Communication and Cultural Change in University Technology Transfer
ERIC Educational Resources Information Center
Wright, David
2013-01-01
Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…
Genetic enhancement in sport: just another form of doping?
Mehlman, Maxwell J
2012-12-01
Patented genetic technologies such as the ACTN3 genetic test are adding a new dimension to the types of performance enhancement available to elite athletes. Organized sports organizations and governments are seeking to prevent athletes' use of biomedical enhancements. This paper discusses how these interdiction efforts will affect the use and availability of genetic technologies that can enhance athletic performance. The paper provides a working definition of enhancement, and in light of that definition and the concerns of the sports community, reviews genetic enhancement as a result of varied technologies, including, genetic testing to identify innate athletic ability, performance-enhancing drugs developed with genetic science and technology, pharmacogenetics, enhancement through reproductive technologies, somatic gene transfer, and germ line gene transfer.
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
AAC technology transfer: an AAC-RERC report.
Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B
2009-03-01
Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.
ERIC Educational Resources Information Center
Agyei, Douglas D.; Voogt, Joke
2014-01-01
This study examined 100 beginning teachers' transfer of learning when utilising Information Communication Technology-enhanced activity-based learning activities. The beginning teachers had participated in a professional development program that was characterised by "learning technology by collaborative design" in their final year of…
Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact
ERIC Educational Resources Information Center
Fraser, John
2010-01-01
Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…
ERIC Educational Resources Information Center
Phelan, Jack Gordon
2012-01-01
This study examined the effects of a critical thinking instructional intervention in a higher education technology course with the purpose of determining the extent to which the intervention enhanced student critical thinking knowledge, skills, dispositions, application and transfer abilities. Historically, critical thinking has been considered…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... participants would identify and investigate the advantages, disadvantages, required technology enhancements... Development Agreements (CRADAs), are authorized by the Federal Technology Transfer Act of 1986 (Pub. L. 99- 502, codified at 15 U.S.C. 3710(a)). A CRADA promotes the transfer of technology to the private sector...
NASA partnership with industry: Enhancing technology transfer
NASA Technical Reports Server (NTRS)
1983-01-01
Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.
Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector.
ERIC Educational Resources Information Center
Creighton, J. W., Ed.; And Others
This report reviews a joint attempt of the United States Forest Service and the Naval Service to enhance the utilization of research results and the new technologies through improved effectiveness of technology transfer efforts. It consists of an introduction by J. W. Creighton and seven papers: (1) "Management for Change" by P. A.…
NASA Technical Reports Server (NTRS)
Trivoli, George W.
1998-01-01
The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).
ERIC Educational Resources Information Center
Osler, James E.; Hollowell, Gail P.; Nichols, Stacy M.
2012-01-01
Technology Engineering is an innovative component of a much larger arena of teaching that effectively uses interactive technology as a method of enhancing learning and the learning environment. Using this method to teach science and math content empowers the teacher and enhances the curriculum as the classroom becomes more efficient and effective.…
Auto-disable syringes for immunization: issues in technology transfer.
Lloyd, J. S.; Milstien, J. B.
1999-01-01
WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248
Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis
ERIC Educational Resources Information Center
Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar
2016-01-01
University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…
NASA technology transfer network communications and information system: TUNS user survey
NASA Technical Reports Server (NTRS)
1992-01-01
Applied Expertise surveyed the users of the deployed Technology Utilization Network System (TUNS) and surveyed prospective new users in order to gather background information for developing the Concept Document of the system that will upgrade and replace TUNS. Survey participants broadly agree that automated mechanisms for acquiring, managing, and disseminating new technology and spinoff benefits information can and should play an important role in meeting NASA technology utilization goals. However, TUNS does not meet this need for most users. The survey describes a number of systematic improvements that will make it easier to use the technology transfer mechanism, and thus expedite the collection and dissemination of technology information. The survey identified 26 suggestions for enhancing the technology transfer system and related processes.
NASA Technical Reports Server (NTRS)
1994-01-01
This video presents two examples of NASA Technology Transfer. The first is a Downhole Video Logger, which uses remote sensing technology to help in mining. The second example is the use of satellite image processing technology to enhance ultrasound images taken during pregnancy.
Optimizing Outcome in the University-Industry Technology Transfer Projects
NASA Astrophysics Data System (ADS)
Alavi, Hamed; Hąbek, Patrycja
2016-06-01
Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in University- Firm Technology Transfer process?
ERIC Educational Resources Information Center
Hardre, Patricia L.
2013-01-01
Authenticity is a key to using technology for instruction in ways that enhance learning and support learning transfer. Simply put, a representation is authentic when it shows learners clearly what a task, context, or experience will be like in real practice. More authentic representations help people learn and understand better. They support…
DOT National Transportation Integrated Search
2004-01-01
Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...
Orbit transfer rocket engine technology program enhanced heat transfer combustor technology
NASA Technical Reports Server (NTRS)
Brown, William S.
1991-01-01
In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.
Impact of Groundwater Salinity on Bioremediation Enhanced by Micro-Nano Bubbles
Li, Hengzhen; Hu, Liming; Xia, Zhiran
2013-01-01
Micro-nano bubbles (MNBs) technology has shown great potential in groundwater bioremediation because of their large specific surface area, negatively charged surface, long stagnation, high oxygen transfer efficiency, etc. Groundwater salinity, which varies from sites due to different geological and environmental conditions, has a strong impact on the bioremediation effect. However, the groundwater salinity effect on MNBs’ behavior has not been reported. In this study, the size distribution, oxygen transfer efficiency and zeta potential of MNBs was investigated in different salt concentrations. In addition, the permeability of MNBs’ water through sand in different salt concentrations was studied. The results showed that water salinity has no influence on bubble size distribution during MNBs generation. MNBs could greatly enhance the oxygen transfer efficiency from inner bubbles to outer water, which may greatly enhance aerobic bioremediation. However, the enhancement varied depending on salt concentration. 0.7 g/L was found to be the optimal salt concentration to transfer oxygen. Moreover, MNBs in water salinity of 0.7 g/L had the minimum zeta potential. The correlation of zeta potential and mass transfer was discussed. The hydraulic conductivities of sand were similar for MNBs water with different salt concentrations. The results suggested that salinity had a great influence on MNBs performance, and groundwater salinity should be taken into careful consideration in applying MNBs technology to the enhancement of bioremediation. PMID:28788299
The Role of Professional Objects in Technology-Enhanced Learning Environments in Higher Education
ERIC Educational Resources Information Center
Zitter, Ilya; de Bruijn, Elly; Simons, Robert-Jan; ten Cate, Olle
2012-01-01
We study project-based, technology-enhanced learning environments in higher education, which should produce, by means of specific mechanisms, learning outcomes in terms of transferable knowledge and learning-, thinking-, collaboration- and regulation-skills. Our focus is on the role of objects from professional practice serving as boundary objects…
Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest
Julia Kirschman
2014-01-01
Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...
A Review of Microbubble and its Applications in Ozonation
NASA Astrophysics Data System (ADS)
Shangguan, Yufei; Yu, Shuili; Gong, Chao; Wang, Yue; Yang, Wangzhen; Hou, Li-an
2018-03-01
Ozonation has been demonstrated to be an effective technology for the oxidation of organic matters in water treatment. But the low solubility and low mass transfer efficiency limit the application. Microbubble technology has the potential of enhancing gas-liquid mass transfer efficiency, thus it can be applied in ozonation process. The applications of microbubble ozonation have shown advantages over macro bubble ozonation in mass transfer and reaction rate. Microbubble ozonation will be a promising treatment both in water and wastewater treatment.
25 CFR 170.166 - What services do Indian LTAP centers provide?
Code of Federal Regulations, 2012 CFR
2012-04-01
... transportation technology transfer services, including education, training, technical assistance and related... developing and sharing tribal transportation technology and traffic safety systems and information with other... departments and universities; (8) Provide technical assistance on transportation technology and enhance new...
25 CFR 170.166 - What services do Indian LTAP centers provide?
Code of Federal Regulations, 2013 CFR
2013-04-01
... transportation technology transfer services, including education, training, technical assistance and related... developing and sharing tribal transportation technology and traffic safety systems and information with other... departments and universities; (8) Provide technical assistance on transportation technology and enhance new...
25 CFR 170.166 - What services do Indian LTAP centers provide?
Code of Federal Regulations, 2014 CFR
2014-04-01
... transportation technology transfer services, including education, training, technical assistance and related... developing and sharing tribal transportation technology and traffic safety systems and information with other... departments and universities; (8) Provide technical assistance on transportation technology and enhance new...
25 CFR 170.166 - What services do Indian LTAP centers provide?
Code of Federal Regulations, 2011 CFR
2011-04-01
... transportation technology transfer services, including education, training, technical assistance and related... developing and sharing tribal transportation technology and traffic safety systems and information with other... departments and universities; (8) Provide technical assistance on transportation technology and enhance new...
NASA/BLM Applications Pilot Test (APT), phase 2. Volume 3: Technology transfer
NASA Technical Reports Server (NTRS)
1981-01-01
Techniques used and materials presented at a planning session and two workshops held to provide hands-on training in the integration of quantitatively based remote sensing data are described as well as methods used to enhance understanding of approaches to inventories that integrate multiple data sources given various resource information objectives. Significant results from each of the technology transfer sessions are examined.
KSC Tech Transfer News, Volume 5, No. 1
NASA Technical Reports Server (NTRS)
Buckingham, Bruce (Editor)
2012-01-01
In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.
ERIC Educational Resources Information Center
Guldberg, Karen; Parsons, Sarah; Porayska-Pomsta, Kaska; Keay-Bright, Wendy
2017-01-01
Experimental intervention studies constitute the current dominant research designs in the autism education field. Such designs are based on a "knowledge-transfer" model of evidence-based practice in which research is conducted by researchers, and is then "transferred" to practitioners to enable them to implement evidence-based…
THE FEDERAL TECHNOLOGY TRANSFER ACT - ENVIRONMENTAL MONITORING TECHNOLOGIES OPPORTUNITIES
To enhance and maintain a clean environment while imporiving the nation's productivity, the U.S. EPA is joining with private industry and academia to seek new, cost-effective technologies to prevent and control environmental pollution. Both the U.S. government and the private sec...
NASA SCIENTIFIC AND TECHNICAL INFORMATION (STI) PROGRAM PLAN
NASA's scientific and technical information (STI) is an essential product of research, facilitates technology transfer, and enhances the competitive edge of U.S. companies and educational institutions. NASA's STI is an integral part of NASA's information transfer and is critical...
1991-12-01
December, 1991 i--" NASA-Lewis Research Center Cleveland, Ohio 44135 94-08573 Contract No. NAS3-23773 .0l•!ill~• 111 l94 3 16 09V PISULATIXI NOTICI... 3 3.1 Test Hardware and Facility Description...V - Drawings and Layouts of Calorimeter Insert and Related Hardware .... 133 - Ui - FIGURES NUMBER PIALE GE 3 -1 Integrated Component Evaluator (I.C.E
Strategic factors in the development of the National Technology Transfer Network
NASA Technical Reports Server (NTRS)
Root, Jonathan F.; Stone, Barbara A.
1993-01-01
Broad consensus among industry and government leaders has developed over the last decade on the importance of applying the U.S. leadership in research and development (R&D) to strengthen competitiveness in the global marketplace, and thus enhance national prosperity. This consensus has emerged against the backdrop of increasing economic competition, and the dramatic reduction of military threats to national security with the end of the Cold War. This paper reviews the key factors and considerations that shaped - and continue to influence - the development of the Regional Technoloty Transfer Centers (RTTC) and the National Technology Transfer Center (NTTC). Also, the future role of the national network in support of emerging technology policy initiatives will be explored.
Enhanced heat transfer combustor technology, subtasks 1 and 2, tast C.1
NASA Technical Reports Server (NTRS)
Baily, R. D.
1986-01-01
Analytical and experimental studies are being conducted for NASA to evaluate means of increasing the heat extraction capability and service life of a liquid rocket combustor. This effort is being conducted in conjunction with other tasks to develop technologies for an advanced, expander cycle, oxygen/hydrogen engine planned for upper stage propulsion applications. Increased heat extraction, needed to raise available turbine drive energy for higher chamber pressure, is derived from combustion chamber hot gas wall ribs that increase the heat transfer surface area. Life improvement is obtained through channel designs that enhance cooling and maintain the wall temperature at an accepatable level. Laboratory test programs were conducted to evaluate the heat transfer characteristics of hot gas rib and coolant channel geometries selected through an analytical screening process. Detailed velocity profile maps, previously unavailable for rib and channel geometries, were obtained for the candidate designs using a cold flow laser velocimeter facility. Boundary layer behavior and heat transfer characteristics were determined from the velocity maps. Rib results were substantiated by hot air calorimeter testing. The flow data were analytically scaled to hot fire conditions and the results used to select two rib and three enhanced coolant channel configurations for further evaluation.
Double-layered cell transfer technology for bone regeneration
Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo
2016-01-01
For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1996-01-01
In fiscal year 1994, the United States government spent about $68 billion for science and technology. Although there is general agreement among policy makers that the results of this expenditure can be used to enhance technological innovation and improve economic competitiveness, there is no coherent scientific and technical information (STI) policy. The absence of a cohesive policy and STI policy framework means that the transfer and utilization of STI goes uncoordinated. This chapter examines the U.S. government's role in funding science and technology, reviews Federal STI activities and involvement in the transfer and use of STI resulting from federally-funded science and technology, presents issues surrounding the use of federally-funded STI, and offers recommendations for improving the transfer and use of STI.
Wireless power transfer inspired by the modern trends in electromagnetics
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2017-06-01
Since the beginning of the 20th century, researchers have been looking for an effective way to transfer power without wired connections, but the wireless power transfer technology started to attract extensive interest from the industry side only in 2007 when the first smartphone was released and a consumer electronics revolution was triggered. Currently, the modern technology of wireless power transfer already has a rich research and development history as well as outstanding advances in commercialization. This review is focused on the description of distinctive implementations of this technology inspired by the modern trends in electrodynamics. We compare the performances of the power transfer systems based on three kinds of resonators, i.e., metallic coil resonators, dielectric resonators, and cavity mode resonators. We argue that metamaterials and meta-atoms are powerful tools to improve the functionalities and to obtain novel properties of the systems. We review different approaches to enhance the functionality of the wireless power transfer systems including control of the power transfer path and increase of the operation range and efficiency. Various applications of wireless power transfer are discussed and currently available standards are reviewed.
Special Article Personal Wearable Technologies in Education: Value or Villain?
ERIC Educational Resources Information Center
Borthwick, Arlene C.; Anderson, Cindy L.; Finsness, Elizabeth S.; Foulger, Teresa S.
2015-01-01
Wearable personal learning technologies can gather data from the person wearing the device or from the surrounding environment and enable that data to be transferred to another device or shared via the cloud. Wearable technologies can serve as a valuable asset in the classroom enhancing differentiation of instruction and student engagement. They…
Researchers at the NCI have developed a method of genetically engineering lymphocytes to expressed elevated levels of cytokine proteins. This technology is useful for improving cellular adoptive immunotherapies to treat a range of infectious diseases and cancers.
Integrated controls and health monitoring for chemical transfer propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.; Binder, Michael P.
1990-01-01
NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.
Advanced Air Transportation Technologies Project, Final Document Collection
NASA Technical Reports Server (NTRS)
Mogford, Richard H.; Wold, Sheryl (Editor)
2008-01-01
This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.
Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank
NASA Technical Reports Server (NTRS)
Werkheiser, Arthur
2015-01-01
The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.
Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drost, Kevin; Jovanovic, Goran; Paul, Brian
2015-09-30
The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).
System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag
NASA Technical Reports Server (NTRS)
Florence, D. E.; Fischer, G.
1983-01-01
The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.
Aiming at Sustainable Innovation in Teacher Education--From Theory to Practice
ERIC Educational Resources Information Center
Turcsányi-Szabó, Márta
2012-01-01
The paper composes a framework for learning design, using Web 2.0 technologies in teacher training, transferring the advancement in technology to become an affordance in the teaching/learning process, based on Bloom's Extended Digital Taxonomy in order to enhance the Technological Pedagogical and Content Knowledge of teachers. As a case study, it…
Practical applications of new research information in the practice of bovine embryo transfer.
Looney, C R; Pryor, J H
2010-01-01
For more than 40 years, practitioners have sought to improve all aspects of commercial bovine embryo transfer. The development of new technologies for this industry has been substantial, with recent focus on cryopreservation techniques and the in vitro production of embryos fertilised with sexed spermatozoa. When these and other new technologies are developed, the following questions remain: (1) is said technology regulated or does it require licensing; and (2) is it applicable and, if so, is it financially feasible? Computer access to published research and the advancement of data software programs conducive to the industry for data procurement have been essential for helping practitioners answer these questions by enhancing their ability to analyse and apply data. The focus of the present paper is to aid commercial embryo transfer practitioners in determining new technologies that are available and whether they can be implemented effectively, benefiting their programs.
From Content to Practice: Sharing Educational Practice in Edu-Sharing
ERIC Educational Resources Information Center
Klebl, Michael; Kramer, Bernd J.; Zobel, Annett
2010-01-01
For technology-enhanced learning, the idea of "learning objects" transfers the technologies of content management, methods of software engineering and principles of open access to educational resources. This paper reports on CampusContent, a research project and competence centre for e-learning at FernUniversitat in Hagen that designed…
ERIC Educational Resources Information Center
Harman, Grant
2010-01-01
Australian governments in recent years have invested substantially in innovation and research commercialisation with the aim of enhancing international economic competitiveness, making research findings more readily available to research users, and supporting economic and social development. Although there have been a number of evaluations of…
NASA Astrophysics Data System (ADS)
Tahat, Kaher; Whelan, Susan
2015-02-01
In terms of hosting countries perspectives, Foreign Direct Investments (FDI) could have a positive effect on its developing economy, by transferring, both: resources of finance in addition to the international technology (ITT) (Choi, 1997). Multinational companies (MNC) are engaging in the transferring of the new technology, internally as well as licensing older one; they create "Spillover" (Knowledge) for facilitating the transfer of ITT in line with geographical location, period of investment, and the type of industry. Furthermore, the effect of these spillovers depends on the level of transferring this knowledge based on FDI attraction policies of the host country (Huang, 2009). Considering the Arabian Gulf council countries (GCC) as "FDI- rich hosting countries", who are not seeking for financial resources, i.e., they already have a huge financial capacity for funding their different projects, even though FDI has been powerfully presented in GCC . They saw noticeable increases in FDI inflows beginning in 2002, (www.unctad.org.fdistatistics). Therefore by assumption, FDI inflows to GCC could positively affect their economic growth through transferring the advanced technology, in order to build up their level of technology (productivity growth) as well as their economic diversification strategy. If so how this Knowledge could be diffused and measured in order to maximize its benefit and enhancing the productivity growth, and what is the current status of (GCC).
Gene and Cell Doping: The New Frontier - Beyond Myth or Reality.
Neuberger, Elmo W I; Simon, Perikles
2017-01-01
The advent of gene transfer technologies in clinical studies aroused concerns that these technologies will be misused for performance-enhancing purposes in sports. However, during the last 2 decades, the field of gene therapy has taken a long and winding road with just a few gene therapeutic drugs demonstrating clinical benefits in humans. The current state of gene therapy is that viral vector-mediated gene transfer shows the now long-awaited initial success for safe, and in some cases efficient, gene transfer in clinical trials. Additionally, the use of small interfering RNA promises an efficient therapy through gene silencing, even though a number of safety concerns remain. More recently, the development of the molecular biological CRISPR/Cas9 system opened new possibilities for efficient and highly targeted genome editing. This chapter aims to define and consequently demystify the term "gene doping" and discuss the current reality concerning gene- and cell-based physical enhancement strategies. The technological progress in the field of gene therapy will be illustrated, and the recent clinical progress as well as technological difficulties will be highlighted. Comparing the attractiveness of these technologies with conventional doping practices reveals that current gene therapy technologies remain unattractive for doping purposes and unlikely to outperform conventional doping. However, future technological advances may raise the attractiveness of gene doping, thus making it easier to develop detection strategies. Currently available detection strategies are introduced in this chapter showing that many forms of genetic manipulation can already be detected in principle. © 2017 S. Karger AG, Basel.
