Sample records for enhancing genetic gains

  1. Evaluating realized genetic gains from tree improvement.

    Treesearch

    J.B. St. Clair

    1993-01-01

    Tree improvement has become an essential part of the management of forest lands for wood production, and predicting yields and realized gains from forests planted with genetically-improved trees will become increasingly important. This paper discusses concepts of tree improvement and genetic gain important to growth and yield modeling, and reviews previous studies of...

  2. Accelerating Genetic Gains in Legumes for the Development of Prosperous Smallholder Agriculture: Integrating Genomics, Phenotyping, Systems Modelling and Agronomy.

    PubMed

    Varshney, Rajeev K; Thudi, Mahendar; Pandey, Manish K; Tardieu, Francois; Ojiewo, Chris; Vadez, Vincent; Whitbread, Anthony M; Siddique, Kadambot H M; Nguyen, Henry T; Carberry, Peter S; Bergvinson, David

    2018-03-05

    Grain legumes form an important component of the human diet, feed for livestock and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress that is posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the last half century. For achieving faster genetic gains in legumes in rainfed conditions, this review article proposes the integration of modern genomics approaches, high throughput phenomics and simulation modelling as support for crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experiment plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains including not only productivity but also nutritional and market traits will increase the profitability of farmers and the availability of affordable nutritious food especially in developing countries.

  3. Gene doping: a review of performance-enhancing genetics.

    PubMed

    Gaffney, Gary R; Parisotto, Robin

    2007-08-01

    Unethical athletes and their mentors have long arrogated scientific and medical advances to enhance athletic performance, thus gaining a dishonest competitive advantage. Building on advances in genetics, a new threat arises from athletes using gene therapy techniques in the same manner that some abused performance-enhancing drugs were used. Gene doping, as this is known, may produce spectacular physiologic alterations to dramatically enhance athletic abilities or physical appearance. Furthermore, gene doping may present pernicious problems for the regulatory agencies and investigatory laboratories that are entrusted to keep sporting events fair and ethical. Performance-enhanced genetics will likewise present unique challenges to physicians in many spheres of their practice.

  4. Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs.

    PubMed

    Gonen, Serap; Jenko, Janez; Gorjanc, Gregor; Mileham, Alan J; Whitelaw, C Bruce A; Hickey, John M

    2017-01-04

    This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome. We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance [Formula: see text], rate of change in inbreeding ([Formula: see text]), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles. Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain. Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency

  5. Estimating soybean genetic gain for yield in the northern United States – Influence of cropping history

    USDA-ARS?s Scientific Manuscript database

    Mean on-farm USA soybean yield increased at a rate of 21.3 kg per ha per year between 1924 and 2010, due to adoption of yield-enhancing genetic and agronomic technologies. To estimate annual rates of genetic yield gain in three northern USA soybean maturity groups (MG) and determine if these estimat...

  6. Fast-Forwarding Genetic Gain.

    PubMed

    Li, Huihui; Rasheed, Awais; Hickey, Lee T; He, Zhonghu

    2018-03-01

    'Speed breeding' enables scientists to exploit gene bank accessions and mutant collections for an unparalleled rapid gene discovery and gene deployment. Combining speed breeding and other leading-edge plant breeding technologies with strategic global partnerships, has the potential to achieve the genetic gain targets required to deliver our future crops. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Measuring Financial Gains from Genetically Superior Trees

    Treesearch

    George Dutrow; Clark Row

    1976-01-01

    Planting genetically superior loblolly pines will probably yield high profits.Forest economists have made computer simulations that predict financial gains expected from a tree improvement program under actual field conditions.

  8. Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs.

    PubMed

    Liu, Huiming; Meuwissen, Theo H E; Sørensen, Anders C; Berg, Peer

    2015-03-21

    The short-term impact of using different genomic prediction (GP) models in genomic selection has been intensively studied, but their long-term impact is poorly understood. Furthermore, long-term genetic gain of genomic selection is expected to improve by using Jannink's weighting (JW) method, in which rare favourable marker alleles are upweighted in the selection criterion. In this paper, we extend the JW method by including an additional parameter to decrease the emphasis on rare favourable alleles over the time horizon, with the purpose of further improving the long-term genetic gain. We call this new method dynamic weighting (DW). The paper explores the long-term impact of different GP models with or without weighting methods. Different selection criteria were tested by simulating a population of 500 animals with truncation selection of five males and 50 females. Selection criteria included unweighted and weighted genomic estimated breeding values using the JW or DW methods, for which ridge regression (RR) and Bayesian lasso (BL) were used to estimate marker effects. The impacts of these selection criteria were compared under three genetic architectures, i.e. varying numbers of QTL for the trait and for two time horizons of 15 (TH15) or 40 (TH40) generations. For unweighted GP, BL resulted in up to 21.4% higher long-term genetic gain and 23.5% lower rate of inbreeding under TH40 than RR. For weighted GP, DW resulted in 1.3 to 5.5% higher long-term gain compared to unweighted GP. JW, however, showed a 6.8% lower long-term genetic gain relative to unweighted GP when BL was used to estimate the marker effects. Under TH40, both DW and JW obtained significantly higher genetic gain than unweighted GP. With DW, the long-term genetic gain was increased by up to 30.8% relative to unweighted GP, and also increased by 8% relative to JW, although at the expense of a lower short-term gain. Irrespective of the number of QTL simulated, BL is superior to RR in maintaining

  9. Genetic gains from selection for fiber traits in Gossypium hirsutum L.

    PubMed

    de Faria, G M P; Sanchez, C F B; de Carvalho, L P; da Silva Oliveira, M; Cruz, C D

    2016-11-21

    Brazil is among the five largest producers of cotton in the world, cultivating the species Gossypium hirsutum L. r. latifolium Hutch. The cultivars should have good fiber quality as well as yield. Genetic improvement of fiber traits requires the study of the genetic structure of the populations under improvement, leading to the identification of promising parent plants. To this end, it is important to acquire some information, such as estimates of genetic variance components and heritability coefficients, which will support the appropriate choice of the breeding strategy to be employed as well as enable the estimation of gains from selection. This study aimed to evaluate some agronomic characteristics, such as fiber quality and yield, estimating genetic parameters for the purpose of predicting earnings. Twelve cultivars of cotton, including four male progenitors (CNPA 01-42, BRS Verde, Glandless, and Okra leaf) and eight female progenitors (Delta opal, CNPA 7H, Aroeira, Antares, Sucupira, Facual, Precoce 3, and CNPA 8H), were used in performing crosses according to design I, proposed by Comstock and Robinson (1948). The experimental design was a randomized block with four replications. We observed genetic variability among all traits as well as higher efficiency of selection for the gains related to traits. Our results showed that the combined selection presented the highest genetic gains for all traits. For fiber length, the female/male selection and the combined selection resulted in the highest genetic gain.

  10. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.

    PubMed

    Gonen, Serap; Battagin, Mara; Johnston, Susan E; Gorjanc, Gregor; Hickey, John M

    2017-07-04

    This study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs. We simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance. Our results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain. Shifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended

  11. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  12. Genetic Gains Through Testing and Crossing Longleaf Pine Plus Trees

    Treesearch

    Calvin F. Bey; E. Bayne Snyder

    1978-01-01

    A progeny test of 226 superior tree selections from nine geographic sources across the South confirmed earlier results that showed the Gulf Coast source superior in survival and growth. Family variation within a region was large and provided additional genetic gain. Control-pollinated tests of elite x elite trees yielded even more gains. Progeny of the elite x elite...

  13. Enhancing optical gains in Si nanocrystals via hydrogenation and cerium ion doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Chen; Li, Yan-Li; Song, Sheng-Chi

    We report optical gain enhancements in Si nanocrystals (Si-NCs) via hydrogenation and Ce{sup 3+} ion doping. Variable stripe length technique was used to obtain gains. At 0.3 W/cm{sup 2} pumping power density of pulsed laser, net gains were observed together with gain enhancements after hydrogenation and/or Ce{sup 3+} ion doping; gains after loss corrections were between 89.52 and 341.95 cm{sup −1}; and the photoluminescence (PL) lifetime was found to decrease with the increasing gain enhancement. At 0.04 W/cm{sup 2} power density, however, no net gain was found and the PL lifetime increased with the increasing PL enhancement. The results were discussed according tomore » stimulated and spontaneous excitation and de-excitation mechanisms of Si-NCs.« less

  14. Impact of genomic selection on genetic gain of Net Merit of US dairy cattle

    USDA-ARS?s Scientific Manuscript database

    The introduction of genomic selection (GS) in dairy cattle has opened new possibilities to increase the rates of genetic gain. The objective of this study was to measure the impact of GS on Net Merit (NM) genetic gain of US Holstein (HO), Jersey (JE) and Brown Swiss (BS) cattle, using a four-path mo...

  15. Genetic diversity and selection gain in the physic nut (Jatropha curcas).

    PubMed

    Brasileiro, B P; Silva, S A; Souza, D R; Santos, P A; Oliveira, R S; Lyra, D H

    2013-07-08

    The use of efficient breeding methods depends on knowledge of genetic control of traits to be improved. We estimated genetic parameters, selection gain, and genetic diversity in physic nut half-sib families, in order to provide information for breeding programs of this important biofuel species. The progeny test included 20 half-sib families in 4 blocks and 10 plants per plot. The mean progeny heritability values were: 50% for number of bunches, 47% for number of fruits, 35% for number of seeds, 6% for stem diameter, 26% for number of primary branches, 14% for number of secondary branches, 66% for plant height, and 25% for survival of the plants, demonstrating good potential for early selection in plant height, number of branches, and number of fruits per plant. In the analysis of genetic diversity, genotypes were divided into 4 groups. Genotypes 18, 19, 20, and 8 clustered together and presented the highest means for the vegetative and production. Lower means were observed in the 17, 12, 13, and 9 genotypes from the same group. We detected genetic variability in this population, with high heritability estimates and accuracy, demonstrating the possibility of obtaining genetic gains for vegetative characters and production at 24 months after planting.

  16. Low-index-metamaterial for gain enhancement of planar terahertz antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing-Le; Si, Li-Ming, E-mail: lms@bit.edu.cn; Lv, Xin

    2014-03-15

    We theoretically present a high gain planar antenna at terahertz (THz) frequencies by combing a conventional log-periodic antenna (LPA) with a low-index-metamaterial (LIM, |n| < 1). The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width) and more than 4 dB gain enhancement are seen within a certain frequencymore » range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.« less

  17. Brillouin gain enhancement in nano-scale photonic waveguide

    NASA Astrophysics Data System (ADS)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  18. Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks

    PubMed Central

    Ellis, Nicholas A.; Glazer, Andrew M.; Donde, Nikunj N.; Cleves, Phillip A.; Agoglia, Rachel M.; Miller, Craig T.

    2015-01-01

    Teeth are a classic model system of organogenesis, as repeated and reciprocal epithelial and mesenchymal interactions pattern placode formation and outgrowth. Less is known about the developmental and genetic bases of tooth formation and replacement in polyphyodonts, which are vertebrates with continual tooth replacement. Here, we leverage natural variation in the threespine stickleback fish Gasterosteus aculeatus to investigate the genetic basis of tooth development and replacement. We find that two derived freshwater stickleback populations have both convergently evolved more ventral pharyngeal teeth through heritable genetic changes. In both populations, evolved tooth gain manifests late in development. Using pulse-chase vital dye labeling to mark newly forming teeth in adult fish, we find that both high-toothed freshwater populations have accelerated tooth replacement rates relative to low-toothed ancestral marine fish. Despite the similar evolved phenotype of more teeth and an accelerated adult replacement rate, the timing of tooth number divergence and the spatial patterns of newly formed adult teeth are different in the two populations, suggesting distinct developmental mechanisms. Using genome-wide linkage mapping in marine-freshwater F2 genetic crosses, we find that the genetic basis of evolved tooth gain in the two freshwater populations is largely distinct. Together, our results support a model whereby increased tooth number and an accelerated tooth replacement rate have evolved convergently in two independently derived freshwater stickleback populations using largely distinct developmental and genetic mechanisms. PMID:26062935

  19. Gain enhancement for wideband end-fire antenna design with artificial material.

    PubMed

    Wei, Min; Sun, Yuanhua; Wu, Xi; Wen, Wu

    2016-01-01

    Gain enhancement wideband end-fire antenna is proposed in this paper. The proposed antenna can achieve gain enhancement by loading novel artificial materials structures (Split-ring Resonators) in the end-fire direction while broad bandwidth is realized by using elliptic dipole elements and a microstrip to coplanar balun. The measurements show that the proposed antenna have around 5-8 dB gain in the working band (5-11 GHz), which is around 2 dB more than the unloaded one. This antenna can be used in target recognition systems for its advantages of end-fire radiation broad bandwidth and high gain.

  20. Neuronal Response Gain Enhancement prior to Microsaccades.

    PubMed

    Chen, Chih-Yang; Ignashchenkova, Alla; Thier, Peter; Hafed, Ziad M

    2015-08-17

    Neuronal response gain enhancement is a classic signature of the allocation of covert visual attention without eye movements. However, microsaccades continuously occur during gaze fixation. Because these tiny eye movements are preceded by motor preparatory signals well before they are triggered, it may be the case that a corollary of such signals may cause enhancement, even without attentional cueing. In six different macaque monkeys and two different brain areas previously implicated in covert visual attention (superior colliculus and frontal eye fields), we show neuronal response gain enhancement for peripheral stimuli appearing immediately before microsaccades. This enhancement occurs both during simple fixation with behaviorally irrelevant peripheral stimuli and when the stimuli are relevant for the subsequent allocation of covert visual attention. Moreover, this enhancement occurs in both purely visual neurons and visual-motor neurons, and it is replaced by suppression for stimuli appearing immediately after microsaccades. Our results suggest that there may be an obligatory link between microsaccade occurrence and peripheral selective processing, even though microsaccades can be orders of magnitude smaller than the eccentricities of peripheral stimuli. Because microsaccades occur in a repetitive manner during fixation, and because these eye movements reset neurophysiological rhythms every time they occur, our results highlight a possible mechanism through which oculomotor events may aid periodic sampling of the visual environment for the benefit of perception, even when gaze is prevented from overtly shifting. One functional consequence of such periodic sampling could be the magnification of rhythmic fluctuations of peripheral covert visual attention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  2. Genetic enhancement in sport: just another form of doping?

    PubMed

    Mehlman, Maxwell J

    2012-12-01

    Patented genetic technologies such as the ACTN3 genetic test are adding a new dimension to the types of performance enhancement available to elite athletes. Organized sports organizations and governments are seeking to prevent athletes' use of biomedical enhancements. This paper discusses how these interdiction efforts will affect the use and availability of genetic technologies that can enhance athletic performance. The paper provides a working definition of enhancement, and in light of that definition and the concerns of the sports community, reviews genetic enhancement as a result of varied technologies, including, genetic testing to identify innate athletic ability, performance-enhancing drugs developed with genetic science and technology, pharmacogenetics, enhancement through reproductive technologies, somatic gene transfer, and germ line gene transfer.

  3. Controlled mass pollination in loblolly pine to increase genetic gains

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  4. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.

    PubMed

    Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D

    2017-05-01

    Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.

  5. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  6. Acceleration of genetic gain in cattle by reduction of generation interval.

    PubMed

    Kasinathan, Poothappillai; Wei, Hong; Xiang, Tianhao; Molina, Jose A; Metzger, John; Broek, Diane; Kasinathan, Sivakanthan; Faber, David C; Allan, Mark F

    2015-03-02

    Genomic selection (GS) approaches, in combination with reproductive technologies, are revolutionizing the design and implementation of breeding programs in livestock species, particularly in cattle. GS leverages genomic readouts to provide estimates of breeding value early in the life of animals. However, the capacity of these approaches for improving genetic gain in breeding programs is limited by generation interval, the average age of an animal when replacement progeny are born. Here, we present a cost-effective approach that combines GS with reproductive technologies to reduce generation interval by rapidly producing high genetic merit calves.

  7. Estimate of genetic gain in popcorn after cycles of phenotypic recurrent selection.

    PubMed

    Ematné, H J; Nunes, J A R; Dias, K O G; Prado, P E R; Souza, J C

    2016-05-20

    Popcorn is widely consumed in Brazil, yet there are few breeding programs for this crop. Recurrent selection (RS) is a viable breeding alternative for popcorn; however, the gains achieved must be frequently checked. The aim of this study was to assess the effect of selection for grain type (round and pointed) after four cycles of phenotypic RS on the main agronomic traits of popcorn, to estimate the genetic gain achieved for the trait of expansion volume (EV), and to obtain estimates of phenotypic correlations for the main traits of the crop in the UFLA E and UFLA R populations. The zero, one, two, and three cycles of the UFLA E and UFLA R populations, the fourth cycle, and the controls IAC-112 and IAC-125 were used. The experiments were conducted at the experimental farm of Universidade Federal de Lavras (UFLA; Environment 1) and at the experimental area of the Genetics and Plant Breeding Sector of the Department of Biology at UFLA (Environment 2) in the 2010/11 crop season. Nine agronomic traits were evaluated, including EV and grain yield (GY). The UFLA R and UFLA E populations showed similar behavior for all evaluated traits. The type of grain did not affect the genetic gain for EV, which was 5 and 3.7% in each cycle carried out in the UFLA E and UFLA R population, respectively. Phenotypic selection carried out during recombination for EV is an effective method for increasing expression of the trait. EV and GY did not show a linear association.

  8. Gain enhancement with near-zero-index metamaterial superstrate

    NASA Astrophysics Data System (ADS)

    Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.

    2015-11-01

    The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.

  9. Genetic enhancement, human nature, and rights.

    PubMed

    McConnell, Terrance

    2010-08-01

    Authors such as Francis Fukuyama, the President's Council on Bioethics, and George Annas have argued that biotechnological interventions that aim to promote genetic enhancement pose a threat to human nature. This paper clarifies what conclusions these critics seek to establish, and then shows that there is no plausible account of human nature that will meet the conditions necessary to support this position. Appeals to human nature cannot establish a prohibition against the pursuit of genetic enhancement.

  10. Genetic Susceptibility, Change in Physical Activity, and Long-term Weight Gain.

    PubMed

    Wang, Tiange; Huang, Tao; Heianza, Yoriko; Sun, Dianjianyi; Zheng, Yan; Ma, Wenjie; Jensen, Majken K; Kang, Jae H; Wiggs, Janey L; Pasquale, Louis R; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C; Qi, Lu

    2017-10-01

    Whether change in physical activity over time modifies the genetic susceptibility to long-term weight gain is unknown. We calculated a BMI-genetic risk score (GRS) based on 77 BMI-associated single nucleotide polymorphisms (SNPs) and a body fat percentage (BF%)-GRS based on 12 BF%-associated SNPs in 9,390 women from the Nurses' Health Study (NHS) and 5,291 men from the Health Professionals Follow-Up Study (HPFS). We analyzed the interactions between each GRS and change in physical activity on BMI/body weight change within five 4-year intervals from 1986 to 2006 using multivariable generalized linear models with repeated-measures analyses. Both the BMI-GRS and the BF%-GRS were associated with long-term increases in BMI/weight, and change in physical activity consistently interacted with the BF%-GRS on BMI change in the NHS ( P for interaction = 0.025) and HPFS ( P for interaction = 0.001). In the combined cohorts, 4-year BMI change per 10-risk allele increment was -0.02 kg/m 2 among participants with greatest increase in physical activity and 0.24 kg/m 2 among those with greatest decrease in physical activity ( P for interaction < 0.001), corresponding to 0.01 kg versus 0.63 kg weight changes every 4 years ( P for interaction = 0.001). Similar but marginal interactions were observed for the BMI-GRS ( P for interaction = 0.045). Our data indicate that the genetic susceptibility to weight gain may be diminished by increasing physical activity. © 2017 by the American Diabetes Association.

  11. Weighted Genetic Risk Scores and Prediction of Weight Gain in Solid Organ Transplant Populations

    PubMed Central

    Saigi-Morgui, Núria; Quteineh, Lina; Bochud, Pierre-Yves; Crettol, Severine; Kutalik, Zoltán; Wojtowicz, Agnieszka; Bibert, Stéphanie; Beckmann, Sonja; Mueller, Nicolas J; Binet, Isabelle; van Delden, Christian; Steiger, Jürg; Mohacsi, Paul; Stirnimann, Guido; Soccal, Paola M.; Pascual, Manuel; Eap, Chin B

    2016-01-01

    Background Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor for the development of metabolic abnormalities and graft survival. Few studies to date have studied the genetics of weight gain in SOT recipients. We aimed to determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after transplantation. To do so, two samples (nA = 995, nB = 156) were obtained from naturalistic studies and three w-GRS were constructed and tested for association with BMI over time. Prediction of 10% WG at one year after transplantation was assessed with models containing genetic and clinical factors. Results w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.11 units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at one year after transplantation. Conclusions This is the first study in SOT evaluating extensively the association of w-GRS with BMI and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing the importance of integrating genetic factors in the final model. Genetics of obesity among SOT recipients remains an important issue and can contribute to treatment personalization and prediction of WG after transplantation. PMID:27788139

  12. Weighted Genetic Risk Scores and Prediction of Weight Gain in Solid Organ Transplant Populations.

    PubMed

    Saigi-Morgui, Núria; Quteineh, Lina; Bochud, Pierre-Yves; Crettol, Severine; Kutalik, Zoltán; Wojtowicz, Agnieszka; Bibert, Stéphanie; Beckmann, Sonja; Mueller, Nicolas J; Binet, Isabelle; van Delden, Christian; Steiger, Jürg; Mohacsi, Paul; Stirnimann, Guido; Soccal, Paola M; Pascual, Manuel; Eap, Chin B

    2016-01-01

    Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor for the development of metabolic abnormalities and graft survival. Few studies to date have studied the genetics of weight gain in SOT recipients. We aimed to determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after transplantation. To do so, two samples (nA = 995, nB = 156) were obtained from naturalistic studies and three w-GRS were constructed and tested for association with BMI over time. Prediction of 10% WG at one year after transplantation was assessed with models containing genetic and clinical factors. w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.11 units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at one year after transplantation. This is the first study in SOT evaluating extensively the association of w-GRS with BMI and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing the importance of integrating genetic factors in the final model. Genetics of obesity among SOT recipients remains an important issue and can contribute to treatment personalization and prediction of WG after transplantation.

  13. Genetics of antipsychotic-induced weight gain: update and current perspectives.

    PubMed

    Kao, Amy C C; Müller, Daniel J

    2013-12-01

    Antipsychotic medications are used to effectively treat various symptoms for different psychiatric conditions. Unfortunately, antipsychotic-induced weight gain (AIWG) is a common side effect that frequently results in obesity and secondary medical conditions. Twin and sibling studies have indicated that genetic factors are likely to be highly involved in AIWG. Over recent years, there has been considerable progress in this area, with several consistently replicated findings, as well as the identification of new genes and implicated pathways. Here, we will review the most recent genetic studies related to AIWG using the Medline database (PubMed) and Google Scholar. Among the steadiest findings associated with AIWG are serotonin 2C receptors (HTR2C) and leptin promoter gene variants, with more recent studies implicating MTHFR and, in particular, MC4R genes. Additional support was reported for the HRH1, BDNF, NPY, CNR1, GHRL, FTO and AMPK genes. Notably, some of the reported variants appear to have relatively large effect sizes. These findings have provided insights into the mechanisms involved in AIWG and will help to develop predictive genetic tests in the near future.

  14. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  15. Postnatal human genetic enhancement and the parens patriae doctrine

    PubMed Central

    Tamir, Sivan

    2016-01-01

    Abstract This paper explores the role of the state, acting as parens patriae, with respect to the future-looking technology of postnatal human genetic enhancement (PoGE), applied to minors by their parents or the state. Considering postnatal rather than prenatal genetic enhancement (PGE) allows us to explore the putative obligations of the state with respect to actual persons, in contrast to future persons the subjects of speculative investigation in the traditionally studied case of PGE. Part I features PoGE, mostly by analogy to PGE and other (non-genetic) postnatal enhancements. Part II examines the nature and scope of the parens patriae doctrine, distinguishing between its protective and substitutive facets. I conclude, drawing on contemporary legal constructions, that: a) the state's interference in parental genetic enhancement (GE) discretion, under its protective role, should generally be minimal, reserved to extreme cases where grave harm to the child has been caused or is reasonably foreseeable; and b) since we cannot readily find parents obligated to genetically enhance their offspring, the state as parens patriae, under its substitutive role, will be respectively exempt from such duty towards state-dependent-children, save for certain GEs considered a sine qua non necessity, equally obligating parents and state to provide children with. PMID:28852539

  16. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.

    PubMed

    Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M

    2013-08-01

    In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the

  17. Genetic gain and economic values of selection strategies including semen traits in three- and four-way crossbreeding systems for swine production.

    PubMed

    González-Peña, D; Knox, R V; MacNeil, M D; Rodriguez-Zas, S L

    2015-03-01

    Four semen traits: volume (VOL), concentration (CON), progressive motility of spermatozoa (MOT), and abnormal spermatozoa (ABN) provide complementary information on boar fertility. Assessment of the impact of selection for semen traits is hindered by limited information on economic parameters. Objectives of this study were to estimate economic values for semen traits and to evaluate the genetic gain when these traits are incorporated into traditional selection strategies in a 3-tier system of swine production. Three-way (maternal nucleus lines A and B and paternal nucleus line C) and 4-way (additional paternal nucleus line D) crossbreeding schemes were compared. A novel population structure that accommodated selection for semen traits was developed. Three selection strategies were simulated. Selection Strategy I (baseline) encompassed selection for maternal traits: number of pigs born alive (NBA), litter birth weight (LBW), adjusted 21-d litter weight (A21), and number of pigs at 21 d (N21); and paternal traits: number of days to 113.5 kg (D113), backfat (BF), ADG, feed efficiency (FE), and carcass lean % (LEAN). Selection Strategy II included Strategy I and the number of usable semen doses per collection (DOSES), a function of the 4 semen traits. Selection Strategy III included Strategy I and the 4 semen traits individually. The estimated economic values of VOL, CON, MOT, ABN, and DOSES for 7 to 1 collections/wk ranged from $0.21 to $1.44/mL, $0.12 to $0.83/10 spermatozoa/mm, $0.61 to $12.66/%, -$0.53 to -$10.88/%, and $2.01 to $41.43/%, respectively. The decrease in the relative economic values of semen traits and DOSES with higher number of collections per wk was sharper between 1 and 2.33 collections/wk than between 2.33 and 7 collections/wk. The higher economic value of MOT and ABN relative to VOL and CON could be linked to the genetic variances and covariances of these traits. Average genetic gains for the maternal traits were comparable across strategies

  18. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background.

    PubMed

    Saqui-Salces, Milena; Tsao, Amy C; Gillilland, Merritt G; Merchant, Juanita L

    2017-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. Copyright © 2017 the American Physiological Society.

  19. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background

    PubMed Central

    Tsao, Amy C.; Gillilland, Merritt G.; Merchant, Juanita L.

    2016-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. PMID:27810953

  20. Genetic enhancement--a threat to human rights?

    PubMed

    Fenton, Elizabeth

    2008-01-01

    Genetic enhancement is the modification of the human genome for the purpose of improving capacities or 'adding in' desired characteristics. Although this technology is still largely futuristic, debate over the moral issues it raises has been significant. George Annas has recently leveled a new attack against genetic enhancement, drawing on human rights as his primary weapon. I argue that Annas' appeal to human rights ultimately falls flat, and so provides no good reason to object to genetic technology. Moreover, this argument is an example of the broader problem of appealing to human rights as a panacea for ethical problems. Human rights, it is often claimed, are 'trumps': if it can be shown that a proposed technology violates human rights, then it must be cast aside. But human rights are neither a panacea for ethical problems nor a trump card. If they are drafted into the service of an argument, it must be shown that an actual human rights violation will occur. Annas' argument against genetic technology fails to do just this. I shall conclude that his appeal to human rights adds little to the debate over the ethical questions raised by genetic technology.

  1. 'Battling my biology': psychological effects of genetic testing for risk of weight gain.

    PubMed

    Meisel, S F; Wardle, J

    2014-04-01

    The availability of genetic tests for multifactorial conditions such as obesity raises concerns that higher-risk results could lead to fatalistic reactions or lower-risk results to complacency. No study has investigated the effects of genetic test feedback for the risk of obesity in non-clinical samples. The present study explored psychological and behavioral reactions to genetic test feedback for a weight related gene (FTO) in a volunteer sample (n = 18) using semi-structured interviews. Respondents perceived the gene test result as scientifically objective; removing some of the emotion attached to the issue of weight control. Those who were struggling with weight control reported relief of self-blame. There was no evidence for either complacency or fatalism; all respondents emphasized the importance of lifestyle choices in long-term weight management, although they recognized the role of both genes and environment. Regardless of the test result, respondents evaluated the testing positively and found it motivating and informative. Genetic test feedback for risk of weight gain may offer psychological benefits beyond its objectively limited clinical utility. As the role of genetic counselors is likely to expand, awareness of reasons for genetic testing for common, complex conditions and reactions to the test result is important.

  2. Gain-assisted broadband ring cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  3. Genetic Redundancies Enhance Information Transfer in Noisy Regulatory Circuits

    PubMed Central

    Rodrigo, Guillermo; Poyatos, Juan F.

    2016-01-01

    Cellular decision making is based on regulatory circuits that associate signal thresholds to specific physiological actions. This transmission of information is subjected to molecular noise what can decrease its fidelity. Here, we show instead how such intrinsic noise enhances information transfer in the presence of multiple circuit copies. The result is due to the contribution of noise to the generation of autonomous responses by each copy, which are altogether associated with a common decision. Moreover, factors that correlate the responses of the redundant units (extrinsic noise or regulatory cross-talk) contribute to reduce fidelity, while those that further uncouple them (heterogeneity within the copies) can lead to stronger information gain. Overall, our study emphasizes how the interplay of signal thresholding, redundancy, and noise influences the accuracy of cellular decision making. Understanding this interplay provides a basis to explain collective cell signaling mechanisms, and to engineer robust decisions with noisy genetic circuits. PMID:27741249

  4. The silencing of Kierkegaard in Habermas' critique of genetic enhancement.

    PubMed

    Christiansen, Karin

    2009-06-01

    The main purpose of this paper is to draw attention to an important part of Habermas' critique of genetic enhancement, which has been largely ignored in the discussion; namely his use of Kierkegaard's reflections on the existential conditions for becoming one-self from Either/or and the Sickness unto Death. It will be argued that, although Habermas presents some valuable and highly significant perspectives on the effect of genetic enhancement on the individual's self-understanding and ability to experience him- or herself as a free and equal individual, he does not succeed in working out a consistent argument. The claim is that he fails to explain how the existential analysis is related to his reflections on the sociological and psychological impacts of genetic enhancement in the realm of communicative action. It is this lack of theoretical clarity, which seems to render Habermas vulnerable to some of the critique which has been raised against his theory from a number of different scientific disciplines and areas of research. Hence, the first part of the paper provides some examples of the nature and variety of this critique, the second part presents Habermas' own critique of genetic enhancement in the context of a dispute between so-called 'liberal' and 'conservative' arguments, and finally, the third part discusses the limits and possibilities of his position in a future debate about genetic enhancement.

  5. Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies.

    PubMed

    Cramer, S C; Procaccio, V

    2012-05-01

    Recovery after stroke occurs on the basis of specific molecular events. Genetic polymorphisms associated with impaired neural repair or plasticity might reduce recovery from stroke and might also account for some of the intersubject variability in stroke recovery. This study hypothesized that the ApoE ε4 polymorphism and the val(66) met polymorphism for brain-derived neurotrophic factor (BDNF) are each associated with poorer outcome after stroke. Associations with mitochondrial genotype were also explored. Genotypes were determined in 255 stroke patients who also received behavioral evaluations in the Glycine Antagonist In Neuroprotection (GAIN) clinical trials. The primary outcome measure was recovery during the first month post-stroke, as this is the time when neural repair is at a maximum and so when genetic influences might have their largest impact. Two secondary outcome measures at 3 months post-stroke were also examined.   Genotype groups were similar acutely post-stroke. Presence of the ApoE ε4 polymorphism was associated with significantly poorer recovery over the first month post-stroke (P = 0.023) and with a lower proportion of subjects with minimal or no disability (modified Rankin score 0-1, P = 0.01) at 3 months post-stroke. Indeed, those with this polymorphism were approximately half as likely to achieve minimal or no disability (18.2%) versus those with polymorphism absent (35.5%). Findings were confirmed in multivariate models. Results suggested possible effects from the val(66) met BDNF polymorphism and from the R0 mitochondrial DNA haplotype.   Genetic factors, particularly the ApoE ε4 polymorphism, might contribute to variability in outcomes after stroke. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  6. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.

    PubMed

    Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D

    2016-03-01

    Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.

  7. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    NASA Astrophysics Data System (ADS)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  8. Genetic modifications for personal enhancement: a defence.

    PubMed

    Murphy, Timothy F

    2014-04-01

    Bioconservative commentators argue that parents should not take steps to modify the genetics of their children even in the name of enhancement because of the damage they predict for values, identities and relationships. Some commentators have even said that adults should not modify themselves through genetic interventions. One commentator worries that genetic modifications chosen by adults for themselves will undermine moral agency, lead to less valuable experiences and fracture people's sense of self. These worries are not justified, however, since the effects of modification will not undo moral agency as such. Adults can still have valuable experiences, even if some prior choices no longer seem meaningful. Changes at the genetic level will not always, either, alienate people from their own sense of self. On the contrary, genetic modifications can help amplify choice, enrich lives and consolidate identities. Ultimately, there is no moral requirement that people value their contingent genetic endowment to the exclusion of changes important to them in their future genetic identities. Through weighing risks and benefits, adults also have the power to consent to, and assume the risks of, genetic modifications for themselves in a way not possible in prenatal genetic interventions.

  9. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.

    PubMed

    Granleese, Tom; Clark, Samuel A; Swan, Andrew A; van der Werf, Julius H J

    2015-09-14

    Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs. Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection. All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively. Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was

  10. Undergraduates Achieve Learning Gains in Plant Genetics through Peer Teaching of Secondary Students

    PubMed Central

    Chrispeels, H. E.; Klosterman, M. L.; Martin, J. B.; Lundy, S. R.; Watkins, J. M.; Gibson, C. L.

    2014-01-01

    This study tests the hypothesis that undergraduates who peer teach genetics will have greater understanding of genetic and molecular biology concepts as a result of their teaching experiences. Undergraduates enrolled in a non–majors biology course participated in a service-learning program in which they led middle school (MS) or high school (HS) students through a case study curriculum to discover the cause of a green tomato variant. The curriculum explored plant reproduction and genetic principles, highlighting variation in heirloom tomato fruits to reinforce the concept of the genetic basis of phenotypic variation. HS students were taught additional activities related to mole­cular biology techniques not included in the MS curriculum. We measured undergraduates’ learning outcomes using pre/postteaching content assessments and the course final exam. Undergraduates showed significant gains in understanding of topics related to the curriculum they taught, compared with other course content, on both types of assessments. Undergraduates who taught HS students scored higher on questions specific to the HS curriculum compared with undergraduates who taught MS students, despite identical lecture content, on both types of assessments. These results indicate the positive effect of service-learning peer-teaching experiences on undergraduates’ content knowledge, even for non–science major students. PMID:25452487

  11. Effects of Genotype by Environment Interaction on Genetic Gain and Genetic Parameter Estimates in Red Tilapia (Oreochromis spp.)

    PubMed Central

    Nguyen, Nguyen H.; Hamzah, Azhar; Thoa, Ngo P.

    2017-01-01

    The extent to which genetic gain achieved from selection programs under strictly controlled environments in the nucleus that can be expressed in commercial production systems is not well-documented in aquaculture species. The main aim of this paper was to assess the effects of genotype by environment interaction on genetic response and genetic parameters for four body traits (harvest weight, standard length, body depth, body width) and survival in Red tilapia (Oreochromis spp.). The growth and survival data were recorded on 19,916 individual fish from a pedigreed population undergoing three generations of selection for increased harvest weight in earthen ponds from 2010 to 2012 at the Aquaculture Extension Center, Department of Fisheries, Jitra in Kedah, Malaysia. The pedigree comprised a total of 224 sires and 262 dams, tracing back to the base population in 2009. A multivariate animal model was used to measure genetic response and estimate variance and covariance components. When the homologous body traits in freshwater pond and cage were treated as genetically distinct traits, the genetic correlations between the two environments were high (0.85–0.90) for harvest weight and square root of harvest weight but the estimates were of lower magnitudes for length, width and depth (0.63–0.79). The heritabilities estimated for the five traits studied differed between pond (0.02 to 0.22) and cage (0.07 to 0.68). The common full-sib effects were large, ranging from 0.23 to 0.59 in pond and 0.11 to 0.31 in cage across all traits. The direct and correlated responses for four body traits were generally greater in pond than in cage environments (0.011–1.561 vs. −0.033–0.567 genetic standard deviation units, respectively). Selection for increased harvest body weight resulted in positive genetic changes in survival rate in both pond and cage culture. In conclusion, the reduced selection response and the magnitude of the genetic parameter estimates in the production

  12. Governmentality, biopower, and the debate over genetic enhancement.

    PubMed

    McWhorter, Ladelle

    2009-08-01

    Although Foucault adamantly refused to make moral pronouncements or dictate moral principles or political programs to his readers, his work offers a number of tools and concepts that can help us develop our own ethical views and practices. One of these tools is genealogical analysis, and one of these concepts is "biopower." Specifically, this essay seeks to demonstrate that Foucault's concept of biopower and his genealogical method are valuable as we consider moral questions raised by genetic enhancement technologies. First, it examines contemporary debate over the development, marketing, and application of such technologies, suggesting that what passes for ethical deliberation is often little more than political maneuvering in a field where stakes are very high and public perceptions will play a crucial role in decisions about which technologies will be funded or disallowed. It goes on to argue that genuine ethical deliberation on these issues requires some serious investigation of their historical context. Accordingly, then, it takes up the oft-heard charge from critics that genetic enhancement technologies are continuous with twentieth-century eugenic projects or will usher in a new age of eugenics. Foucault explicitly links twentieth-century eugenics with the rise of biopower. Through review of some aspects of the twentieth-century eugenics movement alongside some of the rhetoric and claims of enhancement's modern-day proponents, the essay shows ways in which deployment of genetic enhancement technologies is and is not continuous with earlier deployments of biopower.

  13. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.

  14. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  15. Ethical Concerns About Human Genetic Enhancement in the Malay Science Fiction Novels.

    PubMed

    Isa, Noor Munirah; Hj Safian Shuri, Muhammad Fakhruddin

    2018-02-01

    Advancements in science and technology have not only brought hope to humankind to produce disease-free offspring, but also offer possibilities to genetically enhance the next generation's traits and capacities. Human genetic enhancement, however, raises complex ethical questions, such as to what extent should it be allowed? It has been a great challenge for humankind to develop robust ethical guidelines for human genetic enhancement that address both public concerns and needs. We believe that research about public concerns is necessary prior to developing such guidelines, yet the issues have not been thoroughly investigated in many countries, including Malaysia. Since the novel often functions as a medium for the public to express their concerns, this paper explores ethical concerns about human genetic enhancement expressed in four Malay science fiction novels namely Klon, Leksikon Ledang, Transgenesis Bisikan Rimba and Transgenik Sifar. Religion has a strong influence on the worldview of the Malays therefore some concerns such as playing God are obviously religious. Association of the negative image of scientists as well as the private research companies with the research on human genetic enhancement reflects the authors' concerns about the main motivations for conducting such research and the extent to which such research will benefit society.

  16. The contribution of migrant breeds to the genetic gain of beef traits of German Vorderwald and Hinterwald cattle.

    PubMed

    Hartwig, S; Wellmann, R; Hamann, H; Bennewitz, J

    2014-12-01

    During the past decades, migrant contributions have accumulated in many local breeds. Cross-breeding was carried out to mitigate the risk of inbreeding depression and to improve the performance of local breeds. However, breeding activities for local breeds were not as intensive and target oriented as for popular high-yielding breeds. Therefore, even if performance improved, the gap between the performance of local and popular breeds increased for many traits. Furthermore, the genetic originality of local breeds declined due to the increasing contributions of migrant breeds. This study examined the importance of migrant breed influences for the realization of breeding progress of beef traits of German Vorderwald and Hinterwald cattle. The results show that there is a high amount of migrant contributions and their effects on performance are substantial for most traits. The effect of the French cattle breed Montbéliard (p-value 0.014) on daily gain of Vorderwald bulls at test station was positive. The effects of Vorderwald ancestors (p-value for daily gain 0.007 and p-value for net gain 0.004) were positive for both traits under consideration in the population of Hinterwald cattle. Additionally, the effect of remaining breeds (p-value 0.030) on net gain of Hinterwald cattle in the field was also positive. The estimated effect of Fleckvieh ancestors on net gain of Hinterwald cattle was even larger but not significant. Breeding values adjusted for the effects of the migrant breeds showed little genetic trend. © 2014 Blackwell Verlag GmbH.

  17. Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities

    PubMed Central

    Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.

    2015-01-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903

  18. A Confucian reflection on genetic enhancement.

    PubMed

    Fan, Ruiping

    2010-04-01

    This essay explores a proper Confucian vision on genetic enhancement. It argues that while Confucians can accept a formal starting point that Michael Sandel proposes in his ethics of giftedness, namely, that children should be taken as gifts, Confucians cannot adopt his generalist strategy. The essay provides a Confucian full ethics of giftedness by addressing a series of relevant questions, such as what kind of gifts children are, where the gifts are from, in which way they are given, and for what purpose they are given. It indicates that Confucians should sort out different types of enhancement and bring them to the test of the Confucian values in terms of both Confucian virtue principles and specific ritual rules. It concludes that Confucians can accept some types of enhancement but must reject others.

  19. Genetic gains in the UENF-14 popcorn population with recurrent selection.

    PubMed

    Freitas, I L J; do Amaral Júnior, A T; Freitas, S P; Cabral, P D S; Ribeiro, R M; Gonçalves, L S A

    2014-01-21

    The popcorn breeding program of Universidade Estadual do Norte Fluminense Darcy Ribeiro aims to provide farmers a cultivar with desirable agronomic traits, particularly with respect to grain yield (GY) and popping expansion (PE). We evaluated full-sib families from the seventh cycle of recurrent selection and estimated the genetic progress with respect to GY and PE. Eight traits were evaluated in 200 full-sib families that were randomized into blocks with two replicates per set in two contrasting environments, Campos dos Goytacazes and Itaocara, located in north and northwest Rio de Janeiro State, respectively. There were significant differences between sets in families with respect to all traits evaluated, which indicates genetic variability that may be explored in future cycles. Using random economic weights in the selection of superior progenies, the Mulamba and Mock index showed gains for PE and GY of 5.11 and 7.78%, respectively. Significant PE and GY increases were found when comparing the evolution of mean values of these two parameters that were assessed at cycles C₀-C₆ and predicted for C₇. Thus, an advanced-cycle popcorn cultivar with genotypic superiority for the main traits of economic interest can be made available to farmers in Rio de Janeiro State.

  20. Behavioural genetics: why eugenic selection is preferable to enhancement.

    PubMed

    Savulescu, Julian; Hemsley, Melanie; Newson, Ainsley; Foddy, Bennett

    2006-01-01

    Criminal behaviour is but one behavioural tendency for which a genetic influence has been suggested. Whilst this research certainly raises difficult ethical questions and is subject to scientific criticism, one recent research project suggests that for some families, criminal tendency might be predicted by genetics. In this paper, supposing this research is valid, we consider whether intervening in the criminal tendency of future children is ethically justifiable. We argue that, if avoidance of harm is a paramount consideration, such an intervention is acceptable when genetic selection is employed instead of genetic enhancement. Moreover, other moral problems in avoiding having children with a tendency to criminal behaviour, such as the prospect of social discrimination, can also be overcome.

