Sample records for enlarge surge margin

  1. Remote-sensing-based analysis of the 1996 surge of Northern Inylchek Glacier, central Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Häusler, Hermann; Ng, Felix; Kopecny, Alexander; Leber, Diethard

    2016-11-01

    The evolution of Northern Inylchek Glacier and its proglacial lake - Upper Lake Merzbacher - during its 1996 surge and the surrounding decades is analyzed with remote sensing imagery. Overall retreat of the glacier from 1943 to 1996 enlarged the lake to 4 km long and ≈ 100 m deep. The surge in 1996 initiated between 12 September and 7 October and advanced the glacier by 3.7 km to override most of Upper Lake Merzbacher. The surge phase probably ended in December 1996 and involved mean flow velocities across the lower trunk of the glacier that reached 50 m d- 1 over a 32-day period. Water displaced by the surge from Upper Lake Merzbacher, totalling 1.5 × 108 m3 in volume, accelerated filling of Lower Lake Merzbacher downvalley and helped trigger this marginal ice-dammed lake to outburst in a jökulhlaup around late November/early December. The characteristics and duration of the surge render it as similar to temperate glacier surges elsewhere. It may have been facilitated by low basal friction caused by water-saturated sediments in the upper lake bed. Furthermore, bathymetric measurements show that the surge evacuated much sediment into the upper lake, causing its depth to reduce from 20 to 30 m in 1996 to 8 m by 2005 and 2 m by 2011; the corresponding deposition rates imply glacier-catchment specific mean sediment yields of 1.4 to 3.4 × 103 Mg km- 2 a- 1 in the years after the surge. Our study documents novel interactions within a cascade system of glaciers and lakes that exhibits surging and outburst-flood behavior.

  2. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the design speed, and similar results were obtained. In most cases, the greatest improvement in surge margin occurred at fairly low levels of injected flow rate. Externally supplied injection air was used in these experiments. However, the injected flow rates that provided the greatest benefit could be produced using injection air that is recirculating between the diffuser discharge and nozzles located in the diffuser vaneless region. Future experiments will evaluate the effectiveness of recirculating air injection.

  3. Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.

    PubMed

    Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco

    2017-08-01

    Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.

  4. Small axial compressor technology, volume 1

    NASA Technical Reports Server (NTRS)

    Holman, F. F.; Kidwell, J. R.; Ware, T. C.

    1976-01-01

    A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.

  5. Surging glaciers in Iceland - research status and future challenges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, Olafur

    2013-04-01

    Twenty six Icelandic outlet glaciers, ranging from 0.5-1.500 km2, are known to surge, with terminal advances ranging from of few tens of meters to about 10 km. The geomorphic signatures of surges vary, from large-scale folded and thrusted end moraine systems, extensive dead-ice fields and drumlinized forefields to drift sheets where fast ice-flow indicators are largely missing. Case studies from the forefields of Brúarjökull, Eyjabakkajökull and Múlajökull surging glaciers will be presented. At Brúarjökull, extremely rapid ice flow during surge was sustained by overpressurized water causing decoupling beneath a thick sediment sequence that was coupled to the glacier. The ice-marginal position of the 1890 surge is marked by a sedimentary wedge formed within five days and a large moraine ridge that formed in about one day ("instantaneous end-moraine"). Three different qualitative and conceptual models are required to explain the genesis of the Eyjabakkajökull moraines: a narrow, single-crested moraine ridge at the distal end of a marginal sediment wedge formed in response to decoupling of the subglacial sediment from the bedrock and associated downglacier sediment transport; large lobate end moraine ridges with multiple, closely spaced, asymmetric crests formed by proglacial piggy-back thrusting; moraine ridges with different morphologies may reflect different members of an end moraine continuum. A parallel study highlighting the surge history of Eyjabakkajökull over the last 4400 years suggests climate control on surge frequencies. The Múlajökull studies concern an active drumlin field (>100 drumlins) that is being exposed as the glacier retreats. The drumlins form through repeated surges, where each surge causes deposition of till bed onto the drumlin while similtaneously eroding the sides. Finally, a new landsystem model for surging North Iceland cirque glaciers will be introduced. References Benediktsson,I. Ö., Schomacker, A., Lokrantz, H. & Ingólfsson, Ó. 2010: The 1890 surge end moraine at Eyjabakkajökull, Iceland: a re-assessment of a classic glaciotectonic locality. Quaternary Science Reviews 29, 484-506. Benediktsson, I.Ö., Ingólfsson, Ó., Schomacker, A. & Kjær, K.H. 2009: Formation of sub-marginal and proglacial end moraines: implications of ice-flow mechanism during the 1963-64 surge of Brúarjökull, Iceland. Boreas 38. 440-457. Benediktsson, Í.Ö., Möller, P., Ingólfsson, Ó., van der Meer, J.J.M., Kjær, K. & Krüger, J. 2008: Instantaneous end moraine and sediment wedge formation during the 1890 glacier surge of Brúarjökull, Iceland. Quaternary Science Reviews 27, 209-234. Brynjólfsson, S., Ingólfsson, Ó. & Schomacker, A. 2012. Surge fingerprinting of cirque glaciers at the Tröllaskagi peninsula, Iceland. Jökull 62, 153-168. Johnson, M.D., Schomacker, A.,Benediktsson, I.O., Geiger, A.D., Ferguson, A. & Ingólfsson, Ó. 2010. Active drumlin field revealed at the margin of Múlajökull, Iceland: A surge-type glacier. Geology 38, 943-946. Kjær, K.H., Larsen, E., van der Meer, J., Ingólfsson, Ó., Krüger, J., Benediktsson, I.Ö., Knudsen, C. & Schumacher, A. 2006: Subglacial decoupling at the sediment/bedrock interface: a new mechanism for rapid flowing ice. Quaternary Science Reviews, 25: 2704-2712. Striberger, J., Björck, S., Benediktsson, I.Ö., Snowball. I., Uvo, C., Ingólfsson, Ó. & Kjær, K. 2011. Climatic control of the surge periodicity of an Icelandic outlet glacier. Journal of Quaternary Science 26, 561-565.

  6. A preliminary geomorphological map from the Múlajökull drumlin field, Iceland

    NASA Astrophysics Data System (ADS)

    Jonsson, S. A.; Schomacker, A.; Benediktsson; Johnson, M.; Ingolfsson, O.

    2012-12-01

    The drumlin field in front of Múlajökull, a surge-type, outlet glacier from Hofsjökull in Iceland, is the only known active drumlin field (Johnson et al., 2010). The aim of this study is to further explore the distribution and formation of drumlins and drumlin fields in a modern glacial environment. We use data from Digital Elevation Models (DEMs), aerial imagery and field mapping. Here we present a preliminary geomorphological map based on remote sensing and fieldwork in 2010 and 2011. Geomorphological mapping of the drumlin field both with DEMs and ground proofing has revealed over 100 drumlins and a number of drumlinized ridges. The drumlins furthest from the present ice margin are broader and have lower relief than those closer to the ice. We suggest that this reflects an evolution of the drumlin form during recurrent surging. The drumlins farther away from the ice have experienced fewer surges than those that have just been uncovered due to present retreat of the ice margin. During successive surges, the drumlins become narrower and develop a higher relief. Reference: Johnson, M.D., Schomacker, A., Benediktsson, Í. Ö., Geiger, A. J., Ferguson, A. and Ingólfsson, Ó. 2010, Active drumlin field revealed at the margin of Múlajökull, Iceland: A surge-type glacier: Geology v. 38, p. 943-946.

  7. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  8. Surge detection on an automotive turbocharger during transient phases

    NASA Astrophysics Data System (ADS)

    Deligant, M.; Danlos, A.; Podevin, P.; Clenci, A.; Guilain, S.

    2017-10-01

    The surge limit on automotive turbocharger needs to be avoided to prevent operations with pressure and mass flow oscillations. Mild surge is accompanied by noise which is disturbing. Deep surge can cause significant loss of engine power and severe drivability issues. It is necessary to know the stationary limit in order to match a turbocharger with an engine, ensuring enough surge margin. However, this choice does not guarantee surge free operation during transient functioning. In this paper, the surge onset of a compressor while closing a downstream valve is studied. Various tests have been carried out varying the closing time, the position of the initial operating point and the volume of the circuit. The inlet and outlet signals of physical parameters are analyzed with spectral and temporal methods in order to define the instant of the surge occurrence.

  9. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  10. Quantifying the Mass Flux, Erosion Rates and Geomorphological Impact of Surging Karakoram Glaciers

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Glasser, N. F.; King, O.

    2017-12-01

    Surge-type glaciers switch between phases of rapid and slow flow on timescales of a few years to decades. Here, we describe glacier-surface debris changes, surface-elevation changes and velocity changes through surges lasting five to ten years on ten different Karakoram glaciers (Khurdopin, Gasherbrum, Kunyang, Braldu, Chong Khumdan, Qiogeli, Saxintulu, Shakesiga, Skamri and Unnamed). We use these data to characterise their geomorphological imprint on the landscape, calculate a minimum mass flux for each of the surges and provide first-order estimates of bed erosion rates. Surface debris transport through the surges includes widespread rearrangement of surface debris features, folding and the concentration of debris near glacier termini, confluences and margins. Ice and debris-flux is partly dependent on the style of the surge, and in particular whether a surge-front propagates down-glacier during the active phase. Erosion rates also depend on the style and longevity of the surge, but are largely comparable between each of the studied datasets. We conclude by estimating the geomorphic work undertaken during surge events in comparison to work carried out by non-surging glaciers in the same region.

  11. New evidence of surge-type glaciers in the Central Andes of Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Falaschi, D.; Lenzano, M. G.; Tadono, T.; Lenzano, L. E.

    2017-12-01

    In contrast to the large surge-type glacier clusters widely known for several mountain ranges around the world, the presence of surging glaciers in the Andes has been historically seen as marginal. Based on the analysis of satellite imagery and DEM differencing, coupled with aerial archival data, we identified 21 surge-type glaciers in the Central Andes, out of which four of them are confirmed surge-type, six are very-probable surge-type, and eleven are possible surge-type. The geodetic mass balance estimation of 12 glaciers for the 2000-2011 period, which encompasses the latest surge events, mostly showed either moderately negative or positive patterns (-0.5 to 0.3 m w.e. a-1). Additionally, we calculated maximum surface velocities of 6.3 ±1.9 m d-1 and 3.5 ±1.2 m d-1 for the Piuquenes and Noreste del Cerro Alto glaciers during the latest two identifiable surge events (1985-1987 and 2003-2007), and preliminarily determined surge cycles of 10 and 20 years for these two glaciers, respectively. The synchronicity of recent and past glacier surges and the coincidence with anomalously cold, snowy periods point out to a common climatic control over glacier surges in this region.

  12. Numerical investigation of a centrifugal compressor with circumferential grooves in vane diffuser

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Qin, G. L.; Ai, Z. J.

    2015-08-01

    Enhancing stall and surge margin has a great importance for the development of turbo compressors. The application of casing treatment is an effective measure to expand the stall margin and stable operation range. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with circumferential groove casing treatment in vane diffuser. Numerical cases with different radial location, radial width and axial depth of a circumferential single groove and different numbers of circumferential grooves were carried out to compare the results. The CFD analyses results show that the centrifugal compressor with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin improvement showed the optimal position for the groove to be located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, depth and numbers of circumferential grooves that will maximize both surge margin range and efficiency.

