simultaneous differential interference contrast cell images are acquired with infra-red optics. Our imaging method: (1) identifies ATP-releasing cells or sites, (2) determines absolute ATP concentration and its spreading manner at release sites, and (3) permits analysis of ATP release kinetics from single cells. We provide instrumental details of our approach and give several examples of ATP-release imaging at cellular and tissue levels, to illustrate its potential utility.

  1. In vivo imaging demonstrates ATP release from murine keratinocytes and its involvement in cutaneous inflammation after tape stripping.

    PubMed

    Takahashi, Toshiya; Kimura, Yutaka; Niwa, Kazuki; Ohmiya, Yoshihiro; Fujimura, Taku; Yamasaki, Kenshi; Aiba, Setsuya

    2013-10-01

    Adenosine 5'-triphosphate (ATP) release from keratinocytes has been observed in various stress models in vitro, but studies demonstrating epidermal ATP release in vivo are limited. To visualize extracellular ATP (eATP) in vivo, we developed enhanced green-emitting luciferase immobilized on agarose beads (Eluc-agarose). Subcutaneous injection of Eluc-agarose together with ATP into the dorsal skin of BALB/c mice following intraperitoneal luciferin injection produced detectable and measurable bioluminescence using an in vivo imaging system. Using Eluc-agarose, we demonstrated in vivo that bright bioluminescence was observed from 1 to 20 minutes after repeated tape stripping of murine skin. This bioluminescence was suppressed by the local administration of apyrase. Eluc-agarose bioluminescence was observed only in tape-stripped skin with transepidermal water loss (TEWL) between 100 and 140 g m(2) h(-1), indicating a loss of bioluminescence with excessive tape stripping (TEWL>140 g m(-2) h(-1)). Histologically, tape-stripped skin with detectable eATP had a viable epidermis and a subepidermal neutrophil infiltrate, and administration of apyrase reduced the inflammatory infiltrate. Neither a viable epidermis nor an upper dermal neutrophil infiltrate was observed after excessive tape stripping. These results suggest that tape stripping prompts ATP release from viable keratinocytes, which facilitates inflammatory cell migration. Eluc-agarose may be useful in the in vivo detection of eATP in murine models of skin diseases.

  2. The combination of tephrosin with 2-deoxy-D-glucose enhances the cytotoxicity via accelerating ATP depletion and blunting autophagy in human cancer cells

    PubMed Central

    Choi, Yunjin

    2011-01-01

    2-Deoxy-D-glucose (2-DG), a synthetic glucose analog that acts as a glycolytic inhibitor, is currently under clinical evaluation for targeting tumor cells. Tephrosin (TSN), a plant rotenoid, is known as an anticancer agent. In this study, we describe that the addition of TSN to 2-DG enhanced the cytotoxic activity of 2-DG against various types of cancer cells by accelerating ATP depletion and blunting autophagy. TSN increased the sensitivity of cancer cells to the cytotoxic effect of 2-DG. The combination of TSN and 2-DG induced acceleration of intracellular ATP depletion and the drastic activation of AMP-activated protein kinase (AMPK), which resulted in the inactivation of the mammalian target of rapamycin (mTOR) pathway. Of particular interest, TSN suppressed 2-DG-induced autophagy, a cell survival process in response to nutrient deprivation. We also showed that TSN inhibited 2-DG-induced activation of elongation factor-2 kinase (eEF-2K), which has been known to regulate 2-DG-induced autophagy. Inhibition of eEF-2K by RNA interference blunted 2-DG-induced autophagy and increased the sensitivity of cancer cells to the cytotoxic effect of 2-DG. The addition of TSN to 2-DG, however, did not enhance the cytotoxic activity of 2-DG by knockdown of eEF-2K, suggesting that inhibition of eEF-2K by tephrsoin could be a critical role in the potentiating effect of TSN on the cytotoxicity of 2-DG. Furthermore, we showed that the blunted autophagy and enhanced cytotoxicity of 2-DG was accompanied by the augmentation of apoptosis. These results show that TSN may be valuable for augmenting the therapeutic efficacy of 2-DG. PMID:22123175

  3. The combination of tephrosin with 2-deoxy-D-glucose enhances the cytotoxicity via accelerating ATP depletion and blunting autophagy in human cancer cells.

    PubMed

    Choi, Yunjin; Lee, Jeong-Hyung

    2011-12-01

    2-Deoxy-D-glucose (2-DG), a synthetic glucose analog that acts as a glycolytic inhibitor, is currently under clinical evaluation for targeting tumor cells. Tephrosin (TSN), a plant rotenoid, is known as an anticancer agent. In this study, we describe that the addition of TSN to 2-DG enhanced the cytotoxic activity of 2-DG against various types of cancer cells by accelerating ATP depletion and blunting autophagy. TSN increased the sensitivity of cancer cells to the cytotoxic effect of 2-DG. The combination of TSN and 2-DG induced acceleration of intracellular ATP depletion and the drastic activation of AMP-activated protein kinase (AMPK), which resulted in the inactivation of the mammalian target of rapamycin (mTOR) pathway. Of particular interest, TSN suppressed 2-DG-induced autophagy, a cell survival process in response to nutrient deprivation. We also showed that TSN inhibited 2-DG-induced activation of elongation factor-2 kinase (eEF-2K), which has been known to regulate 2-DG-induced autophagy. Inhibition of eEF-2K by RNA interference blunted 2-DG-induced autophagy and increased the sensitivity of cancer cells to the cytotoxic effect of 2-DG. The addition of TSN to 2-DG, however, did not enhance the cytotoxic activity of 2-DG by knockdown of eEF-2K, suggesting that inhibition of eEF-2K by tephrsoin could be a critical role in the potentiating effect of TSN on the cytotoxicity of 2-DG. Furthermore, we showed that the blunted autophagy and enhanced cytotoxicity of 2-DG was accompanied by the augmentation of apoptosis. These results show that TSN may be valuable for augmenting the therapeutic efficacy of 2-DG.

  4. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities

    PubMed Central

    Xie, Hui; Wang, Zhenxing; Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai; Cao, Yilin; Jie Zhang, Wen; Chen, Zhichao

    2017-01-01

    Vascularization is crucial for bone regeneration after the transplantation of tissue-engineered bone grafts in the clinical setting. Growing evidence suggests that mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are potently pro-angiogenic both in vitro and in vivo. In the current study, we fabricated a novel EV-functionalized scaffold with enhanced pro-angiogenic and pro-bone regeneration activities by coating decalcified bone matrix (DBM) with MSC-derived EVs. EVs were harvested from rat bone marrow-derived MSCs and the pro-angiogenic potential of EVs was investigated in vitro. DBM scaffolds were then coated with EVs, and the modification was verified by scanning electron microscopy and confocal microscopy. Next, the pro-angiogenic and pro-bone regeneration activities of EV-modified scaffolds were evaluated in a subcutaneous bone formation model in nude mice. Micro-computed tomography scanning analysis showed that EV-modified scaffolds with seeded cells enhanced bone formation. Enhanced bone formation was confirmed by histological analysis. Immunohistochemical staining for CD31 proved that EV-modified scaffolds promoted vascularization in the grafts, thereby enhancing bone regeneration. This novel scaffold modification method provides a promising way to promote vascularization, which is essential for bone tissue engineering. PMID:28367979

  5. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities.

    PubMed

    Xie, Hui; Wang, Zhenxing; Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai; Cao, Yilin; Jie Zhang, Wen; Chen, Zhichao

    2017-04-03

    Vascularization is crucial for bone regeneration after the transplantation of tissue-engineered bone grafts in the clinical setting. Growing evidence suggests that mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are potently pro-angiogenic both in vitro and in vivo. In the current study, we fabricated a novel EV-functionalized scaffold with enhanced pro-angiogenic and pro-bone regeneration activities by coating decalcified bone matrix (DBM) with MSC-derived EVs. EVs were harvested from rat bone marrow-derived MSCs and the pro-angiogenic potential of EVs was investigated in vitro. DBM scaffolds were then coated with EVs, and the modification was verified by scanning electron microscopy and confocal microscopy. Next, the pro-angiogenic and pro-bone regeneration activities of EV-modified scaffolds were evaluated in a subcutaneous bone formation model in nude mice. Micro-computed tomography scanning analysis showed that EV-modified scaffolds with seeded cells enhanced bone formation. Enhanced bone formation was confirmed by histological analysis. Immunohistochemical staining for CD31 proved that EV-modified scaffolds promoted vascularization in the grafts, thereby enhancing bone regeneration. This novel scaffold modification method provides a promising way to promote vascularization, which is essential for bone tissue engineering.

  6. Detecting ATP release by a biosensor method.

    PubMed

    Hayashi, Seiji; Hazama, Akihiro; Dutta, Amal K; Sabirov, Ravshan Z; Okada, Yasunobu

    2004-11-09

    Cells release adenosine 5'-triphosphate (ATP) into the extracellular space in response to various stimuli. This released ATP plays an important physiological role in cell-to-cell signal transduction. The bulk ATP concentration can be detected using a conventional luciferin-luciferase assay. However, the ATP concentration in the vicinity of the cell surface is often different from the bulk concentration because of its rapid degradation by ecto-ATPases and because of delayed diffusion due to unstirred layer effects. Here, we describe a simple biosensor method to measure the local ATP concentration on the cell surface in real time. The method is based on the ATP-dependent opening of ligand-gated cation channels of purinergic P2X receptors expressed in undifferentiated pheochromocytoma (PC12) cells or in human embryonic kidney 293 (HEK293) cells stably transfected with recombinant P2X2 purinergic receptors. Under the whole-cell configuration of patch-clamp, a sensor PC12 cell or HEK293 is positioned within the proximity of a target cell, and the P2X-mediated currents induced by ATP released from a given site on the target cell surface is measured. The ATP release is quantified by a calibration procedure utilizing local puff applications of ATP at preset concentrations.

  7. Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling.

    PubMed

    Hsu, Kai-Di; Wu, Shu-Pei; Lin, Shin-Ping; Lum, Chi-Chin; Cheng, Kuan-Chen

    2017-10-01

    Extracellular polysaccharide (EPS) is one of the major bioactive ingredients contributing to the health benefits of Ganoderma spp. In this study, response surface methodology was applied to determine the optimal culture conditions for EPS production of Ganoderma formosanum. The optimum medium composition was found to be at initial pH 5.3, 49.2 g/L of glucose, and 4.9 g/L of yeast extract by implementing a three-factor-three-level Box-Behnken design. Under this condition, the predicted yield of EPS was up to 830.2 mg/L, which was 1.4-fold higher than the one from basic medium (604.5 mg/L). Furthermore, validating the experimental value of EPS production depicted a high correlation (100.4%) with the computational prediction response model. In addition, the percentage of β-glucan, a well-recognized bioactive polysaccharide, in EPS was 53±5.5%, which was higher than that from Ganoderma lucidum in a previous study. Moreover, results of monosaccharide composition analysis indicated that glucose was the major component of G. formosanum EPS, supporting a high β-glucan percentage in EPS. Taken together, this is the first study to investigate the influence of medium composition for G. formosanum EPS production as well as its β-glucan composition. Copyright © 2017. Published by Elsevier B.V.

  8. Extracellular Adenosine Production by ecto-5'-Nucleotidase (CD73) Enhances Radiation-Induced Lung Fibrosis.

    PubMed

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V; Gau, Eva; Thompson, Linda F; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W; Blackburn, Michael R; Westendorf, Astrid M; Stuschke, Martin; Jendrossek, Verena

    2016-05-15

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks postirradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately 3-fold. Histologic evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P < 0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacologic strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. Cancer Res; 76(10); 3045-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81.

    PubMed

    Gauri, Samiran Sona; Mandal, Santi M; Mondal, Keshab C; Dey, Satyahari; Pati, Bikas R

    2009-09-01

    A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l(-1)) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l(-1)) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0-6.5) and the pyrolysis temperature was found to be at 116.73 degrees C with an enthalpy (DeltaH) of 1330.72 J g(-1). MALDI TOF mass spectrometric result suggests that polymer contained Hex(5)Pent(3) as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.

  10. Enhanced aerobic granulation with extracellular polymeric substances (EPS)-free pellets.

    PubMed

    Yu, Guang-Hui; Juang, Yu-Chuan; Lee, Duu-Jong; He, Pin-Jing; Shao, Li-Ming

    2009-10-01

    Extracellular polymeric substances (EPSs) were secreted by cells after they agglomerated into a compact aggregate. This study shows that the EPS initially embedded in seed sludge before granulation may sterically slow subsequent microbe-microbe contact, thereby delaying aerobic granulation. Three identical bioreactors were used in this study using glucose as the sole carbon and energy source. Reactor 1 (R1) was seeded with EPS-free pellets and operated in sequencing batch reactor (SBR) mode. Reactor 2 (R2) was seeded with the original sludge flocs and operated in SBR mode. Reactor 3 (R3) was seeded with EPS-free pellets and operated in continuously stirred tank reactor (CSTR) mode. Granulation occurred in R1 earlier than in R2; the granules that formed in R1 were larger and more compact than those in R2 at the same cultivation time. The few mature granules in R3 suggest that aerobic granulation can occur in a CSTR when a reactor is seeded with EPS-free pellets.

  11. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances.

    PubMed

    Joshi, Nimisha; Ngwenya, Bryne T; French, Christopher E

    2012-11-30

    The increasing production and use of engineered nanoparticles, coupled with their demonstrated toxicity to different organisms, demands the development of a systematic understanding of how nanoparticle toxicity depends on important environmental parameters as well as surface properties of both cells and nanomaterials. We demonstrate that production of the extracellular polymeric substance (EPS), colanic acid by engineered Escherichia coli protects the bacteria against silver nanoparticle toxicity. Moreover, exogenous addition of EPS to a control strain results in an increase in cell viability, as does the addition of commercial EPS polymer analogue xanthan. Furthermore, we have found that an EPS producing strain of Sinorhizobium meliloti shows higher survival upon exposure to silver nanoparticles than the parent strain. Transmission electron microscopy (TEM) observations showed that EPS traps the nanoparticles outside the cells and reduces the exposed surface area of cells to incoming nanoparticles by inducing cell aggregation. Nanoparticle size characterization in the presence of EPS and xanthan indicated a marked tendency towards aggregation. Both are likely effective mechanisms for reducing nanoparticle toxicity in the natural environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  13. Inhibition of the Plastidic ATP/ADP Transporter Protein Primes Potato Tubers for Augmented Elicitation of Defense Responses and Enhances Their Resistance against Erwinia carotovora

    PubMed Central

    Linke, Christoph; Conrath, Uwe; Jeblick, Wolfgang; Betsche, Thomas; Mahn, Andreas; Düring, Klaus; Neuhaus, H. Ekkehard

    2002-01-01

    Tubers of transgenic potato (Solanum tuberosum) plants with decreased activity of the plastidic ATP/ADP transporter AATP1 display reduced levels of starch, modified tuber morphology, and altered concentrations of primary metabolites. Here, we demonstrate that the spontaneous production of hydrogen peroxide, the endogenous content of salicylic acid, and the levels of mRNAs of various defense-related genes are similar in tuber discs of wild-type and AATP1(St) antisense plants. However, upon challenging the tissue with fungal elicitors or culture supernatants of the soft rot-causing pathogen Erwinia carotovora subsp. atroseptica, the AATP1(St) antisense tubers exhibit highly potentiated activation of defense responses when compared with wild-type tissue. The augmented defense responses comprise enhanced accumulation of transcripts of five defense-related genes (β-1,3-GLUCANASE B2 and A1, CHITINASE B3 and A2, and Phe AMMONIA-LYASE) and enhanced elicitation (up to 21-fold) of the early hydrogen peroxide burst. The potentiated activation of cellular defense responses in AATP1(St) antisense tubers is not accompanied by a precedent increase in endogenous salicylic acid levels, but is associated with a strongly enhanced resistance of the tissue to E. carotovora. From these results, we conclude that inhibition of primary metabolic reactions induces a primed state that sensitizes the potato tubers for improved elicitation of various cellular defense responses, which likely contribute to enhanced E. carotovora resistance. PMID:12177473

  14. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells.

    PubMed

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-03-01

    Abstract  Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin-luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10-40%)-induced transient ATP release from a small fraction (1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca(2+) responses, rapid sustained Ca(2+) elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca(2+) waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing.

  15. Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter.

    PubMed

    Conrath, Uwe; Linke, Christoph; Jeblick, Wolfgang; Geigenberger, Peter; Quick, W Paul; Neuhaus, H Ekkehard

    2003-05-01

    Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants with decreased activity of the plastidic ATP/ADP transporter (AATP1) contain less starch, despite having an increased glucose level [P. Geigenberger et al. (2001) Plant Physiol 125:1667-1678]. The metabolic alterations correlated with enhanced resistance to the bacterium Erwinia carotovora. Here it is shown that transgenic potato tubers, possessing less starch yet increased glucose levels due to the expression of a cytoplasm-localized yeast invertase, exhibit drastic susceptibility to E. carotovora. In addition, it is demonstrated that AATP1 anti-sense tubers show an increased capacity to ward off the pathogenic fungus Alternaria solani. In contrast to AATP1 anti-sense tubers, the corresponding leaf tissue does not show changes in carbohydrate accumulation. However, upon elicitor treatment, AATP1 anti-sense leaves possess an increased capacity to release H(2)O(2) and activate various defence-related genes, reactions that are associated with substantially delayed appearance of disease symptoms caused by Phytophthora infestans. Grafting experiments between AATP1 anti-sense plants and wild-type plants indicate the presence of a signal that is generated in AATP1 rootstocks and primes wild-type scions for potentiated activation of cellular defence responses in leaves. Together, the results suggest that (i) the enhanced pathogen tolerance of AATP1 anti-sense tubers is not due to "high sugar resistance", (ii) the increased disease resistance of AATP1 anti-sense tubers is effective against different types of pathogen and (iii) a systemic signal induced by antisensing the plastidic ATP/ADP transporter in potato tubers confers increased resistance to pathogens.

  16. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels.

    PubMed

    Ahearne, Mark; Coyle, Aron

    2016-02-01

    Hydrogels derived from extracellular matrix (ECM) have become increasing popular in recent years, particularly for use in tissue engineering. One limitation with ECM hydrogels is that they tend to have poor mechanical properties compared to native tissues they are trying to replicate. To address this problem, a UVA (ultraviolet-A) riboflavin crosslinking technique was applied to ECM hydrogels to determine if it could be used to improve their elastic modulus. Hydrogels fabricated from corneal, cardiac and liver ECM were used in this study. The mechanical properties of the hydrogels were characterized using a spherical indentation technique. The microstructure of the hydrogels and the cytotoxic effect of crosslinking on cell seeded hydrogels were also evaluated. The combination of UVA light and riboflavin solution led to a significant increase in elastic modulus from 6.8kPa to 24.7kPa, 1.4kPa to 6.9kPa and 0.9kPa to 1.6kPa for corneal, cardiac and liver ECM hydrogels respectively. The extent of this increase was dependent on a number of factors including the UVA exposure time and the initial hydrogel concentration. There were also a high percentage of viable cells within the cell seeded hydrogels with 94% of cells remaining viable after 90min exposure to UVA light. These results suggest that UVA-riboflavin crosslinking is an effective approach for improving the mechanical properties of ECM hydrogels without resulting in a significant reduction of cell viability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus.

    PubMed

    Su, Xiaomei; Zhang, Qian; Hu, Jinxing; Hashmi, Muhammad Zaffar; Ding, Linxian; Shen, Chaofeng

    2015-02-01

    Recent advances in the bioremediation of polychlorinated biphenyl (PCB)-contaminated environments have focused on the development of approaches to stimulate the activities of indigenous bacterial communities. In this study, extracellular organic matter (EOM) from Micrococcus luteus was used to enhance the biphenyl-degrading capability of potentially functional microorganisms. The obtained results suggest that EOM significantly enhanced the biphenyl (BP)-degradation capability. Under a concentration of 3,500 mg/L BP, BP-degradation efficiency reached 60.8 % at a dosage of 10 % EOM (v/v), whereas the degradation efficiencies of control group (with inactivated EOM addition) and blank group (with lactate minimal medium) were only 21.5 and 6.2 %, respectively. Denaturing gradient gel electrophoresis (DGGE) profiles demonstrated that EOM played a key role in shifts in the composition and diversity of bacterial community. The Illumina high-throughput sequencing analysis indicated that the genera of Rhodococcus and Pseudomonas closely related to BP/PCB-degradation were greatly abundant after EOM addition. Together with polymerase chain reaction (PCR)-DGGE analysis, the link between the enhanced BP-degrading capability and the stimulation and resuscitation function of EOM in uncultured bacteria belonging to phylum Actinobacteria was tentatively established. These results suggest that EOM from M. luteus as an additive holds great potential for the efficient and cost-effective bioremediation of PCB-contaminated environment.

  18. Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose

    PubMed Central

    Murphy, Beth Ann; Fioramonti, Xavier; Jochnowitz, Nina; Fakira, Kurt; Gagen, Karen; Contie, Sylvain; Lorsignol, Anne; Penicaud, Luc; Martin, William J.; Routh, Vanessa H.

    2009-01-01

    Fasting increases neuropeptide Y (NPY) expression, peptide levels, and the excitability of NPY-expressing neurons in the hypothalamic arcuate (ARC) nucleus. A subpopulation of ARC-NPY neurons (∼40%) are glucose-inhibited (GI)-type glucose-sensing neurons. Hence, they depolarize in response to decreased glucose. Because fasting enhances NPY neurotransmission, we propose that during fasting, GI neurons depolarize in response to smaller decreases in glucose. This increased excitation in response to glucose decreases would increase NPY-GI neuronal excitability and enhance NPY neurotransmission. Using an in vitro hypothalamic explant system, we show that fasting enhances NPY release in response to decreased glucose concentration. By measuring relative changes in membrane potential using a membrane potential-sensitive dye, we demonstrate that during fasting, a smaller decrease in glucose depolarizes NPY-GI neurons. Furthermore, incubation in low (0.7 mM) glucose enhanced while leptin (10 nM) blocked depolarization of GI neurons in response to decreased glucose. Fasting, leptin, and glucose-induced changes in NPY-GI neuron glucose sensing were mediated by 5′-AMP-activated protein kinase (AMPK). We conclude that during energy sufficiency, leptin reduces the ability of NPY-GI neurons to sense decreased glucose. However, after a fast, decreased leptin and glucose activate AMPK in NPY-GI neurons. As a result, NPY-GI neurons become depolarized in response to smaller glucose fluctuations. Increased excitation of NPY-GI neurons enhances NPY release. NPY, in turn, shifts energy homeostasis toward increased food intake and decreased energy expenditure to restore energy balance. PMID:19211911

  19. cAMP/protein kinase A activates cystic fibrosis transmembrane conductance regulator for ATP release from rat skeletal muscle during low pH or contractions.