  1. Musicianship enhances ipsilateral and contralateral efferent gain control to the cochlea.

    PubMed

    Bidelman, Gavin M; Schneider, Amy D; Heitzmann, Victoria R; Bhagat, Shaum P

    2017-02-01

    Human hearing sensitivity is easily compromised with overexposure to excessively loud sounds, leading to permanent hearing damage. Consequently, finding activities and/or experiential factors that distinguish "tender" from "tough" ears (i.e., acoustic vulnerability) would be important for identifying people at higher risk for hearing damage. To regulate sound transmission and protect the inner ear against acoustic trauma, the auditory system modulates gain control to the cochlea via biological feedback of the medial olivocochlear (MOC) efferents, a neuronal pathway linking the lower brainstem and cochlear outer hair cells. We hypothesized that a salient form of auditory experience shown to have pervasive neuroplastic benefits, namely musical training, might act to fortify hearing through tonic engagement of these reflexive pathways. By measuring MOC efferent feedback via otoacoustic emissions (cochlear emitted sounds), we show that dynamic ipsilateral and contralateral cochlear gain control is enhanced in musically-trained individuals. Across all participants, MOC strength was correlated with the years of listeners' training suggested that efferent gain control is experience dependent. Our data provide new evidence that intensive listening experience(s) (e.g., musicianship) can strengthen the ipsi/contralateral MOC efferent system and sound regulation to the inner ear. Implications for reducing acoustic vulnerability to damaging sounds are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Speech Enhancement, Gain, and Noise Spectrum Adaptation Using Approximate Bayesian Estimation

    PubMed Central

    Hao, Jiucang; Attias, Hagai; Nagarajan, Srikantan; Lee, Te-Won; Sejnowski, Terrence J.

    2010-01-01

    This paper presents a new approximate Bayesian estimator for enhancing a noisy speech signal. The speech model is assumed to be a Gaussian mixture model (GMM) in the log-spectral domain. This is in contrast to most current models in frequency domain. Exact signal estimation is a computationally intractable problem. We derive three approximations to enhance the efficiency of signal estimation. The Gaussian approximation transforms the log-spectral domain GMM into the frequency domain using minimal Kullback–Leiber (KL)-divergency criterion. The frequency domain Laplace method computes the maximum a posteriori (MAP) estimator for the spectral amplitude. Correspondingly, the log-spectral domain Laplace method computes the MAP estimator for the log-spectral amplitude. Further, the gain and noise spectrum adaptation are implemented using the expectation–maximization (EM) algorithm within the GMM under Gaussian approximation. The proposed algorithms are evaluated by applying them to enhance the speeches corrupted by the speech-shaped noise (SSN). The experimental results demonstrate that the proposed algorithms offer improved signal-to-noise ratio, lower word recognition error rate, and less spectral distortion. PMID:20428253

  3. Undergraduates achieve learning gains in plant genetics through peer teaching of secondary students.

    PubMed

    Chrispeels, H E; Klosterman, M L; Martin, J B; Lundy, S R; Watkins, J M; Gibson, C L; Muday, G K

    2014-01-01

    This study tests the hypothesis that undergraduates who peer teach genetics will have greater understanding of genetic and molecular biology concepts as a result of their teaching experiences. Undergraduates enrolled in a non-majors biology course participated in a service-learning program in which they led middle school (MS) or high school (HS) students through a case study curriculum to discover the cause of a green tomato variant. The curriculum explored plant reproduction and genetic principles, highlighting variation in heirloom tomato fruits to reinforce the concept of the genetic basis of phenotypic variation. HS students were taught additional activities related to mole-cular biology techniques not included in the MS curriculum. We measured undergraduates' learning outcomes using pre/postteaching content assessments and the course final exam. Undergraduates showed significant gains in understanding of topics related to the curriculum they taught, compared with other course content, on both types of assessments. Undergraduates who taught HS students scored higher on questions specific to the HS curriculum compared with undergraduates who taught MS students, despite identical lecture content, on both types of assessments. These results indicate the positive effect of service-learning peer-teaching experiences on undergraduates' content knowledge, even for non-science major students. © 2014 H. E. Chrispeels et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Multiple criteria decision-making process to derive consensus desired genetic gains for a dairy cattle breeding objective for diverse production systems.

    PubMed

    Kariuki, C M; van Arendonk, J A M; Kahi, A K; Komen, H

    2017-06-01

    Dairy cattle industries contribute to food and nutrition security and are a source of income for numerous households in many developing countries. Selective breeding can enhance efficiency in these industries. Developing dairy industries are characterized by diverse production and marketing systems. In this paper, we use weighted goal aggregating procedure to derive consensus trait preferences for different producer categories and processors. We based the study on the dairy industry in Kenya. The analytic hierarchy process was used to derive individual preferences for milk yield (MY), calving interval (CIN), production lifetime (PLT), mature body weight (MBW), and fat yield (FY). Results show that classical classification of production systems into large-scale and smallholder systems does not capture all differences in trait preferences. These differences became apparent when classification was based on productivity at the individual animal level, with high and low intensity producers and processors as the most important groups. High intensity producers had highest preferences for PLT and MY, whereas low intensity producers had highest preference for CIN and PLT; processors preferred MY and FY the most. The highest disagreements between the groups were observed for FY, PLT, and MY. Individual and group preferences were aggregated into consensus preferences using weighted goal programming. Desired gains were obtained as a product of consensus preferences and percentage genetic gains (G%). These were 2.42, 0.22, 2.51, 0.15, and 0.87 for MY, CIN, PLT, MBW, and FY, respectively. Consensus preferences can be used to derive a single compromise breeding objective for situations where the same genetic resources are used in diverse production and marketing circumstances. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license

  5. Enhanced energy transport in genetically engineered excitonic networks.

    PubMed

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F; Lloyd, Seth; Belcher, Angela M

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  6. Enhancement of short-pulse recombination-pumped gain by soft-x-ray photoionization of the ground state

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Umstadter, D.

    1996-02-01

    The gain achieved in lasing to the ground state following short-pulse field ionization by a pump laser is highly transient. It will usually persist for only tens of picoseconds because of the rapid filling and negligible emptying of the ground state. Employing a detailed atomic model of lasing in hydrogen, we show that the removal of ground-state population by an appropriate broadband ionizing radiation field can enhance and prolong the gain in such a laser.

  7. Polygenic Risk, Appetite Traits, and Weight Gain in Middle Childhood

    PubMed Central

    Steinsbekk, Silje; Belsky, Daniel; Guzey, Ismail Cuneyt; Wardle, Jane; Wichstrøm, Lars

    2018-01-01

    IMPORTANCE Genome-wide association studies have identified genetic risks for obesity. These genetic risks influence development of obesity partly by accelerating weight gain in childhood. Research is needed to identify mechanisms to inform intervention. Cross-sectional studies suggest appetite traits as a candidate mechanism. Longitudinal studies are needed to test whether appetite traits mediate genetic influences on children’s weight gain. OBJECTIVE To test whether genetic risk for obesity predicts accelerated weight gain in middle childhood (ages 4–8 years) and whether genetic association with accelerated weight gain is mediated by appetite traits. DESIGN, SETTING, AND PARTICIPANTS Longitudinal study of a representative birth cohort at the Trondheim Early Secure Study, Trondheim, Norway, enrolled at age 4 years during 2007 to 2008, with follow-ups at ages 6 and 8 years. Participants were sampled from all children born in 2003 or 2004 who attended regular community health checkups for 4-year-olds (97.2%attendance; 82.0%consent rate, n = 2475). Nine hundred ninety-five children participated at age 4 years, 795 at age 6 years, and 699 at age 8 years. Analyses included 652 children with genotype, adiposity, and appetite data. MAIN OUTCOMES AND MEASURES Outcomes were body mass index and body-fat phenotypes measured from anthropometry (ages 4, 6, and 8 years) and bioelectrical impedance (ages 6 and 8 years). Genetic risk for obesity was measured using a genetic risk score composed of 32 single-nucleotide polymorphisms previously discovered in genome-wide association studies of adult body mass index. Appetite traits were measured at age 6 years with the Children’s Eating Behavior Questionnaire. RESULTS Of the 652 genotyped child participants, 323 (49.5%) were female, 58 (8.9%) were overweight, and 1 (0.2%) was obese. Children at higher genetic risk for obesity had higher baseline body mass index and fat mass compared with lower genetic risk peers, and they gained

  8. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  9. [Antipsychotic-induced weight gain--pharmacogenetic studies].

    PubMed

    Olajossy-Hilkesberger, Luiza; Godlewska, Beata; Marmurowska-Michałowskal, Halina; Olajossy, Marcin; Landowski, Jerzy

    2006-01-01

    Drug-naive patients with schizophrenia often present metabolic abnormalities and obesity. Weight gain may be the side effect of treatment with many antipsychotic drugs. Genetic effects, besides many other factors, are known to influence obesity in patients with schizophrenia treated with antipsychotics. Numerous studies of several genes' polymorphisms have been performed. -759C/T polymorphism of 5HT2C gene attracted most attention. In 5 independent studies of this polymorphism the association between T allele with the lower AP-induced weight gain was detected. No associations could be detected between weight gain and other polymorphisms of serotonergic system genes as well as histaminergic system genes. Studies of adrenergic and dopaminergic system have neither produced any unambiguous results. Analysis of the newest candidate genes (SAP-25, leptin gene) confirmed the role of genetic factors in AP-induced weight gain. It is worth emphasising, that the studies have been conducted in relatively small and heterogenic groups and that various treatment strategies were used.

  10. Integrated genomic approaches to enhance genetic resistance in chickens

    USDA-ARS?s Scientific Manuscript database

    The chicken has led the way amongst agricultural animal species in infectious disease control and, in particular, selection for genetic resistance. The generation of the chicken genome sequence and the availability of other empowering tools and resources greatly enhance the ability to select for enh...

  11. Genetic Selection to Enhance Animal Welfare Using Meat Inspection Data from Slaughter Plants

    PubMed Central

    Mathur, Pramod K.; Vogelzang, Roos; Mulder, Herman A.; Knol, Egbert F.

    2018-01-01

    Simple Summary Analysis of a large volume of meat inspection data suggests availability of genetic variation for most common indicators of poor animal welfare. This genetic variation can be used to select pigs that have the potential to resist common infections and other unfavorable welfare conditions. Genetic selection can be a tool in addition to farm management in reducing the risk of diseases, thereby reducing pain and suffering of animals. In general, the slaughter remarks have small but favorable genetic relationships with finishing and carcass quality traits. Therefore, it is possible to enhance animal welfare along with the genetic selection for economically important production traits. Abstract Animal health and welfare are monitored during meat inspection in many slaughter plants around the world. Carcasses are examined by meat inspectors and remarks are made with respect to different diseases, injuries, and other abnormalities. This is a valuable data resource for disease prevention and enhancing animal welfare, but it is rarely used for this purpose. Records on carcass remarks on 140,375 finisher pigs were analyzed to investigate the possibility of genetic selection to reduce the risk of the most prevalent diseases and indicators of suboptimal animal welfare. As part of this, effects of some non-genetic factors such as differences between farms, sexes, and growth rates were also examined. The most frequent remarks were pneumonia (15.4%), joint disorders (9.8%), pleuritis (4.7%), pericarditis (2.3%), and liver lesions (2.2%). Joint disorders were more frequent in boars than in gilts. There were also significant differences between farms. Pedigree records were available for 142,324 pigs from 14 farms and were used for genetic analysis. Heritability estimates for pneumonia, pleuritis, pericarditis, liver lesions, and joint disorders were 0.10, 0.09, 0.14, 0.24, and 0.17 on the liability scale, respectively, suggesting the existence of substantial genetic

  12. 93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology

    NASA Astrophysics Data System (ADS)

    Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki

    2013-04-01

    In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.

  13. Genetic response to selection for weaning weight or yearling weight or yearling weight and muscle score in Hereford cattle: efficiency of gain, growth, and carcass characteristics.

    PubMed

    Koch, R M; Cundiff, L V; Gregory, K E; Van Vleck, L D

    2004-03-01

    An experiment involving crosses among selection and control lines was conducted to partition direct and maternal additive genetic response to 20 yr of selection for 1) weaning weight, 2) yearling weight, and 3) index of yearling weight and muscle score. Selection response was evaluated for efficiency of gain, growth from birth through market weight, and carcass characteristics. Heritability and genetic correlations among traits were estimated using animal model analyses. Over a time-constant interval, selected lines were heavier, gained more weight, consumed more ME, and had more gain/ME than the control. Over a weight-constant interval, selected lines required fewer days, consumed less ME, had more efficient gains, and required less energy for maintenance than control. Direct and maternal responses were estimated from reciprocal crosses among unselected sires and dams of control and selection lines. Most of the genetic response to selection in all three lines was associated with direct genetic effects, and the highest proportion was from postweaning gain. Indirect responses of carcass characteristics to selection over the 20 yr were increased weight of carcasses that had more lean meat, produced with less feed per unit of gain. At a constant carcass weight, selected lines had 1.32 to 1.85% more retail product and 1.62 to 2.24% less fat trim and 10/100 to 25/100 degrees less marbling than control. At a constant age, heritability of direct and maternal effects and correlations between them were as follows: market weight, 0.36, 0.14, and 0.10; carcass weight, 0.26, 0.15, and 0.03; longissimus muscle area, 0.33, 0.00, and 0.00; marbling, 0.36, 0.07, and -0.35; fat thickness, 0.41, 0.05, and -0.18; percentage of kidney, pelvic, and heart fat, 0.12, 0.08, and -0.76; percentage of retail product, 0.46, 0.05, and -0.29; retail product weight, 0.44, 0.08, -0.14; and muscle score, 0.37, 0.14, and -0.54. Selection criteria in all lines improved efficiency of postweaning gain

  14. An information-gain approach to detecting three-way epistatic interactions in genetic association studies

    PubMed Central

    Hu, Ting; Chen, Yuanzhu; Kiralis, Jeff W; Collins, Ryan L; Wejse, Christian; Sirugo, Giorgio; Williams, Scott M; Moore, Jason H

    2013-01-01

    Background Epistasis has been historically used to describe the phenomenon that the effect of a given gene on a phenotype can be dependent on one or more other genes, and is an essential element for understanding the association between genetic and phenotypic variations. Quantifying epistasis of orders higher than two is very challenging due to both the computational complexity of enumerating all possible combinations in genome-wide data and the lack of efficient and effective methodologies. Objectives In this study, we propose a fast, non-parametric, and model-free measure for three-way epistasis. Methods Such a measure is based on information gain, and is able to separate all lower order effects from pure three-way epistasis. Results Our method was verified on synthetic data and applied to real data from a candidate-gene study of tuberculosis in a West African population. In the tuberculosis data, we found a statistically significant pure three-way epistatic interaction effect that was stronger than any lower-order associations. Conclusion Our study provides a methodological basis for detecting and characterizing high-order gene-gene interactions in genetic association studies. PMID:23396514

  15. Enhanced entrainability of genetic oscillators by period mismatch

    PubMed Central

    Hasegawa, Yoshihiko; Arita, Masanori

    2013-01-01

    Biological oscillators coordinate individual cellular components so that they function coherently and collectively. They are typically composed of multiple feedback loops, and period mismatch is unavoidable in biological implementations. We investigated the advantageous effect of this period mismatch in terms of a synchronization response to external stimuli. Specifically, we considered two fundamental models of genetic circuits: smooth and relaxation oscillators. Using phase reduction and Floquet multipliers, we numerically analysed their entrainability under different coupling strengths and period ratios. We found that a period mismatch induces better entrainment in both types of oscillator; the enhancement occurs in the vicinity of the bifurcation on their limit cycles. In the smooth oscillator, the optimal period ratio for the enhancement coincides with the experimentally observed ratio, which suggests biological exploitation of the period mismatch. Although the origin of multiple feedback loops is often explained as a passive mechanism to ensure robustness against perturbation, we study the active benefits of the period mismatch, which include increasing the efficiency of the genetic oscillators. Our findings show a qualitatively different perspective for both the inherent advantages of multiple loops and their essentiality. PMID:23389900

  16. Invited review: Genetics and claw health: Opportunities to enhance claw health by genetic selection.

    PubMed

    Heringstad, B; Egger-Danner, C; Charfeddine, N; Pryce, J E; Stock, K F; Kofler, J; Sogstad, A M; Holzhauer, M; Fiedler, A; Müller, K; Nielsen, P; Thomas, G; Gengler, N; de Jong, G; Ødegård, C; Malchiodi, F; Miglior, F; Alsaaod, M; Cole, J B

    2018-06-01

    . Although some of the studies were based on relatively few records and the estimated genetic parameters had large standard errors, there was, with some exceptions, consistency among studies. Various studies evaluate the potential of various data soureces for use in breeding. The use of hoof trimming data is recommended for maximization of genetic gain, although auxiliary traits, such as locomotion score and some conformation traits, may be valuable for increasing the reliability of genetic evaluations. Routine genetic evaluation of direct claw health has been implemented in the Netherlands (2010); Denmark, Finland, and Sweden (joint Nordic evaluation; 2011); and Norway (2014), and other countries plan to implement evaluations in the near future. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  17. Genetic dissection of the α-globin super-enhancer in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Deborah; Hughes, Jim R.; Babbs, Christian

    Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less

  18. Genetic dissection of the α-globin super-enhancer in vivo

    DOE PAGES

    Hay, Deborah; Hughes, Jim R.; Babbs, Christian; ...

    2016-07-04

    Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less

  19. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes

    PubMed Central

    Sharma, Shivali; Upadhyaya, H. D.; Varshney, R. K.; Gowda, C. L. L.

    2013-01-01

    The narrow genetic base of cultivars coupled with low utilization of genetic resources are the major factors limiting grain legume production and productivity globally. Exploitation of new and diverse sources of variation is needed for the genetic enhancement of grain legumes. Wild relatives with enhanced levels of resistance/tolerance to multiple stresses provide important sources of genetic diversity for crop improvement. However, their exploitation for cultivar improvement is limited by cross-incompatibility barriers and linkage drags. Pre-breeding provides a unique opportunity, through the introgression of desirable genes from wild germplasm into genetic backgrounds readily used by the breeders with minimum linkage drag, to overcome this. Pre-breeding activities using promising landraces, wild relatives, and popular cultivars have been initiated at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to develop new gene pools in chickpea, pigeonpea, and groundnut with a high frequency of useful genes, wider adaptability, and a broad genetic base. The availability of molecular markers will greatly assist in reducing linkage drags and increasing the efficiency of introgression in pre-breeding programs. PMID:23970889

  20. Polygenic Risk, Appetite Traits, and Weight Gain in Middle Childhood: A Longitudinal Study.

    PubMed

    Steinsbekk, Silje; Belsky, Daniel; Guzey, Ismail Cuneyt; Wardle, Jane; Wichstrøm, Lars

    2016-02-01

    Genome-wide association studies have identified genetic risks for obesity. These genetic risks influence development of obesity partly by accelerating weight gain in childhood. Research is needed to identify mechanisms to inform intervention. Cross-sectional studies suggest appetite traits as a candidate mechanism. Longitudinal studies are needed to test whether appetite traits mediate genetic influences on children's weight gain. To test whether genetic risk for obesity predicts accelerated weight gain in middle childhood (ages 4-8 years) and whether genetic association with accelerated weight gain is mediated by appetite traits. Longitudinal study of a representative birth cohort at the Trondheim Early Secure Study, Trondheim, Norway, enrolled at age 4 years during 2007 to 2008, with follow-ups at ages 6 and 8 years. Participants were sampled from all children born in 2003 or 2004 who attended regular community health checkups for 4-year-olds (97.2% attendance; 82.0% consent rate, n = 2475). Nine hundred ninety-five children participated at age 4 years, 795 at age 6 years, and 699 at age 8 years. Analyses included 652 children with genotype, adiposity, and appetite data. Outcomes were body mass index and body-fat phenotypes measured from anthropometry (ages 4, 6, and 8 years) and bioelectrical impedance (ages 6 and 8 years). Genetic risk for obesity was measured using a genetic risk score composed of 32 single-nucleotide polymorphisms previously discovered in genome-wide association studies of adult body mass index. Appetite traits were measured at age 6 years with the Children's Eating Behavior Questionnaire. Of the 652 genotyped child participants, 323 (49.5%) were female, 58 (8.9%) were overweight, and 1 (0.2%) was obese. Children at higher genetic risk for obesity had higher baseline body mass index and fat mass compared with lower genetic risk peers, and they gained weight and fat mass more rapidly during follow-up. Each SD increase in genetic risk score was

  1. Genetic dissection of the α-globin super-enhancer in vivo

    PubMed Central

    Hay, Deborah; Hughes, Jim R.; Rode, Christina; Li, Pik-Shan; Pennacchio, Len A.; Sloane-Stanley, Jacqueline A.; Ayyub, Helena; Butler, Sue; Sauka-Spengler, Tatjana; Gibbons, Richard J.; Smith, Andrew J.H.; Wood, William G.; Higgs, Douglas R.

    2016-01-01

    Many genes determining cell identity are regulated by clusters of mediator-bound enhancer elements collectively referred to as super-enhancers. These have been proposed to manifest higher-order properties important in development and disease. Here, we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer singly and in informative combinations, we demonstrate that each constituent enhancer appears to act independently and in an additive fashion with respect to hematologic phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. PMID:27376235

  2. Genetic manipulation of clostridium acetobutylicum for enhanced butanol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschek, H.P.; Holt, S.

    Recent developments in the genetic manipulation of the acetone-butanol-ethanol fermentation microorganism, Clostridium acetobutylicum will be discussed. This specifically involves the characterization of an M13-like genetic system for C. acetobutylicum based on the pCAK1 phagemid, as well as the development of a plasmid-based vector based on the indigenous pDM11 plasmid recovered from C. acetobutylicum NCIB 6443. In addition, a macrorestriction map of the C. acetobutylicum ATCC 824 genome was constructed by utilizing two-dimensional transverse alternating field electrophoresis combined with reciprocal enzyme digestions and hybridization with previously cloned genes. We also describe the genetic engineering of a C. acetobutylicum strain with amplifiedmore » encloglucanase activity and to development and characterization of C. acetobutylicum hyper-amylolytic mutants with enhanced potential for commercial processes and evaluate their ability to produce butanol under batch and continuous culture conditions.« less

  3. Genetically enhanced cellulase production in Pseudomonas cellulosa using recombinant DNA technology

    DOEpatents

    Dees, H. Craig

    1999-01-01

    An enhanced strain of Pseudomonas celllulosa was obtained by introducing a recombinant genetic construct comprising a heterologous cellulase gene operably connected to a promoter into ATCC 55702, mutagenizing the transformants by treatment with MNNG, and selecting a high cellulase producing transformant. The transformant, designated Pseudomonas cellulosa ATCC XXXX, exhibits enhanced levels of cellulase production relative to the untransformed Pseudomonas cellulosa strain #142 ATCC 55702.

  4. Alternative Growth Promoters Modulate Broiler Gut Microbiome and Enhance Body Weight Gain

    PubMed Central

    Salaheen, Serajus; Kim, Seon-Woo; Haley, Bradd J.; Van Kessel, Jo Ann S.; Biswas, Debabrata

    2017-01-01

    Antibiotic growth promoters (AGPs) are frequently used to enhance weight-gain in poultry production. However, there has been increasing concern over the impact of AGP on the emergence of antibiotic resistance in zoonotic bacterial pathogens in the microbial community of the poultry gut. In this study, we adopted mass-spectrophotometric, phylogenetic, and shotgun-metagenomic approaches to evaluate bioactive phenolic extracts (BPE) from blueberry (Vaccinium corymbosum) and blackberry (Rubus fruticosus) pomaces as AGP alternatives in broilers. We conducted two trials with 100 Cobb-500 broiler chicks (in each trial) in four equal groups that were provided water with no supplementation, supplemented with AGP (tylosin, neomycin sulfate, bacitracin, erythromycin, and oxytetracycline), or supplemented with 0.1 g Gallic acid equivalent (GAE)/L or 1.0 g GAE/L (during the last 72 h before euthanasia) of BPE for 6 weeks. When compared with the control group (water only), the chickens supplemented with AGP and 0.1 g GAE/L of BPE gained 9.5 and 5.8% more body weight, respectively. The microbiomes of both the AGP- and BPE-treated chickens had higher Firmicutes to Bacteroidetes ratios. AGP supplementation appeared to be associated with higher relative abundance of bacteriophages and unique cecal resistomes compared with BPE supplementation or control. Functional characterization of cecal microbiomes revealed significant animal-to-animal variation in the relative abundance of genes involved in energy and carbohydrate metabolism. These findings established a baseline upon which mechanisms of plant-based performance enhancers in regulation of animal growth can be investigated. In addition, the data will aid in designing alternate strategies to improve animal growth performance and consequently production. PMID:29123512

  5. Genetic Selection to Enhance Animal Welfare Using Meat Inspection Data from Slaughter Plants.

    PubMed

    Mathur, Pramod K; Vogelzang, Roos; Mulder, Herman A; Knol, Egbert F

    2018-01-24

    Animal health and welfare are monitored during meat inspection in many slaughter plants around the world. Carcasses are examined by meat inspectors and remarks are made with respect to different diseases, injuries, and other abnormalities. This is a valuable data resource for disease prevention and enhancing animal welfare, but it is rarely used for this purpose. Records on carcass remarks on 140,375 finisher pigs were analyzed to investigate the possibility of genetic selection to reduce the risk of the most prevalent diseases and indicators of suboptimal animal welfare. As part of this, effects of some non-genetic factors such as differences between farms, sexes, and growth rates were also examined. The most frequent remarks were pneumonia (15.4%), joint disorders (9.8%), pleuritis (4.7%), pericarditis (2.3%), and liver lesions (2.2%). Joint disorders were more frequent in boars than in gilts. There were also significant differences between farms. Pedigree records were available for 142,324 pigs from 14 farms and were used for genetic analysis. Heritability estimates for pneumonia, pleuritis, pericarditis, liver lesions, and joint disorders were 0.10, 0.09, 0.14, 0.24, and 0.17 on the liability scale, respectively, suggesting the existence of substantial genetic variation. This was further confirmed though genome wide associations using deregressed breeding values as phenotypes. The genetic correlations between these remarks and finishing traits were small but mostly negative, suggesting the possibility of enhancing pig health and welfare simultaneously with genetic improvement in finishing traits. A selection index based on the breeding values for these traits and their economic values was developed. This index is used to enhance animal welfare in pig farms.

  6. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    PubMed

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  7. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers†

    PubMed Central

    Peteroy-Kelly, Marcy A.; Marcello, Matthew R.; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae. The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines. PMID:28904646

  8. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers.

    PubMed

    Peteroy-Kelly, Marcy A; Marcello, Matthew R; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae . The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines.

  9. Prediction of genetic gains by selection indices using mixed models in elephant grass for energy purposes.

    PubMed

    Silva, V B; Daher, R F; Araújo, M S B; Souza, Y P; Cassaro, S; Menezes, B R S; Gravina, L M; Novo, A A C; Tardin, F D; Júnior, A T Amaral

    2017-09-27

    Genetically improved cultivars of elephant grass need to be adapted to different ecosystems with a faster growth speed and lower seasonality of biomass production over the year. This study aimed to use selection indices using mixed models (REML/BLUP) for selecting families and progenies within full-sib families of elephant grass (Pennisetum purpureum) for biomass production. One hundred and twenty full-sib progenies were assessed from 2014 to 2015 in a randomized block design with three replications. During this period, the traits dry matter production, the number of tillers, plant height, stem diameter, and neutral detergent fiber were assessed. Families 3 and 1 were the best classified, being the most indicated for selection effect. Progenies 40, 45, 46, and 49 got the first positions in the three indices assessed in the first cut. The gain for individual 40 was 161.76% using Mulamba and Mock index. The use of selection indices using mixed models is advantageous in elephant grass since they provide high gains with the selection, which are distributed among all the assessed traits in the most appropriate situation to breeding programs.

  10. Chromosomal Gains at 9q Characterize Enteropathy-Type T-Cell Lymphoma

    PubMed Central

    Zettl, Andreas; Ott, German; Makulik, Angela; Katzenberger, Tiemo; Starostik, Petr; Eichler, Thorsten; Puppe, Bernhard; Bentz, Martin; Müller-Hermelink, Hans Konrad; Chott, Andreas

    2002-01-01

    Genetic alterations in enteropathy-type T-cell lymphoma (ETL) are unknown so far. In this series, 38 cases of ETL were analyzed by comparative genomic hybridization (CGH). CGH revealed chromosomal imbalances in 87% of cases analyzed, with recurrent gains of genetic material involving chromosomes 9q (in 58% of cases), 7q (24%), 5q (18%), and 1q (16%). Recurrent losses of genetic material occurred on chromosomes 8p and 13q (24% each), and 9p (18%). In this first systematic genetic study on ETL, chromosomal gains on 9q (minimal overlapping region 9q33-q34) were found to be highly characteristic of ETL. Fluorescence in situ hybridization analysis on four cases of ETL, using a probe for 9q34, indicated frequent and multiple gains of chromosomal material at 9q34 (up to nine signals per case). Among 16 patients with ETL who survived initial disease presentation, patients with more than three chromosomal gains or losses (n = 11) followed a worse clinical course than those with three or less imbalances (n = 5). The observation of similar genetic alterations in ETL and in primary gastric (n = 4) and colonic (n = 1) T-cell lymphoma, not otherwise specified, is suggestive of a genetic relationship of gastrointestinal T-cell lymphomas at either localization. PMID:12414511

  11. Motivations for genetic testing for lung cancer risk among young smokers.

    PubMed

    O'Neill, Suzanne C; Lipkus, Isaac M; Sanderson, Saskia C; Shepperd, James; Docherty, Sharron; McBride, Colleen M

    2013-11-01

    To examine why young people might want to undergo genetic susceptibility testing for lung cancer despite knowing that tested gene variants are associated with small increases in disease risk. The authors used a mixed-method approach to evaluate motives for and against genetic testing and the association between these motivations and testing intentions in 128 college students who smoke. Exploratory factor analysis yielded four reliable factors: Test Scepticism, Test Optimism, Knowledge Enhancement and Smoking Optimism. Test Optimism and Knowledge Enhancement correlated positively with intentions to test in bivariate and multivariate analyses (ps<0.001). Test Scepticism correlated negatively with testing intentions in multivariate analyses (p<0.05). Open-ended questions assessing testing motivations generally replicated themes of the quantitative survey. In addition to learning about health risks, young people may be motivated to seek genetic testing for reasons, such as gaining knowledge about new genetic technologies more broadly.

  12. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance.

    PubMed

    Hughes, A Randall; Stachowicz, John J

    2004-06-15

    Motivated by recent global reductions in biodiversity, empirical and theoretical research suggests that more species-rich systems exhibit enhanced productivity, nutrient cycling, or resistance to disturbance or invasion relative to systems with fewer species. In contrast, few data are available to assess the potential ecosystem-level importance of genetic diversity within species known to play a major functional role. Using a manipulative field experiment, we show that increasing genotypic diversity in a habitat-forming species (the seagrass Zostera marina) enhances community resistance to disturbance by grazing geese. The time required for recovery to near predisturbance densities also decreases with increasing eelgrass genotypic diversity. However, there is no effect of diversity on resilience, measured as the rate of shoot recovery after the disturbance, suggesting that more rapid recovery in diverse plots is due solely to differences in disturbance resistance. Genotypic diversity did not affect ecosystem processes in the absence of disturbance. Thus, our results suggest that genetic diversity, like species diversity, may be most important for enhancing the consistency and reliability of ecosystems by providing biological insurance against environmental change.

  13. Genotype by environment interaction effects in genetic evaluation of preweaning gain for Line 1 Hereford cattle from Miles City, Montana.

    PubMed

    MacNeil, M D; Cardoso, F F; Hay, E

    2017-09-01

    It has long been recognized that genotype × environment interaction potentially influences genetic evaluation of beef cattle. However, this recognition has largely been ignored in systems for national cattle evaluation. The objective of this investigation was to determine if direct and maternal genetic effects on preweaning gain would be reranked depending on an environmental gradient as determined by year effects. Data used were from the 76-yr selection experiment with the Line 1 Hereford cattle raised at Miles City, MT. The data comprised recorded phenotypes from 7,566 animals and an additional 1,862 ancestral records included in the pedigree. The presence of genotype × environment interaction was examined using reaction norms wherein year effects on preweaning gain were hypothesized to linearly influence the EBV. Estimates of heritability for direct and maternal effects, given the average environment, were 10 ± 2 and 26 ± 3%, respectively. In an environment that is characterized by the 5th (95th) percentile of the distribution of year effects, the corresponding estimates of heritability were 18 ± 3 (22 ± 3%) and 30 ± 3% (30 ± 3%), respectively. Rank correlations of direct and maternal EBV appropriate to the 5th and 95th percentiles of the year effects were 0.67 and 0.92, respectively. In the average environment, the genetic trends were 255 ± 1 g/yr for direct effects and 557 ± 3 g/yr for maternal effects. In the fifth percentile environment, the corresponding estimates of genetic trend were 271 ± 1 and 540 ± 3 g/yr, respectively, and in the 95th percentile environment, they were 236 ± 1 and 578 ± 3 g/yr, respectively. Linear genetic trends in environmental sensitivity were observed for both the direct (-8.06 × 10 ± 0.49 × 10) and maternal (8.72 × 10 ± 0.43 × 10) effects. Therefore, changing systems of national cattle evaluation to more fully account for potential genotype × environment interaction would improve the assessment of breeding

  14. Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling.

    PubMed

    Emdin, Connor A; Khera, Amit V; Klarin, Derek; Natarajan, Pradeep; Zekavat, Seyedeh M; Nomura, Akihiro; Haas, Mary; Aragam, Krishna; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gormley, Padhraig; Palotie, Aarno; Stitziel, Nathan O; Gupta, Namrata; Danesh, John; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2018-01-16

    Nitric oxide signaling plays a key role in the regulation of vascular tone and platelet activation. Here, we seek to understand the impact of a genetic predisposition to enhanced nitric oxide signaling on risk for cardiovascular diseases, thus informing the potential utility of pharmacological stimulation of the nitric oxide pathway as a therapeutic strategy. We analyzed the association of common and rare genetic variants in 2 genes that mediate nitric oxide signaling (Nitric Oxide Synthase 3 [ NOS3 ] and Guanylate Cyclase 1, Soluble, Alpha 3 [ GUCY1A3 ]) with a range of human phenotypes. We selected 2 common variants (rs3918226 in NOS3 and rs7692387 in GUCY1A3 ) known to associate with increased NOS3 and GUCY1A3 expression and reduced mean arterial pressure, combined them into a genetic score, and standardized this exposure to a 5 mm Hg reduction in mean arterial pressure. Using individual-level data from 335 464 participants in the UK Biobank and summary association results from 7 large-scale genome-wide association studies, we examined the effect of this nitric oxide signaling score on cardiometabolic and other diseases. We also examined whether rare loss-of-function mutations in NOS3 and GUCY1A3 were associated with coronary heart disease using gene sequencing data from the Myocardial Infarction Genetics Consortium (n=27 815). A genetic predisposition to enhanced nitric oxide signaling was associated with reduced risks of coronary heart disease (odds ratio, 0.37; 95% confidence interval [CI], 0.31-0.45; P =5.5*10 -26 ], peripheral arterial disease (odds ratio 0.42; 95% CI, 0.26-0.68; P =0.0005), and stroke (odds ratio, 0.53; 95% CI, 0.37-0.76; P =0.0006). In a mediation analysis, the effect of the genetic score on decreased coronary heart disease risk extended beyond its effect on blood pressure. Conversely, rare variants that inactivate the NOS3 or GUCY1A3 genes were associated with a 23 mm Hg higher systolic blood pressure (95% CI, 12-34; P =5.6*10 -5

  15. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  16. Exploiting genomics and natural genetic variation to decode macrophage enhancers

    PubMed Central

    Romanoski, Casey E.; Link, Verena M.; Heinz, Sven; Glass, Christopher K.

    2015-01-01

    The mammalian genome contains on the order of a million enhancer-like regions that are required to establish the identities and functions of specific cell types. Here, we review recent studies in immune cells that have provided insight into the mechanisms that selectively activate certain enhancers in response to cell lineage and environmental signals. We describe a working model wherein distinct classes of transcription factors define the repertoire of active enhancers in macrophages through collaborative and hierarchical interactions, and discuss important challenges to this model, specifically providing examples from T cells. We conclude by discussing the use of natural genetic variation as a powerful approach for decoding transcription factor combinations that play dominant roles in establishing the enhancer landscapes, and the potential that these insights have for advancing our understanding of the molecular causes of human disease. PMID:26298065

  17. Genetic Alterations of RDINK4/ARF Enhancer in Human Cancer Cells

    PubMed Central

    Li, Junan; Knobloch, Thomas J.; Poi, Ming J.; Zhang, Zhaoxia; Davis, Andrew T.; Muscarella, Peter; Weghorst, Christopher M.

    2017-01-01

    Recent identification of an enhancer element, RDINK4/ARF (RD), in the prominent INK4/ARF locus provides a novel mechanism to simultaneously regulate the transcription of p15INK4B (p15), p14ARF, and p16INK4A (p16) tumor suppressor genes. While genetic inactivation of p15, p14ARF, and p16 in human tumors has been extensively studied, little is known about genetic alterations of RD and its impact on p15, p14ARF, and p16 in human cancer. The purpose of this study was to investigate the potential existence of genetic alterations of RD in human cancer cells. DNAs extracted from 17 different cancer cell lines and 31 primary pheochromocytoma tumors were analyzed for deletion and mutation of RD using qPCR and direct DNA sequencing. We found that RD was deleted in human cancer cell lines and pheochromocytoma tumors at frequencies of 41.2% (7/17) and 13.0% (4/31), respectively. While some of these RD deletion events occurred along with deletions of the entire INK4/ARF locus, other RD deletion events were independent of genetic alterations in p15, p14ARF, and p16. Furthermore, the status of RD was poorly associated with the expression of p15, p14ARF, and p16 in tested cancer cell lines and tumors. This study demonstrates for the first time that deletion of the RD enhancer is a prevalent event in human cancer cells. Its implication in carcinogenesis remains to be further explored. PMID:23065809

  18. An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers

    NASA Astrophysics Data System (ADS)

    Lhachemi, H.; Saussié, D.; Zhu, G.

    2017-09-01

    This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.

  19. "Genetic Engineering" Gains Momentum (Science/Society Case Study).

    ERIC Educational Resources Information Center

    Moore, John W.; Moore, Elizabeth A., Eds.

    1980-01-01

    Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)

  20. Prediction of early weight gain during psychotropic treatment using a combinatorial model with clinical and genetic markers.

    PubMed

    Vandenberghe, Frederik; Saigí-Morgui, Núria; Delacrétaz, Aurélie; Quteineh, Lina; Crettol, Séverine; Ansermot, Nicolas; Gholam-Rezaee, Mehdi; von Gunten, Armin; Conus, Philippe; Eap, Chin B

    2016-12-01

    Psychotropic drugs can induce significant (>5%) weight gain (WG) already after 1 month of treatment, which is a good predictor for major WG at 3 and 12 months. The large interindividual variability of drug-induced WG can be explained in part by genetic and clinical factors. The aim of this study was to determine whether extensive analysis of genes, in addition to clinical factors, can improve prediction of patients at risk for more than 5% WG at 1 month of treatment. Data were obtained from a 1-year naturalistic longitudinal study, with weight monitoring during weight-inducing psychotropic treatment. A total of 248 Caucasian psychiatric patients, with at least baseline and 1-month weight measures, and with compliance ascertained were included. Results were tested for replication in a second cohort including 32 patients. Age and baseline BMI were associated significantly with strong WG. The area under the curve (AUC) of the final model including genetic (18 genes) and clinical variables was significantly greater than that of the model including clinical variables only (AUCfinal: 0.92, AUCclinical: 0.75, P<0.0001). Predicted accuracy increased by 17% with genetic markers (Accuracyfinal: 87%), indicating that six patients must be genotyped to avoid one misclassified patient. The validity of the final model was confirmed in a replication cohort. Patients predicted before treatment as having more than 5% WG after 1 month of treatment had 4.4% more WG over 1 year than patients predicted to have up to 5% WG (P≤0.0001). These results may help to implement genetic testing before starting psychotropic drug treatment to identify patients at risk of important WG.

  1. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes.

    PubMed

    Bridge, Julia A; Liu, Jian; Qualman, Stephen J; Suijkerbuijk, Ron; Wenger, Gail; Zhang, Ji; Wan, Xiaoying; Baker, K Scott; Sorensen, Poul; Barr, Frederic G

    2002-03-01

    In this investigation, we selected PAX3/FKHR and PAX7/FKHR fusion transcript-positive and -negative alveolar rhabdomyosarcomas (ARMSs) and embryonal rhabdomyosarcomas (ERMSs) with and without anaplastic features, to ascertain genomic imbalance differences and/or similarities within these histopathologic and genetic rhabdomyosarcoma (RMS) variants. Comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) studies were performed on 45 rhabdomyosarcoma specimens consisting of 23 ARMSs and 22 ERMSs (12 ERMS cases were included from an earlier study). The anaplastic variant of RMS has not previously been subjected to CGH analysis. Overall, the most prominent imbalances were gain of chromosomes or chromosomal regions 2/2q (40%), 7/7q (31%), 8/8p (53%), 11/11q (31%), 12q13-15 (49%), 13q14 (22%), and 20/20p (31%), and loss of 1p36 (27%), 3p14-21 (22%), 9q21-22 (33%), 10q22-qter (18%), 16q (27%), 17p (22%), and 22 (22%). These gains and losses were distributed equally between ARMS and ERMS histologic subtypes (excluding 7/7q and 11/11q gain that were observed chiefly in ERMS), demonstrating that these entities are similar with respect to recurrent genomic imbalances. Moreover, genomic imbalances were also evenly distributed among the ARMS fusion transcript subtypes, providing evidence for a genetic kinship despite the absence of a fusion transcript in some cases. Genomic amplification was detected in 26% and 23% of the ARMS and ERMS cases, respectively (with nearly all of the latter subset exhibiting anaplastic features). One amplicon, involving 15q25-26, corresponds to the locus of the insulin-like growth factor type I receptor (IGF1R) gene. Amplification of IGF1R was confirmed molecularly in the cases exhibiting a 15q25-26 amplicon. In summary, these results indicate that genomic gains and losses involve alike chromosomes with similar frequencies within the histopathologic and genetic subtypes of rhabdomyosarcoma, that genomic amplification is

  2. An Extended Normalization Model of Attention Accounts for Feature-Based Attentional Enhancement of Both Response and Coherence Gain

    PubMed Central

    Krishna, B. Suresh; Treue, Stefan

    2016-01-01

    Paying attention to a sensory feature improves its perception and impairs that of others. Recent work has shown that a Normalization Model of Attention (NMoA) can account for a wide range of physiological findings and the influence of different attentional manipulations on visual performance. A key prediction of the NMoA is that attention to a visual feature like an orientation or a motion direction will increase the response of neurons preferring the attended feature (response gain) rather than increase the sensory input strength of the attended stimulus (input gain). This effect of feature-based attention on neuronal responses should translate to similar patterns of improvement in behavioral performance, with psychometric functions showing response gain rather than input gain when attention is directed to the task-relevant feature. In contrast, we report here that when human subjects are cued to attend to one of two motion directions in a transparent motion display, attentional effects manifest as a combination of input and response gain. Further, the impact on input gain is greater when attention is directed towards a narrow range of motion directions than when it is directed towards a broad range. These results are captured by an extended NMoA, which either includes a stimulus-independent attentional contribution to normalization or utilizes direction-tuned normalization. The proposed extensions are consistent with the feature-similarity gain model of attention and the attentional modulation in extrastriate area MT, where neuronal responses are enhanced and suppressed by attention to preferred and non-preferred motion directions respectively. PMID:27977679

  3. Information Gain Based Dimensionality Selection for Classifying Text Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less

  4. Owning genetic information and gene enhancement techniques: why privacy and property rights may undermine social control of the human genome.