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2017-02-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
From the Chemistry Lab to Licensing
NASA Technical Reports Server (NTRS)
Savino, Joseph M.; Street, Kenneth W.; Philipp, Warren H.
1998-01-01
This is a story of technology maturation and transfer, and licensing. It traces the history of the recently patented ion- exchange material (IEM) from the accidental discovery that this polymer, a battery separator of marginal performance, picked up copper from distilled water passing through corroded copper tubing in the laboratory, to a point where five organizations and one individual have applied for licenses to manufacture and market it or to use it in a wide variety of applications. This story discusses in detail the problems of converting an immature technology into a mature and eventually commercialized technology, without dedicated resources. Readers will develop an appreciation for how the obstacles to maturation and licensing of the technology were faced and overcome. The lessons learned will be discussed, with the hope of enhancing the technology transfer process.
NASA Technical Reports Server (NTRS)
Barr, B. G.
1986-01-01
A technology transfer program utilizing graduate students in mechanical engineering at the University of Kansas was initiated in early 1981. The objective of the program was to encourage industrial innovation in the Midwest through improved industry/university cooperation and the utilization of NASA technology. A related and important aspect of the program was the improvement of graduate engineering education through the involvement of students in the identification and accomplishment of technological objectives in cooperation with scientists at NASA centers and engineers in industry. The pilot NASA/University Industrial Innovation Program was an outstanding success based on its ability to: attract top graduate students; secure industry support; and stimulate industry/university cooperation leading to enhanced university capability and utilization of advanced technology by industry.
Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications.
Puértolas, E; Luengo, E; Álvarez, I; Raso, J
2012-01-01
The mass transfer phenomenon occurs in many operations of the food industry with the purpose of obtaining a given substance of interest, removing water from foods, or introducing a given substance into the food matrix. Pretreatments that modify the permeability of the cell membranes, such as grinding, heating, or enzymatic treatment, enhance the mass transfer. However, these techniques may require a significant amount of energy and can cause losses of valuable food compounds. Pulsed electric field (PEF) technology is a nonthermal processing method that causes permeabilization of cell membranes using low energy requirements and minimizing quality deterioration of the food compounds. Many practical applications of PEF for enhancing mass transfer in the food industry have been investigated. The purpose of this chapter is to give an overview of the state of the art of application of PEF for improving mass transfer in the food industry.
NASA Astrophysics Data System (ADS)
Harrell, Leigh S.
The purpose of this study was two-fold. First the study was designed to determine student perceptions regarding the perceived degree of original learning from a human anatomy and physiology course, and the student perception of the use of the knowledge in an allied health program. Second, the intention of the study was to establish student beliefs on the characteristics of the transfer of learning including those factors which enhance learning transfer and those that serve as barriers to learning transfer. The study participants were those students enrolled in any allied health program at a community college in a Midwest state, including: nursing, radiology, surgical technology, health information technology, and paramedic. Both quantitative and qualitative data were collected and analyzed from the responses to the survey. A sub-group of participants were chosen to participate in semi-structured formal interviews. From the interviews, additional qualitative data were gathered. The data collected through the study demonstrated student perception of successful transfer experiences. The students in the study were able to provide specific examples of learning transfer experienced from the human anatomy and physiology course in their allied health program. Findings also suggested students who earned higher grades in the human anatomy and physiology course perceived greater understanding and greater use of the course's learning objectives in their allied health program. The study found the students believed the following learning activities enhances the transfer of learning: (1) Providing application of the information or skills being learned during the instruction of the course content enhances the transfer of learning. (2) Providing resource materials and activities which allow the students to practice the content being taught facilitates the transfer of learning. The students made the following recommendations to remove barriers to the transfer of learning: (1) Teachers should be friendly, non-intimidating, enthusiastic, knowledgeable, and organized to encourage successful transfer of learning. (2) Teachers should use different methods to teach ideas, get their students involved, and test over the content taught to facilitate the transfer of learning.
Immunocompetent Mouse Model for Tracking Cancer Progression | NCI Technology Transfer Center | TTC
The National Cancer Institute seeks licensees or research collaborators to develop and commercialize transgenic mice having immunocompetent rat growth hormone-firefly Luciferase-enhanced green fluorescent protein.
ERIC Educational Resources Information Center
Bucknall, Ruary
1996-01-01
Overview of the interactive technologies used by the Northern Territory Secondary Correspondence School in Australia: print media utilizing desktop publishing and electronic transfer; telephone or H-F radio; interactive television; and interactive computing. More fully describes its interactive CD-ROM courses. Emphasizes that the programs are…
A wide array of effective storm water management and resource protection tools have been developed for urban environments, but their implementation continues to be hampered by a lack of technology transfer opportunities. At the national conference Urban Storm Water: Enhancing Pro...
Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk
2016-09-07
Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.
Baticados, Didi B; Agbayani, Renato F; Quinitio, Emilia T
2014-12-01
Finding aquaculture development approaches to open up livelihood opportunities for the rural poor and in mainstreaming smallholder fish farmers to reduce poverty remain a challenge. This paper examines the community-based technology transfer mechanism of mudcrab nursery in ponds and its socioeconomic impacts on smallholder mudcrab growers in Northern Samar, Philippines. Results indicated that the technology is a viable enterprise done by a straight culture system method, which is the rearing of crablets from <1.0 to 4.0 cm for 42 days, or by-phases. However, technology adoption hinges on many factors like area ownership, farm distance from household, and market including the type of strategy needed to enhance technology uptake. Collaboration among research and development institutions and local partners is critical in training and empowering rural communities to adopt aquaculture technologies.
The flight telerobotic servicer and technology transfer
NASA Technical Reports Server (NTRS)
Andary, James F.; Bradford, Kayland Z.
1991-01-01
The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.
Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B
2016-04-02
Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.
Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness
NASA Astrophysics Data System (ADS)
Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.
2014-04-01
We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.
Freeway bottleneck removals : workshop enhancement and technology transfer.
DOT National Transportation Integrated Search
2009-12-01
As transportation improvement projects become increasingly costly and complex and as funding sources are not : keeping pace with needs in highly urbanized areas, it becomes critical that existing freeway systems be finetuned to : maximize capacity...
ELECTROCHEMICAL DEGRADATION OF POLYCHLOROBIPHENYLS
Granular graphite is an ideal conductive material for electrochemical reduction technology applications in the field. Granular graphite was used to enhance the transfer of chlorinated aliphatic compounds in saturated, low permeability soils by electroosmosis. It was also used to ...
Thermal Management Using Pulsating Jet Cooling Technology
NASA Astrophysics Data System (ADS)
Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.
2014-07-01
The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.
Spinoff 2002: Fortieth Anniversary Technology Utilization Program
NASA Technical Reports Server (NTRS)
2002-01-01
Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network. Each section of Spinoff 2002 provides compelling evidence of the Technology Transfer Program's success and value. With commercial products and successes spanning from work on the Apollo missions to the International Space Station, the 40th anniversary of the Technology Transfer Program invites us to celebrate our history while planning the future.
NASA Technical Reports Server (NTRS)
Smith, Nanette R.
1995-01-01
The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can reach their maximum effectiveness.
NASA Technical Reports Server (NTRS)
Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.
2001-01-01
With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.
Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies
NASA Technical Reports Server (NTRS)
Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul
1994-01-01
Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.
NASA Technical Reports Server (NTRS)
1992-01-01
In keeping with the NASA Administrator's announcement that technology transfer will become a fundamental mission of NASA, the Marshall Space Flight Center (MSFC) has initiated new programs to reach the heartland of U.S. industry. The Center has continued to expand its already well-established outreach program aimed at helping American business, industry, and academia at the grassroots level. The goal is to ensure that America regains and maintains its proper place of leadership among the world's technologically developed nations. MSFC's national goal is to enhance America's competitiveness in the world marketplace, fortify the value of the dollar, and ensure technological breakthroughs by American laboratories benefit taxpayers and industries. The Technology Utilization (TU) Office at MSFC believes a number of measures are possible to slow, then halt, and ultimately reverse the erosion of American technological leadership. MSFC's TU Office is reaching out to American industry on an increasingly broadening scope, facilitating the transfer of NASA derived technologies to American businesses, industries, educational institutions, and individuals. There are many valid approaches to achieving this goal. Some, such as the National Technology Initiative, begin at the top and work down through America's top corporate structure. Others, such as the technology transfer program that MSFC has implemented, begin at the one-on-one, grassroots level -- working with small and medium-sized firms that form the bulk of American industry. What can be done by one NASA center is, admittedly, limited. But by extrapolating this one-on-one approach to the more than 700 Federal laboratories, a great deal can be accomplished. This report contains an examination of outreach and in reach programs, problem statements programs, applications projects, new technology reporting, new technology administration, and the need for increased resources to further facilitate technology transfer.
Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai
2012-11-01
Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enhancing Readiness Through Environmental Quality Technology
1996-05-01
mercury . Up coming technologies for heavy metal soil contamination include phytoremediation and electrokinetics. Plants have also been shown to uptake... phytoremediation could be that process. Many plants have been found that have a nitroreductase enzyme. These plants can degrade explosive contaminants. This... phytoremediation in a wetland environment for explosive contaminated groundwater. But, this could be transferred directly to soils if proven successful
Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.
Weigand, B; Semmler, K; von Wolfersdorf, J
2001-05-01
The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades.
Military and Security Developments Involving the People’s Republic of China 2013
2013-01-01
discussions have stalled over pricing differences. China’s Top Crude Suppliers 2011 Country Volume (1,000 barrels per day) Percentage of...the transfer or disclosure of U.S.-origin defense articles, defense services, technical data, and/or technology to China. Additionally, Public Law... transfer or export of defense articles (including technical data) and defense services. Beijing primarily conducts arms sales to enhance foreign
Space technology research plans
NASA Technical Reports Server (NTRS)
Hook, W. Ray
1992-01-01
Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.
Enhanced Condensation Heat Transfer On Patterned Surfaces
NASA Astrophysics Data System (ADS)
Alizadeh-Birjandi, Elaheh; Kavehpour, H. Pirouz
2017-11-01
Transition from film to drop wise condensation can improve the efficiency of thermal management applications and result in considerable savings in investments and operating costs by millions of dollars every year. The current methods available are either hydrophobic coating or nanostructured surfaces. The former has little adhesion to the structure which tends to detach easily under working conditions, the fabrication techniques of the latter are neither cost-effective nor scalable, and both are made with low thermal conductivity materials that would negate the heat transfer enhancement by drop wise condensation. Therefore, the existing technologies have limitations in enhancing vapor-to-liquid condensation. This work focuses on development of surfaces with wettability contrast to boost drop wise condensation, which its overall heat transfer efficiency is 2-3 times film wise condensation, while maintaining high conduction rate through the surface at low manufacturing costs. The variation in interfacial energy is achieved through crafting hydrophobic patterns to the surface of the metal via scalable fabrication techniques. The results of experimental and surface optimization studies are also presented.
Performance and Reliability of Exhaust Gas Waste Heat Recovery Units
2014-09-01
transfer in an annulus with an externally enhanced inner tube. International Journal of Heat and Fluid Flow, 14(1), 54‒63. Akpinar, E. K. (2006...from http://www.energy-tech.com/article.cfm?id=17567 Masliyah, J., & Nandakumar, K. (1976). Heat transfer in internally finned tubes. Journal of...exchanger by using turbulator. International Journal of Engineering Science & Advanced Technology, 2(4), 881‒885. Patankar, S. V. (1980). The
(abstract) Formal Inspection Technology Transfer Program
NASA Technical Reports Server (NTRS)
Welz, Linda A.; Kelly, John C.
1993-01-01
A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.
NASA Astrophysics Data System (ADS)
Deng, Lingling; Bao, Yiyang; Zhang, Yanan; Peng, Ling; Zhu, Wenjing; Zhao, Yue; Xu, Yewen; Chen, Shufen
2016-06-01
In top-emitting white organic light-emitting diodes (TWOLEDs), the device performances attribute to the several important factors, such as exciton profile, energy transfer, and microcavity effect. In this paper, a TWOLED containing a heterojunction blue emission layer (EML) and a red EML is reported. A host material with high triplet energy level is employed for the adjacent blue and red EML, while the inefficient red emission reduces the emission efficiency of the TWOLED. In order to enhance the red emission efficiency, mixed-host and co-doping technologies are used in the red EML. By mixing the hole transporting and electron transporting host materials, the exciton recombination zone extends to the red EML to increase the red emission intensity and reduce the efficiency roll-off. And by co-doping a green phosphor into the red EML as the energy transfer medium, the energy transfer rate is enhanced, and then the current efficiency increases. Besides, both the mixed-host and co-doping change the carrier transport and the exciton recombination zone, which further affects the microcavity resonance in the devices. Due to the enhancement on the red emission intensity and the shift of resonant wavelength, the chromaticity of the TWOLED is improved.
Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.
2013-01-01
Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vela, O.A.; Huggard, J.C.
Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsitemore » Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.« less
Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi
2017-06-01
Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Song, Shaoqing; Meng, Aiyun; Jiang, Shujuan; Cheng, Bei
2018-06-01
The effective transport of photo-induced carriers over semiconductor photocatalyst is critical for enhancing the photocatalytic performance under light excitation. Although oxidized graphene (GO) and/or reduced graphene oxide (rGO) has been used as cocatalyst to promote the transfer and utilization of electrons, however, random diffusion and transfer of photo-induced charges are inevitable from all sides over these actual graphene owing to the limitation of the preparation process and theory. Herein, we utilized three-dimensional hollow carbon graphene (HCG) to promote the efficient electron transfer of Ag3PO4 in the photocatalytic process. Owing to the confinement-induced electron field of HCG, the constructed HCG-Ag3PO4 photocatalytic system demonstrated the enhanced visible-light adsorption, improved transfer of photo-induced charges, and suitable redox potentials as revealed by transient photo-current spectroscopic, surface photovoltage spectroscopy, and electron paramagnetic resonance (EPR). EPR spectra of oxygen species and gas chromatography-mass spectra exhibited high efficiency activity over HCG-Ag3PO4 with Z-scheme photocatalytic mechanism for phenol decomposition by reaction between hexanoic acid and radOH and radO2-. It is noteworthy that photocatalytic performance over optimal HCG-Ag3PO4 is 6, 3.43, 1.92 times of pristine Ag3PO4, GO-Ag3PO4, and rGO-Ag3PO4, respectively. The results may supply a novel perspective to enhance transfer of photo-induced charges for the promotion of photocatalytic technology.
Using Technology To Enhance Literacy in Elementary School Children.
ERIC Educational Resources Information Center
Christie, Alice
The electronic information age is here, and adults as well as children are using new ways to gather and generate information. Electronics users are writing in hypertext; exploring cyberspace; living in virtual communities; scooping interactively with CD-ROMs and laserdiscs; using File Transfer Protocols to upload and download information from…
The use of Polyvinyl Pyrrolidone (PVP) solutions of varying concentrations as phantoms for diffusion MRI calibration and quality control is disclosed. This diffusion MRI phantom material is already being adopted by radiologists for quality control and assurance in clinical studies.
Framework of Quality Assurance of TEL Integration into an Educational Organization
ERIC Educational Resources Information Center
Volungeviciene, Airina; Tereseviciene, Margarita; Tait, Alan
2014-01-01
This research paper addresses the issues of integration of technology enhanced learning (TEL) into an educational organization. Good practice experience cannot be directly transferred to new organisations due to different contextual conditions. The TEL integration depends significantly upon a very rapid development of services and information…
Researchers at the NCI have developed a method of enhancing immune response in patients by using 15 kD granulysin. Granulysin, a proinflammatory molecule, is broadly applicable for the treatment of several diseases.
Urban forestry research needs: a participatory assessment process
Kathleen L. Wolf; Linda E. Kruger
2010-01-01
New research initiatives focusing on urban ecology and natural resources are underway. Such programs coincide with increased local government action in urban forest planning and management, activities that are enhanced by scientific knowledge. This project used a participatory stakeholder process to explore and understand urban forestry research and technology transfer...
77 FR 46855 - Small Business Technology Transfer Program Policy Directive
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... awards and commercializing their research. As a result, these benchmarks will only apply to those Phase I... Research and Development Enhancement Act of 1992 (SBRDEA), Public Law 102-564 (codified at 15 U.S.C. 638... business concerns (SBCs) and Research Institutions through Federally-funded research or research and...
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexin Wang
2011-12-19
The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Technology Transfer Issues and a New Technology Transfer Model
ERIC Educational Resources Information Center
Choi, Hee Jun
2009-01-01
The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…
Overview of ground coupled heat pump research and technology transfer activities
NASA Astrophysics Data System (ADS)
Baxter, V. D.; Mei, V. C.
Highlights of DOE-sponsored ground coupled heat pump (GCHP) research at Oak Ridge National Laboratory (ORNL) are presented. ORNL, in cooperation with Niagara Mohawk Power Company, Climate Master, Inc., and Brookhaven National Laboratory developed and demonstrated an advanced GCHP design concept with shorter ground coils that can reduce installed costs for northern climates. In these areas it can also enhance the competitiveness of GCHP systems versus air-source heat pumps by lowering their payback from 6 to 7 years to 3 to 5 years. Ground coil heat exchanger models (based primarily on first principles) have been developed and used by others to generate less conservative ground coil sizing methods. An aggressive technology transfer initiative was undertaken to publicize results of this research and make it available to the industry. Included in this effort were an international workshop, trade press releases and articles, and participation in a live teleconference on GCHP technology.
NASA Technical Reports Server (NTRS)
Haggerty, James J.
1996-01-01
By their challenging nature, NASA programs are particularly demanding of technological input. Meeting the aeronautical and space goals of the past four decades has necessitated leading edge advancements across a diverse spectrum that embraces virtually every scientific and technological discipline. Technology is simply knowledge and, like other forms of knowledge, it is often broadly applied and transferable. For that reason, the vast storehouse of technology NASA has built is a national resource, a bank of knowledge available for commercial applications and enhancements to the quality of life-"spinoff"-to new products and processes of benefit to the national economy, industrial efficiency and human welfare. Multiple use of technology has never been more important. Budgetary stringency is reducing the amount of government funding available for new research and development, but at the same time intensifying international competition demands increasing technological innovation to strengthen the U.S. posture in the global marketplace. Reuse of technology offers a relatively inexpensive supplementary means of partnering with industry focused on bringing new products and processes to the market. More than a thousand of spinoff products and processes have emerged from reapplication of technology developed for NASA mission programs. Each has Contributed some measure of benefit to the national economy, productivity or lifestyle; some bring only moderate increments of gain, but many generate benefits of significant order with economic values in the millions of dollars. Other technologies with moderate economic return have added measurably to the quality of life of U.S. citizens. Collectively, they represent a substantial dividend on the national investment in aerospace research. By Congressional mandate, it is NASA's responsibility to promote expansion of spinoff in the public interest. Through its Technology Transfer Program, NASA seeks to encourage greater use of its technological resources by providing a link between the technology and those who might be able to put it to advantageous use. The program's aim is to broaden and accelerate the transfer accomplishments and thereby to gain national benefit in terms of new products, services, and new jobs. This publication is an instrument of-and documents the outcome of-that purpose. It is intended to heighten awareness of the technology available for transfer and its potential for public benefit. Spinoff 1996 is organized in three sections: Section 1, summarizes NASA's current mainline programs, whose objectives require development of new technology and therefore replenish and expand the bank of knowledge available for reapplication. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from secondary application of NASA technology. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for Further information about the Technology Transfer Program.
Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies
NASA Astrophysics Data System (ADS)
Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.
2002-11-01
Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this work is a synthetic jet, shown schematically in Fig. 3. The jet is produced using a small, sealed cavity with a sharp-edged orifice on one side and a vibrating diaphragm on the opposite side. The jet is formed when fluid is alternately sucked into and then expelled from the cavity by the motion of the diaphragm. This alternating motion means that there is no net mass addition to the system. Thus, there is no need for input piping or complex fluidic packaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal
2005-09-01
This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfermore » visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.« less
Space Biosensor Systems: Implications for Technology Transfer
NASA Technical Reports Server (NTRS)
Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)
1997-01-01
To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.
Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds
NASA Astrophysics Data System (ADS)
Samaha, Mohamed A.; Kahwaji, Ghalib Y.
2017-11-01
Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.
Advanced information society(5)
NASA Astrophysics Data System (ADS)
Tanizawa, Ippei
Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).
Using bibliographic databases in technology transfer
NASA Technical Reports Server (NTRS)
Huffman, G. David
1987-01-01
When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.
Lithography for enabling advances in integrated circuits and devices.
Garner, C Michael
2012-08-28
Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
Robotic technology evolution and transfer
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1992-01-01
A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.
Malak, Henryk; Richmond, Robert; Dicello, J F
2011-02-01
A new approach to intracellular detection and imaging of metabolic processes and pathways is presented that uses surface plasmon resonance to enhance interactions between photon-absorbing metabolites and metal nanoparticles in contact with cells in vitro or in vivo. Photon absorption in the nanoparticles creates plasmon fields, enhancing intrinsic metabolite fluorescence, thereby increasing absorption and emission rates, creating new spectral emission bands, shortening fluorescence lifetimes, becoming more photo-stable and increasing fluorescent resonance energy transfer efficiency. Because the cells remain viable, it is proposed that the method may be used to interrogate cells prior to and after irradiation, with the potential for automated analyses of intracellular interactive pathways associated with radiation exposures at lower doses than existing technologies. The design and concepts of the instrument are presented along with data for unexposed cells.
Technology transfer within the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Plotkin, Henry H.
1992-01-01
Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.
Essays on equity-efficiency trade offs in energy and climate policies
NASA Astrophysics Data System (ADS)
Sesmero, Juan P.
Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences and technology increasing efficiency requires greater transfers to low income households the higher the effect of these transfers on the price of permits and the lower their effect on the price of consumption goods. This denotes market conditions under which efficiency and equity are complementary goals.
Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Alan D.
2014-07-24
This report describes work toward a supercritical CO 2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO 2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO 2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.
Recent advancements in cloning by somatic cell nuclear transfer.
Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko
2013-01-05
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.
Recent advancements in cloning by somatic cell nuclear transfer
Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko
2013-01-01
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393
From computer images to video presentation: Enhancing technology transfer
NASA Technical Reports Server (NTRS)
Beam, Sherilee F.
1994-01-01
With NASA placing increased emphasis on transferring technology to outside industry, NASA researchers need to evaluate many aspects of their efforts in this regard. Often it may seem like too much self-promotion to many researchers. However, industry's use of video presentations in sales, advertising, public relations and training should be considered. Today, the most typical presentation at NASA is through the use of vu-graphs (overhead transparencies) which can be effective for text or static presentations. For full blown color and sound presentations, however, the best method is videotape. In fact, it is frequently more convenient due to its portability and the availability of viewing equipment. This talk describes techniques for creating a video presentation through the use of a combined researcher and video professional team.
NASA Astrophysics Data System (ADS)
Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.
2018-02-01
Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.
Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems
NASA Astrophysics Data System (ADS)
Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Hajj, Muhammad R.; Shahab, Shima
2018-03-01
Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.
User needs as a basis for advanced technology. [U.S. civil space program
NASA Technical Reports Server (NTRS)
Mankins, John C.; Reck, Gregory M.
1992-01-01
The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.
Technology transfer within the government
NASA Technical Reports Server (NTRS)
Christensen, Carissa Bryce
1992-01-01
The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
Formed platelet combustor liner construction feasibility, phase A
NASA Technical Reports Server (NTRS)
Hayes, W. A.; Janke, D. E.
1992-01-01
Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase A - feasibility study and technology development; (2) phase B - sub-scale fabrication feasibility; and (3) phase C - large scale fabrication validation. This report covers the Phase A activities, which began in December of 1988.
Enhance beef cattle improvement by embryo biotechnologies.
Wu, B; Zan, L
2012-10-01
Embryo biotechnology has become one of the prominent high businesses worldwide. This technology has evolved through three major changes, that is, traditional embryo transfer (in vivo embryo production by donor superovulation), in vitro embryo production by ovum pick up with in vitro fertilization and notably current cloning technique by somatic cell nuclear transfer and transgenic animal production. Embryo biotechnology has widely been used in dairy and beef cattle industry and commercial bovine embryo transfer has become a large international business. Currently, many developed biotechnologies during the period from early oocyte stage to pre-implantation embryos can be used to create new animal breeds and accelerate genetic progression. Based on recent advances in embryo biotechnologies and authors current studies, this review will focus on a description of the application of this technology to beef cattle improvement and discuss how to use this technology to accelerate beef cattle breeding and production. The main topics of this presentation include the following: (i) how to increase calf production numbers from gametes including sperm and oocyte; (ii) multiple ovulation and embryo transfer breeding schemes; (iii) in vitro fertilization and intracytoplasm sperm injection in bovine; (iv) pronuclear development and transgenic animals; (v) sex selection from sperm and embryos; (vi) cloning and androgenesis; (vii) blastocyst development and embryonic stem cells; (viii) preservation of beef cattle genetic resources; and (ix) conclusions. © 2011 Blackwell Verlag GmbH.
A plan for time-phased incorporation of automation and robotics on the US space station
NASA Technical Reports Server (NTRS)
Purves, R. B.; Lin, P. S.; Fisher, E. M., Jr.
1988-01-01
A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.
Can the Faculty Development Door Swing Both Ways? Science and Clinical Teaching in the 1990s.
ERIC Educational Resources Information Center
Tedesco, Lisa A.
1988-01-01
The relationship between clinical teaching and research in the basic sciences is discussed. The same energy expended to enhance clinical research will also efficiently build new curricula; ease the strains associated with assigning a priority to teaching or research; and serve to further science, teaching, and technology transfer. (MLW)
The Zones of Proximal and Distal Development in Chinese Language Studies with the Use of Wikis
ERIC Educational Resources Information Center
Chew, Esyin; Ding, Seong Lin
2014-01-01
Educational practitioners in the higher education institutions of the UK have increasingly promoted the use of wikis. The technology enhanced learning experience of the UK was transferred to a local higher educational agency in Malaysia through a collaborative research project called WiLearn. By examining a student cohort enrolled in Chinese…
ERIC Educational Resources Information Center
Duan, Yanqing; Bentley, Yongmei; Fu, Zetian; Zografos, Konstantinos; Bemeleit, Boris
2008-01-01
This paper reports research findings from a project funded by the European Commission. The research used case studies and surveys to identify gaps between Europe and China in the level of Internet adoption in fresh-produce supply chains. The project reveals barriers to Internet adoption in China in this industry, and employs a transnational…
Aeroplastic, New Composite Materials with Reduced Heat Transfer and Increased Flame Retardancy
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Smith, Trent M.; Nichols, James D.; Roberson, Luke B.; Tate, Lanetra C.
2015-01-01
A new composite system formulated using commodity grade and engineered grade polymers. The composites can be fabricated into fibers, molded, or otherwise processed into useable articles. Use of this technology reduces the thermal conductivity and peak heat releases rates of the base polymer between 20%-50% while maintaining or enhancing the mechanical properties..
Advances in Sterilization and Decontamination: a Survey
NASA Technical Reports Server (NTRS)
1978-01-01
Recent technical advances made in the field of sterilization and decontamination and their applicability to private and commercial interests are discussed. Government-sponsored programs by NASA produced the bulk of material presented in this survey. The summary of past and current research discussed is detailed to enhance an effective transfer of technology from NASA to potential users.
Developing strategies for detection of gene doping.
Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R
2008-01-01
It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology. (c) 2008 John Wiley & Sons, Ltd.
A timely rationale for space exploration
NASA Technical Reports Server (NTRS)
Peterson, Douglas D.; Walters, Larry D.
1992-01-01
Space exploration is shown to be useful for enhancing a country's education, technology, and economic competitiveness. Technologies required for the Space Exploration Initiative are compared to emerging technologies identified by the U.S. Department of Commerce. The impact of previous space ventures on specific technologies are illustrated with examples such as miniaturized electronics, computers and software, and high-strength materials. The case for educational advancement as a by-product of space exploration is made by discussing the high-level requirements of the programs and describing the inspirational effect of space exploration on young students. Invigorating space exploration is argued to generate near- and long-term economic opportunities for key sectors of the national economy by means of technology transfer, space-resource utilization, and the commercialization of space.
Fuel cell systems program plan, FY 1990
NASA Astrophysics Data System (ADS)
1989-10-01
A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.
Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; ...
2015-07-30
Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Throughout the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. Inmore » previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e -/H + transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e -/H + transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.« less
Software engineering technology transfer: Understanding the process
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1993-01-01
Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.
Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo
2013-06-01
Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
Enhanced transconductance in a double-gate graphene field-effect transistor
NASA Astrophysics Data System (ADS)
Hwang, Byeong-Woon; Yeom, Hye-In; Kim, Daewon; Kim, Choong-Ki; Lee, Dongil; Choi, Yang-Kyu
2018-03-01
Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 μS/μm, that of the DG GFET was 25.7 μS/μm, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.
Innovative technology transfer of nondestructive evaluation research
Brian Brashaw; Robert J. Ross; Xiping Wang
2008-01-01
Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...
Innovation leadership: new perspectives for new work.
Malloch, Kathy
2010-03-01
The industrial age command and control leadership style and supporting infrastructure are ineffective in meeting the challenges of the increased availability and sharing of information, the media used for knowledge transfer, the changing range and types of relationships between individuals, and the time required to transfer and share information. What has not changed is the need for effective personal relationships in the evaluation and selection of new technologies; human to human sensitivity, acknowledgment, and respect for the patient care experience. As individuals embrace these new technologies, the essence of the innovation leader emerges to purposefully guide, assess, integrate, and synthesize technology into the human work of patient care. Building organizational infrastructures with openness for technology and innovations to enhance effective patient care relationships now requires an innovation skill set that understands and integrates human needs with the best of technology. In this article a brief description of innovation leadership is presented as the backdrop for change along with 4 significant changes in work processes that have irreversibly altered health care work, the trimodal organizational structure to accommodate operations, innovation, and transition between the 2, and finally, individual and team behaviors that emphasize the work of innovation. Copyright 2010 Elsevier Inc. All rights reserved.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
NASA Astrophysics Data System (ADS)
Riggs, William R.
1994-05-01
SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.
Byrne, E; Donaldson, L; Manda-Taylor, L; Brugha, R; Matthews, A; MacDonald, S; Mwapasa, V; Petersen, M; Walsh, A
2016-05-10
With the recognition of the need for research capacity strengthening for advancing health and development, this research capacity article explores the use of technology enhanced learning in the delivery of a collaborative postgraduate blended Master's degree in Malawi. Two research questions are addressed: (i) Can technology enhanced learning be used to develop health research capacity?, and: (ii) How can learning content be designed that is transferrable across different contexts? An explanatory sequential mixed methods design was adopted for the evaluation of technology enhanced learning in the Masters programme. A number of online surveys were administered, student participation in online activities monitored and an independent evaluation of the programme conducted. Remote collaboration and engagement are paramount in the design of a blended learning programme and support was needed for selecting the most appropriate technical tools. Internet access proved problematic despite developing the content around low bandwidth availability and training was required for students and teachers/trainers on the tools used. Varying degrees of engagement with the tools used was recorded, and the support of a learning technologist was needed to navigate through challenges faced. Capacity can be built in health research through blended learning programmes. In relation to transferability, the support required institutionally for technology enhanced learning needs to be conceptualised differently from support for face-to-face teaching. Additionally, differences in pedagogical approaches and styles between institutions, as well as existing social norms and values around communication, need to be embedded in the content development if the material is to be used beyond the pilot resource-intensive phase of a project.
Turbulence convective heat transfer for cooling the photovoltaic cells
NASA Astrophysics Data System (ADS)
Arianmehr, Iman
Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.
On knowledge transfer management as a learning process for ad hoc teams
NASA Astrophysics Data System (ADS)
Iliescu, D.
2017-08-01
Knowledge management represents an emerging domain becoming more and more important. Concepts like knowledge codification and personalisation, knowledge life-cycle, social and technological dimensions, knowledge transfer and learning management are integral parts. Focus goes here in the process of knowledge transfer for the case of ad hoc teams. The social dimension of knowledge transfer plays an important role. No single individual actors involved in the process, but a collective one, representing the organisation. It is critically important for knowledge to be managed from the life-cycle point of view. A complex communication network needs to be in place to supports the process of knowledge transfer. Two particular concepts, the bridge tie and transactive memory, would eventually enhance the communication. The paper focuses on an informational communication platform supporting the collaborative work on knowledge transfer. The platform facilitates the creation of a topic language to be used in knowledge modelling, storage and reuse, by the ad hoc teams.
NASA Astrophysics Data System (ADS)
van der Heiden, Patrick; Pohl, Christine; Bin Mansor, Shuhaimi; van Genderen, John
2015-07-01
The role of education and training in the aerospace sector for establishing sufficient levels of absorptive capacity in newly industrialized countries is substantial and forms a fundamental part of a nation's ability to establish and cultivate absorptive capacity on a national or organization-specific level. Successful international technology transfer as well as absorption of aerospace technology and knowledge into recipient organizations, depends prodigiously on the types of policy adopted in education and training of all groups and individuals specifically outlined in this paper. The conducted literature review revealed surprisingly few papers that translate these vital issues from theoretical scrutiny into representations that have practical policy value. Through exploration of the seven key aspects of education and training, this paper provides a practical template for policy-makers and practitioners in Asian newly industrialized countries, which may be utilized as a prototype to coordinate relevant policy aspects of education and training in international technology transfer projects across a wide variety of actors and stakeholders in the aerospace realm. A pragmatic approach through tailored practical training for the identified groups and individuals identified in this paper may lead to an enhanced ability to establish and strengthen absorptive capacity in newly industrialized countries through the development of appropriate policy guidelines. The actual coordination between education and training efforts deserves increased research and subsequent translation into policies with practical content in the aerospace sector.
In-Space Propellant Production Using Water
NASA Technical Reports Server (NTRS)
Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William
2012-01-01
A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Technology Transfer Office at Stennis Space Center worked with the Johns Hopkins Wilmer Eye Institute in Baltimore, Md., to incorporate NASA software originally developed by NASA to process satellite images into the Low Vision Enhancement System (LVES). The LVES, referred to as 'ELVIS' by its users, is a portable image processing system that could make it possible to improve a person's vision by enhancing and altering images to compensate for impaired eyesight. The system consists of two orientation cameras, a zoom camera, and a video projection system. The headset and hand-held control weigh about two pounds each. Pictured is Jacob Webb, the first Mississippian to use the LVES.
ICAT and the NASA technology transfer process
NASA Technical Reports Server (NTRS)
Rifkin, Noah; Tencate, Hans; Watkins, Alison
1993-01-01
This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.
NASA Astrophysics Data System (ADS)
Among the topics discussed are: the PRAM approach to technology transfer; all-electric aircraft development; and electronic enhancements for the combat aircraft cockpit. Consideration is also given to application of AI systems to military aircraft; ECM and ECCM technology; and the history of monolithic ICs. Developments in the USAF Avionics Integrity Program (AVIP) are reviewed, with emphasis given to: preventive measures for electrostatic discharges; corrosion prevention to increase avionics integrity; and criteria for stress screening temperature levels.
Enhancing mHealth Technology in the PCMH Environment to Activate Chronic Care Patients
2016-09-01
9. Appendices…………………………………………………………… 16 Abstract for AMSUS Poster #1 Abstract for AMSUS Poster #2 Power Point sample slides from the mCare product... transfer ? (Not applicable for this reporting period) What was the impact on society beyond science and technology? Phase II research will make an...and process requirements (e.g. interface with wireless communication providers, visualization capabilities and options, data analytic structure) while
Technology transfer from the viewpoint of a NASA prime contractor
NASA Technical Reports Server (NTRS)
Dyer, Gordon
1992-01-01
Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.
Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, J.
1995-02-10
The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less
Toward equality of biodiversity knowledge through technology transfer.
Böhm, Monika; Collen, Ben
2015-10-01
To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.
Antennas and Electromagnetics Instrumentation for Research and Education
2016-06-01
Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support
ERIC Educational Resources Information Center
Liu, Kuang Sheng; Hsueh, Sung-Lin
2016-01-01
Along with the constant advance of information technology and the rapid development of the Internet, the diverse functions and characteristics of e-learning break through lots of limitations in traditional instruction. Properly integrating e-learning design with Internet activities could enhance students' learning effect, and applying digital…
Mativetsky, Jeffrey M; Wang, He; Lee, Stephanie S; Whittaker-Brooks, Luisa; Loo, Yueh-Lin
2014-05-25
Efficient out-of-plane charge transport is required in vertical device architectures, such as organic solar cells and organic light emitting diodes. Here, we show that graphene, transferred onto different technologically-relevant substrates, can be used to induce face-on molecular stacking and improve out-of-plane hole transport in copper phthalocyanine thin films.
ERIC Educational Resources Information Center
Harris, Robert J.
2008-01-01
Purpose: The purpose of this paper is to report on the development of a knowledge transfer project, part funded through TE3, designed to encourage innovation and improve the capability of SMEs in the West Midlands region of the UK. Knowledge is critical to developing competency within small businesses and managers that understand how their…
Evolving the US Army Research Laboratory (ARL) Technical Communication Strategy
2016-10-01
of added value and enhanced tech transfer, and strengthened relationships with academic and industry collaborators. In support of increasing ARL’s...communication skills; and Prong 3: Promote a Stakeholder Database to implement a stakeholder database (including names and preferences) and use a...Group, strategic planning, communications strategy, stakeholder database , workforce improvement, science and technology, S&T 16. SECURITY
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as 'space blanket material,' which was produced during the Apollo era.
NASA Astrophysics Data System (ADS)
Miano, Alberto Claudio; Pereira, Jessica Da Costa; Castanha, Nanci; Júnior, Manoel Divino Da Matta; Augusto, Pedro Esteves Duarte
2016-12-01
The ultrasound technology was successfully used to improve the mass transfer processes on food. However, the study of this technology on the grain hydration and on its main components properties was still not appropriately described. This work studied the application of the ultrasound technology on the hydration process of mung beans (Vigna radiata). This grain showed sigmoidal hydration behavior with a specific water entrance pathway. The ultrasound reduced ~25% of the hydration process time. In addition, this technology caused acceleration of the seed germination - and some hypothesis for this enhancement were proposed. Moreover, it was demonstrated that the ultrasound did not change both structure and pasting properties of the bean starch. Finally, the flour rheological properties proved that the ultrasound increased its apparent viscosity, and as the starch was not modified, this alteration was attributed to the proteins. All these results are very desirable for industry since the ultrasound technology improves the hydration process without altering the starch properties, accelerates the germination process (that is important for the malting and sprouting process) and increases the flour apparent viscosity, which is desirable to produce bean-based products that need higher consistency.
Urban development applications project. Urban technology transfer study
NASA Technical Reports Server (NTRS)
1975-01-01
Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.
Sackmann, Eric K; Majlof, Lars; Hahn-Windgassen, Annett; Eaton, Brent; Bandzava, Temo; Daulton, Jay; Vandenbroucke, Arne; Mock, Matthew; Stearns, Richard G; Hinkson, Stephen; Datwani, Sammy S
2016-02-01
Acoustic liquid handling uses high-frequency acoustic signals that are focused on the surface of a fluid to eject droplets with high accuracy and precision for various life science applications. Here we present a multiwell source plate, the Echo Qualified Reservoir (ER), which can acoustically transfer over 2.5 mL of fluid per well in 25-nL increments using an Echo 525 liquid handler. We demonstrate two Labcyte technologies-Dynamic Fluid Analysis (DFA) methods and a high-voltage (HV) grid-that are required to maintain accurate and precise fluid transfers from the ER at this volume scale. DFA methods were employed to dynamically assess the energy requirements of the fluid and adjust the acoustic ejection parameters to maintain a constant velocity droplet. Furthermore, we demonstrate that the HV grid enhances droplet velocity and coalescence at the destination plate. These technologies enabled 5-µL per destination well transfers to a 384-well plate, with accuracy and precision values better than 4%. Last, we used the ER and Echo 525 liquid handler to perform a quantitative polymerase chain reaction (qPCR) assay to demonstrate an application that benefits from the flexibility and larger volume capabilities of the ER. © 2015 Society for Laboratory Automation and Screening.