  13. OCT minimum intensity as a predictor of geographic atrophy enlargement.

    PubMed

    Stetson, Paul F; Yehoshua, Zohar; Garcia Filho, Carlos Alexandre A; Portella Nunes, Renata; Gregori, Giovanni; Rosenfeld, Philip J

    2014-02-10

    We determined whether the minimum intensity (MI) of the optical coherence tomography (OCT) A-scans within the retina can predict locations of growth at the margin of geographic atrophy (GA) and the growth rate outside the margin. The OCT scans were analyzed at baseline and 52 weeks. Expert graders manually segmented OCT images of GA. The 52-week follow-up scans were registered to the baseline scan coordinates for comparison. The OCT MI values were studied within a 180-μm margin around the boundary of GA at baseline. Baseline MI values were compared in areas of progression and nonprogression of the GA, and sensitivity and specificity were assessed for prediction of growth at the margin. Average MI values in the margins were compared to overall growth rates to evaluate the prediction of growth outside the margins. A statistically significant increase in MI (P < 0.05) was seen in areas of growth in 21/24 cases (88%), and 22/24 cases (92%) when the foveal subfield was excluded. Locations of growth within the margins at 52 weeks were predicted with 61% sensitivity and 61% specificity. The MI values correlated significantly with overall growth rate, and high and low growth rate subjects were identified with 80% sensitivity and 64% specificity. The MI may be increased at the margins of GA lesions before enlargement, which may indicate disruption or atrophy of the photoreceptors in these areas before GA becomes apparent. Increased MI may help predict areas of enlargement of GA, and may relate to overall growth rate and be a useful screening tool for GA. (ClinicalTrials.gov number, NCT00935883.).

  14. Cold basal conditions during surges control flow of fringing Arctic ice caps in Greenland

    NASA Astrophysics Data System (ADS)

    Cook, Samuel; Christoffersen, Poul; Todd, Joe; Palmer, Steven

    2017-04-01

    Fringing ice caps separated from larger ice sheets are rarely studied, yet they are an important part of earth's cryosphere, which has become the largest source of global sea-level rise. Understanding marginal ice caps is crucial for being able to predict sea-level change as they are responsible for up to 20% of Greenland's mass loss for 2003-2008. Studies of fringing ice caps can furthermore provide useful insights into processes operating on glaciers that surge. Surging has been the focus of much recent glaciological work, especially with reference to thermal evolution of polythermal glaciers in High Mountain Asia and the High Arctic. This has shown that the classic divide between hydrologically-controlled surges ('hard-bed') in Alaska and thermally-regulated ('soft-bed') surges elsewhere is less stark than previously assumed. Studying marginal ice caps can therefore be valuable in several ways. The largest fringing ice cap in Greenland is Flade Isblink. Previous work has established that this ice cap is showing a range of dynamic behaviour, including subglacial lake drainage and varied patterns of mass-balance change. In particular, a substantial surge, assumed to be caused by a version of the thermally-regulated mechanism, occurred between 1996 and 2000, making the ice cap a useful case study for investigating this process. Here we investigate the surge on Flade Isblink using the open-source, Full-Stokes model Elmer/Ice to invert for basal conditions and englacial temperatures using the adjoint method. We specifically study steady-state conditions representative of the active surge phase in 2000, and the subsequent quiescent phase, using patterns of surface velocity observed in 2000, 2005, 2008 and 2015. Under constant geometry, temperature and geothermal heat, it is shown that surging increases basal freezing rates by over 60% across an area that is twice as large as the area over which the bed freezes in the quiescent phase. The process responsible for this is the conductive heat loss, which increases faster than frictional heat is produced. When the bed becomes weaker, basal conditions become colder despite faster basal sliding, resulting in steep basal ice temperature gradients, which transfer heat effectively from the bed into the ice. In contrast, we find the increase in frictional heat to be insufficient, because weaker basal conditions offset the effect of faster basal sliding. Hence, frictional heat cannot provide enough extra melting to maintain surge conditions. We hypothesise that this heat transfer mechanism terminates surges on Flade Isblink, irrespective of any thinning that would also occur. The latter is not included in our model, but is required in the classic soft-bed surge model. In the quiescent phase, lower temperature gradients reduce the conductive heat loss, while a stronger bed produces more frictional heat, favouring basal melting and a warm bed, which ultimately create the weak basal conditions that result in yet another surge, regardless of any change in ice thickness. Our results indicate that soft-bed surges may occur even if the surge-related change in glacier geometry is modest, making surging glaciers of this type similar to ice streams that stagnate and reactivate periodically.

  15. On solid ground. Revenue gains continue to outpace growth in expenses, allowing U.S. hospitals to enjoy record profit and margin.

    PubMed

    Evans, Melanie

    2007-10-29

    Hospitals enjoyed a surge in profits last year, reporting an aggregate profit margin of 6%. Executives at financially strong systems credit long-term efforts to improve performance for the results. Elizabeth Concordia, left, of the University of Pittsburgh Medical Center system, says its efforts stressed ongoing consolidation and integration to wipe out waste and errors.

  16. Design and development of an advanced two-stage centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, D.L.; Waterman, W.F.

    1995-04-01

    Small turboshaft engines require high-pressure-ratio, high-efficiency compressors to provide low engine fuel consumption. This paper describes the aeromechanical design and development of a 3.3 kg/s (7.3 lb/sec), 14:1 pressure ratio two-stage centrifugal compressor, which is used in the T800-LHT-800 helicopter engine. The design employs highly nonradial, splitter bladed impellers with swept leading edges and compact vaned diffusers to achieve high performance in a small and robust configuration. The development effort quantified the effects of impeller diffusion and passive inducer shroud bleed on surge margin as well as the effects of impeller loading on tip clearance sensitivity and the impact ofmore » sand erosion and shroud roughness on performance. The developed compressor exceeded its performance objectives with a minimum of 23% surge margin without variable geometry. The compressor provides a high-performance, rugged, low-cost configuration ideally suited for helicopter applications.« less

  17. Study on casing treatment and stator matching on multistage fan

    NASA Astrophysics Data System (ADS)

    Wu, Chuangliang; Yuan, Wei; Deng, Zhe

    2017-10-01

    Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.

  18. The geomorphology and ground penetrating radar survey results of the Múlajökull and Þjórsárjökull surge-type glaciers, central Iceland

    NASA Astrophysics Data System (ADS)

    Karušs, Jānis; Lamsters, Kristaps; Běrziņš, Dāvids

    2015-04-01

    Múlajökull and Þjórsárjökull are surge-type outlet glaciers of the Hofsjökull ice cap, central Iceland (Björnsson et al., 2003). The forefield of Múlajökull comprises the active drumlin field of more than 110 drumlins (Johnson et al., 2010; Jónsson et al., 2014) and therefore is an excellent area for studies of glacial geomorphology, subglacial topography and ice structures. This work describes preliminary results obtained during the expedition to Múlajökull and Þjórsárjökull glaciers in August, 2014. In the research ground penetrating radar (GPR) Zond 12-e was used. GPR measurements were performed on both outlet glaciers using 38 MHz and 75 MHz antenna systems. During data acquisition 2000 ns time window was used, while length of profiles was determined using GPS device Garmin GPS-76. In total approximately 3 km of GPR profiles were recorded. GPR signals propagation speed in glacier ice was determined using reflections from internal meltwater channels of glacier. In obtained radarogramms it was possible to trace reflections from the glacier bed till depth of approximately 144 m as well as numerous prominent reflections from internal meltwater channels of glacier. In one of the obtained radarogramms possible subglacial channel below Múlajökull glacier was identified. Also feature of subglacial topography that resembles drumlin was identified. The area of abundant infiltrated water was distinguished close to the ice margin in the radarogramm obtained on Þjórsárjökull suggesting successive supraglacial meltwater infiltration towards glacier margin. During the field work numerous radial crevasses, supraglacial channels and moulins were observed in the marginal zone of Múlajökull. The forefield of Múlajökull mainly consist of subglacial landforms (drumlins, flutes and crevasse-fill ridges), end moraines and sandur plains. Flutes and crevasse-fill ridges were found superimposed on drumlins in places. Till macrofabric was measured close to the surface of two drumlins and at one section on the slope of drumlin. The fabrics possess strong orientations parallel to the axis of drumlins, as well as glacial striations on the boulders exposed at the drumlin surface. These striations indicate glacier sliding over its bed during the termination of the last surge. References Björnsson, H., Pálsson, F., Sigurđsson, O., Flowers, G.E. 2003. Surges of glaciers in Iceland. Annals of Glaciology, 36, 82-90. Johnson, M.D., Schomacker, A., Benediktsson, Í.Ö., Geiger, A.J., Ferguson, A. 2010. Active drumlin field revealed at the margin of Múlajökull, Iceland: a surge-type glacier. Geology, 38, 943-946. Jónsson, S.A., Schomacker, A., Benediktsson, I.Ó., Ingólfsson, Ó., Johnson, M.D. 2014. The drumlin field and the geomorphology of the Múlajökull surge-type glacier, central Iceland. Geomorphology, 207, 213-220.

  19. The combined risk of extreme tropical cyclone winds and storm surges along the U.S. Gulf of Mexico Coast

    NASA Astrophysics Data System (ADS)

    Trepanier, J. C.; Yuan, J.; Jagger, T. H.

    2017-03-01

    Tropical cyclones, with their nearshore high wind speeds and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting offshore economic activities. The combined risk of occurrence of tropical cyclone nearshore wind speeds and storm surges is assessed at 22 coastal cities throughout the United States Gulf of Mexico. The models used are extreme value copulas fitted with margins defined by the generalized Pareto distribution or combinations of Weibull, gamma, lognormal, or normal distributions. The statistical relationships between the nearshore wind speed and storm surge are provided for each coastal city prior to the copula model runs using Spearman's rank correlations. The strongest significant relationship between the nearshore wind speed and storm surge exists at Shell Beach, LA (ρ = 0.67), followed by South Padre Island, TX (ρ = 0.64). The extreme value Archimedean copula models for each city then provide return periods for specific nearshore wind speed and storm surge pairs. Of the 22 cities considered, Bay St. Louis, MS, has the shortest return period for a tropical cyclone with at least a 50 ms-1 nearshore wind speed and a 3 m surge (19.5 years, 17.1-23.5). The 90% confidence intervals are created by recalculating the return periods for a fixed set of wind speeds and surge levels using 100 samples of the model parameters. The results of this study can be utilized by policy managers and government officials concerned with coastal populations and economic activity in the Gulf of Mexico.