    PubMed

    Moore, A D

    2000-04-01

    In this article I argue that the proper subjects of intangible property claims include medical records, genetic profiles, and gene enhancement techniques. Coupled with a right to privacy these intangible property rights allow individuals a zone of control that will, in most cases, justifiably exclude governmental or societal invasions into private domains. I argue that the threshold for overriding privacy rights and intangible property rights is higher, in relation to genetic enhancement techniques and sensitive personal information, than is commonly suggested. Once the bar is raised, so-to-speak, the burden of overriding it is formidable. Thus many policy decisions that have been recently proposed or enacted--citywide audio and video surveillance, law enforcement DNA sweeps, genetic profiling, national bans on genetic testing and enhancement of humans, to name a few--will have to be backed by very strong arguments.

  5. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  6. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  7. Genetic enhancement, post-persons and moral status: a reply to Buchanan.

    PubMed

    DeGrazia, David

    2012-03-01

    Responding to several leading ideas from a paper by Allen Buchanan, the present essay explores the implications of genetic enhancement for moral status. Contrary to doubts expressed by Buchanan, I argue that genetic enhancement could lead to the existence of beings so superior to contemporary human beings that we might aptly describe them as post-persons. If such post-persons emerged, how should we understand their moral status in relation to ours? The answer depends in part on which of two general models of moral status--one based on respect and one based on interests--is more adequate. Buchanan tentatively argues that a respect-based model is preferable. I challenge Buchanan's view, along these lines: If we embrace a respect-based model of moral status featuring a threshold that divides persons, who are thought to have full and equal moral status, from sentient nonpersons, thought to have less moral status, then we should acknowledge a second threshold and a level of moral status higher than ours. A better option, I tentatively suggest, is to drop the idea of levels of moral status, accept that all sentient beings have moral status, and allow that some differences in interests and capacities justify some significant differences in how we should treat beings of different kinds.

  8. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  9. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...

    2018-05-29

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  10. Enhanced gain and output power of a sealed-off rf-excited CO2 waveguide laser with gold-plated electrodes

    NASA Astrophysics Data System (ADS)

    Heeman-Ilieva, M. B.; Udalov, Yu. B.; Hoen, K.; Witteman, W. J.

    1994-02-01

    The small-signal gain and the laser output power have been measured in a cw sealed-off rf-excited CO2 waveguide laser for two different electrode materials, gold-plated copper and aluminum, at several excitation frequencies, gas pressures and mixture compositions. In the case of the gold-plated electrodes an enhancement of the gain up to a factor of 2 and the output power up to a factor of 1.4 with time at a frequency of 190 MHz and 60 Torr of 1:1:5+5% (CO2:N2:He+Xe) mixture is observed. This is believed to be the result of the gold catalytic activities which are favored by increased electrode temperatures and helium rich gas compositions.

  11. Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model

    PubMed Central

    Ding, Jian; Klein, Stanley A.; Levi, Dennis M.

    2013-01-01

    We investigated suprathreshold binocular combination, measuring both the perceived phase and perceived contrast of a cyclopean sine wave. We used a paradigm adapted from Ding and Sperling (2006, 2007) to measure the perceived phase by indicating the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and we used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We found that under normal viewing conditions (high contrast and long stimulus duration), perceived contrast is constant, independent of the interocular contrast ratio and the interocular phase difference, while the perceived phase shifts smoothly from one eye to the other eye depending on the contrast ratios. However, at low contrasts and short stimulus durations, binocular combination is more linear and contrast summation is phase-dependent. To account for phase-dependent contrast summation, we incorporated a fusion remapping mechanism into our model, using disparity energy to shift the monocular phases towards the cyclopean phase in order to align the two eyes' images through motor/sensory fusion. The Ding-Sperling model with motor/sensory fusion mechanism gives a reasonable account of the phase dependence of binocular contrast combination and can account for either the perceived phase or the perceived contrast of a cyclopean sine wave separately; however it requires different model parameters for the two. However, when fit to both phase and contrast data simultaneously, the Ding-Sperling model fails. Incorporating interocular gain enhancement into the model results in a significant improvement in fitting both phase and contrast data simultaneously, successfully accounting for both linear summation at low contrast energy and strong nonlinearity at high contrast energy. PMID:23397038

  12. Realized gains from block-plot coastal Douglas-fir trials in the northern Oregon Cascades

    Treesearch

    Terrence Z. Ye; Keith J.S. Jayawickrama; J. Bradley St. Clair

    2010-01-01

    Realized gains for coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) were evaluated using data collected from 15-year-old trees from five field trials planted in large block plots in the northern Oregon Cascades. Three populations with different genetic levels (elite--high predicted gain; intermediate--moderate predicted gain; and an...

  13. Influence of a Small Fraction of Individuals with Enhanced Mutations on a Population Genetic Pool

    NASA Astrophysics Data System (ADS)

    Cebrat, S.; Stauffer, D.

    It has been observed that a higher mutation load could be introduced into the genomes of children conceived by assisted reproduction technology (fertilization in-vitro). This generates two effects — slightly higher mutational pressure on the whole genetic pool of population and inhomogeneity of mutation distributions in the genetic pool. Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.

  14. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    NASA Astrophysics Data System (ADS)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian

    2017-03-01

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  15. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  16. Impact of demographic, genetic, and bioimpedance factors on gestational weight gain and birth weight in a Romanian population

    PubMed Central

    Mărginean, Claudiu; Mărginean, Cristina Oana; Bănescu, Claudia; Meliţ, Lorena; Tripon, Florin; Iancu, Mihaela

    2016-01-01

    Abstract The present study had 2 objectives, first, to investigate possible relationships between increased gestational weight gain and demographic, clinical, paraclinical, genetic, and bioimpedance (BIA) characteristics of Romanian mothers, and second, to identify the influence of predictors (maternal and newborns characteristics) on our outcome birth weight (BW). We performed a cross-sectional study on 309 mothers and 309 newborns from Romania, divided into 2 groups: Group I—141 mothers with high gestational weight gain (GWG) and Group II—168 mothers with normal GWG, that is, control group. The groups were evaluated regarding demographic, anthropometric (body mass index [BMI], middle upper arm circumference, tricipital skinfold thickness, weight, height [H]), clinical, paraclinical, genetic (interleukin 6 [IL-6]: IL-6 -174G>C and IL-6 -572C>G gene polymorphisms), and BIA parameters. We noticed that fat mass (FM), muscle mass (MM), bone mass (BM), total body water (TBW), basal metabolism rate (BMR) and metabolic age (P < 0.001), anthropometric parameters (middle upper arm circumference, tricipital skinfold thickness; P < 0.001/P = 0.001) and hypertension (odds ratio = 4.65, 95% confidence interval: 1.27–17.03) were higher in mothers with high GWG. BW was positively correlated with mothers’ FM (P < 0.001), TBW (P = 0.001), BMR (P = 0.02), while smoking was negatively correlated with BW (P = 0.04). Variant genotype (GG+GC) of the IL-6 -572C>G polymorphism was higher in the control group (P = 0.042). We observed that high GWG may be an important predictor factor for the afterward BW, being positively correlated with FM, TBW, BMR, metabolic age of the mothers, and negatively with the mother's smoking status. Variant genotype (GG+GC) of the IL-6 -572C>G gene polymorphism is a protector factor against obesity in mothers. All the variables considered explained 14.50% of the outcome variance. PMID:27399105

  17. Approximate reversibility in the context of entropy gain, information gain, and complete positivity

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Das, Siddhartha; Wilde, Mark M.

    2016-06-01

    There are several inequalities in physics which limit how well we can process physical systems to achieve some intended goal, including the second law of thermodynamics, entropy bounds in quantum information theory, and the uncertainty principle of quantum mechanics. Recent results provide physically meaningful enhancements of these limiting statements, determining how well one can attempt to reverse an irreversible process. In this paper, we apply and extend these results to give strong enhancements to several entropy inequalities, having to do with entropy gain, information gain, entropic disturbance, and complete positivity of open quantum systems dynamics. Our first result is a remainder term for the entropy gain of a quantum channel. This result implies that a small increase in entropy under the action of a subunital channel is a witness to the fact that the channel's adjoint can be used as a recovery map to undo the action of the original channel. We apply this result to pure-loss, quantum-limited amplifier, and phase-insensitive quantum Gaussian channels, showing how a quantum-limited amplifier can serve as a recovery from a pure-loss channel and vice versa. Our second result regards the information gain of a quantum measurement, both without and with quantum side information. We find here that a small information gain implies that it is possible to undo the action of the original measurement if it is efficient. The result also has operational ramifications for the information-theoretic tasks known as measurement compression without and with quantum side information. Our third result shows that the loss of Holevo information caused by the action of a noisy channel on an input ensemble of quantum states is small if and only if the noise can be approximately corrected on average. We finally establish that the reduced dynamics of a system-environment interaction are approximately completely positive and trace preserving if and only if the data processing

  18. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    PubMed

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  19. Welfare Gains from Financial Liberalization

    PubMed Central

    Townsend, Robert M.; Ueda, Kenichi

    2010-01-01

    Financial liberalization has been a controversial issue, as empirical evidence for growth enhancing effects is mixed. Here, we find sizable welfare gains from liberalization (cost to repression), though the gain in economic growth is ambiguous. We take the view that financial liberalization is a government policy that alters the path of financial deepening, while financial deepening is endogenously chosen by agents given a policy and occurs in transition towards a distant steady state. This history-dependent view necessitates the use of simulation analysis based on a growth model. Our application is a specific episode: Thailand from 1976 to 1996. PMID:20806055

  20. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae.

    PubMed

    Yang, Bo; Liu, Jin; Ma, Xiaonian; Guo, Bingbing; Liu, Bin; Wu, Tao; Jiang, Yue; Chen, Feng

    2017-01-01

    Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO 2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the practical use of this strategy for CO 2 biomitigation applications. Here, we demonstrate the feasibility of improving photosynthetic capacity by the genetic manipulation of the Calvin cycle in the typical green microalga Chlorella vulgaris . Firstly, we fused a plastid transit peptide to upstream of the enhanced green fluorescent protein (EGFP) and confirmed its expression in the chloroplast of C. vulgaris . Then we introduced the cyanobacterial fructose 1,6-bisphosphate aldolase, guided by the plastid transit peptide, into C. vulgaris chloroplast, leading to enhanced photosynthetic capacity (~ 1.2-fold) and cell growth. Molecular and physiochemical analyses suggested a possible role for aldolase overexpression in promoting the regeneration of ribulose 1,5-bisphosphate in the Calvin cycle and energy transfer in photosystems. Our work represents a proof-of-concept effort to enhance photosynthetic capacity by the engineering of the Calvin cycle in green microalgae. Our work also provides insights into targeted genetic engineering toward algal trait improvement for CO 2 biomitigation uses.

  1. Gain and Bandwidth Enhancement of Ferrite-Loaded CBS Antenna Using Material Shaping and Positioning

    NASA Astrophysics Data System (ADS)

    Askarian Amiri, Mikal

    Loading a cavity-backed slot (CBS) antenna with ferrite material and applying a biasing static magnetic field can be used to control its resonant frequency. Such a mechanism results in a frequency reconfigurable antenna. However, placing a lossy ferrite material inside the cavity can reduce the gain or negatively impact the impedance bandwidth. This thesis develops guidelines, based on a non-uniform applied magnetic field and non-uniform magnetic field internal to the ferrite specimen, for the design of ferrite-loaded CBS antennas which enhance their gain and tunable bandwidth by shaping the ferrite specimen and judiciously locating it within the cavity. To achieve these objectives, it is necessary to examine the influence of the shape and relative location of the ferrite material, and also the proximity of the ferrite specimen from the probe on the DC magnetic field and RF electric field distributions inside the cavity. The geometry of the probe and its impacts on figures-of-merit of the antenna is of interest as well. Two common cavity backed-slot antennas (rectangular and circular cross-section) were designed, and corresponding simulations and measurements were performed and compared. The cavities were mounted on 30 cm × 30 cm perfect electric conductor (PEC) ground planes and partially loaded with ferrite material. The ferrites were biased with an external magnetic field produced by either an electromagnet or permanent magnets. Simulations were performed using FEM-based commercial software, Ansys' Maxwell 3D and HFSS. Maxwell 3D is utilized to model the non-uniform DC applied magnetic field and non-uniform magnetic field internal to the ferrite specimen; HFSS however, is used to simulate and obtain the RF characteristics of the antenna. To validate the simulations they were compared with measurements performed in ASU's EM Anechoic Chamber. After many examinations using simulations and measurements, some optimal designs guidelines with respect to the gain

  2. Excess noise in gain-guided amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, I.H.; Garrison, J.C.; Wright, E.M.

    1991-06-01

    A second-quantized theory of the radiation field is used to study the origin of the excess noise observed in gain-guided amplifiers. We find that the reduction of the signal-to-noise ratio is a function of the length of the amplifier, and thus the enhancement of the noise is a propagation effect arising from longitudinally inhomogeneous gain of the noise rather than from an excess of local spontaneous emission. We confirm this conclusion by showing that the microscopic rate of spontaneous emission into a given non-power-orthogonal cavity mode is not enhanced by the Petermann factor. In addition, we illustrate the difficulties associatedmore » with photon statistics for this and other open systems by showing that no acceptable family of photon-number operators corresponds to a set of non-power-orthogonal cavity modes.« less

  3. Clinical and genetic predictors of weight gain in patients diagnosed with breast cancer

    PubMed Central

    Reddy, S M; Sadim, M; Li, J; Yi, N; Agarwal, S; Mantzoros, C S; Kaklamani, V G

    2013-01-01

    Background: Post-diagnosis weight gain in breast cancer patients has been associated with increased cancer recurrence and mortality. Our study was designed to identify risk factors for this weight gain and create a predictive model to identify a high-risk population for targeted interventions. Methods: Chart review was conducted on 459 breast cancer patients from Northwestern Robert H. Lurie Cancer Centre to obtain weights and body mass indices (BMIs) over an 18-month period from diagnosis. We also recorded tumour characteristics, demographics, clinical factors, and treatment regimens. Blood samples were genotyped for 14 single-nucleotide polymorphisms (SNPs) in fat mass and obesity-associated protein (FTO) and adiponectin pathway genes (ADIPOQ and ADIPOR1). Results: In all, 56% of patients had >0.5 kg m–2 increase in BMI from diagnosis to 18 months, with average BMI and weight gain of 1.9 kg m–2 and 5.1 kg, respectively. Our best predictive model was a primarily SNP-based model incorporating all 14 FTO and adiponectin pathway SNPs studied, their epistatic interactions, and age and BMI at diagnosis, with area under receiver operating characteristic curve of 0.85 for 18-month weight gain. Conclusion: We created a powerful risk prediction model that can identify breast cancer patients at high risk for weight gain. PMID:23922112

  4. CONDITIONS FOR CSR MICROBUNCHING GAIN SUPPRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng Ying; Douglas, David R.; Li, Rui

    The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport arcs, may result in phase space degradation. On one hand, the CSR can perturb electron transverse motion in dispersive regions along the beamline, causing emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching gain enhancement. For transport arcs, several schemes have been proposed* to suppress the CSR-induced emittance growth. Similarly, several scenarios have been introduced** to suppress CSR-induced microbunching gain, which however mostly aim for linac-based machines. In this paper we trymore » to provide sufficient conditions for suppression of CSR-induced microbunching gain along a transport arc, analogous to*. Several example lattices are presented, with the relevant microbunching analyses carried out by our semi-analytical Vlasov solver***. The simulation results show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. We expect this analysis can shed light on lattice design approach that could suppress the CSR-induced microbunching gain.« less

  5. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome

    PubMed Central

    Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.

    2017-01-01

    In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291

  6. The Genetics Concept Assessment: a new concept inventory for gauging student understanding of genetics.

    PubMed

    Smith, Michelle K; Wood, William B; Knight, Jennifer K

    2008-01-01

    We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment was reviewed by genetics experts, validated by student interviews, and taken by >600 students at three institutions. Normalized learning gains on the GCA were positively correlated with averaged exam scores, suggesting that the GCA measures understanding of topics relevant to instructors. Statistical analysis of our results shows that differences in the item difficulty and item discrimination index values between different questions on pre- and posttests can be used to distinguish between concepts that are well or poorly learned during a course.

  7. Recent Genetic Gains in Nitrogen Use Efficiency in Oilseed Rape

    PubMed Central

    Stahl, Andreas; Pfeifer, Mara; Frisch, Matthias; Wittkop, Benjamin; Snowdon, Rod J.

    2017-01-01

    Nitrogen is essential for plant growth, and N fertilization allows farmers to obtain high yields and produce sufficient agricultural commodities. On the other hand, nitrogen losses potentially cause adverse effects to ecosystems and to human health. Increasing nitrogen use efficiency (NUE) is vital to solve the conflict between productivity, to secure the demand of a growing world population, and the protection of the environment. To ensure this, genetic improvement is considered to be a paramount aspect toward ecofriendly crop production. Winter oilseed rape (Brassica napus L.) is the second most important oilseed crop in the world and is cultivated in many regions across the temperate zones. To our knowledge, this study reports the most comprehensive field-based data generated to date for an empirical evaluation of genetic improvement in winter oilseed rape varieties under two divergent nitrogen fertilization levels (NFLs). A collection of 30 elite varieties registered between 1989 and 2014, including hybrids and open pollinated varieties, was tested in a 2-year experiment in 10 environments across Germany for changes in seed yield and seed quality traits. Furthermore, NUE was calculated. We observed a highly significant genetics-driven increase in seed yield per-se and, thus, increased NUE at both NFLs. On average, seed yield from modern open-pollinated varieties and modern hybrids was higher than from old open-pollinated varieties and old hybrids. The annual yield progress across all tested varieties was ~35 kg ha−1 year−1 at low nitrogen and 45 kg ha−1 year−1 under high nitrogen fertilization. Furthermore, in modern varieties an increased oil concentration and decreased protein concentration was observed. Despite, the significant effects of nitrogen fertilization, a surprisingly low average seed yield gap of 180 kg N ha−1 was noted between high and low nitrogen fertilization. Due to contrary effects of N fertilization on seed yield per-se and seed

  8. Comparing WTP values of different types of QALY gain elicited from the general public.

    PubMed

    Pennington, Mark; Baker, Rachel; Brouwer, Werner; Mason, Helen; Hansen, Dorte Gyrd; Robinson, Angela; Donaldson, Cam

    2015-03-01

    The appropriate thresholds for decisions on the cost-effectiveness of medical interventions remain controversial, especially in 'end-of-life' situations. Evidence of the values placed on different types of health gain by the general public is limited. Across nine European countries, 17,657 people were presented with different hypothetical health scenarios each involving a gain of one quality adjusted life year (QALY) and asked about their willingness to pay (WTP) for that gain. The questions included quality of life (QoL) enhancing and life extending health gains, and a scenario where respondents faced imminent, premature death. The mean WTP values for a one-QALY gain composed of QoL improvements were modest (PPP$11,000). When comparing QALY gains obtained in the near future, the valuation of life extension exceeded the valuation of QoL enhancing gains (mean WTP PPP$19,000 for a scenario in which a coma is avoided). The mean WTP values were higher still when respondents faced imminent, premature death (PPP$29,000). Evidence from the largest survey on the value of health gains by the general public indicated a higher value for life extending gains compared with QoL enhancing gains. A further modest premium may be indicated for life extension when facing imminent, premature death. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Depressive Symptoms Enhance Loss-Minimization, but Attenuate Gain-Maximization in History-Dependent Decision-Making

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Gorlick, Marissa A.; Worthy, Darrell A.; Beevers, Christopher G.

    2012-01-01

    Individuals with depressive symptoms typically show deficits in decision-making. However, most work has emphasized decision-making under gain-maximization conditions. A gain-maximization framework may undermine decision-making when depressive symptoms are present because depressives are generally more sensitive to losses than gains. The present…

  10. Gain-of-function mutations in SCN11A cause familial episodic pain.

    PubMed

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-11-07

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3-p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel's electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Copy number gain of MYCN gene is a recurrent genetic aberration and favorable prognostic factor in Chinese pediatric neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Amplification of MYCN oncogene is an established marker indicating aggressive tumor progression of neuroblastoma (NBL). But copy number analyses of MYCN gene in ganglioneuroblastoma (GNBL) and ganglioneuroma(GN) is poorly described in the literature. In the study, we evaluated the copy number aberrations of MYCN gene in clinical samples of NBLs, GNBLs and GNs and analyzed their association with clinical outcome of the patients. Methods In this study, we analyzed MYCN gene and chromosome 2 aneusomy by using fluorescence in situ hybridization (FISH) method in a total of 220 patients with NBL, GNBL and GN cases. Kaplan-Meier curves were generated by using SPSS 12.0 software. Results Of 220 patients, 178 (81.0%) were NBLs, 32 (14.5%) were GNBLs and 10 (4.5%) were GNs. MYCN gain is a recurrent genetic aberration of neuroblastic tumors (71.8%, 158/220), which was found in 129 NBLs (58.6%, 129/220), 25 GNBLs (11.4%, 25/220) and 4 GN cases (1.8%, 4/220). However, MYCN amplification was only present in 24 NBL tumors (13.5%, 24/178) and 1 GNBL case (3.1%, 1/32). Kaplan-Meier survival analysis indicated that MYCN amplification is significantly correlated with decreased overall survival in NBLs (P=0.017). Furthermore, a better prognosis trend was observed in patients with MYCN gain tumors compared with those with MYCN gene normal copy number tumors and MYCN amplification tumors (P=0.012). Conclusions In summary, the frequency of MYCN amplification in NBLs is high and is rarely observed in GNBLs and GNs, which suggest MYCN plays an important role in neuroblastic tumors differentiation. MYCN gain appeared to define a subgroup of NBLs with much better outcome and classification of MYCN gene copy number alteration as three groups (amplification, gain and normal) can provide a powerful prognostic indicator in NBLs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6417541528559124 PMID:23320395

  12. A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog

    PubMed Central

    2010-01-01

    Background The Alaskan sled dog offers a rare opportunity to investigate the development of a dog breed based solely on performance, rather than appearance, thus setting the breed apart from most others. Several established breeds, many of which are recognized by the American Kennel Club (AKC), have been introduced into the sled dog population to enhance racing performance. We have used molecular methods to ascertain the constitutive breeds used to develop successful sled dog lines, and in doing so, determined the breed origins of specific performance-related behaviors. One hundred and ninety-nine Alaskan sled dogs were genotyped using 96 microsatellite markers that span the canine genome. These data were compared to that from 141 similarly genotyped purebred dog breeds. Sled dogs were evaluated for breed composition based on a variety of performance phenotypes including speed, endurance and work ethic, and the data stratified based on population structure. Results We observe that the Alaskan sled dog has a unique molecular signature and that the genetic profile is sufficient for identifying dogs bred for sprint versus distance. When evaluating contributions of existing breeds we find that the Alaskan Malamute and Siberian Husky contributions are associated with enhanced endurance; Pointer and Saluki are associated with enhanced speed and the Anatolian Shepherd demonstrates a positive influence on work ethic. Conclusion We have established a genetic breed profile for the Alaskan sled dog, identified profile variance between sprint and distance dogs, and established breeds associated with enhanced performance attributes. These data set the stage for mapping studies aimed at finding genes that are associated with athletic attributes integral to the high performing Alaskan sled dog. PMID:20649949

  13. Effect of body weight gain on insulin sensitivity after retirement from exercise training

    NASA Technical Reports Server (NTRS)

    Dolkas, Constantine B.; Rodnick, Kenneth J.; Mondon, Carl E.

    1990-01-01

    The effect of the body-weight gain after retirement from an exercise-training program on the retained increase in insulin sensitivity elicited by the training was investigated in exercise-trained (ET) rats. Insulin sensitivity was assessed by oral glucose tolerance and insulin suppression tests immediately after training and during retirement. Results show that, compared with sedentary controls, exercise training enhanced insulin-induced glucose uptake, but the enhanced sensitivity was gradually lost with the end of running activity until after seven days of retirement, when it became equal to that of controls. This loss of enhanced sensitivity to insulin was associated with an accelerated gain in body weight beginning one day after the start of retirement. However, those animals that gained weight only at rates similar to those of control rats, retained their enhanced sensitivity to insulin.

  14. Genetic diversity of root system architecture in response to drought stress in grain legumes.

    PubMed

    Ye, Heng; Roorkiwal, Manish; Valliyodan, Babu; Zhou, Lijuan; Chen, Pengyin; Varshney, Rajeev K; Nguyen, Henry T

    2018-06-06

    Climate change has increased the occurrence of extreme weather patterns globally, causing significant reductions in crop production, and hence threatening food security. In order to meet the food demand of the growing world population, a faster rate of genetic gains leading to productivity enhancement for major crops is required. Grain legumes are an essential commodity in optimal human diets and animal feed because of their unique nutritional composition. Currently, limited water is a major constraint in grain legume production. Root system architecture (RSA) is an important developmental and agronomic trait, which plays vital roles in plant adaptation and productivity under water-limited environments. A deep and proliferative root system helps extract sufficient water and nutrients under these stress conditions. The integrated genetics and genomics approach to dissect molecular processes from genome to phenome is key to achieve increased water capture and use efficiency through developing better root systems. Success in crop improvement under drought depends on discovery and utilization of genetic variations existing in the germplasm. In this review, we summarize current progress in the genetic diversity in major legume crops, quantitative trait loci (QTLs) associated with RSA, and the importance and applications of recent discoveries associated with the beneficial root traits towards better RSA for enhanced drought tolerance and yield.

  15. The Genetics Concept Assessment: A New Concept Inventory for Gauging Student Understanding of Genetics

    PubMed Central

    Wood, William B.; Knight, Jennifer K.

    2008-01-01

    We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment was reviewed by genetics experts, validated by student interviews, and taken by >600 students at three institutions. Normalized learning gains on the GCA were positively correlated with averaged exam scores, suggesting that the GCA measures understanding of topics relevant to instructors. Statistical analysis of our results shows that differences in the item difficulty and item discrimination index values between different questions on pre- and posttests can be used to distinguish between concepts that are well or poorly learned during a course. PMID:19047428

  16. The Genetics Concept Assessment: A New Concept Inventory for Gauging Student Understanding of Genetics

    ERIC Educational Resources Information Center

    Smith, Michelle K.; Wood, William B.; Knight, Jennifer K.

    2008-01-01

    We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment…

  17. Many human accelerated regions are developmental enhancers

    PubMed Central

    Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.

    2013-01-01

    The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637

  18. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    NASA Astrophysics Data System (ADS)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  19. The potential of genetically enhanced plants to address food insecurity.

    PubMed

    Christou, Paul; Twyman, Richard M

    2004-06-01

    Food insecurity is one of the most important social issues faced today, with 840 million individuals enduring chronic hunger and three billion individuals suffering from nutrient deficiencies. Most of these individuals are poverty stricken and live in developing countries. Strategies to address food insecurity must aim to increase agricultural productivity in the developing world in order to tackle poverty, and must provide long-term improvements in crop yields to keep up with demand as the world's population grows. Genetically enhanced plants provide one route to sustainable higher yields, either by increasing the intrinsic yield capability of crop plants or by protecting them from biotic and abiotic constraints. The present paper discusses a range of transgenic approaches that could increase agricultural productivity if applied on a large scale, including the introduction of genes that confer resistance to pests and diseases, or tolerance of harsh environments, and genes that help to lift the intrinsic yield capacity by increasing metabolic flux towards storage carbohydrates, proteins and oils. The paper also explores how the nutritional value of plants can be improved by genetic engineering. Transgenic plants, as a component of integrated strategies to relieve poverty and deliver sustainable agriculture to subsistence farmers in developing countries, could have a significant impact on food security now and in the future.

  20. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast.

    PubMed

    Chan, C S; Botstein, D

    1993-11-01

    We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37 degrees. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37 degrees. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth.

  1. Isolation and Characterization of Chromosome-Gain and Increase-in-Ploidy Mutants in Yeast

    PubMed Central

    Chan, CSM.; Botstein, D.

    1993-01-01

    We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37°. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37°. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth. PMID:8293973

  2. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.

    PubMed

    Xing, Mingzhao

    2010-07-01

    Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations

  3. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    ERIC Educational Resources Information Center

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  4. Undergraduates Achieve Learning Gains in Plant Genetics through Peer Teaching of Secondary Students

    ERIC Educational Resources Information Center

    Chrispeels, H. E.; Klosterman, M. L.; Martin, J. B.; Lundy, S. R.; Watkins, J. M.; Gibson, C. L.; Muday, G. K.

    2014-01-01

    This study tests the hypothesis that undergraduates who peer teach genetics will have greater understanding of genetic and molecular biology concepts as a result of their teaching experiences. Undergraduates enrolled in a non-majors biology course participated in a service-learning program in which they led middle school (MS) or high school (HS)…

  5. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies

    PubMed Central

    Wang, Tiange; Heianza, Yoriko; Sun, Dianjianyi; Huang, Tao; Ma, Wenjie; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C

    2018-01-01

    Abstract Objective To investigate whether improving adherence to healthy dietary patterns interacts with the genetic predisposition to obesity in relation to long term changes in body mass index and body weight. Design Prospective cohort study. Setting Health professionals in the United States. Participants 8828 women from the Nurses’ Health Study and 5218 men from the Health Professionals Follow-up Study. Exposure Genetic predisposition score was calculated on the basis of 77 variants associated with body mass index. Dietary patterns were assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (AMED). Main outcome measures Five repeated measurements of four year changes in body mass index and body weight over follow-up (1986 to 2006). Results During a 20 year follow-up, genetic association with change in body mass index was significantly attenuated with increasing adherence to the AHEI-2010 in the Nurses’ Health Study (P=0.001 for interaction) and Health Professionals Follow-up Study (P=0.005 for interaction). In the combined cohorts, four year changes in body mass index per 10 risk allele increment were 0.07 (SE 0.02) among participants with decreased AHEI-2010 score and −0.01 (0.02) among those with increased AHEI-2010 score, corresponding to 0.16 (0.05) kg versus −0.02 (0.05) kg weight change every four years (P<0.001 for interaction). Viewed differently, changes in body mass index per 1 SD increment of AHEI-2010 score were −0.12 (0.01), −0.14 (0.01), and −0.18 (0.01) (weight change: −0.35 (0.03), −0.36 (0.04), and −0.50 (0.04) kg) among participants with low, intermediate, and high genetic risk, respectively. Similar interaction was also found for DASH but not for AMED. Conclusions These data indicate that improving adherence to healthy dietary patterns could attenuate the genetic association with weight gain. Moreover, the beneficial effect of improved

  6. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies.

    PubMed

    Wang, Tiange; Heianza, Yoriko; Sun, Dianjianyi; Huang, Tao; Ma, Wenjie; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C; Qi, Lu

    2018-01-10

    To investigate whether improving adherence to healthy dietary patterns interacts with the genetic predisposition to obesity in relation to long term changes in body mass index and body weight. Prospective cohort study. Health professionals in the United States. 8828 women from the Nurses' Health Study and 5218 men from the Health Professionals Follow-up Study. Genetic predisposition score was calculated on the basis of 77 variants associated with body mass index. Dietary patterns were assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (AMED). Five repeated measurements of four year changes in body mass index and body weight over follow-up (1986 to 2006). During a 20 year follow-up, genetic association with change in body mass index was significantly attenuated with increasing adherence to the AHEI-2010 in the Nurses' Health Study (P=0.001 for interaction) and Health Professionals Follow-up Study (P=0.005 for interaction). In the combined cohorts, four year changes in body mass index per 10 risk allele increment were 0.07 (SE 0.02) among participants with decreased AHEI-2010 score and -0.01 (0.02) among those with increased AHEI-2010 score, corresponding to 0.16 (0.05) kg versus -0.02 (0.05) kg weight change every four years (P<0.001 for interaction). Viewed differently, changes in body mass index per 1 SD increment of AHEI-2010 score were -0.12 (0.01), -0.14 (0.01), and -0.18 (0.01) (weight change: -0.35 (0.03), -0.36 (0.04), and -0.50 (0.04) kg) among participants with low, intermediate, and high genetic risk, respectively. Similar interaction was also found for DASH but not for AMED. These data indicate that improving adherence to healthy dietary patterns could attenuate the genetic association with weight gain. Moreover, the beneficial effect of improved diet quality on weight management was particularly pronounced in people at high genetic risk for obesity. Published by

  7. Hepatic fibrosis and carcinogenesis in α1-antitrypsin deficiency: a prototype for chronic tissue damage in gain-of-function disorders.

    PubMed

    Perlmutter, David H; Silverman, Gary A

    2011-03-01

    In α1-antitrypsin (AT) deficiency, a point mutation renders a hepatic secretory glycoprotein prone to misfolding and polymerization. The mutant protein accumulates in the endoplasmic reticulum of liver cells and causes hepatic fibrosis and hepatocellular carcinoma by a gain-of-function mechanism. Genetic and/or environmental modifiers determine whether an affected homozygote is susceptible to hepatic fibrosis/carcinoma. Two types of proteostasis mechanisms for such modifiers have been postulated: variation in the function of intracellular degradative mechanisms and/or variation in the signal transduction pathways that are activated to protect the cell from protein mislocalization and/or aggregation. In recent studies we found that carbamazepine, a drug that has been used safely as an anticonvulsant and mood stabilizer, reduces the hepatic load of mutant AT and hepatic fibrosis in a mouse model by enhancing autophagic disposal of this mutant protein. These results provide evidence that pharmacological manipulation of endogenous proteostasis mechanisms is an appealing strategy for chemoprophylaxis in disorders involving gain-of-function mechanisms.

  8. Satiety mechanisms in genetic risk of obesity.

    PubMed

    Llewellyn, Clare Heidi; Trzaskowski, Maciej; van Jaarsveld, Cornelia Hendrika Maria; Plomin, Robert; Wardle, Jane

    2014-04-01

    .98-4.25). Associations between the PRS and adiposity were significantly mediated by satiety responsiveness (P = .006 for body mass index SD scores and P = .005 for waist SD scores). These results support the hypothesis that low satiety responsiveness is one of the mechanisms through which genetic predisposition leads to weight gain in an environment rich with food. Strategies to enhance satiety responsiveness could help prevent weight gain in genetically at-risk children.

  9. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    PubMed Central

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  10. A Value-Based Medicine cost-utility analysis of genetic testing for neovascular macular degeneration.

    PubMed

    Brown, Gary C; Brown, Melissa M; Lieske, Heidi B; Lieske, Philip A; Brown, Kathryn S

    2015-01-01

    There is a dearth of patient, preference-based cost-effectiveness analyses evaluating genetic testing for neovascular age-related macular degeneration (NVAMD). A Value-Based Medicine, 12-year, combined-eye model, cost-utility analysis evaluated genetic testing of Category 3 AMD patients at age 65 for progression to NVAMD. The benefit of genetic testing was predicated upon the fact that early-treatment ranibizumab therapy (baseline vision 20/40-20/80) for NVAMD confers greater patient value than late-treatment (baseline vision ≤20/160). Published genetic data and MARINA Study ranibizumab therapy data were utilized in the analysis. Patient value (quality-of-life gain) and financial value (2012 US real dollar) outcomes were discounted at 3 % annually. Genetic testing-enabled, early-treatment ranibizumab therapy per patient conferred mean 20/40 -1 vision, a 0.845 QALY gain and 14.1 % quality-of-life gain over sham therapy. Late-treatment ranibizumab therapy conferred mean 20/160 +2 vision, a 0.250 QALY gain and 4.2 % quality-of-life gain over sham therapy. The gain from early-treatment over late-treatment was 0.595 QALY (10.0 % quality-of-life gain). The per-patient cost for genetic testing/closer monitoring was $2205 per screened person, $2.082 billion for the 944,000 estimated new Category 3 AMD patients annually. Genetic testing/monitoring costs per early-treatment patient totaled $66,180. Costs per early-treatment patient included: genetic testing costs: $66,180 + direct non-ophthalmic medical costs: -$40,914 + caregiver costs: -$172,443 + employment costs: -$14,098 = a net societal cost saving of $160,582 per early treatment patient. When genetic screening facilitated an incremental 12,965 (8.0 %) of the 161,754, new annual NVAMD patients aged ≥65 in the US to undergo early-treatment ranibizumab therapy, each additional patient treated accrued an overall, net financial gain for society of $160,582. Genetic screening was cost-effective, using World

  11. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  12. A Study of Two Instructional Sequences Informed by Alternative Learning Progressions in Genetics

    NASA Astrophysics Data System (ADS)

    Duncan, Ravit Golan; Choi, Jinnie; Castro-Faix, Moraima; Cavera, Veronica L.

    2017-12-01

    Learning progressions (LPs) are hypothetical models of how learning in a domain develops over time with appropriate instruction. In the domain of genetics, there are two independently developed alternative LPs. The main difference between the two progressions hinges on their assumptions regarding the accessibility of classical (Mendelian) versus molecular genetics and the order in which they should be taught. In order to determine the relative difficulty of the different genetic ideas included in the two progressions, and to test which one is a better fit with students' actual learning, we developed two modules in classical and molecular genetics and alternated their sequence in an implementation study with 11th grade students studying biology. We developed a set of 56 ordered multiple-choice items that collectively assessed both molecular and classical genetic ideas. We found significant gains in students' learning in both molecular and classical genetics, with the largest gain relating to understanding the informational content of genes and the smallest gain in understanding modes of inheritance. Using multidimensional item response modeling, we found no statistically significant differences between the two instructional sequences. However, there was a trend of slightly higher gains for the molecular-first sequence for all genetic ideas.

  13. Genetic Contributions to Clinical Pain and Analgesia: Avoiding Pitfalls in Genetic Research

    PubMed Central

    Kim, Hyungsuk; Clark, David; Dionne, Raymond A.

    2010-01-01

    Understanding the genetic basis of human variations in pain is critical to elucidating the molecular basis of pain sensitivity, variable responses to analgesic drugs, and, ultimately, to individualized treatment of pain and improved public health. With the help of recently accumulated knowledge and advanced technologies, pain researchers hope to gain insight into genetic mechanisms of pain and eventually apply this knowledge to pain treatment. Perspective We critically reviewed the published literature to examine the strength of evidence supporting genetic influences on clinical and human experimental pain. Based on this evidence and the experience of false associations that have occurred in other related disciplines, we provide recommendations for avoiding pitfalls in pain genetic research. PMID:19559388

  14. Expression of rabbit IL-4 by recombinant myxoma viruses enhances virulence and overcomes genetic resistance to myxomatosis.

    PubMed

    Kerr, P J; Perkins, H D; Inglis, B; Stagg, R; McLaughlin, E; Collins, S V; Van Leeuwen, B H

    2004-06-20

    Rabbit IL-4 was expressed in the virulent standard laboratory strain (SLS) and the attenuated Uriarra (Ur) strain of myxoma virus with the aim of creating a Th2 cytokine environment and inhibiting the development of an antiviral cell-mediated response to myxomatosis in infected rabbits. This allowed testing of a model for genetic resistance to myxomatosis in wild rabbits that have undergone 50 years of natural selection for resistance to myxomatosis. Expression of IL-4 significantly enhanced virulence of both virulent and attenuated virus strains in susceptible (laboratory) and resistant (wild) rabbits. SLS-IL-4 completely overcame genetic resistance in wild rabbits. The pathogenesis of SLS-IL-4 was compared in susceptible and resistant rabbits. The results support a model for resistance to myxomatosis of an enhanced innate immune response controlling virus replication and allowing an effective antiviral cell-mediated immune response to develop in resistant rabbits. Expression of IL-4 did not overcome immunity to myxomatosis induced by immunization.

  15. Polyandry promotes enhanced offspring survival in decorated crickets.

    PubMed

    Ivy, Tracie M; Sakaluk, Scott K

    2005-01-01

    Although female multiple mating is ubiquitous in insects, its adaptive significance remains poorly understood. Benefits to multiple mating can accrue via direct material benefits, indirect genetic benefits, or both. We investigated the effects of multiple mating in the decorated cricket, Gryllodes sigillatus, by simultaneously varying the number of times that females mated and the number of different males with which they mated, measuring aspects of female fecundity and elements of offspring performance and viability. Multiple matings resulted in enhanced female fitness relative to single matings when females mated with different partners, but not when females mated repeatedly with the same male. Specifically, polyandrous females produced significantly more offspring surviving to reproductive maturity than did monogamous females mating once or mating repeatedly with the same male. These results suggest that the benefit females gain from multiple mating is influenced primarily by genetic and not material benefits.

  16. Employability of genetic counselors with a PhD in genetic counseling.

    PubMed

    Wallace, Jody P; Myers, Melanie F; Huether, Carl A; Bedard, Angela C; Warren, Nancy Steinberg

    2008-06-01

    The development of a PhD in genetic counseling has been discussed for more than 20 years, yet the perspectives of employers have not been assessed. The goal of this qualitative study was to gain an understanding of the employability of genetic counselors with a PhD in genetic counseling by conducting interviews with United States employers of genetic counselors. Study participants were categorized according to one of the following practice areas: academic, clinical, government, industry, laboratory, or research. All participants were responsible for hiring genetic counselors in their institutions. Of the 30 employers interviewed, 23 envisioned opportunities for individuals with a PhD degree in genetic counseling, particularly in academic and research settings. Performing research and having the ability to be a principal investigator on a grant was the primary role envisioned for these individuals by 22/30 participants. Employers expect individuals with a PhD in genetic counseling to perform different roles than MS genetic counselors with a master's degree. This study suggests there is an employment niche for individuals who have a PhD in genetic counseling that complements, and does not compete with, master's prepared genetic counselors.

  17. CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic

    PubMed Central

    Marshall, A D; Bailey, C G; Champ, K; Vellozzi, M; O'Young, P; Metierre, C; Feng, Y; Thoeng, A; Richards, A M; Schmitz, U; Biro, M; Jayasinghe, R; Ding, L; Anderson, L; Mardis, E R; Rasko, J E J

    2017-01-01

    CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer. PMID:28319062

  18. [The role of the genetics history in genetics teaching].

    PubMed

    Li, Ming-Hui

    2006-08-01

    The research of the scientific history and development status reflect the science and technology level of a nation. The genetic history is one of the branches of the life science and the 21st century is life science century. The genetics history in the teaching of genetics not only can help students get familiar with the birth and development of genetics, but also enhance their thinking ability and scientific qualities. The roles and approaches of teaching are discussed in this paper.

  19. Adults' perceptions of genetic counseling and genetic testing.

    PubMed

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    PubMed

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  1. A diploid inbred line strategy to accelerate genetic gain in potato

    USDA-ARS?s Scientific Manuscript database

    Breeding potato at the tetraploid level is inefficient and slow. Potato breeding has not kept pace with advances in breeding strategies and genomics tools. This project initiates our plan to convert potato into a diploid crop capable of self-pollination. This will allow breeders to realize the genet...

  2. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.

    PubMed

    Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin

    2016-05-01

    The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.

  3. Littermate presence enhances motor development, weight gain and competitive ability in newborn and juvenile domestic rabbits.