    PubMed

    Tu, Jie; Lu, Lin; Cai, Weisong; Ballard, Heather J

    2012-01-01

    We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-perfused muscle and extracellular ATP of L6 myocytes: this ATP release was abolished by the non-specific CFTR inhibitor, glibenclamide, or the specific CFTR inhibitor, CFTR(inh)-172, suggesting that CFTR was involved, and by inhibition of lactic acid entry to cells, indicating that intracellular pH depression was required. Muscle contractions significantly elevated interstitial ATP, but CFTR(inh)-172 abolished the increase. The cAMP/PKA pathway was involved in the signal transduction pathway for CFTR-regulated ATP release from muscle: forskolin increased CFTR phosphorylation and stimulated ATP release from muscle or myocytes; lactic acid increased intracellular cAMP, pCREB and PKA activity, whereas IBMX enhanced ATP release from myocytes. Inhibition of PKA with KT5720 abolished lactic-acid- or contraction-induced ATP release from muscle. Inhibition of either the Na(+)/H(+)-exchanger (NHE) with amiloride or the Na(+)/Ca(2+)-exchanger (NCX) with SN6 or KB-R7943 abolished lactic-acid- or contraction-induced release of ATP from muscle, suggesting that these exchange proteins may be involved in the activation of CFTR. Our data suggest that CFTR-regulated release contributes to ATP release from contracting muscle in vivo, and that cAMP and PKA are involved in the activation of CFTR during muscle contractions or acidosis; NHE and NCX may be involved in the signal transduction pathway.

  20. cAMP/Protein Kinase A Activates Cystic Fibrosis Transmembrane Conductance Regulator for ATP Release from Rat Skeletal Muscle during Low pH or Contractions

    PubMed Central

    Cai, Weisong; Ballard, Heather J.

    2012-01-01

    We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-perfused muscle and extracellular ATP of L6 myocytes: this ATP release was abolished by the non-specific CFTR inhibitor, glibenclamide, or the specific CFTR inhibitor, CFTRinh-172, suggesting that CFTR was involved, and by inhibition of lactic acid entry to cells, indicating that intracellular pH depression was required. Muscle contractions significantly elevated interstitial ATP, but CFTRinh-172 abolished the increase. The cAMP/PKA pathway was involved in the signal transduction pathway for CFTR-regulated ATP release from muscle: forskolin increased CFTR phosphorylation and stimulated ATP release from muscle or myocytes; lactic acid increased intracellular cAMP, pCREB and PKA activity, whereas IBMX enhanced ATP release from myocytes. Inhibition of PKA with KT5720 abolished lactic-acid- or contraction-induced ATP release from muscle. Inhibition of either the Na+/H+-exchanger (NHE) with amiloride or the Na+/Ca2+-exchanger (NCX) with SN6 or KB-R7943 abolished lactic-acid- or contraction-induced release of ATP from muscle, suggesting that these exchange proteins may be involved in the activation of CFTR. Our data suggest that CFTR-regulated release contributes to ATP release from contracting muscle in vivo, and that cAMP and PKA are involved in the activation of CFTR during muscle contractions or acidosis; NHE and NCX may be involved in the signal transduction pathway. PMID:23226244

  1. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    NASA Astrophysics Data System (ADS)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  2. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death

    PubMed Central

    Draganov, Dobrin; Gopalakrishna-Pillai, Sailesh; Chen, Yun-Ru; Zuckerman, Neta; Moeller, Sara; Wang, Carrie; Ann, David; Lee, Peter P.

    2015-01-01

    Overexpression of P2X7 receptors correlates with tumor growth and metastasis. Yet, release of ATP is associated with immunogenic cancer cell death as well as inflammatory responses caused by necrotic cell death at sites of trauma or ischemia-reperfusion injury. Using an FDA-approved anti-parasitic agent Ivermectin as a prototype agent to allosterically modulate P2X4 receptors, we can switch the balance between the dual pro-survival and cytotoxic functions of purinergic signaling in breast cancer cells. This is mediated through augmented opening of the P2X4/P2X7-gated Pannexin-1 channels that drives a mixed apoptotic and necrotic mode of cell death associated with activation of caspase-1 and is consistent with pyroptosis. We show that cancer cell death is dependent on ATP release and death signals downstream of P2X7 receptors that can be reversed by inhibition of NADPH oxidases-generated ROS, Ca2+/Calmodulin-dependent protein kinase II (CaMKII) or mitochondrial permeability transition pore (MPTP). Ivermectin induces autophagy and release of ATP and HMGB1, key mediators of inflammation. Potentiated P2X4/P2X7 signaling can be further linked to the ATP rich tumor microenvironment providing a mechanistic explanation for the tumor selectivity of purinergic receptors modulation and its potential to be used as a platform for integrated cancer immunotherapy. PMID:26552848

  3. Identification and characterization of a novel NOD-like receptor family CARD domain containing 3 gene in response to extracellular ATP stimulation and its role in regulating LPS-induced innate immune response in Japanese flounder (Paralichthys olivaceus) head kidney macrophages.

    PubMed

    Li, Shuo; Chen, Xiaoli; Hao, Gaixiang; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-03-01

    Nucleotide oligomerization domain (NOD)-like receptor (NLR) family with a caspase activation and recruitment domain (CARD) containing 3 (NLRC3) protein is an important cytosolic pattern recognition receptor that negatively regulates innate immune response in mammals. Hitherto, the immunological significance of NLRC3 protein in fish remains largely uncharacterized. Here we identified and characterized a novel NLRC3 gene (named poNLRC3) implicated in regulation of fish innate immunity from Japanese flounder Paralichthys olivaceus. The poNLRC3 protein is a cytoplasmic protein with an undefined N-terminal domain, a NACHT domain, a fish-specific NACHT associated domain, six LRR motifs, and a C-terminal fish-specific PYR/SPYR (B30.2) domain but only shares less than 40% sequence identities with the known Japanese flounder NLRC proteins. poNLRC3 gene is ubiquitously expressed in all tested tissues and is dominantly expressed in the Japanese flounder head kidney macrophages (HKMs). We for the first time showed that poNLRC3 expression was significantly modulated by the stimulation of extracellular ATP, an important danger/damage-associated molecular pattern in activating innate immunity in P. olivaceus. Importantly, we revealed that poNLRC3 plays an important role in positively regulating ATP-induced IL-1beta and IL-6 gene expression, suggesting the involvement of poNLRC3 in extracellular ATP-mediated immune signaling. In addition, we showed that poNLRC3 mRNA expression was up-regulated in response to LPS and Edwardsiella tarda immune challenges. Finally, we showed that down-regulating the endogenous poNLRC3 expression with small interfering RNA significantly reduced LPS-induced proinflammatory cytokine gene expression in the Japanese flounder HKM cells. Altogether, we have identified a novel inducible fish NLR member, poNLRC3, which is involved in extracellular ATP-mediated immune signaling and may positively regulate the LPS-induced innate immune response in the Japanese

  4. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain

    PubMed Central

    Fiebich, Bernd L.; Akter, Shamima; Akundi, Ravi Shankar

    2014-01-01

    Brain inflammation is a common occurrence following responses to varied insults such as bacterial infections, stroke, traumatic brain injury and neurodegenerative disorders. A common mediator for these varied inflammatory responses is prostaglandin E2 (PGE2), produced by the enzymatic activity of cyclooxygenases (COX) 1 and 2. Previous attempts to reduce neuronal inflammation through COX inhibition, by use of nonsteroidal anti-inflammatory drugs (NSAIDs), have met with limited success. We are proposing the two-hit model for neuronal injury—an initial localized inflammation mediated by PGE2 (first hit) and the simultaneous release of adenosine triphosphate (ATP) by injured cells (second hit), which significantly enhances the inflammatory response through increased synthesis of PGE2. Several evidences on the role of exogenous ATP in inflammation have been reported, including contrary instances where extracellular ATP reduces inflammatory events. In this review, we will examine the current literature on the role of P2 receptors, to which ATP binds, in modulating inflammatory reactions during neurodegeneration. Targeting the P2 receptors, therefore, provides a therapeutic alternative to reduce inflammation in the brain. P2 receptor-based anti-inflammatory drugs (PBAIDs) will retain the activities of essential COX enzymes, yet will significantly reduce neuroinflammation by decreasing the enhanced production of PGE2 by extracellular ATP. PMID:25225473

  5. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy.

    PubMed

    Feng, Yue; Liu, Song; Jiao, Yun; Gao, Hui; Wang, Miao; Du, Guocheng; Chen, Jian

    2017-02-01

    L-asparaginase (EC 3.5.1.1, ASN) exhibits great commercial value due to its uses in the food and medicine industry. In this study, we reported the enhanced expression of type II ASN from Bacillus subtilis 168 in B. subtilis WB600 through a combined strategy. First, eight signal peptides (the signal peptide of the ASN, ywbN, yvgO, amyE, oppA, vpr, lipA, and wapA) were used for ASN secretion in B. subtilis by using Hpa II promoter, respectively. The signal peptide wapA achieved the highest extracellular ASN activity (28.91 U/mL). Second, Hpa II promoter was replaced by a strong promoter, P43 promoter, resulting in 38.1 % enhanced ASN activity. By two rounds of error-prone PCR mutation, the P43 promoter variants with remarkably enhanced strength (D7, E2, H6, B2, and F3) were identified. B2 (-28: A → G, -13: A → G) achieved ASN activity up to 51.13 U/mL. Third, after deletion of the N-terminal 25-residues, ASN activity reached 102.41 U/mL, which was 100 % higher than that of the intact ASN. At last, the extracellular ASN of the B. subtilis arrived at 407.6 U/mL (2.5 g/L of ASN protein) in a 3-L bioreactor by using a fed-batch strategy. The purified ASN showed maximal activity at 65 °C and its half-life at 65 °C was 61 min. The K m and k cat of the ASN were 5.29 mM and 54.4 s(-1), respectively. To the best of our knowledge, we obtained the highest yield of ASN in a food-grade host ever reported, which may benefit the industrial production and application of ASN.

  6. ATP in the pathogenesis of lung emphysema.

    PubMed

    Mortaz, Esmaeil; Braber, Saskia; Nazary, Maiwand; Givi, Masoumh Ezzati; Nijkamp, Frans P; Folkerts, Gert

    2009-10-01

    Extracellular ATP is a signaling molecule that often serves as a danger signal to alert the immune system of tissue damage. This molecule activates P2 nucleotide receptors, that include the ionotropic P2X receptors and metabotropic P2Y receptors. Recently, it has been reported that ATP accumulates in the airways of both asthmatic patients and sensitized mice after allergen challenge. The role and function of ATP in the pathogenesis of chronic obstructive pulmonary diseases (COPD) are not well understood. In this study we investigated the effect of cigarette smoke on purinergic receptors and ATP release by neutrophils. Neutrophils and their mediators are key players in the pathogenesis of lung emphysema. Here we demonstrated that in an in vivo model of cigarette smoke-induced lung emphysema, the amount of ATP was increased in the bronchoalveolar lavage fluid. Moreover, activation of neutrophils with cigarette smoke extract induced ATP release. Treatment of neutrophils with apyrase (catalyses the hydrolysis of ATP to yield AMP) and suramin (P2-receptor antagonist) abrogated the release of CXCL8 and elastase induced by cigarette smoke extract and exogenous ATP. These observations indicate that activation of purinergic signaling by cigarette smoke may take part in the pathogenesis of lung emphysema.

  7. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal.

    PubMed

    Long, Xiangyu; Tang, Ran; Fang, Zhendong; Xie, Chaoxin; Li, Yongqin; Xian, Guang

    2017-09-22

    Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of (31)P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Parathyroid hormone 1-34 enhances extracellular matrix deposition and organization during flexor tendon repair.

    PubMed

    Lee, Daniel J; Southgate, Richard D; Farhat, Youssef M; Loiselle, Alayna E; Hammert, Warren C; Awad, Hani A; O'Keefe, Regis J

    2015-01-01

    Parathyroid hormone (PTH) 1-34 is known to enhance fracture healing. Tendon repair is analogous to bone healing in its dependence on the proliferation and differentiation of mesenchymal stem cells, matrix formation, and tissue remodeling.(1,2,3) We hypothesized that PTH 1-34 enhances tendon healing in a flexor digitorum longus (FDL) tendon repair model. C57Bl/6J mice were treated with either intraperitoneal PTH 1-34 or vehicle-control (PBS). Tendons were harvested at 3-28 days for histology, gene expression, and biomechanical testing. The metatarsophalangeal joint range of motion was reduced 1.5-2-fold in PTH 1-34 mice compared to control mice. The gliding coefficient, a measure of adhesion formation, was 2-3.5-fold higher in PTH 1-34 mice. At 14 days post-repair, the tensile strength was twofold higher in PTH 1-34 specimens, but at 28 days there were no differences. PTH 1-34 mice had increased fibrous tissue deposition that correlated with elevated expression of collagens and fibronectin as seen on quantitative PCR. PTH 1-34 accelerated the deposition of reparative tissue but increased adhesion formation.

  9. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling

    PubMed Central

    Delire, Bénédicte; Lebrun, Valérie; Selvais, Charlotte; Henriet, Patrick; Bertrand, Amélie; Horsmans, Yves; Leclercq, Isabelle A.

    2017-01-01

    Clinical data identify age as a factor for severe liver fibrosis. We evaluate whether and how aging modulates the fibrotic response in a mouse model. Liver fibrosis was induced by CCl4 injections (thrice weekly for 2 weeks) in 7 weeks- and 15 months-old mice (young and old, respectively). Livers were analyzed for fibrosis, inflammation and remodeling 48 and 96 hours after the last injection. Old mice developed more severe fibrosis compared to young ones as evaluated by sirius red morphometry. Expression of pro-fibrogenic genes was equally induced in the two age-groups but enhanced fibrolysis in young mice was demonstrated by a significantly higher Mmp13 induction and collagenase activity. While fibrosis resolution occurred in young mice within 96 hours, no significant fibrosis attenuation was observed in old mice. Although recruitment of monocytes-derived macrophages was similar in young and old livers, young macrophages had globally a remodeling phenotype while old ones, a pro-fibrogenic phenotype. Moreover, we observed a higher proportion of thick fibers and enhanced expression of enzymes involved in collagen maturation in old mice. Conclusion Impaired fibrolysis of a matrix less prone to remodeling associated with a pro-inflammatory phenotype of infiltrated macrophages contribute to a more severe fibrosis in old mice. PMID:27941216

  10. Blockade of ATP P2X7 receptor enhances ischiatic nerve regeneration in mice following a crush injury.

    PubMed

    Ribeiro, Tatianne; Oliveira, Júlia Teixeira; Almeida, Fernanda Martins; Tomaz, Marcelo Amorim; Melo, Paulo A; Marques, Suelen Adriani; de Andrade, Geanne Matos; Martinez, Ana Maria Blanco

    2017-08-15

    Preventing damage caused by nerve degeneration is a great challenge. There is a growing body of evidence implicating extracellular nucleotides and their P2 receptors in many pathophysiological mechanisms. In this work we aimed to investigate the effects of the administration of Brilliant Blue G (BBG) and Pyridoxalphosphate-6-azophenyl-2', 4'- disulphonic acid (PPADS), P2X7 and P2 non-selective receptor antagonists, respectively, on sciatic nerve regeneration. Four groups of mice that underwent nerve crush lesion were used: two control groups treated with vehicle (saline), a group treated with BBG and a group treated with PPADS during 28days. Gastrocnemius muscle weight was evaluated. For functional evaluation we used the Sciatic Functional Index (SFI) and the horizontal ladder walking test. Nerves, dorsal root ganglia and spinal cords were processed for light and electron microscopy. Antinoceptive effects of BBG and PPADS were evaluated through von Frey E, and the levels of IL-1β and TNF-α were analyzed by ELISA. BBG promoted an increase in the number of myelinated fibers and on axon, fiber and myelin areas. BBG and PPADS led to an increase of TNF-α and IL-1β in the nerve on day 1 and PPADS caused a decrease of IL-1β on day 7. Mechanical allodynia was reversed on day 7 in the groups treated with BBG and PPADS. We concluded that BBG promoted a better morphological regeneration after ischiatic crush injury, but this was not followed by anticipation of functional improvement. In addition, both PPADS and BBG presented anti-inflammatory as well as antinociceptive effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels.

    PubMed

    Tagler, David; Makanji, Yogeshwar; Tu, Tao; Bernabé, Beatriz Peñalver; Lee, Raymond; Zhu, Jie; Kniazeva, Ekaterina; Hornick, Jessica E; Woodruff, Teresa K; Shea, Lonnie D

    2014-07-01

    The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (<70 µm) rapidly lost structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (<80 µm) cultured in alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles. © 2013 Wiley Periodicals, Inc.

  12. Extracellular matrix derived from periodontal ligament cells maintains their stemness and enhances redifferentiation via the Wnt pathway.

    PubMed

    Zhang, Ji-Chun; Song, Zhong-Chen; Xia, Yi-Ru; Shu, Rong

    2017-09-07

    Large numbers of viable cells cannot be obtained from periodontal ligament tissues of patients with periodontitis. Therefore, it is imperative to establish an ex vivo environment that can support cell proliferation and delay senescence. Here, we have successfully reconstructed a native extracellular matrix (ECM), derived from early-passage human periodontal ligament cells (PDLCs) using the NH4 OH/Triton X-100 protocol. The ECM was investigated by scanning electron microscopy and immunostaining for specific ECM proteins (collagen I and fibronectin). Late-passage ECM-expanded PDLCs exhibited a much higher proliferation index and lower levels of reactive oxygen species (ROS), confirmed by the increased expression of pluripotent markers. and enhanced osteogenic capacity. Interestingly, the Wnt pathway was suppressed during the ECM expansion-mediated increase in pluripotency, but was activated in an osteogenic differentiation environment, as confirmed by treatment with the XAV-939 β-catenin inhibitor or the SP600125 c-Jun N-terminal kinase (JNK) inhibitor. Cell sheets formed by ECM-expanded PDLCs exhibited an enhanced periodontal tissue regeneration capacity compared to those formed on tissue culture polystyrene (TCP) surfaces in vivo. Taken together, the cell-free ECM provides a tissue-specific cell niche for the ex vivo expansion of PDLCs while retaining stemness and osteogenic potential, partially via the Wnt pathway. This represents a promising matrix for future applications in periodontal tissue regeneration therapy. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  13. Design of fibrin matrix composition to enhance endothelial cell growth and extracellular matrix deposition for in vitro tissue engineering.

    PubMed

    Pankajakshan, Divya; Krishnan, Lissy K

    2009-01-01

    Tissue-engineered blood vessel substitutes should closely resemble native vessels in terms of structure, composition, mechanical properties, and function. Successful cardiovascular tissue engineering requires optimization of in vitro culture environment that would produce functional constructs. The extracellular matrix (ECM) protein elastin plays an essential role in the cardiovascular system to render elasticity to blood vessel wall, whereas collagen is responsible for providing mechanical strength. The objective of this study was to understand the significance of various ECM components on endothelial cell (EC) growth and tissue generation. We demonstrate that, even though fibrin is a good matrix for EC growth, fibronectin is the crucial component of the fibrin matrix that enhances EC adhesion, spreading, and proliferation. Vascular EC growth factor is known to influence in vitro growth of EC, but, so far, ECM deposition in in vitro culture has not been reported. In this study, it is shown that incorporation of a mixture of hypothalamus-derived angiogenic growth factors with fibrin matrix enhances synthesis and deposition of insoluble elastin and collagen in the matrix, within 10 days of in vitro culture. The results suggest that a carefully engineered fibrin composite matrix may support EC growth, survival, and remodeling of ECM in vitro and impart optimum properties to the construct for resisting the shear stress at the time of implantation.

  14. Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and L-Carnitine

    PubMed Central

    Owen, Lauren; Sunram-Lea, Sandra I.

    2011-01-01

    Over the past four or five decades, there has been increasing interest in the neurochemical regulation of cognition. This field received considerable attention in the 1980s, with the identification of possible cognition enhancing agents or “smart drugs”. Even though many of the optimistic claims for some agents have proven premature, evidence suggests that several metabolic agents may prove to be effective in improving and preserving cognitive performance and may lead to better cognitive aging through the lifespan. Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. There are a number of agents with the potential to improve metabolic activity. Research is now beginning to identify these various agents and delineate their potential usefulness for improving cognition in health and disease. This review provides a brief overview of the metabolic agents glucose, oxygen, pyruvate, creatine, and L-carnitine and their beneficial effects on cognitive function. These agents are directly responsible for generating ATP (adenosine triphosphate) the main cellular currency of energy. The brain is the most metabolically active organ in the body and as such is particularly vulnerable to disruption of energy resources. Therefore interventions that sustain adenosine triphosphate (ATP) levels may have importance for improving neuronal dysfunction and loss. Moreover, recently, it has been observed that environmental conditions and diet can affect transgenerational gene expression via epigenetic mechanisms. Metabolic agents might play a role in regulation of nutritional epigenetic effects. In summary, the reviewed metabolic agents represent a promising strategy for improving cognitive function and possibly slowing or preventing cognitive decline. PMID:22254121

  15. An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100.

    PubMed

    Bao, Ru-Meng; Yang, Hong-Ming; Yu, Chang-Mei; Zhang, Wei-Fen; Tang, Jin-Bao

    2016-10-01

    Targeting recombinant proteins at highly extracellular production in the culture medium of Escherichia coli presents a significant advantage over cytoplasmic or periplasmic expression. In this work, a recombinant protein between ZZ protein and alkaline phosphatase (rZZ-AP) was constructed. Because rZZ-AP has the IgG-binding capacity and enzymatic activity, it can serve as an immunoreagent in immunoassays. However, only a very small portion of rZZ-AP is generally secreted into the aqueous medium under conventional cultivation procedure. Hence, we emphasized on the optimization of the culture procedures and attempted to dramatically enhance the yield of extracellular rZZ-AP from E. coli HB101 host cells by adding sucrose, glycine, and Triton X-100 in the culture medium. Results showed that the extracellular production of rZZ-AP in the culture medium containing 5% sucrose, 1% glycine, and 1% Triton X-100 was 18.6 mg/l, which was 18.6-fold higher than that without the three chemicals. And the β-galactosidase activity test showed that the increased extracellular rZZ-AP was not due to cell lysis. Further analysis suggested a significant interaction effect among the three chemicals for the enhancement of extracellular production. Ultrastructural analysis indicated that the enhancement may be due to the influence of sucrose, glycine, and Triton X-100 on the periplasmic osmolality, permeability, or integrity of the cell wall, respectively. This proposed approach presents a simple strategy to enhance the extracellular secretion of recombinant proteins in the E. coli system at the process of cell cultivation.