Microgravity as a research tool to improve US agriculture
NASA Astrophysics Data System (ADS)
Bula, R. J.; Stankovic, Bratislav
2000-01-01
Crop production and utilization are undergoing significant modifications and improvements that emanate from adaptation of recently developed plant biotechnologies. Several innovative technologies will impact US agriculture in the next century. One of these is the transfer of desirable genes from organisms to economically important crop species in a way that cannot be accomplished with traditional plant breeding techniques. Such plant genetic engineering offers opportunities to improve crop species for a number of characteristics as well as use as source materials for specific medical and industrial applications. Although plant genetic engineering is having an impact on development of new crop cultivars, several major constraints limit the application of this technology to selected crop species and genotypes. Consequently, gene transfer systems that overcome these constraints would greatly enhance development of new crop materials. If results of a recent gene transfer experiment conducted in microgravity during a Space Shuttle mission are confirmed, and with the availability of the International Space Station as a permanent space facility, commercial plant transformation activity in microgravity could become a new research tool to improve US agriculture. .
NASA Technical Reports Server (NTRS)
Handley, Thomas
1992-01-01
The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.
NASA Technical Reports Server (NTRS)
Laepple, H.
1979-01-01
The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.
Training transfer: scientific background and insights for practical application.
Issurin, Vladimir B
2013-08-01
Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross-training as a form of concurrent exercising in different athletic disciplines has been examined in reference to the enhancement of general fitness, the preparation of recreational athletes, and the preparation of athletes for multi-sport activities such as triathlon, duathlon, etc.
Yao, Ye
2016-07-01
The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.
Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.
ERIC Educational Resources Information Center
Clinch, Richard
This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…
Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia
ERIC Educational Resources Information Center
Blood, John R.
2009-01-01
Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …
NASA Astrophysics Data System (ADS)
Qiu, Rui; Zhang, Baogang; Li, Jiaxin; Lv, Qing; Wang, Song; Gu, Qian
2017-08-01
Microbial fuel cells (MFCs) represent a promising approach for remediation of toxic vanadium (V) contaminated environment. Herein, enhanced V(V) reduction and bioelectricity generation are realized in MFCs with biocathode. Synergistically electrochemical and microbial reductions result in the nearly complete removals of V(V) within 7 d operation with initial concentration of 200 mg L-1. Maximum power density of 529 ± 12 mW m-2 is obtained. Electrochemical tests reveal that biocathode promotes electron transfers and reduces charge transfer resistance. XPS analysis confirms that V(IV) is the main reduction product, which precipitates naturally under neutral conditions. High-throughput 16S rRNA gene sequencing analysis indicates that the newly appeared Dysgonomonas is responsible for V(V) reduction and Klebsiella contributes mainly to bioelectricity generation in MFCs with biocathode. This study further improves the performance of remediating V(V) contaminated environment based on MFC technology.
Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine
NASA Technical Reports Server (NTRS)
Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William
2006-01-01
As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.
Nano-inspired fluidic interactivity for boiling heat transfer: impact and criteria
Kim, Beom Seok; Choi, Geehong; Shin, Sangwoo; Gemming, Thomas; Cho, Hyung Hee
2016-01-01
The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems. PMID:27708341
1995-09-01
transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the
Federal Technology Transfer Act Success Stories
Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement
Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali
2013-01-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali
2015-09-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.
2016-01-25
2013 21-Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: Bioactive Encapsulation for Military Food Applications: Request for...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Bioactive Encapsulation for Military Food Applications...Total Number: ...... Inventions (DD882) Scientific Progress Equipment was purchased. Technology Transfer 1 Bioactive Encapsulation for Military Food
ERIC Educational Resources Information Center
Kostousov, Sergei; Kudryavtsev, Dmitry
2017-01-01
Problem solving is a critical competency for modern world and also an effective way of learning. Education should not only transfer domain-specific knowledge to students, but also prepare them to solve real-life problems--to apply knowledge from one or several domains within specific situation. Problem solving as teaching tool is known for a long…
Image processing of angiograms: A pilot study
NASA Technical Reports Server (NTRS)
Larsen, L. E.; Evans, R. A.; Roehm, J. O., Jr.
1974-01-01
The technology transfer application this report describes is the result of a pilot study of image-processing methods applied to the image enhancement, coding, and analysis of arteriograms. Angiography is a subspecialty of radiology that employs the introduction of media with high X-ray absorption into arteries in order to study vessel pathology as well as to infer disease of the organs supplied by the vessel in question.
Evaluating Technology Transfer and Diffusion.
ERIC Educational Resources Information Center
Bozeman, Barry; And Others
1988-01-01
Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…
Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2003-01-01
The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
An Analysis of NASA Technology Transfer. Degree awarded by Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Bush, Lance B.
1996-01-01
A review of previous technology transfer metrics, recommendations, and measurements is presented within the paper. A quantitative and qualitative analysis of NASA's technology transfer efforts is performed. As a relative indicator, NASA's intellectual property performance is benchmarked against a database of over 100 universities. Successful technology transfer (commercial sales, production savings, etc.) cases were tracked backwards through their history to identify the key critical elements that lead to success. Results of this research indicate that although NASA's performance is not measured well by quantitative values (intellectual property stream data), it has a net positive impact on the private sector economy. Policy recommendations are made regarding technology transfer within the context of the documented technology transfer policies since the framing of the Constitution. In the second thrust of this study, researchers at NASA Langley Research Center were surveyed to determine their awareness of, attitude toward, and perception about technology transfer. Results indicate that although researchers believe technology transfer to be a mission of the Agency, they should not be held accountable or responsible for its performance. In addition, the researchers are not well educated about the mechanisms to perform, or policies regarding, technology transfer.
Spatially modulated laser pulses for printing electronics.
Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto
2015-11-01
The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.
Turbulence Modeling: Progress and Future Outlook
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.; Huang, George P.
1996-01-01
Progress in the development of the hierarchy of turbulence models for Reynolds-averaged Navier-Stokes codes used in aerodynamic applications is reviewed. Steady progress is demonstrated, but transfer of the modeling technology has not kept pace with the development and demands of the computational fluid dynamics (CFD) tools. An examination of the process of model development leads to recommendations for a mid-course correction involving close coordination between modelers, CFD developers, and application engineers. In instances where the old process is changed and cooperation enhanced, timely transfer is realized. A turbulence modeling information database is proposed to refine the process and open it to greater participation among modeling and CFD practitioners.
Software Engineering Technology Infusion Within NASA
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1996-01-01
Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.
Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao
2017-01-01
The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff’s skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices. PMID:28886088
Yuan, Yu-Hsi; Tsai, Sang-Bing; Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao
2017-01-01
The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff's skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices.
The AMT maglev test sled -- EML weapons technology transition to transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaaf, J.C. Jr.; Zowarka, R.C. Jr.; Davey, K.
1997-01-01
Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed railgun arc control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to themore » vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996.« less
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
The Federal Laboratory Consortium for Technology Transfer has recognized three CCR accomplishments with Excellence in Technology Transfer Awards. This award category honors employees of FLC member laboratories and non-laboratory staff who have accomplished outstanding work in the process of transferring federally developed technology. Read more…
TTC Fellowship Program | NCI Technology Transfer Center | TTC
The TTC has fellowship opportunities available to qualified candidates in the field of technology transfer. This Fellowship starts with your science, legal, and/or business background to create a new competency in technology transfer, preparing you for technology transfer positions within academia, industry, or the federal government.
The Change Book: A Blueprint for Technology Transfer.
ERIC Educational Resources Information Center
Addiction Technology Transfer Centers.
This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
Welcome to Ames Research Center (1987 forum on Federal technology transfer)
NASA Technical Reports Server (NTRS)
Ballhaus, William F., Jr.
1988-01-01
NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.
Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng
2016-11-15
Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Electric field enhanced dropwise condensation on hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Baratian, Davood; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder; Physics of Complex Fluids Team
2016-11-01
Dropwise condensation occurs when vapor condenses on a low surface energy surface, and the substrate is just partially wetted by the condensate. Dropwise condensation has attracted significant attention due to its reported superior heat transfer performance compared to filmwise condensation. Extensive research efforts are focused on how to promote, and enhance dropwise condensation by considering both physical and chemical factors. We have studied electrowetting-actuated condensation on hydrophobic surfaces, aiming for enhancement of heat transfer in dropwise condensation. The idea is to use suitably structured patterns of micro-electrodes that generate a heterogeneous electric field at the interface and thereby promote both the condensation itself and the shedding of condensed drops. Comforting the shedding of droplets on electrowetting-functionalized surfaces allows more condensing surface area for re-nucleation of small droplets, leading to higher condensation rates. Possible applications of this innovative concept include heat pipes for (micro) coolers in electronics as well as in more efficient heat exchangers. We acknowledge financial support by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), within the VICI program.
The role of the University Licensing Office in transferring intellectual property to industry
NASA Technical Reports Server (NTRS)
Preston, John T.
1992-01-01
Universities in the US have a significant impact on business through the transfer of technology. This transfer of technology takes various forms, including faculty communications, faculty consulting activities, and the direct transfer of technology through the licensing of patents, copyrights, and other intellectual property to industry. The topics discussed include the following: background of the MIT Technology Licensing Office (TLO), goals of the MIT TLO, MIT's technology transfer philosophy, and important factors for success in new company formation.
A status of the Turbine Technology Team activities
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.
1992-01-01
The recent activities of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology is presented. The team consists of members from the government, industry, and universities. The goal of this team is to demonstrate the benefits to the turbine design process attainable through the application of CFD. This goal is to be achieved by enhancing and validating turbine design tools for improved loading and flowfield definition and loss prediction, and transferring the advanced technology to the turbine design process. In order to demonstrate the advantages of using CFD early in the design phase, the Space Transportation Main Engine (STME) turbines for the National Launch System (NLS) were chosen on which to focus the team's efforts. The Turbine Team activities run parallel to the STME design work.
Strategic directions and mechanisms in technology transfer
NASA Technical Reports Server (NTRS)
Mackin, Robert
1992-01-01
An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.
Overview of NATO Background on Scramjet Technology. Chapter 1
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Bouchez, Marc; McClinton, Charles R.
2006-01-01
The purpose of the present overview is to summarize the current knowledge of the NATO contributors. All the topics will be addressed in this chapter, with references and some examples. This background enhances the level of knowledge of the NATO scramjet community, which will be used for writing the specific chapters of the Report. Some previous overviews have been published on scramjet technology worldwide. NASA, DOD, the U.S. industry and global community have studied scramjet-powered hypersonic vehicles for over 40 years. Within the U.S. alone, NASA, DOD (DARPA, U.S. Navy and USAF), and industry have participated in hypersonic technology development. Over this time NASA Langley Research Center continuously studied hypersonic system design, aerothermodynamics, scramjet propulsion, propulsion-airframe integration, high temperature materials and structural architectures, and associated facilities, instrumentation and test methods. These modestly funded programs were substantially augmented during the National Aero-Space Plane (X-30) Program, which spent more than $3B between 1984 and 1995, and brought the DOD and other NASA Centers, universities and industry back into hypersonics. In addition, significant progress was achieved in all technologies required for hypersonic flight, and much of that technology was transferred into other programs, such as X-33, DC-X, X-37, X-43, etc. In addition, technology transfer impacted numerous other industries, including automotive, medical, sports and aerospace.
Code of Federal Regulations, 2012 CFR
2012-04-01
... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...
Code of Federal Regulations, 2013 CFR
2013-04-01
... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...
Code of Federal Regulations, 2010 CFR
2010-04-01
... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...
Code of Federal Regulations, 2014 CFR
2014-04-01
... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...
Code of Federal Regulations, 2011 CFR
2011-04-01
... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...
Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents
ERIC Educational Resources Information Center
Hofer, Franz
2005-01-01
Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…
Technology transfer needs and experiences: The NASA Research Center perspective
NASA Technical Reports Server (NTRS)
Gross, Anthony R.
1992-01-01
Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.
NASA Technical Reports Server (NTRS)
Penaranda, Frank E.
1992-01-01
The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.
A continuing program for technology transfer to the apparel industry
NASA Technical Reports Server (NTRS)
Clingman, W. H.
1971-01-01
A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.
ERIC Educational Resources Information Center
Ondercin, David J.
2010-01-01
The university's role in the nation's economy is to increase its ability to transfer research to industry, generate new inventions and patents, and spin-off its technology in the form of startup companies. As such, there has been a movement in the USA and around the world to make universities "engines of innovation", and to enhance their ability…
Technology transfer for adaptation
NASA Astrophysics Data System (ADS)
Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia
2014-09-01
Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.
15 CFR 740.15 - Aircraft and vessels (AVS).
Code of Federal Regulations, 2011 CFR
2011-01-01
... transfer of technology. No technology is transferred to a national of a destination in Country Group E:1... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a...
NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL
Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's
48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...
48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...
48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...
48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...
ERIC Educational Resources Information Center
Sandia National Labs., Albuquerque, NM.
The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…
48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...
Tech Transfer News. Volume 6, No. 1
NASA Technical Reports Server (NTRS)
Victor, Megan E.
2014-01-01
On October 28, 2011, the White House released a Presidential Memorandum entitled: Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses. With this memo, the President challenged all federal agencies conducting R&D to accelerate technology transfer and commercialization of federally developed technology to help stimulate the national economy. The NASA Technology Transfer Program responded by asking the center technology transfer offices to reach out to - and work more closely with - their regional economic development organizations to promote the transfer of NASA technologies to the local private sector for use in the marketplace. Toward that effort, the KSC Technology Transfer Office teamed with the Florida Space Coast Economic Development Commission (EDC) to host a technology transfer forum designed to increase our business community's awareness of available KSC technologies for transfer. In addition, the forum provided opportunities for commercial businesses to collaborate with KSC in technology development. (see article on page 12) The forum, held on September 12, 2013, focused on KSC technology transfer and partnership opportunities within the Robotics, Sustainability, Information Technology and Environmental Remediation technology areas. The event was well attended with over 120 business leaders from the community. KSC Center Director Robert Cabana and the Center Chief Technologist Karen Thompson provided remarks, and several KSC lead researchers presented technical information and answered questions, which were not in short supply. Florida Today and the Orlando Sentinel ran news stories on the forum and both NASA TV and Channel 6 News filmed portions of the event. Given the reaction by the media and local business to the forum, it is evident the community is recognizing the opportunities that NASA-developed technologies can provide to aspiring entrepreneurs and existing companies to bring new technologies to market, as well as the positive impact KSC technology transfer can have on the local economy. We see even more evidence of this in the efforts by several other organizations to develop programs that provide aspiring entrepreneurs with the opportunity and training needed to identify the commercial potential of specific NASA technologies and develop business plans to exploit that potential. Several initiatives include Florida Startup Quest, CareerSource Brevard Energy Launch, Rollins College Entrepreneurial Scholar of Distinction Program, and a new effort led by the University of Central Florida Office of Research and Commercialization to stimulate new business growth in Florida based on NASA technologies. The KSC Technology Transfer Office has stepped up to support each of these programs and is providing them with the NASA technologies they need to help move the economy forward.
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
Static Mixer for Heat Transfer Enhancement for Mold Cooling Application
NASA Astrophysics Data System (ADS)
Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil
Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.
NASA Astrophysics Data System (ADS)
Matlock, Richard S.; Feig, Jason R.; Dickey, Michael R.
A program called the Electric Insertion Transfer Experiment or ELITE for demonstrating the use of solar-electric propulsion is proposed and described. The ELITE concept is based on the use of solar propulsion for the orbit-raising mode of an electric orbital-transfer vehicle (EOTV) and examines issues associated with electric thrusters. Experimental subsystems are compared including arcjet, ion, and magnetoplasmadynamic thrusters, and the design and performance impacts on EOTVs are listed. The ELITE experiment is shown to be capable of studying such issues as the plume-to-plume interaction of multiple thrusters, the contamination of spacecraft components, potential interferences from radio-frequency transmissions, and the charging of spacecraft surfaces. Solar propulsion can be studied within the context of the ELITE program to demonstrate its potential as both enhancing and enabling technology.
Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N
2018-04-17
Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.
Project for the analysis of technology transfer
NASA Technical Reports Server (NTRS)
Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.
1971-01-01
The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.
Technology transfer within the government
NASA Technical Reports Server (NTRS)
Russell, John
1992-01-01
The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.
The human element in technology transfer
NASA Technical Reports Server (NTRS)
Peake, H. J.
1978-01-01
A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.
Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Gustafson, N. B.; Harmon, T. J.
1993-01-01
An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.
Technology transfer: the key to fusion commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, S.C.
1981-01-01
The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer.
Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy
2016-01-01
Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.
National Technology Transfer Center
NASA Technical Reports Server (NTRS)
Rivers, Lee W.
1992-01-01
Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.
Technology transfer to a developing nation, Korea
NASA Technical Reports Server (NTRS)
Stone, C. A.; Uccetta, S. J.
1973-01-01
An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.
Security Enhancement of Wireless Sensor Networks Using Signal Intervals
Moon, Jaegeun; Jung, Im Y.; Yoo, Jaesoo
2017-01-01
Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN) have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP), the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM) attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users. PMID:28368341
Security Enhancement of Wireless Sensor Networks Using Signal Intervals.
Moon, Jaegeun; Jung, Im Y; Yoo, Jaesoo
2017-04-02
Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN) have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP), the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM) attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users.
Acoustic Streaming and Heat and Mass Transfer Enhancement
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Gopinath, A.
1996-01-01
A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.
EPA Reports to Congress on Technology Transfer
Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.
BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)
Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...
US Department of Energy's Efforts in Intelligent Processing Equipment
NASA Technical Reports Server (NTRS)
Peavy, Richard D.; Mcfarland, Janet C.
1992-01-01
The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.
A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office
NASA Technical Reports Server (NTRS)
Jackson, Jeff
1994-01-01
There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.
Spatial light modulator array with heat minimization and image enhancement features
Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY
2007-01-30
An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.
Distance learning education for mitigation/adaptation policy: a case study
NASA Astrophysics Data System (ADS)
Slini, T.; Giama, E.; Papadopoulou, Ch.-O.
2016-02-01
The efficient training of young environmental scientists has proven to be a challenging goal over the last years, while several dynamic initiatives have been developed aiming to provide complete and consistent education. A successful example is the e-learning course for participants mainly coming from emerging economy countries 'Development of mitigation/adaptation policy portfolios' organised in the frame of the project Promitheas4: Knowledge transfer and research needs for preparing mitigation/adaptation policy portfolios, aiming to provide knowledge transfer, enhance new skills and competencies, using modern didactic approaches and learning technologies. The present paper addresses the experience and the results of these actions, which seem promising and encouraging and were broadly welcomed by the participants.
Harridge, Stephen D R; Velloso, Cristiana P
2008-01-01
Gene doping is the misuse of gene therapy to enhance athletic performance. It has recently been recognised as a potential threat and subsequently been prohibited by the World Anti-Doping Agency. Despite concerns with safety and efficacy of gene therapy, the technology is progressing steadily. Many of the genes/proteins which are involved in determining key components of athletic performance have been identified. Naturally occurring mutations in humans as well as gene-transfer experiments in adult animals have shown that altered expression of these genes does indeed affect physical performance. For athletes, however, the gains in performance must be weighed against the health risks associated with the gene-transfer process, whereas the detection of such practices will provide new challenges for the anti-doping authorities.
Phytoremediation of Metal-Contaminated Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.
2004-03-31
Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experimentsmore » were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.« less
NASA Technical Reports Server (NTRS)
Madigan, J. A.; Earhart, R. W.
1978-01-01
Forty-three ongoing technology transfer programs in Federal agencies other than NASA were selected from over 200 current Federal technology transfer activities. Selection was made and specific technology transfer mechanisms utilized. Detailed information was obtained on the selected programs by reviewing published literature, and conducting telephone interviews with each program manager. Specific information collected on each program includes technology areas; user groups, mechanisms employed, duration of program, and level of effort. Twenty-four distinct mechanisms are currently employed in Federal technology transfer activities totaling $260 million per year. Typical applications of each mechanism were reviewed, and caveats on evaluating program effectiveness were discussed. A review of recent federally funded research in technology transfer to state and local governments was made utilizing the Smithsonian Science Information Exchange, and abstracts of interest to NASA were selected for further reference.
Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin
2008-05-01
Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.
Technology transfer methodology
NASA Technical Reports Server (NTRS)
Labotz, Rich
1991-01-01
Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
Spin-Transfer Studies in Magnetic Multilayer Nanostructures
NASA Astrophysics Data System (ADS)
Emley, N. C.; Albert, F. J.; Ryan, E. M.; Krivorotov, I. N.; Ralph, D. C.; Buhrman, R. A.
2003-03-01
Numerous experiments have demonstrated current-induced magnetization reversal in ferromagnet/paramagnet/ferromagnet nanostructures with the current in the CPP geometry. The primary mechanism for this reversal is the transfer of angular momentum from the spin-polarized conduction electrons to the nanomagnet moment the spin transfer effect. This phenomenon has potential application in nanoscale, current-controlled non-volatile memory elements, but several challenges must be overcome for realistic device implementation. Typical Co/Cu/Co nanopillar devices, although effective for fundamental studies, are not advantageous for technological applications because of their large switching currents Ic ( 3-10 mA) and small R·A (< 1 mΩ·µm^2). Here we report initial results testing some possible approaches for enhancing spin-transfer device performance which involve the addition of more layers, and hence, more complexity, to the simple Co/Cu/Co trilayer structure. These additions include synthetic antiferromagnet layers (SAF), exchange biased layers, nano-oxide layers (NOL), and additional magnetic layers. Research supported by NSF and DARPA
Review and assessment of the HOST turbine heat transfer program
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena occurring in high-performance gas turbine engines and to assess and improve the analytical methods used to predict the fluid dynamics and heat transfer phenomena. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. Therefore, a building-block approach was utilized, with research ranging from the study of fundamental phenomena and analytical modeling to experiments in simulated real-engine environments. Experimental research accounted for 75 percent of the project, and analytical efforts accounted for approximately 25 percent. Extensive experimental datasets were created depicting the three-dimensional flow field, high free-stream turbulence, boundary-layer transition, blade tip region heat transfer, film cooling effects in a simulated engine environment, rough-wall cooling enhancement in a rotating passage, and rotor-stator interaction effects. In addition, analytical modeling of these phenomena was initiated using boundary-layer assumptions as well as Navier-Stokes solutions.
Information to Change the World--Fulfilling the Information Needs of Technology Transfer.
ERIC Educational Resources Information Center
Duberman, Josh; Zeller, Martin
1996-01-01
Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…
Search Technologies | NCI Technology Transfer Center | TTC
Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.
Available Technologies | NCI Technology Transfer Center | TTC
Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.
ERIC Educational Resources Information Center
Harman, Grant; Stone, Christopher
2006-01-01
Technology transfer managers are a new group of specialist professionals engaged in facilitating transfer of university research discoveries and inventions to business firms and other research users. With relatively high academic qualifications and enjoying higher salaries than many other comparable university staff, technology transfer managers…
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.
Rotorcraft digital advanced avionics system (RODAAS) functional description
NASA Technical Reports Server (NTRS)
Peterson, E. M.; Bailey, J.; Mcmanus, T. J.
1985-01-01
A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.
2016-05-01
consisting of a polysaccharide polymeric material, a natural product of plant/soil rhyzobial microbial activity, was demonstrated to enhance site...critical concern of the modern Army and the Army engineer. A unique soil additive consisting of a polysaccharide polymeric material, a natural product of... polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydrate Research 204: 103- 107. Kochian, L.V. 1995. Cellular mechanisms of
Investigation of Sorption Mass Transfer Models Using Synthetic Soils
1996-12-01
Goltz for his useful comments regarding my review of the literature. His comments served to enhance the readability of my review as well as the...versions. Researchers ( Goltz , 1986; Wu and Gschwend, 1986; Ball and Roberts, 1991b; Young and Ball, 1995) have applied Fick’s second law of diffusion...Values," Environmental Science and Technology, Vol. 21, pp. 243-248, 1987. Goltz , M.N., Three-Dimensional Analytical Modeling of Diffusion-limited
Xenon ion propulsion for orbit transfer
NASA Technical Reports Server (NTRS)
Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.
1990-01-01
For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.
NASA Technical Reports Server (NTRS)
1972-01-01
The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.
Program for transfer research and impact studies
NASA Technical Reports Server (NTRS)
Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.
1973-01-01
Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.
NASA Technology Transfer System
NASA Technical Reports Server (NTRS)
Tran, Peter B.; Okimura, Takeshi
2017-01-01
NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.
Technology transfer of remote sensing technology
NASA Technical Reports Server (NTRS)
Smith, A. D.
1980-01-01
The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.
NASA programs in technology transfer and their relation to remote sensing education
NASA Technical Reports Server (NTRS)
Weinstein, R. H.
1980-01-01
Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.
NASA Technical Reports Server (NTRS)
Trivoli, George W.
1996-01-01
Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...
An applications-oriented approach to the development of virtual environments
NASA Technical Reports Server (NTRS)
Crowe, Michael X.
1994-01-01
The field of Virtual Reality (VR) is diverse, ranging in scope from research into fundamental enabling technologies to the building of full-scale entertainment facilities. However, the concept of virtual reality means many things to many people. Ideally, a definition of VR should derive from how it can provide solutions to existing challenges in building advanced human computer interfaces. The measure of success for VR lies in its ability to enhance the assimilation of complex information, whether to aid in difficult decision making processes, or to recreate real experiences in a compelling way. This philosophy is described using an example from a VR-based advertising project. The common and unique elements of this example are explained, though the fundamental development process is the same for all virtual environments that support information transfer. In short, this development approach is an applications oriented approach that begins by establishing and prioritizing user requirements and seeks to add value to the information transfer process through the appropriate use of VR technology.
2017-06-01
other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary
University Technology Transfer Information Processing from the Attention Based View
ERIC Educational Resources Information Center
Hamilton, Clovia
2015-01-01
Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…
Effetive methods in educating extension agents and farmers on conservation farming technology
USDA-ARS?s Scientific Manuscript database
Adoption of new technologies requires transfer of information from developers to end users. Efficiency of the transfer process influences the rate of adoption and ultimate impact of the technology. Various channels are used to transfer technology from researchers to farmers. Two commonly used ones ...
Technology Transfer through Training: Emerging Roles for the University.
ERIC Educational Resources Information Center
Bergsma, Harold M.
The importance of training in the technology transfer process is discussed, with special consideration to conditions in developing countries. Also considered is the role universities can play in training to promote technology transfer. Advisors on training and curriculum development are needed to introduce a new technology. Training farmers to…
Heat convection in a micro impinging jet system
NASA Astrophysics Data System (ADS)
Mai, John Dzung Hoang
2000-10-01
This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.
2013-09-12
CAPE CANAVERAL, Fla. – Lewis Parrish, senior Technology Transfer specialist for Qinetiq at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson
What Is Technology Transfer? | Poster
The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.
Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector
1985-01-01
TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun
2016-07-01
Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L
2018-01-01
Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted.
Paisner, Kathryn; Vanderford, Nathan L.
2018-01-01
Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted. PMID:29721313
Code of Federal Regulations, 2010 CFR
2010-10-01
... and operating contracts, for-profit contractor, non-technology transfer. 970.5227-11 Section 970.5227...-technology transfer. Insert the following clause in solicitations and contracts in accordance with 970.2703-1(b)(4): Patent Rights—Management and Operating Contracts, for-Profit Contractor, Non-Technology...
48 CFR 970.5227-2 - Rights in data-technology transfer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rights in data-technology... for Management and Operating Contracts 970.5227-2 Rights in data-technology transfer. As prescribed in 48 CFR 970.2704-3(b), insert the following clause: Rights in Data—Technology Transfer (DEC 2000) (a...
Key Findings and Recommendations for Technology Transfer at the ITS JPO
DOT National Transportation Integrated Search
2011-03-18
This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...
On transferring the grid technology to the biomedical community.
Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto
2010-01-01
Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".
Impacts of reproductive technologies on beef production in the United States.
Dahlen, Carl; Larson, Jamie; Lamb, G Cliff
2014-01-01
Estimations of world population growth indicate that by the year 2050 we will reach nine billion habitants on earth. These estimates impose a tremendous challenge in the current agricultural systems as food supply will need to increase by 100 % in the next 40 years (Food and Agriculture Organization of the United Nations 2009). Beef will be a primary protein source that will assist in meeting the requirements for a portion of the protein in diets of this expanding global populace. Beef is a high-quality protein that contains all essential amino acids for the human body and also contains additional essential nutrients such as iron, zinc, B vitamins, riboflavin, selenium, choline, and conjugated linoleic acid (CLA). Adopting reproductive technologies at greater rates than currently used is a viable method to dramatically enhance production efficiency of beef cattle enterprises.Artificial insemination (AI), estrous synchronization and fixed-time AI (TAI), semen and embryo cryopreservation, multiple ovulation and embryo transfer (MOET), in vitro fertilization, sex determination of sperm or embryos, and nuclear transfer are technologies that are used to enhance the production efficiency of beef operations. In many cases, the development of these technologies is responsible for significant changes to traditional livestock production practices. However, adoption of these technologies appears to has not grown at the same rate in the United States as other formidable beef producing nations. For example, sales of beef semen for AI increased from 3.3 to 11.9 million units between 1993 and 2011 in Brazil, whereas that in the United States has increased from 2.9 to 3.8 million units during the same period. The significant increases in adoption of reproductive technologies in developing countries is likely as a result of the development of practical estrous synchronization and TAI systems that have allowed beef producers the opportunity to eliminate detection of estrus in their AI programs with a high degree of success. In the United States, slow adoption rates of these technologies may result in a future loss of international market share of beef products as other nations take advantage not only of the additional kilogram of beef that can be produced but also the improved quality of beef that can be realized through incorporation of reproductive technologies and resultant genetic improvement. However, current difficulties the US producers have with the incorporation of applied reproductive technologies, such as TAI, MOET, and sex semen, must not be the reason to overlook and incorporate more traditional reproductive technologies such as castration, breeding season management, or weaning. In many cases, beef producers in the United States fail to incorporate these more traditional technologies, which results in a reduction in production efficiency of the US beef industry. This chapter will focus on both traditional and more developed reproductive technologies that will play a role in enhancing future production efficiencies of the US beef cattle production system.
NASA Technical Reports Server (NTRS)
2006-01-01
NASA seeks to create industry partnerships to develop technology that both applies to NASA mission needs and contributes to competitiveness in global markets. As part of NASA s mission, the Agency facilitates the transfer and commercialization of NASA-sponsored research and technology. These efforts not only support NASA, they enhance the quality of life here on Earth. While NASA does not manufacture, market or sell commercial products, many commercial products are derived from NASA technology. Many NASA originated technologies are adapted by private industry for use by consumers like you. Spinoff developments highlighted in this publication are based on information provided by individual and private industry users of NASA originated aerospace technology who acknowledge that such technology contributed wholly or in part to development of the product or process described. NASA cannot accept responsibility or liability for the misinterpretation or misrepresentation of the enclosed information provided by these third party users. Publication herein does not constitute NASA endorsement of the product or process, nor confirmation of manufacturers performance claims related to any particular spinoff development.
NASA Astrophysics Data System (ADS)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-01-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
NASA Astrophysics Data System (ADS)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-06-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
Risk Management in Biologics Technology Transfer.
Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek
Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.
Transfer research and impact studies program
NASA Technical Reports Server (NTRS)
Freeman, J. E. (Editor)
1975-01-01
Methods developed for stimulating interest in the transfer of NASA-originated technology are described. These include: new information packaging concepts; technology transfer via people transfer; information management systems; data bank operations; and professional communication activities.
Biomedical technology transfer applications of NASA science and technology
NASA Technical Reports Server (NTRS)
1972-01-01
The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.
NASA Technical Reports Server (NTRS)
1976-01-01
Resource information on the transfer of aerospace technology to other sectors of the U.S. economy is presented. The contents of this notebook are divided into three sections: (1) benefit cases, (2) transfer overview, and (3) indexes. Transfer examples relevant to each subject area are presented. Pertinent transfer data are given. The Transfer Overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented.
Heat transfer enhancement with mixing vane spacers using the field synergy principle
NASA Astrophysics Data System (ADS)
Yang, Lixin; Zhou, Mengjun; Tian, Zihao
2017-01-01
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
NASA Technical Reports Server (NTRS)
Haggerty, James J.
1992-01-01
This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.
NASA Technical Reports Server (NTRS)
Haggerty, James J.
1993-01-01
This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.
1984-09-01
Application Cited Deere and Company e Assist in design of electronic systems for tractors, crawlers, graders, scrapers, etc. Defense Contract Audit Agency . Aid...in developing and enhancing operational audits . DoD, Cameron Station e Conduct affordability analyses; evalu- ate new start systems. DoD, Defense...document productivity gains. e Promotes better inLustry and customer re~latons by providing a common baseline or starting polut for cost vs. perfor- vanz
Technology transfer to the broader economy
NASA Technical Reports Server (NTRS)
Dyer, Gordon; Clark, Robert
1992-01-01
Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.
Technology Transfer: Technocultures, Power and Communication--The Australian Experience.
ERIC Educational Resources Information Center
More, Elizabeth; Irwin, Harry
1995-01-01
Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…
48 CFR 970.2770 - Technology Transfer.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...
48 CFR 970.2770 - Technology Transfer.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...
48 CFR 970.2770 - Technology Transfer.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...
48 CFR 970.2770 - Technology Transfer.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...
48 CFR 970.2770 - Technology Transfer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...
Applications of aerospace technology in industry. A technology transfer profile: Food technology
NASA Technical Reports Server (NTRS)
Murray, D. M.
1971-01-01
Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.
Heat transfer enhancement by application of nano-powder
NASA Astrophysics Data System (ADS)
Mosavian, M. T. Hamed; Heris, S. Zeinali; Etemad, S. Gh.; Esfahany, M. Nasr
2010-09-01
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.
Horban', A Ie
2013-09-01
The question of implementation of the state policy in the field of technology transfer in the medical branch to implement the law of Ukraine of 02.10.2012 No 5407-VI "On Amendments to the law of Ukraine" "On state regulation of activity in the field of technology transfers", namely to ensure the formation of branch database on technology and intellectual property rights owned by scientific institutions, organizations, higher medical education institutions and enterprises of healthcare sphere of Ukraine and established by budget are considered. Analysis of international and domestic experience in the processing of information about intellectual property rights and systems implementation support transfer of new technologies are made. The main conceptual principles of creation of this branch database of technology transfer and branch technology transfer network are defined.
Ames Lab 101: Technology Transfer
Covey, Debra
2017-12-13
Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.
Patrick, Walter K
2011-09-01
Developmental strategies over the last 4 decades have generally tended to transfer knowledge and technology along north-south axes as trickle-down theories in development, especially in health knowledge transfers, prevailed. Limited efforts in development assistance for health (DAH) were made to promote south-south cooperation for basic health needs. Globalization with increased educational networks and development health assistance has enhanced the potential for more effective south-south partnerships for health. The stages of development in a consortium and key catalysts in the metamorphosis to a south-south partnership are identified: leadership, resources, expertise, visibility participation, and dynamism of a critical mass of young professionals. Copyright © 2011 Elsevier Inc. All rights reserved.
New technology and its role in enhancing global food production.
Goodman, R M
1986-09-01
The transfer in the past 3 decades of modern agricultural technology to countries of the Third World has led to a steady improvement in global food production. The results have not been evenly distributed, however, and serious problems remain. Modern biotechnology may contribute to solving some of the problems of high input costs and may also contribute to decreasing the risks associated with agriculture in developing economies. Several problems must be overcome, however. Among these are finding ways to bring the advanced technological capabilities of private companies, both large and small, to the international agricultural research network where commercial incentives are not strong or are inappropriate. Also, unless and until severe countervailing forces, such as population growth rates and deterioration of the environment, are brought under control the spread of new agricultural technology will be of little consequence in the most difficult famine-prone situations.
NASA Technical Reports Server (NTRS)
Grey, J. (Editor); Newman, M.
1978-01-01
The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.
14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... technology to foreign firms or institutions. 1274.915 Section 1274.915 Aeronautics and Space NATIONAL... Conditions § 1274.915 Restrictions on sale or transfer of technology to foreign firms or institutions. Restrictions on Sale or Transfer of Technology to Foreign Firms or Institutions July 2002 (a) The parties agree...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...
Technology Transfer and Technology Transfer Intermediaries
ERIC Educational Resources Information Center
Bauer, Stephen M.; Flagg, Jennifer L.
2010-01-01
A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…
2004-12-01
Agency, FY 1999-2003 Table 1.1 – Overview of the Types of Information on Federal lab Technology Transfer Collected in the...invention disclosure, patenting, and licensing. Table 1.1 – Overview of the Types of Information on Federal Lab Technology Transfer Collected in...results. In addition, ARS hosts a Textile Manufacturing Symposium and a Cotton Ginning Symposium at gin and textile labs to benefit county extension
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.
This is a congressional hearing on the Training Technology Transfer Act of 1984, which would establish a mechanism for transferring the Federal Government's investment in computer programming for training systems to those organizations and groups that can use such technology in training the civilian work force. Focus is on refining this bill,…
The ESA TTP and Recent Spin-off Successes
NASA Astrophysics Data System (ADS)
Raitt, D.; Brisson, P.
2002-01-01
In the framework of its research and development activities, the European Space Agency (ESA) spends some 250m each year and, recognizing the enormous potential of the know-how developed within its R&D activities, set up a Technology Transfer Programme (TTP) some twelve years ago. Over the years, the Programme has achieved some remarkable results with 120 successful transfers of space technologies to the non-space sector; over 120m received by companies making the technologies available; some 15 new companies established as a direct result of exploiting technologies; nearly 2500 jobs created or saved in Europe; and a portfolio of some 300 (out of over 600) active space technologies available for transfer and licencing. Some of the more recent technologies which have been successfully transferred to the non-space sector include the Mamagoose baby safety pyjamas; a spectrographic system being used to compare colours in fabrics and textiles; Earth observation technology employed to assess remotely how much agrochemicals are being used by farmers; and the Dutch solar car, Nuna, which, using European space technologies, finished first in the 2001 World Solar Challenge breaking all records. The paper will give a brief overview of the ESA Technology Transfer Programme and describe some of its recent successful technology transfers.
Space benefits: The secondary application of aerospace technology in other sectors of the economy
NASA Technical Reports Server (NTRS)
1976-01-01
A 'Benefit Briefing Notebook' was prepared for the NASA Technology Utilization Office to provide accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The contents are divided into three sections: (1) transfer overview, (2) benefit cases, and (3) indexes. The transfer overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented. The benefits section is subdivided into nineteen subject areas. Each subsection presents one or more key issues of current interest, with discrete transfer cases related to each key issue. Additional transfer examples relevant to each subject area are then presented. Pertinent transfer data are given at the end of each example.
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1992-01-01
This report presents a strategic analysis and implementation plan for NASA's Office of Commercial Programs (OCP), Technology Transfer Division's (TTD), Technology Transfer Program. The main objectives of this study are to: (1) characterize the NASA TTD's environment and past organizational structure; (2) clearly identify current and prospective programmatic efforts; (3) determine an evolutionary view of an organizational structure which could lead to the accomplishment of NASA's future technology transfer aims; and (4) formulate a strategy and plan to improve NASA's (and other federal agencies) ability to transfer technology to the non-aerospace sectors of the U.S. economy. The planning horizon for this study extends through the remainder of the 1990s to the year 2000.
Biomedical applications of aerospace technology
NASA Technical Reports Server (NTRS)
Castles, T. R.
1971-01-01
Aerospace technology transfer to biomedical research problems is discussed, including transfer innovations and potential applications. Statistical analysis of the transfer activities and impact is also presented.
International comparison and review of a health technology assessment skills program.