    PubMed

    Nicolás, Leticia; Martínez-Gómez, Margarita; Hudson, Robyn; Bautista, Amando

    2011-01-01

    Interest has been growing in the influence siblings may have on individual development. While mammalian research has tended to emphasize competition among siblings for essential but often limited resources such as the mother's milk, there is also evidence of mutual benefits to be had from sibling presence, most notably for altricial young in enhanced thermoregulatory efficiency. In the present study we asked whether littermates of an altricial mammal, the domestic rabbit, might gain other developmental benefits from sibling presence. From postnatal days 1 to 25 we raised rabbit pups either together with their littermates or alone except for the brief, once daily nursing characteristic of this species, while controlling for litter size and ambient nest box temperature. At weaning on Day 25 the young were then transferred to individual cages. Before weaning, we found that pups raised separately from their littermates obtained less milk, and showed lower weight gain and slower development of the ability to maintain body equilibrium than their litter-raised sibs. This was the case even though the two groups did not differ in birth weight or in the ratio of converting milk into body mass in their temperature-controlled nest boxes. Postweaning, the isolation-raised animals were also less successful in competing for food and water when tested after deprivation than their litter-raised sibs. The present study adds to the growing evidence of the influence, in this case positive, that sibs (or half sibs) may have in shaping one another's development. © 2010 Wiley Periodicals, Inc.

  4. Measuring Learning Gain: Comparing Anatomy Drawing Screencasts and Paper-Based Resources

    ERIC Educational Resources Information Center

    Pickering, James D.

    2017-01-01

    The use of technology-enhanced learning (TEL) resources is now a common tool across a variety of healthcare programs. Despite this popular approach to curriculum delivery there remains a paucity in empirical evidence that quantifies the change in learning gain. The aim of the study was to measure the changes in learning gain observed with anatomy…

  5. An assessment of yield gains under climate change due to genetic modification of pearl millet.

    PubMed

    Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S

    2017-12-01

    Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (p<0.05) increased yields at Aurangabad and Bijapur, but not at other locations. Increasing yield potential traits by 10% increased yields under both the climate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The

  6. Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration.

    PubMed

    Kanashiro-Takeuchi, Rosemeire M; Schulman, Ivonne Hernandez; Hare, Joshua M

    2011-10-01

    Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure." Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The influence of place on weight gain during early childhood: a population-based, longitudinal study.

    PubMed

    Carter, Megan Ann; Dubois, Lise; Tremblay, Mark S; Taljaard, Monica

    2013-04-01

    The objective of this paper was to determine the influence of place factors on weight gain in a contemporary cohort of children while also adjusting for early life and individual/family social factors. Participants from the Québec Longitudinal Study of Child Development comprised the sample for analysis (n = 1,580). A mixed-effects regression analysis was conducted to determine the longitudinal relationship between these place factors and standardized BMI, from age 4 to 10 years. The average relationship with time was found to be quadratic (rate of weight gain increased over time). Neighborhood material deprivation was found to be positively related to weight gain. Social deprivation, social disorder, and living in a medium density area were inversely related, while no association was found for social cohesion. Early life factors and genetic proxies appeared to be important in explaining weight gain in this sample. This study suggests that residential environments may play a role in childhood weight change; however, pathways are likely to be complex and interacting and perhaps not as important as early life factors and genetic proxies. Further work is required to clarify these relationships.

  8. Pharmacogenetics of leptin in antipsychotic-associated weight gain and obesity-related complications

    PubMed Central

    Lee, Amy K; Bishop, Jefrey R

    2013-01-01

    Second-generation antipsychotics can greatly improve symptoms of psychosis-spectrum disorders. Unfortunately, these drugs are associated with weight gain, which increases a patient’s risk for developing chronic diseases including Type 2 diabetes, cardiovascular diseases or other obesity-related complications. There are interindividual differences in weight gain resulting from antipsychotic drug use that may be explained by pharmacodynamic characteristics of these agents as well as clinical factors. In addition, genetic variations in pathways associated with satiety are increasingly recognized as potential contributors to antipsychotic-associated weight gain. Polymorphisms in the leptin gene, as well as the leptin receptor gene, are potential pharmacogenetic markers associated with these outcomes. This article summarizes evidence for the associations of the leptin gene and the leptin receptor gene polymorphisms with antipsychotic-induced weight gain, potential mechanisms underlying these relationships, and discusses areas for future pharmacogenetic investigation. PMID:21787190

  9. The Impact of PNPLA3 rs738409 Genetic Polymorphism and Weight Gain ≥10 kg after Age 20 on Non-Alcoholic Fatty Liver Disease in Non-Obese Japanese Individuals

    PubMed Central

    Nishioji, Kenichi; Mochizuki, Naomi; Kobayashi, Masao; Kamaguchi, Mai; Sumida, Yoshio; Nishimura, Takeshi; Yamaguchi, Kanji; Kadotani, Hiroshi; Itoh, Yoshito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) in non-obese individuals is inadequately elucidated. We aim to investigate the impact of known genetic polymorphisms on NAFLD and the interaction between genetic risks and weight gain on NAFLD in obese and non-obese Japanese individuals. A total of 1164 participants who received health checkups were included. Participants with excessive alcohol consumption, with viral hepatitis or other inappropriate cases were excluded. Fatty liver was diagnosed by ultrasonography. Participants with a body mass index (BMI) of <18.5 kg/m2, 18.5–22.9 kg/m2, 23.0–24.9 kg/m2 and ≥25 kg/m2 were classified underweight, normal weight, overweight and obese, respectively. Self-administered questionnaire for lifestyle was assessed and a total of 8 previously reported genetic polymorphisms were chosen and examined. In all, 824 subjects were enrolled. The overall prevalence of NAFLD was 33.0%: 0% in underweight, 15.3% in normal weight, 41.1% in overweight and 71.7% in obese individuals. The prevalence of NAFLD is more affected by the G allele of patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 in normal weight (odds ratio (OR) 3.52; 95%-CI: 1.42–8.71; P = 0.0063) and in overweight individuals (OR 2.60; 95%-CI: 1.14–5.91; P = 0.0225) than in obese individuals (not significant). Moreover, the G allele of PNPLA3 rs738409 and weight gain ≥10 kg after age 20 had a joint effect on the risk of NAFLD in the normal weight (OR 12.00; 95% CI: 3.71–38.79; P = 3.3×10−5) and the overweight individuals (OR 13.40; 95% CI: 2.92–61.36; P = 0.0008). The G allele of PNPLA3 rs738409 is a prominent risk factor for NAFLD and the interaction between the PNPLA3 rs738409 and weight gain ≥10 kg after age 20 plays a crucial role in the pathogenesis of NAFLD, especially in non-obese Japanese individuals. PMID:26485523

  10. Genetic enhancement of cognition in a kindred with cone–rod dystrophy due to RIMS1 mutation

    PubMed Central

    Sisodiya, Sanjay M; Thompson, Pamela J; Need, Anna; Harris, Sarah E; Weale, Michael E; Wilkie, Susan E; Michaelides, Michel; Free, Samantha L; Walley, Nicole; Gumbs, Curtis; Gerrelli, Dianne; Ruddle, Piers; Whalley, Lawrence J; Starr, John M; Hunt, David M; Goldstein, David B; Deary, Ian J; Moore, Anthony T

    2007-01-01

    Background The genetic basis of variation in human cognitive abilities is poorly understood. RIMS1 encodes a synapse active‐zone protein with important roles in the maintenance of normal synaptic function: mice lacking this protein have greatly reduced learning ability and memory function. Objective An established paradigm examining the structural and functional effects of mutations in genes expressed in the eye and the brain was used to study a kindred with an inherited retinal dystrophy due to RIMS1 mutation. Materials and methods Neuropsychological tests and high‐resolution MRI brain scanning were undertaken in the kindred. In a population cohort, neuropsychological scores were associated with common variation in RIMS1. Additionally, RIMS1 was sequenced in top‐scoring individuals. Evolution of RIMS1 was assessed, and its expression in developing human brain was studied. Results Affected individuals showed significantly enhanced cognitive abilities across a range of domains. Analysis suggests that factors other than RIMS1 mutation were unlikely to explain enhanced cognition. No association with common variation and verbal IQ was found in the population cohort, and no other mutations in RIMS1 were detected in the highest scoring individuals from this cohort. RIMS1 protein is expressed in developing human brain, but RIMS1 does not seem to have been subjected to accelerated evolution in man. Conclusions A possible role for RIMS1 in the enhancement of cognitive function at least in this kindred is suggested. Although further work is clearly required to explore these findings before a role for RIMS1 in human cognition can be formally accepted, the findings suggest that genetic mutation may enhance human cognition in some cases. PMID:17237123

  11. Communication strategies for enhancing understanding of the behavioral implications of genetic and biomarker tests for disease risk: the role of coherence.

    PubMed

    Cameron, Linda D; Marteau, Theresa M; Brown, Paul M; Klein, William M P; Sherman, Kerry A

    2012-06-01

    Individuals frequently have difficulty understanding how behavior can reduce genetically-conferred risk for diseases such as colon cancer. With increasing opportunities to purchase genetic tests, communication strategies are needed for presenting information in ways that optimize comprehension and adaptive behavior. Using the Common-Sense Model, we tested the efficacy of a strategy for providing information about the relationships (links) among the physiological processes underlying disease risk and protective action on understanding, protective action motivations, and willingness to purchase tests. We tested the generalizability of the strategy's effects across varying risk levels, for genetic tests versus tests of a non-genetic biomarker, and when using graphic and numeric risk formats. In an internet-based experiment, 749 adults from four countries responded to messages about a hypothetical test for colon cancer risk. Messages varied by Risk-Action Link Information (provision or no provision of information describing how a low-fat diet reduces risk given positive results, indicating presence of a gene fault), Risk Increment (20%, 50%, or 80% risk given positive results), Risk Format (numeric or graphic presentation of risk increments), and Test Type (genetic or enzyme). Providing risk-action link information enhanced beliefs of coherence (understanding how a low-fat diet reduces risk) and response efficacy (low-fat diets effectively reduce risk) and lowered appraisals of anticipated risk of colon cancer given positive results. These effects held across risk increments, risk formats, and test types. For genetic tests, provision of risk-action link information reduced the amount individuals were willing to pay for testing. Brief messages explaining how action can reduce genetic and biomarker-detected risks can promote beliefs motivating protective action. By enhancing understanding of behavioral control, they may reduce the perceived value of genetic risk

  12. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  13. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.

    PubMed

    Yin, T; Wensch-Dorendorf, M; Simianer, H; Swalve, H H; König, S

    2014-06-01

    The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (G×E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either 'conventional' estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h 2=0.05) and moderate heritability (h 2=0.30). GEBV were calculated for different accuracies (r mg), and G×E interactions were considered by modifying originally simulated true breeding values in the range from r g=0.5 to 1.0. For both traits (h 2=0.05 and 0.30) and r mg⩾0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of G×E interactions. Only for pronounced G×E interactions (r g=0.5), and for highly accurate GEBV for natural service bulls (r mg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices.

  14. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  15. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.

    PubMed

    Kahi, A K; Hirooka, H

    2005-09-01

    Deterministic simulation was used to evaluate 10 breeding schemes for genetic gain and profitability and in the context of maximizing returns from investment in Japanese Black cattle breeding. A breeding objective that integrated the cow-calf and feedlot segments was considered. Ten breeding schemes that differed in the records available for use as selection criteria were defined. The schemes ranged from one that used carcass traits currently available to Japanese Black cattle breeders (Scheme 1) to one that also included linear measurements and male and female reproduction traits (Scheme 10). The latter scheme represented the highest level of performance recording. In all breeding schemes, sires were chosen from the proportion selected during the first selection stage (performance testing), modeling a two-stage selection process. The effect on genetic gain and profitability of varying test capacity and number of progeny per sire and of ultrasound scanning of live animals was examined for all breeding schemes. Breeding schemes that selected young bulls during performance testing based on additional individual traits and information on carcass traits from their relatives generated additional genetic gain and profitability. Increasing test capacity resulted in an increase in genetic gain in all schemes. Profitability was optimal in Scheme 2 (a scheme similar to Scheme 1, but selection of young bulls also was based on information on carcass traits from their relatives) to 10 when 900 to 1,000 places were available for performance testing. Similarly, as the number of progeny used in the selection of sires increased, genetic gain first increased sharply and then gradually in all schemes. Profit was optimal across all breeding schemes when sires were selected based on information from 150 to 200 progeny. Additional genetic gain and profitability were generated in each breeding scheme with ultrasound scanning of live animals for carcass traits. Ultrasound scanning of live

  16. Assessing potential genetic gains from varietal planting stock in loblolly pine plantations

    Treesearch

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2013-01-01

    Forest landowners have increasingly more options when it comes to loblolly pine (Pinus taeda L.) planting stock. The majority of plantations in recent decades have been established with seedlings produced from second-generation open-pollinated (second-Gen OP) seed. However, foresters have begun recognizing the increased gains obtainable from full-sib...

  17. The beneficial effect of genetically engineered Schwann cells with enhanced motility in peripheral nerve regeneration: review.

    PubMed

    Gravvanis, A I; Lavdas, A A; Papalois, A; Tsoutsos, D A; Matsas, R

    2007-01-01

    The importance of Schwann cells in promoting nerve regeneration across a conduit has been extensively reported in the literature, and Schwann cell motility has been acknowledged as a prerequisite for myelination of the peripheral nervous system during regeneration after injury. Review of recent literature and retrospective analysis of our studies with genetically modified Schwann Cells with increased motility in order to identify the underlying mechanism of action and outline the future trends in peripheral nerve repair. Schwann cell transduction with the pREV-retrovirus, for expression of Sialyl-Transferase-X, resulting in conferring Polysialyl-residues (PSA) on NCAM, increases their motility in-vitro and ensures nerve regeneration through silicone tubes after end-to-side neurorraphy in the rat sciatic nerve model, thus significantly promoting fiber maturation and functional outcome. An artificial nerve graft consisting of a type I collagen tube lined with the genetically modified Schwann cells with increased motility, used to bridge a defect in end-to-end fashion in the rat sciatic nerve model, was shown to promote nerve regeneration to a level equal to that of a nerve autograft. The use of genetically engineered Schwann cells with enhanced motility for grafting endoneural tubes promotes axonal regeneration, by virtue of the interaction of the transplanted cells with regenerating axonal growth cones as well as via the recruitment of endogenous Schwann cells. It is envisaged that mixed populations of Schwann cells, expressing PSA and one or more trophic factors, might further enhance the regenerating and remyelinating potential of the lesioned nerves.

  18. Genetic privacy in sports: clearing the hurdles.

    PubMed

    Callier, Shawneequa

    2012-12-01

    As genomic medicine continues to advance and inform clinical care, knowledge gained is likely to influence sports medicine and training practices. Susceptibility to injury, sudden cardiac failure, and other serious conditions may one day be tackled on a subclinical level through genetic testing programs. In addition, athletes may increasingly consider using genetic testing services to maximize their performance potential. This paper assesses the role of privacy and genetic discrimination laws that would apply to athletes who engage in genetic testing and the limits of these protections.

  19. Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition

    NASA Astrophysics Data System (ADS)

    Leymann, H. A. M.; Hopfmann, C.; Albert, F.; Foerster, A.; Khanbekyan, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S.

    2013-05-01

    We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic S-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon autocorrelation function g(2)(τ) of the light emission confirms the onset of lasing in the first mode with g(2)(0) approaching unity above threshold. In contrast, strong photon bunching associated with superthermal values of g(2)(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon cross-correlation measurements revealing a clear anticorrelation between emission events of the two modes. The experimental studies are in qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by a phenomenological birth-death model extended to two interacting modes, which reveals that the photon probability distribution of each mode has a double-peak structure, indicating switching behavior of the modes for pump rates around threshold.

  20. Disability Experiences and Perspectives Regarding Reproductive Decisions, Parenting, and the Utility of Genetic Services: a Qualitative Study.

    PubMed

    Roadhouse, C; Shuman, C; Anstey, K; Sappleton, K; Chitayat, D; Ignagni, E

    2018-06-16

    Genetic counselors adopt seemingly contradictory roles: advocating for individuals with genetic conditions while offering prenatal diagnosis and the option of selective termination to prevent the birth of a child with a disability. This duality contributes to the tension between the disability and clinical genetics communities. Varying opinions exist amongst the disability community: some value genetic services while others are opposed. However, there is limited research exploring the opinions of individuals with a disability regarding issues related to reproduction and genetic services in the context of personal experience. This exploratory qualitative study involved interviews with seven women and three men who self-identify as having a disability. We sought to gain their perspectives on experiences with disability, thoughts about reproduction and parenting, and perceptions of genetic services. Transcripts of the interviews were analyzed thematically using qualitative content analysis. Data analysis showed that societal views of disability affected the lived experience and impacted reproductive decision-making for those with a disability. It also showed differing interest in genetic services. Concerns about the perceived collective implications of genetic services were also raised. These findings contribute to the understanding of the disability perspective toward reproductive decision-making and genetic services. A further goal is to promote a meaningful dialogue between the genetics and disability communities, with the potential to enhance the genetic and reproductive care provided to individuals with disabilities.

  1. Gestational Weight Gain: Results from the Delta Healthy Sprouts Comparative Impact Trial.

    PubMed

    Thomson, Jessica L; Tussing-Humphreys, Lisa M; Goodman, Melissa H; Olender, Sarah E

    2016-01-01

    Introduction. Delta Healthy Sprouts trial was designed to test the comparative impact of two home visiting programs on weight status, dietary intake, and health behaviors of Southern African American women and their infants. Results pertaining to the primary outcome, gestational weight gain, are reported. Methods. Participants (n = 82), enrolled early in their second trimester of pregnancy, were randomly assigned to one of two treatment arms. Gestational weight gain, measured at six monthly home visits, was calculated by subtracting measured weight at each visit from self-reported prepregnancy weight. Weight gain was classified as under, within, or exceeding the Institute of Medicine recommendations based on prepregnancy body mass index. Chi-square tests and generalized linear mixed models were used to test for significant differences in percentages of participants within recommended weight gain ranges. Results. Differences in percentages of participants within the gestational weight gain guidelines were not significant between treatment arms across all visits. Conclusions. Enhancing the gestational nutrition and physical activity components of an existing home visiting program is feasible in a high risk population of primarily low income African American women. The impact of these enhancements on appropriate gestational weight gain is questionable given the more basic living needs of such women. This trial is registered with ClinicalTrials.gov NCT01746394, registered 4 December 2012.

  2. Gain-of-Function Mutations in SCN11A Cause Familial Episodic Pain

    PubMed Central

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-01-01

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3–p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel’s electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. PMID:24207120

  3. Why Research on the Pharmacogenetics of Atypical Antipsychotic-Induced Weight Gain in Individuals with Intellectual Disabilities Is Warranted

    ERIC Educational Resources Information Center

    Sleister, Heidi M.; Valdovinos, Maria Gabriela

    2011-01-01

    Weight gain is an often-observed side effect of atypical antipsychotics (AAPs) and is particularly significant in individuals with intellectual disabilities (ID). The majority of individuals treated with AAPs will gain at least 10% of their initial body weight over the course of therapy (Umbricht & Kane, 1996). One's genetic constitution is an…

  4. Moderate eugenics and human enhancement.

    PubMed

    Selgelid, Michael J

    2014-02-01

    Though the reputation of eugenics has been tarnished by history, eugenics per se is not necessarily a bad thing. Many advocate a liberal new eugenics--where individuals are free to choose whether or not to employ genetic technologies for reproductive purposes. Though genetic interventions aimed at the prevention of severe genetic disorders may be morally and socially acceptable, reproductive liberty in the context of enhancement may conflict with equality. Enhancement could also have adverse effects on utility. The enhancement debate requires a shift in focus. What the equality and/or utility costs of enhancement will be is an empirical question. Rather than philosophical speculation, more social science research is needed to address it. Philosophers, meanwhile, should address head-on the question of how to strike a balance between liberty, equality, and utility in cases of conflict (in the context of genetics).

  5. Invited review: Genetics and claw health: Opportunities to enhance claw health by genetic selection

    USDA-ARS?s Scientific Manuscript database

    Routine recording of claw health status at claw trimming of dairy cattle have been established in several countries, providing valuable data for genetic evaluation. In this review, issues related to genetic evaluation of claw health are examined, data sources, trait definitions and data validation p...

  6. New Results in Astrodynamics Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.

    1998-01-01

    Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.

  7. A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies.

    PubMed

    Bodea, Corneliu A; Neale, Benjamin M; Ripke, Stephan; Daly, Mark J; Devlin, Bernie; Roeder, Kathryn

    2016-05-05

    One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes

    PubMed Central

    Heckendorn, Felix; Bieber, Anna; Werne, Steffen; Saratsis, Anastasios; Maurer, Veronika; Stricker, Chris

    2017-01-01

    Gastrointestinal nematodes (GIN) severely affect small ruminant production worldwide. Increasing problems of anthelmintic resistance have given strong impetus to the search for alternative strategies to control GIN. Selection of animals with an enhanced resistance to GIN has been shown to be successful in sheep. In goats, the corresponding information is comparatively poor. Therefore, the present study was designed to provide reliable data on heritabilities of and genetic correlations between phenotypic traits linked to GIN and milk yield in two major dairy goat breeds (Alpine and Saanen). In all, 20 herds totalling 1303 goats were enrolled in the study. All herds had (i) a history of gastrointestinal nematode infection, (ii) uniform GIN exposure on pasture and (iii) regular milk recordings. For all goats, individual recordings of faecal egg counts (FEC), FAMACHA© eye score, packed cell volume (PCV) and milk yield were performed twice a year with an anthelmintic treatment in between. The collected phenotypic data were multivariately modelled using animal as a random effect with its covariance structure inferred from the pedigree, enabling estimation of the heritabilities of the respective traits and the genetic correlation between them. The heritabilities of FEC, FAMACHA© and PCV were 0.07, 0.22 and 0.22, respectively. The genetic correlation between FEC and FAMACHA© was close to zero and −0.41 between FEC and PCV. The phenotypic correlation between FEC and milk yield was close to zero, whereas the genetic correlation was 0.49. Our data suggest low heritability of FEC in Saanen and Alpine goats and an unfavourable genetic correlation of FEC with milk yield. PMID:28792887

  9. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/sqrt{Hz} when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ˜3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ˜110 charges in a single scan.

  10. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-15

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3more » kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.« less

  11. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    EPA Science Inventory

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  12. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  13. Anti-aging science: The emergence, maintenance, and enhancement of a discipline

    PubMed Central

    Fishman, Jennifer R.; Binstock, Robert H.; Lambrix, Marcie A.

    2012-01-01

    Through archival analysis this article traces the emergence, maintenance, and enhancement of biogerontology as a scientific discipline in the United States. At first, biogerontologists' attempts to control human aging were regarded as a questionable pursuit due to: perceptions that their efforts were associated with the long history of charlatanic, anti-aging medical practices; the idea that anti-aging is a “forbidden science” ethically and scientifically; and the perception that the field was scientifically bereft of rigor and scientific innovation. The hard-fought establishment of the National Institute on Aging, scientific advancements in genetics and biotechnology, and consistent “boundary work” by scientists, have allowed biogerontology to flourish and gain substantial legitimacy with other scientists and funding agencies, and in the public imagination. In particular, research on genetics and aging has enhanced the stature and promise of the discipline by setting it on a research trajectory in which explanations of the aging process, rather than mere descriptions, have become a central focus. Moreover, if biogerontologists' efforts to control the processes of human aging are successful, this trajectory has profound implications for how we conceive of aging, and for the future of many of our social institutions. PMID:23264719

  14. Direct multitrait selection realizes the highest genetic response for ratio traits.

    PubMed

    Zetouni, L; Henryon, M; Kargo, M; Lassen, J

    2017-05-01

    For a number of traits the phenotype considered to be the goal trait is a combination of 2 or more traits, like methane (CH) emission (CH/kg of milk). Direct selection on CH4 emission defined as a ratio is problematic, because it is uncertain whether the improvement comes from an improvement in milk yield, a decrease in CH emission or both. The goal was to test different strategies on selecting for 2 antagonistic traits- improving milk yield while decreasing methane emissions. The hypothesis was that to maximize genetic gain for a ratio trait, the best approach is to select directly for the component traits rather than using a ratio trait or a trait where 1 trait is corrected for the other as the selection criteria. Stochastic simulation was used to mimic a dairy cattle population. Three scenarios were tested, which differed in selection criteria but all selecting for increased milk yield: 1) selection based on a multitrait approach using the correlation structure between the 2 traits, 2) the ratio of methane to milk and 3) gross methane phenotypically corrected for milk. Four correlation sets were tested in all scenarios, to access robustness of the results. An average genetic gain of 66 kg of milk per yr was obtained in all scenarios, but scenario 1 had the best response for decreased methane emissions, with a genetic gain of 24.8 l/yr, while scenarios 2 and 3 had genetic gains of 27.1 and 27.3 kg/yr. The results found were persistent across correlation sets. These results confirm the hypothesis that to obtain the highest genetic gain a multitrait selection is a better approach than selecting for the ratio directly. The results are exemplified for a methane and milk scenario but can be generalized to other situations where combined traits need to be improved.

  15. Amphetamine primes enhanced motivation toward uncertain choices in rats with genetic alcohol preference.

    PubMed

    Oinio, Ville; Sundström, Mikko; Bäckström, Pia; Uhari-Väänänen, Johanna; Kiianmaa, Kalervo; Raasmaja, Atso; Piepponen, Petteri

    2018-05-01

    Comorbidity with gambling disorder (GD) and alcohol use disorder (AUD) is well documented. The purpose of our study was to examine the influence of genetic alcohol drinking tendency on reward-guided decision making behavior of rats and the impact of dopamine releaser D-amphetamine on this behavior. In this study, Alko alcohol (AA) and Wistar rats went through long periods of operant lever pressing training where the task was to choose the profitable of two options. The lever choices were guided by different-sized sucrose rewards (one or three pellets), and the probability of gaining the larger reward was slowly changed to a level where choosing the smaller reward would be the most profitable in the long run. After training, rats were injected (s.c.) with dopamine releaser D-amphetamine (0.3, 1.0 mg/kg) to study the impact of rapid dopamine release on this learned decision making behavior. Administration of D-amphetamine promoted unprofitable decision making of AA rats more robustly when compared to Wistar rats. At the same time, D-amphetamine reduced lever pressing responses. Interestingly, we found that this reduction in lever pressing was significantly greater in Wistar rats than in AA rats and it was not linked to motivation to consume sucrose. Our results indicate that conditioning to the lever pressing in uncertain environments is more pronounced in AA than in Wistar rats and indicate that the reinforcing effects of a gambling-like environment act as a stronger conditioning factor for rats that exhibit a genetic tendency for high alcohol drinking.

  16. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    PubMed

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model.

    PubMed

    Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J

    2007-05-01

    Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and

  18. Quantitative genetics of disease traits.

    PubMed

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.

  19. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    PubMed

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene; Grarup, Niels; Sebastian, David; Rodriguez-Fos, Elias; Sánchez, Friman; Planas-Fèlix, Mercè; Cortes-Sánchez, Paula; González, Santi; Timshel, Pascal; Pers, Tune H; Morgan, Claire C; Moran, Ignasi; Atla, Goutham; González, Juan R; Puiggros, Montserrat; Martí, Jonathan; Andersson, Ehm A; Díaz, Carlos; Badia, Rosa M; Udler, Miriam; Leong, Aaron; Kaur, Varindepal; Flannick, Jason; Jørgensen, Torben; Linneberg, Allan; Jørgensen, Marit E; Witte, Daniel R; Christensen, Cramer; Brandslund, Ivan; Appel, Emil V; Scott, Robert A; Luan, Jian'an; Langenberg, Claudia; Wareham, Nicholas J; Pedersen, Oluf; Zorzano, Antonio; Florez, Jose C; Hansen, Torben; Ferrer, Jorge; Mercader, Josep Maria; Torrents, David

    2018-01-22

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

  20. Management intensity and genetics affect loblolly pine seedling performance

    Treesearch

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2012-01-01

    Capturing potential genetic gains from tree improvement programs requires selection of the appropriate genetic stock and application of appropriate silvicultural management techniques. Limited information is available on how specific loblolly pine varietal genotypes perform under differing growing environments and management approaches. This study was established in...

  1. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    PubMed

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  2. Selfish genetic elements, genetic conflict, and evolutionary innovation

    PubMed Central

    Werren, John H.

    2011-01-01

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible “evolutionary functions” of SGEs. PMID:21690392

  3. Genetic manipulation of iron biomineralization enhances MR relaxivity in a ferritin-M6A chimeric complex.

    PubMed

    Radoul, Marina; Lewin, Limor; Cohen, Batya; Oren, Roni; Popov, Stanislav; Davidov, Geula; Vandsburger, Moriel H; Harmelin, Alon; Bitton, Ronit; Greneche, Jean-Marc; Neeman, Michal; Zarivach, Raz

    2016-05-23

    Ferritin has gained significant attention as a potential reporter gene for in vivo imaging by magnetic resonance imaging (MRI). However, due to the ferritin ferrihydrite core, the relaxivity and sensitivity for detection of native ferritin is relatively low. We report here on a novel chimeric magneto-ferritin reporter gene - ferritin-M6A - in which the magnetite binding peptide from the magnetotactic bacteria magnetosome-associated Mms6 protein was fused to the C-terminal of murine h-ferritin. Biophysical experiments showed that purified ferritin-M6A assembled into a stable protein cage with the M6A protruding into the cage core, enabling magnetite biomineralisation. Ferritin-M6A-expressing C6-glioma cells showed enhanced (per iron) r2 relaxivity. MRI in vivo studies of ferritin-M6A-expressing tumour xenografts showed enhanced R2 relaxation rate in the central hypoxic region of the tumours. Such enhanced relaxivity would increase the sensitivity of ferritin as a reporter gene for non-invasive in vivo MRI-monitoring of cell delivery and differentiation in cellular or gene-based therapies.

  4. Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture.

    PubMed

    Vermerris, Wilfred; Abril, Alejandra

    2015-04-01

    Cellulose from plant biomass can serve as a sustainable feedstock for fuels, chemicals and polymers that are currently produced from petroleum. In order to enhance economic feasibility, the efficiency of cell wall deconstruction needs to be enhanced. With the use of genetic and biotechnological approaches cell wall composition can be modified in such a way that interactions between the major cell wall polymers—cellulose, hemicellulosic polysaccharides and lignin—are altered. Some of the resulting plants are compromised in their growth and development, but this may be caused in part by the plant's overcompensation for metabolic perturbances. In other cases novel structures have been introduced in the cell wall without negative effects. The first field studies with engineered bioenergy crops look promising, while detailed structural analyses of cellulose synthase offer new opportunities to modify cellulose itself. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An update on gain-of-function mutations in primary immunodeficiency diseases.

    PubMed

    Jhamnani, Rekha D; Rosenzweig, Sergio D

    2017-12-01

    Most primary immunodeficiencies described since 1952 were associated with loss-of-function defects. With the advent and popularization of unbiased next-generation sequencing diagnostic approaches followed by functional validation techniques, many gain-of-function mutations leading to immunodeficiency have also been identified. This review highlights the updates on pathophysiology mechanisms and new therapeutic approaches involving primary immunodeficiencies because of gain-of-function mutations. The more recent developments related to gain-of-function primary immunodeficiencies mostly involving increased infection susceptibility but also immune dysregulation and autoimmunity, were reviewed. Updates regarding pathophysiology mechanisms, different mutation types, clinical features, laboratory markers, current and potential new treatments on patients with caspase recruitment domain family member 11, signal transducer and activator of transcription 1, signal transducer and activator of transcription 3, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic 110, phosphatidylinositol-4,5-biphosphate 3-kinase regulatory subunit 1, chemokine C-X-C motif receptor 4, sterile α motif domain containing 9-like, and nuclear factor κ-B subunit 2 gain-of-function mutations are reviewed for each disease. With the identification of gain-of-function mutations as a cause of immunodeficiency, new genetic pathophysiology mechanisms unveiled and new-targeted therapeutic approaches can be explored as potential rescue treatments for these diseases.

  6. Optical gain in an optically driven three-level ? system in atomic Rb vapor

    NASA Astrophysics Data System (ADS)

    Ballmann, C. W.; Yakovlev, V. V.

    2018-06-01

    In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.

  7. Imaging-Genetics in Dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments

    PubMed Central

    Eicher, John D.; Gruen, Jeffrey R.

    2013-01-01

    Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia. PMID:23916419

  8. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Growth of Mashona cattle on range in Zimbabwe. II. Estimates of genetic parameters and predicted response to selection.

    PubMed

    Tawonezvi, H P

    1989-08-01

    For 1,456 Mashona calves sired by 88 bulls heritability estimates from paternal half-sibs were 0.44 +/- 0.11 for birth weight, 0.38 +/- 0.10 for 205-day weaning weight, 0.39 +/- 0.10 for 18-month weight, 0.37 +/- 0.10 for pre-weaning daily liveweight gain and 0.41 +/- 0.11 for daily gain from weaning to 18 months of age. Genetic correlations were relatively low for birth weight with weaning weight (0.42 +/- 0.18), 18-month weight (0.56 +/- 0.16), pre-weaning gain (0.33 +/- 0.19) and post-weaning gain (0.36 +/- 0.19). Higher genetic correlations were observed for pre-weaning gain with weaning weight (0.98 +/- 0.01) and 18-month weight (0.59 +/- 0.14) and for 18-month weight with weaning weight (0.67 +/- 0.12) and post-weaning gain (0.73 +/- 0.10). Post-weaning daily gain was not significantly correlated genetically with both pre-weaning gain (-0.11 +/- 0.22) and weaning weight (-0.03 +/- 0.22). With 10% retention of males and 60% of females expected genetic improvements per generation from direct selection for weaning weight or 18-month weight were 8.11 kg and 12.12 kg respectively. These improvements would be reduced by 18% and 35% if selection indices were used to produce no correlated change in birth weight.

  10. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    PubMed Central

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  11. Low power analog front-end electronics in deep submicrometer CMOS technology based on gain enhancement techniques

    NASA Astrophysics Data System (ADS)

    Gómez-Galán, J. A.; Sánchez-Rodríguez, T.; Sánchez-Raya, M.; Martel, I.; López-Martín, A.; Carvajal, R. G.; Ramírez-Angulo, J.

    2014-06-01

    This paper evaluates the design of front-end electronics in modern technologies to be used in a new generation of heavy ion detectors—HYDE (FAIR, Germany)—proposing novel architectures to achieve high gain in a low voltage environment. As conventional topologies of operational amplifiers in modern CMOS processes show limitations in terms of gain, novel approaches must be raised. The work addresses the design using transistors with channel length of no more than double the feature size and a supply voltage as low as 1.2 V. A front-end system has been fabricated in a 90 nm process including gain boosting techniques based on regulated cascode circuits. The analog channel has been optimized to match a detector capacitance of 5 pF and exhibits a good performance in terms of gain, speed, linearity and power consumption.

  12. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner.

    PubMed

    Zheng, Hong; Yu, Wen-Mei; Waclaw, Ronald R; Kontaridis, Maria I; Neel, Benjamin G; Qu, Cheng-Kui

    2018-03-20

    Catalytically activating mutations in Ptpn11 , which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11 E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Utilizing genetic diversity in the desert watermelon citrullus colocynthis for enhancing watermelon cultivars for resistance to biotic and abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Wide genetic diversity exists among the desert watermelon Citrullus colocynthis (L.) Schrad. (CC) accessions collected in the deserts of northern Africa, the Middle East, and Asia. Because of their resistance to biotic and abiotic stresses, there can be a viable source of genes used for enhancing wa...

  14. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  15. Genetic parameters and prediction of breeding values in switchgrass bred for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Estimating genetic parameters is an essential step in breeding by recurrent selection to maximize genetic gains over time. This study evaluated the effects of selection on genetic variation across two successive cycles (C1 and C2) of a ‘Summer’x‘Kanlow’ switchgrass (Panicum virgatum L.) population. ...

  16. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-01-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/\\documentclass[12pt]{minimal}\\begin{document}$\\sqrt{\\mbox{Hz}}$\\end{document}Hz when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ∼3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ∼110 charges in a single scan. PMID:22225232

  17. Sensation Seeking as a Moderator of Gain- and Loss-Framed HIV-Test Promotion Message Effects.

    PubMed

    Hull, Shawnika J; Hong, Yangsun

    2016-01-01

    This study used an experiment (N = 504) to test whether the fit between sensation-seeking disposition and frame enhances the persuasiveness of gain- and loss-framed HIV test promotion messages. Gain- and loss-framed messages may be consistent with low and high sensation seekers' disposition with respect to risk behavior. We hypothesized that a loss-framed message would be more persuasive for high sensation seekers and that a gain-framed message should be more effective for low sensation seekers. We also expected elaboration to mediate the interaction. Results demonstrated the hypothesized interaction. When the message frame fit with the viewer's way of thinking, the persuasive power of the message was enhanced. The mediation hypothesis was not supported. Practical implications for targeting and message design are discussed.

  18. Loss/gain-induced ultrathin antireflection coatings

    PubMed Central

    Luo, Jie; Li, Sucheng; Hou, Bo; Lai, Yun

    2016-01-01

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, depending on whether gain or lossy media are applied, respectively. We provide a unified theory for the design of such ultrathin antireflection coatings, showing that under different polarizations and incident angles, different types of ultrathin coatings should be applied. Especially, under transverse magnetic polarization, the requirement shows a switch between gain and lossy media at Brewster angle. As a proof of principle, by using conductive films as a special type of lossy antireflection coatings, we experimentally demonstrate the suppression of Fabry-Pérot resonances in a broad frequency range for microwaves. This valuable functionality can be applied to remove undesired resonant effects, such as the frequency-dependent side lobes induced by resonances in dielectric coverings of antennas. Our work provides a guide for the design of ultrathin antireflection coatings as well as their applications in broadband reflectionless devices. PMID:27349750

  19. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    PubMed Central

    Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and

  20. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.

    PubMed

    Dwivedi, Sangam L; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and

  1. Genetic modification of stem cells for transplantation.

    PubMed

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  2. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    PubMed

    El-Esawi, Mohamed A; Elkelish, Amr; Elansary, Hosam O; Ali, Hayssam M; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret

    2017-01-01

    Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones ( p < 0.01). Transgenic hairy roots exhibited a 54.8-96.7% increase in the total phenolic content, 38.1-76.2% increase in the total flavonoid content, and 56.7-96.7% increase in the total reducing power when compared with the nontransgenic roots ( p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6-50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola .

  3. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  4. Gain and refractive index dynamics in p-doped InAs quantum dash semiconductor optical amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komolibus, Katarzyna; Tyndall National Institute, University College Cork, Cork T12 R5CP; Piwonski, Tomasz, E-mail: tomasz.piwonski@tyndall.ie

    The ultrafast carrier dynamics in a p-doped dash-in-a-well structure at 1.5 μm is experimentally investigated. An analysis of the timescales related to carrier relaxation and escape processes as well as the “dynamical” linewidth enhancement factor is presented and compared with results obtained from similar un-doped materials. Intentional p-doping of the active region results in an enhancement of the intermediate timescale of the gain dynamics associated with phonon-assisted electron capture and a reduction of the α-factor due to increased differential gain.

  5. Cognitive Enhancement and Education

    ERIC Educational Resources Information Center

    Buchanan, Allen

    2011-01-01

    Cognitive enhancement--augmenting normal cognitive capacities--is not new. Literacy, numeracy, computers, and the practices of science are all cognitive enhancements. Science is now making new cognitive enhancements possible. Biomedical cognitive enhancements (BCEs) include the administration of drugs, implants of genetically engineered or…

  6. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    EPA Science Inventory

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  7. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity

    PubMed Central

    Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa

    2016-01-01

    We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder. PMID:27093171

  8. Enhanced genetic analysis of single human bioparticles recovered by simplified micromanipulation from forensic 'touch DNA' evidence.

    PubMed

    Farash, Katherine; Hanson, Erin K; Ballantyne, Jack

    2015-03-09

    DNA profiles can be obtained from 'touch DNA' evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a 'blind-swabbing' approach will co-sample cellular material from the different individuals, even if the individuals' cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim's DNA may be found in significant excess thus masking any potential perpetrator's DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, 'smart analysis' method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., "clumps") bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material.

  9. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    PubMed

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  10. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  11. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  12. Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes

    PubMed Central

    2014-01-01

    Background Proanthocyanidins (PAs) are secondary metabolites that strongly affect plant quality traits. The concentration and the structure of these metabolites influence the palatability and nutritional value of forage legumes. Hence, modulating PAs in the leaves of forage legumes is of paramount relevance for forage breeders worldwide. The lack of genetic variation in the leaf PA trait within the most important forage species and the difficulties in engineering this pathway via the ectopic expression of regulatory genes, prompted us to pursue alternative strategies to enhance this trait in forage legumes of agronomic interest. The Lotus genus includes forage species which accumulate PAs in edible organs and can thus be used as potential donor parents in breeding programs. Results We recovered a wild, diploid and PA-rich population of L. corniculatus and crossed with L. tenuis. The former grows in an alkaline-salty area in Spain while the latter is a diploid species, grown extensively in South American pastures, which does not accumulate PAs in the herbage. The resulting interspecific hybrids displayed several traits of outstanding agronomic relevance such as rhizome production, PA levels in edible tissues sufficient to prevent ruminal bloating (around 5 mg of PAs/g DW), biomass production similar to the cultivated parent and potential for adaptability to marginal lands. We show that PA levels correlate with expression levels of the R2R3MYB transcription factor TT2 and, in turn, with those of the key structural genes of the epicatechin and catechin biosynthetic pathways leading to PA biosynthesis. Conclusions The L. tenuis x L. corniculatus hybrids, reported herein, represent the first example of the introgression of the PA trait in forage legumes to levels known to provide nutritional and health benefits to ruminants. Apart from PAs, the hybrids have additional traits which may prove useful to breed forage legumes with increased persistence and adaptability to

  13. Impact of virtual learning environment (VLE): A technological approach to genetics teaching on high school students' content knowledge, self-efficacy and career goal aspirations

    NASA Astrophysics Data System (ADS)

    Kandi, Kamala M.

    This study examines the effect of a technology-based instructional tool 'Geniverse' on the content knowledge gains, Science Self-Efficacy, Technology Self-Efficacy, and Career Goal Aspirations among 283 high school learners. The study was conducted in four urban high schools, two of which have achieved Adequate Yearly Progress (AYP) and two have not. Students in both types of schools were taught genetics either through Geniverse, a virtual learning environment or Dragon genetics, a paper-pencil activity embedded in traditional instructional method. Results indicated that students in all schools increased their knowledge of genetics using either type of instructional approach. Students who were taught using Geniverse demonstrated an advantage for genetics knowledge although the effect was small. These increases were more pronounced in the schools that had been meeting the AYP goal. The other significant effect for Geniverse was that students in the technology-enhanced classrooms increased in science Self-Efficacy while students in the non-technology enhanced classrooms decreased. In addition, students from Non-AYP schools showed an improvement in Science and Technology Self-Efficacy; however the effects were small. The implications of these results for the future use of technology-enriched classrooms were discussed. Keywords: Technology-based instruction, Self-Efficacy, career goals and Adequate Yearly Progress (AYP).

  14. Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy

    PubMed Central

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R.; Krah, Nathan M.; Dennison, Roberta J.; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D.; Smith, Lois E.H.

    2010-01-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r2 = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome. PMID:21056995

  15. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy.

    PubMed

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R; Krah, Nathan M; Dennison, Roberta J; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D; Smith, Lois E H

    2010-12-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r(2) = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome.