  16. Regulation of innate immunity by extracellular nucleotides

    PubMed Central

    Gorini, Stefania; Gatta, Lucia; Pontecorvo, Laura; Vitiello, Laura; la Sala, Andrea

    2013-01-01

    Extracellular ATP (eATP) is the most abundant among extracellular nucleotides and is commonly considered as a classical danger signal, which stimulates immune responses in the presence of tissue injury. In fact, increased nucleotide concentration in the extracellular space is generally closely associated with tissue stress or damage. However non-lytic nucleotide release may also occur in many cell types under a variety of conditions. Extracellular nucleotides are sensed by a class of plasma membrane receptors called P2 purinergic receptors (P2Rs). P2 receptors are expressed by all immunological cells and their activation elicits different responses. Extracellular ATP can act as an initiator or terminator of immune responses being able to induce different effects on immune cells depending on the pattern of P2 receptors engaged, the duration of the stimulus and its concentration in the extracellular milieu. Millimolar (high) concentrations of extracellular ATP, induce predominantly proinflammatory effects, while micromolar (low) doses exert mainly tolerogenic/immunosuppressive action. Moreover small, but significant differences in the pattern of P2 receptor expression in mice and humans confer diverse capacities of ATP in regulating the immune response. PMID:23358447

  17. Pannexin1 channels act downstream of P2X7 receptors in ATP-induced murine T-cell death

    PubMed Central

    Shoji, Kenji F; Sáez, Pablo J; Harcha, Paloma A; Aguila, Hector L; Sáez, Juan C

    2014-01-01

    Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. PMID:24590064

  18. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity

    PubMed Central

    Huckstepp, Robert T R; id Bihi, Rachid; Eason, Robert; Spyer, K Michael; Dicke, Nikolai; Willecke, Klaus; Marina, Nephtali; Gourine, Alexander V; Dale, Nicholas

    2010-01-01

    Arterial , a major determinant of breathing, is detected by chemosensors located in the brainstem. These are important for maintaining physiological levels of in the blood and brain, yet the mechanisms by which the brain senses CO2 remain controversial. As ATP release at the ventral surface of the brainstem has been causally linked to the adaptive changes in ventilation in response to hypercapnia, we have studied the mechanisms of CO2-dependent ATP release in slices containing the ventral surface of the medulla oblongata. We found that CO2-dependent ATP release occurs in the absence of extracellular acidification and correlates directly with the level of . ATP release is independent of extracellular Ca2+ and may occur via the opening of a gap junction hemichannel. As agents that act on connexin channels block this release, but compounds selective for pannexin-1 have no effect, we conclude that a connexin hemichannel is involved in CO2-dependent ATP release. We have used molecular, genetic and immunocytochemical techniques to demonstrate that in the medulla oblongata connexin 26 (Cx26) is preferentially expressed near the ventral surface. The leptomeninges, subpial astrocytes and astrocytes ensheathing penetrating blood vessels at the ventral surface of the medulla can be loaded with dye in a CO2-dependent manner, suggesting that gating of a hemichannel is involved in ATP release. This distribution of CO2-dependent dye loading closely mirrors that of Cx26 expression and colocalizes to glial fibrillary acidic protein (GFAP)-positive cells. In vivo, blockers with selectivity for Cx26 reduce hypercapnia-evoked ATP release and the consequent adaptive enhancement of breathing. We therefore propose that Cx26-mediated release of ATP in response to changes in is an important mechanism contributing to central respiratory chemosensitivity. PMID:20736421

  19. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  20. NS5ATP13 Promotes Liver Fibrogenesis via Activation of Hepatic Stellate Cells.

    PubMed

    Li, Yaru; Liu, Shunai; Han, Ming; Lu, Hongping; Wang, Qi; Zhang, Yu; Tursun, Kelbinur; Li, Zhongshu; Feng, Shenghu; Cheng, Jun

    2017-01-29

    Liver fibrosis is a reversible wound-healing response to any etiology of chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) is the key event in liver fibrogenesis. Generally, persistent activation and proliferation of HSCs results in liver fibrosis progression, while primary mechanisms of liver fibrosis resolution are apoptosis and reversion to a quiescent phenotype of activated HSCs. NS5ATP13 (HCV NS5A-transactivated protein 13) is involved in nucleologenesis and tumorigenesis, but its role in liver fibrosis and HSC activation remains unclear. This study found that NS5ATP13 was upregulated in both fibrotic liver tissues and activated human HSCs induced by TGF-β1. Moreover, NS5ATP13 enhanced extracellular matrix (ECM) production and HSC activation, with or without TGF-β1 treatment, likely involving the TGF-β1/Smad3 signaling pathway. Additionally, NS5ATP13 boosted HSC proliferation by inhibiting cell apoptosis. Furthermore, HCV NS5A promoted the profibrogenic effect of NS5ATP13 partly through TGF-β1 and NF-κB p65 (RelA) upregulation. Meanwhile, NS5ATP13 was required for the pro-fibrogenic effect of NF-κB. Moreover, NS5ATP13 and NF-κB phosphorylation as well as HSC activation were reduced by CX-4945, a CK2 specific inhibitor. These findings indicated that NS5ATP13 acts as a profibrogenic factor, providing a potential target for antifibrotic therapies. This article is protected by copyright. All rights reserved.

  1. Impact of the F508del mutation on ovine CFTR, a Cl− channel with enhanced conductance and ATP-dependent gating

    PubMed Central

    Cai, Zhiwei; Palmai-Pallag, Timea; Khuituan, Pissared; Mutolo, Michael J; Boinot, Clément; Liu, Beihui; Scott-Ward, Toby S; Callebaut, Isabelle; Harris, Ann; Sheppard, David N

    2015-01-01

    Cross-species comparative studies are a powerful approach to understanding the epithelial Cl− channel cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF). Here, we investigate the single-channel behaviour of ovine CFTR and the impact of the most common CF mutation, F508del-CFTR, using excised inside-out membrane patches from transiently transfected CHO cells. Like human CFTR, ovine CFTR formed a weakly inwardly rectifying Cl− channel regulated by PKA-dependent phosphorylation, inhibited by the open-channel blocker glibenclamide. However, for three reasons, ovine CFTR was noticeably more active than human CFTR. First, single-channel conductance was increased. Second, open probability was augmented because the frequency and duration of channel openings were increased. Third, with enhanced affinity and efficacy, ATP more strongly stimulated ovine CFTR channel gating. Consistent with these data, the CFTR modulator phloxine B failed to potentiate ovine CFTR Cl− currents. Similar to its impact on human CFTR, the F508del mutation caused a temperature-sensitive folding defect, which disrupted ovine CFTR protein processing and reduced membrane stability. However, the F508del mutation had reduced impact on ovine CFTR channel gating in contrast to its marked effects on human CFTR. We conclude that ovine CFTR forms a regulated Cl− channel with enhanced conductance and ATP-dependent channel gating. This phylogenetic analysis of CFTR structure and function demonstrates that subtle changes in structure have pronounced effects on channel function and the consequences of the CF mutation F508del. Key points Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR), a gated pathway for chloride movement, causes the common life-shortening genetic disease cystic fibrosis (CF). Towards the development of a sheep model of CF, we have investigated the function of sheep CFTR. We found that

  2. Enzymatic treatment of spermatozoa with a trypsin solution, SpermSolute: improved motility and enhanced ATP concentration.

    PubMed

    Figenschau, Y; Bertheussen, K

    1999-10-01

    We have developed a solution, fully described in this report, that can be used in a pretreatment procedure to promote liquefaction and to enhance motility during preparation of spermatozoa. It was applied to native ejaculates prior to swim-up and, in parallel investigations, motility and adenosine triphosphate concentration were compared in treated and untreated samples, which revealed that the solution significantly improved both parameters. The solution, named SpermSolute, is based on a proteinase (trypsin), which previously has been shown to stimulate the activity of a glycolytic key-enzyme. We speculate that our findings reflect intracellular enzyme activation and we suggest that our formula can be used in sperm preparation to prevent cell aggregates and to promote liquefaction, in addition to promotion of motility.

  3. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation.

    PubMed

    Zhang, Yinping; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Kengara, Fredrick Orori; Hong, Qing; Lv, Zhengyong; Jiang, Xin

    2011-05-01

    The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs--silicone oil-water--with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.

  4. 6-demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells.

    PubMed

    Kimura, Junko; Nemoto, Kiyomitsu; Yokosuka, Akihito; Mimaki, Yoshihiro; Degawa, Masakuni; Ohizumi, Yasushi

    2013-01-01

    We previously demonstrated that nobiletin, a polymethoxylated flavone isolated from citrus peels, has the potential to improve cognitive dysfunction in patients with Alzheimer's disease (AD). Recent studies suggest that the generation of intraneuronal amyloid-beta (Aβ) oligomers is an early event in the pathogenesis of AD. Aβ oligomers cause deficits in the regulation of the extracellular signal-regulated kinase (ERK) signaling which is critical for consolidation of the memory. Our previous studies revealed that nobiletin activated ERK signaling and subsequent cyclic AMP response element-dependent transcription. In this study, the effects of five nobiletin analogs, 6-demethoxynobiletin, tangeretin, 5-demethylnobiletin, sinensetin, and 6-demethoxytangeretin, isolated from citrus peels were assessed on ERK phosphorylation in PC12D cells, and the structure-activity relationships were examined. PC12D cells were treated with nobiletin or its analogs, and the cell extracts were analyzed by Western blotting using an antibody specific to phosphorylated ERK. 6-Demethoxynobiletin markedly enhanced ERK phosphorylation in a concentration-dependent manner. These results may be useful in developing drugs and functional foods using citrus peels for the treatment of dementia including AD.

  5. Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium.

    PubMed

    Fraioli, Roberta; Rechenmacher, Florian; Neubauer, Stefanie; Manero, José M; Gil, Javier; Kessler, Horst; Mas-Moruno, Carlos

    2015-04-01

    Interaction between the surface of implants and biological tissues is a key aspect of biomaterials research. Apart from fulfilling the non-toxicity and structural requirements, synthetic materials are asked to direct cell response, offering engineered cues that provide specific instructions to cells. This work explores the functionalization of titanium with integrin-binding peptidomimetics as a novel and powerful strategy to improve the adhesion, proliferation and differentiation of osteoblast-like cells to implant materials. Such biomimetic strategy aims at targeting integrins αvβ3 and α5β1, which are highly expressed on osteoblasts and are essential for many fundamental functions in bone tissue development. The successful grafting of the bioactive molecules on titanium is proven by contact angle measurements, X-ray photoelectron spectroscopy and fluorescent labeling. Early attachment and spreading of cells are statistically enhanced by both peptidomimetics compared to unmodified titanium, reaching values of cell adhesion comparable to those obtained with full-length extracellular matrix proteins. Moreover, an increase in alkaline phosphatase activity, and statistically higher cell proliferation and mineralization are observed on surfaces coated with the peptidomimetics. This study shows an unprecedented biological activity for low-molecular-weight ligands on titanium, and gives striking evidence of the potential of these molecules to foster bone regeneration on implant materials.

  6. Tolerance to lipopolysaccharide promotes an enhanced neutrophil extracellular traps formation leading to a more efficient bacterial clearance in mice

    PubMed Central

    Landoni, V I; Chiarella, P; Martire-Greco, D; Schierloh, P; van-Rooijen, N; Rearte, B; Palermo, M S; Isturiz, M A; Fernández, G C

    2012-01-01

    Tolerance to lipopolysaccharide (LPS) constitutes a stress adaptation, in which a primary contact with LPS results in a minimal response when a second exposure with the same stimulus occurs. However, active important defence mechanisms are mounted during the tolerant state. Our aim was to assess the contribution of polymorphonuclear neutrophils (PMN) in the clearance of bacterial infection in a mouse model of tolerance to LPS. After tolerance was developed, we investigated in vivo different mechanisms of bacterial clearance. The elimination of a locally induced polymicrobial challenge was more efficient in tolerant mice both in the presence or absence of local macrophages. This was related to a higher number of PMN migrating to the infectious site as a result of an increased number of PMN from the marginal pool with higher chemotactic capacity, not because of differences in their phagocytic activity or reactive species production. In vivo, neutrophils extracellular trap (NET) destruction by nuclease treatment abolished the observed increased clearance in tolerant but not in control mice. In line with this finding, in vitro NETs formation was higher in PMN from tolerant animals. These results indicate that the higher chemotactic response from an increased PMN marginal pool and the NETs enhanced forming capacity are the main mechanisms mediating bacterial clearance in tolerant mice. To sum up, far from being a lack of response, tolerance to LPS causes PMN priming effects which favour distant and local anti-infectious responses. PMID:22385250

  7. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor.

    PubMed

    Seif-Naraghi, Sonya B; Horn, Dinah; Schup-Magoffin, Pamela J; Christman, Karen L

    2012-10-01

    Injectable hydrogels derived from the extracellular matrix (ECM) of decellularized tissues have recently emerged as scaffolds for tissue-engineering applications. Here, we introduce the potential for using a decellularized ECM-derived hydrogel for the improved delivery of heparin-binding growth factors. Immobilization of growth factors on a scaffold has been shown to increase their stability and activity. This can be done via chemical crosslinking, covalent bonding, or by incorporating natural or synthetic growth factor-binding domains similar to those found in vivo in sulfated glycosaminoglycans (GAGs). Many decellularized ECM-derived hydrogels retain native sulfated GAGs, and these materials may therefore provide an excellent delivery platform for heparin-binding growth factors. In this study, the sulfated GAG content of an ECM hydrogel derived from decellularized pericardial ECM was confirmed by Fourier transform infrared spectroscopy and its ability to bind basic fibroblast growth factor (bFGF) was established. Delivery in the pericardial matrix hydrogel increased retention of bFGF both in vitro and in vivo in ischemic myocardium compared to delivery in collagen. In a rodent infarct model, intramyocardial injection of bFGF in pericardial matrix enhanced neovascularization by approximately 112% compared to delivery in collagen. Importantly, the newly formed vasculature was anastomosed with existing vasculature. Thus, the sulfated GAG content of the decellularized ECM hydrogel provides a platform for incorporation of heparin-binding growth factors for prolonged retention and delivery. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    SciTech Connect

    Zhang, Yun

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  9. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis.

    PubMed

    Li, Meng; Chen, Zhi; Zhang, Xuan; Song, Yuan; Wen, Ying; Li, Jilun

    2010-12-01

    We investigated the function of maltose ABC transporter system encoded by malEFG-a and the effect of its overexpression on antibiotic production in Streptomyces avermitilis. A malEFG-a deletion mutant was unable to grow in a minimal medium with maltose as sole carbon source and produce avermectin. Maltose utilization and avermectin production were restored by introduction of a single copy of malEFG-a. RT-PCR analysis showed that the expression of malE-a was induced by maltose, and was strongly repressed by glucose. When multi-copy, integrative malEFG-a gene expression vectors were introduced into wild-type strain ATCC31267 and ivermectin-producer OI-31, antibiotic production increased by 2.6- to 3.3-fold and the time required for fermentation decreased by about 10%. The overexpression of malEFG-a improved the utilization rate of starch, and thereby enhanced avermectin production. Such an approach would be useful for the improvement of commercial antibiotic production using starch as the main carbon source in the fermentation process.

  10. External Dentin Stimulation Induces ATP Release in Human Teeth.

    PubMed

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain.

  11. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients.

  12. Human Immunodeficiency Virus Protease Inhibitors Interact with ATP Binding Cassette Transporter 4/Multidrug Resistance Protein 4: A Basis for Unanticipated Enhanced Cytotoxicity

    PubMed Central

    Fukuda, Yu; Takenaka, Kazumasa; Sparreboom, Alex; Cheepala, Satish B.; Wu, Chung-Pu; Ekins, Sean; Ambudkar, Suresh V.

    2013-01-01

    Human immunodeficiency virus (HIV) pharmacotherapy, by combining different drug classes such as nucleoside analogs and HIV protease inhibitors (PIs), has increased HIV-patient life expectancy. Consequently, among these patients, an increase in non-HIV–associated cancers has produced a patient cohort requiring both HIV and cancer chemotherapy. We hypothesized that multidrug resistance protein 4/ATP binding cassette transporter 4 (MRP4/ABCC4), a widely expressed transporter of nucleoside-based antiviral medications as well as cancer therapeutics might interact with PIs. Among the PIs evaluated (nelfinavir, ritonavir, amprenavir, saquinavir, and indinavir), only nelfinavir both effectively stimulated MRP4 ATPase activity and inhibited substrate-stimulated ATPase activity. Saos2 and human embryonic kidney 293 cells engineered to overexpress MRP4 were then used to assess transport and cytotoxicity. MRP4 expression reduced intracellular accumulation of nelfinavir and consequently conferred survival advantage to nelfinavir cytotoxicity. Nelfinavir blocked Mrp4-mediated export, which is consistent with its ability to increase the sensitivity of MRP4-expressing cells to methotrexate. In contrast, targeted inactivation of Abcc4/Mrp4 in mouse cells specifically enhanced nelfinavir and 9-(2-phosphonylmethoxyethyl) adenine cytotoxicity. These results suggest that nelfinavir is both an inhibitor and substrate of MRP4. Because nelfinavir is a new MRP4/ABCC4 substrate, we developed a MRP4/ABCC4 pharmacophore model, which showed that the nelfinavir binding site is shared with chemotherapeutic substrates such as adefovir and methotrexate. Our studies reveal, for the first time, that nelfinavir, a potent and cytotoxic PI, is both a substrate and inhibitor of MRP4. These findings suggest that HIV-infected cancer patients receiving nelfinavir might experience both enhanced antitumor efficacy and unexpected adverse toxicity given the role of MRP4/ABCC4 in exporting nucleoside

  13. A novel extracellular β-glucosidase from Trichosporon asahii: yield prediction, evaluation and application for aroma enhancement of Cabernet Sauvignon.

    PubMed

    Wang, Yuxia; Xu, Yan; Li, Jiming

    2012-08-01

    The production and application of novel β-glucosidase from Trichosporon asahii were studied. The β-glucosidase yield was improved by response surface methodology, and the optimal media constituents were determined to be dextrin 4.67% (w/v), yeast extract 2.99% (w/v), MgSO(4) 0.01% (w/v), and K(2) HPO(4) 0.02% (w/v). As a result, β-glucosidase production was enhanced from 123.72 to 215.66 U/L. The effects of different enological factors on the activity of β-glucosidases from T. asahii were investigated in comparison to commercial enzymes. β-Glucosidase from T. asahii was activated in the presence of sugars in the range from 10% to 40% (w/v), with the exception of glucose (slight inhibition), and retained higher relative activities than commercial enzymes under the same conditions. In addition, ethanol, in concentrations between 5% and 20% (v/v), also increased the β-glucosidase activity. Although the β-glucosidase activity decreased with decreasing pH, the residual activity of T. asahii was still above 50% at the average wine pH (pH 3.5). Due to these properties, extracellular β-glucosidase from T. asahii exhibited a better ability than commercial enzymes in hydrolyzing aromatic precursors that remained in young finished wine. The excellent performs of this β-glucosidase in wine aroma enhancement and sensory evaluation indicated that the β-glucosidase has a potential application to individuate suitable preparations that can complement and optimize grape or wine quality during the winemaking process or in the final wine. The present study demonstrated the usefulness of response surface methodology based on the central composite design for yield enhancement of β-glucosidase from T. asahii. The investigation of the primary characteristics of the enzyme and its application in young red wine suggested that the β-glucosidase from T. asahii can provide more impetus for aroma improvement in the future. © 2012 Institute of Food Technologists®

  14. ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic β cell

    PubMed Central

    Jacques-Silva, M. Caroline; Correa-Medina, Mayrin; Cabrera, Over; Rodriguez-Diaz, Rayner; Makeeva, Natalia; Fachado, Alberto; Diez, Juan; Berman, Dora M.; Kenyon, Norma S.; Ricordi, Camillo; Pileggi, Antonello; Molano, R. Damaris; Berggren, Per-Olof; Caicedo, Alejandro

    2010-01-01

    Extracellular ATP has been proposed as a paracrine signal in rodent islets, but it is unclear what role ATP plays in human islets. We now show the presence of an ATP signaling pathway that enhances the human β cell's sensitivity and responsiveness to glucose fluctuations. By using in situ hybridization, RT-PCR, immunohistochemistry, and Western blotting as well as recordings of cytoplasmic-free Ca2+ concentration, [Ca2+]i, and hormone release in vitro, we show that human β cells express ionotropic ATP receptors of the P2X3 type and that activation of these receptors by ATP coreleased with insulin amplifies glucose-induced insulin secretion. Released ATP activates P2X3 receptors in the β-cell plasma membrane, resulting in increased [Ca2+]i and enhanced insulin secretion. Therefore, in human islets, released ATP forms a positive autocrine feedback loop that sensitizes the β cell's secretory machinery. This may explain how the human pancreatic β cell can respond so effectively to relatively modest changes in glucose concentration under physiological conditions in vivo. PMID:20308565

  15. Mechanisms of ATP Release by Human Trabecular Meshwork Cells, the Enabling Step in Purinergic Regulation of Aqueous Humor Outflow

    PubMed Central

    LI, ANG; LEUNG, CHI TING; PETERSON-YANTORNO, KIM; STAMER, W. DANIEL; MITCHELL, CLAIRE H.; CIVAN, MORTIMER M.