Wanke, Margaret I; Juzwishin, Don
2005-01-01
A review of the Alberta Heritage Foundation for Medical Research's (AHFMR) 6-month Health Technology Skills Development Program was undertaken within an international context with the purpose of describing and assessing the current program, further formalizing the program based on identified opportunities for improvement, and enhancing collaborative linkages with other agencies. The objectives of the review were to (i) compare the AHFMR program with similar programs in other health technology assessment (HTA) agencies internationally; (ii) assess the value of the program; (iii) identify program strengths and opportunities for improvement; and (iv) review, critique, and recommend enhancements to the program model and role description. The review involved a qualitative study design that included a survey of the Skills Development Program participants' experience and perceptions; semistructured interviews with program stakeholders, and a written survey of HTA agencies/programs in other Canadian and international jurisdictions. The review concluded that the program was successful and valued by participants, the Foundation, and stakeholders in the policy and research communities. Findings suggest participant products have a potential for broad influence, including impact on funding decisions related to technology diffusion, influence through publications and presentations, and knowledge transfer in the participants' disciplines and employment settings. The main opportunity for enhancement was to differentiate the program into two streams according to different needs of participants, specifically between those who desire to be HTA producers and/or make HTA their careers, and those who desire to apply HTA in their employment capacity as policy or clinical decision-makers.
NASA Technical Reports Server (NTRS)
Trivoli, George W.
1996-01-01
This research report is divided into four sections. The first section is related to participation on the team that evaluated the proposals for the X-33 project and the Reusable Launch Vehicle (RLV) during mid-May; prior to beginning the 1996 Summer Faculty Fellowship. The second section discusses the various meetings attended related to the technology evaluation process. The third section is related to various research and evaluation activities engaged in by this researcher. The final section discusses several success stories this researcher aided in preparing. Despite the fact that this researcher is not an engineer or science faculty, invaluable knowledge and experience have been gained at MSFC. Although related to the previous summer's research, the research has been new, varied, and challenging. This researcher was fortunate to have had maximum interaction with NASA colleague, David Cockrell. It would be a privilege and honor to continue a relationship with the Technology Transfer Office. In addition, we will attempt to aid in the establishment of a continuous formalized relationship between MSFC and Jacksonville State University. Dr. David Watts, Vice President for Academic Affairs, J.S.U., is interested in having the Technology Division cooperating with MSFC in sharing information and working tech transfer inquiries. The principal benefits gained by this researcher include the opportunity to conduct research in a non-academic, real world environment. In addition, the opportunity to be involved in aiding with the decision process for the choice of the next generation of space transportation system was a once in a lifetime experience. This researcher has gained enhanced respect and understanding of MSFC/NASA staff and facilities.
Partnering Events | NCI Technology Transfer Center | TTC
Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.
40 CFR 63.126 - Transfer operations provisions-reference control technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...
40 CFR 63.126 - Transfer operations provisions-reference control technology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...
40 CFR 63.126 - Transfer operations provisions-reference control technology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...
40 CFR 63.126 - Transfer operations provisions-reference control technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...
Standards Development Activities at White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.
2003-01-01
The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.
NASA's Chemical Transfer Propulsion Program for Pathfinder
NASA Technical Reports Server (NTRS)
Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.
1989-01-01
Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.
Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina
2015-01-01
The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.
Geospatial Technology Strategic Plan 1997-2000
D'Erchia, Frank; D'Erchia, Terry D.; Getter, James; McNiff, Marcia; Root, Ralph; Stitt, Susan; White, Barbara
1997-01-01
Executive Summary -- Geospatial technology applications have been identified in many U.S. Geological Survey Biological Resources Division (BRD) proposals for grants awarded through internal and partnership programs. Because geospatial data and tools have become more sophisticated, accessible, and easy to use, BRD scientists frequently are using these tools and capabilities to enhance a broad spectrum of research activities. Bruce Babbitt, Secretary of the Interior, has acknowledged--and lauded--the important role of geospatial technology in natural resources management. In his keynote address to more than 5,500 people representing 87 countries at the Environmental Systems Research Institute Annual Conference (May 21, 1996), Secretary Babbitt stated, '. . .GIS [geographic information systems], if properly used, can provide a lot more than sets of data. Used effectively, it can help stakeholders to bring consensus out of conflict. And it can, by providing information, empower the participants to find new solutions to their problems.' This Geospatial Technology Strategic Plan addresses the use and application of geographic information systems, remote sensing, satellite positioning systems, image processing, and telemetry; describes methods of meeting national plans relating to geospatial data development, management, and serving; and provides guidance for sharing expertise and information. Goals are identified along with guidelines that focus on data sharing, training, and technology transfer. To measure success, critical performance indicators are included. The ability of the BRD to use and apply geospatial technology across all disciplines will greatly depend upon its success in transferring the technology to field biologists and researchers. The Geospatial Technology Strategic Planning Development Team coordinated and produced this document in the spirit of this premise. Individual Center and Program managers have the responsibility to implement the Strategic Plan by working within the policy and guidelines stated herein.
Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt
2011-01-01
Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization...
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott
2014-01-01
Abstract To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee. PMID:24945893
Rose, Lynn M; Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott
2014-12-01
To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health-related inventions. The technology transfer Offices (TTO) of CTSA-funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP-KFC) developed a survey to explore how CTSA-funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well-connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health-related inventions as measured by follow-on funding and industry involvement; either as a consulting partner or licensee. © 2014 Wiley Periodicals, Inc.
Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.
2005-01-01
Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.
Fiscal year 1988 program report: Pennsylvania Center for Water Resources Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonnell, A.J.
1989-08-01
Three projects and a program of technology transfer were conducted under the Pennsylvania Fiscal Year 1988 State Water Resources Research Grants Program (PL 98-242, Sect. 104). In a completed study focused on the protection of water supplies, mature slow sand filters were found to remove 100 percent of Cryptosporidium and Giardia cysts. A site specific study examined the behavior of sedimentary iron and manganese in an acid mine drainage wetland system. A study was initiated to link a comprehensive non-point source model, AGNPS with current GIS technology to enhance the models' utility for evaluating regional water quality problems related tomore » non-point source agricultural pollution.« less
González-Méndez, Ramón; Watts, Peter; Olivenza-León, David; Reich, D Fraser; Mullock, Stephen J; Corlett, Clive A; Cairns, Stuart; Hickey, Peter; Brookes, Matthew; Mayhew, Chris A
2016-11-01
A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.
How to tap NASA-developed technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzic, N.
The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less
Enhanced hybrid TV platform with multiscreen, advanced EPG and recommendation enablers
NASA Astrophysics Data System (ADS)
Kovacik, Tomas; Bencel, Rastislav; Mato, Jan; Bronis, Roman; Truchly, Peter; Kotuliak, Ivan
2017-05-01
TV watching dramatically changes with introduction of new technologies such as Internet-connected TVs, enriched digital broadcasting (DVB), on-demand content, additional programme information, mobile phones and tablets enabling multiscreen functions etc that offer added values to content consumers. In this paper we propose modular advanced TV platform and its enablers enhancing TV watching. They allow users to receive aside of EPG also additional information about broadcasted content, to be reminded of requested programme, to utilize recommendation and search features, thanks to multiscreen functionality to allow users to take watched content with them or transfer it onto another device. The modularity of the platform allows new features to be added in future.
Field testing of thermal canopy models in a spruce-fir forest
NASA Technical Reports Server (NTRS)
1990-01-01
Recent advances in remote sensing technology allow the use of the thermal infrared region to gain information about vegetative surfaces. Extending existing models to account for thermal radiance transfers within rough forest canopies is of paramount importance. This is so since all processes of interest in the physical climate system and biogeochemical cycles are thermally mediated. Model validation experiments were conducted at a well established boreal forest; northern hardwood forest ecotone research site located in central Maine. Data was collected to allow spatial and temporal validation of thermal models. Emphasis was placed primarily upon enhancing submodels of stomatal behavior, and secondarily upon enhancing boundary layer resistance submodels and accounting for thermal storage in soil and vegetation.
FY 2004 Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2004-01-01
The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
Identifying research needs for wheelchair transfers in the built environment.
Crytzer, Theresa Marie; Cooper, Rory; Jerome, Genevieve; Koontz, Alicia
2017-02-01
The purpose of this study is to describe the results of focus groups held during the Independent Wheelchair Transfer (IWT) Workgroup. The aims were to facilitate exchange of ideas on (1) the impact of the built environment on the wheelchair transfer process within the community (i.e. moving from wheelchair to and from other surfaces (e.g. furniture, toilet seat, bath bench, car seat) to participate in daily activities), (2) wheelchair users' needs during transfers in the built environment, and (3) future research directions. Live web-based conferencing using Adobe Connect technology (Clarix Technologies, Inc., Pittsford, NY) was utilized to conduct three focus groups composed of experts in the field of assistive technology. Investigators independently reviewed focus group meeting transcripts and used qualitative methods to identify main themes. Thirty-one experts in assistive technology and related fields participated in focus groups. Nine main themes were found including the effect of transfer skills training, space considerations in the built environment, wheelchair configuration, and the interaction between the built environment, user preferences, and transfer techniques. All groups raised issues about the transfer process in areas of the built environment with limited access, the effect of wheelchair users' transfer techniques, and user preferences during transfers. The area of independent transfers is multi-faceted and several factors require consideration when contemplating environmental changes to improve accessibility for wheelchair users. Obvious opportunity exists for research which could lead to advances in transfer technology, environments, and techniques for wheelchair users. Implications for Rehabilitation Tremendous opportunities for research collaborations in the field of assistive technology: To develop new terminology to describe wheelchair transfers. To improve the design of the built environment for wheelchair users. To investigate wheelchair transfer training techniques.
Strategic Planning of Technology Transfer.
ERIC Educational Resources Information Center
Groff, Warren H.
Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…
Teacher Candidate Technology Integration: For Student Learning or Instruction?
ERIC Educational Resources Information Center
Clark, Cynthia; Zhang, Shaoan; Strudler, Neal
2015-01-01
Transfer of instructional technology knowledge for student-centered learning by teacher candidates is investigated in this study. Using the transfer of learning theoretical framework, a mixed methods research design was employed to investigate whether secondary teacher candidates were able to transfer the instructional technology knowledge for…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...
Proceedings: international conference on transfer of forest science knowledge and technology.
Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner
2007-01-01
This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...
NASA Astrophysics Data System (ADS)
Farahani, Somayeh Davoodabadi; Kowsary, Farshad
2017-09-01
An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
Biological processing in oscillatory baffled reactors: operation, advantages and potential
Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.
2013-01-01
The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
.... National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and... information claimed to be confidential business information (CBI) or other information whose disclosure is... That Significantly Affect Energy Supply, Distribution, or Use I. National Technology Transfer and...
Technology Transfer Educational Curriculum Plan for the State of Colorado.
ERIC Educational Resources Information Center
Dakin, Karl J.
A recommended plan for an educational curriculum on the topic of technology transfer is outlined. A survey was conducted to determine the current levels of ability and knowledge of technology users and of transfer intermediaries. Information was collected from three sources: individuals and organizations currently presenting educational programs…
Technology Transfer: A Selected Bibliography.
ERIC Educational Resources Information Center
Sovel, M. Terry
This bibliography of 428 items, a product of the NASA-sponsored Project for the Analysis of Technology Transfer (PATT) at the University of Denver's Research Institute (DRI), is the initial attempt at compiling a comprehensive listing on the subject of technology transfer. The bibliography is further concerned with information which leads to a…
Actor-network theory: a tool to support ethical analysis of commercial genetic testing.
Williams-Jones, Bryn; Graham, Janice E
2003-12-01
Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.
Food irradiation: Technology transfer in Asia, practical experiences
NASA Astrophysics Data System (ADS)
Kunstadt, Peter; Eng, P.
1993-10-01
Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.
Societal and economic valuation of technology-transfer deals
NASA Astrophysics Data System (ADS)
Holmes, Joseph S., Jr.
2009-09-01
The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.
Acoustic Streaming in Microgravity: Flow Stability and Heat Transfer Enhancement
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1999-01-01
Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.
ERIC Educational Resources Information Center
Scoll, Barbara; Engstrom, Roger
In January of 1982, the Hennepin County Community Services Department began implementing a day care voucher system which allowed day care clients to place their children in any licensed day care home or center that was willing to contract with Hennepin County. In October of the same year, Hennepin County was awarded a grant by the Department of…
Fully-Implicit Navier-Stokes (FIN-S)
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2010-01-01
FIN-S is a SUPG finite element code for flow problems under active development at NASA Lyndon B. Johnson Space Center and within PECOS: a) The code is built on top of the libMesh parallel, adaptive finite element library. b) The initial implementation of the code targeted supersonic/hypersonic laminar calorically perfect gas flows & conjugate heat transfer. c) Initial extension to thermochemical nonequilibrium about 9 months ago. d) The technologies in FIN-S have been enhanced through a strongly collaborative research effort with Sandia National Labs.
Adenovirus-based genetic vaccines for biodefense.
Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G
2005-02-01
The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.
Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems
2007-11-16
high thermal conductivity materials for heat transfer enhancement. In addition, the PCMs ’ low heat storage density requires excessively large system...capacity as compared to the PCMs . For example, Ca0.2M0.8Ni5, a commercial hydride, has a heat storage density of 853.3MJ/m³ in raw material condition...Huston and Sandrock, 1980], while paraffin (Calwax 130), a common organic PCM has a heat storage capacity of 177.5MJ/m³ [Al-Hallaj and Selman, 2000]. The
NASA Technical Reports Server (NTRS)
Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.;
2000-01-01
Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.
1995-06-01
required, the Defense Technology Security Administration ( DTSA ) will make a determination on whether or not advanced technologies are being risked by the...sale or transfer of that product. DTSA has this role whether it is a commercial or government-to-government transfer. The Joint Chiefs of Staff also...Office of Defense Relations Security Assistance DSAA Defense Security Assistance Agency DTIB Defense Technological and Industrial Base DTSA Defense
2010-05-11
convective heat transfer , researchers have been drawn to the high heat flux potentials of microfluidic devices. Microchannel flows, with hydraulic...novel heat transfer enhancement technique proven on the conventional scale to the mini and microchannel scales. 1.3 Background: Conventional...S.G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” International Conference on Microchannels
NASA'S Changing Role in Technology Development and Transfer
NASA Technical Reports Server (NTRS)
Griner, Carolyn S.; Craft, Harry G., Jr.
1997-01-01
National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.
Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy
NASA Astrophysics Data System (ADS)
Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong
2015-04-01
Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205
Rowland, Clare E; Fedin, Igor; Zhang, Hui; Gray, Stephen K; Govorov, Alexander O; Talapin, Dmitri V; Schaller, Richard D
2015-05-01
Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs 7-9) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. 10), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann
2018-03-01
Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.
NASA Astrophysics Data System (ADS)
Rowland, Clare E.; Fedin, Igor; Zhang, Hui; Gray, Stephen K.; Govorov, Alexander O.; Talapin, Dmitri V.; Schaller, Richard D.
2015-05-01
Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs , , ) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. ), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (˜6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
Review of nonconventional bioreactor technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C.E.; Mcllwain, M.E.
1993-09-01
Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, andmore » electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.« less
NASA Technical Reports Server (NTRS)
Hebert, Phillip W., Sr.
2008-01-01
May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.
NASA Technical Reports Server (NTRS)
Haggerty, James J.
1991-01-01
This is an instrument of the Technology Utilization Program and is designed to heighten awareness of the technology available for transfer and its potential for public benefit. NASA's mainline programs, whose objectives require development of new technology and therefore expand the bank of technology available for transfer in future years, are summarized. Focus is on the representative sampling of spinoffs (spinoff, in this context, means products and processes developed as secondary applications of existing NASA technology) that resulted from NASA's mainline programs. The various mechanisms NASA employs to stimulate technology transfer are described and contact sources are listed in the appendix for further information about the Technology Utilization Program.
Commercial application of thermal protection system technology
NASA Technical Reports Server (NTRS)
Dyer, Gordon L.
1991-01-01
The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.
Tech Transfer News. Volume 9, No. 1
NASA Technical Reports Server (NTRS)
Victor, Megan E. (Compiler)
2017-01-01
Kennedy Tech Transfer News is the magazine of the Technology Transfer Office at NASA's Kennedy Space Center, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy Space Center about actively participating in achieving NASA's technology transfer and partnership goals.
Technology Transfer: Marketing Tomorrow's Technology
NASA Technical Reports Server (NTRS)
Tcheng, Erene
1995-01-01
The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, David A.; Harrison, William B.
The Michigan Geological Repository for Research and Education (MGRRE), part of the Department of Geosciences at Western Michigan University (WMU) at Kalamazoo, Michigan, established MichCarb—a geological carbon sequestration resource center by: • Archiving and maintaining a current reference collection of carbon sequestration published literature • Developing statewide and site-specific digital research databases for Michigan’s deep geological formations relevant to CO2 storage, containment and potential for enhanced oil recovery • Producing maps and tables of physical properties as components of these databases • Compiling all information into a digital atlas • Conducting geologic and fluid flow modeling to address specific predictivemore » uses of CO2 storage and enhanced oil recovery, including compiling data for geological and fluid flow models, formulating models, integrating data, and running the models; applying models to specific predictive uses of CO2 storage and enhanced oil recovery • Conducting technical research on CO2 sequestration and enhanced oil recovery through basic and applied research of characterizing Michigan oil and gas and saline reservoirs for CO2 storage potential volume, injectivity and containment. Based on our research, we have concluded that the Michigan Basin has excellent saline aquifer (residual entrapment) and CO2/Enhanced oil recovery related (CO2/EOR; buoyant entrapment) geological carbon sequestration potential with substantial, associated incremental oil production potential. These storage reservoirs possess at least satisfactory injectivity and reliable, permanent containment resulting from associated, thick, low permeability confining layers. Saline aquifer storage resource estimates in the two major residual entrapment, reservoir target zones (Lower Paleozoic Sandstone and Middle Paleozoic carbonate and sandstone reservoirs) are in excess of 70-80 Gmt (at an overall 10% storage efficiency factor; an approximately P50 probability range for all formations using DOE-NETL, 2010, storage resource estimation methodology). Incremental oil production resulting from successful implementation of CO2/EOR for the highest potential Middle Paleozoic reef reservoirs (Silurian, Northern Niagaran Reef trend) in Michigan is estimated at 130 to over 200 MMBO (22-33 Mm3). In addition, between 200 and 400 Mmt of CO2 could be sequestered in the course of successful deployment of CO2/EOR in the northern reef trend’s largest depleted (primary production) oil fields (those that have produced in excess of 500,000 BO; 80,000 m3of oil). • Effecting technology transfer to members of industry and governmental agencies by establishing an Internet Website at which all data, reports and results are accessible; publishing results in relevant journals; conducting technology transfer workshops as part of our role as the Michigan Center of the Petroleum Technology Transfer Council or any successor organization.« less
Assessment of research and technology transfer needs for wood-frame housing
Kevin Powell; David Tilotta; Karen Martinson
2008-01-01
Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...
Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."
ERIC Educational Resources Information Center
Colorado Advanced Tech. Inst., Denver.
The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…
ERIC Educational Resources Information Center
Hamilton, Clovia; Schumann, David
2016-01-01
With respect to university technology transfer, the purpose of this paper is to examine the literature focused on the relationship between university research faculty and technology transfer office staff. We attempt to provide greater understanding of how research faculty's personal values and research universities' organization values may differ…
A southern region conference on technology transfer and extension
Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher
2009-01-01
Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...
Applications of aerospace technology in industry. A technology transfer profile: Cryogenics
NASA Technical Reports Server (NTRS)
1971-01-01
Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.