  20. A three-dimensional definition of nodal spaces on the basis of CT images showing enlarged nodes for pelvic radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portaluri, Maurizio; Bambace, Santa; Perez, Celeste

    2005-11-15

    Purpose: To demonstrate that margins of each pelvic chain may be derived by verifying the bony and soft tissue structures around abnormal nodes on computed tomography (CT) slices. Methods and Materials: Twenty consecutive patients (16 males, 4 females; mean age, 66 years; range, 43-80 years) with radiologic diagnosis of nodal involvement by histologically proved cervix carcinoma (two), rectum carcinoma (three), prostate carcinoma (four), lymphoma (five), penis carcinoma (one), corpus uteri carcinoma (one), bladder carcinoma (two), cutis tumor (one), and soft-tissue sarcoma (one) were retrospectively reviewed. One hundred CT scans showing 85 enlarged pelvic nodes were reviewed by two radiation oncologistsmore » (M.P., S.B.), and two radiologists (C.P., G.A.). Results: The more proximal structures to each enlarged node or group of nodes were thus recorded in a clockwise direction. Conclusion: According to their frequency and visibility, craniocaudal, anterior, lateral, posterior and medial margins of common iliac, external and internal iliac nodal chains, obturator and pudendal nodes, and deep and superficial inguinal nodes were derived from CT observations.« less

  1. Core compressor exit stage study, 2

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Burdsall, E. A.; Canal, E., Jr.; Korn, N. D.

    1979-01-01

    A total of two three-stage compressors were designed and tested to determine the effects of aspect ratio on compressor performance. The first compressor was designed with an aspect ratio of 0.81; the other, with an aspect ratio of 1.22. Both compressors had a hub-tip ratio of 0.915, representative of the rear stages of a core compressor, and both were designed to achieve a 15.0% surge margin at design pressure ratios of 1.357 and 1.324, respectively, at a mean wheel speed of 167 m/sec. At design speed the 0.81 aspect ratio compressor achieved a pressure ratio of 1.346 at a corrected flow of 4.28 kg/sec and an adiabatic efficiency of 86.1%. The 1.22 aspect ratio design achieved a pressure ratio of 1.314 at 4.35 kg/sec flow and 87.0% adiabatic efficiency. Surge margin to peak efficiency was 24.0% with the lower aspect ratio blading, compared with 12.4% with the higher aspect ratio blading.

  2. Investigation of acceleration characteristics of a single-spool turbojet engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Pack, George J

    1953-01-01

    Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peulen, Heike; Mantel, Frederick; Department of Radiation Oncology, University Hospital Zurich, Zurich

    Purpose: Fibrotic changes after stereotactic body radiation therapy (SBRT) for stage I non-small cell lung cancer (NSCLC) are difficult to distinguish from local recurrences (LR), hampering proper patient selection for salvage therapy. This study validates previously reported high-risk computed tomography (CT) features (HRFs) for detection of LR in an independent patient cohort. Methods and Materials: From a multicenter database, 13 patients with biopsy-proven LR were matched 1:2 to 26 non-LR control patients based on dose, planning target volume (PTV), follow-up time, and lung lobe. Tested HRFs were enlarging opacity, sequential enlarging opacity, enlarging opacity after 12 months, bulging margin, linear marginmore » disappearance, loss of air bronchogram, and craniocaudal growth. Additionally, 2 new features were analyzed: the occurrence of new unilateral pleural effusion, and growth based on relative volume, assessed by manual delineation. Results: All HRFs were significantly associated with LR except for loss of air bronchogram. The best performing HRFs were bulging margin, linear margin disappearance, and craniocaudal growth. Receiver operating characteristic analysis of the number of HRFs to detect LR had an area under the curve (AUC) of 0.97 (95% confidence interval [CI] 0.9-1.0), which was identical to the performance described in the original report. The best compromise (closest to 100% sensitivity and specificity) was found at ≥4 HRFs, with a sensitivity of 92% and a specificity of 85%. A model consisting of only 2 HRFs, bulging margin and craniocaudal growth, resulted in a sensitivity of 85% and a specificity of 100%, with an AUC of 0.96 (95% CI 0.9-1.0) (HRFs ≥2). Pleural effusion and relative growth did not significantly improve the model. Conclusion: We successfully validated CT-based HRFs for detection of LR after SBRT for early-stage NSCLC. As an alternative to number of HRFs, we propose a simplified model with the combination of the 2 best HRFs: bulging margin and craniocaudal growth, although validation is warranted.« less

  4. Tsivat Basin conduit system persists through two surges, Bering Piedmont Glacier, Alaska

    USGS Publications Warehouse

    Fleisher, P.J.; Cadwell, D.H.; Muller, E.H.

    1998-01-01

    The 1993-1995 surge of Bering Glacier, Alaska, occurred in two distinct phases. Phase 1 of the surge began on the eastern sector in July, 1993 and ended in July, 1994 after a powerful outburst of subglacial meltwater into Tsivat Lake basin on the north side of Weeping Peat Island. Within days, jokulhlaup discharge built a 1.5 km2 delta of ice blocks (25-30 m) buried in outwash. By late October 1994, discharge temporarily shifted to a vent on Weeping Peat Island, where a second smaller outburst dissected the island and built two new sandar. During phase 2, which began in spring 1995 and ended within five months, continuous discharge issued from several vents along the ice front on Weeping Peat Island before returining to the Tsivat Basin. Surge related changes include a five- to six-fold increase in meltwater turbidity; the redirection of supercooled water in two ice-contact lakes; and an increase in the rate of glaciolacustrine sedimentation. US Geological Survey aerial photos by Austin Post show large ice blocks in braided channels indicating excessive subglacial discharge in a similar position adjacent to Weeping Peat Island during the 1966-1967 surge. During the subsequent three decades of retreat, the location of ice-marginal, subglacial discharge vents remained aligned on a linear trend that describes the position of a persistent subglacial conduit system. The presence of a major conduit system, possibly stabilized by subglacial bedrock topography, is suggested by: 1) high-level subglacial meltwater venting along the northern side of Weeping Peat Island during the 1966-1967 surge, 2) persistent low-level discharge between surges, and 3) the recurrence of localizing meltwater outbursts associated with both phases of the 1993-1005 surge.

  5. Calcium localization and tipburn development in lettuce leaves during early enlargement

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Tibbitts, T. W.

    2000-01-01

    Tissue concentrations of Ca, Mg, and K were determined across immature leaves of lettuce (Lactuca sativa L. 'Buttercrunch') at different stages of enlargement using electron microprobe x-ray analysis. The analysis was with a wavelength dispersive spectrometer to permit detection of low concentrations of Ca. Patterns of mineral accumulation in immature leaves that were exposed were compared to patterns of accumulation in leaves that were enclosed within a developing head. The leaves developing without enclosure were free to transpire and developed normally whereas leaves developing with enclosure were restricted in transpiration and developed an injury that was characteristic of Ca deficiency. In the exposed leaves, Ca concentrations increased from an average of 1.0 to 2.1 mg g-1 dry weight (DW) as the leaves enlarged from 5 to 30 mm in length. In the enclosed leaves, Ca concentrations decreased from 1.0 to 0.7 mg g-1 DW as the leaves enlarged from 5 to 30 mm in length. At the tips of these enclosed leaves a larger decrease was found, from 0.9 to 0.3 mg g-1 DW during enlargement. Necrotic injury first became apparent in this tip area when the concentration was approximate to 0.4 mg g-1 DW. Magnesium concentrations across the exposed leaves were similar to concentrations across the enclosed leaves, and did not change with enlargement. Magnesium concentrations averaged 3.5. mg g-1 DW in both enclosed and exposed leaves during enlargement from 5 to 30 mm. In both exposed and enclosed leaves, K concentrations increased during enlargement from 40 to approximate to 60 mg g-1 DW. Potassium concentrations were highest toward the leaf apex and upper margin where injury symptoms occurred, and this may have enhanced injury development. This research documents the critical low levels of Ca (0.2 to 0.4 mg g-1 DW) that can occur in enclosed leaves of plants and which apparently leads to the marginal apex necrosis of developing leaves seen frequently on lettuce and other crops.

  6. Measurement and numerical simulation of a small centrifugal compressor characteristics at small or negative flow rate

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2017-04-01

    For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.

  7. Modeling Tropical Cyclone Storm Surge and Wind Induced Risk Along the Bay of Bengal Coastline Using a Statistical Copula

    NASA Astrophysics Data System (ADS)

    Bushra, N.; Trepanier, J. C.; Rohli, R. V.

    2017-12-01

    High winds, torrential rain, and storm surges from tropical cyclones (TCs) cause massive destruction to property and cost the lives of many people. The coastline of the Bay of Bengal (BoB) ranks as one of the most susceptible to TC storm surges in the world due to low-lying elevation and a high frequency of occurrence. Bangladesh suffers the most due to its geographical setting and population density. Various models have been developed to predict storm surge in this region but none of them quantify statistical risk with empirical data. This study describes the relationship and dependency between empirical TC storm surge and peak reported wind speed at the BoB using a bivariate statistical copula and data from 1885-2011. An Archimedean, Gumbel copula with margins defined by the empirical distributions is specified as the most appropriate choice for the BoB. The model provides return periods for pairs of TC storm surge and peak wind along the BoB coastline. The BoB can expect a TC with peak reported winds of at least 24 m s-1 and surge heights of at least 4.0 m, on average, once every 3.2 years, with a quartile pointwise confidence interval of 2.7-3.8 years. In addition, the BoB can expect peak reported winds of 62 m s-1 and surge heights of at least 8.0 m, on average, once every 115.4 years, with a quartile pointwise confidence interval of 55.8-381.1 years. The purpose of the analysis is to increase the understanding of these dangerous TC characteristics to reduce fatalities and monetary losses into the future. Application of the copula will mitigate future threats of storm surge impacts on coastal communities of the BoB.

  8. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The area of snow cover on land was determined from ERTS-1 imagery. Snow cover in specific drainage basins was measured with the Stanford Research Institute console by electronically superimposing basin outlines on imagery, with video density slicing to measure areas. Snow covered area and snowline altitudes were also determined by enlarging ERTS-1 imagery 1:250,000 and using a transparent map overlay. Under very favorable conditions, snowline altitude was determined to an accuracy of about 60 m. Ability to map snow cover or to determine snowline altitude depends primarily on cloud cover and vegetation and secondarily on slope, terrain roughness, sun angle, radiometric fidelity, and amount of spectral information available. Glacier accumulation area ratios were determined from ERTS-1 imagery. Also, subtle flow structures, undetected on aerial photographs, were visible. Surging glaciers were identified, and the changes resulting from the surge of a large glacier were measured as were changes in tidal glacier termini.

  9. Periodontal and oral manifestations of marijuana use.

    PubMed

    Rawal, Swati Y; Tatakis, Dimitris N; Tipton, David A

    2012-01-01

    Marijuana, prepared from the plant Cannabis sativa, is the most widely used illicit drug in the United States. Marijuana use has been associated with adverse psychosocial and health effects, including effects on oral tissues. Periodontal literature has limited references to the periodontal effects of cannabis use. In this report, we present two cases of marijuana-associated gingival enlargement and review the literature on oral complications of marijuana use. Two asymptomatic males, aged 23 and 42 years, presented independently for oral prophylaxis. Both had an unremarkable medical history and related a history of significant marijuana use of 2-16 years duration. Common findings following oral and periodontal examination were nicotinic stomatitis-like lesions, uvulitis and gingival enlargement. Marginal and papillary gingiva of the anterior dentition were the areas primarily affected by gingival enlargement, while some of these areas exhibited a nodular or "pebbly" appearance. Marijuana-associated gingival enlargement was diagnosed in the reported cases. A review of the literature revealed two other reports of marijuana-associated gingival enlargement, all in young adult males with chronic (2 or more years) cannabis use. These authors reported a resemblance to phenytoin-induced enlargement. Biochemical similarities between phenytoin and cannabis active compounds suggest possible common pathogenetic mechanisms. Uvulitis and nicotinic stomatitis appear to be the two most common of the several oral manifestations of marijuana use. Chronic marijuana use may result in gingival enlargement with clinical characteristics similar to phenytoin-induced enlargement.