    2011-01-01

    Our guiding hypothesis is that ecto-enzymatic conversion of extracellular ATP to adenosine activates A1 adenosine receptors, reducing resistance to aqueous humor outflow and intraocular pressure. The initial step in this purinergic regulation is ATP release from outflow-pathway cells by mechanisms unknown. We measured similar ATP release from human explant-derived primary trabecular meshwork (TM) cells (HTM) and a human TM cell line (TM5). Responses to 21 inhibitors indicated that pannexin-1 (PX1) and connexin (Cx) hemichannels and P2X7 receptors (P2RX7) were comparably important in modulating ATP release induced by hypotonic swelling, whereas vesicular release was insignificant. Consistent with prior studies of PX1 activity in certain other cells, ATP release was lowered by the reducing agent dithiothreitol. Overexpressing PX1 in HEK293T cells promoted, while partial knockdown (KD) in both HEK293T and TM5 cells inhibited hypotonicity-activated ATP release. Additionally, KD reduced the pharmacologically-defined contribution of PX1 and enhanced those of Cx and P2RX7. ATP release was also triggered by raising intracellular Ca2+ activity with ionomycin after a prolonged lag time and was unaffected by the PX1 blocker probenecid, but nearly abolished by P2RX7 antagonists. We conclude that swelling-stimulated ATP release from human TM cells is physiologically mediated by PX1 and Cx hemichannels and P2X7 receptors, but not by vesicular release. PX1 appears not to be stimulated by intracellular Ca2+ in TM cells, but can be modulated by oxidation-reduction state. The P2RX7-dependent component of swelling-activated release may be mediated by PX1 hemichannels or reflect apoptotic magnification of ATP release, either through itself and/or hemichannels. PMID:21381023

  16. Extracellular Matrix Deposited by Synovium-Derived Stem Cells Delays Replicative Senescent Chondrocyte Dedifferentiation and Enhances Redifferentiation

    PubMed Central

    Pei, Ming; He, Fan

    2011-01-01

    The aim of this study was to assess the effect of extracellular matrix (ECM) deposited by synovium-derived stem cells (SDSCs) on articular chondrocyte expansion and maintenance of differentiation status and redifferentiation capacity. Passage 0 (P0) pig articular chondrocytes were expanded for six passages on plastic flasks (Plastic), SDSC-derived ECM (ECM), or substrate switching from either Plastic to ECM (PtoE) or ECM to Plastic (EtoP). Cell morphology, gene expression profiles, and immunophenotypes at each passage were used to characterize differentiation status of expanded cells. Chondrocytes at P0, P2, and P6 were assessed for redifferentiation capacity in a pellet culture system treated with either TGF-β1- or serum-containing medium for 14 days, using histology, immunohistochemistry, biochemistry, western blot, and real-time PCR. We found that ECM not only greatly enhanced chondrocyte expansion but also delayed dedifferentiation of expanded chondrocytes. Intriguingly, compared to a dramatic decrease in CD90+/CD105+ cells and CD90+ cells, CD105+ cells dramatically increased when chondrocytes were plated on Plastic; on the contrary, ECM expansion dramatically increased CD90+ cells and delayed the decrease of CD90+/CD105+ cells. Interestingly, expanded chondrocytes on ECM also acquired a strong redifferentiation capacity, particularly in the pellets treated with TGF-β1. In conclusion, the ratio of CD90 to CD105 may serve as a marker indicative of proliferation and redifferentiation capacity of dedifferentiated chondrocytes. ECM deposited by SDSCs provides a tissue-specific three-dimensional microenvironment for ex vivo expansion of articular chondrocytes while retaining redifferentiation capacity, suggesting that ECM may provide a novel approach for autologous chondrocyte - based cartilage repair. PMID:21792932

  17. Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects.

    PubMed

    Hong, Yoo Jin; Park, Chul Hwan; Kim, Young Jin; Hur, Jin; Lee, Hye-Jeong; Hong, Sae Rom; Suh, Young Joo; Greiser, Andreas; Paek, Mun Young; Choi, Byoung Wook; Kim, Tae Hoon

    2015-06-01

    To evaluate whether the extracellular volume fraction (ECV) measured using cardiac magnetic resonance (CMR) imaging can detect myocardial tissue changes in dilated cardiomyopathy (DCM) without late gadolinium enhancement (LGE). Forty-one DCM patients and 10 healthy volunteers underwent pre- and post-T1 mapping using a modified Look-Locker Inversion recovery sequence, LGE, and cine MRI on a 3-T CMR system. LGE-MR findings were used to divide DCM patients into two groups: Group A had no apparent LGE, and Group B had LGE apparent in at least one segment. The ECV of the left ventricle (LV) myocardium (16 segments) was calculated in the short-axis view as follows: ECV = [(ΔR1 of myocardium/ΔR1 of LV blood pool)] × (1 - hematocrit), where R1 = 1/T1, ΔR1 = post-contrast R1 - pre-contrast R1. The LV ejection fraction (LVEF) was obtained from cine MRI images. The mean myocardial ECV in LGE (-) segments in Group A + B was compared to that of controls. The mean myocardial ECV in Group A was compared to that of LGE (-) segments in Group B. The correlation between LV systolic function and the mean myocardial ECV of the whole myocardium was evaluated in all groups. Among the 41 DCM patients, 22 were in Group A, and 19 were in Group B. The mean ECV of DCM patents (n = 41, 568 segments, 30.7 % ± 5.9) was significantly higher (P < 0.001) than that of the control group (n = 10, 157 segments, 25.6 % ± 3.2). The ECV was inversely related to LVEF in Group A (r = -0.551, P = 0.008), Group B (r = -0.525, P = 0.021), and Group A + B (r = -0.550, P < 0.001). The ECV measured by MRI could be a useful parameter in evaluating diffuse myocardial changes in DCM patients.

  18. Possible Involvement of F1F0-ATP synthase and Intracellular ATP in Keratinocyte Differentiation in normal skin and skin lesions

    PubMed Central

    Xiaoyun, Xie; Chaofei, Han; Weiqi, Zeng; Chen, Chen; Lixia, Lu; Queping, Liu; Cong, Peng; Shuang, Zhao; Juan, Su; Xiang, Chen

    2017-01-01

    The F1F0-ATP synthase, an enzyme complex, is mainly located on the mitochondrial inner membrane or sometimes cytomembrane to generate or hydrolyze ATP, play a role in cell proliferation. This study focused on the role of F1F0-ATP synthase in keratinocyte differentiation, and its relationship with intracellular and extracellular ATP (InATP and ExATP). The F1F0-ATP synthase β subunit (ATP5B) expression in various skin tissues and confluence-dependent HaCaT differentiation models was detected. ATP5B expression increased with keratinocyte and HaCaT cell differentiation in normal skin, some epidermis hyper-proliferative diseases, squamous cell carcinoma, and the HaCaT cell differentiation model. The impact of InATP and ExATP content on HaCaT differentiation was reflected by the expression of the differentiation marker involucrin. Inhibition of F1F0-ATP synthase blocked HaCaT cell differentiation, which was associated with a decrease of InATP content, but not with changes of ExATP. Our results revealed that F1F0-ATP synthase expression is associated with the process of keratinocyte differentiation which may possibly be related to InATP synthesis. PMID:28209970

  19. A C-Type Cytochrome and a Transcriptional Regulator Responsible for Enhanced Extracellular Electron Transfer in Geobacter Sulfurreducens Revealed by Adaptive Evolution

    DTIC Science & Technology

    2010-01-01

    A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by...better understand how Geo- bacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put... Geobacter sulfurreducens reduc- ing equivalents from the TCA cycle are oxidized by the NADH-dependent dehydrogenase (Galushko and Schink, 2000; Butler et al

  20. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  1. Extracellular purines, purinergic receptors and tumor growth

    PubMed Central

    Di Virgilio, F; Adinolfi, E

    2017-01-01

    Virtually, all tumor cells as well as all immune cells express plasma membrane receptors for extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP). The tumor microenvironment is characterized by an unusually high concentration of ATP and adenosine. Adenosine is a major determinant of the immunosuppressive tumor milieu. Sequential hydrolysis of extracellular ATP catalyzed by CD39 and CD73 is the main pathway for the generation of adenosine in the tumor interstitium. Extracellular ATP and adenosine mold both host and tumor responses. Depending on the specific receptor activated, extracellular purines mediate immunosuppression or immunostimulation on the host side, and growth stimulation or cytotoxicity on the tumor side. Recent progress in this field is providing the key to decode this complex scenario and to lay the basis to harness the potential benefits for therapy. Preclinical data show that targeting the adenosine-generating pathway (that is, CD73) or adenosinergic receptors (that is, A2A) relieves immunosuppresion and potently inhibits tumor growth. On the other hand, growth of experimental tumors is strongly inhibited by targeting the P2X7 ATP-selective receptor of cancer and immune cells. This review summarizes the recent data on the role played by extracellular purines (purinergic signaling) in host–tumor interaction and highlights novel therapeutic options stemming from recent advances in this field. PMID:27321181

  2. Imaging Adenosine Triphosphate (ATP)

    PubMed Central

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-01-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provides valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific for ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies that are available to visualize ATP in living cells and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  3. Chronic treatment with zinc and antidepressants induces enhancement of presynaptic/extracellular zinc concentration in the rat prefrontal cortex

    PubMed Central

    Sowa-Kućma, Magdalena; Kowalska, Magdalena; Szlósarczyk, Marek; Gołembiowska, Krystyna; Opoka, Włodzimierz; Baś, Bogusław; Pilc, Andrzej

    2010-01-01

    Zinc exhibits antidepressant-like activity in preclinical tests/models. Moreover, zinc homeostasis is implicated in the pathophysiology of affective disorders. The aim of the present study was to examine the effect of chronic zinc, citalopram and imipramine intraperitoneal administration on the presynaptic and extracellular zinc concentration in the rat prefrontal cortex and hippocampus. We used two methods: zinc–selenium histochemistry (which images the pool of presynaptic-vesicle zinc) and anodic stripping voltammetry (ASV) for zinc determination in microdialysate (which assays the extracellular zinc concentration). We report that chronic (14×) zinc (hydroaspartate, 10 and 65 mg/kg) and citalopram (20 mg/kg) administration increased the pool of presynaptic zinc (by 34, 50 and 37%, respectively) in the rat prefrontal cortex. The 21% increase induced by imipramine (20 mg/kg) was marginally significant. Likewise, zinc (hydroaspartate, 65 mg/kg), citalopram and imipramine increased the extracellular zinc (although with a different pattern: time point, area under the curve and/or basal level) in this brain region. Furthermore, zinc induced an increase in presynaptic (by 65%) and extracellular zinc (by 90%) in the hippocampus, while both citalopram and imipramine did not. These results indicate that all of the treatments increase presynaptic/extracellular zinc concentrations in the rat prefrontal cortex, which may then contribute to their antidepressant mechanisms. Alterations induced by zinc (but not antidepressants) administration in the hippocampus may be related to specific zinc mechanisms. All the data (previous and present) on the effect of antidepressant treatments on the presynaptic/extracellular zinc concentrations suggest the involvement of this biometal presynaptic/synaptic homeostasis in the antidepressant mechanism(s). PMID:20532950

  4. (*) Tissue-Specific Extracellular Matrix Enhances Skeletal Muscle Precursor Cell Expansion and Differentiation for Potential Application in Cell Therapy.

    PubMed

    Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony

    2017-08-01

    Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle

  5. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    PubMed Central

    2011-01-01

    Background Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. Methods We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. Results We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is β1-integrin/FAK mediated. Conclusion Cancer cell invasiveness can be affected by

  6. Salt shock enhances the expression of ZrATP2, the gene for the mitochondrial ATPase beta subunit of Zygosaccharomyces rouxii.

    PubMed

    Watanabe, Yasuo; Hirasaki, Masataka; Tohnai, Naoko; Yagi, Kohsaku; Abe, Shunnosuke; Tamai, Youichi

    2003-01-01

    In the course of a study of cell wall proteins from the salt-tolerant yeast Zygosaccharomyces rouxii, a protein that increased its expression as the NaCl concentration of the culture medium increased was identified. Several degenerate primers were constructed based on partial amino acid sequences of this protein and were used in PCR amplification of a gene termed ZrATP2. The amino acid sequence deduced from nucleotide sequence of the gene revealed that ZrATP2 encodes the beta subunit of mitochondrial F1 ATPase. Northern blot analysis demonstrated that NaCl shock induced an elevation in ZrATP2 expression, which corresponded with the resumption of Z. rouxii cell growth after salt shock.

  7. Local detection of mechanically induced ATP release from bone cells with ATP microbiosensors.

    PubMed

    Hecht, Elena; Liedert, Astrid; Ignatius, Anita; Mizaikoff, Boris; Kranz, Christine

    2013-06-15

    The mechanically induced release of adenosine-5'-triphosphate (ATP) from osteoblastic cells (MC3T3-E1) was measured in real time. A stretching device integrated into scanning electrochemical microscopy was developed to apply controlled mechanical strain to MC3T3-E1 cells. For ATP secretion, a stepwise yet uniform mechanical stress was imposed onto MC3T3-E1 cells. The ATP biosensors were positioned at a distance of approximately 30-40 μm above the cell surface. Calibration functions were recorded prior to the cell measurements and revealed a linear response up to 40 μM with a sensitivity of 1-5pA/μM ATP. Stretching MC3T3-E1 cells up to 21% resulted in a concentration of 30.57±4.82 μM of extracellular ATP (N=12) detected above the cell surface. As a control experiment, nifedipine, a L-type voltage sensitive calcium channel (L-VSCC) inhibitor was applied, which blocks Ca(2+)entry from the outer medium into the cell. Inhibition resulted in a significantly smaller amount of released ATP, i.e., 7.08±1.93 μM ATP (N=10). Further control experiments with glucose microbiosensors did not yield significant changes of the baseline current (N=8). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor.

    PubMed

    La, Thuy; Clark-Walker, George Desmond; Wang, Xiaowen; Wilkens, Stephan; Chen, Xin Jie

    2013-11-01

    F(1)-ATPase is a rotary molecular machine with a subunit stoichiometry of α(3)β(3)γ(1)δ(1)ε(1). It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α(3)β(3) core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F(1)-ATPase have suggested that the α(3)β(3) core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F(1)-ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρ(o)) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F(1) complexes retained 21.7 to 44.6% of the native F(1)-ATPase activity. The γ-less F(1) subcomplex was assembled but was structurally and functionally labile in vitro. Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρ(o) conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α(3)β(3) subcomplex.

  9. Enhancing extracellular lipolytic enzyme production in an arctic bacterium, Psychrobacter sp. ArcL13, by using statistical optimization and fed-batch fermentation.

    PubMed

    Kim, Sunghui; Wi, Ah Ram; Park, Ha Ju; Kim, Dockyu; Kim, Han-Woo; Yim, Joung Han; Han, Se Jong

    2015-01-01

    A strain isolated from seawater samples in the Chuckchi Sea and exhibiting extracellular lipolytic activity was identified using 16S rRNA gene sequence analysis as Psychrobacter sp. ArcL13. The lipolytic enzyme exhibited cold-active properties and high hydrolytic activity toward p-nitrophenyl caprylate (C8), p-nitrophenyl decanoate (C10), and sunflower oil. Statistical optimization of the medium components was performed to enhance the production of cold-active extracellular lipolytic activity. Glucose, yeast extract (YE), and NaCl were selected as the main efficient nutrient sources. Fed-batch fermentation using optimized medium with concentrated YE as the main feeding material showed a maximum lipolytic activity of 10.7 U/mL, which was a 21-fold increase in production over unoptimized flask culture conditions. The information obtained in the present study could prove applicable to the production of cold-active lipase on a large scale.

  10. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  11. A taste for ATP: neurotransmission in taste buds.

    PubMed

    Kinnamon, Sue C; Finger, Thomas E

    2013-12-18

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells.

  12. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    PubMed

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  13. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.

    PubMed Central

    McNicholas, C M; Guggino, W B; Schwiebert, E M; Hebert, S C; Giebisch, G; Egan, M E

    1996-01-01

    We demonstrate here that coexpression of ROMK2, an inwardly rectifying ATP-sensitive renal K+ channel (IKATP) with cystic fibrosis transmembrane regulator (CFTR) significantly enhances the sensitivity of ROMK2 to the sulfonylurea compound glibenclamide. When expressed alone, ROMK2 is relatively insensitive to glibenclamide. The interaction between ROMK2, CFTR, and glibenclamide is modulated by altering the phosphorylation state of either ROMK2, CFTR, or an associated protein, as exogenous MgATP and the catalytic subunit of protein kinase A significantly attenuate the inhibitory effect of glibenclamide on ROMK2. Thus CFTR, which has been demonstrated to interact with both Na+ and Cl- channels in airway epithelium, modulates the function of renal ROMK2 K+ channels. PMID:8755607

  14. Microglial migration mediated by ATP-induced ATP release from lysosomes.

    PubMed

    Dou, Ying; Wu, Hang-jun; Li, Hui-quan; Qin, Song; Wang, Yin-er; Li, Jing; Lou, Hui-fang; Chen, Zhong; Li, Xiao-ming; Luo, Qing-ming; Duan, Shumin

    2012-06-01

    Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system. Attracted by factors released from damaged cells, microglia are recruited towards the damaged or infected site, where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris. ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury. However, the mechanisms of the long-range migration of microglia remain to be clarified. Here, we found that lysosomes in microglia contain abundant ATP and exhibit Ca(2+)-dependent exocytosis in response to various stimuli. By establishing an efficient in vitro chemotaxis assay, we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia, a response that was significantly inhibited in microglia treated with an agent inducing lysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice), a small GTPase required for the trafficking and exocytosis of secretory lysosomes. These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis, thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.

  15. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts.

    PubMed

    O-Uchi, Jin; Jhun, Bong Sook; Hurst, Stephen; Bisetto, Sara; Gross, Polina; Chen, Ming; Kettlewell, Sarah; Park, Jongsun; Oyamada, Hideto; Smith, Godfrey L; Murayama, Takashi; Sheu, Shey-Shing

    2013-12-01

    Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.

  16. ATP protects, by way of receptor-mediated mechanisms, against hypoxia-induced injury in renal proximal tubules.

    PubMed

    Kribben, Andreas; Feldkamp, Thorsten; Horbelt, Markus; Lange, Bettina; Pietruck, Frank; Herget-Rosenthal, Stefan; Heemann, Uwe; Philipp, Thomas

    2003-01-01

    We examined the effect of ATP on hypoxia-induced injury in freshly isolated rat renal proximal tubules and compared it with the effects of stable ATP analogues and ATP degradation products. Extracellular ATP significantly reduced hypoxia-induced structural cell damage (lactate dehydrogenase release). P(2)-receptor agonistic ATP analogues, including 2'-methylthio-ATP (2-Me-S-ATP), were also protective. In contrast, the P(1)-agonistic degradation products AMP and adenosine were not protective. Hypoxia-induced functional cell damage (loss of cellular potassium) was not changed by ATP or 2-Me-S-ATP. We therefore conclude that the protective property of ATP is not based on an effect of the degradation products or on a direct effect on cellular energy metabolism. The data indicate that the protective effect of ATP is mediated by P(2) receptors.

  17. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels.

    PubMed

    Riquelme, Manuel A; Cea, Luis A; Vega, José L; Boric, Mauricio P; Monyer, Hannah; Bennett, Michael V L; Frank, Marina; Willecke, Klaus; Sáez, Juan C

    2013-12-01

    During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.

  18. Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice.

    PubMed

    Schreiber, Jenny; Schachner, Melitta; Schumacher, Udo; Lorke, Dietrich Ernst

    2013-10-01

    The extracellular matrix glycoprotein tenascin-C has been implicated in wound repair and axonal growth. Its role in mammalian spinal cord injury is largely unknown. In vitro it can be both neurite-outgrowth promoting and repellent. To assess its effects on glial reactions, extracellular matrix formation, and axonal regrowth/sprouting in vivo, 20 tenascin-C-deficient and 20 wild type control mice underwent lumbar spinal cord hemisection. One, three, seven and fourteen days post-surgery, cryostat sections of the spinal cord were examined by conventional histology and by immunohistochemistry using antibodies against F4/80 (microglia/macrophage), GFAP (astroglia), neurofilament, fibronectin, laminin and collagen type IV. Fibronectin immunoreactivity was significantly down-regulated in tenascin-C-deficient mice. Moreover, fourteen days after injury, immunodensity of neurofilament-positive fibers was two orders of magnitude higher along the incision edges of tenascin-C-deficient mice as compared to control mice. In addition, lymphocyte infiltration was seen two days earlier in tenascin-C-deficient mice than in control mice and neutrophil infiltration was increased seven days after injury. The increase in thin neurofilament positive fibers in tenascin-C-deficient mice indicates that lack of tenascin-C alters the inflammatory reaction and extracellular matrix composition in a way that penetration of axonal fibers into spinal cord scar tissue may be facilitated.

  19. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  20. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content.

    PubMed

    Huo, Minbo; Zheng, Guanyu; Zhou, Lixiang

    2014-09-01

    Contribution rates of factors controlling sludge dewaterability during bioleaching, such as sludge pH, microbial quantity, extracellular polymeric substances (EPS), etc., were investigated in this study. Results showed that the dewaterability of bioleached sludge was jointly enhanced by the growth of Acidithiobacillus sp., the increase of Fe(3+) concentration, the decreases of sludge pH, heterotrophic microorganism quantity change, and the decreases of EPS and bound water contents. Ridge regression analysis further revealed that the contribution rates of microbial quantity change, bound water content and slime EPS content on sludge dewaterability enhancement were 32.50%, 24.24%, and 22.37%, respectively, all of which are dominant factors. Therefore, the enhancement of sludge dewaterability was mainly controlled by microbial quantity change and the decrease of bound water and slime EPS contents during bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Interaction between thapsigargin and ATP4- in the regulation of the intracellular calcium in rat submandibular glands.

    PubMed

    Métioui, M; Grosfils, K; Dehaye, J P

    1994-11-01

    Rat submandibular glands were digested with crude collagenase, and the intracellular calcium concentration of the cellular suspension was measured using fura-2. In the absence of extracellular magnesium and calcium ([Ca2+]o), ATP had no effect; the response to ATP peaked at 1-2.5 mM [Ca2+]o and was inhibited at 5 mM. One millimolar (mM) extracellular ATP did not increase the leak of LDH or fura-2; 10 microM Coomassie brilliant blue G specifically inhibited the effect of ATP on [Ca2+]in. Depleting intracellular calcium pools with thapsigargin did not affect the response to ATP. Using a Ca(2+)-free/Ca2+ reintroduction protocol, it was shown that ATP and thapsigargin increase the uptake of extracellular calcium. The effect of the two agonists was synergistic. Removal of extracellular sodium inhibited the effect of carbachol on [Ca2+]in and the calcium uptake but potentiated the response to ATP. These results suggest that, after binding to purinergic receptors, extracellular ATP4- increases [Ca2+]in. ATP4- does not mobilize thapsigargin-sensitive intracellular calcium pools (among which is the IP3-sensitive calcium pool) but stimulates the uptake of extracellular calcium by a mechanism inhibited by extracellular sodium, probably by opening a nonselective cation channel.

  2. The Second Extracellular Loop of Pore-Forming Subunits of ATP-Binding Cassette Transporters for Basic Amino Acids Plays a Crucial Role in Interaction with the Cognate Solute Binding Protein(s)▿

    PubMed Central

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-01-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)2 complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP2 of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P2 variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM. PMID:20154136

  3. The second extracellular loop of pore-forming subunits of ATP-binding cassette transporters for basic amino acids plays a crucial role in interaction with the cognate solute binding protein(s).