Argonne National Laboratory technology transfer report, FY 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-11-01
In 1985 Argonne established the Technology Transfer Center (TTC). As of the end of FY 1987, the TTC has a staff equivalent to four full-time professionals, two secretaries, and two student aides; FY 1987 ORTA funding was $220K. A network of technology transfer representatives provides windows into and out of Argonne's technical divisions on technology transfer matters. The TTC works very closely with the ARCH Develoment Corporation, a not-for-profit corporation set up to commercialize selected Argonne and University of Chicago patents. The goal of the Technology Transfer Center at Argonne is to transfer technology developed at Argonne to the domesticmore » private sector by whatever means is most effective. The strategies by which this is accomplished are numerous and the TTC is, in effect, conducting a number of experiments to determine the most effective strategies. These include cooperative RandD agreements, work-for-others contracts, subcontracting to industry, formation of joint ventures via ARCH, residencies by industry staff at Argonne and vice versa, patent licensing and, of course, conferences, workshops and visits by industry and to industry.« less
Technology Transfer Program (TTP). Quality Assurance System. Volume 2. Appendices
1980-03-03
LSCo Report No. - 2X23-5.1-4-I TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY...4-1 TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY ASSURANCE VOLUME 2 APPENDICES...prepared by: Livingston Shipbuilding Company Orange, Texas March 3, 1980 APPENDIX A ACCURACY CONTROL SYSTEM . IIII MARINE TECHNOLOGY. INC. HP-121
Computers and terminals as an aid to international technology transfer
NASA Technical Reports Server (NTRS)
Sweeney, W. T.
1974-01-01
As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.
NASA Technical Reports Server (NTRS)
1979-01-01
The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.
NASA's southeast technology transfer alliance: A cooperative technology assistance initiative
NASA Astrophysics Data System (ADS)
Craft, Harry G.; Sheehan, William; Johnson, Anne
1996-03-01
Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.
Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H
2014-07-16
The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modular Manufacturing Simulator Users Manual
NASA Technical Reports Server (NTRS)
1997-01-01
Since the agency was established in 1958, a key part of the National Aeronautics and Space Administration's mission has been to make technologies available to American industry so it can be more widely used by the citizens who paid for it. While many people might think that 'rocket science' has no application to earthly problems, rocket science in fact employs earthly materials, processes, and designs adapted for space, and which can be adapted for other purposes on Earth. Marshall Space Flight Center's Technology Transfer Office has outreach programs designed to connect American business, industries, educational institutions, and individuals who have needs, with NASA people and laboratories who may have the solutions. MSFC's national goal is to enhance America's competitiveness in the world marketplace and ensure that the technological breakthroughs by American laboratories benefit taxpayers and the many industries making up our Nation's industrial base. Activities may range from simple exchanges of technical data to Space Act Agreements which lead to NASA and industry working closely together to solve a problem. The goal is to ensure that America gains and maintains its proper place of leadership among the world's technologically developed nations. Some of the many technologies transferred from NASA to commercial customers include those associated with: Welding and fabrication; Medical and pharmaceutical uses; Fuels and coatings; Structural composites and Robotics. These activities are aimed to achieve the same goal: slowing, halting, and gradually reversing the erosion of American technological leadership. Legislation such as the National Technology Initiative starts at the top and works down through the national corporate structure, while MSFC's activities start at the grassroots level and work up through the small and medium-sized business which form the bulk of our industrial community.
NASA Technical Reports Server (NTRS)
Carlson, William E.
1994-01-01
Suppose you have just created a revolutionary bicycle suspension which allows a bike to be ridden over rough terrain at 60 miles per hour. In addition, suppose that you are deeply concerned about the plight of hungry children. Which should you do: be sure all hungry children have bicycles; transfer the technology for your new suspension to bicycle manufacturers worldwide; or start a company to supply premium sports bicycle based on your patented technology, and donate the profits to a charity which feeds hungry children? Woven through this somewhat trivial example is the paradox of technology transfer - the supplier (owner) may want to transfer technology; but to succeed, he or she must reformulate the problem as a user need for which there is a new and better solution. Successful technology transfer is little more than good marketing applied to an existing invention, process, or capability. You must identify who needs the technology, why they need it, why the new technology is better than alternatives, how much the customers are willing and able to pay for these benefits, and how to distribute products based on the technology tc the target customers. In market-driven development, the term 'technology transfer' is rarely used. The developers focus on studying user needs and designing solution They may have technology needs, but they don't have technology in search of a use.
NASA Astrophysics Data System (ADS)
Kumar, Sourabh; Amano, R. S.
2015-05-01
Gas turbines are extensively used for aircraft propulsion, land-based power generation, and various industrial applications. With an increase in turbine rotor inlet temperatures, developments in innovative gas turbine cooling technology enhance the efficiency and power output; these advancements of turbine cooling have allowed engine designs to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream of gas are based on an increase in the heat transfer areas and on the promotion of turbulence of the cooling flow. In this study, an improvement in performance is obtained by casting repeated continuous V- and broken V-shaped ribs on one side of the two pass square channels into the core of the blade. A detailed experimental investigation is done for two pass square channels with a 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for a steady state experiment. Four different combinations of 60° V- and broken 60° V-ribs in a channel are considered. A series of thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for Reynolds numbers 16,000, 56,000 and 85,000 within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the rib. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. A series of experimental measurements is performed to predict the overall performance of the channel. This paper presents an attempt to collect information about the Nusselt number, the pressure drop and the overall performance of the eight different ribbed ducts at the specified Reynolds number. The main contribution of this study is to evaluate the best combination of rib arrangements throughout the two pass cooling channels. After a series of experiments, it can be concluded that the distribution of peaks in heat transfer in the case of inlet V and outlet inverted V is high. The overall performances for broken ribs are higher compared with the continuous ribs in two-pass cooling channels.
Review on Enhanced Heat Transfer Techniques using Modern Technologies for 4S Air Cooled Engines
NASA Astrophysics Data System (ADS)
Ramasubramanian, S.; Bupesh Raja, V. K.
2017-05-01
Engine performance is a biggest challenge and a vital area of concern when it comes to automobiles. Researchers across the globe have been working decades together meticulously improvising the performance of engine in terms of efficiency. The durability of the engine components mainly depends on the thermal stress it undergoes over the period of operation. Air cooling of engine is the simplest and most desirous technique that has been adopted for ages. In this regard fins or extended surfaces are employed for effective cooling of the cylinder while in operation. The conductive and convective heat transfer rate from the cylinder to the fins and in turn from the fins to surrounding ambience determines the effective performance of the engine. In this paper an attempt is made to review and summarize the various researches that were conducted on the Fins in terms of profile geometry, number of fins, size, thickness factor, material used etc., and to bring about a long term solution with the modern technologies like nano coatings and nano materials.
Innovations in Science Education in Europe
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2001-12-01
At many European Universities, the retention of skilled science graduates is hindered mainly by organisational structures. In particular, women students are often under-represented in sciences, and career progression is in general difficult. The linear system of knowhow transfer is inefficient from the pedagogical point of view and unsatisfactory for many students. Owing to fast changes in society and the working environment, a re-building of curricula in tertiary education (including University Education) has begun. Conceptual visions aim at influencing the investment in the largely untapped human capital and preparing the students for quick adaptation and enhanced flexiblity. Traditional methods of classroom teaching and knowhow transfer are increasingly complemented by New Learning Technologies and Mentoring. The EU Project INDECS (Potentials of Interdisciplinary Degree Courses in Engineering, Information Technology, Natural and Socio-Economic Sciences in a Changing Society) examines such pedagogical aspects in European degree courses combining engineering, IT, physical sciences and socio-economic sciences. Inclusion of specific IT and social science topics in modular form is examined. How innovation in University Teaching will meet the attractiveness to both students and employers in Europe is major focus of the study.
Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei
2015-09-16
The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.
Celik, Onder; Acet, Mustafa; Celik, Sudenaz; Sahin, Levent; Koc, Onder; Celik, Nilufer
2017-06-01
As with other organs endometrial functions are altered with the advancing age. Age related decrease in reproductive functions leads to decline in the number of oocytes retrieved and the synthesis of endometrial receptivity molecules. Despite the significant improvement in assisted reproductive technologies we do not have so many options to enhance endometrial receptivity. Due to lack of drugs having endometrium receptivity enhancement properties, oocyte donation seems to be the only solution for women with implantation failure. The euploid oocytes come from young and healthy donors may overcome age associated endometrial receptivity defect. Nevertheless, many reasons restrict us from using oocyte donation in women with implantation failure. We, therefore, hypothesized that by mimicking a young blastocyst's effect on endometrium, the transfer of genuine embryos and implantation-promoting compounds together might be the new treatment option for infertile women with recurrent implantation failure. Artificial beads, MI or GV oocytes, and empty zona can be used as a container for intrauterine replacement of implantation-promoting compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications
NASA Astrophysics Data System (ADS)
Golshadi, Masoud
Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell-CNT interaction elucidates the importance of the geometrical properties of CNT arrays (CNT exposed length and surface morphology) on transfection efficiency. The results indicate that densely-packed and shortly-exposed CNT arrays with planar surface will enhance gene delivery using this new platform. This technology offers a significant increase in efficiency and cell viability, along with the ease of use compared to current standard methods, which demonstrates its potential to accelerate the development of new cell models to study intractable diseases, decoding the signaling pathways, and drug discovery.
Hanif, Mubashir; Pardo, Alejandro Guillermo; Gorfer, Markus; Raudaskoski, Marjatta
2002-06-01
The T-DNA of Agrobacterium tumefaciens can be transferred to plants, yeasts, fungi and human cells. Using this system, dikaryotic mycelium of the ectomycorrhizal fungus Suillus bovinus was transformed with recombinant hygromycin B phosphotransferase (hph)and enhanced green fluorescent protein (EGFP) genes fused with a heterologous fungal promoter and CaMV35S terminator. Transformation resulted in hygromycin B-resistant clones, which were mitotically stable. Putative transformants were analysed for the presence of hph and EGFP genes by PCR and Southern analysis. The latter analysis proved both multiple- and single-copy integrations of the genes in the S. bovinus genome. A. tumeficiens transformation should make possible the development of tagged mutagenesis and targeted gene disruption technology for S. bovinus.
Manufacturing process applications team (MATeam)
NASA Technical Reports Server (NTRS)
Bangs, E. R.; Meyer, J. D.
1978-01-01
Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.
Social issues and implications of remote sensing applications: Paradigms of technology transfer
NASA Technical Reports Server (NTRS)
Hoos, I. R.
1980-01-01
The transfer of technology from one federal agency to another was observed in the case of the move of LANDSAT to NOAA. An array of unanticipated consequences was found that have important impacts on both the process and outcome of the transfer. When the process was studied from viewpoint of the ultimate recipient, a set of expectations and perceptions were found that figure more in a final assessment than do the attributes of the technology being transfered. The question of how to link a technology with a community of potential users was studed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, David M.; Anderson, Scott L.
2013-09-21
The reaction of HOD{sup +} with N{sub 2}O was studied over the collision energy (E{sub col}) range from 0.20 eV to 2.88 eV, for HOD{sup +} in its ground state and in each of its fundamental vibrational states: bend (010), OD stretch (100), and OH stretch (001). The dominant reaction at low E{sub col} is H{sup +} and D{sup +} transfer, but charge transfer becomes dominant for E{sub col} > 0.5 eV. Increasing E{sub col} enhances charge transfer only in the threshold region (E{sub col} < 1 eV), but all modes of HOD{sup +} vibrational excitation enhance this channel overmore » the entire energy range, by up to a factor of three. For reaction of ground state HOD{sup +}, the H{sup +} and D{sup +} transfer channels have similar cross sections, enhanced by increasing collision energy for E{sub col} < 0.3 eV, but suppressed by E{sub col} at higher energies. OD stretch excitation enhances D{sup +} transfer by over a factor of 2, but has little effect on H{sup +} transfer, except at low E{sub col} where a modest enhancement is observed. Excitation of the OH stretch enhances H{sup +} transfer by up to a factor of 2.5, but actually suppresses D{sup +} transfer over most of the E{sub col} range. Excitation of the bend mode results in ∼60% enhancement of both H{sup +} and D{sup +} transfer at low E{sub col} but has little effect at higher energies. Recoil velocity distributions at high E{sub col} are strongly backscattered in the center-of-mass frame, indicating direct reaction dominated by large impact parameter collisions. At low E{sub col} the distributions are compatible with mediation by a short-lived collision complex. Ab initio calculations find several complexes that may be important in this context, and RRKM calculations predict lifetimes and decay branching that is consistent with observations. The recoil velocity distributions show that HOD{sup +} vibrational excitation enhances reactivity in all collisions at low E{sub col}, while for high E{sub col} with enhancement comes entirely from the subset of collisions that generate strongly back-scattered product ions.« less
Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk
2016-02-01
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.
COLD-SAT: An orbital cryogenic hydrogen technology experiment
NASA Technical Reports Server (NTRS)
Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.
1989-01-01
The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.
Li, Jing; Liu, Baodan; Wu, Aimin; Yang, Bing; Yang, Wenjin; Liu, Fei; Zhang, Xinglai; An, Vladimir; Jiang, Xin
2018-05-07
Photoelectrochemical water splitting has emerged as an effective artificial photosynthesis technology to generate clean energy of H 2 from sunlight. The core issue in this reaction system is to develop a highly efficient photoanode with a large fraction of solar light absorption and greater active surface area. In this work, we take advantage of energy band engineering to synthesize (GaN) 1- x (ZnO) x solid solution nanowires with ZnO contents ranging from 10.3% to 47.6% and corresponding band gap tailoring from 3.08 to 2.77 eV on the basis of the Au-assisted VLS mechanism. The morphology of nanowires directly grown on the conductive substrate facilitates the charge transfer and simultaneously improves the surface reaction sites. As a result, a photocurrent approximately 10 times larger than that for a conventional powder-based photoanode is obtained, which indicates the potential of (GaN) 1- x (ZnO) x nanowires in the preparation of superior photoanodes for enhanced water splitting. It is anticipated that the water-splitting capability of (GaN) 1- x (ZnO) x nanowire can be further increased through alignment control for enhanced visible light absorption and reduction of charge transfer resistance.
NASA Astrophysics Data System (ADS)
Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.
2011-06-01
The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).
Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias
2011-07-01
Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool. Copyright © 2011 Elsevier Ltd. All rights reserved.
WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers
NASA Astrophysics Data System (ADS)
Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.
2014-06-01
The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
Beall, H. C.; Brown, J. N.; Rouse, D. J.; Ruddle, J. C.; Scearce, R. W.
1978-01-01
A bipolar, donor-recipient model of medical technology transfer is introduced to provide a basis for the team's methodology. That methodology is designed (1) to identify medical problems and NASA technology that in combination constitute opportunities for successful medical products, (2) to obtain the early participation of industry in the transfer proces, and (3) to obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial technology transfers and five institutional technology transfers were completed in 1977. A new, commercially available teaching manikin system uses NASA-developed concepts and techniques for effective visual presentation of information and data. Drugs shipped by the National Cancer Institute to locations throughout the world are maintained at low temperatures in shipping containers that incorporate recommendations made by NASA.
Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.
NASA Astrophysics Data System (ADS)
Estep, Judith
Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the researcher and recipient relationship, specific to technology transfer. In this research, the evaluation criteria of several research organizations were assessed to understand the extent to which the success attributes that were identified in literature were considered when reviewing research proposals. While some of the organizations included a few of the success attributes, none of the organizations considered all of the attributes. In addition, none of the organizations quantified the value of the success attributes. The effectiveness of the model relies extensively on expert judgments to complete the model validation and quantification. Subject matter experts ranging from senior executives with extensive experience in technology transfer to principal research investigators from national labs, universities, utilities, and non-profit research organizations were used to ensure a comprehensive and cross-functional validation and quantification of the decision model. The quantified model was validated using a case study involving demand response (DR) technology proposals in the Pacific Northwest. The DR technologies were selected based on their potential to solve some of the region's most prevalent issues. In addition, several sensitivity scenarios were developed to test the model's response to extreme case scenarios, impact of perturbations in expert responses, and if it can be applied to other than demand response technologies. In other words, is the model technology agnostic? In addition, the flexibility of the model to be used as a tool for communicating which success attributes in a research proposal are deficient and need strengthening and how improvements would increase the overall technology transfer score were assessed. The low scoring success attributes in the case study proposals (e.g. project meetings, etc.) were clearly identified as the areas to be improved for increasing the technology transfer score. As a communication tool, the model could help a research organization identify areas they could bolster to improve their overall technology transfer score. Similarly, the technology recipient could use the results to identify areas that need to be reinforced, as the research is ongoing. The research objective is to develop a decision model resulting in a technology transfer score that can be used to assess the technology transfer potential of a research proposal. The technology transfer score can be used by an organization in the development of a research portfolio. An organization's growth, in a highly competitive global market, hinges on superior R&D performance and the ability to apply the results. The energy sector is no different. While there is sufficient research being done to address the issues facing the utility industry, the rate at which technologies are adopted is lagging. The technology transfer score has the potential to increase the success of crossing the chasm to successful application by helping an organization make informed and deliberate decisions about their research portfolio.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
.... National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions to Address..., or use of energy. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C. 272 note) directs...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
..., or Use I. National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions To... action under Executive Order 12866. I. National Technology Transfer Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act (NTTAA) of 1995 (Pub. L. 104-113, section 12(d), 15 U.S.C...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2013-04-01 2013-04-01 false What are the requirements for research, development, and...
Code of Federal Regulations, 2010 CFR
2010-04-01
..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2010-04-01 2010-04-01 false What are the requirements for research, development, and...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2014-04-01 2014-04-01 false What are the requirements for research, development, and...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2012-04-01 2012-04-01 false What are the requirements for research, development, and...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2011-04-01 2011-04-01 false What are the requirements for research, development, and...
ERIC Educational Resources Information Center
Lowe, Robert A.; Quick, Suzanne K.
2005-01-01
This paper discusses measures that capture the impact of university technology transfer activities on a university?s local and regional economies (economic impact). Such assessments are of increasing interest to policy makers, researchers and technology transfer professionals, yet there have been few published discussions of the merits of various…
Technology Transfer as an Entrepreneurial Practice in Higher Education. CELCEE Digest No. 98-9.
ERIC Educational Resources Information Center
Faris, Shannon K.
This digest examines some of the literature on technology transfer in the context of higher education, noting that the practice of capitalizing on academic research for commercial purposes has the potential to generate financial resources for the participating institutions of higher education. Several examples of technology transfer are cited,…
A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA
ERIC Educational Resources Information Center
Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen
2008-01-01
In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…
ERIC Educational Resources Information Center
Southwestern Library Association, Stillwater, OK.
Charged with the responsibility of determining the best way to plan for solar technology information transfer within the state of Texas, participants in the Planning Conference for Solar Technology Information Transfer met to discuss the many ongoing activities related to energy information dissemination, to analyze the resources available in…
NASA Astrophysics Data System (ADS)
Mandal, Krishnagopal; Demas, J. N.
1981-12-01
Very efficient (45-75%) sodium lauryl sulfate (NaLS) enhanced singlet enengy transfer has been demonstrated from the spin-orbit charge-transfer excited state of [Ru(bpy) 3] 2+ (bpy = 2,2'-bipyridine) to the xxx violet, oxazine 1, and rhodamine 101 at concentrations of 10 -5 M, Energy transfer occurs in xxx.
Summary of the National Technology Transfer and Advancement Act
Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace
License Agreements | NCI Technology Transfer Center | TTC
NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.
Technology transfer and Rockwell International
NASA Technical Reports Server (NTRS)
Gernand, Joseph
1992-01-01
Two technology partnership models are presented for consideration. The first model posits a government buyer of technology, and the second model posits that the customer is the consumer of the technology. These two models are concerned with methods of and impediments to technology transfer and information dissemination in government/contractor relationships.
Sandia National Laboratories: Working with Sandia
Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with
Sandia National Laboratories: News: Economic Impact
Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with
SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY
Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...
Transferring Technology to Industry
NASA Technical Reports Server (NTRS)
Wolfenbarger, J. Ken
2006-01-01
This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.
In-Space Propulsion Program Overview and Status
NASA Technical Reports Server (NTRS)
Carroll, Carol; Johnson, Les; Baggett, Randy
2002-01-01
NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
A survey of environmental needs and innovative technologies in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, C.F.; Roberds, W.J.
1995-05-01
The International Technology Program (IT?), formerly the international Technology Exchange Program (ITEP), of the Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste Management (EM) is responsible for promoting: (1) the import of innovative technologies to better address EM`s needs; and (2) the export of US services into foreign markets to enhance US competitiveness. Under this program: (1) the environmental restoration market in Germany was evaluated, including the description of the general types of environmental problems, the environmental regulations, and specific selected contaminated sites; and (2) potentially innovative environmental restoration technologies, either commercially available or under development in Germany,more » were identified, described and evaluated. It was found that: (1) the environmental restoration market in Germany is very large, on the order of several billion US dollars per year, with a significant portion possibly available to US businesses; and (2) a large number (54) of innovative environmental restoration technologies, which are either commercially available or under development in Germany, may have some benefit to the DOE EM program and should be considered for transfer to the US.« less
Center for Applied Optics Studies: an investment in Indiana's future
NASA Astrophysics Data System (ADS)
Schuh, Delbert J., II; Khorana, Brij M.