  16. Genetic Ancestry for Sleep Research: Leveraging Health Inequalities to Identify Causal Genetic Variants.

    PubMed

    Prasad, Bharati; Saxena, Richa; Goel, Namni; Patel, Sanjay R

    2018-06-01

    Recent evidence has highlighted the health inequalities in sleep behaviors and sleep disorders that adversely affect outcomes in select populations, including African-American and Hispanic-American subjects. Race-related sleep health inequalities are ascribed to differences in multilevel and interlinked health determinants, such as sociodemographic factors, health behaviors, and biology. African-American and Hispanic-American subjects are admixed populations whose genetic inheritance combines two or more ancestral populations originating from different continents. Racial inequalities in admixed populations can be parsed into relevant groups of mediating factors (environmental vs genetic) with the use of measures of genetic ancestry, including the proportion of an individual's genetic makeup that comes from each of the major ancestral continental populations. This review describes sleep health inequalities in African-American and Hispanic-American subjects and considers the potential utility of ancestry studies to exploit these differences to gain insight into the genetic underpinnings of these phenotypes. The inclusion of genetic approaches in future studies of admixed populations will allow greater understanding of the potential biological basis of race-related sleep health inequalities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  17. Stock enhancement or sea ranching? Insights from monitoring the genetic diversity, relatedness and effective population size in a seeded great scallop population (Pecten maximus).

    PubMed

    Morvezen, R; Boudry, P; Laroche, J; Charrier, G

    2016-09-01

    The mass release of hatchery-propagated stocks raises numerous questions concerning its efficiency in terms of local recruitment and effect on the genetic diversity of wild populations. A seeding program, consisting of mass release of hatchery-produced juveniles in the local naturally occurring population of great scallops (Pecten maximus L.), was initiated in the early 1980s in the Bay of Brest (France). The present study aims at evaluating whether this seeding program leads to actual population enhancement, with detectable effects on genetic diversity and effective population size, or consists of sea ranching with limited genetic consequences on the wild stock. To address this question, microsatellite-based genetic monitoring of three hatchery-born and naturally recruited populations was conducted over a 5-year period. Results showed a limited reduction in allelic richness but a strong alteration of allelic frequencies in hatchery populations, while genetic diversity appeared very stable over time in the wild populations. A temporal increase in relatedness was observed in both cultured stock and wild populations. Effective population size (Ne) estimates were low and variable in the wild population. Moreover, the application of the Ryman-Laikre model suggested a high contribution of hatchery-born scallops to the reproductive output of the wild population. Overall, the data suggest that the main objective of the seeding program, which is stock enhancement, is fulfilled. Moreover, gene flow from surrounding populations and/or the reproductive input of undetected sub-populations within the bay may buffer the Ryman-Laikre effect and ensure the retention of the local genetic variability.

  18. Estimates of genetic parameters and eigenvector indices for milk production of Holstein cows.

    PubMed

    Savegnago, R P; Rosa, G J M; Valente, B D; Herrera, L G G; Carneiro, R L R; Sesana, R C; El Faro, L; Munari, D P

    2013-01-01

    The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic

  19. Principles in genetic risk assessment.

    PubMed

    Baptista, Pedro Viana

    2005-03-01

    Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed.

  20. Genetic diversity, structure, and patterns of differentiation in the genus vitis

    USDA-ARS?s Scientific Manuscript database

    Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the con...

  1. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    PubMed Central

    Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira

    2015-01-01

    A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620

  2. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    PubMed

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  3. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops

    PubMed Central

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an “island model” inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of

  4. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory.

    PubMed

    König, S; Tsehay, F; Sitzenstock, F; von Borstel, U U; Schmutz, M; Preisinger, R; Simianer, H

    2010-04-01

    Due to consistent increases of inbreeding of on average 0.95% per generation in layer populations, selection tools should consider both genetic gain and genetic relationships in the long term. The optimum genetic contribution theory using official estimated breeding values for egg production was applied for 3 different lines of a layer breeding program to find the optimal allocations of hens and sires. Constraints in different scenarios encompassed restrictions related to additive genetic relationships, the increase of inbreeding, the number of selected sires and hens, and the number of selected offspring per mating. All these constraints enabled higher genetic gain up to 10.9% at the same level of additive genetic relationships or in lower relationships at the same gain when compared with conventional selection schemes ignoring relationships. Increases of inbreeding and genetic gain were associated with the number of selected sires. For the lowest level of the allowed average relationship at 10%, the optimal number of sires was 70 and the estimated breeding value for egg production of the selected group was 127.9. At the highest relationship constraint (16%), the optimal number of sires decreased to 15, and the average genetic value increased to 139.7. Contributions from selected sires and hens were used to develop specific mating plans to minimize inbreeding in the following generation by applying a simulated annealing algorithm. The additional reduction of average additive genetic relationships for matings was up to 44.9%. An innovative deterministic approach to estimate kinship coefficients between and within defined selection groups based on gene flow theory was applied to compare increases of inbreeding from random matings with layer populations undergoing selection. Large differences in rates of inbreeding were found, and they underline the necessity to establish selection tools controlling long-term relationships. Furthermore, it was suggested to use

  5. Child Gain Approach and Loss Avoidance Behavior: Relationships With Depression Risk, Negative Mood, and Anhedonia.

    PubMed

    Luking, Katherine R; Pagliaccio, David; Luby, Joan L; Barch, Deanna M

    2015-08-01

    Reduced reward responsiveness and altered response to loss of reward are observed in adults with major depressive disorder (MDD) and adolescents at increased risk for MDD based on family history. However, it is unclear whether altered behavioral responsiveness to reward/loss is a lifelong marker of MDD risk, which is evident before the normative adolescent increase in incentive responding. Healthy 7- to 10-year-old children of mothers with MDD (high risk: n = 27) or without MDD (low risk: n = 42) performed 2 signal detection tasks assessing response bias toward reward (approach) and away from loss (avoidance). Differences in approach/avoidance were related to MDD risk, child general depressive symptoms (maternal report), child-reported anhedonic symptoms, and child-reported negative mood symptoms via repeated-measures analysis of variance. MDD risk did not significantly relate to gain approach or loss avoidance. However, within high-risk children, higher numbers of maternal depressive episodes predicted blunted loss avoidance. Blunted gain approach was related to elevated anhedonic symptoms, whereas enhanced loss avoidance was related to elevated negative mood. Elevated negative mood was further related to blunted gain approach in high-risk children but related to enhanced gain approach in low-risk children. In children, individual differences in specific depressive symptoms and recurrence of maternal depression significantly predicted gain approach/loss avoidance, but the presence/absence of maternal MDD did not. Child depressive symptoms characterized by low positive affect (anhedonia) were related to blunted gain responsiveness, whereas elevated depressed/negative mood was related to enhanced loss responsiveness. Findings suggest that relations between gain approach and negative mood may be an important distinction between those at high versus low risk for MDD. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc

  6. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    PubMed Central

    Elkelish, Amr; Elansary, Hosam O.; Ali, Hayssam M.; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret

    2017-01-01

    Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p < 0.01). Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola. PMID:28835782

  7. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  8. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle

    PubMed Central

    Kombairaju, Ponvijay; Kerr, Jaclyn P.; Roche, Joseph A.; Pratt, Stephen J. P.; Lovering, Richard M.; Sussan, Thomas E.; Kim, Jung-Hyun; Shi, Guoli; Biswal, Shyam; Ward, Christopher W.

    2014-01-01

    Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystrophic process. We also observed widespread alterations in the expression of genes associated with the X-ROS pathway and redox homeostasis in muscles from both Duchenne muscular dystrophy patients and mdx mice. As nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the transcriptional regulation of genes involved in redox homeostasis, we hypothesized that Nrf2 deficiency may contribute to enhanced X-ROS signaling by reducing redox buffering. To directly test the effect of diminished Nrf2 activity, Nrf2 was genetically silenced in the A/J model of dysferlinopathy—a model with a mild histopathologic and functional phenotype. Nrf2-deficient A/J mice exhibited significant muscle-specific functional deficits, histopathologic abnormalities, and dramatically enhanced X-ROS compared to control A/J and WT mice, both with functional Nrf2. Having identified that reduced Nrf2 activity is a negative disease modifier, we propose that strategies targeting Nrf2 activation may address the generalized reduction in redox homeostasis to halt or slow dystrophic progression. PMID:24600403

  9. Genetic Modification of Stem Cells for Transplantation

    PubMed Central

    Phillips, M. Ian; Tang, Yao Liang

    2009-01-01

    Gene modification of cells for prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene modified cell has to gain entrance inside the host’s walls and survive and deliver its transgene products Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene modified stem cells in cardiovascular disease, diabetes, neurological diseases,( including Parkinson’s, Alzheimer’s and spinal cord injury repair), bone defects, hemophilia, and cancer. PMID:18031863

  10. Genetic parameters in parents and hybrids of circulant diallel in popcorn.

    PubMed

    Rangel, R M; Amaral, A T; Scapim, C A; Freitas, S P; Pereira, M G

    2008-10-07

    With the aim of estimating genetic parameters and identifying superior popcorn combinations, 10 parents were crossed in a circulant diallel and evaluated together with the 15 resulting hybrids at two locations in two growing seasons for grain yield, number of broken plants, number of partially husked ears and popping expansion. The hybrids were less sensitive to environmental variations than the parents of the diallel in the 2003/2004 and 2004/2005 growing seasons. The genetic parameters suggested possible genetic gains for grain yield and popping expansion, mainly. Bidirectional dominance could have occurred for popping expansion. Heterobeltiosis for grain yield seems to be a common effect in popcorn. The intrapopulation breeding for popping expansion may offer superior genetic gains, but for grain yield, interpopulation breeding is required. The performance of UNB2U-C1 x BRS Angela indicated this hybrid for experimental cultivation in the northern and northwestern Fluminense region in Rio de Janeiro State, Brazil.

  11. Peering into a Chilean black box: parental storytelling in pediatric genetic counseling.

    PubMed

    Ordonez, Jessica; Margarit, Sonia; Downs, Katy; Yashar, Beverly M

    2013-12-01

    While genetic counseling has expanded to multiple international settings, research about providing culturally sensitive services to non-U.S. patients is limited. To gain insights, we utilized a process study to explore parental communication in pediatric genetics clinics in Chile. We utilized a phenomenological hermeneutic approach to assess storytelling in six pediatric sessions that were conducted in Spanish, and translated into English. The majority of the sessions focused on information gathering (35 %), and providing medical (20 %) and genetics education (18 %). The 14 instances of storytelling we identified usually emerged during information gathering, genetics education, and the closing of the session. Stories illustrated parental efforts to create a cognitive and emotional context for their child's genetic diagnosis. Parents emerged as competent caregivers who discussed the role of the child as a social being in the family and the larger community. Our analysis found that genetic counseling sessions in the U.S. and Chile are structured similarly and although communication is not a balanced process, parents use storytelling to participate as active agents in the session. Via storytelling, we learned that parents are working to understand and gain control over their child's genetic diagnosis by relying on mechanisms that extend beyond the genetics appointment.

  12. Three genetic groups of the Eucalyptus stem canker pathogen Teratosphaeria zuluensis introduced into Africa from an unknown source.

    PubMed

    Jimu, Luke; Chen, ShuaiFei; Wingfield, Michael J; Mwenje, Eddie; Roux, Jolanda

    2016-01-01

    The Eucalyptus stem canker pathogen Teratosphaeria zuluensis was discovered in South Africa in 1988 and it has subsequently been found in several other African countries as well as globally. In this study, the population structure, genetic diversity and evolutionary history of T. z uluensis were analysed using microsatellite markers to gain an enhanced understanding of its movement in Africa. Isolates were collected from several sites in Malawi, Mozambique, Uganda and Zambia. Data obtained were compared with those previously published for a South African population. The data obtained from 334 isolates, amplified across eight microsatellite loci, were used for assignment, differentiation and genetic diversity tests. STRUCTURE analyses, θ st and genetic distances revealed the existence of two clusters, one dominated by isolates from South Africa and the other by isolates from the Zambezi basin including Malawi, Mozambique and Zambia. High levels of admixture were found within and among populations, dominated by the Mulanje population in Malawi. Moderate to low genetic diversity of the populations supports the previously held view that the pathogen was introduced into Africa. The clonal nature of the Ugandan population suggests a very recent introduction, most likely from southern Africa.

  13. Genetic control of enhanced mutability of mitochondrial DNA and gamma-ray sensitivity in Saccharomyces cerevisiae.

    PubMed Central

    Foury, F; Goffeau, A

    1979-01-01

    Five nuclear mutants enhancing the spontaneous mutation rate of mtDNA have been isolated in Saccharomyces cerevisiae. These mutators fall into five complementation groups and are located at five genetic loci different from rad50 to rad57 loci. Three mutants (gam1, gam2, and gam4), insensitive or weakly sensitive to gamma-rays, exhibit increased frequency of spontaneous production of mutants with large deletions of the mtDNA (p-) and of all tested mitochondrial drug-resistant mutants. Two other mutants (gam3 and gam5), highly sensitive to gamma-rays, increase only the mutation rate of particular alleles of the mtDNA. The mutant gam5 enhances only the production of p- and erythromycin-resistant clones. The mutant gam3 exhibits an enhanced rate of oligomycin-resistant clones as well as a collateral increase of nuclear mutability. The existence of gam3 and gam5 mutants indicates that at least two common steps control both nuclear DNA repair and the mutability of particular alleles of the mtDNA. However, the general spontaneous mutability of the mtDNA includes at least three steps not involved in the repair of nuclear DNA, as revealed by the gam1, gam2, and gam4 mutations. PMID:392521

  14. Principles in genetic risk assessment

    PubMed Central

    Baptista, Pedro Viana

    2005-01-01

    Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed. PMID:18360538

  15. Anti-diabetic activity of a mineraloid isolate, in vitro and in genetically diabetic mice.

    PubMed

    Deneau, Joel; Ahmed, Taufeeq; Blotsky, Roger; Bojanowski, Krzysztof

    2011-01-01

    Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.

  16. ALK gene copy number gain and immunohistochemical expression status using three antibodies in neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2016-03-17

    Anaplastic lymphoma kinase (ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC positive rate in ALK1 and 5A4 antibodies (p= < 0.001 and 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  17. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  18. Enhanced Genetic Analysis of Single Human Bioparticles Recovered by Simplified Micromanipulation from Forensic ‘Touch DNA’ Evidence

    PubMed Central

    Farash, Katherine; Hanson, Erin K.; Ballantyne, Jack

    2015-01-01

    DNA profiles can be obtained from ‘touch DNA’ evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a ‘blind-swabbing’ approach will co-sample cellular material from the different individuals, even if the individuals’ cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim’s DNA may be found in significant excess thus masking any potential perpetrator’s DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, ‘smart analysis’ method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., “clumps”) bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material. PMID:25867046

  19. Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex

    PubMed Central

    Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.

    2014-01-01

    Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272

  20. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour.

    PubMed

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E; Kayser, Manfred

    2017-02-27

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.

  1. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    PubMed Central

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H.; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R.; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E.; Kayser, Manfred

    2017-01-01

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing. PMID:28240252

  2. Insights Gained From the Study of Pediatric Systemic Lupus Erythematosus.

    PubMed

    Lo, Mindy S

    2018-01-01

    The pathophysiology of systemic lupus erythematosus (SLE) has been intensely studied but remains incompletely defined. Currently, multiple mechanisms are known to contribute to the development of SLE. These include inadequate clearance of apoptotic debris, aberrant presentation of self nucleic antigens, loss of tolerance, and inappropriate activation of T and B cells. Genetic, hormonal, and environmental influences are also known to play a role. The study of lupus in children, in whom there is presumed to be greater genetic influence, has led to new understandings that are applicable to SLE pathophysiology as a whole. In particular, characterization of inherited disorders associated with excessive type I interferon production has elucidated specific mechanisms by which interferon is induced in SLE. In this review, we discuss several monogenic forms of lupus presenting in childhood and also review recent insights gained from cytokine and autoantibody profiling of pediatric SLE.

  3. Fractal Based Triple Band High Gain Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  4. Enhancing health literacy through co-design: development of culturally appropriate materials on genetic risk and customary consanguineous marriage.

    PubMed

    Ali, Parveen Azam; Salway, Sarah; Such, Elizabeth; Dearden, Andrew; Willox, Matt

    2018-04-12

    AimTo develop a simple health literacy intervention aimed at supporting informed reproductive choice among members of UK communities practising customary consanguineous marriage. The contribution of 'health literacy' to reducing health inequalities and improving primary health-care efficiency is increasingly recognised. Enhancing genetic literacy has received particular attention recently. Consanguineous marriage is customarily practised among some UK minority ethnic communities and carries some increased risk of recessive genetic disorders among offspring compared with unions among unrelated partners. The need to enhance genetic literacy on this issue has been highlighted, but no national response has ensued. Instead, a range of undocumented local responses are emerging. Important knowledge gaps remain regarding how the development and implementation of culturally appropriate, effective and sustainable responses can be achieved. Our co-design approach involved active participation by local people. Initial insight generation employed six focus group discussions and 14 individual interviews to describe current understandings and information needs. A total of 11 personas (heuristic narrative portraits of community 'segments') resulted; four participatory workshops provided further understanding of: preferred information channels; feasible information conveyance; and responses to existing materials. Prototype information resources were then developed and feedback gathered via two workshops. Following further refinement, final feedback from health-care professionals and community members ensured accuracy and appropriateness.FindingsThe project demonstrated the utility of co-design for addressing an issue often considered complex and sensitive. With careful planning and orchestration, active participation by diverse community members was achieved. Key learning included: the importance of establishing trusting and respectful relationships; responding to diversity within

  5. Genetic testing and its implications: human genetics researchers grapple with ethical issues.

    PubMed

    Rabino, Isaac

    2003-01-01

    To better understand ethical issues involved in the field of human genetics and promote debate within the scientific community, the author surveyed scientists who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. This study contributes systematic data on attitudes of scientific experts. The survey finds respondents are highly supportive of voluntary testing and the right to know one's genetic heritage. The majority consider in utero testing and consequent pregnancy termination acceptable for cases involving likelihood of serious disease but disapprove for genetic reasons they consider arbitrary, leaving a gray area of distinguishing between treatment of disorders and enhancement still to be resolved. While safeguarding patient confidentiality versus protecting at-risk third parties (kin, reproductive partners) presents a dilemma, preserving privacy from misuse by institutional third parties (employers, insurers) garners strong consensus for legislation against discrimination. Finally, a call is made for greater genetic literacy.

  6. Genetically modified food in perspective: an inquiry-based curriculum to help middle school students make sense of tradeoffs

    NASA Astrophysics Data System (ADS)

    Seethaler, Sherry; Linn, Marcia

    To understand how students learn about science controversy, this study examines students' reasoning about tradeoffs in the context of a technology-enhanced curriculum about genetically modified food. The curriculum was designed and refined based on the Scaffolded Knowledge Integration Framework to help students sort and integrate their initial ideas and those presented in the curriculum. Pre-test and post-test scores from 190 students show that students made significant (p < 0.0001) gains in their understanding of the genetically modified food controversy. Analyses of students' final papers, in which they took and defended a position on what type of agricultural practice should be used in their geographical region, showed that students were able to provide evidence both for and against their positions, but were less explicit about how they weighed these tradeoffs. These results provide important insights into students' thinking and have implications for curricular design.

  7. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki

    2014-06-21

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarizationmore » sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.« less

  8. High-gain 1.3  μm GaInNAs semiconductor optical amplifier with enhanced temperature stability for all-optical signal processing at 10  Gb/s.

    PubMed

    Fitsios, D; Giannoulis, G; Korpijärvi, V-M; Viheriälä, J; Laakso, A; Iliadis, N; Dris, S; Spyropoulou, M; Avramopoulos, H; Kanellos, G T; Pleros, N; Guina, M

    2015-01-01

    We report on the complete experimental evaluation of a GaInNAs/GaAs (dilute nitride) semiconductor optical amplifier that operates at 1.3 μm and exhibits 28 dB gain and a gain recovery time of 100 ps. Successful wavelength conversion operation is demonstrated using pseudorandom bit sequence 27-1 non-return-to-zero bit streams at 5 and 10  Gb/s, yielding error-free performance and showing feasibility for implementation in various signal processing functionalities. The operational credentials of the device are analyzed in various operational regimes, while its nonlinear performance is examined in terms of four-wave mixing. Moreover, characterization results reveal enhanced temperature stability with almost no gain variation around the 1320 nm region for a temperature range from 20°C to 50°C. The operational characteristics of the device, along with the cost and energy benefits of dilute nitride technology, make it very attractive for application in optical access networks and dense photonic integrated circuits.

  9. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.

    PubMed

    Kannuchamy, Saranyah; Mukund, Nisha; Saleena, Lilly M

    2016-05-11

    The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium with cellulolytic property and the ability to produce ethanol. But its application as biocatalyst for ethanol production is limited because pyruvate ferredoxin oxidoreductase, which diverts pyruvate to ethanol production pathway, has low affinity to the substrate. Therefore, the present study was undertaken to genetically modify C. thermocellum for enhancing its ethanol production capacity by transferring pyruvate carboxylase (pdc) and alcohol dehydrogenase (adh) genes of the homoethanol pathway from Zymomonas mobilis. The pdc and adh genes from Z. mobilis were cloned in pNW33N, and transformed to Clostridium thermocellum DSM 1313 by electroporation to generate recombinant CTH-pdc, CTH-adh and CTH-pdc-adh strains that carried heterologous pdc, adh, and both genes, respectively. The plasmids were stably maintained in the recombinant strains. Though both pdc and adh were functional in C. thermocellum, the presence of adh severely limited the growth of the recombinant strains, irrespective of the presence or absence of the pdc gene. The recombinant CTH-pdc strain showed two-fold increase in pyruvate carboxylase activity and ethanol production when compared with the wild type strain. Pyruvate decarboxylase gene of the homoethanol pathway from Z mobilis was functional in recombinant C. thermocellum strain and enhanced its ability to produced ethanol. Strain improvement and bioprocess optimizations may further increase the ethanol production from this recombinant strain.

  10. Genetic Engineering of Algae for Enhanced Biofuel Production ▿

    PubMed Central

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  11. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  12. Dissecting the genetics of complex traits using summary association statistics.

    PubMed

    Pasaniuc, Bogdan; Price, Alkes L

    2017-02-01

    During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.

  13. Dissecting the genetics of complex traits using summary association statistics

    PubMed Central

    Pasaniuc, Bogdan; Price, Alkes L.

    2017-01-01

    During the past decade, genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyze summary association statistics. Here we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases. PMID:27840428

  14. The Evolution of Genetics: Alzheimer's and Parkinson's Diseases.

    PubMed

    Singleton, Andrew; Hardy, John

    2016-06-15

    Genetic discoveries underlie the majority of the current thinking in neurodegenerative disease. This work has been driven by the significant gains made in identifying causal mutations; however, the translation of genetic causes of disease into pathobiological understanding remains a challenge. The application of a second generation of genetics methods allows the dissection of moderate and mild genetic risk factors for disease. This requires new thinking in two key areas: what constitutes proof of pathogenicity, and how do we translate these findings to biological understanding. Here we describe the progress and ongoing evolution in genetics. We describe a view that rejects the tradition that genetic proof has to be absolute before functional characterization and centers on a multi-dimensional approach integrating genetics, reference data, and functional work. We also argue that these challenges cannot be efficiently met by traditional hypothesis-driven methods but that high content system-wide efforts are required. Published by Elsevier Inc.

  15. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling

    PubMed Central

    Partha, Raghavendran; Chauhan, Bharesh K; Ferreira, Zelia; Robinson, Joseph D; Lathrop, Kira; Nischal, Ken K

    2017-01-01

    The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. PMID:29035697

  16. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    PubMed

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  17. Break-even cost of cloning in genetic improvement of dairy cattle.

    PubMed

    Dematawewa, C M; Berger, P J

    1998-04-01

    Twelve different models for alternative progeny-testing schemes based on genetic and economic gains were compared. The first 10 alternatives were considered to be optimally operating progeny-testing schemes. Alternatives 1 to 5 considered the following combinations of technologies: 1) artificial insemination, 2) artificial insemination with sexed semen, 3) artificial insemination with embryo transfer, 4) artificial insemination and embryo transfer with few bulls as sires, and 5) artificial insemination, embryo transfer, and sexed semen with few bulls, respectively. Alternatives 6 to 12 considered cloning from dams. Alternatives 11 and 12 considered a regular progeny-testing scheme that had selection gains (intensity x accuracy x genetic standard deviation) of 890, 300, 600, and 89 kg, respectively, for the four paths. The sums of the generation intervals of the four paths were 19 yr for the first 8 alternatives and 19.5, 22, 29, and 29.5 yr for alternatives 9 to 12, respectively. Rates of genetic gain in milk yield for alternatives 1 to 5 were 257, 281, 316, 327, and 340 kg/yr, respectively. The rate of gain for other alternatives increased as number of clones increased. The use of three records per clone increased both accuracy and generation interval of a path. Cloning was highly beneficial for progeny-testing schemes with lower intensity and accuracy of selection. The discounted economic gain (break-even cost) per clone was the highest ($84) at current selection levels using sexed semen and three records on clones of the dam. The total cost associated with cloning has to be below $84 for cloning to be an economically viable option.

  18. Intraband Raman laser gain in a boron nitride coupled quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorthy, N. Narayana; Peter, A. John, E-mail: a.john.peter@gmail.com

    2016-05-23

    On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B{sub 0.3}Ga{sub 0.7}N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.

  19. Genetic value of herd life adjusted for milk production.

    PubMed

    Allaire, F R; Gibson, J P

    1992-05-01

    Cow herd life adjusted for lactational milk production was investigated as a genetic trait in the breeding objective. Under a simple model, the relative economic weight of milk to adjusted herd life on a per genetic standard deviation basis was equal to CVY/dCVL where CVY and CVL are the genetic coefficients of variation of milk production and adjusted herd life, respectively, and d is the depreciation per year per cow divided by the total fixed costs per year per cow. The relative economic value of milk to adjusted herd life at the prices and parameters for North America was about 3.2. An increase of 100-kg milk was equivalent to 2.2 mo of adjusted herd life. Three to 7% lower economic gain is expected when only improved milk production is sought compared with a breeding objective that included both production and adjusted herd life for relative value changed +/- 20%. A favorable economic gain to cost ratio probably exists for herd life used as a genetic trait to supplement milk in the breeding objective. Cow survival records are inexpensive, and herd life evaluations from such records may not extend the generation interval when such an evaluation is used in bull sire selection.

  20. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees.

    PubMed

    Valdiani, Alireza; Talei, Daryush; Tan, Soon Guan; Abdul Kadir, Mihdzar; Maziah, Mahmood; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.

  1. A Classical Genetic Solution to Enhance the Biosynthesis of Anticancer Phytochemicals in Andrographis paniculata Nees

    PubMed Central

    Talei, Daryush; Abdul Kadir, Mihdzar; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides. PMID:24586262

  2. Update on Sporadic Colorectal Cancer Genetics.

    PubMed

    Hardiman, Karin M

    2018-05-01

    Our understanding of the genetics of colorectal cancer has changed dramatically over recent years. Colorectal cancer can be classified in multiple different ways. Along with the advent of whole-exome sequencing, we have gained an understanding of the scale of the genetic changes found in sporadic colorectal cancer. We now know that there are multiple pathways that are commonly involved in the evolution of colorectal cancer including Wnt/β-catenin, RAS, EGFR, and PIK3 kinase. Another recent leap in our understanding of colorectal cancer genetics is the recognition that many, if not all tumors, are actually genetically heterogeneous within individual tumors and also between tumors. Recent research has revealed the prognostic and possibly therapeutic implications of various specific mutations, including specific mutations in BRAF and KRAS . There is increasing interest in the use of mutation testing for screening and surveillance through stool and circulating DNA testing. Recent advances in translational research in colorectal cancer genetics are dramatically changing our understanding of colorectal cancer and will likely change therapy and surveillance in the near future.

  3. Power enhanced frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.

  4. Exploring Relationships Among Belief in Genetic Determinism, Genetics Knowledge, and Social Factors

    NASA Astrophysics Data System (ADS)

    Gericke, Niklas; Carver, Rebecca; Castéra, Jérémy; Evangelista, Neima Alice Menezes; Marre, Claire Coiffard; El-Hani, Charbel N.

    2017-12-01

    Genetic determinism can be described as the attribution of the formation of traits to genes, where genes are ascribed more causal power than what scientific consensus suggests. Belief in genetic determinism is an educational problem because it contradicts scientific knowledge, and is a societal problem because it has the potential to foster intolerant attitudes such as racism and prejudice against sexual orientation. In this article, we begin by investigating the very nature of belief in genetic determinism. Then, we investigate whether knowledge of genetics and genomics is associated with beliefs in genetic determinism. Finally, we explore the extent to which social factors such as gender, education, and religiosity are associated with genetic determinism. Methodologically, we gathered and analyzed data on beliefs in genetic determinism, knowledge of genetics and genomics, and social variables using the "Public Understanding and Attitudes towards Genetics and Genomics" (PUGGS) instrument. Our analyses of PUGGS responses from a sample of Brazilian university freshmen undergraduates indicated that (1) belief in genetic determinism was best characterized as a construct built up by two dimensions or belief systems: beliefs concerning social traits and beliefs concerning biological traits; (2) levels of belief in genetic determination of social traits were low, which contradicts prior work; (3) associations between knowledge of genetics and genomics and levels of belief in genetic determinism were low; and (4) social factors such as age and religiosity had stronger associations with beliefs in genetic determinism than knowledge. Although our study design precludes causal inferences, our results raise questions about whether enhancing genetic literacy will decrease or prevent beliefs in genetic determinism.

  5. Accessing genetic diversity for crop improvement.

    PubMed

    Glaszmann, J C; Kilian, B; Upadhyaya, H D; Varshney, R K

    2010-04-01

    Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on population dynamics and on the impact of selection during domestication. Thanks to this new precision, germplasm description has gained analytical power for resolving the genetic basis of trait variation and adaptation in crops such as major cereals, chickpea, grapevine, cacao, or banana. The challenge now is to finely characterize all the facets of plant behavior in carefully chosen materials. We suggest broadening the use of 'core reference sets' so as to facilitate material sharing within the scientific community.

  6. Teacher quality moderates the genetic effects on early reading.

    PubMed

    Taylor, J; Roehrig, A D; Soden Hensler, B; Connor, C M; Schatschneider, C

    2010-04-23

    Children's reading achievement is influenced by genetics as well as by family and school environments. The importance of teacher quality as a specific school environmental influence on reading achievement is unknown. We studied first- and second-grade students in Florida from schools representing diverse environments. Comparison of monozygotic and dizygotic twins, differentiating genetic similarities of 100% and 50%, provided an estimate of genetic variance in reading achievement. Teacher quality was measured by how much reading gain the non-twin classmates achieved. The magnitude of genetic variance associated with twins' oral reading fluency increased as the quality of their teacher increased. In circumstances where the teachers are all excellent, the variability in student reading achievement may appear to be largely due to genetics. However, poor teaching impedes the ability of children to reach their potential.

  7. Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits

    PubMed Central

    Lin, Chia-Wei; Sim, Shuyin; Ainsworth, Alice; Okada, Masayoshi; Kelsch, Wolfgang; Lois, Carlos

    2009-01-01

    New neurons are added to the adult brain throughout life, but only half ultimately integrate into existing circuits. Sensory experience is an important regulator of the selection of new neurons but it remains unknown whether experience provides specific patterns of synaptic input, or simply a minimum level of overall membrane depolarization critical for integration. To investigate this issue, we genetically modified intrinsic electrical properties of adult-generated neurons in the mammalian olfactory bulb. First, we observed that suppressing levels of cell-intrinsic neuronal activity via expression of ESKir2.1 potassium channels decreases, whereas enhancing activity via expression of NaChBac sodium channels increases survival of new neurons. Neither of these modulations affects synaptic formation. Furthermore, even when neurons are induced to fire dramatically altered patterns of action potentials, increased levels of cell-intrinsic activity completely blocks cell death triggered by NMDA receptor deletion. These findings demonstrate that overall levels of cell-intrinsic activity govern survival of new neurons and precise firing patterns are not essential for neuronal integration into existing brain circuits. PMID:20152111

  8. Weight gain and resistance to gastrointestinal nematode infections in two genetically diverse groups of cattle.

    PubMed

    Höglund, Johan; Hessle, Anna; Zaralis, Konstantinos; Arvidsson-Segerkvist, Katarina; Athanasiadou, Spiridoula

    2018-01-15

    Body weight gain (BWG) and gastrointestinal nematode challenge (GIN) were investigated in two genetically diverse groups of cattle. Thirty-two dairy calves (D=Swedish Red/Holstein) and 31 dairy×beef crosses (C=Swedish Red/Holstein×Charolais) pairwise matched by dam breed and birth dates, were monitored for ≈20 weeks on a pasture grazed by cattle in the previous year. At turn-out, animals (between 6 and 12 months age) from each genotype were either infected with 5000 third stage (L3) Ostertagia ostertagi (50%) and Cooperia oncophora (50%) larvae (H, high-exposure); or treated monthly with 0.5mg ivermectin (Noromectin ® , Pour-on) per kg bodyweight to remove worms ingested (L, low-exposure). Animals were weighed every fortnight and individual BWG was calculated. Faecal and blood samples were collected every four weeks throughout the experiment for nematode faecal egg counts (FEC) and larvae cultures and serum pepsinogen concentrations (SPC), respectively. Nematode eggs were observed 29 days post turn-out in both H groups. FEC peaked to around 200 eggs per gram (epg) on days 58 and 85 respectively in both H groups. FEC were also observed in the L groups at the same time, but mean epg remained very low (<20epg) and constituted exclusively of C. oncophora. Although, there was no significant difference in SPC values in animals of the different genotypes, ten animals of CH showed a SPC >3.5 IU tyrosine whereas only six DH animals reached similar pepsinogen levels. The level of infection (H and L) significantly affected BWG in both genotypes. Even though there was no statistically significant genotype (C or D)×treatment (H or L) interaction, there was a larger difference in body weight of H and L in C (37kg) compared to D (17kg) genotypes at the end of the experiment. Our data collectively support the view crossbred (C) animals experience the impact of gastrointestinal parasitism more severely compared to pure dairy (D) first season grazers. The mechanisms that

  9. A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury

    PubMed Central

    Koch, Marta; Nicolas, Maya; Zschaetzsch, Marlen; de Geest, Natalie; Claeys, Annelies; Yan, Jiekun; Morgan, Matthew J.; Erfurth, Maria-Luise; Holt, Matthew; Schmucker, Dietmar; Hassan, Bassem A.

    2018-01-01

    Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3′-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism. PMID:29472843

  10. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    PubMed

    Li, Yaoran; Geary, David C

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  11. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    PubMed Central

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154

  12. Developmental cognitive genetics: How psychology can inform genetics and vice versa

    PubMed Central

    Bishop, Dorothy V. M.

    2006-01-01

    Developmental neuropsychology is concerned with uncovering the underlying basis of developmental disorders such as specific language impairment (SLI), developmental dyslexia, and autistic disorder. Twin and family studies indicate that genetic influences play an important part in the aetiology of all of these disorders, yet progress in identifying genes has been slow. One way forward is to cut loose from conventional clinical criteria for diagnosing disorders and to focus instead on measures of underlying cognitive mechanisms. Psychology can inform genetics by clarifying what the key dimensions are for heritable phenotypes. However, it is not a one-way street. By using genetically informative designs, one can gain insights about causal relationships between different cognitive deficits. For instance, it has been suggested that low-level auditory deficits cause phonological problems in SLI. However, a twin study showed that, although both types of deficit occur in SLI, they have quite different origins, with environmental factors more important for auditory deficit, and genes more important for deficient phonological short-term memory. Another study found that morphosyntactic deficits in SLI are also highly heritable, but have different genetic origins from impairments of phonological short-term memory. A genetic perspective shows that a search for the underlying cause of developmental disorders may be misguided, because they are complex and heterogeneous and are associated with multiple risk factors that only cause serious disability when they occur in combination. PMID:16769616

  13. Cootie Genetics: Simulating Mendel's Experiments to Understand the Laws of Inheritance

    ERIC Educational Resources Information Center

    Galloway, Katelyn; Anderson, Nadja

    2014-01-01

    "Cootie Genetics" is a hands-on, inquiry-based activity that enables students to learn the Mendelian laws of inheritance and gain an understanding of genetics principles and terminology. The activity begins with two true-breeding Cooties of the same species that exhibit five observable trait differences. Students observe the retention or…

  14. Gain weighted eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1994-01-01

    This report presents the development of the gain weighted eigenspace assignment methodology. This provides a designer with a systematic methodology for trading off eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop eigenvalue locations. This is accomplished by forming a cost function composed of a scalar measure of error between desired and achievable eigenvectors and a scalar measure of gain magnitude, determining analytical expressions for the gradients, and solving for the optimal solution by numerical iteration. For this development the scalar measure of gain magnitude is chosen to be a weighted sum of the squares of all the individual elements of the feedback gain matrix. An example is presented to demonstrate the method. In this example, solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained with significant reductions in gain magnitude compared to a solution obtained using a previously developed eigenspace (eigenstructure) assignment method.

  15. Ejector Enhanced Pulsejet Based Pressure Gain Combustors: An Old Idea With a New Twist

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2005-01-01

    An experimental investigation of pressure-gain combustion for gas turbine application is described. The test article consists of an off-the-shelf valved pulsejet, and an optimized ejector, both housed within a shroud. The combination forms an effective can combustor across which there is a modest total pressure rise rather than the usual loss found in conventional combustors. Although the concept of using a pulsejet to affect semi-constant volume (i.e., pressure-gain) combustion is not new, that of combining it with a well designed ejector to efficiently mix the bypass flow is. The result is a device which to date has demonstrated an overall pressure rise of approximately 3.5 percent at an overall temperature ratio commensurate with modern gas turbines. This pressure ratio is substantially higher than what has been previously reported in pulsejet-based combustion experiments. Flow non-uniformities in the downstream portion of the device are also shown to be substantially reduced compared to those within the pulsejet itself. The standard deviation of total pressure fluctuations, measured just downstream of the ejector was only 5.0 percent of the mean. This smoothing aspect of the device is critical to turbomachinery applications since turbine performance is, in general, negatively affected by flow non-uniformities and unsteadiness. The experimental rig will be described and details of the performance measurements will be presented. Analyses showing the thermodynamic benefits from this level of pressure-gain performance in a gas turbine will also be assessed for several engine types. Issues regarding practical development of such a device are discussed, as are potential emissions reductions resulting from the rich burning nature of the pulsejet and the rapid mixing (quenching) associated with unsteady ejectors.

  16. Heritabilities and genetic correlations in the same traits across different strata of herds created according to continuous genomic, genetic, and phenotypic descriptors.

    PubMed

    Yin, Tong; König, Sven

    2018-03-01

    The most common approach in dairy cattle to prove genotype by environment interactions is a multiple-trait model application, and considering the same traits in different environments as different traits. We enhanced such concepts by defining continuous phenotypic, genetic, and genomic herd descriptors, and applying random regression sire models. Traits of interest were test-day traits for milk yield, fat percentage, protein percentage, and somatic cell score, considering 267,393 records from 32,707 first-lactation Holstein cows. Cows were born in the years 2010 to 2013, and kept in 52 large-scale herds from 2 federal states of north-east Germany. The average number of genotyped cows per herd (45,613 single nucleotide polymorphism markers per cow) was 133.5 (range: 45 to 415 genotyped cows). Genomic herd descriptors were (1) the level of linkage disequilibrium (r 2 ) within specific chromosome segments, and (2) the average allele frequency for single nucleotide polymorphisms in close distance to a functional mutation. Genetic herd descriptors were the (1) intra-herd inbreeding coefficient, and (2) the percentage of daughters from foreign sires. Phenotypic herd descriptors were (1) herd size, and (2) the herd mean for nonreturn rate. Most correlations among herd descriptors were close to 0, indicating independence of genomic, genetic, and phenotypic characteristics. Heritabilities for milk yield increased with increasing intra-herd linkage disequilibrium, inbreeding, and herd size. Genetic correlations in same traits between adjacent levels of herd descriptors were close to 1, but declined for descriptor levels in greater distance. Genetic correlation declines were more obvious for somatic cell score, compared with test-day traits with larger heritabilities (fat percentage and protein percentage). Also, for milk yield, alterations of herd descriptor levels had an obvious effect on heritabilities and genetic correlations. By trend, multiple trait model results (based

  17. Considering genetic characteristics in German Holstein breeding programs.

    PubMed

    Segelke, D; Täubert, H; Reinhardt, F; Thaller, G

    2016-01-01

    Recently, several research groups have demonstrated that several haplotypes may cause embryonic loss in the homozygous state. Up to now, carriers of genetic disorders were often excluded from mating, resulting in a decrease of genetic gain and a reduced number of sires available for the breeding program. Ongoing research is very likely to identify additional genetic defects causing embryonic loss and calf mortality by genotyping a large proportion of the female cattle population and sequencing key ancestors. Hence, a clear demand is present to develop a method combining selection against recessive defects (e.g., Holstein haplotypes HH1-HH5) with selection for economically beneficial traits (e.g., polled) for mating decisions. Our proposed method is a genetic index that accounts for the allele frequencies in the population and the economic value of the genetic characteristic without excluding carriers from breeding schemes. Fertility phenotypes from routine genetic evaluations were used to determine the economic value per embryo lost. Previous research has shown that embryo loss caused by HH1 and HH2 occurs later than the loss for HH3, HH4, and HH5. Therefore, an economic value of € 97 was used against HH1 and HH2 and € 70 against HH3, HH4, and HH5. For polled, € 7 per polled calf was considered. Minor allele frequencies of the defects ranged between 0.8 and 3.3%. The polled allele has a frequency of 4.1% in the German Holstein population. A genomic breeding program was simulated to study the effect of changing the selection criteria from assortative mating based on breeding values to selecting the females using the genetic index. Selection for a genetic index on the female path is a useful method to control the allele frequencies by reducing undesirable alleles and simultaneously increasing economical beneficial characteristics maintaining most of the genetic gain in production and functional traits. Additionally, we applied the genetic index to real data and

  18. What drives sleep-dependent memory consolidation: greater gain or less loss?

    PubMed

    Fenn, Kimberly M; Hambrick, David Z

    2013-06-01

    When memory is tested after a delay, performance is typically better if the retention interval includes sleep. However, it is unclear what accounts for this well-established effect. It is possible that sleep enhances the retrieval of information, but it is also possible that sleep protects against memory loss that normally occurs during waking activity. We developed a new research approach to investigate these possibilities. Participants learned a list of paired-associate items and were tested on the items after a 12-h interval that included waking or sleep. We analyzed the number of items gained versus the number of items lost across time. The sleep condition showed more items gained and fewer items lost than did the wake condition. Furthermore, the difference between the conditions (favoring sleep) in lost items was greater than the difference in gain, suggesting that loss prevention may primarily account for the effect of sleep on declarative memory consolidation. This finding may serve as an empirical constraint on theories of memory consolidation.

  19. Upregulation of CREB-mediated transcription enhances both short- and long-term memory.

    PubMed

    Suzuki, Akinobu; Fukushima, Hotaka; Mukawa, Takuya; Toyoda, Hiroki; Wu, Long-Jun; Zhao, Ming-Gao; Xu, Hui; Shang, Yuze; Endoh, Kengo; Iwamoto, Taku; Mamiya, Nori; Okano, Emiko; Hasegawa, Shunsuke; Mercaldo, Valentina; Zhang, Yue; Maeda, Ryouta; Ohta, Miho; Josselyn, Sheena A; Zhuo, Min; Kida, Satoshi

    2011-06-15

    Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.

  20. Genetic parameters for growth performance, fillet traits, and fat percentage of male Nile tilapia (Oreochromis niloticus).