  10. Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge

    NASA Astrophysics Data System (ADS)

    McKee, M.; White, J. R.; Putnam-Duhon, L. A.

    2016-11-01

    Coastal wetland systems experience both short-term changes in salinity, such as those caused by wind-driven tides and storm surge, and long-term shifts caused by sea level rise. Salinity increases associated with storm surge are known to have significant effects on soil porewater chemistry, but there is little research on the effect of flooding length on salt penetration depth into coastal marsh soils. A simulated storm surge was imposed on intact soil columns collected from a non-vegetated mudflat and a vegetated marsh site in the Wax Lake Delta, LA. Triplicate intact cores were continuously exposed to a 35 salinity water column (practical salinity scale) for 1, 2, and 4 weeks and destructively sampled in order to measure porewater salinity and extractable NH4sbnd N at two cm depth intervals. Salinity was significantly higher in the top 8 cm for both the marsh and mudflat cores after one week of flooding. After four weeks of flooding, salinity was significantly higher in marsh and mudflat cores compared to the control (no salinity) cores throughout the profile for both sites. Extractable ammonium levels increased significantly in the marsh cores throughout the experiment, but there was only a marginally (p < 0.1) significant increase seen in the mudflat cores. Results indicate that porewater salinity levels can become significantly elevated within a coastal marsh soil in just one week. This vertical intrusion of salt can potentially negatively impact macrophytes and associated microbial communities for significantly longer term post-storm surge.

  11. The Low-Level Flow Along the Gulf of California During the North American Monsoon.

    NASA Astrophysics Data System (ADS)

    Bordoni, S.; Stevens, B.

    2007-05-01

    Six-years (1999-2004) of QuikSCAT near-surface ocean winds are used to study the flow over the northeast Pacific and the Gulf of California (GoC) during the North American Monsoon season. The wind data show that the onset of the summer season is accompanied by a reversal of the flow along the GoC, with the establishment of a mean southerly wind throughout the gulf. This reversal occurs in late spring and precedes the onset of the monsoonal rains. In the heart of the monsoon season, the time-mean flow is found to be composed of periods of enhanced southerly winds associated with gulf surges. The role that gulf surges play in modulating the GoC mean southerly flow is further explored by performing an EOF analysis of the summertime daily wind anomalies. A gulf surge mode emerges from this analysis as the leading EOF, with the corresponding principal component time series interpretable as an objective index for gulf surge occurrence. This index is used as a reference time series for regression analysis, to explore the relationship between gulf surges and precipitation over the core and marginal regions of the monsoon, as well as the manifestation of these transient events in the large-scale circulation. It is found that, although seemingly mesoscale features confined over the GoC, gulf surges are intimately linked to patterns of large-scale variability of the eastern Pacific ITCZ and greatly contribute to the definition of the northward extent of the monsoonal rains.

  12. lmmunohistochemical and Molecular Characterization of Extranodal Marginal Zone B-Cell Lymphoma in Salivary Glands

    DTIC Science & Technology

    2016-06-10

    study of six cases. Int J Surg Pathol. 2001; 9(4): 287-293. 24. Lima MDM, Artico G, Soares FA, et al. Follicular lymphoma in the palate with clinical...lymphomas of the salivary glands. Cancer. 1979 ; 37: 906-912. 27. Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue: a

  13. Clinical and anatomical guidelines in pelvic cancer contouring for radiotherapy treatment planning.

    PubMed

    Portaluri, Maurizio; Bambace, Santa; Perez, Celeste; Giuliano, Giuseppe; Angone, Grazia; Scialpi, Michele; Pili, Giorgio; Didonna, Vittorio; Alloro, Emira

    2004-08-01

    Many observations on potential inadequate coverage of tumour volume at risk in advanced cervical cancer (CC) when conventional radiation fields are used, have further substantiated by investigators using MRI, CT or lymphangiographic imaging. This work tries to obtain three dimensional margins by observing enlarged nodes in CT scans in order to improve pelvic nodal chains clinical target volumes (CTVs) drawing, and by looking for corroborative evidence in the literature for a better delineation of tumour CTV. Eleven consecutive patients (seven males, four females, mean age 62 years, range 43-78) with CT diagnosis of nodal involvement caused by pathologically proved carcinoma of the cervix (n = 2), carcinoma of the rectum (n = 2), carcinoma of the prostate (n = 2), non-Hodgkin lymphoma (n = 2), Hodgkin lymphoma (n = 1), carcinoma of the penis (n = 1) and carcinoma of the corpus uteri (n = 1) were retrospectively reviewed. Sixty CT scans with 67 enlarged pelvic nodes were reviewed in order to record the more proximal structures (muscle, bone, vessels, cutis or subcutis and other organs) to each enlarged node or group of nodes according to the four surfaces (anterior, lateral, posterior and medial) in a clockwise direction. A summary of the observations of each nodal chain and the number of occurrences of every marginal structure on axial CT slices is presented. Finally, simple guidelines are proposed. Tumour CTV should be based on individual tumour anatomy-mainly for lateral beams as it results from sagittal T2 weighted MRI images. Boundaries of pelvic nodes CTVs can be derived from observations of enlarged lymph nodes in CT scans.

  14. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  15. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    USGS Publications Warehouse

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides. ?? 1988 Springer-Verlag.

  16. A stochastic storm surge generator for the German North Sea and the multivariate statistical assessment of the simulation results

    NASA Astrophysics Data System (ADS)

    Wahl, Thomas; Jensen, Jürgen; Mudersbach, Christoph

    2010-05-01

    Storm surges along the German North Sea coastline led to major damages in the past and the risk of inundation is expected to increase in the course of an ongoing climate change. The knowledge of the characteristics of possible storm surges is essential for the performance of integrated risk analyses, e.g. based on the source-pathway-receptor concept. The latter includes the storm surge simulation/analyses (source), modelling of dike/dune breach scenarios (pathway) and the quantification of potential losses (receptor). In subproject 1b of the German joint research project XtremRisK (www.xtremrisk.de), a stochastic storm surge generator for the south-eastern North Sea area is developed. The input data for the multivariate model are high resolution sea level observations from tide gauges during extreme events. Based on 25 parameters (19 sea level parameters and 6 time parameters) observed storm surge hydrographs consisting of three tides are parameterised. Followed by the adaption of common parametric probability distributions and a large number of Monte-Carlo-Simulations, the final reconstruction leads to a set of 100.000 (default) synthetic storm surge events with a one-minute resolution. Such a data set can potentially serve as the basis for a large number of applications. For risk analyses, storm surges with peak water levels exceeding the design water levels are of special interest. The occurrence probabilities of the simulated extreme events are estimated based on multivariate statistics, considering the parameters "peak water level" and "fullness/intensity". In the past, most studies considered only the peak water levels during extreme events, which might not be the most important parameter in any cases. Here, a 2D-Archimedian copula model is used for the estimation of the joint probabilities of the selected parameters, accounting for the structures of dependence overlooking the margins. In coordination with subproject 1a, the results will be used as the input for the XtremRisK subprojects 2 to 4. The project is funded by the German Federal Ministry of Education and Research (BMBF) (Project No. 03 F 0483 B).

  17. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    NASA Astrophysics Data System (ADS)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of < 5 %. About one third of the way through the rising limb, conduit melt enlargement became the dominant drainage mechanism. Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  18. Refusing Curriculum as a Space of Death for Black Female Subjects: A Black Feminist Reparative Reading of Jamaica Kincaid's "Girl"

    ERIC Educational Resources Information Center

    Ohito, Esther Oganda

    2016-01-01

    The currents of elitism surging through curriculum studies in the United States have long been of chief concern to critical scholars in the field. Elements of this elitism running along racialized, gendered, classed and other such lines elide to marginalize knowledge generated by and about the "other." For this racialized, gendered,…

  19. An Introductory Global Overview: The Private Fit to Salient Higher Education Tendencies. PROPHE Working Paper Series. WP No. 7

    ERIC Educational Resources Information Center

    Levy, Daniel C.

    2006-01-01

    Private higher education has surged in recent decades and now forms a major part of the world's total higher education. A fourth of total enrollment might be a reasonable guess, albeit a very rough one. Only Western Europe remains mostly marginal to the global trend. Whether new or continuing, contemporary private growth is notable, especially in…

  20. Flow Range of Centrifugal Compressor Being Extended

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  1. Use of historical information in extreme storm surges frequency analysis

    NASA Astrophysics Data System (ADS)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the use of historical information (to the Brest tide gauge located in the French Atlantic coast). In addition, the present work contributes to addressing the problem of the presence of outliers in data sets. Historical data are generally imprecise, and their inaccuracy should be properly accounted for in the analysis. However, as several authors believe, even with substantial uncertainty in the data, the use of historical information is a viable mean to improve estimates of rare events related to extreme environmental conditions. The preliminary results of this study suggest that the use of historical information increases the representativity of an outlier in the systematic data. It is also shown that the use of historical information, specifically the perception sea water level, can be considered as a reliable solution for the optimal planning and design of facilities to withstand extreme environmental conditions, which will occur during its lifetime, with an appropriate optimum of risk level. Findings are of practical relevance for applications in storm surge risk analysis and flood management.

  2. Acinar cell carcinoma of the pancreas presenting as diffuse pancreatic enlargement: Two case reports and literature review.

    PubMed

    Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang

    2017-09-01

    Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.

  3. Clinics in diagnostic imaging (169). Intermuscular lipoma in the thenar eminence of the right hand.

    PubMed

    Venkatesh, Sandeep Halagatti; Wong, Bak Siew Steven

    2016-08-01

    A 54-year-old woman presented with a large mass on her right hand that was progressively enlarging over a period of a few years. She had cosmetic concerns about the enlarging mass and experienced interference with routine activity. Physical examination revealed a soft, mobile, non-tender, lobulated mass with well-defined margins. Magnetic resonance imaging showed the soft lump to be a lipomatous mass in the deep palmar space of the hand, which was subsequently surgically resected. The imaging features of deep palmar lipomas of the hand and other common benign lesions at this location are discussed. Copyright: © Singapore Medical Association.

  4. Discharge of debris from ice at the margin of the Greenland ice sheet

    USGS Publications Warehouse

    Knight, P.G.; Waller, R.I.; Patterson, C.J.; Jones, A.P.; Robinson, Z.P.

    2002-01-01

    Sediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12-45 m3 m-1 a-1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glacio-fluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.