    PubMed

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-04-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)(2) complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP(2) of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P(2) variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM.

  4. Radioprotective effects of ATP in human blood ex vivo

    SciTech Connect

    Swennen, Els L.R. Dagnelie, Pieter C.; Van den Beucken, Twan; Bast, Aalt

    2008-03-07

    Damage to healthy tissue is a major limitation of radiotherapy treatment of cancer patients, leading to several side effects and complications. Radiation-induced release of pro-inflammatory cytokines is thought to be partially responsible for the radiation-associated complications. The aim of the present study was to investigate the protective effects of extracellular ATP on markers of oxidative stress, radiation-induced inflammation and DNA damage in irradiated blood ex vivo. ATP inhibited radiation-induced TNF-{alpha} release and increased IL-10 release. The inhibitory effect of ATP on TNF- {alpha} release was completely reversed by adenosine 5'-O-thiomonophosphate, indicating a P2Y{sub 11} mediated effect. Furthermore, ATP attenuated radiation-induced DNA damage immediate, 3 and 6 h after irradiation. Our study indicates that ATP administration alleviates radiation-toxicity to blood cells, mainly by inhibiting radiation-induced inflammation and DNA damage.

  5. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate.

    PubMed

    Calderon-Aparicio, Ali; Strasberg-Rieber, Mary; Rieber, Manuel

    2015-10-06

    Cu/Zn superoxide dismutases (SODs) like the extracellular SOD3 and cytoplasmic SOD1 regulate cell proliferation by generating hydrogen peroxide (H2O2). This pro-oxidant inactivates essential cysteine residues in protein tyrosine phosphatases (PTP) helping receptor tyrosine kinase activation by growth factor signaling, and further promoting downstream MEK/ERK linked cell proliferation. Disulfiram (DSF), currently in clinical cancer trials is activated by copper chelation, being potentially capable of diminishing the copper dependent activation of MEK1/2 and SOD1/SOD3 and promoting reactive oxygen species (ROS) toxicity. However, copper (Cu) overload may occur when co-administered with DSF, resulting in toxicity and mutagenicity against normal tissue, through generation of the hydroxyl radical (•OH) by the Fenton reaction. To investigate: a) whether sub-toxic DSF efficacy can be increased without Cu overload against human melanoma cells with unequal BRAF(V600E) mutant status and Her2-overexpressing SKBR3 breast cancer cells, by increasing H2O2 from exogenous SOD; b) to compare the anti-tumor efficacy of DSF with that of another clinically used copper chelator, tetrathiomolybdate (TTM). a) without copper supplementation, exogenous SOD potentiated sub-toxic DSF toxicity antagonized by sub-toxic TTM or by the anti-oxidant N-acetylcysteine; b) exogenous glucose oxidase, another H2O2 generator resembled exogenous SOD in potentiating sub-toxic DSF. potentiation of sub-lethal DSF toxicity by extracellular H2O2 against the human tumor cell lines investigated, only requires basal Cu and increased ROS production, being unrelated to non-specific or TTM copper chelator sequestration. These findings emphasize the relevance of extracellular H2O2 as a novel mechanism to improve disulfiram anticancer effects minimizing copper toxicity.

  6. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    SciTech Connect

    Gruenhagen, Jason Alan

    2003-01-01

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K+ and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol

  7. ATP and potassium ions: a deadly combination for astrocytes

    NASA Astrophysics Data System (ADS)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  8. Customized ATP towpreg

    NASA Astrophysics Data System (ADS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  9. Modulation of extracellular GABA levels in the retina by activation of glial P2X-purinoceptors.

    PubMed

    Neal, M J; Cunningham, J R; Dent, Z

    1998-05-01

    1. In the rat retina, gamma-aminobutyric acid (GABA) released as a transmitter is inactivated by uptake mainly into glial cells (Müller cells). Activation of P2-purinoceptors in Müller cells increases [Ca2+]i and the present study was undertaken to see whether this action affected the glial release of [3H]-GABA from the superfused rat isolated retina. 2. Adenosine 5'-triphosphate (ATP) and the P2X-purinoceptor agonists, alpha,beta-methylene-ATP (alpha,beta-meATP) and beta,gamma-methyleneATP (beta,gamma-meATP) significantly increased the KCl-evoked release of [3H]-GABA from the retina. 3. Adenosine and the P2Y-purinoceptor agonist, 2-chloroATP, had no effect on the KCl-evoked release of [3H]-GABA from the retina. However, 2-methylthioATP (2-Me-S-ATP) significantly enhanced the evoked release of [3H]-GABA. 4. The effect of ATP on the glial release of [3H]-GABA was abolished by the P2-antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). 5. When the superfused retina was exposed to the GABA uptake inhibitor, SKF89976A, the enhancing effect of alpha,beta-meATP on the KCl-evoked release of GABA was abolished. 6. The KCl-evoked release of [3H]-GABA from the frog retina and rat cerebrocortical slices, which take up GABA mainly into neurones, was not affected by ATP or alpha,beta-meATP. 7. We concluded that the glial Müller cells in the rat retina possess P2-receptors, activation of which increases the 'release' of preloaded [3H]-GABA apparently by reducing uptake. On balance, the results suggest the involvement of P2X-purinoceptors, although we cannot exclude the possibility that P2Y-purinoceptors may be involved. Our results suggest that ATP, as well as being a conventional transmitter in the retina, may be involved in neuronal-glial signalling and modulate the extracellular concentration of GABA.

  10. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    PubMed Central

    Baaske, Romina; Richter, Mandy; Möller, Nils; Ziesemer, Sabine; Eiffler, Ina; Müller, Christian; Hildebrandt, Jan-Peter

    2016-01-01

    Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla). This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins) activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L), which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin. PMID:27929417

  11. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells.

  12. Controlled Delivery of Extracellular ROS Based on Hematoporphyrin-Incorporated Polyurethane Film for Enhanced Proliferation of Endothelial Cells.

    PubMed

    Koo, Min-Ah; Kim, Bong-Jin; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Min Sung; Seon, Gyeung Mi; Kim, Dohyun; Nam, Ki Chang; Wang, Kangkyun; Kim, Yong-Rok; Park, Jong-Chul

    2016-10-04

    The principle of photodynamic treatment (PDT) involves the administration of photosensitizer (PS) at diseased tissues, followed by light irradiation to produce reactive oxygen species (ROS). In cells, a moderate increase in ROS plays an important role as signaling molecule to promote cell proliferation, whereas a severe increase of ROS causes cell damage. Previous studies have shown that low levels of ROS stimulate cell growth through PS drugs-treating PDT and non-thermal plasma treatment. However, these methods have side effects which are associated with low tissue selectivity and remaining of PS residues. To overcome such shortcomings, we designed hematoporphyrin-incorporated polyurethane (PU) film induced generation of extracellular ROS with singlet oxygen and free radicals. The film can easily control ROS production rate by regulating several parameters including light dose, PS dose. Also, its use facilitates targeted delivery of ROS to the specific lesion. Our study demonstrated that extracellular ROS could induce the formation of intracellular ROS. In vascular endothelial cells, a moderated increase in intracellular ROS also stimulated cell proliferation and cell cycle progression by accurate control of optimum levels of ROS with hematoporphyrin-incorporated polymer films. This modulation of cellular growth is expected to be an effective strategy for the design of next generation PDT.

  13. Elevated Pressure Triggers a Physiological Release of ATP from the Retina: Possible Role for Pannexin Hemichannels

    PubMed Central

    Reigada, David; Lu, Wennan; Zhang, May; Mitchell, Claire H.

    2008-01-01

    Increased hydrostatic pressure can damage neurons, although the mechanisms linking pressure to neurochemical imbalance or cell injury are not fully established. Throughout the body, mechanical perturbations such as shear stress, cell stretching, or changes in pressure can lead to excessive release of ATP. It is thus possible that increased pressure across neural tissues triggers an elevated release of ATP into extracellular space. As stimulation of the P2X7 receptor for ATP on retinal ganglion cells leads to elevation of intracellular calcium and excitotoxic death, we asked whether increased levels of extracellular ATP accompanied an elevation in pressure across the retina. The hydrostatic pressure surrounding bovine retinal eyecups was increased and the ATP content of the vitreal compartment adjacent to the retina was determined. A step increase of only 20 mmHg induced a three-fold increase in the vitreal ATP concentration. The ATP levels correlated closely with the degree of pressure increase over 20–100 mmHg range. The increase was transient at lower pressures but sustained at higher pressures. The rise in vitreal ATP was the same regardless of whether nitrogen or air was used to increase pressure, implying changes in oxygen partial pressure did not contribute. Lactate dehydrogenase activity was not affected by pressure, ruling out a substantial contribution from cell lysis. The ATP increase was largely inhibited by either 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or carbenoxolone (CBX). While this is consistent with physiological release of ATP through pannexins hemichannels, a contribution from anion channels, vesicular release or other mechanisms cannot be ruled out. In conclusion, a step elevation in pressure leads to a physiologic increase in the levels of extracellular ATP bathing retinal neurons. This excess extracellular ATP may link increased pressure to the death of ganglion cells in acute glaucoma, and suggests a role for ATP in the

  14. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.

    PubMed

    Lockwood, Sarah Y; Erkal, Jayda L; Spence, Dana M

    2014-04-30

    Red blood cells (RBCs) release adenosine triphosphate (ATP) in response to a variety of stimuli, including flow-induced deformation. Hydroxyurea (HU), a proven therapy for individuals with sickle cell disease (SCD), is known to improve blood flow. However, the exact mechanism leading to the improved blood flow is incomplete. Here, we report that the incubation of human RBCs with HU enhances ATP release from these cells and that this ATP is capable of stimulating nitric oxide (NO) production in an endothelium. RBCs incubated with HU were pumped through micron-size flow channels in a microfluidic device. The release of ATP from the RBCs was measured using the luciferin-luciferase assay in detection wells on the device that were separated from the flow channels by a porous polycarbonate membrane. NO released from a layer of bovine artery endothelial cells (bPAECs) cultured on the polycarbonate membrane was also measured using the extracellular NO probe DAF-FM. ATP release from human RBCs incubated with 100 μM HU was observed to be 2.06±0.37-fold larger than control samples without HU (p<0.05, N ≥ 3). When HU-incubated RBCs were flowed under a layer of bPAECs, NO released from the bPAEC layer was measured to be 1.34±0.10-fold higher than controls. An antagonist of the P2Y receptor established that this extra 30% increase in NO release is ATP mediated. Furthermore, when RBCs were incubated with L-NAME, a significant decrease in endothelium-derived NO production was observed. Control experiments suggest that RBC-generated NO indirectly affects endothelial NO production via its effects on RBC-derived ATP release.

  15. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate

    PubMed Central

    Calderon-Aparicio, Ali; Strasberg-Rieber, Mary; Rieber, Manuel

    2015-01-01

    Highlights exogenous SOD increases apoptosis by sub-toxic disulfiram without copper overload H2O2 generation from glucose oxidase also potentiates disulfiram toxicity N-acetylcysteine suppresses antitumor potentiation of DSF by H2O2 generation sub-toxic tetrathiomolybdate inhibits potentiation of DSF by SOD Background Cu/Zn superoxide dismutases (SODs) like the extracellular SOD3 and cytoplasmic SOD1 regulate cell proliferation by generating hydrogen peroxide (H2O2). This pro-oxidant inactivates essential cysteine residues in protein tyrosine phosphatases (PTP) helping receptor tyrosine kinase activation by growth factor signaling, and further promoting downstream MEK/ERK linked cell proliferation. Disulfiram (DSF), currently in clinical cancer trials is activated by copper chelation, being potentially capable of diminishing the copper dependent activation of MEK1/2 and SOD1/SOD3 and promoting reactive oxygen species (ROS) toxicity. However, copper (Cu) overload may occur when co-administered with DSF, resulting in toxicity and mutagenicity against normal tissue, through generation of the hydroxyl radical (•OH) by the Fenton reaction. Purpose To investigate: a) whether sub-toxic DSF efficacy can be increased without Cu overload against human melanoma cells with unequal BRAF(V600E) mutant status and Her2-overexpressing SKBR3 breast cancer cells, by increasing H2O2from exogenous SOD; b) to compare the anti-tumor efficacy of DSF with that of another clinically used copper chelator, tetrathiomolybdate (TTM) Results a) without copper supplementation, exogenous SOD potentiated sub-toxic DSF toxicity antagonized by sub-toxic TTM or by the anti-oxidant N-acetylcysteine; b) exogenous glucose oxidase, another H2O2 generator resembled exogenous SOD in potentiating sub-toxic DSF. Conclusions potentiation of sub-lethal DSF toxicity by extracellular H2O2 against the human tumor cell lines investigated, only requires basal Cu and increased ROS production, being unrelated to non

  16. ROLE OF ATP IN REGULATING RENAL MICROVASCULAR FUNCTION AND IN HYPERTENSION

    PubMed Central

    Guan, Zhengrong; Inscho, Edward W.

    2011-01-01

    Adenosine triphosphate (ATP) is an essential energy substrate for cellular metabolism but it can also influence many biological processes when released into the extracellular milieu. Research has established that extracellular ATP acts as an autocrine/paracrine factor that regulates many physiological functions. Alternatively, excessive extracellular ATP levels contribute to pathophysiological processes such as inflammation, cell proliferation and apoptosis, and atherosclerosis. Renal P2 receptors are widely distributed throughout glomeruli, vasculature and tubular segments, and participate in controlling renal vascular resistance, mediating renal autoregulation, and regulating tubular transport function. This review will focus on the role of ATP-P2 receptor signaling in regulating renal microvascular function and autoregulation, recent advances on the role of ATP-P2 signaling in hypertension-associated renal vascular injury, and emerging new directions. PMID:21768526

  17. Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions.

    PubMed

    Voulgaris, Ioannis; Finka, Gary; Uden, Mark; Hoare, Mike

    2015-10-01

    The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli.

  18. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate.

    PubMed

    Belchí-Navarro, Sarai; Almagro, Lorena; Lijavetzky, Diego; Bru, Roque; Pedreño, María A

    2012-01-01

    In this work, the effect of different inducing factors on trans-resveratrol extracellular production in Monastrell grapevine suspension cultured cells is evaluated. A detailed analysis provides the optimal concentrations of cyclodextrins, methyljasmonate and UV irradiation dosage, optimal cell density, elicitation time and sucrose content in the culture media. The results indicate that trans-resveratrol production decreases as the initial cell density increases for a constant elicitor concentration in Monastrell suspension cultured cells treated with cyclodextrins individually or in combination with methyljasmonate; the decrease observed in cell cultures elicited with cyclodextrins alone is far more drastic than those observed in the combined treatment. trans-Resveratrol extracellular production observed by the joint use of cyclodextrins and methyljasmonate (1,447.8 ± 60.4 μmol trans-resveratrol g(-1) dry weight) is lower when these chemical compounds are combined with UV light short exposure (669.9 ± 45.2 μmol trans-resveratrol g(-1) dry weight). Likewise, trans-resveratrol production is dependent on levels of sucrose in the elicitation medium with the maximal levels observed with 20 g l(-1) sucrose and the joint action of cyclodextrins and 100 μM methyljasmonate. The sucrose concentration did not seem to limit the process although it affects significantly the specific productivity since the lowest sucrose concentration is 10 g l(-1), the highest productivity is reached (100.7 ± 5.8 μmol trans-resveratrol g(-1) dry weight g(-1) sucrose) using cyclodextrins and 25 μM methyljasmonate.

  19. Endoplasmic reticulum is a key organella in bradykinin-triggered ATP release from cultured smooth muscle cells.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sato, Chiemi; Usune, Sadaharu; Iwamoto, Takahiro; Katsuragi, Takeshi

    2007-09-01

    ATP has broad functions as an autocrine/paracrine molecule. The mode of ATP release and its intracellular source, however, are little understood. Here we show that bradykinin via B(2)-receptor stimulation induces the extracellular release of ATP via the inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]-signaling pathway in cultured taenia coli smooth muscle cells. It was found that bradykinin also increased the production of Ins(1,4,5)P(3) and 2-APB-inhibitable [Ca(2+)](i). The evoked release of ATP was suppressed by the Ca(2+)-channel blockers, nifedipine, and verapamil. Moreover, the extracellular release of ATP was elicited by photoliberation of Ins(1,4,5)P(3). Bradykinin caused a quick and transient accumulation of intracellular ATP from cells treated with 1% perchloric acid solution (PCA), but not with the cell lysis buffer. Peak accumulation was prevented by 2-APB and thapsigargin, but not by nifedipine or verapamil, inhibitors of extracellular release of ATP. These findings suggest that bradykinin elicits the extracellular release of ATP that is mediated by the Ins(1,4,5)P(3)-induced Ca(2+) signaling and, finally, leads to a Ca(2+)-dependent export of ATP from the cells. Furthermore, the bradykinin-induced transient accumulation of ATP in the cells treated with PCA may imply a possible release of ATP from the endoplasmic reticulum.

  20. Extracellular nucleotide signaling in plants

    SciTech Connect

    Stacey, Gary

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  1. Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate.

    PubMed

    Briceño, Zuleika; Almagro, Lorena; Sabater-Jara, Ana B; Calderón, Antonio A; Pedreño, María Angeles; Ferrer, María Angeles

    2012-07-15

    Suspension-cultured cells of Solanum lycopersicum cv Micro-Tom were used to evaluate the effect of methyl jasmonate and cyclodextrins, separately or in combination, on the induction of defense responses. An extracellular accumulation of two sterols (isofucosterol and β-sitosterol) and taraxasterol, a common tomato fruit cuticular triterpene, were observed. Their levels were higher in Micro-Tom tomato suspension cultured cells elicited with cyclodextrins than in control and methyl jasmonate-treated cells. Also, their accumulation profiles during the cell growth phase were markedly different. The most striking feature in response to cyclodextrin treatments was the observed enhancement of taraxasterol accumulation. Likewise, the exogenous application of methyl jasmonate and cyclodextrins induced the accumulation of pathogenesis-related proteins. Analysis of the extracellular proteome showed the presence of amino acid sequences homologous to pathogenesis-related 1 and 5 proteins, a cationic peroxidase and a biotic cell death-associated protein, which suggests that methyl jasmonate and cyclodextrins could play a role in mediating defense-related gene product expression in S. lycopersicum cv Micro-Tom. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes.

    PubMed

    Kamidate, Tamio; Yanashita, Kenji; Tani, Hirofumi; Ishida, Akihiko; Notani, Mizuyo

    2006-01-01

    Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes.

  3. Fucoidan from Fucus vesiculosus suppresses hepatitis B virus replication by enhancing extracellular signal-regulated Kinase activation.

    PubMed

    Li, Huifang; Li, Junru; Tang, Yuan; Lin, Lin; Xie, Zhanglian; Zhou, Jia; Zhang, Liyun; Zhang, Xiaoyong; Zhao, Xiaoshan; Chen, Zhengliang; Zuo, Daming

    2017-09-16

    Hepatitis B virus (HBV) infection is a serious public health problem leading to cirrhosis and hepatocellular carcinoma. As the clinical utility of current therapies is limited, the development of new therapeutic approaches for the prevention and treatment of HBV infection is imperative. Fucoidan is a natural sulfated polysaccharide that extracted from different species of brown seaweed, which was reported to exhibit various bioactivities. However, it remains unclear whether fucoidan influences HBV replication or not. The HBV-infected mouse model was established by hydrodynamic injection of HBV replicative plasmid, and the mice were treated with saline or fucoidan respectively. Besides, we also tested the inhibitory effect of fucoidan against HBV infection in HBV-transfected cell lines. The result showed that fucoidan from Fucus vesiculosus decreased serum HBV DNA, HBsAg and HBeAg levels and hepatic HBcAg expression in HBV-infected mice. Moreover, fucoidan treatment also suppressed intracellular HBcAg expression and the secretion of the HBV DNA as well as HBsAg and HBeAg in HBV-expressing cells. Furthermore, we proved that the inhibitory activity by fucoidan was due to the activation of the extracellular signal-regulated kinase (ERK) pathway and the subsequent production of type I interferon. Using specific inhibitor of ERK pathway abrogated the fucoidan-mediated inhibition of HBV replication. This study highlights that fucoidan might be served as an alternative therapeutic approach for the treatment of HBV infection.

  4. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury

    PubMed Central

    Saha, Subhrajit; Aranda, Evelyn; Hayakawa, Yoku; Bhanja, Payel; Atay, Safinur; Brodin, N Patrik; Li, Jiufeng; Asfaha, Samuel; Liu, Laibin; Tailor, Yagnesh; Zhang, Jinghang; Godwin, Andrew K.; Tome, Wolfgang A.; Wang, Timothy C.; Guha, Chandan; Pollard, Jeffrey W.

    2016-01-01

    WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation. PMID:27734833

  5. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia

    PubMed Central

    Moorthy, Anandi Narayana; Rai, Prashant; Jiao, Huipeng; Wang, Shi; Tan, Kong Bing; Qin, Liang; Watanabe, Hiroshi; Zhang, Yongliang; Teluguakula, Narasaraju; Chow, Vincent Tak Kwong

    2016-01-01

    Neutrophil extracellular traps (NETs) are released by activated neutrophils to ensnare and kill microorganisms. NETs have been implicated in tissue injury since they carry cytotoxic components of the activated neutrophils. We have previously demonstrated the generation of NETs in infected murine lungs during both primary pneumococcal pneumonia and secondary pneumococcal pneumonia after primary influenza. In this study, we assessed the correlation of pneumococcal capsule size with pulmonary NETs formation and disease severity. We compared NETs formation in the lungs of mice infected with three pneumococcal strains of varying virulence namely serotypes 3, 4 and 19F, as well as a capsule-deficient mutant of serotype 4. In primary pneumonia, NETs generation was strongly associated with the pneumococcal capsule thickness, and was proportional to the disease severity. Interestingly, during secondary pneumonia after primary influenza infection, intense pulmonary NETs generation together with elevated myeloperoxidase activity and cytokine dysregulation determined the disease severity. These findings highlight the crucial role played by the size of pneumococcal capsule in determining the extent of innate immune responses such as NETs formation that may contribute to the severity of pneumonia. PMID:27034012

  6. Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Tutak, Wojtek; Park, Ki Ho; Vasilov, Anatoly; Starovoytov, Valentin; Fanchini, Giovanni; Cai, Shi-Qing; Partridge, Nicola C.; Sesti, Federico; Chhowalla, Manish

    2009-06-01

    A central effort in biomedical research concerns the development of materials for sustaining and controlling cell growth. Carbon nanotube based substrates have been shown to support the growth of different kinds of cells (Hu et al 2004 Nano Lett. 4 507-11 Kalbacova et al 2006 Phys. Status Solidi b 13 243; Zanello et al 2006 Nano Lett. 6 562-7) however the underlying molecular mechanisms remain poorly defined. To address the fundamental question of mechanisms by which nanotubes promote bone mitosis and histogenesis, primary calvariae osteoblastic cells were grown on single-walled carbon nanotube thin film (SWNT) substrates. Using a combination of biochemical and optical techniques we demonstrate here that SWNT networks promote cell development through two distinct steps. Initially, SWNTs are absorbed in a process that resembles endocytosis, inducing acute toxicity. Nanotube-mediated cell destruction, however, induces a release of endogenous factors that act to boost the activity of the surviving cells by stimulating the synthesis of extracellular matrix.