    PubMed

    Garcia, André Luiz Seccatto; de Oliveira, Carlos Antonio Lopes; Karim, Hanner Mahmud; Sary, César; Todesco, Humberto; Ribeiro, Ricardo Pereira

    2017-11-01

    Improvement of fillet traits and flesh quality attributes are of great interest in farmed tilapia and other aquaculture species. The main objective of this study was to estimate genetic parameters for fillet traits (fillet weight and fillet yield) and the fat content of fillets from 1136 males combined with 2585 data records on growth traits (body weight at 290 days, weight at slaughter, and daily weight gain) of 1485 males and 1100 females from a third generation of the Aquaamerica tilapia strain. Different models were tested for each trait, and the best models were used to estimate genetic parameters for the fat content, fillet, and growth traits. Genetic and phenotypic correlations were estimated using two-trait animal models. The heritability estimates were moderate for the fat content of fillets and fillet yield (0.2-0.32) and slightly higher for body weight at slaughter (0.41). The genetic correlation between fillet yield and fat was significant (0.6), but the genetic correlations were not significant between body weight and fillet yield, body weight and fat content, daily weight gain and fillet yield, and daily weight gain and fat content (- 0.032, - 0.1, - 0.09, and - 0.4, respectively). Based on the genetic correlation estimates, it is unlikely that changes in fillet yield and fat content will occur when using growth performance as a selection criterion, but indirect changes may be expected in fat content if selecting for higher fillet yield.

  1. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611.

    PubMed

    Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua

    2017-05-10

    Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10 8 g -1 wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genetic susceptibility to neuroblastoma

    PubMed Central

    Tolbert, Vanessa P.; Coggins, Grace E.; Maris, John M.

    2017-01-01

    Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma. PMID:28458126

  3. Estimates of genetic parameters, genetic trends, and inbreeding in a crossbred dairy sheep research flock in the United States.

    PubMed

    Murphy, T W; Berger, Y M; Holman, P W; Baldin, M; Burgett, R L; Thomas, D L

    2017-10-01

    the addition of breed effects, on ewe year of birth revealed a positive genetic gain of 2.30 and 6.24 kg/yr, respectively, over the past 20 yr in this flock. Inbreeding coefficients of ewes with an extended pedigree ranged from 0.0 to 0.29, with an average of 0.07. To optimize genetic gains and avoid excessive inbreeding, the development of a national genetic improvement program should be a top priority for the growing dairy sheep industry.

  4. Measuring learning gain: Comparing anatomy drawing screencasts and paper-based resources.

    PubMed

    Pickering, James D

    2017-07-01

    The use of technology-enhanced learning (TEL) resources is now a common tool across a variety of healthcare programs. Despite this popular approach to curriculum delivery there remains a paucity in empirical evidence that quantifies the change in learning gain. The aim of the study was to measure the changes in learning gain observed with anatomy drawing screencasts in comparison to a traditional paper-based resource. Learning gain is a widely used term to describe the tangible changes in learning outcomes that have been achieved after a specific intervention. In regard to this study, a cohort of Year 2 medical students voluntarily participated and were randomly assigned to either a screencast or textbook group to compare changes in learning gain across resource type. Using a pre-test/post-test protocol, and a range of statistical analyses, the learning gain was calculated at three test points: immediate post-test, 1-week post-test and 4-week post-test. Results at all test points revealed a significant increase in learning gain and large effect sizes for the screencast group compared to the textbook group. Possible reasons behind the difference in learning gain are explored by comparing the instructional design of both resources. Strengths and weaknesses of the study design are also considered. This work adds to the growing area of research that supports the effective design of TEL resources which are complimentary to the cognitive theory of multimedia learning to achieve both an effective and efficient learning resource for anatomical education. Anat Sci Educ 10: 307-316. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  5. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  6. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis.

    PubMed

    Neumann, Kerstin; Zhao, Yusheng; Chu, Jianting; Keilwagen, Jens; Reif, Jochen C; Kilian, Benjamin; Graner, Andreas

    2017-08-10

    Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.

  7. Learning about Genetic Inheritance through Technology-Enhanced Instruction

    ERIC Educational Resources Information Center

    Williams, Michelle; Merritt, Joi; Opperman, Amanda; Porter, Jakob; Erlenbeck, Kyle

    2012-01-01

    Genetics is an increasingly important topic in today's society, and one that permeates people's lives on many levels. Students, teachers, and the general public alike are constantly exposed to this topic through popular television shows such as "CSI: Crime Scene Investigation," political issues like voting on stem-cell research, and the…

  8. Genetic basis of male sexual behavior.

    PubMed

    Emmons, Scott W; Lipton, Jonathan

    2003-01-01

    Male sexual behavior is increasingly the focus of genetic study in a variety of animals. Genetic analysis in the soil roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster has lead to identification of genes and circuits that govern behaviors ranging from motivation and mate-searching to courtship and copulation. Some worm and fly genes have counterparts with related functions in higher animals and many more such correspondences can be expected. Analysis of mutations in mammals can potentially lead to insights into such issues as monogamous versus promiscuous sexual behavior and sexual orientation. Genetic analysis of sexual behavior has implications for understanding how the nervous system generates and controls a complex behavior. It can also help us to gain an appreciation of how behavior is encoded by genes and their regulatory sequences. Copyright 2003 Wiley Periodicals, Inc.

  9. Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise.

    PubMed

    Giudicessi, John R; Ackerman, Michael J

    2013-01-01

    In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.

  10. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle

    USDA-ARS?s Scientific Manuscript database

    Genetic parameters for dry matter intake (DMI), residual feed intake (RFI), average daily gain (ADG), mid-period body weight (MBW), gain to feed ratio (G:F) and flight speed (FS) were estimated using 1165 steers from a mixed-breed population using restricted maximum likelihood methodology applied to...

  11. Freezability genetics in rabbit semen.

    PubMed

    Lavara, R; Mocé, E; Baselga, M; Vicente, J S

    2017-10-15

    The aim of this study was to estimate the heritability of semen freezability and to estimate the genetic correlation between frozen-thawed sperm traits and the growth rate in a paternal rabbit line. Estimated heritabilities showed that frozen-thawed semen traits are heritable (ranged between 0.08 and 0.15). In the case of Live-FT (percentage of viable sperm after freezing), the estimated heritability is the highest one, and suggests the possibility of effective selection. After the study of genetic correlations it seems that daily weight gain (DG) was negatively correlated with sperm freezability, but no further conclusions could be drawn due to the high HPD95%. More data should be included in order to obtain better accuracy for the estimates of these genetic correlations. If the results obtained at present study were confirmed, it would imply that selection for DG could alter sperm cell membranes or seminal plasma composition, both components related to sperm cryoresistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genetically engineering milk.

    PubMed

    Whitelaw, C Bruce A; Joshi, Akshay; Kumar, Satish; Lillico, Simon G; Proudfoot, Chris

    2016-02-01

    It has been thirty years since the first genetically engineered animal with altered milk composition was reported. During the intervening years, the world population has increased from 5bn to 7bn people. An increasing demand for protein in the human diet has followed this population expansion, putting huge stress on the food supply chain. Many solutions to the grand challenge of food security for all have been proposed and are currently under investigation and study. Amongst these, genetics still has an important role to play, aiming to continually enable the selection of livestock with enhanced traits. Part of the geneticist's tool box is the technology of genetic engineering. In this Invited Review, we indicate that this technology has come a long way, we focus on the genetic engineering of dairy animals and we argue that the new strategies for precision breeding demand proper evaluation as to how they could contribute to the essential increases in agricultural productivity our society must achieve.

  13. Concerns and coping during cancer genetic risk assessment.

    PubMed

    Bennett, P; Phelps, C; Hilgart, J; Hood, K; Brain, K; Murray, A

    2012-06-01

    To gain an 'in-depth' understanding of patients' concerns and their related coping strategies during the genetic risk assessment process. Participants were the 'usual care' arm of a trial of a coping intervention targeted at men and women undergoing assessment of genetic risk for familial cancer. Participants completed questionnaires measuring the degree to which they experienced up to 11 concerns and which of 8 coping strategies they used to respond to each of them at entry into the programme and 1 month subsequently (before they received their risk information). A majority of participants were at least 'quite worried' about all the identified concerns, although the levels of concern fell over the waiting period. Participants used several strategies in response to their varying concerns - although a primary coping strategy for each concern was identifiable. The emotion-focused strategies of acceptance and positive appraisal were generally used in response to concerns they could not change, and seeking social support was used primarily to gain information, but not emotional support from their family. Cluster analysis identified three unique clusters of coping responses. Genetic risk assessment comprises a number of different stressors each of which is coped with using different strategies. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    PubMed

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  16. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  17. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought.

    PubMed

    Gimeno, Teresa E; Camarero, J Julio; Granda, Elena; Pías, Beatriz; Valladares, Fernando

    2012-03-01

    Juniperus thurifera L. is an endemic conifer of the western Mediterranean Basin where it is subjected to a severe climatic stress characterized by low winter temperatures and summer drought. Given the trend of increased warming-induced drought stress in this area and the climatic sensitivity of this species, we expect a negative impact of climate change on growth and ecophysiological performance of J. thurifera in the harsh environments where it dominates. To evaluate this, we measured long- and short-term radial growth using dendrochronology, photosynthesis and water-use efficiency in males, females and juveniles in three sites in Central Spain. Climate was monitored and completed with historical records. Mean annual temperature has increased +0.2 °C per decade in the study area, and the main warming trends corresponded to spring (+0.2 °C per decade) and summer (+0.3 °C per decade). Radial growth and maximum photosynthesis peaked in spring and autumn. Positive photosynthetic rates were maintained all year long, albeit at reduced rates in winter and summer. Radial growth was enhanced by wet conditions in the previous autumn and by warm springs and high precipitation in summer of the year of tree-ring formation. Cloud cover during the summer increased growth, while cloudy winters led to impaired carbon gain and reduced growth in the long term. We argue that maintenance of carbon gain under harsh conditions (low winter temperatures and dry summer months) and plastic xylogenesis underlie J. thurifera's ability to profit from changing climatic conditions such as earlier spring onset and erratic summer rainfall. Our results highlight that not only the magnitude but also the sign of the impact of climate change on growth and persistence of Mediterranean trees is species specific.

  18. Unravelling fears of genetic discrimination: an exploratory study of Dutch HCM families in an era of genetic non-discrimination acts.

    PubMed

    Geelen, Els; Horstman, Klasien; Marcelis, Carlo L M; Doevendans, Pieter A; Van Hoyweghen, Ine

    2012-10-01

    Since the 1990s, many countries in Europe and the United States have enacted genetic non-discrimination legislation to prevent people from deferring genetic tests for fear that insurers or employers would discriminate against them based on that information. Although evidence for genetic discrimination exists, little is known about the origins and backgrounds of fears of discrimination and how it affects decisions for uptake of genetic testing. The aim of this article is to gain a better understanding of these fears and its possible impact on the uptake of testing by studying the case of hypertrophic cardiomyopathy (HCM). In a qualitative study, we followed six Dutch extended families involved in genetic testing for HCM for three-and-a-half years. Semi-structured interviews were conducted with 57 members of these families. Based on the narratives of the families, we suggest that fears of discrimination have to be situated in the broader social and life-course context of family and kin. We describe the processes in which families developed meaningful interpretations of genetic discrimination and how these interpretations affected family members' decisions to undergo genetic testing. Our findings show that fears of genetic discrimination do not so much stem from the opportunity of genetic testing but much more from earlier experiences of discrimination of diseased family members. These results help identify the possible limitations of genetic non-discrimination regulations and provide direction to clinicians supporting their clients as they confront issues of genetic testing and genetic discrimination.

  19. Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014–2015

    PubMed Central

    Flannery, Brendan; Zimmerman, Richard K.; Gubareva, Larisa V.; Garten, Rebecca J.; Chung, Jessie R.; Nowalk, Mary Patricia; Jackson, Michael L.; Jackson, Lisa A.; Monto, Arnold S.; Ohmit, Suzanne E.; Belongia, Edward A.; McLean, Huong Q.; Gaglani, Manjusha; Piedra, Pedro A.; Mishin, Vasiliy P.; Chesnokov, Anton P.; Spencer, Sarah; Thaker, Swathi N.; Barnes, John R.; Foust, Angie; Sessions, Wendy; Xu, Xiyan; Katz, Jacqueline; Fry, Alicia M.

    2018-01-01

    Background During the 2014–15 US influenza season, expanded genetic characterization of circulating influenza A(H3N2) viruses was used to assess the impact of genetic variability of influenza A(H3N2) viruses on influenza vaccine effectiveness (VE). Methods A novel pyrosequencing assay was used to determine genetic group based on hemagglutinin (HA) gene sequences of influenza A(H3N2) viruses from patients enrolled US Flu Vaccine Effectiveness network sites. Vaccine effectiveness was estimated using a test-negative design comparing vaccination among patients infected with influenza A(H3N2) viruses and uninfected patients. Results Among 9710 enrollees, 1868 (19%) tested positive for influenza A(H3N2); genetic characterization of 1397 viruses showed 1134 (81%) belonged to one HA genetic group (3C.2a) of antigenically drifted H3N2 viruses. Effectiveness of 2014–15 influenza vaccination varied by A(H3N2) genetic group from 1% (95% confidence interval [CI], −14% to 14%) against illness caused by antigenically drifted A(H3N2) group 3C.2a viruses versus 44% (95% CI, 16% to 63%) against illness caused by vaccine-like A(H3N2) group 3C.3b viruses. Conclusion Effectiveness of 2014–15 influenza vaccination varied by genetic group of influenza A(H3N2) virus. Changes in hemagglutinin genes related to antigenic drift were associated with reduced vaccine effectiveness. PMID:27190176

  20. Defining a genetic ideotype for crop improvement.

    PubMed

    Trethowan, Richard M

    2014-01-01

    While plant breeders traditionally base selection on phenotype, the development of genetic ideotypes can help focus the selection process. This chapter provides a road map for the establishment of a refined genetic ideotype. The first step is an accurate definition of the target environment including the underlying constraints, their probability of occurrence, and impact on phenotype. Once the environmental constraints are established, the wealth of information on plant physiological responses to stresses, known gene information, and knowledge of genotype ×environment and gene × environment interaction help refine the target ideotype and form a basis for cross prediction.Once a genetic ideotype is defined the challenge remains to build the ideotype in a plant breeding program. A number of strategies including marker-assisted recurrent selection and genomic selection can be used that also provide valuable information for the optimization of genetic ideotype. However, the informatics required to underpin the realization of the genetic ideotype then becomes crucial. The reduced cost of genotyping and the need to combine pedigree, phenotypic, and genetic data in a structured way for analysis and interpretation often become the rate-limiting steps, thus reducing genetic gain. Systems for managing these data and an example of ideotype construction for a defined environment type are discussed.

  1. A L-Band Superstrate Lens Enhanced Antenna and Array for Tactical Operations

    DTIC Science & Technology

    2013-07-01

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...CA, 92152-5001 sam.chieh@navy.mil Abstract—The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...realized. The microstrip patch antenna is a widely used antenna in this regime as it is light weight and is easily scalable for increased gains. It has

  2. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs.

    PubMed

    Eynard, Sonia E; Croiseau, Pascal; Laloë, Denis; Fritz, Sebastien; Calus, Mario P L; Restoux, Gwendal

    2018-01-04

    Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations. Copyright © 2018 Eynard et al.

  3. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants.

    PubMed

    Sugiura, Kazumitsu

    2014-06-01

    Generalized pustular psoriasis (GPP) is often present in patients with existing or prior psoriasis vulgaris (PV; "GPP with PV"). However, cases of GPP have been known to arise without a history of PV ("GPP alone"). There has long been debate over whether GPP alone and GPP with PV are distinct subtypes that are etiologically different from each other. We recently reported that the majority of GPP alone cases is caused by recessive mutations of IL36RN. In contrast, only a few exceptional cases of GPP with PV were found to have recessive IL36RN mutations. Very recently, we also reported that CARD14 p.Asp176His, a gain-of-function variant, is a predisposing factor for GPP with PV; in contrast, the variant is not associated with GPP alone in the Japanese population. These results suggest that GPP alone is genetically different from GPP with PV. IL36RN mutations are also found in some patients with severe acute generalized exanthematous pustulosis, palmar-plantar pustulosis, and acrodermatitis continua of hallopeau. CARD14 mutations and variants are causal or disease susceptibility factors of PV, GPP, or pityriasis rubra pilaris, depending on the mutation or variant position of CARD14. It is clinically important to analyze IL36RN mutations in patients with sterile pustulosis. For example, identifying recessive IL36RN mutations leads to early diagnosis of GPP, even at the first episode of pustulosis. In addition, individuals with IL36RN mutations are very susceptible to GPP or GPP-related generalized pustulosis induced by drugs (e.g., amoxicillin), infections, pregnancy, or menstruation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  5. Statistics for Learning Genetics

    NASA Astrophysics Data System (ADS)

    Charles, Abigail Sheena

    This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in, doing statistically-based genetics problems. This issue is at the emerging edge of modern college-level genetics instruction, and this study attempts to identify key theoretical components for creating a specialized biological statistics curriculum. The goal of this curriculum will be to prepare biology students with the skills for assimilating quantitatively-based genetic processes, increasingly at the forefront of modern genetics. To fulfill this, two college level classes at two universities were surveyed. One university was located in the northeastern US and the other in the West Indies. There was a sample size of 42 students and a supplementary interview was administered to a select 9 students. Interviews were also administered to professors in the field in order to gain insight into the teaching of statistics in genetics. Key findings indicated that students had very little to no background in statistics (55%). Although students did perform well on exams with 60% of the population receiving an A or B grade, 77% of them did not offer good explanations on a probability question associated with the normal distribution provided in the survey. The scope and presentation of the applicable statistics/mathematics in some of the most used textbooks in genetics teaching, as well as genetics syllabi used by instructors do not help the issue. It was found that the text books, often times, either did not give effective explanations for students, or completely left out certain topics. The omission of certain statistical/mathematical oriented topics was seen to be also true with the genetics syllabi reviewed for this study. Nonetheless

  6. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  7. Genetic doping and health damages.

    PubMed

    Fallahi, Aa; Ravasi, Aa; Farhud, Dd

    2011-01-01

    Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as "the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ". The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack.

  8. Genetic Doping and Health Damages

    PubMed Central

    Fallahi, AA; Ravasi, AA; Farhud, DD

    2011-01-01

    Background: Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as “the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ”. The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. Methods: This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. Conclusion: There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack. PMID:23113049

  9. Comparing gains and losses.

    PubMed

    McGraw, A Peter; Larsen, Jeff T; Kahneman, Daniel; Schkade, David

    2010-10-01

    Loss aversion in choice is commonly assumed to arise from the anticipation that losses have a greater effect on feelings than gains, but evidence for this assumption in research on judged feelings is mixed. We argue that loss aversion is present in judged feelings when people compare gains and losses and assess them on a common scale. But many situations in which people judge and express their feelings lack these features. When judging their feelings about an outcome, people naturally consider a context of similar outcomes for comparison (e.g., they consider losses against other losses). This process permits gains and losses to be normed separately and produces psychological scale units that may not be the same in size or meaning for gains and losses. Our experiments show loss aversion in judged feelings for tasks that encourage gain-loss comparisons, but not tasks that discourage them, particularly those using bipolar scales.

  10. Expected genetic gains and development plans for two longlead pine third-generation seedling seed orchards

    Treesearch

    C.D. Nelson; L.H. Lott; D.P. Gwaze

    2005-01-01

    Selection and thinning plans were developed for two longleaf pine (Pinus palushis Mill .), third-generation seedling seed orchards located in southeastern Mississippi and central Louisiana. The two orchards were part of several long-term experimental field tests designed to investigate genetic variation in height growth and brown spot needle blight (...

  11. Pursuit gain and saccadic intrusions in first-degree relatives of probands with schizophrenia.

    PubMed

    Clementz, B A; Sweeney, J A; Hirt, M; Haas, G

    1990-11-01

    Oculomotor functioning of 26 probands with schizophrenia, 12 spectrum and 46 nonspectrum first-degree relatives, and 38 nonpsychiatric control subjects was evaluated. Spectrum relatives had more anticipatory saccades (ASs) and lower pursuit gain than nonspectrum relatives, who had more ASs and lower pursuit gain than control subjects. Probands also had lower pursuit gain than nonspectrum relatives and control subjects but did not differ from other groups on AS frequency. Control subjects had more globally accurate pursuit tracking (root mean square [RMS] error deviation) than both relative groups, whereas probands had the poorest RMS scores. Square wave jerk frequency did not differentiate the groups. Attention enhancement affected the frequency of ASs but did not affect either the other intrusive saccadic event or RMS scores. These results offer evidence that eye-movement dysfunction may serve as a biological marker for schizophrenia.

  12. Genetics in the 21st Century: The Benefits & Challenges of Incorporating a Project-Based Genetics Unit in Biology Classrooms

    ERIC Educational Resources Information Center

    Alozie, Nonye; Eklund, Jennifer; Rogat, Aaron; Krajcik, Joseph

    2010-01-01

    How can science instruction help students and teachers engage in relevant genetics content that stimulates learning and heightens curiosity? Project-based science can enhance learning and thinking in science classrooms. We describe how we use project-based science features as a framework for a genetics unit, discuss some of the challenges…

  13. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    PubMed

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  14. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.

    PubMed

    Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi

    2015-02-09

    Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.

  15. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes.

    PubMed

    Nakagawa, Kenji; Gonzalez-Roca, Eva; Souto, Alejandro; Kawai, Toshinao; Umebayashi, Hiroaki; Campistol, Josep María; Cañellas, Jeronima; Takei, Syuji; Kobayashi, Norimoto; Callejas-Rubio, Jose Luis; Ortego-Centeno, Norberto; Ruiz-Ortiz, Estíbaliz; Rius, Fina; Anton, Jordi; Iglesias, Estibaliz; Jimenez-Treviño, Santiago; Vargas, Carmen; Fernandez-Martin, Julian; Calvo, Inmaculada; Hernández-Rodríguez, José; Mendez, María; Dordal, María Teresa; Basagaña, Maria; Bujan, Segundo; Yashiro, Masato; Kubota, Tetsuo; Koike, Ryuji; Akuta, Naoko; Shimoyama, Kumiko; Iwata, Naomi; Saito, Megumu K; Ohara, Osamu; Kambe, Naotomo; Yasumi, Takahiro; Izawa, Kazushi; Kawai, Tomoki; Heike, Toshio; Yagüe, Jordi; Nishikomori, Ryuta; Aróstegui, Juan I

    2015-03-01

    : Familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome are dominantly inherited autoinflammatory diseases associated to gain-of-function NLRP3 mutations and included in the cryopyrin-associated periodic syndromes (CAPS). A variable degree of somatic NLRP3 mosaicism has been detected in ≈35% of patients with CINCA. However, no data are currently available regarding the relevance of this mechanism in other CAPS phenotypes. To evaluate somatic NLRP3 mosaicism as the disease-causing mechanism in patients with clinical CAPS phenotypes other than CINCA and NLRP3 mutation-negative. NLRP3 analyses were performed by Sanger sequencing and by massively parallel sequencing. Apoptosis-associated Speck-like protein containing a CARD (ASC)-dependent nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) activation and transfection-induced THP-1 cell death assays determined the functional consequences of the detected variants. A variable degree (5.5-34.9%) of somatic NLRP3 mosaicism was detected in 12.5% of enrolled patients, all of them with a MWS phenotype. Six different missense variants, three novel (p.D303A, p.K355T and p.L411F), were identified. Bioinformatics and functional analyses confirmed that they were disease-causing, gain-of-function NLRP3 mutations. All patients treated with anti-interleukin1 drugs showed long-lasting positive responses. We herein show somatic NLRP3 mosaicism underlying MWS, probably representing a shared genetic mechanism in CAPS not restricted to CINCA syndrome. The data here described allowed definitive diagnoses of these patients, which had serious implications for gaining access to anti-interleukin 1 treatments under legal indication and for genetic counselling. The detection of somatic mosaicism is difficult when using conventional methods. Potential candidates should benefit from the use of modern genetic tools. Published by the

  16. Are gains in decision-making autonomy during early adolescence beneficial for emotional functioning? The case of the United States and china.

    PubMed

    Qin, Lili; Pomerantz, Eva M; Wang, Qian

    2009-01-01

    This research examined the role of children's decision-making autonomy in their emotional functioning during early adolescence in the United States and China. Four times over the 7th and 8th grades, 825 American and Chinese children (M = 12.73 years) reported on the extent to which they versus their parents make decisions about issues children often deem as under their authority. Children also reported on their emotional functioning. American children made greater gains over time in decision-making autonomy than did Chinese children. Initial decision-making autonomy predicted enhanced emotional functioning similarly among American and Chinese children. However, gains over time in decision-making autonomy predicted enhanced emotional functioning more in the United States (vs. China) where such gains were normative.

  17. Estimation of genetic parameters and selection of high-yielding, upright common bean lines with slow seed-coat darkening.

    PubMed

    Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S

    2016-11-21

    Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.

  18. Genetics of hereditary neurological disorders in children.

    PubMed

    Huang, Yue; Yu, Sui; Wu, Zhanhe; Tang, Beisha

    2014-04-01

    Hereditary neurological disorders (HNDs) are relatively common in children compared to those occurring in adulthood. Recognising clinical manifestations of HNDs is important for the selection of genetic testing, genetic testing results interpretation, and genetic consultation. Meanwhile, advances in next generation sequencing (NGS) technologies have significantly enabled the discovery of genetic causes of HNDs and also challenge paediatricians on applying genetic investigation. Combination of both clinical information and advanced technologies will enhance the genetic test yields in clinical setting. This review summarises the clinical presentations as well as genetic causes of paediatric neurological disorders in four major areas including movement disorders, neuropsychiatric disorders, neuron peripheral disorders and epilepsy. The aim of this review is to help paediatric neurologists not only to see the clinical features but also the complex genetic aspect of HNDs in order to utilise genetic investigation confidently in their clinical practice. A smooth transition from research based to clinical use of comprehensive genetic testing in HNDs in children could be foreseen in the near future while genetic testing, genetic counselling and genetic data interpretation are in place appropriately.

  19. Active rc filter permits easy trade-off of amplifier gain and sensitivity to gain

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Shaffer, C. V.

    1968-01-01

    Passive RC network was designed with zeros of transmission in the right half of the complex frequency plane in the feedback loop of a simple negative-gain amplifier. The proper positioning provides any desired trade-off between amplifier gain and sensitivity to amplifier gain.

  20. Enhancer modularity and the evolution of new traits.

    PubMed

    Koshikawa, Shigeyuki

    2015-01-01

    Animals have modular cis-regulatory regions in their genomes, and expression of a single gene is often regulated by multiple enhancers residing in such a region. In the laboratory, and also in natural populations, loss of an enhancer can result in a loss of gene expression. Although only a few examples have been well characterized to date, some studies have suggested that an evolutionary gain of a new enhancer function can establish a new gene expression domain. Our recent study showed that Drosophila guttifera has more enhancers and additional expression domains of the wingless gene during the pupal stage, compared to D. melanogaster, and that these new features appear to have evolved in the ancestral lineage leading to D. guttifera. (1) Gain of a new expression domain of a developmental regulatory gene (toolkit gene), such as wingless, can cause co-option of the expression of its downstream genes to the new domain, resulting in duplication of a preexisting structure at this new body position. Recently, with the advancement of evo-devo studies, we have learned that the developmental regulatory systems are strikingly similar across various animal taxa, in spite of the great diversity of the animals' morphology. Even behind "new" traits, co-options of essential developmental genes from known systems are very common. We previously provided concrete evidence of gains of enhancer activities of a developmental regulatory gene underlying gains of new traits. (1) Broad occurrence of this scenario is testable and should be validated in the future.

  1. The Genetic Drift Inventory: A Tool for Measuring What Advanced Undergraduates Have Mastered about Genetic Drift

    PubMed Central

    Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.

    2014-01-01

    Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures upper-division students’ understanding of this concept. We used an iterative approach that included extensive interviews and field tests involving 1723 students across five different undergraduate campuses. The GeDI consists of 22 agree–disagree statements that assess four key concepts and six misconceptions. Student scores ranged from 4/22 to 22/22. Statements ranged in mean difficulty from 0.29 to 0.80 and in discrimination from 0.09 to 0.46. The internal consistency, as measured with Cronbach's alpha, ranged from 0.58 to 0.88 across five iterations. Test–retest analysis resulted in a coefficient of stability of 0.82. The true–false format means that the GeDI can test how well students grasp key concepts central to understanding genetic drift, while simultaneously testing for the presence of misconceptions that indicate an incomplete understanding of genetic drift. The insights gained from this testing will, over time, allow us to improve instruction about this key component of evolution. PMID:24591505

  2. Applying landscape genetics to the microbial world.

    PubMed

    Dudaniec, Rachael Y; Tesson, Sylvie V M

    2016-07-01

    Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as 'the invisible regulators' of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro- and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in 'macro'-landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro- and macroecological processes and expand our knowledge of species' distributions, adaptive mechanisms and species' interactions in changing environments. © 2016 John Wiley & Sons Ltd.

  3. Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom

    PubMed Central

    Yang, Xinmiao; Hartman, Mark R.; Harrington, Kristin T.; Etson, Candice M.; Fierman, Matthew B.; Slonim, Donna K.; Walt, David R.

    2017-01-01

    With the development of new sequencing and bioinformatics technologies, concepts relating to personal genomics play an increasingly important role in our society. To promote interest and understanding of sequencing and bioinformatics in the high school classroom, we developed and implemented a laboratory-based teaching module called “The Genetics of Race.” This module uses the topic of race to engage students with sequencing and genetics. In the experimental portion of this module, students isolate their own mitochondrial DNA using standard biotechnology techniques and collect next-generation sequencing data to determine which of their classmates are most and least genetically similar to themselves. We evaluated the efficacy of this module by administering a pretest/posttest evaluation to measure student knowledge related to sequencing and bioinformatics, and we also conducted a survey at the conclusion of the module to assess student attitudes. Upon completion of our Genetics of Race module, students demonstrated significant learning gains, with lower-performing students obtaining the highest gains, and developed more positive attitudes toward scientific research. PMID:28408407

  4. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications.

    PubMed

    Naylor, Rochelle N; John, Priya M; Winn, Aaron N; Carmody, David; Greeley, Siri Atma W; Philipson, Louis H; Bell, Graeme I; Huang, Elbert S

    2014-01-01

    OBJECTIVE To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25-40 years old with a MODY prevalence of 2%. RESEARCH DESIGN AND METHODS We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY). RESULTS The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ~50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ~50,000 USD. CONCLUSIONS Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.

  5. Improved Gain Microstrip Patch Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...GAIN MICROSTRIP PATCH ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or for the...patch antenna having increased gain, and an apparatus for increasing the gain and bandwidth of an existing microstrip patch antenna . (2) Description

  6. Research advances on microbial genetics in China in 2015.

    PubMed

    Xie, Jian-ping; Han, Yu-bo; Liu, Gang; Bai, Lin-quan

    2016-09-01

    In 2015, there are significant progresses in many aspects of the microbial genetics in China. To showcase the contribution of Chinese scientists in microbial genetics, this review surveys several notable progresses in microbial genetics made largely by Chinese scientists, and some key findings are highlighted. For the basic microbial genetics, the components, structures and functions of many macromolecule complexes involved in gene expression regulation have been elucidated. Moreover, the molecular basis underlying the recognition of foreign nucleic acids by microbial immune systems was unveiled. We also illustrated the biosynthetic pathways and regulators of multiple microbial compounds, novel enzyme reactions, and new mechanisms regulating microbial gene expression. And new findings were obtained in the microbial development, evolution and population genetics. For the industrial microbiology, more understanding on the molecular basis of the microbial factory has been gained. For the pathogenic microbiology, the genetic circuits of several pathogens were depicted, and significant progresses were achieved for understanding the pathogen-host interaction and revealing the genetic mechanisms underlying antimicrobial resistance, emerging pathogens and environmental microorganisms at the genomic level. In future, the genetic diversity of microbes can be used to obtain specific products, while gut microbiome is gathering momentum.

  7. Framing recommendations to promote prevention behaviors among people at high risk: A simulation study of responses to melanoma genetic test reporting.

    PubMed

    Taber, Jennifer M; Aspinwall, Lisa G

    2015-10-01

    A CDKN2A/p16 mutation confers 76 % lifetime risk of developing melanoma to US residents, and high-risk individuals are counseled to use sunscreen. Generally, for patients at population risk, gain framing more effectively promotes prevention behaviors; however, it is unknown whether loss frames might more effectively promote behavioral intentions and perceived control over disease risk among high-risk patients. Undergraduates (N = 146) underwent a simulated genetic counseling and test reporting session for hereditary melanoma. Participants watched a video of a genetic counselor providing information in which genetic risk of melanoma (Low: 15 %; High: 76 %) and framed recommendations to use sunscreen (Loss: Risk may increase by 15 % if don't use sunscreen; Gain: Risk may decrease by 15 % if use sunscreen) were manipulated. Controlling for baseline sunscreen use, high-risk participants given loss frames reported greater beliefs that sunscreen would reduce risk than high-risk participants given gain frames. Further, high-risk participants with fair skin tended to report greater intentions to use sunscreen when given loss frames versus gain frames. Perceived control over risk mediated the effect of message frame and disease risk on intentions to use sunscreen. When counseling patients with elevated cancer risk, genetic counselors may consider framing prevention behavioral recommendations in terms of potential losses.

  8. SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM

    PubMed Central

    Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.

    2009-01-01

    High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777

  9. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  10. Genetic Design Automation: engineering fantasy or scientific renewal?

    PubMed Central

    Lux, Matthew W.; Bramlett, Brian W.; Ball, David A.; Peccoud, Jean

    2013-01-01

    Synthetic biology aims to make genetic systems more amenable to engineering, which has naturally led to the development of Computer-Aided Design (CAD) tools. Experimentalists still primarily rely on project-specific ad-hoc workflows instead of domain-specific tools, suggesting that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. PMID:22001068

  11. Short-term variability in body weight predicts long-term weight gain.

    PubMed

    Lowe, Michael R; Feig, Emily H; Winter, Samantha R; Stice, Eric

    2015-11-01

    Body weight in lower animals and humans is highly stable despite a very large flux in energy intake and expenditure over time. Conversely, the existence of higher-than-average variability in weight may indicate a disruption in the mechanisms responsible for homeostatic weight regulation. In a sample chosen for weight-gain proneness, we evaluated whether weight variability over a 6-mo period predicted subsequent weight change from 6 to 24 mo. A total of 171 nonobese women were recruited to participate in this longitudinal study in which weight was measured 4 times over 24 mo. The initial 3 weights were used to calculate weight variability with the use of a root mean square error approach to assess fluctuations in weight independent of trajectory. Linear regression analysis was used to examine whether weight variability in the initial 6 mo predicted weight change 18 mo later. Greater weight variability significantly predicted amount of weight gained. This result was unchanged after control for baseline body mass index (BMI) and BMI change from baseline to 6 mo and for measures of disinhibition, restrained eating, and dieting. Elevated weight variability in young women may signal the degradation of body weight regulatory systems. In an obesogenic environment this may eventuate in accelerated weight gain, particularly in those with a genetic susceptibility toward overweight. Future research is needed to evaluate the reliability of weight variability as a predictor of future weight gain and the sources of its predictive effect. The trial on which this study is based is registered at clinicaltrials.gov as NCT00456131. © 2015 American Society for Nutrition.

  12. A methodology framework for weighting genetic traits that impact greenhouse gas emission intensities in selection indexes.

    PubMed

    Amer, P R; Hely, F S; Quinton, C D; Cromie, A R

    2018-01-01

    A methodological framework was presented for deriving weightings to be applied in selection indexes to account for the impact genetic change in traits will have on greenhouse gas emissions intensities (EIs). Although the emission component of the breeding goal was defined as the ratio of total emissions relative to a weighted combination of farm outputs, the resulting trait-weighting factors can be applied as linear weightings in a way that augments any existing breeding objective before consideration of EI. Calculus was used to define the parameters and assumptions required to link each trait change to the expected changes in EI for an animal production system. Four key components were identified. The potential impact of the trait on relative numbers of emitting animals per breeding female first has a direct effect on emission output but, second, also has a dilution effect from the extra output associated with the extra animals. Third, each genetic trait can potentially change the amount of emissions generated per animal and, finally, the potential impact of the trait on product output is accounted for. Emission intensity weightings derived from this equation require further modifications to integrate them into an existing breeding objective. These include accounting for different timing and frequency of trait expressions as well as a weighting factor to determine the degree of selection emphasis that is diverted away from improving farm profitability in order to achieve gains in EI. The methodology was demonstrated using a simple application to dairy cattle breeding in Ireland to quantify gains in EI reduction from existing genetic trends in milk production as well as in fertility and survival traits. Most gains were identified as coming through the dilution effect of genetic increases in milk protein per cow, although gains from genetic improvements in survival by reducing emissions from herd replacements were also significant. Emission intensities in the Irish

  13. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  14. Unravelling fears of genetic discrimination: an exploratory study of Dutch HCM families in an era of genetic non-discrimination acts

    PubMed Central

    Geelen, Els; Horstman, Klasien; Marcelis, Carlo LM; Doevendans, Pieter A; Van Hoyweghen, Ine

    2012-01-01

    Since the 1990s, many countries in Europe and the United States have enacted genetic non-discrimination legislation to prevent people from deferring genetic tests for fear that insurers or employers would discriminate against them based on that information. Although evidence for genetic discrimination exists, little is known about the origins and backgrounds of fears of discrimination and how it affects decisions for uptake of genetic testing. The aim of this article is to gain a better understanding of these fears and its possible impact on the uptake of testing by studying the case of hypertrophic cardiomyopathy (HCM). In a qualitative study, we followed six Dutch extended families involved in genetic testing for HCM for three-and-a-half years. Semi-structured interviews were conducted with 57 members of these families. Based on the narratives of the families, we suggest that fears of discrimination have to be situated in the broader social and life-course context of family and kin. We describe the processes in which families developed meaningful interpretations of genetic discrimination and how these interpretations affected family members' decisions to undergo genetic testing. Our findings show that fears of genetic discrimination do not so much stem from the opportunity of genetic testing but much more from earlier experiences of discrimination of diseased family members. These results help identify the possible limitations of genetic non-discrimination regulations and provide direction to clinicians supporting their clients as they confront issues of genetic testing and genetic discrimination. PMID:22453290

  15. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery.

    PubMed

    Scott, Eric M; Halees, Anason; Itan, Yuval; Spencer, Emily G; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G; Alkuraya, Fowzan S; Casanova, Jean-Laurent; Gleeson, Joseph G

    2016-09-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia, has resulted in an elevated burden of recessive disease. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.

  16. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery

    PubMed Central

    Scott, Eric M.; Halees, Anason; Itan, Yuval; Spencer, Emily G.; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B.; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G.; Alkuraya, Fowzan S.; Casanova, Jean-Laurent; Gleeson, Joseph G.

    2016-01-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Gulf region, North Africa, and Central Asia 1–3, has resulted in an elevated burden of recessive disease4. Here we generated a whole exome GME variome from 1,111 unrelated subjects. We detected substantial diversity from sub-geographies, continental and subregional admixture, several ancient founder populations with little evidence of bottlenecks. Measured consanguinity was an order-of-magnitude above that of other sampled populations, and included an increased burden of runs of homozygosity (ROH), but no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved GME recessive conditions reduced the number of potential disease-causing variants by 4–7-fold. These results reveal the variegated GME genetic architecture and support future human genetic discoveries in Mendelian and population genetics. PMID:27428751

  17. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  18. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  19. Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus)

    Treesearch

    Dawn M. Reding; Samuel A. Cushman; Todd E. Gosselink; William R. Clark

    2013-01-01

    Spatial heterogeneity can constrain the movement of individuals and consequently genes across a landscape, influencing demographic and genetic processes. In this study, we linked information on landscape composition, movement behavior, and genetic differentiation to gain a mechanistic understanding of how spatial heterogeneity may influence movement and gene flow of...

  20. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    DOE PAGES

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; ...

    2017-01-23

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. We used fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, inmore » part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Furthermore, structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.« less

  1. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa).

    PubMed

    Ziska, Lewis H; Gealy, David R; Tomecek, Martha B; Jackson, Aaron K; Black, Howard L

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2) between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2) from an early 20(th) century concentration (300 µmol mol(-1)) to current (400 µmol mol(-1)) and projected, mid-21(st) century (600 µmol mol(-1)) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1). The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2) also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2) could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  2. Impact of demographic, genetic, and bioimpedance factors on gestational weight gain and birth weight in a Romanian population: A cross-sectional study in mothers and their newborns: the Monebo study (STROBE-compliant article).

    PubMed

    Mărginean, Claudiu; Mărginean, Cristina Oana; Bănescu, Claudia; Meliţ, Lorena; Tripon, Florin; Iancu, Mihaela

    2016-07-01

    The present study had 2 objectives, first, to investigate possible relationships between increased gestational weight gain and demographic, clinical, paraclinical, genetic, and bioimpedance (BIA) characteristics of Romanian mothers, and second, to identify the influence of predictors (maternal and newborns characteristics) on our outcome birth weight (BW).We performed a cross-sectional study on 309 mothers and 309 newborns from Romania, divided into 2 groups: Group I-141 mothers with high gestational weight gain (GWG) and Group II-168 mothers with normal GWG, that is, control group.The groups were evaluated regarding demographic, anthropometric (body mass index [BMI], middle upper arm circumference, tricipital skinfold thickness, weight, height [H]), clinical, paraclinical, genetic (interleukin 6 [IL-6]: IL-6 -174G>C and IL-6 -572C>G gene polymorphisms), and BIA parameters.We noticed that fat mass (FM), muscle mass (MM), bone mass (BM), total body water (TBW), basal metabolism rate (BMR) and metabolic age (P < 0.001), anthropometric parameters (middle upper arm circumference, tricipital skinfold thickness; P < 0.001/P = 0.001) and hypertension (odds ratio = 4.65, 95% confidence interval: 1.27-17.03) were higher in mothers with high GWG. BW was positively correlated with mothers' FM (P < 0.001), TBW (P = 0.001), BMR (P = 0.02), while smoking was negatively correlated with BW (P = 0.04). Variant genotype (GG+GC) of the IL-6 -572C>G polymorphism was higher in the control group (P = 0.042).We observed that high GWG may be an important predictor factor for the afterward BW, being positively correlated with FM, TBW, BMR, metabolic age of the mothers, and negatively with the mother's smoking status. Variant genotype (GG+GC) of the IL-6 -572C>G gene polymorphism is a protector factor against obesity in mothers. All the variables considered explained 14.50% of the outcome variance.

  3. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  4. Genetic improvement of feed conversion ratio via indirect selection against lipid deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum).

    PubMed

    Kause, Antti; Kiessling, Anders; Martin, Samuel A M; Houlihan, Dominic; Ruohonen, Kari

    2016-11-01

    In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.

  5. Association of gestational weight gain expectations with advice on actual weight gain

    USDA-ARS?s Scientific Manuscript database

    To examine pregnant women's gestational weight gain expectations/advice from various sources (i.e., self, family/friends, physician) and the impact of these sources of expectations/advice on actual measured gestational weight gain. Pregnant women (n=230, 87.4% Caucasian, second pregnancy) in a cohor...

  6. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Ellis, Mark; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-03-15

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.

  7. Molecular genetics of human obesity: A comprehensive review.

    PubMed

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  8. Evaluation of mature cow weight: genetic correlations with traits used in selection indices, correlated responses, and genetic trends in Nelore cattle.