  5. Lateral spread of heat during thyroidectomy using different haemostatic devices.

    PubMed

    Adamczewski, Zbigniew; Król, Aleksander; Kałużna-Markowska, Karolina; Brzeziński, Jan; Lewiński, Andrzej; Dedecjus, Marek

    2015-01-01

    The presented study is an attempt to comprehensively analyze the lateral spread of heat during thyroidectomy. Obtained results may be valuable in other surgical disciplines in which thermal analysis is difficult or impossible. The aim of the study was to evaluate the temperature distribution in the operating field during thyroidectomy performed with the use of modern haemostatic instruments, and to define the safety margin for the investigated devices. Ninety-three patients were thyroidectomised due to thyroid neoplasm. During all the operations the thermovisual measurements were carried out along with continuous intraoperative neuromonitoring of the recurrent laryngeal nerve (CIONM). Investigated patients were divided into 5 groups, named according to the applied haemostatic technique: LigaSure (N=17); ThermoStapler (N=20); Focus (N=19); SonoSurg (N=17) and Monopolar (N=20). At maximal performance settings, the highest working temperature was observed for the ThermoStapler, while the lowest temperature was recorded for the Monopolar. Safety margin and working time were increased in Focus and SonoSurg, compared to LigaSure and ThermoStapler. The differences in the necrosis thickness were negligible. The largest distance of the midline of the active blade from isotherm of 42ºC observed in the study was 5.51 mm; none of investigated devices used at a bigger distance had influence on the morphology of the electric signal of CIONM. The thermo-visual camera allows non-invasive, safe, and real-time monitoring and analysis of temperature distribution in the operation area during thyroidectomy. Proposed minimal safety margin for the analysed devices is 5.51 mm.

  6. Nuées ardentes of 22 November 1994 at Merapi volcano, Java, Indonesia

    USGS Publications Warehouse

    Abdurachman, E.K.; Bourdier, J.-L.; Voight, B.

    2000-01-01

    Nuées ardentes associated with dome collapse on 22 November 1994, at Merapi volcano traveled to the south–southwest as far as 6.5 km, and collectively accumulated roughly 2.5–3 million cubic meters of deposits. The damaged area comprises 9.5 km2 and is covered by two nuée ardente facies, a conventional “Merapi-type”, valley-fill block-and-ash flow facies and a pyroclastic surge facies. The proximal deposits reflect the accumulation of dozens of nuées ardentes, with many subsidiary flow units. The distal deposits are more simply organized, as only a few individual events reached to distances >3.5 km. The stratigraphic relationships north of Turgo hill indicate that the surge deposits are a facies of particularly mobile nuées ardentes that also deposited channeled block-and-ash flow facies. They further suggest that the surge facies beyond the channel margins correlate laterally with a finer-grained sublayer locally developed at the base of the block-and-ash flow facies. Eyewitness reports suggest that the emplacement of the block-and-ash flow facies in the distal part of the Boyong river may have followed, by a short time interval, the destruction and deposition of the surge facies at Turgo village. The stratigraphy is in accord with the eyewitness reports. The surge facies was emplaced by a dilute surge current, detached from the same dome-collapse nuée ardente that, as a separate flow unit, subsequently emplaced the distal block-and-ash deposit in the Boyong valley. The detachment occurred at higher elevations, likely at or above the slope break at about 2000 m elevation. This flow separation enabled the surge current to shortcut over the landscape and to emplace its deposit even as the block-and-ash flow continued its tortuous southward movement in the Boyong channel. Dome-collapse nuée ardente activity formed the bulk of the eruption, which was accompanied by virtually no significant vertical summit explosive activity.

  7. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

    NASA Astrophysics Data System (ADS)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Altena, Bas; Schellenberger, Thomas; Gladstone, Rupert; Moore, John C.

    2018-05-01

    The marine-terminating outlet in Basin 3, Austfonna ice cap, has been accelerating since the mid-1990s. Stepwise multi-annual acceleration associated with seasonal summer speed-up events was observed before the outlet entered the basin-wide surge in autumn 2012. We used multiple numerical models to explore hydrologic activation mechanisms for the surge behaviour. A continuum ice dynamic model was used to invert basal friction coefficient distributions using the control method and observed surface velocity data between April 2012 and July 2014. This has provided input to a discrete element model capable of simulating individual crevasses, with the aim of finding locations where meltwater entered the glacier during the summer and reached the bed. The possible flow paths of surface meltwater reaching the glacier bed as well as those of meltwater produced at the bed were calculated according to the gradient of the hydraulic potential. The inverted friction coefficients show the unplugging of the stagnant ice front and expansion of low-friction regions before the surge reached its peak velocity in January 2013. Crevasse distribution reflects the basal friction pattern to a high degree. The meltwater reaches the bed through the crevasses located above the margins of the subglacial valley and the basal melt that is generated mainly by frictional heating flows either to the fast-flowing units or potentially accumulates in an overdeepened region. Based on these results, the mechanisms facilitated by basal meltwater production, crevasse opening and the routing of meltwater to the bed are discussed for the surge in Basin 3.

  8. Irish Ice Sheet dynamics during deglaciation of the central Irish Midlands: Evidence of ice streaming and surging from airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Delaney, Catherine A.; McCarron, Stephen; Davis, Stephen

    2018-04-01

    High resolution digital terrain models (DTMs) generated from airborne LiDAR data and supplemented by field evidence are used to map glacial landform assemblages dating from the last glaciation (Midlandian glaciation; OI stages 2-3) in the central Irish Midlands. The DTMs reveal previously unrecognised low-amplitude landforms, including crevasse-squeeze ridges and mega-scale glacial lineations overprinted by conduit fills leading to ice-marginal subaqueous deposits. We interpret this landform assemblage as evidence for surging behaviour during ice recession. The data indicate that two separate phases of accelerated ice flow were followed by ice sheet stagnation during overall deglaciation. The second surge event was followed by a subglacial outburst flood, forming an intricate esker and crevasse-fill network. The data provide the first clear evidence that ice flow direction was eastward along the eastern watershed of the Shannon River basin, at odds with previous models, and raise the possibility that an ice stream existed in this area. Our work demonstrates the potential for airborne LiDAR surveys to produce detailed paleoglaciological reconstructions and to enhance our understanding of complex palaeo-ice sheet dynamics.

  9. Outlet Glacier and Margin Elevation Changes: Near - Coastal Thinning of The Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.; hide

    2000-01-01

    Repeat surveys by aircraft laser altimeter in 1993/4 and 1998/9 reveal significant thinning along 70% of the coastal parts of the Greenland ice sheet at elevations below about 2000 m. Thinning rates of more than 1 m/yr are common along many outlet glaciers, at all latitudes and, in some cases, at elevations up to 1500 m. Warmer summers along parts of the coast may have caused a few tens of cm/yr additional melting, but most of the observed thinning probably results from increased glacier velocities and associated creep rates. Three glaciers in the northeast all show patterns of thickness change indicative of surging behavior, and one has been independently documented as a surging glacier. There are a few areas of significant thickening (over 1 m/yr), and these are probably related to higher than normal accumulation rates during the observation period.

  10. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    NASA Astrophysics Data System (ADS)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  11. Salivary gland oncocytes in African hedgehogs (Atelerix albiventris) mimicking cytomegalic inclusion disease.

    PubMed

    Brunnert, S R; Hensley, G T; Citino, S B; Herron, A J; Altman, N H

    1991-07-01

    The salivary glands from three African hedgehogs contained multiple foci of cytomegalic cells, which occasionally had a mild to moderate infiltrate of lymphocytes at the periphery. The cytomegalic cells were 35 to 40 microns in diameter with abundant acidophilic granular to hyalin cytoplasm. The nuclei were enlarged with clumped marginalized chromatin and a large, (6 to 8 microns in diameter) central, brightly eosinophilic nucleolus that had the appearance of an inclusion body by light microscopy. Histochemically most of the cytomegalic cells contained cytoplasmic metachromatic granules with Feyrter's thionine inclusion stain. Scattered cells at the periphery of the cytomegalic foci contained periodic acid-Schiff-positive cytoplasmic granules. Ultrastructurally the cytomegalic cells contained numerous tightly-packed, often bizarre, enlarged mitochondria that completely filled the cytoplasm. The nucleus consisted of a dense central core of chromatin associated with the nucleolus and the remaining chromatin was clumped and marginalized. Nuclear and cytoplasmic virions consistent with cytomegalovirus were not present. Histochemical stains of the nucleus for heavy metals were negative. The ultrastructural and histochemical findings of the cytomegalic cells were consistent with oncocytes. Previous reports in the literature of similar cells in the salivary glands of insectivores appear to have been erroneously described as cytomegalovirus infections.

  12. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to calculate the instantaneous and mean velocity fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. In this work, satisfying characterization of the compressor inlet flow instabilities was obtained at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanisms was achieved.

  13. Stratigraphic, Granulometric and Geochemical Studies of a Major Plinian Eruption on Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Daly, G.; Killingsworth, N.; Deuerling, K.; Schneider, S.; Fryxell, J. E.

    2008-12-01

    The island of Dominica, located in the center of the Lesser Antilles island arc has witnessed, probably within the last 100,000 years, three large volume Plinian eruptions. One of these, associated with the Morne Diablotins center, forms the Grande Savane pyroclastic flow fan, that extends off shore as a distinctive submarine feature for a distance of at least 14 km. Stratigraphical studies of road cuts and well-exposed sea cliffs indicate the fan is composed of an older unit composed of reworked deposits at the base followed by at least four sequences, based on the presence of paleosols, of block and ash flow deposits. The upper unit of block and ash flows is overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites and pumiceous surges (representing the Plinian eruption). There is no evidence of an initial Plinian fall deposit, so the lowest bed in the succession is an ignimbrite with a highly irregular base that cuts into the underlying block and ash flow deposits, the upper parts of which are colored red due to thermal effects. This lowest ignimbrite is welded (minimum porosity of 15%) throughout its thickness (maximum thickness of greater than 21 m), although a few outcrops near the margins show a thin (20-30 cm) non-welded but lithified zone beneath the welded zone. The remainder of the sequence is composed of lithified ignimbrite that can be subdivided into three units separated by pumiceous surge layers. The ignimbrite succession is overlain, with no obvious break, by a thin fall deposit containing accretionary lapilli and gas cavities, followed by three pumiceous surge deposits (lower and upper show planar stratification and the middle surge shows massive bedding); towards the north the upper two surge deposits are separated by thin pumiceous lapilli fall and ash fall deposits. This surge sequence extends laterally outside of the main area of ignimbrite deposition. The pumice clasts from the ignimbrites are andesitic in composition and show essentially no variation up stratigraphy. In contrast, the surges are more variable in composition, ranging from andesite to dacite. Modeling of these data will provide information on the dynamics of this major Plinian eruption including the effects of water/magma interaction.

  14. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  15. Atlantic hurricane surge response to geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase by a factor of 2-7 for each degree of increase in mean global temperature. Geoengineering by stratospheric sulphate aerosol injection cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 8 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the RCP4.5 scenario. Globalmore » mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those in RCP4.5, but sulphate injection would have to double between 2020 and 2070 to balance RCP 4.5 to nearly 10 Tg SO2 yr-1, with consequent implications for damage to stratospheric ozone. We project changes in storm frequencies using a temperature-dependent Generalized Extreme Value statistical model calibrated by historical storm surges from 1923 and observed temperatures. The numbers of storm surge events as big as the one that caused the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this is only marginally statistically significant. Furthermore, when sea level rise differences at 2070 between RCP4.5 and geoengineering are factored in to coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5 year events and perhaps halved for 50 year surges.« less

  16. Atlantic hurricane surge response to geoengineering

    DOE PAGES

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; ...