  7. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices

    PubMed Central

    Jung, Jangwook P.; Hu, Dongjian; Domian, Ibrahim J.; Ogle, Brenda M.

    2015-01-01

    The extracellular matrix (ECM) impacts stem cell differentiation, but identifying formulations supportive of differentiation is challenging in 3D models. Prior efforts involving combinatorial ECM arrays seemed intuitively advantageous. We propose an alternative that suggests reducing sample size and technological burden can be beneficial and accessible when coupled to design of experiments approaches. We predict optimized ECM formulations could augment differentiation of cardiomyocytes derived in vitro. We employed native chemical ligation to polymerize 3D poly (ethylene glycol) hydrogels under mild conditions while entrapping various combinations of ECM and murine induced pluripotent stem cells. Systematic optimization for cardiomyocyte differentiation yielded a predicted solution of 61%, 24%, and 15% of collagen type I, laminin-111, and fibronectin, respectively. This solution was confirmed by increased numbers of cardiac troponin T, α-myosin heavy chain and α-sarcomeric actinin-expressing cells relative to suboptimum solutions. Cardiomyocytes of composites exhibited connexin43 expression, appropriate contractile kinetics and intracellular calcium handling. Further, adding a modulator of adhesion, thrombospondin-1, abrogated cardiomyocyte differentiation. Thus, the integrated biomaterial platform statistically identified an ECM formulation best supportive of cardiomyocyte differentiation. In future, this formulation could be coupled with biochemical stimulation to improve functional maturation of cardiomyocytes derived in vitro or transplanted in vivo. PMID:26687770

  8. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  9. An adaptive model for rapid and direct estimation of extravascular extracellular space in dynamic contrast enhanced MRI studies.

    PubMed

    Dehkordi, Azimeh N V; Kamali-Asl, Alireza; Ewing, James R; Wen, Ning; Chetty, Indrin J; Bagher-Ebadian, Hassan

    2017-02-14

    Extravascular extracellular space (ve ) is a key parameter to characterize the tissue of cerebral tumors. This study introduces an artificial neural network (ANN) as a fast, direct, and accurate estimator of ve from a time trace of the longitudinal relaxation rate, ΔR1 (R1  = 1/T1 ), in DCE-MRI studies. Using the extended Tofts equation, a set of ΔR1 profiles was simulated in the presence of eight different signal to noise ratios. A set of gain- and noise-insensitive features was generated from the simulated ΔR1 profiles and used as the ANN training set. A K-fold cross-validation method was employed for training, testing, and optimization of the ANN. The performance of the optimal ANN (12:6:1, 12 features as input vector, six neurons in hidden layer, and one output) in estimating ve at a resolution of 10% (error of ±5%) was 82%. The ANN was applied on DCE-MRI data of 26 glioblastoma patients to estimate ve in tumor regions. Its results were compared with the maximum likelihood estimation (MLE) of ve . The two techniques showed a strong agreement (r = 0.82, p < 0.0001). Results implied that the perfected ANN was less sensitive to noise and outperformed the MLE method in estimation of ve .

  10. Association of the α2δ1 Subunit with Cav3.2 Enhances Membrane Expression and Regulates Mechanically Induced ATP Release in MLO-Y4 Osteocytes

    PubMed Central

    Thompson, William R.; Majid, Amber S.; Czymmek, Kirk J.; Ruff, Albert L.; García, Jesús; Duncan, Randall L.; Farach-Carson, Mary C.

    2015-01-01

    Voltage sensitive calcium channels (VSCCs) mediate signaling events in bone cells in response to mechanical loading. Osteoblasts predominantly express L-type VSCCs composed of the α1 pore-forming subunit and several auxiliary subunits. Osteocytes, in contrast, express T-type VSCCs, but a relatively small amount of L-type α1 subunits. Auxiliary VSCC subunits have several functions including modulating gating kinetics, trafficking of the channel and phosphorylation events. The influence of the α2δ auxiliary subunit on T-type VSCCs and the physiological consequences of that association are incompletely understood and have yet to be investigated in bone. In this study, we postulated that the auxiliary α2δ subunit of the VSCC complex modulates mechanically-regulated ATP release in osteocytes via its association with the T-type, Cav3.2 (α1H) subunit. We demonstrated by RT-PCR, Western blotting, and immunostaining that MLO-Y4 osteocyte-like cells express the T-type, Cav3.2 (α1H) subunit more abundantly than the L-type, Cav1.2 (α1C). We also demonstrated that the α2δ1 subunit, previously described as an L-type auxiliary subunit, complexes with the T-type Cav3.2 (α1H) subunit in MLO-Y4 cells. Interestingly, siRNA mediated knockdown of α2δ1 completely abrogated ATP release in response to membrane stretch in MLO-Y4 cells. Additionally, knockdown of the α2δ1 subunit and resulted in reduced ERK1/2 activation. Together these data demonstrate a functional VSCC complex. Immunocytochemistry following α2δ1 knockdown showed decreased membrane localization of Cav3.2 (α1H) at the plasma membrane, suggesting that the diminished ATP release and ERK1/2 activation in response to membrane stretch resulted from a lack of Cav3.2 (α1H) at the cell membrane. PMID:21638318

  11. Interaction of TGA@CdTe Quantum Dots with an Extracellular Matrix of Haematococcus pluvialis Microalgae Detected Using Surface-Enhanced Raman Spectroscopy (SERS).

    PubMed

    Cepeda-Pérez, Elisa; Aguilar-Hernández, Iris; López-Luke, Tzarara; Piazza, Valeria; Carriles, Ramón; Ornelas-Soto, Nancy; de la Rosa, Elder

    2016-09-01

    The present study reports the localization and interaction of thioglycolic acid (TGA) capped CdTe quantum dots (TGA@CdTe QDs) within the extracellular matrix (ECM) of Haematococcus pluvialis (Chlorophyceae) microalgae (HPM) after an incubation period of 5 min. Changes in the Raman spectrum of HPM induced by the adsorption of the TGA@CdTe QDs are successfully found by using naked gold anisotropic structures as nano-sensors for surface-enhanced Raman scattering (SERS effect). Raman spectroscopy results show that TGA@CdTe QDs interact with the biomolecules present in the ECM. Sample preparation and characterization by complementary techniques such as confocal and electron microscopy are also used to confirm the presence and localization of the nanoparticles in the algae. This research shows new evidence on early accumulation of QDs in plant cells and would further improve our understanding about their environmental impact. © The Author(s) 2016.

  12. Interleukin-6 enhances whereas tumor necrosis factor alpha and interferons inhibit integrin expression and adhesion of human mast cells to extracellular matrix proteins.

    PubMed

    Schoeler, Dagmar; Grützkau, Andreas; Henz, Beate M; Küchler, Jens; Krüger-Krasagakis, Sabine

    2003-05-01

    Integrins are expressed on mast cells and constitute an essential prerequisite for the accumulation of the cells at sites of inflammation. In order to clarify a potential contribution of inflammatory cytokines to this process, we have studied the modulation of integrin expression and adhesion of immature human mast cells (HMC-1) to extracellular matrix proteins by interleukin-6, tumor necrosis factor alpha, interferon-alpha and interferon-gamma. Corticosteroids were used for comparison. On fluorescence-activated cell sorter analysis, preincubation of cells for 48 h with different concentrations of interleukin-6 induced a significant, up to 40%, increase of alpha v alpha 5, CD49b (alpha 2), CD49e (alpha 5), CD49f (alpha 6), and CD51 (alpha v). In contrast, different concentrations of tumor necrosis factor alpha, interferon-alpha, interferon-gamma, and dexamethasone (10-8-10-10 M) inhibited expression of adhesion receptors by up to 60%, reaching significance for some but not all integrins. On semiquantitative polymerase chain reaction analysis, interleukin-6, the other cytokines, and corticosteroids significantly modulated expression of alpha1, alpha v and alpha 5 integrin chains at mRNA level. Functional significance of these findings was proven in adhesion assays using fibronectin, laminin, and vitronectin, with interleukin-6 causing significant enhancement of adhesion in all cases, tumor necrosis factor alpha and dexamethasone inducing significant reduction of adhesion to fibronectin and laminin, and interferon-gamma significantly inhibiting adhesion to fibronectin only. Specificity of interleukin-6-induced changes was demonstrated using antibodies against alpha1 and alpha 5 integrins in unstimulated and interleukin-6-prestimulated cells. These data show that interleukin-6 stimulates mast cell adhesion to extracellular matrix and thus allows for the accumulation of the cells at tissue sites by enhancing integrin expression, whereas tumor necrosis factor alpha

  13. Enhanced Differentiation of Human Embryonic Stem Cells on Extracellular Matrix-Containing Osteomimetic Scaffolds for Bone Tissue Engineering

    PubMed Central

    Rutledge, Katy; Cheng, Qingsu; Pryzhkova, Marina; Harris, Greg M.

    2014-01-01

    Current methods of treating critical size bone defects include autografts and allografts, however, both present major limitations including donor-site morbidity, risk of disease transmission, and immune rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of autologous cells, three-dimensional scaffolds, and growth factors. We investigated the development of a scaffold with native bone extracellular matrix (ECM) components for directing the osteogenic differentiation of human embryonic stem cells (hESCs). Toward this goal, a microsphere-sintering technique was used to fabricate poly(lactic-co-glycolic acid) (PLGA) scaffolds with optimum mechanical and structural properties. Human osteoblasts (hOBs) were seeded on these scaffolds to deposit bone ECM for 14 days. This was followed by a decellularization step leaving the mineralized matrix intact. Characterization of the decellularized PLGA scaffolds confirmed the deposition of calcium, collagen II, and alkaline phosphatase by osteoblasts. hESCs were seeded on the osteomimetic substrates in the presence of osteogenic growth medium, and osteogenicity was determined according to calcium content, osteocalcin expression, and bone marker gene regulation. Cell proliferation studies showed a constant increase in number for hESCs seeded on both PLGA and ECM-coated PLGA scaffolds. Calcium deposition by hESCs was significantly higher on the osteomimetic scaffolds compared with the control groups. Consistently, immunofluorescence staining demonstrated an increased expression of osteocalcin in hESCs seeded on ECM-coated osteomimetic PLGA scaffolds. Gene expression analysis of RUNX2 and osteocalcin further confirmed osteogenic differentiation of hESCs at the highest expression level on osteomimetic PLGA. These results together demonstrate the potential of PLGA scaffolds with native bone ECM components to direct osteogenic differentiation of hESCs and induce bone formation

  14. Strategies for Enhancing the Accumulation and Retention of Extracellular Matrix in Tissue-Engineered Cartilage Cultured in Bioreactors

    PubMed Central

    Shahin, Kifah; Doran, Pauline M.

    2011-01-01

    Production of tissue-engineered cartilage involves the synthesis and accumulation of key constituents such as glycosaminoglycan (GAG) and collagen type II to form insoluble extracellular matrix (ECM). During cartilage culture, macromolecular components are released from nascent tissues into the medium, representing a significant waste of biosynthetic resources. This work was aimed at developing strategies for improving ECM retention in cartilage constructs and thus the quality of engineered tissues produced in bioreactors. Human chondrocytes seeded into polyglycolic acid (PGA) scaffolds were cultured in perfusion bioreactors for up to 5 weeks. Analysis of the size and integrity of proteoglycans in the constructs and medium showed that full-sized aggrecan was being stripped from the tissues without proteolytic degradation. Application of low (0.075 mL min−1) and gradually increasing (0.075–0.2 mL min−1) medium flow rates in the bioreactor resulted in the generation of larger constructs, a 4.0–4.4-fold increase in the percentage of GAG retained in the ECM, and a 4.8–5.2-fold increase in GAG concentration in the tissues compared with operation at 0.2 mL min−1. GAG retention was also improved by pre-culturing seeded scaffolds in flasks for 5 days prior to bioreactor culture. In contrast, GAG retention in PGA scaffolds infused with alginate hydrogel did not vary significantly with medium flow rate or pre-culture treatment. This work demonstrates that substantial improvements in cartilage quality can be achieved using scaffold and bioreactor culture strategies that specifically target and improve ECM retention. PMID:21858004

  15. FGFR-4 Arg388 enhances prostate cancer progression via extracellular signal-related kinase and serum response factor signaling

    PubMed Central

    Yu, Wendong; Feng, Shu; Dakhova, Olga; Creighton, Chad J.; Cai, Yi; Wang, Jianghua; Li, Rile; Frolov, Anna; Ayala, Gustavo; Ittmann, Michael

    2011-01-01

    Purpose Increased expression of FGFR-4 and its ligands have been linked to lethal prostate cancer (PCa). Furthermore, a germline polymorphism in the FGFR-4 gene, resulting in arginine at codon 388 (Arg388) instead of glycine (Gly388), is associated with aggressive disease. The FGFR-4 Arg388 variant results in increased receptor stability, sustained receptor activation and increased motility and invasion compared to Gly388. However, the impact of sustained signaling on cellular signal transduction pathways is unknown. Experimental Design Expression microarray analysis of immortalized prostatic epithelial cells lines expressing FGFR-4 Arg388 or Gly388 was used to establish a gene signature associated with FGFR-4 Arg388 expression. Transient transfection of reporters and inhibitors were used to establish the pathways activated by FGFR-4 Arg388 expression. The impact of pathway knockdown in vitro and in an orthotopic model was assessed using inhibitors and/or shRNA. Results Expression of the FGFR-4 Arg388 protein leads to increased activity of the extracellular signal-related kinase (ERK) pathway, increased activity of serum response factor (SRF) and AP1 and transcription of multiple genes which are correlated with aggressive clinical behavior in PCa. Increased expression of SRF is associated with biochemical recurrence in men undergoing radical prostatectomy. Consistent with these observations, knockdown of FGFR-4 Arg388 in PCa cells decreases proliferation and invasion in vitro and primary tumor growth and metastasis in vivo. Conclusions These studies define a signal transduction pathway downstream of FGFR-4 Arg388 that acts via ERK and SRF to promote prostate cancer progression. PMID:21622724

  16. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers.

    PubMed

    Xiao, F; Hrabetová, S

    2009-06-16

    Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and a real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (alpha) in the neocortex of AQP4(-/-) mice compared to AQP4(+/+) mice but no change in the hindrance imposed to diffusing molecules (tortuosity lambda). In contrast, other diffusion studies employing large molecules (dextran polymers) and a fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10%-20% in lambda in the neocortex of AQP4(-/-) mice. These conflicting findings on lambda would imply that large molecules diffuse more readily in the enlarged ECS of AQP4(-/-) mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (molecular weight [MW] 547, lambda(AF)) and two large dextran polymers (MW 3000, lambda(dex3) and MW 75,000, lambda(dex75)) in the in vitro neocortex of AQP4(+/+) and AQP4(-/-) mice. We found that lambda(AF)=1.59, lambda(dex3)=1.76 and lambda(dex75)=2.30 obtained in AQP4(-/-) mice were not significantly different from lambda(AF)=1.61, lambda(dex3)=1.76, and lambda(dex75)=2.33 in AQP4(+/+) mice. These IOI results demonstrate that lambda measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4(-/-) mice compared to values in AQP4(+/+) mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure.

  17. Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering.

    PubMed

    Rutledge, Katy; Cheng, Qingsu; Pryzhkova, Marina; Harris, Greg M; Jabbarzadeh, Ehsan

    2014-11-01

    Current methods of treating critical size bone defects include autografts and allografts, however, both present major limitations including donor-site morbidity, risk of disease transmission, and immune rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of autologous cells, three-dimensional scaffolds, and growth factors. We investigated the development of a scaffold with native bone extracellular matrix (ECM) components for directing the osteogenic differentiation of human embryonic stem cells (hESCs). Toward this goal, a microsphere-sintering technique was used to fabricate poly(lactic-co-glycolic acid) (PLGA) scaffolds with optimum mechanical and structural properties. Human osteoblasts (hOBs) were seeded on these scaffolds to deposit bone ECM for 14 days. This was followed by a decellularization step leaving the mineralized matrix intact. Characterization of the decellularized PLGA scaffolds confirmed the deposition of calcium, collagen II, and alkaline phosphatase by osteoblasts. hESCs were seeded on the osteomimetic substrates in the presence of osteogenic growth medium, and osteogenicity was determined according to calcium content, osteocalcin expression, and bone marker gene regulation. Cell proliferation studies showed a constant increase in number for hESCs seeded on both PLGA and ECM-coated PLGA scaffolds. Calcium deposition by hESCs was significantly higher on the osteomimetic scaffolds compared with the control groups. Consistently, immunofluorescence staining demonstrated an increased expression of osteocalcin in hESCs seeded on ECM-coated osteomimetic PLGA scaffolds. Gene expression analysis of RUNX2 and osteocalcin further confirmed osteogenic differentiation of hESCs at the highest expression level on osteomimetic PLGA. These results together demonstrate the potential of PLGA scaffolds with native bone ECM components to direct osteogenic differentiation of hESCs and induce bone formation.

  18. Enhancing T-DNA Transfer Efficiency in Barley (Hordeum vulgare L.) Cells Using Extracellular Cellulose and Lectin.

    PubMed

    Gürel, Filiz; Uçarlı, Cüneyt; Tufan, Feyza; Kalaskar, Deepak M

    2015-06-01

    A major limitation of transforming barley tissues by Agrobacterium tumefaciens is the low frequency of T-DNA transfer due to recalcitrance of barley as a host. The effect of extracellular cellulose and lectin on Agrobacterium transformation efficiency was investigated in this study. Barley callus cultures were transformed with the AGL1 strain containing the vector pBI121 in the presence of 10 mg mL(-1) cellulose or 0.001, 0.05 and 0.1 mg mL(-1) lectin. Addition of cellulose significantly (P ≤ 0.05) increased the number of GUS spots by 50 % compared to standard conditions in the presence of only 200 μM acetosyringone (AS). Frequency of G418-resistant aggregates on the surfaces of callus cultures was 29 and 71.5 %, following AS and AS + cellulose treatments, respectively, after 4 weeks of selection. Presence of 0.05 or 0.1 mg mL(-1) lectin also increased the number of GUS spots and frequency of G418-resistant cells in the selection period, but the increase in blue spots was not significant. We examined the effect of lectin and cellulose on bacterial attachment to callus tissues. Both cellulose and lectin were found to have a significant positive effect on the numbers of bacteria attached to barley callus. Epifluorescence microscopy revealed that Agrobacterium cells had accumulated in the scaffolds of irregular fibrous cellulose with a mean particle size of 200 μm. Expression of nptII in transformed callus lines confirmed the stable transformation of the gene. Our study showed for the first time the binding of Agrobacterium cells to fibrous cellulose and also demonstrated how polysaccharides and glycoproteins can be used to improve T-DNA transfer in monocotyledon transformation procedures.

  19. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    PubMed

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus.

    PubMed

    Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio

    2017-05-15

    Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate ((C18),) a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The use of silver-enhanced 1-nm gold probes for light and electron microscopic localization of intra- and extracellular antigens in skin.

    PubMed

    Shimizu, H; Ishida-Yamamoto, A; Eady, R A

    1992-06-01

    We used colloidal gold (1-nm diameter) with silver enhancement, in conjunction with a low-temperature post-embedding immunolabeling technique, to localize several antigens in normal skin at both the light and the electron microscopic level within the same tissue blocks. Normal skin subjected to cyrofixation and cryosubstitution and embedded in Lowicryl K11M was used as a substrate. Semi-thin sections (1 micron) were incubated in primary antibody (against epidermal basement membrane zone associated antigens and two keratin sub-types), biotinylated secondary antibodies, and then in 1-nm gold-conjugated streptavidin. Finally, the 1-nm gold label was enhanced using silver staining. Labeling of both basement membrane and keratin antigens was well demonstrated, and the area in the semi-thin sections showing the best structural preservation and the greatest intensity of immunolabeling was used to identify the part of the block to be used for ultra-thin sectioning. Ultra-thin sections were treated using a similar procedure to that employed for semi-thin sections. The labeling with silver-enhanced 1-nm gold probes was intense and readily visible by electron microscopy, even at low magnification. We have found this technique to have a high degree of specificity and sensitivity for labeling both intra- and extracellular antigens in skin, with the added advantage of providing the means for studies at both light microscopic and electron microscopic level.

  2. In vitro electromagnetic stimulation to enhance cell proliferation in extracellular matrix constructs with and without metallic nanoparticles.

    PubMed

    Grant, Daniel N; Cozad, Matthew J; Grant, David A; White, Richard A; Grant, Sheila A

    2015-11-01

    Extremely low frequency electromagnetic fields (ELF-EMFs) can induce beneficial effects including enhanced protein synthesis and cell proliferation on healing bone and skin wounds. This study investigated the effects of ELF-EMFs on acellular tissue constructs with and without gold nanoparticles (AuNPs) to determine if cell proliferation could be increase and thus provide an enhanced mechanism for in vitro cell seeding on tissue engineered constructs. Different sized AuNPs, 20 and 100 nm, were conjugated to acellular porcine tissue, seeded with L929 murine fibroblasts and exposed to a continuous 12 gauss, 60 Hz electromagnetic field for 2 hours each day up to 10 days. Scanning electron microscopy and cell culture assays were performed to ascertain cell proliferation and viability before and after exposure. Results indicate the ELF-EMF stimulation significantly increased cell proliferation. The presence of AuNPs did not boost the stimulatory effects, but they did demonstrated higher rates of proliferation from day 3 to day 10. In addition, unstimulated 100 nm AuNPs constructs resulted in significant increases in proliferation as compared to unstimulated crosslinked constructs. In conclusion, ELF-EMF stimulation enhanced cellular proliferation and while the presence of AuNPs did not significantly enhance this effect, AuNPs resulted in increased proliferation rates from day 3 to day 10.