1992-05-01
To understand the involvement of the State of Indiana with the Center for Applied Optics at Rose-Hulman Institute of Technology, it is best to start with an explanation of the Indiana Corporation for Science and Technology (CST), its basic charter and its programs. Established in 1982 as a private not-for-profit corporation, CST was formed to promote economic development within the State of Indiana. Two programs that were initially a part of CST's charter and supported with state dollars were a seed capital investment program, aimed at developing new products and processes, and the establishment of university centers of technology development. The former was conceived to create jobs and new, technologically advanced industries in Indiana. The latter was an attempt to encourage technology transfer from the research laboratories of the state universities to the production lines of Indiana industry. Recently, CST has undergone a name change to the Indiana Business Modernization and Technology Corporation (BMT) and adopted an added responsibility of proactive assistance to small- and medium-sized businesses in order to enhance the state's industrial competitiveness.
Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement
NASA Technical Reports Server (NTRS)
Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.
2007-01-01
The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.
Transfer of technology for production of rabies vaccine: Memorandum from a WHO Meeting*
1985-01-01
The important challenge of prevention and control of rabies in the world will require international efforts to increase the availability and use of high quality cell-culture rabies vaccines for use in man and animals. An important aspect of activities to ensure such availability is transfer of technologies to developing countries for production of these vaccines. This article, which is based on the report of a WHO Consultation, outlines the technical options for vaccine production. The principles and economic aspects of technology transfer are considered, and a WHO assistance programme is outlined. It is concluded that technology transfer should be mediated through a framework of national institutes, expert panels, WHO collaborating centres, production and control laboratories, and other relevant institutions. On this basis, recommendations are made concerning the mechanisms of technology transfer for production of cell-culture rabies vaccines. PMID:3878738
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.
Fleischer, Sharon; Feiner, Ron; Dvir, Tal
2017-04-01
The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.
NASA Astrophysics Data System (ADS)
DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.
2006-03-01
Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.
NASA Astrophysics Data System (ADS)
Tan, Ming; Wang, Xiuzhen; Hao, Yanming; Deng, Yuan
2017-06-01
It was found that phonons/electrons are less scattered along (1 1 1)-preferred Cu nanowires than in ordinary structure films and that the interface of Cu nanowires electrode and thermoelectric materials are more compatible. Here highly ordered, high-crystal-quality, high-density Cu nanowire array was successfully fabricated by a magnetron sputtering method. The Cu nanowire array was successfully incorporated using mask-assisted deposition technology as electrodes for thin-film thermoelectric coolers, which would greatly improve electrical/thermal transport and enhance performance of micro-coolers. The cooling performance of the micro-cooler with Cu nanowire array electrode is over 200% higher than that of the cooler with ordinary film electrode.
Enhanced Passive Cooling for Waterless-Power Production Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
2016-06-14
Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less
Sandia National Laboratories: Working with Sandia: Current Suppliers
Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Top Current
Sandia National Laboratories: Working with Sandia: Prospective Suppliers
Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with
Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster
The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.
Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming
2015-07-01
Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.
Technology transfer for women entrepreneurs: issues for consideration.
Everts, S I
1998-01-01
This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.
NASA Astrophysics Data System (ADS)
Jiang, Yuguang; Feng, Yu; Zhang, Silong; Qin, Jiang; Bao, Wen
2016-01-01
Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection.
NASA Astrophysics Data System (ADS)
Vasilev, V. Ya; Nikiforova, S. A.
2018-03-01
Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.
A review on boiling heat transfer enhancement with nanofluids
2011-01-01
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... action under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C... of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272) do...
ERIC Educational Resources Information Center
Nieb, Sharon Lynn
2014-01-01
This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…
Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster
The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science,
Technological inductive power transfer systems
NASA Astrophysics Data System (ADS)
Madzharov, Nikolay D.; Nemkov, Valentin S.
2017-05-01
Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs
Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto
2010-01-01
Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".
Federal Technology Transfer Act (FTTA)
EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.
NASA Technical Reports Server (NTRS)
2000-01-01
Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.
Technology utilization office data base analysis and design
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1993-01-01
NASA Headquarters is placing a high priority on the transfer of NASA and NASA contractor developed technologies and expertise to the private sector and to other federal, state and local government organizations. The ultimate objective of these efforts is positive economic impact, an improved quality of life, and a more competitive U.S. posture in international markets. The Technology Utilization Office (TUO) currently serves seven states with its technology transfer efforts. Since 1989, the TUO has handled over one-thousand formal requests for NASA related technologies assistance. The technology transfer process requires promoting public awareness of NASA related soliciting requests for assistance, matching technologies to specific needs, assuring appropriate technology transfer, and monitoring and evaluating the process. Each of these activities have one very important aspect in common: the success of each is dissemination of appropriate high quality information. The purpose of the research was to establish the requirements and develop a preliminary design for a database system to increase the effectiveness and efficiency of the TUO's technology transfer function. The research was conducted following the traditional systems development life cycle methodology and was supported through the use of modern structured analysis techniques. The next section will describe the research and findings as conducted under the life cycle approach.
NASA Technical Reports Server (NTRS)
1994-01-01
During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.
Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications
DOT National Transportation Integrated Search
2014-08-01
This research report provides a status review of emerging and existing Wireless Power Transfer (WPT) technologies applicable to electric bus (EB) and rail transit. The WPT technology options discussed, especially Inductive Power Transfer (IPT), enabl...
14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...
14 CFR § 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...
14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems.
Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment
Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard
2015-01-01
The data presented in this article were the basis for the study reported in the research articles entitled ‘Climate responsive behaviour heat pipe technology for enhanced passive airside cooling’ by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article “CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices” by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design. PMID:26958604
Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.
Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard
2015-12-01
The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.
SINET3: advanced optical and IP hybrid network
NASA Astrophysics Data System (ADS)
Urushidani, Shigeo
2007-11-01
This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.
Wireless Power Transfer Strategies for Implantable Bioelectronics.
Agarwal, Kush; Jegadeesan, Rangarajan; Guo, Yong-Xin; Thakor, Nitish V
2017-01-01
Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.
Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates.
Du, Guocheng; Yu, Jian
2002-12-15
A new technology is developed and demonstrated that couples anaerobic digestion of food scraps with production of biodegradable thermoplastics, polyhydroxyalkanoates (PHAs). The food wastes were digested in an anaerobic reactor producing four major organic acids. The concentrations of acetic, propionic, butyric, and lactic acids reached 5.5, 1.8, 27.4, and 32.7 g/L, respectively. The fermentative acids were transferred through membranes via molecule diffusion into an air-bubbling reactor where the acids were utilized to produce PHAs in an enriched culture of Ralstonia eutropha. With a silicone rubber membrane, butyric acid and small amounts of acetic and propionic acids were transferred and used, producing a homopolymer PHA, poly(3-hydroxybutyrate). The dry cell weight and PHA content reached 11.3 g/L and 60.2% (w/w), respectively. With a dialysis membrane, the mass transfer rates of fermentative acids were enhanced, and the PHA production was significantly improved. The dry cell weight and its PHA content reached 22.7 g/L and 72.6% (w/w), respectively. The formed PHA was a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate (HV) with 2.8 mol % HV monomer unit. The polymer content (72.6% of dry cell mass) reported in this study is the highest one obtained from organic wastes and is comparable with the PHA content from pure glucose fermentation.
Modular Chemical Process Intensification: A Review.
Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas
2017-06-07
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.
Modular Chemical Process Intensification: A Review
Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...
2016-06-24
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less
Applications of aerospace technology in industry, a technology transfer profile: Lubrication
NASA Technical Reports Server (NTRS)
Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.
1971-01-01
Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.
Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G
2015-01-01
The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). In patients with glioma, those with a high contrast transfer coefficient have lower survival than those with low parameters. © 2015 by American Journal of Neuroradiology.
Tree-mendous Timber Evaluation
NASA Technical Reports Server (NTRS)
2004-01-01
Funded and administered by NASA, the Affiliated Research Center (ARC) program transfers geospatial technologies from the Space Agency and participating universities to commercial companies, non-profit and trade organizations, and tribal governments. The origins of the ARC program date back to 1988, when NASA's Stennis Space Center initiated the Visiting Investigator Program to bring industry closer to spatial information technologies. The success of this trial program led to an expansion into the ARC program, whose goal is to enhance competitiveness of U.S. industries through more efficient use of remote sensing and related technologies. NASA's ARC program served as the foundation for the development of International Hardwood Resources, which then grew into Falcon Informatics with the acquisition of a technology from a European software company and a change of business models. Doylestown, Pennsylvania-based Falcon Informatics is now a world-leading information services company that combines in-depth timber industry experience with state-of-the-art software to serve the needs of national governments, international paper companies, and timber-investment management organizations.
Electron trapping optical data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-08-01
In February 2009, the Office of Inspector General received a letter from Congressman Mark Steven Kirk of Illinois, which included constituent allegations that an exclusive technology licensing agreement by Argonne National Laboratory was tainted by inadequate competition, conflicts of interest, and other improprieties. The technology in question was for the Program for Response Options and Technology Enhancements for Chemical/Biological Terrorism, commonly referred to as PROTECT. Because of the importance of the Department of Energy's technology transfer program, especially as implementation of the American Recovery and Reinvestment Act matures, we reviewed selected aspects of the licensing process for PROTECT to determinemore » whether the allegations had merit. In summary, under the facts developed during our review, it was understandable that interested parties concluded that there was a conflict of interest in this matter and that Argonne may have provided the successful licensee with an unfair advantage. In part, this was consistent with aspects of the complaint from Congressman Kirk's constituent.« less
NASA Technical Reports Server (NTRS)
Haggerty, James J.
1990-01-01
This publication is intended to foster the aim of the NASA Technology Utilization Program by heightening awareness of the NASA technology available for transfer and its potential for benefits realized by secondary applications. Spinoff 1990 is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Utilization Program.
Applications of aerospace technology in the electric power industry
NASA Technical Reports Server (NTRS)
1973-01-01
An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.
From translational research to open technology innovation systems.
Savory, Clive; Fortune, Joyce
2015-01-01
The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.
Maturation of enabling technologies for the next generation reignitable cryogenic upper stage
NASA Astrophysics Data System (ADS)
Mueller, Mark
Following the ESA decision in November 2008, a pre-development phase (Phase 1) of a future evolution of the Ariane 5 launcher (named Ariane 5 Midlife Evolution, A5ME) was started under Astrium Prime leadership. This upgraded version of the Ariane 5 launcher is based on an enhanced performance Upper Stage including the cryogenic re-ignitable VINCI engine. Thanks to this reignition capability, this new Upper Stage shall be "versatile" in the sense that it shall fulfil customer needs on a broader spectrum of orbits than the "standard" orbits (i.e. Geosynchronous Transfer Orbits, GTO) typically used for commercial telecommunications satellites. In order to meet the challenges of versatility, new technologies are currently being investigated. These technologies are mainly related -but not limited-to propellant management during the extended coasting phases with the related heat transfer into the tanks and the required multiple engine re-ignitions. Within the frame of the ESA Future Launchers Preparatory Programme (Period 2 Slice 1), the Cryogenic Upper Stage Technology project (CUST) aims to mature critical technologies to such a Technology Readiness Level (TRL) that they can be integrated into the baseline A5ME Upper Stage development schedule. In addition to A5ME application, these technologies can also be used on the future next generation European launcher. This paper shows the down-selection process implemented to identify the most crucial enabling technologies for a future versatile Upper Stage and gives a description of each technology finally selected for maturation in the frame of CUST. These include -amongst others-a Sandwich Common Bulkhead for the propellant tank, an external thermal insulation kit and various propellant management devices for the coasting phase. The paper also gives an overview on the related development and maturation plan including the tests to be conducted, as well as first results of the maturation activities themselves.
The role of technology in critical care nursing.
Crocker, Cheryl; Timmons, Stephen
2009-01-01
This paper is a report of a study to identify the meaning for critical care nurses of technology related to weaning from mechanical ventilation and to explore how that technology was used in practice. The literature concerned with the development of critical care (intensive care and high dependency units) focuses mainly on innovative medical technology. Although this use of technology in critical care is portrayed as new, it actually represents a transfer of technology from operating theatres. An ethnographic study was conducted and data were collected on one critical care unit in a large teaching hospital over a 6-month period in 2004. The methods included participant observation, interviews and the collection of field notes. The overall theme 'The nursing-technology relation' was identified. This comprised three sub-themes: definition of technology, technology transferred and technology transformed. Novice nurses took a task-focussed approach to weaning, treating it as a 'medical' technology transferred to them from doctors. Expert nurses used technology differently and saw its potential to become a 'nursing technology'. Nurses need to examine how they can adapt and to 'reconfigure' technology so that it can be transformed into a nursing technology. Those technologies that do not fit with nursing may have no place there. Rather than simply extending and expanding their roles through technology transfer, nurses should transform those technologies that preserve the essence of nursing and can contribute to a positive outcome for patients.
Technology transfer for DOE's office of buildings and community systems: assessment and strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.A.; Jones, D.W.; Kolb, J.O.
1986-07-01
The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and thatmore » these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.« less
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2017-02-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
2013-09-12
CAPE CANAVERAL, Fla. – Carol Craig, founder and CEO of Craig Technologies, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson
Wilson, Kumanan; Atkinson, Katherine M; Deeks, Shelley L; Crowcroft, Natasha S
2016-01-01
Immunization registries or information systems are critical to improving the quality and evaluating the ongoing success of immunization programs. However, the completeness of these systems is challenged by a myriad of factors including the fragmentation of vaccine administration, increasing mobility of individuals, new vaccine development, use of multiple products, and increasingly frequent changes in recommendations. Mobile technologies could offer a solution, which mitigates some of these challenges. Engaging individuals to have more control of their own immunization information using their mobile devices could improve the timeliness and accuracy of data in central immunization information systems. Other opportunities presented by mobile technologies that could be exploited to improve immunization information systems include mobile reporting of adverse events following immunization, the capacity to scan 2D barcodes, and enabling bidirectional communication between individuals and public health officials. Challenges to utilizing mobile solutions include ensuring privacy of data, access, and equity concerns, obtaining consent and ensuring adoption of technology at sufficiently high rates. By empowering individuals with their own health information, mobile technologies can also serve as a mechanism to transfer immunization information as individuals cross local, regional, and national borders. Ultimately, mobile enhanced immunization information systems can help realize the goal of the individual, the healthcare provider, and public health officials always having access to the same immunization information. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
Joining Together for a Common Cause – Interagency Collaboration to Fight disease
USDA-ARS?s Scientific Manuscript database
In addition to the economic and technical benefits of technology transfer, there is the human element-how technology development and technology transfer can make a difference in people’s lives. We will share compelling stories of how individuals have directly benefited from technology development an...
Seeing the Forest and the Trees: Western Forestry Systems and Soviet Engineers, 1955-1964.
Kochetkova, Elena
This article examines the transfer of technology from Finnish enterprises to Soviet industry during the USSR's period of technological modernization between 1955 and 1964. It centers on the forestry sector, which was a particular focus of modernization programs and a key area for the transfer of foreign techniques and expertise. The aim of the article is to investigate the role of trips made by Soviet specialists to foreign (primarily Finnish) enterprises in order to illustrate the nontechnological influences that occurred during the transfer of technologies across the cold war border. To do so, the article is divided into two parts: the first presents a general analysis of technology transfer from a micro-level perspective, while the second investigates the cultural influences behind technological transfer in the Soviet-Finnish case. This study contends that although the Soviet government expected its specialists to import advanced foreign technical experience, they brought not only the technologies and expertise needed for modernizing the industry, but also a changed view on Soviet workplace management and everyday practices.
The Role of Empirical Evidence for Transferring a New Technology to Industry
NASA Astrophysics Data System (ADS)
Baldassarre, Maria Teresa; Bruno, Giovanni; Caivano, Danilo; Visaggio, Giuseppe
Technology transfer and innovation diffusion are key success factors for an enterprise. The shift to a new software technology involves, on one hand, inevitable changes to ingrained and familiar processes and, on the other, requires training, changes in practices and commitment on behalf of technical staff and management. Nevertheless, industry is often reluctant to innovation due to the changes it determines. The process of innovation diffusion is easier if the new technology is supported by empirical evidence. In this sense our conjecture is that Empirical Software Engineering (ESE) serves as means for validating and transferring a new technology within production processes. In this paper, the authors report their experience of a method, Multiview Framework, defined in the SERLAB research laboratory as support for designing and managing a goal oriented measurement program that has been validated through various empirical studies before being transferred to an Italian SME. Our discussion points out the important role of empirical evidence for obtaining management commitment and buy-in on behalf of technical staff, and for making technological transfer possible.
Heat Transfer Phenomena in Concentrating Solar Power Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Shinde, Subhash L.
Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxidemore » (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .« less
A Comparison of the Tube-Side Performance of Enhanced Heat Transfer Tubing for Naval Condensers.
1982-12-01
AD-A126 938 A COMPARISON OF THE TUBE-SIDE PERFORMANCE OF ENHANCEDAD 12693! HEAT TRANSFER TUBING FOR NAVAL CONDENSERS U) NAVAL POSTGRADUATE SCHOOD...COMPARISON OF THE TUBE-SIDE PERFORMANCE OF ENHANCED HEAT TRANSFER TUBING FOR NAVAL CONDENSERS by Ronald Keith Alexander December 1982 Thesis Advisor: P. J...Comparison of the Tube-Side Master’s Thesis Performance of Enhanced Heat Transfer Pma""nG kpA lne Tubing for Naval Condensers ~PU~UN 4 iotwug 1. AU Y..NW41 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traylor, T.D.; Hicks, S.C.
1994-03-01
Transportation Energy Research announces on a monthly basis the current worldwide research and development information available on energy-efficient, environmentally sound transportation technologies. Its purpose is to enhance the technology transfer efforts of the Department of Energy. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The DOE Office of Transportation Technologies (OTT) managesmore » federal R&D programs aimed at improving transportation-sector energy efficiency. OTT currently supports activities in four major program areas: Electric and Hybrid Vehicles; Advanced Propulsion Systems; and magnetic levitation technology; Advanced Materials. DOE and DOE contractors can obtain copies for $4.00 per issue by using VISA, MasterCard, or OSTI deposit accounts. Contact the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831, Attention: Information Services. For further information, call (615) 576-8401. Public availability is by subscription from the US Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161. Order PB94-900900.« less
Program for transfer research and impact studies
NASA Technical Reports Server (NTRS)
Kottenstette, J. P.; Rusnak, J. J.; Staskin, E. R.
1972-01-01
The progress made in achieving TRIS research objectives during the first six months of 1972 is reviewed. The Tech Brief-Technical Support Package Program and technology transfer profiles are presented along with summaries of technology transfer in nondestructive testing, and visual display systems.
Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod
NASA Astrophysics Data System (ADS)
Klotsche, K.; Thomas, C.; Hesse, U.
2017-08-01
The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.
NASA Astrophysics Data System (ADS)
Nagothu, U. S.
2016-12-01
Agricultural extension services, among others, contribute to improving rural livelihoods and enhancing economic development. Knowledge development and transfer from the cognitive science point of view, is about, how farmers use and apply their experiential knowledge as well as acquired new knowledge to solve new problems. This depends on the models adopted, the way knowledge is generated and delivered. New extension models based on ICT platforms and smart phones are promising. Results from a 5-year project (www.climaadapt.org) in India shows that farmer led-on farm validations of technologies and knowledge exchange through ICT based platforms outperformed state operated linear extension programs. Innovation here depends on the connectivity, net-working between stakeholders that are involved in generating, transferring and using the knowledge. Key words: Smallholders, Knowledge, Extension, Innovation, India
Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers
NASA Astrophysics Data System (ADS)
Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca
2014-08-01
Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.