    2015-10-26

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase by a factor of 2-7 for each degree of increase in mean global temperature. Geoengineering by stratospheric sulphate aerosol injection cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 8 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the RCP4.5 scenario. Globalmore » mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those in RCP4.5, but sulphate injection would have to double between 2020 and 2070 to balance RCP 4.5 to nearly 10 Tg SO2 yr-1, with consequent implications for damage to stratospheric ozone. We project changes in storm frequencies using a temperature-dependent Generalized Extreme Value statistical model calibrated by historical storm surges from 1923 and observed temperatures. The numbers of storm surge events as big as the one that caused the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this is only marginally statistically significant. Furthermore, when sea level rise differences at 2070 between RCP4.5 and geoengineering are factored in to coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5 year events and perhaps halved for 50 year surges.« less

  17. Atlantic hurricane surge response to geoengineering.

    PubMed

    Moore, John C; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-11-10

    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges.

  18. Atlantic hurricane surge response to geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran

    2015-10-26

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase by a factor of 2-7 for each degree of increase in mean global temperature. Geoengineering by stratospheric sulphate aerosol injection cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 8 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the RCP4.5 scenario. Globalmore » mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those in RCP4.5, but sulphate injection would have to double between 2020 and 2070 to balance RCP 4.5 to nearly 10 Tg SO2 yr-1, with consequent implications for damage to stratospheric ozone. We project changes in storm frequencies using a temperature-dependent Generalized Extreme Value statistical model calibrated by historical storm surges from 1923 and observed temperatures. The numbers of storm surge events as big as the one that caused the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this is only marginally statistically significant. However, when sea level rise differences at 2070 between RCP4.5 and geoengineering are factored in to coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5 year events and perhaps halved for 50 year surges.« less

  19. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetrical Flow Control-Part II: Nonaxisymmetrical Self-Recirculation Casing Treatment.

    PubMed

    Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki

    2013-03-01

    This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.

  20. Mud aprons in front of Svalbard surge moraines: Evidence of subglacial deforming layers or proglacial glaciotectonics?

    NASA Astrophysics Data System (ADS)

    Kristensen, Lene; Benn, Douglas I.; Hormes, Anne; Ottesen, Dag

    2009-10-01

    Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.

  1. Increasing Flood Risk due to Run-off Outflow near Estuarine City during Storm Event

    NASA Astrophysics Data System (ADS)

    Son, S.; Lee, C.; Do, K.; Jung, T.

    2017-12-01

    Tropical cyclone easily causes inundation damage to low-lying coastal area and the damage may be amplified due to tide motion, sea-level rise, riverine discharges. Specifically, typhoons are accompanied by intensive rainfall, which will of course raise the river water level and thus enhance the flooding damages. If the tidal cycle coincides the high water, flooding will be even aggravated. In the present study, we simulated storm surge motions at the coastal area considering combined effects of tidal and river discharge with aim to improve the accuracy of flooding prediction. The quasi 3-dimension ocean circulation model, Delf3D was used which solves the unsteady shallow water equation in the 2D and 3D. Since Delft3D is much applicable to accommodate the indirect flooding factors such as riverine discharge and short waves, outer-coupled modeling system was established to account for combined tide-surge-riverine discharge effects. In such integrated system, 11 tidal constituents were input as open boundary condition using TPXO 7.2 model, while the water level per unit time was preliminary calculated by HEC-HMS model and input as the upstream boundary conditions for river inside the domain. Typhoon MAEMI which attacked Masan city located at southern coast of South Korea and caused severe inundation damages in 2003 was selected for the study event. Basic information for typhoon such as path, wind speed, atmospheric pressure every 3 hours was provided by the Korea Meteorological Agency and was adopted. The simulation was implemented with tide and storm surge boundary conditions focusing on the target area, Masan, while the additional consideration on the discharge of the river inside the domain was also made. Simulated water level at the fixed location was compared to the observation for its verification and the extent of inundation areas of Masan were compared between observed and calculated. The marginal contribution of riverine discharge on the flooding area(or depth) was assessed by comparing tide-surge with tide-surge-riverine discharge simulations. Finally, the importance of the specific consideration on the riverine discharge during storm surge modeling can be addressed.

  2. Dragons in the mist: three new species of Pseudocalotes Fitzinger (Squamata: Agamidae) from the sky island archipelago of Peninsular Malaysia.

    PubMed

    Grismer, L Lee; Quah, Evan S H; Wood, Perry L Jr; Anuar, Shahrul; Muin, Abdul; Davis, Hayden R; Murdoch, Matthew L; Grismer, Jesse L; Cota, Michael; Cobos, Anthony J

    2016-07-07

    An integrative taxonomic analysis is used to delimit and describe three new species of Pseudocalotoes from the sky island archipelago of the Banjaran (=mountain range) Titiwangsa of Peninsular Malaysia. Pseudocalotes drogon sp. nov., from Fraser's Hill, Pahang is basal to the sister species P. larutensis from Bukit Larut, Perak in the Banjaran Bintang and the new species P. rhaegal sp. nov. from Cameron Highlands, Pahang. Pseudocalotes drogon sp. nov. is differentiated from all other species of Psuedocalotes by having the combination of a flat rostrum; seven postrostrals; an interparietal; 11 circumorbitals; five canthals; 7-10 superciliaries; one scale between the rostral and nasal; nine supralabials; eight infralabials; 10 postnasal-suborbital scales; four postmentals; five or six sublabials; five or six chinshields; 47 smooth, wide, gular scales; weak transverse gular and antehumeral folds; two enlarged scales between the ear and eye; enlarged upper and lower posttemporals; a single enlarged supratympanic; no enlarged postrictals; three large scales bordering the dorsal margin of the ear opening; large pretympanic scales; eight scales in the nuchal crest not separated by a gap; enlarged vertebral scales extending to the tip of the tail; keeled and non-plate-like scales on flanks; 51 midbody scales; midventrals smaller than dorsals; 19 subdigital lamellae on the fourth finger; 23 subdigital lamellae on the fourth toe; preaxial scales on third toe enlarged and spinose; subdigital lamellae not unicarinate; HW/HL 0.52; HL/SVL 0.31; no elbow or knee patches; and a male dewlap color of lime-green bearing a central yellow spot. Pseudocalotes rhaegal sp. nov. is differentiated from all other Psuedocalotes by having the combination of a convex rostrum; 6-8 postrostrals; an interparietal; nine or 10 circumorbitals; five canthals; 7-10 superciliaries; one or two scales between the rostral and nasal scales; eight or nine supralabials; seven or eight infralabials; 11 or 12 postnasal-suborbital scales; four postmentals; four or five chinshields; 40-45 smooth, wide, gular scales; no transverse gular fold; a weak antehumeral fold; three or four enlarged scales between the ear and eye; an enlarged upper and lower posttemporal; an enlarged supratympanic; no enlarged postrictals; no large scales bordering the upper margin of the ear opening or in the pretympanic region; 6-8 enlarged nuchal crest scales not separated by a gap; enlarged vertebral scales extending to the base of the tail; weakly keeled, non-plate-like scales on the flanks; 52-58 midbody scales; midventrals smaller than dorsals; 19-21 subdigital lamellae on the fourth finger; 22-26 subdigital lamellae on the fourth toe; preaxial scales on the third enlarged and rounded; subdigital lamellae not unicarinate; HW/HL 0.50-0.54; HL/SVL 0.28-0.30; no elbow or knee patches; and female dewlap color yellow bearing a purple base. The analyses also indicated that the new species, P. viserion sp. nov. from Genting Highlands, Pahang in the southern section of the Banjaran Titiwangsa is the sister species of P. flavigula from Cameron Highlands 121 km to the north and can be separated from all other species of Psuedocalotes by having the combination of three postrostrals; 10 circumorbitals; four or five canthals; 5-7 superciliaries; rostral and nasals in contact; supralabials contacting the nasal; six or seven supralabials; six or seven infralabials; two or three postmentals; 47 or 48 smooth, flat, gular scales; three chinshields; weak transverse gular and antehumeral folds; two enlarged scales between the ear and eye; an enlarged upper and lower posttemporal; an enlarged supratympanic; no enlarged postrictals; 7-9 nuchal crest scales lacking gaps and not extending beyond midbody; weakly keeled and plate-like scales on the flanks; 35-38 midbody scales; ventrals smaller than dorsals; 22 or 23 subdigital lamellae on the fourth finger; 26 or 27 subdigital lamellae on the fourth toe; preaxial scales on the third toe not modified; subdigital scales not unicarinate; HW/HL 0.62; no white marking below the eye; dewlap in males yellow; and no elbow or knee patches. Pseudocalotes rhaegal sp. nov. most likely occurs in syntopy with P. flavigula in Tanah Rata at Cameron Highlands and its discovery adds to a growing body of literature detailing the recent descriptions of several new, upland, closely related, sympatric species in Peninsular Malaysia. Another new population referred to here as Pseudocalotes sp. nov. from the Hala-Bala Wildlife Sanctuary, Betong District, Yala Province, Thailand is discussed. The discovery and description of these three new Pseudocalotes from the upland regions of Peninsular Malaysia continues to underscore the remarkably high herpetological diversity and ecological complexity in this sky island archipelago that is still underestimated, unappreciated, and unprotected.

  3. Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1980-01-01

    Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.

  4. Multi-color space threshold segmentation and self-learning k-NN algorithm for surge test EUT status identification

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Liu, Gui-xiong

    2016-09-01

    The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm ( k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z '. The training set T z increased to T z+1 by T z ' if T z ' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.

  5. Childhood asymmetric labium majus enlargement: mimicking a neoplasm.

    PubMed

    Vargas, Sara O; Kozakewich, Harry P W; Boyd, Theonia K; Ecklund, Kirsten; Fishman, Steven J; Laufer, Marc R; Perez-Atayde, Antonio R

    2005-08-01

    We report a distinctive lesion of the labium majus resected in 14 girls from 3.9 to 13.2 years of age. All presented with enlargement of 1 or occasionally both labia majora. Radiographic imaging and surgical exploration showed expansion of the labium majus without definable borders. Grossly, specimens consisted of fibro-fatty tissue from 2 to 8 cm in greatest dimension. Microscopic examination revealed the usual constituents of vulvar soft tissue, with expansion of the fibrous component. Sparsely to moderately cellular interconnected bands encircled lobules of fat, blood vessels, and nerves. The bands consisted of plump and occasionally stellate or round fibroblasts immersed in an abundant pale myxoid matrix containing thin collagen fibers. These fibrous bands merged with thinner denser fibrous septa simlar to those seen in the vulva from age-matched controls. Elastic stains showed variably abundant thin parallel elastic fibers. Fibroblasts were immunohistochemically positive for estrogen and progesterone receptors. Electron microscopy showed fibroblasts with dilated rough endoplasmic reticulum cisternae and prominent nuclear fibrous laminae; extracellular matrix contained precollagen, collagen, elastic fibers, and numerous proteoglycan granules. Cytogenetic analysis of 3 lesions revealed a normal karyotype. Recurrence was observed in 7 (50%) patients, and regression was observed in 1 whose recurrence was not reexcised. Over an 11-year period at Children's Hospital (Boston, MA), these lesions represented 22% of all pediatric vulvar soft tissue masses and 3% of all vulvar lesions biopsied. We conclude that "childhood asymmetric labium majus enlargement" is a distinctive clinicopathologic entity of pre- and early puberty. Recognition of this fairly common lesion is important, since it may clinically, radiographically, and histologically mimic an infiltrative neoplasm. Its occurrence at an age roughly coincident with the time of breast budding, capacity for spontaneous regression, histologic architecture and composition of elements native to the vulva, expression of hormone receptors, and normal karyotype suggest that it is an asymmetric physiologic enlargement in response to hormonal surges of pre- and early puberty.