    PubMed

    Boligon, A A; Carvalheiro, R; Albuquerque, L G

    2013-01-01

    Genetic correlations of selection indices and the traits considered in these indices with mature weight (MW) of Nelore females and correlated responses were estimated to determine whether current selection practices will result in an undesired correlated response in MW. Genetic trends for weaning and yearling indices and MW were also estimated. Data from 612,244 Nelore animals born between 1984 and 2010, belonging to different beef cattle evaluation programs from Brazil and Paraguay, were used. The following traits were studied: weaning conformation (WC), weaning precocity (WP), weaning muscling (WM), yearling conformation (YC), yearling precocity (YP), yearling muscling (YM), weaning and yearling indices, BW gain from birth to weaning (BWG), postweaning BW gain (PWG), scrotal circumference (SC), and MW. The variance and covariance components were estimated by Bayesian inference in a multitrait analysis, including all traits in the same analysis, using a nonlinear (threshold) animal model for visual scores and a linear animal model for the other traits. The mean direct heritabilities were 0.21±0.007 (WC), 0.22±0.007 (WP), 0.20±0.007 (WM), 0.43±0.005 (YC), 0.40±0.005 (YP), 0.40±0.005 (YM), 0.17±0.003 (BWG), 0.21±0.004 (PWG), 0.32±0.001 (SC), and 0.44±0.018 (MW). The genetic correlations between MW and weaning and yearling indices were positive and of medium magnitude (0.30±0.01 and 0.31±0.01, respectively). The genetic changes in weaning index, yearling index, and MW, expressed as units of genetic SD per year, were 0.26, 0.27, and 0.01, respectively. The genetic trend for MW was nonsignificant, suggesting no negative correlated response. The selection practice based on the use of sires with high final index giving preference for those better ranked for yearling precocity and muscling than for conformation generates only a minimal correlated response in MW.

  9. Weight Gain during Pregnancy

    MedlinePlus

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... fitness > Weight gain during pregnancy Weight gain during pregnancy E-mail to a friend Please fill in ...

  10. Asthma Triggers: Gain Control

    MedlinePlus

    ... Centers Asthma Contact Us Share Asthma Triggers: Gain Control Breathing Freely: Controlling Asthma Triggers This video features ... Air Quality: Biological Pollutants Help Your Child Gain Control Over Asthma Top of Page Molds About Molds ...

  11. Parity-time-symmetry enhanced optomechanically-induced-transparency

    PubMed Central

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-01-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193

  12. Baseline Muscle Mass Is a Poor Predictor of Functional Overload-Induced Gain in the Mouse Model

    PubMed Central

    Kilikevicius, Audrius; Bunger, Lutz; Lionikas, Arimantas

    2016-01-01

    Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response. The aim of this study was to examine the effect of genetic background on variability in muscle mass at baseline and in the adaptive response of the mouse fast- and slow-twitch muscles to overload. Males of eight laboratory mouse strains: C57BL/6J (B6, n = 17), BALB/cByJ (n = 7), DBA/2J (D2, n = 12), B6.A-(rs3676616-D10Utsw1)/Kjn (B6.A, n = 9), C57BL/6J-Chr10A/J/NaJ (B6.A10, n = 8), BEH+/+ (n = 11), BEH (n = 12), and DUHi (n = 12), were studied. Compensatory growth of soleus and plantaris muscles was triggered by a 4-week overload induced by synergist unilateral ablation. Muscle weight in the control leg (baseline) varied from 5.2 ± 07 mg soleus and 11.4 ± 1.3 mg plantaris in D2 mice to 18.0 ± 1.7 mg soleus in DUHi and 43.7 ± 2.6 mg plantaris in BEH (p < 0.001 for both muscles). In addition, soleus in the B6.A10 strain was ~40% larger (p < 0.001) compared to the B6. Functional overload increased muscle weight, however, the extent of gain was strain-dependent for both soleus (p < 0.01) and plantaris (p < 0.02) even after accounting for the baseline differences. For the soleus muscle, the BEH strain emerged as the least responsive, with a 1.3-fold increase, compared to a 1.7-fold gain in the most responsive D2 strain, and there was no difference in the gain between the B6.A10 and B6 strains. The BEH strain appeared the least responsive in the gain of plantaris as well, 1.3-fold, compared to ~1.5-fold gain in the remaining strains. We conclude that variation in muscle mass at baseline is not a reliable predictor of that in the overload-induced gain. This suggests that a different set of genes influence variability in muscle mass acquired in the process of normal development, growth, and maintenance, and

  13. Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma

    USGS Publications Warehouse

    Kurklin, J.K.

    1990-01-01

    Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

  14. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.).

    PubMed

    Huynh, Bao-Lam; Ehlers, Jeffrey D; Huang, Bevan Emma; Muñoz-Amatriaín, María; Lonardi, Stefano; Santos, Jansen R P; Ndeve, Arsenio; Batieno, Benoit J; Boukar, Ousmane; Cisse, Ndiaga; Drabo, Issa; Fatokun, Christian; Kusi, Francis; Agyare, Richard Y; Guo, Yi-Ning; Herniter, Ira; Lo, Sassoum; Wanamaker, Steve I; Xu, Shizhong; Close, Timothy J; Roberts, Philip A

    2018-03-01

    Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F 8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  15. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  16. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  17. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  18. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  19. Genetic variation in tree structure and its relation to size in Douglas-fir: I. Biomass partitioning, foliage efficiency, stem form, and wood density.

    Treesearch

    J.B. St. Clair

    1994-01-01

    Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found in size, biomass partitioning, and wood density, and genetic gains may be...

  20. Genetic improvement of plants for enhanced bio-ethanol production.

    PubMed

    Saha, Sanghamitra; Ramachandran, Srinivasan

    2013-04-01

    The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.

  1. Removal of Competition Bias from Forest Genetics Experiments

    Treesearch

    D. T. Cooper; Robert B. Ferguson

    1977-01-01

    Estimates of genetic gains and of juvenile-mature correlations in small-plot breeding experiments may be inflated because trees that grow rapidly early continue to be the largest trees, and trees that begin slowly usually stay small. A procedure which takes missing trees, relative sizes and distances between competing trees, and the intensity of competition into...

  2. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.

  3. Image contrast enhancement based on a local standard deviation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details aremore » concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.« less

  4. Social Gains from Female Education: A Cross-National Study. World Bank Discussion Papers 194.

    ERIC Educational Resources Information Center

    Subbarao, K.; Raney, Laura

    This paper on the social gains from female education is part of a series, prepared by the World Bank, on the benefits of improving opportunities for women. The paper suggests that expanding women's opportunities enhances their productivity and earning potential and thus contributes to better economic performance and poverty alleviation. Education…

  5. Genes Contributing to Genetic Variation of Muscling in Sheep

    PubMed Central

    Tellam, Ross L.; Cockett, Noelle E.; Vuocolo, Tony; Bidwell, Christopher A.

    2012-01-01

    Selective breeding programs aiming to increase the productivity and profitability of the sheep meat industry use elite, progeny tested sires. The broad genetic traits of primary interest in the progeny of these sires include skeletal muscle yield, fat content, eating quality, and reproductive efficiency. Natural mutations in sheep that enhance muscling have been identified, while a number of genome scans have identified and confirmed quantitative trait loci (QTL) for skeletal muscle traits. The detailed phenotypic characteristics of sheep carrying these mutations or QTL affecting skeletal muscle show a number of common biological themes, particularly changes in developmental growth trajectories, alterations of whole animal morphology, and a shift toward fast twitch glycolytic fibers. The genetic, developmental, and biochemical mechanisms underpinning the actions of some of these genetic variants are described. This review critically assesses this research area, identifies gaps in knowledge, and highlights mechanistic linkages between genetic polymorphisms and skeletal muscle phenotypic changes. This knowledge may aid the discovery of new causal genetic variants and in some cases lead to the development of biochemical and immunological strategies aimed at enhancing skeletal muscle. PMID:22952470

  6. Genetically-Driven Enhancement of Dopaminergic Transmission Affects Moral Acceptability in Females but Not in Males: A Pilot Study

    PubMed Central

    Pellegrini, Silvia; Palumbo, Sara; Iofrida, Caterina; Melissari, Erika; Rota, Giuseppina; Mariotti, Veronica; Anastasio, Teresa; Manfrinati, Andrea; Rumiati, Rino; Lotto, Lorella; Sarlo, Michela; Pietrini, Pietro

    2017-01-01

    Moral behavior has been a key topic of debate for philosophy and psychology for a long time. In recent years, thanks to the development of novel methodologies in cognitive sciences, the question of how we make moral choices has expanded to the study of neurobiological correlates that subtend the mental processes involved in moral behavior. For instance, in vivo brain imaging studies have shown that distinct patterns of brain neural activity, associated with emotional response and cognitive processes, are involved in moral judgment. Moreover, while it is well-known that responses to the same moral dilemmas differ across individuals, to what extent this variability may be rooted in genetics still remains to be understood. As dopamine is a key modulator of neural processes underlying executive functions, we questioned whether genetic polymorphisms associated with decision-making and dopaminergic neurotransmission modulation would contribute to the observed variability in moral judgment. To this aim, we genotyped five genetic variants of the dopaminergic pathway [rs1800955 in the dopamine receptor D4 (DRD4) gene, DRD4 48 bp variable number of tandem repeat (VNTR), solute carrier family 6 member 3 (SLC6A3) 40 bp VNTR, rs4680 in the catechol-O-methyl transferase (COMT) gene, and rs1800497 in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene] in 200 subjects, who were requested to answer 56 moral dilemmas. As these variants are all located in genes belonging to the dopaminergic pathway, they were combined in multilocus genetic profiles for the association analysis. While no individual variant showed any significant effects on moral dilemma responses, the multilocus genetic profile analysis revealed a significant gender-specific influence on human moral acceptability. Specifically, those genotype combinations that improve dopaminergic signaling selectively increased moral acceptability in females, by making their responses to moral dilemmas more similar to

  7. Redesigning the exploitation of wheat genetic resources.

    PubMed

    Longin, C Friedrich H; Reif, Jochen C

    2014-10-01

    More than half a million wheat genetic resources are resting in gene banks worldwide. Unlocking their hidden favorable genetic diversity for breeding is pivotal for enhancing grain yield potential, and averting future food shortages. Here, we propose exploiting recent advances in hybrid wheat technology to uncover the masked breeding values of wheat genetic resources. The gathered phenotypic information will enable a targeted choice of accessions with high value for pre-breeding among this plethora of genetic resources. We intend to provoke a paradigm shift in pre-breeding strategies for grain yield, moving away from allele mining toward genome-wide selection to bridge the yield gap between genetic resources and elite breeding pools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

    PubMed

    Dawes, John M; Weir, Greg A; Middleton, Steven J; Patel, Ryan; Chisholm, Kim I; Pettingill, Philippa; Peck, Liam J; Sheridan, Joseph; Shakir, Akila; Jacobson, Leslie; Gutierrez-Mecinas, Maria; Galino, Jorge; Walcher, Jan; Kühnemund, Johannes; Kuehn, Hannah; Sanna, Maria D; Lang, Bethan; Clark, Alex J; Themistocleous, Andreas C; Iwagaki, Noboru; West, Steven J; Werynska, Karolina; Carroll, Liam; Trendafilova, Teodora; Menassa, David A; Giannoccaro, Maria Pia; Coutinho, Ester; Cervellini, Ilaria; Tewari, Damini; Buckley, Camilla; Leite, M Isabel; Wildner, Hendrik; Zeilhofer, Hanns Ulrich; Peles, Elior; Todd, Andrew J; McMahon, Stephen B; Dickenson, Anthony H; Lewin, Gary R; Vincent, Angela; Bennett, David L

    2018-02-21

    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 -/- ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 -/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.

    PubMed

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-05-04

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

  10. Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors

    PubMed Central

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage. PMID:27142861

  11. Leading Gainful Employment Metric Reporting

    ERIC Educational Resources Information Center

    Powers, Kristina; MacPherson, Derek

    2016-01-01

    This chapter will address the importance of intercampus involvement in reporting of gainful employment student-level data that will be used in the calculation of gainful employment metrics by the U.S. Department of Education. The authors will discuss why building relationships within the institution is critical for effective gainful employment…

  12. Alternative growth promoters alter broiler gut microbiome and enhance body weight gain

    USDA-ARS?s Scientific Manuscript database

    Antibiotic growth promoters (AGPs) have commonly been used to enhance growth in poultry production. However, there has been increasing concern over the impact of AGPs use in food production on acquisition of antibiotic resistance in zoonotic bacterial pathogens through inter-bacterial transfer of an...

  13. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  14. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    USGS Publications Warehouse

    Langley, J.A.; McKee, K.L.; Cahoon, D.R.; Cherry, J.A.; Megonigala, J.P.

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  15. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    PubMed

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  16. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    PubMed Central

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  17. Expertise for Teaching Biology Situated in the Context of Genetic Testing

    ERIC Educational Resources Information Center

    van der Zande, Paul; Akkerman, Sanne F.; Brekelmans, Mieke; Waarlo, Arend Jan; Vermunt, Jan D.

    2012-01-01

    Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers' expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge…

  18. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Baxter, Leslie C; Gaw, Nathan; Ranjbar, Sara; Plasencia, Jonathan; Dueck, Amylou C; Peng, Sen; Smith, Kris A; Nakaji, Peter; Karis, John P; Quarles, C Chad; Wu, Teresa; Loftus, Joseph C; Jenkins, Robert B; Sicotte, Hugues; Kollmeyer, Thomas M; O'Neill, Brian P; Elmquist, William; Hoxworth, Joseph M; Frakes, David; Sarkaria, Jann; Swanson, Kristin R; Tran, Nhan L; Li, Jing; Mitchell, J Ross

    2017-01-01

    Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society

  19. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma

    PubMed Central

    Hu, Leland S.; Ning, Shuluo; Eschbacher, Jennifer M.; Baxter, Leslie C.; Gaw, Nathan; Ranjbar, Sara; Plasencia, Jonathan; Dueck, Amylou C.; Peng, Sen; Smith, Kris A.; Nakaji, Peter; Karis, John P.; Quarles, C. Chad; Wu, Teresa; Loftus, Joseph C.; Jenkins, Robert B.; Sicotte, Hugues; Kollmeyer, Thomas M.; O'Neill, Brian P.; Elmquist, William; Hoxworth, Joseph M.; Frakes, David; Sarkaria, Jann; Swanson, Kristin R.; Tran, Nhan L.; Li, Jing; Mitchell, J. Ross

    2017-01-01

    Background Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. Methods We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). Results We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). Conclusion MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology. PMID:27502248

  20. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  1. Genetic variation in social mammals: the marmot model.

    PubMed

    Schwartz, O A; Armitage, K B

    1980-02-08

    The social substructure and the distribution of genetic variation among colonies of yellow-bellied marmots, when analyzed as an evolutionary system, suggests that this substructure enhances the intercolony variance and retards the fixation of genetic variation. This result supports a traditional theory of gradual evolution rather than recent theories suggesting accelerated evolution in social mammals.

  2. Genetic design automation: engineering fantasy or scientific renewal?

    PubMed

    Lux, Matthew W; Bramlett, Brian W; Ball, David A; Peccoud, Jean

    2012-02-01

    The aim of synthetic biology is to make genetic systems more amenable to engineering, which has naturally led to the development of computer-aided design (CAD) tools. Experimentalists still primarily rely on project-specific ad hoc workflows instead of domain-specific tools, which suggests that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Microorganisms having enhanced tolerance to inhibitors and stress

    DOEpatents

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  4. The Genetics of Osteosarcoma

    PubMed Central

    Martin, Jeff W.; Squire, Jeremy A.; Zielenska, Maria

    2012-01-01

    Osteosarcoma is a primary bone malignancy with a particularly high incidence rate in children and adolescents relative to other age groups. The etiology of this often aggressive cancer is currently unknown, because complicated structural and numeric genomic rearrangements in cancer cells preclude understanding of tumour development. In addition, few consistent genetic changes that may indicate effective molecular therapeutic targets have been reported. However, high-resolution techniques continue to improve knowledge of distinct areas of the genome that are more commonly associated with osteosarcomas. Copy number gains at chromosomes 1p, 1q, 6p, 8q, and 17p as well as copy number losses at chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q have been detected by numerous groups, but definitive oncogenes or tumour suppressor genes remain elusive with respect to many loci. In this paper, we examine studies of the genetics of osteosarcoma to comprehensively describe the heterogeneity and complexity of this cancer. PMID:22685381

  5. Genetics and genomics of reproductive performance in dairy and beef cattle.

    PubMed

    Berry, D P; Wall, E; Pryce, J E

    2014-05-01

    Excellent reproductive performance in both males and females is fundamental to profitable dairy and beef production systems. In this review we undertook a meta-analysis of genetic parameters for female reproductive performance across 55 dairy studies or populations and 12 beef studies or populations as well as across 28 different studies or populations for male reproductive performance. A plethora of reproductive phenotypes exist in dairy and beef cattle and a meta-analysis of the literature suggests that most of the female reproductive traits in dairy and beef cattle tend to be lowly heritable (0.02 to 0.04). Reproductive-related phenotypes in male animals (e.g. semen quality) tend to be more heritable than female reproductive phenotypes with mean heritability estimates of between 0.05 and 0.22 for semen-related traits with the exception of scrotal circumference (0.42) and field non-return rate (0.001). The low heritability of reproductive traits, in females in particular, does not however imply that genetic selection cannot alter phenotypic performance as evidenced by the decline until recently in dairy cow reproductive performance attributable in part to aggressive selection for increased milk production. Moreover, the antagonistic genetic correlations among reproductive traits and both milk (dairy cattle) and meat (beef cattle) yield is not unity thereby implying that simultaneous genetic selection for both increased (milk and meat) yield and reproductive performance is indeed possible. The required emphasis on reproductive traits within a breeding goal to halt deterioration will vary based on the underlying assumptions and is discussed using examples for Ireland, the United Kingdom and Australia as well as quantifying the impact on genetic gain for milk production. Advancements in genomic technologies can aid in increasing the accuracy of selection for especially reproductive traits and thus genetic gain. Elucidation of the underlying genomic mechanisms for

  6. Forest genetics research at the University of Michigan

    Treesearch

    Burton V. Barnes

    1970-01-01

    The purpose of the research program, as evidenced by results as well as current research and future direction, is to add to the knowledge of the ecology and genetics of forest trees. Although we are interested in the practical gains that are possible and being realized in practical tree improvement, our contribution is in basic studies that stimulate and challenge...

  7. Multimodal gain control at the hippocampal Schaffer collateral-CA1 synapse.

    PubMed

    Lange-Asschenfeldt, Christian; Schipke, Carola G; Riepe, Matthias W

    2007-04-06

    Information processing at central nervous system synapses is shaped by long-lasting modifications, such as long-term potentiation and short-lived and putatively synapse-specific modifications by various forms of short-term plasticity, such as facilitation, potentiation, and depression. Using an extracellular paired-pulse facilitation (PPF) protocol at the Schaffer collateral-CA1 (SC) connection in acute hippocampal slices in mice, we extend previous reports of optimal signal gain at intermediate interpulse intervals obtained at single SC synapses to the network level. Moreover, maximum signal gain changed when the input intensity was altered. We found further that facilitation decreased with increasing stimulus amplitude and duration in an exact exponential fashion when varied at a fixed interpulse interval. Variation of these intensity parameters accounted for significant changes in PPF adding a spatial dimension to time-based synaptic filter characteristics. Thus, this synapse functions as an amplitude window discriminator with a low-level aperture in combination with a band-pass frequency filter. By providing mathematical functions for the characteristic presynaptic parameters frequency, stimulus amplitude, and pulse duration at the network level our results lay ground for future studies on pharmacologically, genetically, or otherwise altered animal models.

  8. Additional sex combs-like 1 belongs to the enhancer of trithorax and Polycomb Group and genetically interacts with Cbx2 in mice

    PubMed Central

    Fisher, C.L.; Lee, I.; Bloyer, S.; Bozza, S.; Chevalier, J.; Dahl, A; Bodner, C.; Helgason, C. D.; Hess, J.L.; Humphries, R.K.; Brock, H.W.

    2009-01-01

    The Additional sex combs (Asx) gene of Drosophila behaves genetically as an enhancer of trithorax and Polycomb (ETP) in displaying bidirectional homeotic phenotypes, suggesting that is required for maintenance of both activation and silencing of Hox genes. There are 3 murine homologs of Asx called Additional sex combs-like1, 2, and-3. Asxl1 is required for normal adult hematopoiesis; however its embryonic function is unknown. We used a targeted mouse mutant line Asxl1tm1Bc to determine if Asxl1 is required to silence and activate Hox genes in mice during axial patterning. The mutant embryos exhibit simultaneous anterior and posterior transformations of the axial skeleton, consistent with a role for Asxl1 in activation and silencing of Hox genes. Transformations of the axial skeleton are enhanced in compound mutant embryos for the Polycomb group gene M33/Cbx2. Hox a4, a7, and c8 are derepressed in Asxl1tm1Bc mutants in the antero-posterior axis, but Hox c8 expression is reduced in the brain of mutants, consistent with Asxl1 being required both for activation and repression of Hox genes. We discuss the genetic and molecular definition of ETPs, and suggest that the function of Asxl1 depends on its cellular context. PMID:19833123

  9. The experience of dentists who gained enhanced skills in endodontics within a novel pilot training programme.

    PubMed

    Eliyas, S; Briggs, P; Gallagher, J E

    2017-02-24

    Objective To explore the experiences of primary care dentists following training to enhance endodontic skills and their views on the implications for the NHS.Design Qualitative study using anonymised free text questionnaires.Setting Primary care general dental services within the National Health Service (NHS) in London, United Kingdom.Subjects and methods Eight primary care dentists who completed this training were asked about factors affecting participant experience of the course, perceived impact on themselves, their organisation, their patients and barriers/facilitators to providing endodontic treatment in NHS primary care. Data were transferred verbatim to a spreadsheet and thematically analysed.Intervention 24-month part-time educational and service initiative to provide endodontics within the NHS, using a combination of training in simulation lab and treatment of patients in primary care.Results Positive impacts were identified at individual (gains in knowledge, skills, confidence, personal development), patient (more teeth saved, quality of care improved) and system levels (access, value for money). Suggested developments for future courses included more case discussions, teaching of practical skills earlier in the course and refinement of the triaging processes. Barriers to using the acquired skills in providing endodontic treatment in primary care within the NHS were perceived to be resources (remuneration, time, skills) and accountability. Facilitators included appropriately remunerated contracts, necessary equipment and time.Conclusion This novel pilot training programme in endodontics combining general practice experience with education/training, hands-on experience and a portfolio was perceived by participants as beneficial for extending skills and service innovation in primary dental care. The findings provide insight into primary dental care practitioners' experience with education/training and have implications for future educational initiatives in

  10. Short-term variability in body weight predicts long-term weight gain1

    PubMed Central

    Lowe, Michael R; Feig, Emily H; Winter, Samantha R; Stice, Eric

    2015-01-01

    Background: Body weight in lower animals and humans is highly stable despite a very large flux in energy intake and expenditure over time. Conversely, the existence of higher-than-average variability in weight may indicate a disruption in the mechanisms responsible for homeostatic weight regulation. Objective: In a sample chosen for weight-gain proneness, we evaluated whether weight variability over a 6-mo period predicted subsequent weight change from 6 to 24 mo. Design: A total of 171 nonobese women were recruited to participate in this longitudinal study in which weight was measured 4 times over 24 mo. The initial 3 weights were used to calculate weight variability with the use of a root mean square error approach to assess fluctuations in weight independent of trajectory. Linear regression analysis was used to examine whether weight variability in the initial 6 mo predicted weight change 18 mo later. Results: Greater weight variability significantly predicted amount of weight gained. This result was unchanged after control for baseline body mass index (BMI) and BMI change from baseline to 6 mo and for measures of disinhibition, restrained eating, and dieting. Conclusions: Elevated weight variability in young women may signal the degradation of body weight regulatory systems. In an obesogenic environment this may eventuate in accelerated weight gain, particularly in those with a genetic susceptibility toward overweight. Future research is needed to evaluate the reliability of weight variability as a predictor of future weight gain and the sources of its predictive effect. The trial on which this study is based is registered at clinicaltrials.gov as NCT00456131. PMID:26354535

  11. Rational synthetic combination genetic devices boosting high temperature ethanol fermentation.

    PubMed

    Sun, Huan; Jia, Haiyang; Li, Jun; Feng, Xudong; Liu, Yueqin; Zhou, Xiaohong; Li, Chun

    2017-06-01

    The growth and production of yeast in the industrial fermentation are seriously restrained by heat stress and exacerbated by heat induced oxidative stress. In this study, a novel synthetic biology approach was developed to globally boost the viability and production ability of S. cerevisiae at high temperature through rationally designing and combing heat shock protein (HSP) and superoxide dismutase (SOD) genetic devices to ultimately synergistically alleviate both heat stress and oxidative stress. HSP and SOD from extremophiles were constructed to be different genetic devices and they were preliminary screened by heat resistant experiments and anti-oxidative experiments, respectively. Then in order to customize and further improve thermotolerance of S. cerevisiae , the HSP genetic device and SOD genetic device were rationally combined. The results show the simply assemble of the same function genetic devices to solve heat stress or oxidative stress could not enhance the thermotolerance considerably. Only S. cerevisiae with the combination genetic device (FBA1p- sod-MB4 -FBA1p- shsp-HB8 ) solving both stress showed 250% better thermotolerance than the control and displayed further 55% enhanced cell density compared with the strains with single FBA1p- sod-MB4 or FBA1p- shsp-HB8 at 42 °C. Then the most excellent combination genetic device was introduced into lab S. cerevisiae and industrial S. cerevisiae for ethanol fermentation. The ethanol yields of the two strains were increased by 20.6% and 26.3% compared with the control under high temperature, respectively. These results indicate synergistically defensing both heat stress and oxidative stress is absolutely necessary to enhance the thermotolerance and production of S. cerevisiae .

  12. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  13. Invention and Gain Analysis.

    ERIC Educational Resources Information Center

    Weber, Robert J.; Dixon, Stacey

    1989-01-01

    Gain analysis is applied to the invention of the sewing needle as well as different sewing implements and modes of sewing. The analysis includes a two-subject experiment. To validate the generality of gain heuristics and underlying switching processes, the invention of the assembly line is also analyzed. (TJH)

  14. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  15. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  16. Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening.

    PubMed

    Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su

    2015-01-20

    In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  18. Zinc-Associated Variant in SLC30A8 Gene Interacts With Gestational Weight Gain on Postpartum Glycemic Changes: A Longitudinal Study in Women With Prior Gestational Diabetes Mellitus.

    PubMed

    Wang, Tiange; Liu, Huikun; Wang, Leishen; Huang, Tao; Li, Weiqin; Zheng, Yan; Heianza, Yoriko; Sun, Dianjianyi; Leng, Junhong; Zhang, Shuang; Li, Nan; Hu, Gang; Qi, Lu

    2016-12-01

    Zinc transporter 8 genetic variant SLC30A8 has been associated with postpartum risk of type 2 diabetes among women with gestational diabetes mellitus (GDM). Gestational weight gain is one of the strongest risk factors for postpartum hyperglycemia. We assessed the interaction between type 2 diabetes-associated SLC30A8 rs13266634 and gestational weight gain on 1-5 years of postpartum glycemic changes in 1,071 women with prior GDM in a longitudinal study. Compared with gestation of 26-30 weeks, postpartum levels of fasting glucose, oral glucose tolerance test 2-h glucose, and hemoglobin A 1c (HbA 1c ) increased across rs13266634 TT, CT, and CC genotypes in women with excessive gestational weight gain, whereas opposite genetic associations were found in women with inadequate or adequate gestational weight gain. Postpartum changes in fasting glucose per additional copy of the C allele were -0.18, -0.04, and 0.12 mmol/L in women with inadequate, adequate, and excessive gestational weight gain, respectively (P for interaction = 0.002). We also found similar interactions for changes in 2-h glucose and HbA 1c (P for interaction = 0.003 and 0.005, respectively). Our data indicate that gestational weight gain may modify SLC30A8 variant on long-term glycemic changes, highlighting the importance of gestational weight control in the prevention of postpartum hyperglycemia in women with GDM. © 2016 by the American Diabetes Association.

  19. Genetic parameters for first lactation test-day milk flow in Holstein cows.

    PubMed

    Laureano, M M M; Bignardi, A B; El Faro, L; Cardoso, V L; Albuquerque, L G

    2012-01-01

    Genetic parameters for test-day milk flow (TDMF) of 2175 first lactations of Holstein cows were estimated using multiple-trait and repeatability models. The models included the direct additive genetic effect as a random effect and contemporary group (defined as the year and month of test) and age of cow at calving (linear and quadratic effect) as fixed effects. For the repeatability model, in addition to the effects cited, the permanent environmental effect of the animal was also included as a random effect. Variance components were estimated using the restricted maximum likelihood method in single- and multiple-trait and repeatability analyses. The heritability estimates for TDMF ranged from 0.23 (TDMF 6) to 0.32 (TDMF 2 and TDMF 4) in single-trait analysis and from 0.28 (TDMF 7 and TDMF 10) to 0.37 (TDMF 4) in multiple-trait analysis. In general, higher heritabilities were observed at the beginning of lactation until the fourth month. Heritability estimated with the repeatability model was 0.27 and the coefficient of repeatability for first lactation TDMF was 0.66. The genetic correlations were positive and ranged from 0.72 (TDMF 1 and 10) to 0.97 (TDMF 4 and 5). The results indicate that milk flow should respond satisfactorily to selection, promoting rapid genetic gains because the estimated heritabilities were moderate to high. Higher genetic gains might be obtained if selection was performed in the TDMF 4. Both the repeatability model and the multiple-trait model are adequate for the genetic evaluation of animals in terms of milk flow, but the latter provides more accurate estimates of breeding values.

  20. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  1. Genetic Analysis of Stress Responses in Soil Bacteria for Enhanced Bioremediation of Mixed Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kwong-Kwok

    environment are needed. In addition, F199 contains aromatic oxygenases that are relevant to degradation of contaminants at that site and is representative of a large class of similar organisms from Savannah River Identification of the genes responsive to different stresses encountered at contaminated sites will provide a basic understanding of stress responses in soil bacteria and can lead to improved strategies for bioremediation. Enhanced in situ removal of hazardous wastes by stimulating growth of indigenous bacteria with nutrients or electron acceptors such as oxygen has been demonstrated. However, how much and how often to apply these supplements has largely been determined empirically. As a result, a controlled, reproducible, and properly managed degradation of pollutants in the environment is difficult to achieve. Genes inducible by low nutrient and low oxygen conditions can serve as markers for determining the minimal amount of supplements needed. The disappearance and reappearance of such stress responses will determine how much and when nutrients and oxygen are needed to be applied or reapplied. Similar applications of stress-inducible markers are already being applied in bacterial cultures in solution (Selifonova and Eaton, 1996). Stress responses induced by pollutants also have potential use as a biological index for the performance of indigenous bacteria during bioremediation as well as a microbiological risk assessment index for environmental pollutants. For instance, measurement of the stress responses of contaminant-degrading microorganisms would provide information complementary to measurement of enzymatic activity. This more complete picture of the physiological state of the desired organisms can be used to predict their performance. Finally, prior knowledge of the stress responses of competing bacteria could be used to predict their environmental competitiveness. Promoters from stress inducible genes will facilitate the construction of genetically

  2. Application variables and their influence on forest herbicide efficacy and selectivity: gaining understanding and control

    Treesearch

    James H. Miller

    1998-01-01

    Available research is reviewed on the interactions of application variables, herbicides, and species. Objectives of this review are to gain insights into why variation occurs with herbicide performance, how current knowledge might be applied to enhance efficacy and consistency, and research pathways that should foster integration of application-efficacy models. A...

  3. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    NASA Astrophysics Data System (ADS)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  4. Genetic relationships of antibody response, viremia level and weight gain in pigs experimentally infected with porcine reproductive and respiratory syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Genetic and antigenic variability between Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) isolates has encumbered the development of effective vaccines. Therefore, the potential of genetic selection on PRRSV antibody response to improve resistance to PRRSV infection was assessed using da...

  5. Weight gain following treatment of hyperthyroidism.

    PubMed

    Dale, J; Daykin, J; Holder, R; Sheppard, M C; Franklyn, J A

    2001-08-01

    Patients frequently express concern that treating hyperthyroidism will lead to excessive weight gain. This study aimed to determine the extent of, and risk factors for, weight gain in an unselected group of hyperthyroid patients. We investigated 162 consecutive hyperthyroid patients followed for at least 6 months. Height, weight, clinical features, biochemistry and management were recorded at each clinic visit. Documented weight gain was 5.42 +/- 0.46 kg (mean +/- SE) and increase in BMI was 8.49 +/- 0.71%, over a mean 24.2 +/- 1.6 months. Pre-existing obesity, Graves' disease causing hyperthyroidism, weight loss before presentation and length of follow-up each independently predicted weight gain. Patients treated with thionamides or radioiodine gained a similar amount of weight (thionamides, n = 87, 5.16 +/- 0.63 kg vs. radioiodine, n = 62, 4.75 +/- 0.57 kg, P = 0.645), but patients who underwent thyroidectomy (n = 13) gained more weight (10.27 +/- 2.56 kg vs. others, P = 0.007). Development of hypothyroidism (even transiently) was associated with weight gain (never hypothyroid, n = 102, 4.57 +/- 0.52 kg, transiently hypothyroid, n = 29, 5.37 +/- 0.85 kg, on T4, n = 31, 8.06 +/- 1.42 kg, P = 0.014). This difference remained after correcting for length of follow-up. In the whole cohort, weight increased by 3.95 +/- 0.40 kg at 1 year (n = 144) to 9.91 +/- 1.62 kg after 4 years (n = 27) (P = 0.008), representing a mean weight gain of 3.66 +/- 0.44 kg/year. We have demonstrated marked weight gain after treatment of hyperthyroidism. Pre-existing obesity, a diagnosis of Graves' disease and prior weight loss independently predicted weight gain and weight continued to rise with time. Patients who became hypothyroid, despite T4 replacement, gained most weight.

  6. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z; Jedrychowski, Mark P; Bare, Curtis J; Mina, Amir I; Kumari, Manju; Zhang, Song; Vuckovic, Ivan; Laznik-Bogoslavski, Dina; Dzeja, Petras; Banks, Alexander S; Rosen, Evan D; Spiegelman, Bruce M

    2017-10-03

    Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity. Published by Elsevier Inc.

  7. Increasing importance of genetics in nursing.

    PubMed

    Camak, Deborah Jacks

    2016-09-01

    To examine the empirical literature related to the incorporation of genetic research and genetic competency needed by the nurse in practice. Literature review. This article will explore published research within the past seven years of 2008-2015 that address the need for the increased incorporation of genetic content in nursing practice in addition to the need for the nurse to effectively screen the patient at risk of a genetic disorder. This literature review specifically focuses on the inadequacy of nurses in addressing genomic health compromise and serving as advocates for patients and families facing genetic disorders. A review of the literature published from 2008 to 2015 related to the incorporation of genetics in nursing practice and the role of the nurse as a patient advocate for families facing genetic disorders with resulting genomic health compromise. The research exposes the lack of adequate preparation of nurses to incorporate and utilize the recent advances in genomic healthcare. Practicing nurses lack understating and skill in the application of genetics and genomic technologies to patient care. The nursing profession, including nursing academia, need to enhance the integration of genetic and genomic content into nursing curriculum and practice. Practicing nurses are inadequately prepared to apply genetic advancements in screening at risk patients and addressing the needs of the patient or family facing a genomic health compromise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Gain and noise figure enhancement of Er+3/Yb+3 co-doped fiber/Raman hybrid amplifier

    NASA Astrophysics Data System (ADS)

    Mahran, O.

    2016-02-01

    An Er/Yb co-doped fiber/Raman hybrid amplifier (HA) is proposed and studied theoretically and analytically to improve the gain and noise figure of optical amplifiers. The calculations are performed under a uniform dopant and steady-state conditions. The initial energy transfer efficiency for Er/Yb co-doped fiber amplifier (EYDFA) is introduced, while the amplified spontaneous emission (ASE) is neglected. The glass fiber used for both Er/Yb and Raman amplifiers is phosphate. Different pump powers are used for both EYDFA and RA with 1 μW input signal power, 1 m length of Er/Yb amplifier and 25 km length of Raman amplifier (RA). The proposed model is validated for Er/Yb co-doped amplifier and Raman amplifier separately by comparing the calculating results with the experimental data. A high gain and low noise figure at 200 mW Raman pump power and 500 mW Er/Yb pump power are obtained for the proposed HA as compared with the experimental results of EYDFA, Raman amplifier and the EDFA/Raman hybrid amplifier.

  9. Using Genetic Technologies To Reduce, Rather Than Widen, Health Disparities

    PubMed Central

    Smith, Caren E.; Fullerton, Stephanie M.; Dookeran, Keith A.; Hampel, Heather; Tin, Adrienne; Maruthur, Nisa M.; Schisler, Jonathan C.; Henderson, Jeffrey A.; Tucker, Katherine L.; Ordovás, José M.

    2016-01-01

    Evidence shows that both biological and nonbiological factors contribute to health disparities. Genetics, in particular, plays a part in how common diseases manifest themselves. Today, unprecedented advances in genetically based diagnoses and treatments provide opportunities for personalized medicine. However, disadvantaged groups may lack access to these advances, and treatments based on research on non-Hispanic whites might not be generalizable to members of minority groups. Unless genetic technologies become universally accessible, existing disparities could be widened. Addressing this issue will require integrated strategies, including expanding genetic research, improving genetic literacy, and enhancing access to genetic technologies among minority populations in a way that avoids harms such as stigmatization. PMID:27503959

  10. Ethnic diversity in the genetics of venous thromboembolism.

    PubMed

    Tang, Liang; Hu, Yu

    2015-11-01

    Genetic susceptibility is considered as a crucial factor for the development of venous thromboembolism (VTE). Epidemiologic and genetic studies have revealed clear disparities in the incidence of VTE and the distribution of genetic factors for VTE in populations stratified by ethnicity worldwide. While gain-of-function polymorphisms in the procoagulant genes are common inherited factors in European-origin populations, the most prevalent molecular basis for venous thrombosis in Asians is confirmed to be dysfunctional variants in the anticoagulant genes. With the breakthrough of genomic technologies, a set of novel common alleles and rare mutations associated with VTE have also been identified, in different ethnic groups. Several putative pathways contributing to the pathogenesis of thrombophilia in populations of African-ancestry are largely unknown, as current knowledge of hereditary and acquired risk factors do not fully explain the highest risk of VTE in Black groups. In-depth studies across diverse ethnic populations are needed to unravel the whole genetics of VTE, which will help developing individual risk prediction models and strategies to minimise VTE in all populations.

  11. Genetic-economic evaluation of traits in a goose meat enterprise.

    PubMed

    Shalev, B A; Pasternak, H

    1999-05-01

    1. Goose can be considered as an additional and inexpensive meat source, provided that the marketing age does not exceed 8 weeks. Using the ability of geese to eat grass may reduce the intake of concentrated food up to 30%. 2. According to an equation developed, growth rate accounts for about 58% of the annual breeding gains, egg number 28%, feather yield 10%, fertility and mortality about 2%. These values are about the same for a wide range of food prices. 3. Employing realistic values for expected annual genetic gains reveals that the customary practice of keeping breeders for 5 to 6 years should be replaced by a much shorter cycle of 3 years because the economic gain from the shorter generation interval of selection exceeds the replacement costs.

  12. Of mice and men: molecular genetics of congenital heart disease.

    PubMed

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-04-01

    Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.

  13. Simplified Modeling of Steady-State and Transient Brillouin Gain in Magnetoactive Non-Centrosymmetric Semiconductors

    NASA Astrophysics Data System (ADS)

    Singh, M.; Aghamkar, P.; Sen, P. K.

    With the aid of a hydrodynamic model of semiconductor-plasmas, a detailed analytical investigation is made to study both the steady-state and the transient Brillouin gain in magnetized non-centrosymmetric III-V semiconductors arising from the nonlinear interaction of an intense pump beam with the internally-generated acoustic wave, due to piezoelectric and electrostrictive properties of the crystal. Using the fact that the origin of coherent Brillouin scattering (CBS) lies in the third-order (Brillouin) susceptibility of the medium, we obtained an expression of the gain coefficient of backward Stokes mode in steady-state and transient regimes and studied the dependence of piezoelectricity, magnetic field and pump pulse duration on its growth rate. The threshold-pump intensity and optimum pulse duration for the onset of transient CBS are estimated. The piezoelectricity and externally-applied magnetic field substantially enhances the transient CBS gain coefficient in III-V semiconductors which can be of great use in the compression of scattered pulses.

  14. Optimization of control gain by operator adjustment

    NASA Technical Reports Server (NTRS)

    Kruse, W.; Rothbauer, G.

    1973-01-01

    An optimal gain was established by measuring errors at 5 discrete control gain settings in an experimental set-up consisting of a 2-dimensional, first-order pursuit tracking task performed by subjects (S's). No significant experience effect on optimum gain setting was found in the first experiment. During the second experiment, in which control gain was continuously adjustable, high experienced S's tended to reach the previously determined optimum gain quite accurately and quickly. Less experienced S's tended to select a marginally optimum gain either below or above the experimentally determined optimum depending on initial control gain setting, although mean settings of both groups were equal. This quick and simple method is recommended for selecting control gains for different control systems and forcing functions.

  15. Semiochemical compounds of preen secretion reflect genetic make-up in a seabird species

    USGS Publications Warehouse

    Leclaire, S.; Merkling, T.; Raynaud, C.; Mulard, Hervé; Bessiere, J.-M.; Lhuillier, E.M.; Hatch, Shyla A.; Danchin, E.

    2012-01-01

    Several vertebrates choose their mate according to genetic heterozygosity and relatedness, and use odour cues to assess their conspecifics' genetic make-up. In birds, although several species (including the blacklegged kittiwake) exhibit non-random mating according to genetic traits, the cues used to assess genetic characteristics remain unknown. The importance of olfaction in birds' social behaviour is gaining attention among researchers, and it has been suggested that, as in other vertebrates, bird body scent may convey information about genetic traits. Here, we combined gas chromatography data and genetic analyses at microsatellite loci to test whether semiochemical messages in preen secretion of kittiwakes carried information about genetic heterozygosity and relatedness. Semiochemical profile was correlated with heterozygosity in males and females, while semiochemical distance was correlated with genetic distance only in male-male dyads. Our study is the first to demonstrate a link between odour and genetics in birds, which sets the stage for the existence of sophisticated odour-based mechanisms of mate choice also in birds. ?? 2011 The Royal Society.

  16. Genetic Network Programming with Reconstructed Individuals

    NASA Astrophysics Data System (ADS)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  17. Optical antenna gain. I - Transmitting antennas

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  18. Maintenance of gains following experiential therapies for depression.

    PubMed

    Ellison, Jennifer A; Greenberg, Leslie S; Goldman, Rhonda N; Angus, Lynne

    2009-02-01

    Follow-up data across an 18-month period are presented for 43 adults who had been randomly assigned and had responded to short-term client-centered (CC) and emotion-focused (EFT) therapies for major depression. Long-term effects of these short-term therapies were evaluated using relapse rates, number of asymptomatic or minimally symptomatic weeks, survival times across an 18-month follow-up, and group comparisons on self-report indices at 6- and 18-month follow-up among those clients who responded to the acute treatment phase. EFT treatment showed superior effects across 18 months in terms of less depressive relapse and greater number of asymptomatic or minimally symptomatic weeks, and the probability of maintaining treatment gains was significantly more likely in the EFT treatment than in the CC treatment. In addition, follow-up self-report results demonstrated significantly greater effects for EFT clients on reduction of depression and improvement of self-esteem, and there were trends in favor of EFT, in comparison with CC, on reduction of general symptom distress and interpersonal problems. Maintenance of treatment gains following an empathic relational treatment appears to be enhanced by the addition of specific experiential and gestalt-derived emotion-focused interventions. Clinical and theoretical implications of these findings are presented.