  3. Impaired mitochondrial Ca{sup 2+} homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    SciTech Connect

    Kleist-Retzow, Juergen-Christoph von ||. E-mail: juergen-christoph.vonkleist@uk-koeln.de; Hue-Tran Hornig-Do; Schauen, Matthias; Eckertz, Sabrina; Tuan Anh Duong Dinh; Stassen, Frank; Lottmann, Nadine; Bust, Maria; Galunska, Bistra; Wielckens, Klaus; Hein, Wolfgang; Beuth, Joseph; Braun, Jan-Matthias; Fischer, Juergen H.; Ganitkevich, Vladimir Y. |; Maniura-Weber, Katharina; Wiesner, Rudolf J. |

    2007-08-15

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca{sup 2+} homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNA{sup Leu(UUR)}, as well as Rho{sup 0} cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases.

  4. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells.

    PubMed

    Martin, Shaun; Dudek-Peric, Aleksandra M; Garg, Abhishek D; Roose, Heleen; Demirsoy, Seyma; Van Eygen, Sofie; Mertens, Freya; Vangheluwe, Peter; Vankelecom, Hugo; Agostinis, Patrizia

    2017-09-02

    The ingrained capacity of melanoma cells to rapidly evolve toward an aggressive phenotype is manifested by their increased ability to develop drug-resistance, evident in the case of vemurafenib, a therapeutic-agent targeting BRAF(V600E). Previous studies indicated a tight correlation between heightened melanoma-associated macroautophagy/autophagy and acquired Vemurafenib resistance. However, how this vesicular trafficking pathway supports Vemurafenib resistance remains unclear. Here, using isogenic human and murine melanoma cell lines of Vemurafenib-resistant and patient-derived melanoma cells with primary resistance to the BRAF(V600E) inhibitor, we found that the enhanced migration and invasion of the resistant melanoma cells correlated with an enhanced autophagic capacity and autophagosome-mediated secretion of ATP. Extracellular ATP (eATP) was instrumental for the invasive phenotype and the expansion of a subset of Vemurafenib-resistant melanoma cells. Compromising the heightened autophagy in these BRAF(V600E) inhibitor-resistant melanoma cells through the knockdown of different autophagy genes (ATG5, ATG7, ULK1), reduced their invasive and eATP-secreting capacity. Furthermore, eATP promoted the aggressive nature of the BRAF(V600E) inhibitor-resistant melanoma cells by signaling through the purinergic receptor P2RX7. This autophagy-propelled eATP-dependent autocrine-paracrine pathway supported the maintenance and expansion of a drug-resistant melanoma phenotype. In conclusion, we have identified an autophagy-driven response that relies on the secretion of ATP to drive P2RX7-based migration and expansion of the Vemurafenib-resistant phenotype. This emphasizes the potential of targeting autophagy in the treatment and management of metastatic melanoma.

  5. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers

    PubMed Central

    Xiao, Fanrong; Hrabětová, Sabina

    2010-01-01

    Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (α) in the neocortex of AQP4−/− mice compared to AQP4+/+ mice but no change in the hindrance imposed to diffusing molecules (tortuosity λ). In contrast, other diffusion studies employing large molecules (dextran polymers) and fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10–20% in λ in the neocortex of AQP4−/− mice. These conflicting findings on λ would imply that large molecules diffuse more readily in the enlarged ECS of AQP4−/− mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (MW 547, λAF) and two large dextran polymers (MW 3,000, λdex3 and MW 75,000, λdex75) in the in vitro neocortex of AQP4+/+ and AQP4−/− mice. We found that λAF = 1.59, λdex3 = 1.76 and λdex75 = 2.30 obtained in AQP4−/− mice were not significantly different from λAF = 1.61, λdex3 = 1.76, and λdex75 = 2.33 in AQP4+/+ mice. These IOI results demonstrate that λ measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4−/− mice compared to values in AQP4+/+ mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure. PMID:19303428

  6. Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand

    PubMed Central

    Yaniv, Yael; Spurgeon, Harold A.; Ziman, Bruce D.; Lyashkov, Alexey E.

    2013-01-01

    The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca2+-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca2+ cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca2+ (Ca2+m) and an indirect effect via enhanced Ca2+-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca2+ and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O2 consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O2 consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca2+m and cAMP increased concurrently with the increase in AP firing rate. When Ca2+m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca2+m and an increase in Ca2+ activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level. PMID:23604710

  7. Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand.

    PubMed

    Yaniv, Yael; Spurgeon, Harold A; Ziman, Bruce D; Lyashkov, Alexey E; Lakatta, Edward G

    2013-06-01

    The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.

  8. Real-time electrochemical detection of ATP and H2O2 release in freshly isolated kidneys

    PubMed Central

    Palygin, Oleg; Levchenko, Vladislav; Ilatovskaya, Daria V.; Pavlov, Tengis S.; Ryan, Robert P.; Cowley, Allen W.

    2013-01-01

    Extracellular nucleotides such as adenosine-5′-triphosphate (ATP) and reactive oxygen species are essential local signaling molecules in the kidney. However, measurements of changes in the interstitial concentrations of these substances in response to various stimuli remain hindered due to limitations of existing experimental techniques. The goal of this study was to develop a novel approach suitable for real-time measurements of ATP and H2O2 levels in freshly isolated rat kidney. Rats were anesthetized and the kidneys were flushed to clear blood before isolation for consequent perfusion. The perfused kidneys were placed into a bath solution and dual simultaneous amperometric recordings were made with the enzymatic microelectrode biosensors detecting ATP and H2O2. It was found that basal levels of H2O2 were increased in Dahl salt-sensitive (SS) rats fed a high-salt diet compared with SS and Sprague-Dawley rats fed a low-salt diet and that medulla contained higher levels of H2O2 compared with cortex in both strains. In contrast, ATP levels did not change in SS rats when animals were fed a high-salt diet. Importantly, angiotensin II via AT1 receptor induced rapid release of both ATP and H2O2 and this effect was enhanced in SS rats. These results demonstrate that ATP and H2O2 are critical in the development of salt-sensitive hypertension and that the current method represents a unique powerful approach for the real-time monitoring of the changes in endogenous substance levels in whole organs. PMID:23594827

  9. The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis

    PubMed Central

    Koh, Eun-Ik; Hung, Chia S.

    2016-01-01

    The Yersinia high-pathogenicity island (HPI) is common to multiple virulence strategies used by Escherichia coli strains associated with urinary tract infection (UTI). Among the genes in this island are ybtP and ybtQ, encoding distinctive ATP binding cassette (ABC) proteins associated with iron(III)-yersiniabactin import in Yersinia pestis. In this study, we compared the impact of ybtPQ on a model E. coli cystitis strain during in vitro culture and experimental murine infections. A ybtPQ-null mutant exhibited no growth defect under standard culture conditions, consistent with nonessentiality in this background. A growth defect phenotype was observed and genetically complemented in vitro during iron(III)-yersiniabactin-dependent growth. Following inoculation into the bladders of C3H/HEN and C3H/HeOuJ mice, this strain exhibited a profound, 106-fold competitive infection defect in the subgroup of mice that progressed to high-titer bladder infections. These results identify a virulence role for YbtPQ in the highly inflammatory microenvironment characteristic of high-titer cystitis. The profound competitive defect may relate to the apparent selection of Yersinia HPI-positive E. coli in uncomplicated clinical UTIs. PMID:26883590

  10. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro

    PubMed Central

    Du, Xixun; Xu, Huamin; Shi, Limin; Jiang, Zhifeng; Song, Ning; Jiang, Hong; Xie, Junxia

    2016-01-01

    Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson’s disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD. Interestingly, activation of KATP channels could induce membrane hyperpolarization. Therefore, it is of vital importance to study the effects of activation of KATP channels on DMT1-mediated iron uptake function. In the present study, activation of KATP channels by diazoxide resulted in the hyperpolarization of the membrane potential and increased DMT1-mediated iron uptake in SK-N-SH cells. This led to an increase in intracellular iron levels and a subsequent decrease in the mitochondrial membrane potential and an increase in ROS production. Delayed inactivation of the Fe2+-evoked currents by diazoxide was recorded by patch clamp in HEK293 cells, which demonstrated that diazoxide could prolonged DMT1-facilitated iron transport. While inhibition of KATP channels by glibenclamide could block ferrous iron influx and the subsequent cell damage. Overexpression of Kir6.2/SUR1 resulted in an increase in iron influx and intracellular iron levels, which was markedly increased after diazoxide treatment. PMID:27646472

  11. Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol.

    PubMed

    Naito, A; Muchhala, K H; Trang, J; Asatryan, L; Trudell, J R; Homanics, G E; Alkana, R L; Davies, D L

    2015-06-25

    We recently developed ultra-sensitive ethanol receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild-type (WT) receptors. The current study investigated: (1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and (2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on

  12. Cellular Uptake of α-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of α-Synuclein and Mediated via Fcγ Receptors.

    PubMed

    Gustafsson, Gabriel; Eriksson, Fredrik; Möller, Christer; da Fonseca, Tomás Lopes; Outeiro, Tiago F; Lannfelt, Lars; Bergström, Joakim; Ingelsson, Martin

    2017-01-01

    Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson's disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen-antibody complexes.

  13. Heparanase Enhances the Insulin Receptor Signaling Pathway to Activate Extracellular Signal-regulated Kinase in Multiple Myeloma*

    PubMed Central

    Purushothaman, Anurag; Babitz, Stephen K.; Sanderson, Ralph D.

    2012-01-01

    ERK signaling regulates proliferation, survival, drug resistance, and angiogenesis in cancer. Although the mechanisms regulating ERK activation are not fully understood, we previously demonstrated that ERK phosphorylation is elevated by heparanase, an enzyme associated with aggressive behavior of many cancers. In the present study, myeloma cell lines expressing either high or low levels of heparanase were utilized to determine how heparanase stimulates ERK signaling. We discovered that the insulin receptor was abundant on cells expressing either high or low levels of heparanase, but the receptor was highly phosphorylated in heparanase-high cells compared with heparanase-low cells. In addition, protein kinase C activity was elevated in heparanase-high cells, and this enhanced expression of insulin receptor substrate-1 (IRS-1), the principle intracellular substrate for phosphorylation by the insulin receptor. Blocking insulin receptor function with antibody or a small molecule inhibitor or knockdown of IRS-1 expression using shRNA diminished heparanase-mediated ERK activation in the tumor cells. In addition, up-regulation of the insulin signaling pathway by heparanase and the resulting ERK activation were dependent on heparanase retaining its enzyme activity. These results reveal a novel mechanism whereby heparanase enhances activation of the insulin receptor signaling pathway leading to ERK activation and modulation of myeloma behavior. PMID:23048032

  14. Hydrogen sulfide potentiates interleukin-1{beta}-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    SciTech Connect

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg . E-mail: htchung@wonkwang.ac.kr

    2006-07-07

    Hydrogen sulfide (H{sub 2}S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H{sub 2}S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1{beta} (IL-1{beta}). Although H{sub 2}S by itself showed no effect on NO production, it augmented IL-{beta}-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-{kappa}B. IL-1{beta} activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H{sub 2}S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1{beta}-induced NF-{kappa}B activation, iNOS expression, and NO production either in the absence or presence of H{sub 2}S. Our findings suggest that H{sub 2}S enhances NO production and iNOS expression by potentiating IL-1{beta}-induced NF-{kappa}B activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs.

  15. Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR).

    PubMed

    Pathak, Khyati V; Keharia, Hareshkumar

    2014-02-01

    Bacillus subtilis K1 isolated from aerial roots of banyan tree secreted mixture of surfactins, iturins and fengycins with high degree of heterogeneity. The extracellular extract consisting of mixture of these cyclic lipopeptides exhibited very good emulsification activity as well as excellent emulsion stability. The culture accumulated maximum surfactant up to 48 h of growth during batch fermentation in Luria broth. The emulsion of hexane, heptane and octane prepared using 48-h-old culture supernatant of B. subtilis K1 remained stable up to 2 days while emulsion of four stroke engine oil remained stable for more than a year. The critical micelle concentration of crude lipopeptide biosurfactant extracted by acid precipitation from 48-h-old fermentation broth of B. subtilis K1 was found to be 20.5 μg/mL. The biosurfactant activity was found to be stable at 100 °C for 2 h, over a pH range of 6-12 h and over an NaCl concentration up to 10 % (w/v). The application of biosurfactant on laboratory scale sand pack column saturated with four stroke engine oil resulted in ~43 % enhanced oil recovery, suggesting its suitability in microbially enhanced oil recovery.

  16. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  17. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca{sup 2+}

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Nakamura, Kyoko; Itoh, Seigo; Iesaki, Takafumi; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+} levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the accumulation of

  18. Curtains for ATP?

    NASA Astrophysics Data System (ADS)

    The administration's efforts to keep various technology-transfer programs afloat in the budget process appear to be stalled. House Science Committee chair Robert Walker (R-Pa.) advised in early April that the Republican agenda for the pending budget process entails zeroing out the Commerce Department's Advanced Technology Program (ATP), which was funded at 431 million in fiscal year 1995. The ATP would lose about 90 million from its FY 95 budget. Although Walker says that the Republican leadership has no intention to dictate to the subcommittees how cuts should be made, they will be held to the "fairly severe caps" established by the House Budget Committee. In other words, Walker says, if ATP stays, something else will have to go in its place. In addition, a bill to rescind about 223 million from the FY 1995 budget of the Technology Reinvestment Project and another 77 million from TRP's FY 1994 budget, which has not been spent, is heading for the president's signature. Yet Walker says while he supports the merits of technology transfer, "the question is do you have to create government programs to get the technology out?"

  19. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

    PubMed

    Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A

    2015-12-01

    In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety.

    PubMed

    Chentir, Imene; Hamdi, Marwa; Doumandji, Amel; HadjSadok, Abelkader; Ouada, Hatem Ben; Nasri, Moncef; Jridi, Mourad

    2017-07-05

    The interactive effects of light intensity and NaCl concentration were investigated for Spirulina two-step cultivation process using Full Factorial Design. In the experiment interval, light intensity had no effect while the NaCl concentration had significant effect on the enhancement of extracellular polymeric substances (EPS) production. Interestingly, results revealed a significant negative interaction between light and NaCl concentration indicating that high NaCl concentration (40gL(-1)) and low light intensity (10μmol photons m(-2)s(-1)) enhanced the EPS production. Under these conditions, EPS production reached a maximum of 1.02gg(-1) of biomass (dry weight), which is 1.67-folds greater than EPS content under optimal growth conditions (10μmol photons m(-2)s(-1), 1gL(-1), 30°C). Desalting and deproteinezation steps of EPS were efficient to obtain polysaccharides (PS) with high carbohydrate (67.3±1.1%), low soluble proteins (5.14±0.32%), ash (5.85±0.71%) and sulfate (2.42±0.12%) contents. Rheological studies of PS at different concentrations (1%, 2.5% and 5%) revealed that the viscosity of the solution increased with the increase of PS concentration. In addition, PS exhibited a non Newtonian shear-thinning nature, a predominant gel-like behavior and a good resistance to consecutive heating-cooling cycles. The adopted process could be, then, a promising and economic strategy to enhance EPS production and extract polysaccharides with interesting rheological properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Presence of Anti-Lactoferrin Antibodies in a Subgroup of Eosinophilic Granulomatosis with Polyangiitis Patients and Their Possible Contribution to Enhancement of Neutrophil Extracellular Trap Formation

    PubMed Central

    Shida, Haruki; Nakazawa, Daigo; Tateyama, Yu; Miyoshi, Arina; Kusunoki, Yoshihiro; Hattanda, Fumihiko; Masuda, Sakiko; Tomaru, Utano; Kawakami, Tamihiro; Atsumi, Tatsuya; Ishizu, Akihiro

    2016-01-01

    Lactoferrin (Lf) is one of the antigens of antineutrophil cytoplasmic antibodies (ANCA) and functions as an endogenous suppressor of neutrophil extracellular trap (NET) formation. However, the prevalence and pathogenicity of anti-lactoferrin antibodies (aLf) in ANCA-associated vasculitis (AAV) remain unrevealed. This study aimed to examine the significance of aLf in AAV, initially. Sixty-five sera from AAV patients, including 41 microscopic polyangiitis, 5 granulomatosis with polyangiitis, and 19 eosinophilic granulomatosis with polyangiitis (EGPA) patients, were subjected to aLf detection using enzyme-linked immunosorbent assay. Clinical characteristics were compared between aLf-positive and aLf-negative patients. Neutrophils from healthy donors were exposed to suboptimal dose (10 nM) of phorbol myristate acetate (PMA) with aLf followed by evaluation of NET formation. Results demonstrated that 4 out of 65 AAV sera (6.2%) were positive for aLf. All of them were EGPA sera (4/19, 21.1%). In EGPA, the frequency of renal involvement, serum CRP levels, and Birmingham Vasculitis Activity Score (BVAS) in the aLf-positive patients was significantly higher than those in the aLf-negative patients, and the aLf titer correlated positively with the serum CRP level and BVAS. The NET formation was particularly enhanced by combined stimulation of 10 nM PMA and 1 µg/mL aLf. IgG isolated from sera of the aLf-positive EGPA patients (250 µg/mL) enhanced NET formation induced by 10 nM of PMA, and the effect was abolished completely by absorption of the aLf. This pilot study suggests that aLf enhance NET formation induced by PMA and are associated with disease activity of EGPA. PMID:28066444

  2. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    PubMed Central

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  3. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  4. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors.

    PubMed

    Lu, David; Soleymani, Sahar; Madakshire, Rohit; Insel, Paul A

    2012-06-01

    Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y(2) receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y(2) receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y(2) receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.

  5. Mechanisms of ATP release and signalling in the blood vessel wall

    PubMed Central

    Lohman, Alexander W.; Billaud, Marie; Isakson, Brant E.

    2012-01-01

    The nucleotide adenosine 5′-triphosphate (ATP) has classically been considered the cell's primary energy currency. Importantly, a novel role for ATP as an extracellular autocrine and/or paracrine signalling molecule has evolved over the past century and extensive work has been conducted to characterize the ATP-sensitive purinergic receptors expressed on almost all cell types in the body. Extracellular ATP elicits potent effects on vascular cells to regulate blood vessel tone but can also be involved in vascular pathologies such as atherosclerosis. While the effects of purinergic signalling in the vasculature have been well documented, the mechanism(s) mediating the regulated release of ATP from cells in the blood vessel wall and circulation are now a key target of investigation. The aim of this review is to examine the current proposed mechanisms of ATP release from vascular cells, with a special emphasis on the transporters and channels involved in ATP release from vascular smooth muscle cells, endothelial cells, circulating red blood cells, and perivascular sympathetic nerves, including vesicular exocytosis, plasma membrane F1/F0-ATP synthase, ATP-binding cassette (ABC) transporters, connexin hemichannels, and pannexin channels. PMID:22678409

  6. Sequential changes of extracellular matrix and proliferation of Ito cells with enhanced expression of desmin and actin in focal hepatic injury.

    PubMed Central

    Ogawa, K.; Suzuki, J.; Mukai, H.; Mori, M.

    1986-01-01

    Immunohistochemical investigations were carried out on the properties of the cells and extracellular matrix (ECM) in focal hepatic injuries. A liquid nitrogen-cooled syringe needle was thrust into the rat liver. Necrotic areas became permeated with plasma within 24-hour period. Areas became strongly positive for fibronectin and were infiltrated with inflammatory cells positive for lysozyme. By the third day, Ito cells were proliferated in the peripheral portions of the damaged areas. These Ito cells showed enhanced immunostaining for desmin and actin but were negative for lysozyme. Interstitial fibers which were immunochemically positive for Types I and IV collagens, laminin, and fibronectin, began to increase from Day 3. They appeared on the rim of the hepatocytes adjacent to the damaged areas and extended into the injured regions with the Ito cells. An increase in basal laminas associated with capillaries and bile ducts also increased with a 1-day delay. The damaged areas were replaced by granulation tissue by Day 5. A rapid diminution then occurred in the granulation tissue, and normal hepatic tissue was restored in 7-10 days. These observations demonstrate that ECM changed in a sequential manner and then finally disappeared from the damaged site within 10 days. Although various cells, including parenchymal cells, macrophages, endothelial cells, and cholangiolar cells contributed to the healing of the damaged area, Ito cells, which exhibit unique phenotypic changes, presumably had a major role in the process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:3799820

  7. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    PubMed

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  8. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix

    PubMed Central

    Mekhdjian, Armen H.; Kai, FuiBoon; Rubashkin, Matthew G.; Prahl, Louis S.; Przybyla, Laralynne M.; McGregor, Alexandra L.; Bell, Emily S.; Barnes, J. Matthew; DuFort, Christopher C.; Ou, Guanqing; Chang, Alice C.; Cassereau, Luke; Tan, Steven J.; Pickup, Michael W.; Lakins, Jonathan N.; Ye, Xin; Davidson, Michael W.; Lammerding, Jan; Odde, David J.; Dunn, Alexander R.; Weaver, Valerie M.

    2017-01-01

    Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome. PMID:28381423

  9. Switching cultivation for enhancing biomass and lipid production with extracellular polymeric substance as co-products in Heynigia riparia SX01.

    PubMed

    Liu, Guodong; Miao, Xiaoling

    2017-03-01

    Switching cultivation (mixotrophic-heterotrophic, 12h:12h) of Heynigia riparia SX01 was studied, the maximum biomass concentration of 3.55gL(-1) and lipid yield of 1.45gL(-1) were achieved after 8days cultivation. The extracellular polymeric substance (EPS) was developed as co-product. Addition of MgSO4 could enhance the production of EPS. The highest amount of 0.60gL(-1) EPS was obtained with the addition of 2gL(-1) MgSO4, the self-flocculation efficiency was as high as 83% at this condition. The total lipid and lipid fractions did not show differences with extra MgSO4. Based on the above results, a new biodiesel production model was proposed: culturing Heynigia riparia SX01 with extra 2gL(-1) MgSO4 by switching cultivation and using self flocculation to collect microalgae for biodiesel production, while EPS was collected as valuable co-products.

  10. Piezo1 regulates mechanotransductive release of ATP from human RBCs.

    PubMed

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E; Wan, Jiandi

    2015-09-22

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.

  11. Piezo1 regulates mechanotransductive release of ATP from human RBCs

    PubMed Central

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E.; Wan, Jiandi

    2015-01-01

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca2+) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca2+ influx decrease significantly. Remarkably, a critical extracellular Ca2+ concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease. PMID:26351678

  12. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung.