  6. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    PubMed

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999 Academic Press.

  7. Evaluation of a low aspect ratio small axial compressor stage, volume 1

    NASA Technical Reports Server (NTRS)

    Sawyer, C. W., III

    1977-01-01

    A program was conducted to evaluate the effects of scaling, tip clearance, and IGV reset on the performance of a low aspect ratio compressor stage. Stage design was obtained by scaling an existing single stage compressor by a linear factor of 0.304. The design objective was to maintain the meanline velocity field of the base machine in the smaller size. Adjustments were made to account for predicted blockage differences and to chord lengths and airfoil edge radii to obtain reasonable blade geometries. Meanline velocity diagrams of the base stage were not maintained at the scaled size. At design speed and flowrate the scaled stage achieved a pressure ratio of 1.423, adiabatic efficiency of 0.822, and surge margin of 18.5%. The corresponding performance parameters for the base stage were 1.480, 0.872, and 25.2%, respectively. The base stage demonstrated a peak efficiency at design speed of 0.872; the scaled stage achieved a level of 0.838. When the scaled stage rotor and stator tip clearances were doubled, the stage achieved a pressure ratio of 1.413, efficiency of 0.799, and surge margin of 16.0% at the design flowrate. The peak stage efficiency at design speed was 0.825 with the increased clearance. Increased prewhirl lowered the stage pressure ratio as expected. Stage efficiency was maintained with ten degrees of increased prewhirl and then decreased substantially with ten additional degrees of reset.

  8. Atlantic hurricane surge response to geoengineering

    PubMed Central

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-01-01

    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges. PMID:26504210

  9. Association between gingival bleeding and gingival enlargement and oral health-related quality of life (OHRQoL) of subjects under fixed orthodontic treatment: a cross-sectional study.

    PubMed

    Zanatta, Fabricio Batistin; Ardenghi, Thiago Machado; Antoniazzi, Raquel Pippi; Pinto, Tatiana Militz Perrone; Rösing, Cassiano Kuchenbecker

    2012-11-27

    There are scarce evidences that evaluated the impact of periodontal disease on oral health-related quality of life (OHRQoL) taking marginal gingival alterations into consideration. Thus, this study aimed to verify the association between OHRQoL and gingival enlargement and gingival bleeding in subjects under fixed orthodontic treatment (FOT). 330 participants under FOT for at least 6 months were examined by a single, calibrated examiner for periodontal variables and dental aesthetic index. Socio-economic background, body mass index, time with orthodontic appliances, and use of dental floss were assessed by oral interviews. OHRQoL was evaluated using the oral health impact profile (OHIP-14) questionnaire. The assessment of associations used unadjusted and adjusted Poisson regression models. Higher impacts on the OHIP-14 overall were observed in subjects who presented higher levels of anterior gingival enlargement (RR 2.83; 95% CI 2.60-3.09), were non-whites (RR 1.29; 95% CI 1.15-1.45), had household income lower than five national minimum wages (RR 1.85; 95% CI 1.30-2.61), presented body mass index>25 (RR 1.14; 95% CI 1.01-1.29), and showed a dental aesthetic index>30 (RR 1.32; 95% CI 1.20-1.46). Anterior gingival enlargement seems to influence the OHRQoL in subjects receiving orthodontic treatment.

  10. Breast abscess following nipple piercing: a case report and review of the literature.

    PubMed

    Kapsimalakou, Smaragda; Grande-Nagel, Isabell; Simon, Martin; Fischer, Dorothea; Thill, Marc; Stöckelhuber, Beate M

    2010-12-01

    Nipple piercing gains popularity and social acceptance within the last years, especially among young people. The medical literature reports an increase of complications in the post-piercing period. We report a case of a young woman, who presented with a light enlargement of the right breast and tenderness in the retroareolar region following nipple piercing 5 months ago. On ultrasound, a poorly marginated hypoechoic lesion was seen which was suspicious of an inflammation. After 1 week of antibiotic therapy, the mass had enlarged. As carcinoma could not be excluded, open biopsy was performed. Histology showed signs of chronic mastitis. To date, only a few reports of breast abscess after nipple piercing have been published. With the increasing prevalence of body piercing, it is important to document and report infections which may be discovered many months following piercing. Carcinoma can mimic breast abscess and should be included in the differential diagnosis.

  11. Computed tomography findings of ovarian metastases from colon cancer: comparison with primary malignant ovarian tumors.

    PubMed

    Choi, Hyuck Jae; Lee, Joo-Hyuk; Seo, Sang-Soo; Lee, Sun; Kim, Seok Ki; Kim, Joo-Young; Lee, Jong Seok; Park, Sang-Yoon; Kim, Young Hoon

    2005-01-01

    The computed tomography (CT) findings of ovarian metastases from colon cancer were evaluated and were compared with those of primary malignant ovarian tumors. Sixteen patients with 21 masses from colon cancer and 20 patients with 31 primary malignant ovarian tumors were included in this study. The CT findings (laterality, size, margin, shape, mass characteristic, strong enhancement of cyst wall, enhancement of solid portion, amount of ascites, peritoneal seeding, lymph node enlargement, and metastasis) and ages of the patients in both groups were compared. Univariate analysis, the Pearson chi test, and the independent-samples t test were used to distinguish them. A smooth margin of the tumor (odds ratio=24.3, 95% confidence interval: 2.9-204.2) and cystic nature of the mass (Pearson chi=12.96, P=0.005) were strong predictors of ovarian metastasis from colon cancer. Ovarian metastases from colon cancer show a smooth margin and more cystic nature on CT compared with primary malignant ovarian tumors.

  12. Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii

    PubMed Central

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M.

    2010-01-01

    Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250°C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes. PMID:20559555

  13. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.

    PubMed

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M

    2010-06-15

    The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.

  14. A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades

    USGS Publications Warehouse

    Teh, S.Y.; DeAngelis, D.L.; Sternberg, L.D.S.L.; Miralles-Wilhelm, F. R.; Smith, T.J.; Koh, H. L.

    2008-01-01

    Sharp boundaries typically separate the salinity tolerant mangroves from the salinity intolerant hardwood hammock species, which occupy the similar geographical areas of southern Florida. Evidence of strong feedback between tree community-type and the salinity of the unsaturated (vadose) zone of the soil suggests that a severe disturbance that significantly tilts the salinity in the vadose zone might cause a shift from one vegetation type to the other. In this study, a model based upon the feedback dynamics between vegetation and salinity of the vadose zone of the soil was used to take account of storm surge events to investigate the mechanisms that by which this large-scale disturbance could affect the spatial pattern of hardwood hammocks and mangroves. Model simulation results indicated that a heavy storm surge that completely saturated the vadose zone at 30 ppt for 1 day could lead to a regime shift in which there is domination by mangroves of areas previously dominated by hardwood hammocks. Lighter storm surges that saturated the vadose zone at less than 7 ppt did not cause vegetation shifts. Investigations of model sensitivity analysis indicated that the thickness of the vadose zone, coupled with precipitation, influenced the residence time of high salinity in the vadose zone and therefore determined the rate of mangrove domination. The model was developed for a southern Florida coastal ecosystem, but its applicability may be much broader. ?? 2008 Elsevier B.V. All rights reserved.

  15. Top-down or bottom-up? Assessing crevassing directions on surging glaciers and developments for physically testing glacier crevassing models.

    NASA Astrophysics Data System (ADS)

    Rea, B.; Evans, D. J. A.; Benn, D. I.; Brennan, A. J.

    2012-04-01

    Networks of crevasse squeeze ridges (CSRs) preserved on the forelands of many surging glaciers attest to extensive full-depth crevassing. Full-depth connections have been inferred from turbid water up-welling in crevasses and the formation of concertina eskers however, it has not been clearly established if the crevasses formed from the top-down or the bottom-up. A Linear Elastic Fracture Mechanics (LEFM) approach is used to determine the likely propagation direction for Mode I crevasses on seven surging glaciers. Results indicate that, the high extensional surface strain rates are insufficient to promote top-down full-depth crevasses but have sufficient magnitude to penetrate to depths of 4-12 m, explaining the extensive surface breakup accompanying glacier surges. Top-down, full-depth crevassing is only possible when water depth approaches 97% of the crevasse depth. However, the provision of sufficient meltwater is problematic due to the aforementioned extensive shallow surface crevassing. Full-depth, bottom-up crevassing can occur provided basal water pressures are in excess of 80-90% of flotation which is the default for surging and on occasion water pressures may even become artesian. Therefore CSRs, found across many surging glacier forelands and ice margins most likely result from the infilling of basal crevasses formed, for the most part, by bottom-up hydrofracturing. Despite the importance of crevassing for meltwater routing and calving dynamics physically testing numerical crevassing models remains problematic due to technological limitations, changing stress regimes and difficulties associated with working in crevasse zones on glaciers. Mapping of CSR spacing and matching to surface crevasse patterns can facilitate quantitative comparison between the LEFM model and observed basal crevasses provided ice dynamics are known. However, assessing full-depth top-down crevasse propagation is much harder to monitor in the field and no geomorphological record is preserved. An alternative approach is provided by geotechnical centrifuge modelling. By testing scaled models in an enhanced 'gravity' field real-world (prototype) stress conditions can be reproduced which is crucial for problems governed by self-weight stresses, of which glacier crevassing is one. Scaling relationships have been established for stress intensity factors - KI which are key to determining crevasse penetration such that KIp = √N KIm (p = prototype and m = model). Operating specifications of the University of Dundee geotechnical centrifuge (100g) will allow the testing of scaled models equivalent to prototype glaciers of 50 m thickness in order to provide a physical test of the LEFM top-down crevassing model.

  16. Quantitative Characteristics of Spectral-Domain Optical Coherence Tomography in Corresponding Areas of Increased Autofluorescence at the Margin of Geographic Atrophy in Patients With Age-Related Macular Degeneration.

    PubMed

    Hariri, Amir H; Nittala, Muneeswar G; Sadda, SriniVas R

    2016-06-01

    To evaluate the spectral-domain optical coherence tomography (SD-OCT) characteristics of the junctional zone corresponding to areas of increased autofluorescence (IAF) at the margin of geographic atrophy (GA) in patients with age-related macular degeneration (AMD). SD-OCT and fundus autofluorescence (FAF) images from untreated eyes with GA available from archived studies at Doheny Image Reading Center were evaluated. Areas of definite decreased autofluorescence (DDAF) corresponding to GA, and areas of IAF at the margins of the GA were manually segmented. Eyes with evidence of IAF were selected. Following manual registration of FAF and OCT data, areas of IAF and normal fluorescence were correlated with OCT features at these locations. Thirty eyes were included. The mean retinal pigment epithelium (RPE) thickness in areas of IAF was 40.6 µm ± 7.69 µm, compared to 28.8 µm ± 7.09 µm in normal adjacent areas (P < .001). Regions of IAF at the junctional zone of GA lesions appear to correspond to thickening of the presumed RPE band on OCT. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:523-527.]. Copyright 2016, SLACK Incorporated.