  19. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  20. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    PubMed

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Utility of genetic and non-genetic risk factors in predicting coronary heart disease in Singaporean Chinese.

    PubMed

    Chang, Xuling; Salim, Agus; Dorajoo, Rajkumar; Han, Yi; Khor, Chiea-Chuen; van Dam, Rob M; Yuan, Jian-Min; Koh, Woon-Puay; Liu, Jianjun; Goh, Daniel Yt; Wang, Xu; Teo, Yik-Ying; Friedlander, Yechiel; Heng, Chew-Kiat

    2017-01-01

    Background Although numerous phenotype based equations for predicting risk of 'hard' coronary heart disease are available, data on the utility of genetic information for such risk prediction is lacking in Chinese populations. Design Case-control study nested within the Singapore Chinese Health Study. Methods A total of 1306 subjects comprising 836 men (267 incident cases and 569 controls) and 470 women (128 incident cases and 342 controls) were included. A Genetic Risk Score comprising 156 single nucleotide polymorphisms that have been robustly associated with coronary heart disease or its risk factors ( p < 5 × 10 -8 ) in at least two independent cohorts of genome-wide association studies was built. For each gender, three base models were used: recalibrated Adult Treatment Panel III (ATPIII) Model (M 1 ); ATP III model fitted using Singapore Chinese Health Study data (M 2 ) and M 3 : M 2 + C-reactive protein + creatinine. Results The Genetic Risk Score was significantly associated with incident 'hard' coronary heart disease ( p for men: 1.70 × 10 -10 -1.73 × 10 -9 ; p for women: 0.001). The inclusion of the Genetic Risk Score in the prediction models improved discrimination in both genders (c-statistics: 0.706-0.722 vs. 0.663-0.695 from base models for men; 0.788-0.790 vs. 0.765-0.773 for women). In addition, the inclusion of the Genetic Risk Score also improved risk classification with a net gain of cases being reclassified to higher risk categories (men: 12.4%-16.5%; women: 10.2% (M 3 )), while not significantly reducing the classification accuracy in controls. Conclusions The Genetic Risk Score is an independent predictor for incident 'hard' coronary heart disease in our ethnic Chinese population. Inclusion of genetic factors into coronary heart disease prediction models could significantly improve risk prediction performance.

  2. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting

    PubMed Central

    Michalska, Kalina J.; Decety, Jean; Liu, Chunyu; Chen, Qi; Martz, Meghan E.; Jacob, Suma; Hipwell, Alison E.; Lee, Steve S.; Chronis-Tuscano, Andrea; Waldman, Irwin D.; Lahey, Benjamin B.

    2013-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4–6 years old. Results: In response to child stimuli during functional magnetic resonance imaging (fMRI), hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (SNPs) (rs53576 and rs1042778) in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods. PMID:24550797

  3. Pluripotent stem cells and livestock genetic engineering

    PubMed Central

    Soto, Delia A.

    2016-01-01

    The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs. PMID:26894405

  4. Pluripotent stem cells and livestock genetic engineering.

    PubMed

    Soto, Delia A; Ross, Pablo J

    2016-06-01

    The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.

  5. Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen

    PubMed Central

    Bastidas, Robert J.

    2016-01-01

    SUMMARY Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen. PMID:27030552

  6. Enhanced cell surface expression, immunogenicity and genetic stability resulting from a spontaneous truncation of HIV Env expressed by a recombinant MVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, Linda S.; Belyakov, Igor M.; Earl, Patricia L.

    2008-03-15

    During propagation of modified vaccinia virus Ankara (MVA) encoding HIV 89.6 Env, a few viral foci stained very prominently. Virus cloned from such foci replicated to higher titers than the parent and displayed enhanced genetic stability on passage. Sequence analysis showed a single nucleotide deletion in the 89.6 env gene of the mutant that caused a frame shift and truncation of 115 amino acids from the cytoplasmic domain. The truncated Env was more highly expressed on the cell surface, induced higher antibody responses than the full-length Env, reacted with HIV neutralizing monoclonal antibodies and mediated CD4/co-receptor-dependent fusion. Intramuscular (IM), intradermalmore » (ID) needleless, and intrarectal (IR) catheter inoculations gave comparable serum IgG responses. However, intraoral (IO) needleless injector route gave the highest IgA in lung washings and IR gave the highest IgA and IgG responses in fecal extracts. Induction of CTL responses in the spleens of individual mice as assayed by intracellular cytokine staining was similar with both the full-length and truncated Env constructs. Induction of acute and memory CTL in the spleens of mice immunized with the truncated Env construct by ID, IO, and IR routes was comparable and higher than by the IM route, but only the IR route induced CTL in the gut-associated lymphoid tissue. Thus, truncation of Env enhanced genetic stability as well as serum and mucosal antibody responses, suggesting the desirability of a similar modification in MVA-based candidate HIV vaccines.« less

  7. Longitudinal Analysis of Genetic Susceptibility and BMI Throughout Adult Life.

    PubMed

    Song, Mingyang; Zheng, Yan; Qi, Lu; Hu, Frank B; Chan, Andrew T; Giovannucci, Edward L

    2018-02-01

    Little is known about the genetic influence on BMI trajectory throughout adulthood. We created a genetic risk score (GRS) comprising 97 adult BMI-associated variants among 9,971 women and 6,405 men of European ancestry. Serial measures of BMI were assessed from 18 (women) or 21 (men) years to 85 years of age. We also examined BMI change in early (from 18 or 21 to 45 years of age), middle (from 45 to 65 years of age), and late adulthood (from 65 to 80 years of age). GRS was positively associated with BMI across all ages, with stronger associations in women than in men. The associations increased from early to middle adulthood, peaked at 45 years of age in men and at 60 years of age in women (0.91 and 1.35 kg/m 2 per 10-allele increment, respectively) and subsequently declined in late adulthood. For women, each 10-allele increment in the GRS was associated with an average BMI gain of 0.54 kg/m 2 in early adulthood, whereas no statistically significant association was found for BMI change in middle or late adulthood or for BMI change in any life period in men. Our findings indicate that genetic predisposition exerts a persistent effect on adiposity throughout adult life and increases early adulthood weight gain in women. © 2017 by the American Diabetes Association.

  8. Incorporation of genetic gain into growth projections of Douglas-Fir using ORGANON and the Forest Vegetation Simulator

    Treesearch

    Peter J. Gould; David D. Marshall

    2010-01-01

    Growth models for coast Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) are generally based on measurements of stands that are genetically unimproved (or woods-run); therefore, they cannot be expected to accurately project the development of stands that originate from improved seedlots. In this report, we...

  9. Enhancement of quantum-enhanced LADAR receiver in nonideal phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-07-01

    The phase-sensitive amplification (PSA) with an injected squeezed vacuum field is theoretically investigated in quantum-enhanced laser detection and ranging (LADAR) receiver. The theoretical model of the amplified process is derived to investigate the quantum fluctuations in detail. A new method of mitigating the unflat gain of nonideal PSA is proposed by adjusting the squeezed angle of the squeezed vacuum field. The simulation results indicate that signal-noise ratio (SNR) of system can be efficiently improved and close to the ideal case by this method. This research will provide an important potential in the applications of quantum-enhanced LADAR receiver.

  10. Refined genetic algorithm -- Economic dispatch example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheble, G.B.; Brittig, K.

    1995-02-01

    A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.

  11. Attitudes Towards Prenatal Genetic Counseling, Prenatal Genetic Testing, and Termination of Pregnancy among Southeast and East Asian Women in the United States.

    PubMed

    Tsai, Ginger J; Cameron, Carrie A; Czerwinski, Jennifer L; Mendez-Figueroa, Hector; Peterson, Susan K; Noblin, Sarah Jane

    2017-10-01

    Recognizing the heterogeneity of the Asian population with regards to acculturation, education, health awareness, and cultural values is vital for tailoring culturally sensitive and appropriate care. Prior studies show that cultural values influence perceptions of genetics within Asian populations. The reputation of the family unit factors into decisions such as pregnancy termination and disclosure of family medical history, and the nondirective model of American genetic counseling may conflict with the historical Asian model of paternalistic health care. Previous studies also provide conflicting evidence regarding correlations between education, acculturation, age, and awareness and perceptions of genetic testing. The aims of this study were to describe attitudes towards prenatal genetics among Southeast and East Asian women living in the United States for varying amounts of time and to explore sociocultural factors influencing those attitudes. Twenty-three Asian women who were members of Asian cultural organizations in the United States were interviewed via telephone about their attitudes towards prenatal genetic counseling, prenatal genetic testing, and termination of pregnancy. Responses were transcribed and coded for common themes using a thematic analysis approach. Four major themes emerged. In general, participants: (1) had diverse expectations for genetic counselors; (2) tended to weigh risks and benefits with regards to genetic testing decisions; (3) had mixed views on termination for lethal and non-lethal genetic conditions; and (4) identified cultural factors which influenced testing and termination such as lack of available resources, societal shame and stigma, and family pressure. These findings may allow prenatal genetic counselors to gain a richer, more nuanced understanding of their Asian patients and to offer culturally tailored prenatal genetic counseling.

  12. Genetic co-variance functions for live weight, feed intake, and efficiency measures in growing pigs.

    PubMed

    Coyne, J M; Berry, D P; Matilainen, K; Sevon-Aimonen, M-L; Mantysaari, E A; Juga, J; Serenius, T; McHugh, N

    2017-09-01

    The objective of the present study was to estimate genetic co-variance parameters pertaining to live weight, feed intake, and 2 efficiency traits (i.e., residual feed intake and residual daily gain) in a population of pigs over a defined growing phase using Legendre polynomial equations. The data set used consisted of 51,893 live weight records and 903,436 feed intake, residual feed intake (defined as the difference between an animal's actual feed intake and its expected feed intake), and residual daily gain (defined as the difference between an animal's actual growth rate and its expected growth rate) records from 10,201 growing pigs. Genetic co-variance parameters for all traits were estimated using random regression Legendre polynomials. Daily heritability estimates for live weight ranged from 0.25 ± 0.04 (d 73) to 0.50 ± 0.03 (d 122). Low to moderate heritability estimates were evident for feed intake, ranging from 0.07 ± 0.03 (d 66) to 0.25 ± 0.02 (d 170). The estimated heritability for residual feed intake was generally lower than those of both live weight and feed intake and ranged from 0.04 ± 0.01 (d 96) to 0.17 ± 0.02 (d 159). The heritability for feed intake and residual feed intake increased in the early stages of the test period and subsequently sharply declined, coinciding with older ages. Heritability estimates for residual daily gain ranged from 0.26 ± 0.03 (d 188) to 0.42 ± 0.03 (d 101). Genetic correlations within trait were strongest between adjacent ages but weakened as the interval between ages increased; however, the genetic correlations within all traits tended to strengthen between the extremes of the trajectory. Moderate to strong genetic correlations were evident among live weight, feed intake, and the efficiency traits, particularly in the early stage of the trial period (d 66 to 86), but weakened with age. Results from this study could be implemented into the national genetic evaluation for pigs, providing comprehensive

  13. Optical antenna gain. III - The effect of secondary element support struts on transmitter gain

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1976-01-01

    The effect of a secondary-element spider support structure on optical antenna transmitter gain is analyzed. An expression describing the influence of the struts on the axial gain, in both the near and far fields, is derived as a function of the number of struts and their width. It is found that, for typical systems, the struts degrade the on-axis gain by less than 0.4 dB, and the first side-lobe level is not increased significantly. Contour plots have also been included to show the symmetry of the far-field distributions for three- and four-support members.

  14. High-gain magnetized inertial fusion.

    PubMed

    Slutz, Stephen A; Vesey, Roger A

    2012-01-13

    Magnetized inertial fusion (MIF) could substantially ease the difficulty of reaching plasma conditions required for significant fusion yields, but it has been widely accepted that the gain is not sufficient for fusion energy. Numerical simulations are presented showing that high-gain MIF is possible in cylindrical liner implosions based on the MagLIF concept [S. A. Slutz et al Phys. Plasmas 17, 056303 (2010)] with the addition of a cryogenic layer of deuterium-tritium (DT). These simulations show that a burn wave propagates radially from the magnetized hot spot into the surrounding much denser cold DT given sufficient hot-spot areal density. For a drive current of 60 MA the simulated gain exceeds 100, which is more than adequate for fusion energy applications. The simulated gain exceeds 1000 for a drive current of 70 MA.

  15. SOFIA: an R package for enhancing genetic visualization with Circos

    USDA-ARS?s Scientific Manuscript database

    Visualization of data from any stage of genetic and genomic research is one of the most useful approaches for detecting potential errors, ensuring accuracy and reproducibility, and presentation of the resulting data. Currently software such as Circos, ClicO FS, and RCircos, among others, provide too...

  16. Genetic strategies for lake trout rehabilitation: a synthesis

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.

    1995-01-01

    The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.

  17. Genetic diversity provides opportunities for improvement of fresh-cut pepper quality

    USDA-ARS?s Scientific Manuscript database

    Extensive genetic diversity present in the Capsicum genepool has been utilized extensively to improve pepper disease resistance, fruit quality and varied yield attributes. Little attention has been dedicated to genetic enhancement of pepper fresh-cut quality. We evaluated pepper accessions with dive...

  18. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed.

    PubMed

    Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong

    2012-09-01

    Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

  19. Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2013-04-01

    We designed silicon photonic crystal (PhC) waveguides (WGs) for efficient silicon Raman amplifiers and lasers. We adopted narrow-width WGs to utilize two symmetric transvers-electric-like (TE-like) guided modes, which permit efficient external coupling for both the pump and Stokes waves. Modifying the size and shape of air holes surrounding the line-defect WG structures could tune the frequency difference between these two modes, at the Brillouin-zone edge, to match the Raman shift of silicon. Thus, small group velocities are also available both for pump and Stokes waves simultaneously, which results in a large enhancement of Raman gain. The enhancement factor of the Raman gain in the designed structure is more than 100 times that reported previously.

  20. Genetics/genomics education for nongenetic health professionals: a systematic literature review.

    PubMed

    Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih

    2017-07-01

    The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.

  1. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  2. Understanding participation by African Americans in cancer genetics research.

    PubMed

    McDonald, Jasmine A; Barg, Frances K; Weathers, Benita; Guerra, Carmen E; Troxel, Andrea B; Domchek, Susan; Bowen, Deborah; Shea, Judy A; Halbert, Chanita Hughes

    2012-01-01

    Understanding genetic factors that contribute to racial differences in cancer outcomes may reduce racial disparities in cancer morbidity and mortality. Achieving this goal will be limited by low rates of African American participation in cancer genetics research. We conducted a qualitative study with African American adults (n = 91) to understand attitudes about participating in cancer genetics research and to identify factors that are considered when making a decision about participating in this type of research. Participants would consider the potential benefits to themselves, family members, and their community when making a decision to participate in cancer genetics research. However, concerns about exploitation, distrust of researchers, and investigators' motives were also important to participation decisions. Individuals would also consider who has access to their personal information and what would happen to these data. Side effects, logistical issues, and the potential to gain knowledge about health issues were also described as important factors in decision making. African Americans may consider a number of ethical, legal, and social issues when making a decision to participate in cancer genetics research. These issues should be addressed as part of recruitment efforts.

  3. Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures.

    PubMed

    Caligiuri, Vincenzo; Pezzi, Luigia; Veltri, Alessandro; De Luca, Antonio

    2017-01-24

    We present a detailed study on the resonant gain (RG) phenomena occurring in two nanostructures, in which the presence of dielectric singularities is used to reach a huge amplification of the emitted photons resonantly interacting with the system. The presence of gain molecules in the considered nanoresonator systems makes it possible to obtain optical features that are able to unlock several applications. Two noticeable cases have been investigated: a 1D nanoresonator based on hyperbolic metamaterials and a 3D metal/dielectric spherical multishell. The former has been designed in the framework of the effective medium theory, in order to behave as an epsilon-near-zero-and-pole metamaterial, showing extraordinary light confinement and collimation. Such a peculiarity represents the key to lead to a RG behavior, a condition in which the system is demonstrated to behave as a self-amplifying perfect lens. Very high enhancement and spectral sharpness of 1 nm of the emitted light are demonstrated by means of a transfer matrix method simulation. The latter system consists of a metal/doped-dielectric multishell. A dedicated theoretical approach has been set up to finely engineer its doubly tunable resonant nature. The RG condition has been demonstrated also in this case. Finite element method-based simulations, together with an analytical model, clarify the electric field distribution inside the multishell and suggest the opportunity to use this device as a self-enhanced loss compensated multishell, being a favorable scenario for low-threshold SPASER action. Counterintuitively, exceeding the resonant gain amount of molecules in both systems causes a significant drop in the amplitude of the resonance.

  4. Genetic mapping with an inbred line-derived F2 population in potato

    USDA-ARS?s Scientific Manuscript database

    Potato (Solanum tuberosum L.) is an important global food crop, for which tetrasomic inheritance and self-incompatibility have limited both genetic discovery and breeding gains. We report here on the creation of the first diploid inbred line-derived F2 population in potato, and demonstrate its utili...

  5. Genetic transformation of fruit trees: current status and remaining challenges.

    PubMed

    Gambino, Giorgio; Gribaudo, Ivana

    2012-12-01

    Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.

  6. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. ©AlphaMed Press.

  7. Enhanced Genetic Modification of Adult Growth Factor Mobilized Peripheral Blood Hematopoietic Stem and Progenitor Cells With Rapamycin

    PubMed Central

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M.; Epps, Elizabeth W.; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui

    2014-01-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. PMID:25107584

  8. Genetic and epigenetic variation in the lineage specification of regulatory T cells

    PubMed Central

    Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y

    2015-01-01

    Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014

  9. Conceptual change strategies in teaching genetics

    NASA Astrophysics Data System (ADS)

    Batzli, Laura Elizabeth

    The purpose of this study was to evaluate the effectiveness of utilizing conceptual change strategies when teaching high school genetics. The study examined the effects of structuring instruction to provide students with cognitive situations which promote conceptual change, specifically instruction was structured to elicit students' prior knowledge. The goal of the study was that the students would not only be able to solve genetics problems and define basic terminology but they would also have constructed more scientific schemas of the actual processes involved in inheritance. This study is based on the constructivist theory of learning and conceptual change research which suggest that students are actively involved in the process of relating new information to prior knowledge as they construct new knowledge. Two sections of biology II classes received inquiry based instruction and participated in structured cooperative learning groups. However, the unique difference in the treatment group's instruction was the use of structured thought time and the resulting social interaction between the students. The treatment group students' instructional design allowed students to socially construct their cognitive knowledge after elicitation of their prior knowledge. In contrast, the instructional design for the control group students allowed them to socially construct their cognitive knowledge of genetics without the individually structured thought time. The results indicated that the conceptual change strategies with individually structured thought time improved the students' scientific mastery of genetics concepts and they maintained fewer post instructional alternative conceptions. Although all students gained the ability to correctly solve genetics problems, the treatment group students were able to explain the processes involved in terms of meiosis. The treatment group students were also able to better apply their knowledge to novel genetic situations. The implications

  10. Assessing the evidence for shared genetic risks across psychiatric disorders and traits.

    PubMed

    Martin, Joanna; Taylor, Mark J; Lichtenstein, Paul

    2017-12-04

    Genetic influences play a significant role in risk for psychiatric disorders, prompting numerous endeavors to further understand their underlying genetic architecture. In this paper, we summarize and review evidence from traditional twin studies and more recent genome-wide molecular genetic analyses regarding two important issues that have proven particularly informative for psychiatric genetic research. First, emerging results are beginning to suggest that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or extreme manifestations of psychiatric traits in the population share genetic risks with quantitative variation in milder traits of the same disorder throughout the general population. Second, there is now evidence for substantial sharing of genetic risks across different psychiatric disorders. This extends to the level of characteristic traits throughout the population, with which some clinical disorders also share genetic risks. In this review, we summarize and evaluate the evidence for these two issues, for a range of psychiatric disorders. We then critically appraise putative interpretations regarding the potential meaning of genetic correlation across psychiatric phenotypes. We highlight several new methods and studies which are already using these insights into the genetic architecture of psychiatric disorders to gain additional understanding regarding the underlying biology of these disorders. We conclude by outlining opportunities for future research in this area.

  11. Genetic and environmental influences on restrained eating behavior

    PubMed Central

    Schur, Ellen; Noonan, Carolyn; Polivy, Janet; Goldberg, Jack; Buchwald, Dedra

    2009-01-01

    Objective We examined the relative contributions of genetic and environmental influences to restrained eating. Methods Restrained eating was assessed by the Restraint Scale in a survey mailed to all twins enrolled in the University of Washington Twin Registry. We used structural equation modeling to estimate genetic and non-genetic contributions to restrained eating. Results 1,196 monozygotic, 456 same-sex dizygotic twins, and 447 opposite-sex twins were included in analyses. Restraint Scale scores were more closely correlated in monozygotic twins (rmale = 0.55, rfemale = 0.55) than in same-sex dizygotic twins (rmale = 0.31, rfemale = 0.19). Based on structural equation modeling, the estimated heritability for restrained eating, adjusted for BMI and sex, was 43% (95% confidence interval 35–50%). There was little evidence for common environmental effects. Conclusion These results indicate an inherited component to restrained eating. Genes could influence restrained eating directly or through inherited mediators such as personality factors or tendencies to gain weight. PMID:19658171

  12. An alternative covariance estimator to investigate genetic heterogeneity in populations.

    PubMed

    Heslot, Nicolas; Jannink, Jean-Luc

    2015-11-26

    For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative

  13. Determination of the STIS CCD Gain

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Monroe, TalaWanda; Lockwood, Sean

    2016-09-01

    This report summarizes the analysis and absolute gain results of the STIS Cycle 23 special calibration program 14424 that was designed to measure the gain of amplifiers A, C and D at nominal gain settings of 1 and 4 e-/DN. We used the mean-variance technique and the results indicate a <3.5% change in the gain for amplifier D from when it was originally calculated pre-flight. We compared these values to previous measurements from Cycles 17 through 23. This report outlines the observations, methodology, and results of the mean-variance technique.

  14. Measurement of Antenna Bore-Sight Gain

    NASA Technical Reports Server (NTRS)

    Fortinberry, Jarrod; Shumpert, Thomas

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  15. Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R. M.; Miller, S. P.; Jastrow, J. D.

    The carbon sink strength of arbuscular mycorrhizal fungi (AMF) was investigated by comparing the growth dynamics of mycorrhizal and nonmycorrhizal Andropogon gerardii plants over a wide range of equivalent tissue phosphorus : nitrogen (P : N) ratios. Host growth, apparent photosynthesis (A{sub net}), net C gain (C{sub n}) and P and N uptake were evaluated in sequential harvests of mycorrhizal and nonmycorrhizal A. gerardii plants. Response curves were used to assess the effect of assimilate supply on the mycorrhizal symbiosis in relation to the association of C with N and P. Mycorrhizal plants had higher C{sub n} than nonmycorrhizal plantsmore » at equivalent shoot P : N ratios even though colonization did not affect plant dry mass. The higher C{sub n} in mycorrhizal plants was related to both an increase in specific leaf area and enhanced photosynthesis. The additional carbon gain associated with the mycorrhizal condition was not allocated to root biomass. The C{sub n} in the mycorrhizal plants was positively related to the proportion of active colonization in the roots. The calculated difference between C{sub n} values in mycorrhizal and nonmycorrhizal plants, C{sub diff}, appeared to correspond to the sink strength of the AMF and was not an indirect result of enhanced nutrition in mycorrhizal plants.« less

  16. Genetic engineering of stem cells for enhanced therapy.

    PubMed

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  17. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  18. IQ Gains and the Binet Decrements.

    ERIC Educational Resources Information Center

    Flynn, James R.

    1984-01-01

    Thorndike's Stanford-Binet data suggest that from 1932 to 1971-72 preschool children enjoyed greater IQ gains than older children, possibly due to the rise of television. Additional analysis indicated that gains were either due to sampling error or totally antedated 1947. Gains of 12 IQ points were found for Americans. (Author/EGS)

  19. Genetic correlations between mature cow weight and productive and reproductive traits in Nellore cattle.

    PubMed

    Regatieri, I C; Boligon, A A; Baldi, F; Albuquerque, L G

    2012-08-29

    We investigated genetic associations between mature cow weight (MW) and weaning weight (WW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to yearling (GWY), weaning hip height (WHH), yearling hip height (YHH), scrotal circumference (SC), and age at first calving (AFC). Data from 127,104 Nellore animals born between 1993 and 2006, belonging to Agropecuária Jacarezinho Ltda., were analyzed. (Co)variance components were obtained by the restricted maximum likelihood method, applying an animal model in a multi-traits analysis. The model included direct genetic and residual effects as random effects, the fixed effects of contemporary group, and the linear and quadratic effects of animal age at recording (except for AFC, GBW, and GWY) and age of cow at calving as covariates (except for MW). The numbers of days from birth to weaning and from weaning to yearling were included as covariates for GBW and GWY, respectively. Estimated direct heritabilities were 0.43 ± 0.02 (MW), 0.33 ± 0.01 (WW), 0.36 ± 0.01 (YW), 0.28 ± 0.02 (GBW), 0.31 ± 0.01 (GWY), 0.44 ± 0.02 (WHH), 0.48 ± 0.02 (YHH), 0.44 ± 0.01 (SC), and 0.16 ± 0.03 (AFC). Genetic correlations between MW and productive traits were positive and of medium to high magnitude (ranging from 0.47 ± 0.03 to 0.71 ± 0.01). A positive and low genetic correlation was observed between MW and SC (0.24 ± 0.04). A negative genetic correlation (-0.19 ± 0.03) was estimated between MW and AFC. Selection to increase weight or weight gains at any age, as well as hip height, will change MW in the same direction. Selection for higher SC may lead to a long-term increase in MW. The AFC can be included in selection indices to improve the reproductive performance of beef cattle without significant changes in MW.

  20. Parents' attitudes toward genetic research in autism spectrum disorder.

    PubMed

    Johannessen, Jarle; Nærland, Terje; Bloss, Cinnamon; Rietschel, Marcella; Strohmaier, Jana; Gjevik, Elen; Heiberg, Arvid; Djurovic, Srdjan; Andreassen, Ole A

    2016-04-01

    Genetic research in autism spectrum disorder (ASD) is mainly performed in minors who are legally unable to provide consent. Thus, knowledge of the attitudes, fears, and expectations toward genetic research of the parents is important. Knowledge of the attitudes toward genetic research will improve cooperation between researchers and participants, and help establish confidence in ASD genetic research. The present study aimed to assess these attitudes. Questionnaire-based assessments of attitudes toward genetic research and toward procedures in genetic research of n=1455 parents of individuals with ASD were performed. The main motivation for participation in genetic research is to gain more knowledge of the causes and disease mechanisms of ASD (83.6%), and to contribute toward development of improved treatment in the future (63.7%). The parents also had a positive attitude towards storing genetic information (54.3%) and they requested confidentiality of data (82.9%) and expressed a need to be informed about the purpose (89%) and progress of the research (83.7%). We found a slightly more positive attitude to participation in genetic research among older parents (P=0.015), among fathers compared with mothers (P=0.01), among parents of girls compared with boys (P=0.03), and infantile autism compared with Asperger syndrome (P=0.002). However, linear regression analysis showed that parent and child characteristics seem to have too small an influence on attitudes toward genetic research to be of any relevance (R(2)=0.002-0.02). Parents of children with ASD have, in general, a very positive attitude toward genetic research. Data confidentiality is important, and they express a need for information on the purpose and progress of the research.

  1. Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts.

    PubMed

    Hughes, Maria F; Saarela, Olli; Stritzke, Jan; Kee, Frank; Silander, Kaisa; Klopp, Norman; Kontto, Jukka; Karvanen, Juha; Willenborg, Christina; Salomaa, Veikko; Virtamo, Jarmo; Amouyel, Phillippe; Arveiler, Dominique; Ferrières, Jean; Wiklund, Per-Gunner; Baumert, Jens; Thorand, Barbara; Diemert, Patrick; Trégouët, David-Alexandre; Hengstenberg, Christian; Peters, Annette; Evans, Alun; Koenig, Wolfgang; Erdmann, Jeanette; Samani, Nilesh J; Kuulasmaa, Kari; Schunkert, Heribert

    2012-01-01

    More accurate coronary heart disease (CHD) prediction, specifically in middle-aged men, is needed to reduce the burden of disease more effectively. We hypothesised that a multilocus genetic risk score could refine CHD prediction beyond classic risk scores and obtain more precise risk estimates using a prospective cohort design. Using data from nine prospective European cohorts, including 26,221 men, we selected in a case-cohort setting 4,818 healthy men at baseline, and used Cox proportional hazards models to examine associations between CHD and risk scores based on genetic variants representing 13 genomic regions. Over follow-up (range: 5-18 years), 1,736 incident CHD events occurred. Genetic risk scores were validated in men with at least 10 years of follow-up (632 cases, 1361 non-cases). Genetic risk score 1 (GRS1) combined 11 SNPs and two haplotypes, with effect estimates from previous genome-wide association studies. GRS2 combined 11 SNPs plus 4 SNPs from the haplotypes with coefficients estimated from these prospective cohorts using 10-fold cross-validation. Scores were added to a model adjusted for classic risk factors comprising the Framingham risk score and 10-year risks were derived. Both scores improved net reclassification (NRI) over the Framingham score (7.5%, p = 0.017 for GRS1, 6.5%, p = 0.044 for GRS2) but GRS2 also improved discrimination (c-index improvement 1.11%, p = 0.048). Subgroup analysis on men aged 50-59 (436 cases, 603 non-cases) improved net reclassification for GRS1 (13.8%) and GRS2 (12.5%). Net reclassification improvement remained significant for both scores when family history of CHD was added to the baseline model for this male subgroup improving prediction of early onset CHD events. Genetic risk scores add precision to risk estimates for CHD and improve prediction beyond classic risk factors, particularly for middle aged men.

  2. Loss in 3p and 4p and gain of 3q are concomitant aberrations in squamous cell carcinoma of the vulva.

    PubMed

    Jee, K J; Kim, Y T; Kim, K R; Kim, H S; Yan, A; Knuutila, S

    2001-05-01

    Neoplasm of the vulva is a rare malignancy accounting for <5% of all female genital-tract cancer. However, in recent years the incidence of vulva intraepithelial neoplasia, known to serve as a precursor to carcinoma, has increased in young women generating considerable interest in its pathogenesis. Genetic changes at the molecular level in precursor or invasive vulvar tumors are not well investigated, and DNA copy number changes have not been reported until now. We used comparative genomic hybridization (CGH) to analyze genetic alterations in 10 primary invasive squamous cell carcinomas of the vulva. Chromosomal aberrations were identified in 8/10 cases. The most frequent chromosomal losses were 4p13-pter (five cases), 3p (four cases), and 5q (two cases), and less frequent losses were detected at 6q, 11q, and 13q (one case each). The most frequent chromosomal gains were 3q (four cases) and 8p (three cases), and less frequent gains were found in 9p, 14, 17, and 20q (one case each). The pattern of chromosomal imbalance in vulvar cancer detected by CGH was revealed to be very similar to that in cervical cancers, despite regional differences in their prevalence. These results suggest that the pathogenic pathways in vulvar and cervical carcinomas may be similar and that the genetic background may be common to these two squamous cell carcinomas.

  3. The effect of betahistine, a histamine H1 receptor agonist/H3 antagonist, on olanzapine-induced weight gain in first-episode schizophrenia patients.

    PubMed

    Poyurovsky, Michael; Pashinian, Artashes; Levi, Aya; Weizman, Ronit; Weizman, Abraham

    2005-03-01

    Histamine antagonism has been implicated in antipsychotic drug-induced weight gain. Betahistine, a histamine enhancer with H1 agonistic/H3 antagonistic properties (48 mg t.i.d.), was coadministered with olanzapine (10 mg/day) in three first-episode schizophrenia patients for 6 weeks. Body weight was measured at baseline and weekly thereafter. Clinical rating scales were completed at baseline and at week 6. All participants gained weight (mean weight gain 3.1+/-0.9 kg) and a similar pattern of weight gain was observed: an increase during the first 2 weeks and no additional weight gain (two patients) or minor weight loss (one patient) from weeks 3 to 6. None gained 7% of baseline weight, which is the cut-off for clinically significant weight gain. Betahistine was safe and well tolerated and did not interfere with the antipsychotic effect of olanzapine. Our findings justify a placebo-controlled evaluation of the putative weight-attenuating effect of betahistine in olanzapine-induced weight gain.

  4. Application of medical cases in general genetics teaching in universities.

    PubMed

    He, Zhumei; Bie, Linsai; Li, Wei

    2018-01-20

    General genetics is a core course in life sciences, medicine, agriculture and other related fields. As one of the most fast-developing disciplines of life sciences in the 21th century, the influence of the genetics knowledge on daily life is expanding, especially on human health and reproduction. In order to make it easier for students to understand the profound principles of genetics and to better apply the theories to daily life, we have introduced appropriate medical cases in general genetics teaching and further extended them combined with theoretical basis of genetics. This approach will be beneficial to enhance students' abilities of genetic analysis and promote their enthusiasm to learn and master practical skills. In this paper, we enumerate medical cases related to the modern genetics teaching system to provide a reference for genetics teaching in general and normal universities.

  5. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

    NASA Astrophysics Data System (ADS)

    Hongfei, Yao; Yuxiong, Cao; Danyu, Wu; Xiaoxi, Ning; Yongbo, Su; Zhi, Jin

    2013-07-01

    A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5 × 1.7 mm2 with the emitter area of 16 × 1 μm × 15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

  6. Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy.

    PubMed

    Hu, Song; Yao, Jian; Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng

    2016-05-16

    The ultrafast time-stretch microscopy has been proposed to enhance the temporal resolution of a microscopy system. The optical source is a key component for ultrafast time-stretch microscopy system. Herein, we reported on the gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. By virtue of the excellent characteristics of the gain-guided soliton, the output power and the 3-dB bandwidth of the stable mode-locked soliton could be up to 3 mW and 33.7 nm with a high-quality rectangle shape, respectively. With the proposed robust optical source, the ultrafast time-stretch microscopy with the 49.6 μm resolution and a scan rate of 11 MHz was achieved without the external optical amplification. The obtained results demonstrated that the gain-guided soliton fiber laser could be used as an alternative high-quality optical source for ultrafast time-stretch microscopy and will introduce some applications in fields such as biology, chemical, and optical sensing.

  7. 'My child will never initiate Ultimate Harm': an argument against moral enhancement.

    PubMed

    Tonkens, Ryan

    2015-03-01

    Recently, there has been a lot of philosophical work published on the morality of moral enhancement. One thing that tends to get overlooked in this literature is that there are many different potential methods of morally enhancing humans, and a blanket moral assessment of them may not be warranted. Here I focus on one mode of moral enhancement, namely, prenatal genetic moral enhancement, and offer a normative assessment of it. I argue that there is good reason to adopt a parent-centred perspective (as opposed to a social or state-centred perspective) towards the ethics of prenatal genetic moral enhancement, and, once we do so, that there is good reason to argue that prenatal genetic attempts at moral enhancement are morally problematic and ought not to be pursued. The main reasons for this have to do with the nature of moral enhancement research, and the idea that prospective parents are justified in not assuming that their children will be morally depraved. I leave it open as to whether other modes of morally enhancing humans fare better, morally speaking. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    ERIC Educational Resources Information Center

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge…

  9. Genetically engineered nanocarriers for drug delivery.

    PubMed

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.

  10. Genetically engineered nanocarriers for drug delivery

    PubMed Central

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309

  11. Near-Infrared Laser Pumped Intersubband THz Laser Gain in InGaAs-AlAsSb-InP Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, An-Sheng; Ning, Cun-Zheng

    1999-01-01

    We investigate the possibility of using InGaAs-AlAsSb-InP coupled quantum wells to generate THz radiation by means of intersubband optical pumping. We show that large conduction band offsets of these quantum wells make it possible to use conventional near-infrared diode lasers around 1.55 micron as pump sources. Taking into account the pump-probe coherent interaction and the optical nonlinearity for the pump field, we calculate the THz gain of the quantum well structure. We show that resonant Raman scattering enhances the THz gain at low and moderate optical pumping levels. When the pump intensity is strong, the THz gain is reduced by pump-induced population redistribution and pump-probe coherent interactions.

  12. Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen.

    PubMed

    Bastidas, Robert J; Valdivia, Raphael H

    2016-06-01

    Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. The Evolution of Human Genetic Studies of Cleft Lip and Cleft Palate

    PubMed Central

    Marazita, Mary L.

    2013-01-01

    Orofacial clefts (OFCs)—primarily cleft lip and cleft palate—are among the most common birth defects in all populations worldwide, and have notable population, ethnicity, and gender differences in birth prevalence. Interest in these birth defects goes back centuries, as does formal scientific interest; scientists often used OFCs as examples or evidence during paradigm shifts in human genetics, and have also used virtually every new method of human genetic analysis to deepen our understanding of OFC. This review traces the evolution of human genetic investigations of OFC, highlights the specific insights gained about OFC through the years, and culminates in a review of recent key OFC genetic findings resulting from the powerful tools of the genomics era. Notably, OFC represents a major success for genome-wide approaches, and the field is poised for further breakthroughs in the near future. PMID:22703175

  14. Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays

    NASA Astrophysics Data System (ADS)

    Beecken, B. P.; Fossum, E. R.

    1996-07-01

    Standard statistical theory is used to calculate how the accuracy of a conversion-gain measurement depends on the number of samples. During the development of a theoretical basis for this calculation, a model is developed that predicts how the noise levels from different elements of an ideal detector array are distributed. The model can also be used to determine what dependence the accuracy of measured noise has on the size of the sample. These features have been confirmed by experiment, thus enhancing the credibility of the method for calculating the uncertainty of a measured conversion gain. detector-array uniformity, charge coupled device, active pixel sensor.

  15. The genetic truth of surrogate parentage.

    PubMed

    Goswami, Gajendra K

    2015-12-01

    Old family laws presume that the husband is the father of any child born to a married couple; a socio-legal fiction. A social and biological father is presumed to be one and the same. The cocoon of legitimacy protects marriage but the child born outside valid marriage is recognised as 'illegitimate'. Assisted reproduction technologies strengthened reproductive rights but confuse purity of lineage and genetically divorce socio-legal parentage from biological parentage. The lesbian, gay, bisexual, and transgender reproductive rights, surrogacy, gamete donation, delayed pregnancies using cryopreserved embryos, single parentage, virgin mothers (virgin birth), live-in relationship are increasingly recognised under the cover of human dignity but obscure parentage. In contrast to parental rights of reproductive autonomy, equity demands the child's right to know its biological parentage, recognised under Article 7 of the UN Convention on the Rights of the Child, 1989. DNA profiling may clarify the genetic parentage with virtual certainty but with multiple limitations. DNA forensics ascertains the genetic makeup of a child linking putative parents irrespective of any social relationship between them. The right to know biological linkages gained paramount significance in cases like displacement, adoption, child trafficking and variants of cross-genetic in vitro fertilization including complete surrogacy. The 'reproductive tourism' promotes crossing borders and bodies, enabling conception in the countries with extreme religious and legal barriers. © The Author(s) 2015.

  16. Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement.

    PubMed

    Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad

    2017-08-01

    Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.

  17. Direct to consumer genetic testing-law and policy concerns in Ireland.

    PubMed

    de Paor, Aisling

    2017-11-25

    With rapid scientific and technological advances, the past few years has witnessed the emergence of a new genetic era and a growing understanding of the genetic make-up of human beings. These advances have propelled the introduction of companies offering direct to consumer (DTC) genetic testing, which facilitates the direct provision of such tests to consumers, (for example, via the internet). Although DTC genetic testing offers benefits by enhancing consumer accessibility to such technology, promoting proactive healthcare and increasing genetic awareness, it presents a myriad of challenges, from an ethical, legal and regulatory perspective. As DTC genetic testing usually eliminates the need for a medical professional in accessing genetic tests, this lack of professional guidance and counselling may result in misinterpretation and confusion regarding results. In addition, an evident concern relates to the scientific validity and quality of these tests. A further problem arising is the lack or inadequacy of regulation in this field. Despite the increasing accessibility of DTC genetic testing, this legislative vacuum is apparent in Ireland, where there is no concrete legislation. This article explores the main ethical, legal and regulatory issues arising with the advent of rapid advances in DTC genetic testing in Ireland. Further, with inevitable future advances in genetic science, as well as increasing internet accessibility, the challenges presented are likely to become more amplified. In consideration of the ethical and legal challenges, this paper highlights the regulation of DTC genetic testing as a growing concern in Ireland, recognising its importance to both the scientific community as well as in respect of enhancing consumer confidence in such technologies.

  18. A weight-gain-for-gestational-age z score chart for the assessment of maternal weight gain in pregnancy.

    PubMed

    Hutcheon, Jennifer A; Platt, Robert W; Abrams, Barbara; Himes, Katherine P; Simhan, Hyagriv N; Bodnar, Lisa M

    2013-05-01

    To establish the unbiased relation between maternal weight gain in pregnancy and perinatal health, a classification for maternal weight gain is needed that is uncorrelated with gestational age. The goal of this study was to create a weight-gain-for-gestational-age percentile and z score chart to describe the mean, SD, and selected percentiles of maternal weight gain throughout pregnancy in a contemporary cohort of US women. The study population was drawn from normal-weight women with uncomplicated, singleton pregnancies who delivered at the Magee-Womens Hospital in Pittsburgh, PA, 1998-2008. Analyses were based on a randomly selected subset of 648 women for whom serial prenatal weight measurements were available through medical chart record abstraction (6727 weight measurements). The pattern of maternal weight gain throughout gestation was estimated by using a random-effects regression model. The estimates were used to create a chart with the smoothed means, percentiles, and SDs of gestational weight gain for each week of pregnancy. This chart allows researchers to express total weight gain as an age-standardized z score, which can be used in epidemiologic analyses to study the association between pregnancy weight gain and adverse or physiologic pregnancy outcomes independent of gestational age.

  19. Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel

    NASA Astrophysics Data System (ADS)

    Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.

    2018-01-01

    The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.

  20. Disease-Concordant Twins Empower Genetic Association Studies.

    PubMed

    Tan, Qihua; Li, Weilong; Vandin, Fabio

    2017-01-01

    Genome-wide association studies with moderate sample sizes are underpowered, especially when testing SNP alleles with low allele counts, a situation that may lead to high frequency of false-positive results and lack of replication in independent studies. Related individuals, such as twin pairs concordant for a disease, should confer increased power in genetic association analysis because of their genetic relatedness. We conducted a computer simulation study to explore the power advantage of the disease-concordant twin design, which uses singletons from disease-concordant twin pairs as cases and ordinary healthy samples as controls. We examined the power gain of the twin-based design for various scenarios (i.e., cases from monozygotic and dizygotic twin pairs concordant for a disease) and compared the power with the ordinary case-control design with cases collected from the unrelated patient population. Simulation was done by assigning various allele frequencies and allelic relative risks for different mode of genetic inheritance. In general, for achieving a power estimate of 80%, the sample sizes needed for dizygotic and monozygotic twin cases were one half and one fourth of the sample size of an ordinary case-control design, with variations depending on genetic mode. Importantly, the enriched power for dizygotic twins also applies to disease-concordant sibling pairs, which largely extends the application of the concordant twin design. Overall, our simulation revealed a high value of disease-concordant twins in genetic association studies and encourages the use of genetically related individuals for highly efficiently identifying both common and rare genetic variants underlying human complex diseases without increasing laboratory cost. © 2016 John Wiley & Sons Ltd/University College London.