    PubMed

    Furuya, Kishio; Tan, Ju Jing; Boudreault, Francis; Sokabe, Masahiro; Berthiaume, Yves; Grygorczyk, Ryszard

    2016-11-01

    Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10(-6) M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function.

  13. Cell adhesion molecules in adrenal medulla grafts: enhancement of chromaffin cell L1/Ng-CAM expression and reorganization of extracellular matrix following transplantation.

    PubMed

    Poltorak, M; Freed, W J

    1990-10-01

    Intracerebral adrenal medulla grafts have been used in human patients as an experimental treatment for Parkinson's disease, based on studies in animal models of this disorder. However, alterations in chromaffin cell properties after transplantation and the factors controlling graft survival are poorly understood. Since cell adhesion molecules (CAMs) are involved in regeneration and development of neural tissue in vivo and in vitro, the present study was undertaken to determine the expression of CAMs in adrenal medulla isografts. Fragments of rat adrenal medulla were implanted into the right lateral ventricle. The majority of grafts survived quite well, for up to 2 months (the longest studied period). The implanted chromaffin cells did not develop extensive processes. The cells retained tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) immunoreactivity, while phenylethanolamine N-methyltransferase (PNMT) expression was decreased. Surviving transplanted chromaffin cells showed enhancement and spreading of surface L1/Ng-CAM expression as compared to normal chromaffin cells in adrenal medulla. The implanted chromaffin cells demonstrated only partial conversion to neuronal phenotypes. These chromaffin cells did not develop extensive processes, but showed an enhancement of L1/Ng-CAM expression. Surviving chromaffin cells were accompanied by reorganization of their closely associated extracellular matrix (ECM). As compared to normal in situ adrenal medulla, graft ECM demonstrated a substantial increase of L1/Ng-CAM and laminin immunoreactivities and a distinct decrease in J1/tenascin expression. Some adrenal medulla grafts degenerated, particularly when misplaced within the host brain parenchyma. In these cases the grafts showed fragmentation of ECM and gradual disappearance of CAMs. These results suggest that surviving adrenal medulla grafts exhibit increased synthesis of certain CAMs by chromaffin cells, which may be involved in interactions between

  14. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  15. Enhancing Extracellular Electron Transfer of Shewanella oneidensis MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation.

    PubMed

    Min, Di; Cheng, Lei; Zhang, Feng; Huang, Xue-Na; Li, Dao-Bo; Liu, Dong-Feng; Lau, Tai-Chu; Mu, Yang; Yu, Han-Qing

    2017-05-02

    Dissimilatory metal reducing bacteria (DMRB) are capable of extracellular electron transfer (EET) to insoluble metal oxides, which are used as external electron acceptors by DMRB for their anaerobic respiration. The EET process has important contribution to environmental remediation mineral cycling, and bioelectrochemical systems. However, the low EET efficiency remains to be one of the major bottlenecks for its practical applications for pollutant degradation. In this work, Shewanella oneidensis MR-1, a model DMRB, was used to examine the feasibility of enhancing the EET and its biodegradation capacity through genetic engineering. A flavin biosynthesis gene cluster ribD-ribC-ribBA-ribE and metal-reducing conduit biosynthesis gene cluster mtrC-mtrA-mtrB were coexpressed in S. oneidensis MR-1. Compared to the control strain, the engineered strain was found to exhibit an improved EET capacity in microbial fuel cells and potentiostat-controlled electrochemical cells, with an increase in maximum current density by approximate 110% and 87%, respectively. The electrochemical impedance spectroscopy (EIS) analysis showed that the current increase correlated with the lower interfacial charge-transfer resistance of the engineered strain. Meanwhile, a three times more rapid removal rate of methyl orange by the engineered strain confirmed the improvement of its EET and biodegradation ability. Our results demonstrate that coupling of improved synthesis of mediators and metal-reducing conduits could be an efficient strategy to enhance EET in S. oneidensis MR-1, which is essential to the applications of DMRB for environmental remediation, wastewater treatment, and bioenergy recovery from wastes.

  16. Seesawed fluorescence nano-aptasensor based on highly vertical ZnO nanorods and three-dimensional quantitative fluorescence imaging for enhanced detection accuracy of ATP.

    PubMed

    Shrivastava, Sajal; Triet, Nguyen Minh; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2017-04-15

    Probe-mediated fluorescence biosensing methods based on spectrophotometry still have limitations such as detection inaccuracy caused by the occurrence of false signals and lack of simultaneous qualitative and quantitative read-outs with an ultra-low detection limit. Herein, we describe a novel seesawed fluorescence detection strategy based on dual-colour imaging-based quantitation in which the green fluorescence of the capture aptamer decreases and the red fluorescence of the detection aptamer increases simultaneously upon their respective interactions with the target biomolecule. This approach enhances detection accuracy through facilitating identification of probable false-positives in biological samples. Furthermore, combining the seesawed detection scheme with three-dimensional imaging of fluorescence signal enhanced by highly vertical ZnO nanorods increases signal-to-noise ratio, which addresses the limited performance of digital cameras and, in turn, enhances sensitivity and dynamic range. This simple, robust, scalable, imaging-based and label-free fluorescence method allows highly specific and sensitive quantification of biomolecules with excellent reliability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of ATP on the intracellular calcium level in the osteoblastic TBR31-2 cell line.

    PubMed

    Nishii, Naomi; Nejime, Namie; Yamauchi, Chisako; Yanai, Nobuaki; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu

    2009-01-01

    We investigated the effects of extracellular ATP on TBR31-2 cells established from the bone marrow of transgenic mice harboring the temperature-sensitive simian virus (SV) 40 T-antigen gene. These cells showed the capacity to differentiate toward osteoblasts and could be enhanced by bone morphogenetic protein (BMP)-2, an inducer of osteoblasts. The intracellular calcium ion level ([Ca(2+)](i)) in differentiating TBR31-2 cells was measured by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe, Calcium Green 1/AM. P2 receptor agonists, such as ATP (1 microM), uridine 5'-triphosphate (1 microM), and ADP (1 microM), significantly increased the [Ca(2+)](i) of TBR31-2 cells in 2-d and 5-d cultures, but a potent P2X receptor agonist, alpha,beta-methylene ATP (10 microM), did not increase [Ca(2+)](i). The increase in [Ca(2+)](i) induced by ATP in the 2-d culture tended to be higher than in the 5-d culture. The increase in [Ca(2+)](i) of both cultures was inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, a P2 receptor antagonist. However, in an external Ca(2+)-free condition ATP-induced increase in [Ca(2+)](i) was unchanged at either stage. U73122, phospholipase C inhibitor and Thapsigargin, a calcium-pump inhibitor, significantly inhibited the increase in [Ca(2+)](i) at both stages. Reverse transcription-polymerase chain reaction analysis showed that the expression of P2Y receptor mRNA was higher in the 2-d culture than in the 5-d culture. These results indicate that ATP induces the increase in [Ca(2+)](i) from the calcium store through activating P2Y receptors in TBR31-2 cells and that the 2-d culture can respond to ATP more than the 5-d culture due to the higher expression of P2Y receptors. This suggests that the physiological role of ATP in osteoblasts is altered during differentiation.

  18. ATP release mediates fluid flow-induced proliferation of human bone marrow stromal cells.

    PubMed

    Riddle, Ryan C; Taylor, Amanda F; Rogers, Jennifer R; Donahue, Henry J

    2007-04-01

    Oscillatory fluid flow induced the vesicular release of ATP from human BMSCs that directly contributes to the induction of BMSC proliferation. Degrading extracellular nucleotides prevents fluid flow-induced increases in intracellular calcium concentration, the activation of calcineurin, and the nuclear translocation of NFAT. Regulation of bone cell activity by autocrine/paracrine factors is a well-established mechanism by which skeletal homeostasis is regulated by mechanical signals. The release of extracellular nucleotides in particular has been shown to induce many of the responses thought to be necessary for load-induced bone formation. In these studies, we examined the effect of oscillatory fluid flow on the release of ATP from bone marrow stromal cells (BMSCs) and the effect of ATP release on BMSC proliferation and intracellular calcium signaling pathways. BMSCs were exposed to oscillatory fluid flow, and the concentration of ATP in conditioned media samples was determined using a luciferin:luciferase-based reaction. Western blot analysis was used to examine the expression of purinergic receptors. Using pharmacological antagonists of gap junction hemichannels and vesicular trafficking, we studied the mechanism of ATP release from BMSCs. Apyrase was used to study the effect of extracellular nucleotides on intracellular calcium concentration, calcineurin activity, and nuclear factor of activated T cells (NFAT) nuclear translocation. Fluid flow exposure induced the flow rate-dependent release of ATP from BMSCs that was attenuated by treatment with monensin and N-ethylmaleimide, suggesting a vesicular mechanism. Treating BMSCs with ATP, but not other nucleotides, increased cellular proliferation. Moreover, extracellular ATP was a prerequisite for fluid flow-induced increases in intracellular calcium concentration, activation of calcineurin, the nuclear translocation of NFATc1, and proliferation. These data indicate that ATP regulates not only osteoblastic and

  19. Release of Adenosine and ATP During Ischemia and Epilepsy

    PubMed Central

    Dale, Nicholas; Frenguelli, Bruno G

    2009-01-01

    Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions. PMID:20190959

  20. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers.

    PubMed

    Yamada, Masahiro; Kato, Eiji; Yamamoto, Akiko; Sakurai, Kaoru

    2016-02-02

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  1. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging.

    PubMed

    Lee, Hye-Jeong; Im, Dong Jin; Youn, Jong-Chan; Chang, Suyon; Suh, Young Joo; Hong, Yoo Jin; Kim, Young Jin; Hur, Jin; Choi, Byoung Wook

    2016-07-01

    Purpose To evaluate the feasibility of equilibrium contrast material-enhanced dual-energy cardiac computed tomography (CT) to determine extracellular volume fraction (ECV) in nonischemic cardiomyopathy (CMP) compared with magnetic resonance (MR) imaging. Materials and Methods This study was approved by the institutional review board; informed consent was obtained. Seven healthy subjects and 23 patients (six with hypertrophic CMP, nine with dilated CMP, four with amyloidosis, and four with sarcoidosis) (mean age ± standard deviation, 57.33 years ± 14.82; 19 male participants [63.3%]) were prospectively enrolled. Twelve minutes after contrast material injection (1.8 mL/kg at 3 mL/sec), dual-energy cardiac CT was performed. ECV was measured by two observers independently. Hematocrit levels were compared between healthy subjects and patients with the Mann-Whitney U test. In per-subject analysis, interobserver agreement for CT was assessed with the intraclass correlation coefficient (ICC), and intertest agreement between MR imaging and CT was assessed with Bland-Altman analysis. In per-segment analysis, Student t tests in the linear mixed model were used to compare ECV on CT images between healthy subjects and patients. Results Hematocrit level was 43.44% ± 1.80 for healthy subjects and 41.23% ± 5.61 for patients with MR imaging (P = .16) and 43.50% ± 1.92 for healthy subjects and 41.35% ± 5.92 for patients with CT (P = .15). For observer 1 in per-subject analysis, ECV was 34.18% ± 8.98 for MR imaging and 34.48% ± 8.97 for CT. For observer 2, myocardial ECV was 34.42% ± 9.03 for MR imaging and 33.98% ± 9.05 for CT. Interobserver agreement for ECV at CT was excellent (ICC = 0.987). Bland-Altman analysis between MR imaging and CT showed a small bias (-0.06%), with 95% limits of agreement of -1.19 and 1.79. Compared with healthy subjects, patients with hypertrophic CMP, dilated CMP, amyloidosis, and sarcoidosis had significantly higher myocardial ECV at dual

  2. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications

    PubMed Central

    Zhang, S; Shu, X; Tian, X; Chen, F; Lu, X; Wang, G

    2014-01-01

    Dermatomyositis (DM) and polymyosits (PM) are systemic autoimmune diseases whose pathogeneses remain unclear. Neutrophil extracellular traps (NETs) are reputed to play an important role in the pathogenesis of autoimmune diseases. This study tests the hypothesis that NETs may be pathogenic in DM/PM. Plasma samples from 97 DM/PM patients (72 DM, 25 PM) and 54 healthy controls were tested for the capacities to induce and degrade NETs. Plasma DNase I activity was tested to further explore possible reasons for the incomplete degradation of NETs. Results from 35 DM patients and seven PM patients with interstitial lung disease (ILD) were compared with results from DM/PM patients without ILD. Compared with control subjects, DM/PM patients exhibited a significantly enhanced capacity for inducing NETs, which was supported by elevated levels of plasma LL-37 and circulating cell-free DNA (cfDNA) in DM/PM. NETs degradation and DNase I activity were also decreased significantly in DM/PM patients and were correlated positively. Moreover, DM/PM patients with ILD exhibited the lowest NETs degradation in vitro due to the decrease in DNase I activity. DNase I activity in patients with anti-Jo-1 antibodies was significantly lower than in patients without. Glucocorticoid therapy seems to improve DNase I activity. Our findings demonstrate that excessively formed NETs cannot be degraded completely because of decreased DNase I activity in DM/PM patients, especially in patients with ILD, suggesting that abnormal regulation of NETs may be involved in the pathogenesis of DM/PM and could be one of the factors that initiate and aggravate ILD. PMID:24611519

  3. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix.

    PubMed

    Mekhdjian, Armen H; Kai, FuiBoon; Rubashkin, Matthew G; Prahl, Louis S; Przybyla, Laralynne M; McGregor, Alexandra L; Bell, Emily S; Barnes, J Matthew; DuFort, Christopher C; Ou, Guanqing; Chang, Alice C; Cassereau, Luke; Tan, Steven J; Pickup, Michael W; Lakins, Jonathan N; Ye, Xin; Davidson, Michael W; Lammerding, Jan; Odde, David J; Dunn, Alexander R; Weaver, Valerie M

    2017-06-01

    Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome. © 2017 Mekhdjian, Kai, Rubashkin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Heme oxygenase-1 ameliorates kidney ischemia-reperfusion injury in mice through extracellular signal-regulated kinase 1/2-enhanced tubular epithelium proliferation.

    PubMed

    Chen, Hsin-Hung; Lu, Pei-Jung; Chen, Bo-Ron; Hsiao, Michael; Ho, Wen-Yu; Tseng, Ching-Jiunn

    2015-10-01

    Heme oxygenase (HO)-1 confers transient resistance against oxidative damage, including renal ischemia-reperfusion injury (IRI). We investigated the potential protective effect of HO-1 induction in a mouse model of renal IRI induced by bilateral clamping of the kidney arteries. The mice were randomly assigned to five groups to receive an intraperitoneal injection of PBS, hemin (an HO-1 inducer, 100μmol/kg), hemin+ZnPP (an HO-1 inhibitor, 5mg/kg), hemin+PD98059 (a MEK-ERK inhibitor, 10mg/kg) or a sham operation. All of the groups except for the sham-operated group underwent 25min of ischemia and 24 to 72h of reperfusion. Renal function and tubular damage were assessed in the mice that received hemin or the vehicle treatment prior to IRI. The renal injury score and HO-1 protein levels were evaluated via H&E and immunohistochemistry staining. Hemin-preconditioned mice exhibited preserved renal cell function (BUN: 40±2mg/dl, creatinine: 0.53±0.06mg/dl), and the tubular injury score at 72h (1.65±0.12) indicated that tubular damage was prevented. Induction of HO-1 induced the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2. However, these effects were abolished with ZnPP treatment. Kidney function (BUN: 176±49mg/dl, creatinine: 1.54±0.39mg/dl) increased, and the tubular injury score (3.73±0.09) indicated that tubular damage also increased with ZnPP treatment. HO-1-induced tubular epithelial proliferation was attenuated by PD98059. Our findings suggest that HO-1 preconditioning promotes ERK1/2 phosphorylation and enhances tubular recovery, which subsequently prevents further renal injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Effect of ATP on the Photoconversion of Protochlorophyllide in Isolated Etioplasts of Zea mays1

    PubMed Central

    Horton, Peter; Leech, Rachel M.

    1975-01-01

    The transformation of protochlorophyllide (PChle) into chlorophyllide (Chle) has been studied in isolated etioplasts from Zea mays. ATP (1.5mm) prevented the transformation of photoconvertible PChle 650 to PChle 630 in aged etioplasts. Curve analysis indicated that the ATP effect on photoconvertibility could be entirely accounted for by changes in the proportions of PChle 630 and PChle 650 and examination of the isolated pigments revealed that only unphytylated PChle could be activated for photoconversion by ATP. In etioplasts aged for 5 hours, ATP also stimulated photoconversion of PChle 630 into Chle 670. The process was temperature-sensitive and involved PChle 650 and Chle 680 as intermediates. AMP alone had no effect, but inhibited ATP retardation of PChle loss. ADP had a similar but lesser effect than ATP. The ADP response, but not the ATP response, was considerably enhanced in the presence of an ATP-generating system (phosphoenolpyruvate/pyruvate kinase). UTP, GTP, and CTP gave 40 to 50% of the ATP response with intact etioplasts. In envelope-free etioplasts, ATP gave the greatest response but the other nucleotides were now 80% as effective as ATP. After primary photoconversion, ATP stimulated resynthesis of PChle 650. It is proposed that ATP both gives the holochrome the ability to bind to the PChle molecule and enables additional association of the pigment-protein complex to form PChle 650. PMID:16659239

  6. Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions

    PubMed Central

    Kean, Thomas J.; Dennis, James E.

    2015-01-01

    Background Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential. Methods Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically. Results Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions. Conclusions

  7. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  8. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    SciTech Connect

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  9. Nanomolar ambient ATP decelerates P2X3 receptor kinetics.

    PubMed

    Grote, Alexander; Hans, Michael; Boldogkoi, Zsolt; Zimmer, Andreas; Steinhäuser, Christian; Jabs, Ronald

    2008-12-01

    Homomeric P2X receptors differ in their electrophysiological and pharmacological profiles. The rapidly activating and desensitizing P2X3 receptors are known for their involvement in pain signalling pathways. Modulatory effects on P2X3 receptors have been reported for low concentrations of ATP ([ATP]). This includes both, enhancement and reduction of receptor currents. The first has been reported to be mediated by activation of ectoprotein kinases and high affinity desensitization (HAD), respectively. Both processes influence receptor current amplitudes. Here we describe a new phenomenon, the modulatory influence of ambient low [ATP] on P2X3 receptor kinetics. First, we studied in HEK cells whether persistent ATP affects current decay. To this end, P2X3 receptor mediated currents, elicited by pressure application of saturating [ATP], were analyzed after pre-application of low [ATP]. Second, UV-flash photolysis of ATP was employed to investigate whether submicromolar [ATP] affects receptor activation. Finally we confirmed the action of nanomolar [ATP] on native P2X3 receptors of neurons freshly isolated from rat dorsal root ganglia. We found that persistent low [ATP] caused pronounced deceleration of receptor current activation and decay. This priming effect indicates a mechanism different from HAD. It could be explained by a pre-opening receptor isomerization, induced by the occupation of a high affinity binding site already at the resting state. The observed modulation of the receptor kinetics could be considered as a physiological fine tuning mechanism of the nociceptive system, driven by the actual ambient agonist concentration.

  10. Trinitrophenyl-ATP blocks colonic Cl- channels in planar phospholipid bilayers. Evidence for two nucleotide binding sites

    PubMed Central

    1993-01-01

    Outwardly rectifying 30-50-pS Cl- channels mediate cell volume regulation and transepithelial transport. Several recent reports indicate that rectifying Cl- channels are blocked after addition of ATP to the extracellular bath (Alton, E. W. F. W., S. D. Manning, P. J. Schlatter, D. M. Geddes, and A. J. Williams. 1991. Journal of Physiology. 443:137-159; Paulmichl, M., Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D. Clapham. 1992. Nature. 356:238-241). Therefore, we decided to conduct a more detailed study of the ATP binding site using a higher affinity probe. We tested the ATP derivative, 2',3',O-(2,4,6- trinitrocyclohexadienylidene) adenosine 5'-triphosphate (TNP-ATP), which has a high affinity for certain nucleotide binding sites. Here we report that TNP-ATP blocked colonic Cl- channels when added to either bath and that blockade was consistent with the closed-open-blocked kinetic model. The TNP-ATP concentration required for a 50% decrease in open probability was 0.27 microM from the extracellular (cis) side and 20 microM from the cytoplasmic (trans) side. Comparison of the off rate constants revealed that TNP-ATP remained bound 28 times longer when added to the extracellular side compared with the cytoplasmic side. We performed competition studies to determine if TNP-ATP binds to the same sites as ATP. Addition of ATP to the same bath containing TNP-ATP reduced channel amplitude and increased the time the channel spent in the open and fast-blocked states (i.e., burst duration). This is the result expected if TNP-ATP and ATP compete for block, presumably by binding to common sites. In contrast, addition of ATP to the bath opposite to the side containing TNP-ATP reduced amplitude but did not alter burst duration. This is the result expected if opposite-sided TNP- ATP and ATP bind to different sites. In summary, we have identified an ATP derivative that has a nearly 10-fold higher affinity for reconstituted rectifying colonic Cl- channels than any previously

  11. Differentiating connexin hemichannels and pannexin channels in cellular ATP release

    PubMed Central

    Lohman, Alexander W; Isakson, Brant E

    2014-01-01

    Adenosine triphosphate (ATP) plays a fundamental role in cellular communication, with its extracellular accumulation triggering purinergic signaling cascades in a diversity of cell types. While the roles for purinergic signaling in health and disease have been well established, identification and differentiation of the specific mechanisms controlling cellular ATP release is less well understood. Multiple mechanisms have been proposed to regulate ATP release with connexin (Cx) hemichannels and pannexin (Panx) channels receiving major focus. However, segregating the specific roles of Panxs and Cxs in ATP release in a plethora of physiological and pathological contexts has remained enigmatic. This multifaceted problem has arisen from the selectivity of pharmacological inhibitors for Panxs and Cxs, methodological differences in assessing Panx and Cx function and the potential compensation by other isoforms in gene silencing and genetic knockout models. Consequently, there remains a void in the current understanding of specific contributions of Panxs and Cxs in releasing ATP during homeostasis and disease. Differentiating the distinct signaling pathways that regulate these two channels will advance our current knowledge of cellular communication and aid in the development of novel rationally-designed drugs for modulation of Panx and Cx activity, respectively. PMID:24548565

  12. ATP as a multi-target danger signal in the brain

    PubMed Central

    Rodrigues, Ricardo J.; Tomé, Angelo R.; Cunha, Rodrigo A.

    2015-01-01

    ATP is released in an activity-dependent manner from different cell types in the b