  17. Improving the Predictability of Severe Water Levels along the Coasts of Marginal Seas

    NASA Astrophysics Data System (ADS)

    Ridder, N. N.; de Vries, H.; van den Brink, H.; De Vries, H.

    2016-12-01

    Extreme water levels can lead to catastrophic consequences with severe societal and economic repercussions. Particularly vulnerable are countries that are largely situated below sea level. To support and optimize forecast models, as well as future adaptation efforts, this study assesses the modeled contribution of storm surges and astronomical tides to total water levels under different air-sea momentum transfer parameterizations in a numerical surge model (WAQUA/DCSMv5) of the North Sea. It particularly focuses on the implications for the representation of extreme and rapidly recurring severe water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5, which is currently used to forecast coastal water levels in the Netherlands, is forced with ERA Interim reanalysis data. Model results are obtained from two different methodologies to parameterize air-sea momentum transfer. The first calculates the governing wind stress forcing using a drag coefficient derived from the conventional approach of wind speed dependent Charnock constants. The other uses instantaneous wind stress from the parameterization of the quasi-linear theory applied within the ECMWF wave model which is expected to deliver a more realistic forcing. The performance of both methods is tested by validating the model output with observations, paying particular attention to their ability to reproduce rapidly succeeding high water levels and extreme events. In a second step, the common features of and connections between these events are analyzed. The results of this study will allow recommendations for the improvement of water level forecasts within marginal seas and support decisions by policy makers. Furthermore, they will strengthen the general understanding of severe and extreme water levels as a whole and help to extend the currently limited knowledge about clustering events.

  18. Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains.

    PubMed

    Albert, Rosa Maria; Bamford, Marion K

    2012-08-01

    As part of ongoing research at Olduvai Gorge, Tanzania, to determine the detailed paleoenvironmental setting during Bed I and Bed II times and occupation of the basin by early hominins, we present the results of phytolith analyses of Tuff IF which is the uppermost unit of Bed I. Phytoliths were identified in most of the levels and localities on the eastern paleolake margin, but there are not always sufficient numbers of identifiable morphologies to infer the specific type of vegetation due to dissolution. Some surge surfaces and reworked tuff surfaces were vegetated between successive ash falls, as indicated by root-markings and the presence of a variety of phytolith morphotypes. Dicotyledonous wood/bark types were dominant except at the FLK N site just above Tuff IF when monocots are dominant and for the palm-dominated sample from the reworked channel cutting down into Tuff IF at FLK N. The area between the two fault scarps bounding the HWK Compartment, approximately 1 km wide, was vegetated at various time intervals between some of the surges and during the reworking of the Tuff. By lowermost Bed II times the eastern margin was fully vegetated again. Climate and tectonic activity probably controlled the fluctuating lake levels but locally the paleorelief and drainage were probably the controlling factors for the vegetation changes. These data support a scenario of small groups of hominins making brief visits to the paleolake during uppermost Bed I times, followed by a more desirable vegetative environment during lowermost Bed II times. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Surveillance of Craniopharyngioma Cyst Growth in Children Treated With Proton Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkfield, Karen M.; Linsenmeier, Claudia; Yock, Torunn I.

    2009-03-01

    Purpose: Craniopharyngiomas are benign, slow-growing tumors that frequently contain a cystic component. Even with gross total resection, the cyst can reform and cause symptoms. Fluctuations in cyst volume during radiotherapy (RT) can affect treatment planning and delivery. The aim of this study was to report our experience with cyst enlargement during conformal proton RT for children with craniopharyngioma and to make recommendations regarding mid-treatment surveillance. Methods and Materials: Between January 2001 and August 2007, 24 children (aged {<=}18 years) underwent proton RT at the Massachusetts General Hospital for craniopharyngioma. For all 24 patients, tumor size on magnetic resonance imaging and/ormore » computed tomography was measured before and after RT. Surveillance imaging was available for review on 17 patients. During RT, cyst growth was assessed to determine whether the treatment fields needed to be altered. Results: Of the 17 children who underwent repeat imaging during RT, 6 required intervention because of changes in cyst dimensions. Four patients (24%) had cyst growth beyond the original treatment fields, requiring enlargement of the treatment plan. One patient's treatment field was reduced after a decreased in cyst size. Cyst drainage was performed in another patient to avoid enlargement of the treatment fields. Conclusion: In patients undergoing highly conformal RT for craniopharyngiomas with cysts, routine imaging during treatment is recommended. Surveillance imaging should be performed at least every 2 weeks during proton RT in an attempt to avoid marginal failure. Craniopharyngiomas with large cystic components or enlargement during treatment might require weekly imaging.« less

  20. Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.

    PubMed

    Seymoure, B M; Aiello, A

    2015-09-01

    There is a recent surge of evidence supporting disruptive coloration, in which patterns break up the animal's outline through false edges or boundaries, increasing survival in animals by reducing predator detection and/or preventing recognition. Although research has demonstrated that false edges are successful for reducing predation of prey, research into the role of internal false boundaries (i.e. stripes and bands) in reducing predation remains warranted. Many animals have stripes and bands that may function disruptively. Here, we test the possible disruptive function of wing band patterning in a butterfly, Anartia fatima, using artificial paper and plasticine models in Panama. We manipulated the band so that one model type had the band shifted to the wing margin (nondisruptive treatment) and another model had a discontinuous band located on the wing margin (discontinuous edge treatment). We kept the natural wing pattern to represent the false boundary treatment. Across all treatment groups, we standardized the area of colour and used avian visual models to confirm a match between manipulated and natural wing colours. False boundary models had higher survival than either the discontinuous edge model or the nondisruptive model. There was no survival difference between the discontinuous edge model and the nondisruptive model. Our results demonstrate the importance of wing bands in reducing predation on butterflies and show that markings set in from the wing margin can reduce predation more effectively than marginal bands and discontinuous marginal patterns. This study demonstrates an adaptive benefit of having stripes and bands. © 2015 European Society For Evolutionary Biology.

  1. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  2. Study of blade aspect ratio on a compressor front stage

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.

    1980-01-01

    A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.

  3. Fibre tip pH sensor for tumor detection during surgery

    NASA Astrophysics Data System (ADS)

    Henderson, Matthew R.; Schartner, Erik P.; Callen, David F.; Gill, P. Grantley; Monro, Tanya M.

    2015-05-01

    Surgery on tumours commonly involves a lumpectomy method, where a section of tissue containing the tumour is removed, to improve cosmetic outcomes and quality of life. Following surgery, the margins of the removed section are checked by pathology tests to ensure that the entire tumour has been removed. Unfortunately, approximately 15-20% of margins show incomplete removal and require a subsequent operation to remove the remaining tumour. Tumour detection during surgery could allow the removed section to be enlarged appropriately, reducing the likelihood of requiring subsequent surgery. A change in the extracellular pH in the vicinity of a tumour, when compared to normal tissue, has been shown previously in literature. We have fabricated an optical fibre tip pH sensor by embedding a fluorophore within a photopolymerised acrylamide polymer on the tip of a 200 micron diameter silica fibre. Preliminary measurements of human melanoma samples have shown a significant difference in the measured pH values between tumour and normal tissue. This demonstration paves to way to highly accurate margin detection during surgery.

  4. [Transurethral resection of bladder tumors and prostate enlargement in physiological saline solution (TURIS). A prospective study].

    PubMed

    Rose, A; Suttor, S; Goebell, P J; Rossi, R; Rübben, H

    2007-09-01

    Transurethral resection in a conductive irrigant medium is a new procedure in the surgical therapy of bladder tumors and prostate enlargement. In this prospective randomized trial we compared conventional TUR with TUR in saline regarding safety and efficiency. Between November 2004 and February 2005 a total number of 128 patients were included in this study. After randomization 58 patients were treated by conventional TUR and 70 patients by TURIS (Olympus, SurgMasterSystem). We evaluated resection time, weight of resected tissue, complications, blood loss, changes in serum sodium, and duration of catheterization. Among the tested procedures no statistically significant difference could be observed concerning blood loss, change of serum sodium, and complications. The mean weight of resected tissue of the prostate per time was 0.9 g/min with the TUR procedure and 0.8 g/min with the TURIS procedure. Severe complications like TUR syndrome or perforation of the bladder were not observed at all. In the TURIS group time until catheter removal was longer but also the mean weight of resected tissue of the prostate was higher in the TURIS group (42 g) than in the conventional TUR group (31 g). Transurethral resection in a conductive irrigant medium (TURIS) can be considered as a safe and effective surgical procedure in the treatment of BPH and superficial urothelial carcinoma. Moreover the risk of TUR syndrome and perforation of the bladder due to nerve stimulation is reduced.

  5. Leo Szilard: Physics, Politics, and the Narrow Margin of Hope.

    NASA Astrophysics Data System (ADS)

    Lanouette, William

    1998-04-01

    Leo Szilard (1898-1964) was a creative physicist and biologist. But concern about how scientific discoveries might affect humanity also led him to seek political solutions to enlarge the benefits and limit the damage caused by his work. This disposition to save the world came to Szilard by the age of 10, when he read The Tragedy of Man, a Hungarian epic poem in which humanity faces extinction yet continues to survive by maintaining a narrow margin of hope. With this hope Szilard brought about improbable scientific and political feats (such as the nuclear chain reaction and the Moscow-Washington Hotline). This talk focuses on Szilard's many attempts in 1945 to prevent the atomic bombing of Japan. William Lanouette, a writer and public policy analyst, is the author of Genius in the Shadows: A Biography of Leo Szilard, The Man Behind the Bomb. (University of Chicago Press, 1994)

  6. Effect of azilsartan versus candesartan on morning blood pressure surges in Japanese patients with essential hypertension

    PubMed Central

    Kario, Kazuomi; Enya, Kazuaki; Sugiura, Kenkichi; Ikeda, Yoshinori

    2014-01-01

    Morning blood pressure (BP) surge is reported as a risk factor for cardiovascular events and end-organ damage independent of the 24-h BP level. Controlling morning BP surge is therefore important to help prevent onset of cardiovascular disease. We compared the efficacy of azilsartan and candesartan in controlling morning systolic BP (SBP) surges by analyzing relevant ambulatory BP monitoring data in patients with/without baseline BP surges. As part of a 16-week randomized, double-blind study of azilsartan (20–40 mg once daily) and candesartan (8–12 mg once daily) in Japanese patients with essential hypertension, an exploratory analysis was carried out using ambulatory BP monitoring at baseline and week 14. The effects of study drugs on morning BP surges, including sleep trough surge (early morning SBP minus the lowest night-time SBP) and prewaking surge (early morning SBP minus SBP before awakening), were evaluated. Patients with sleep trough surge of at least 35 mmHg were defined by the presence of a morning BP surge (the ‘surge group’). Sleep trough surge and prewaking surge data were available at both baseline and week 14 in 548 patients, 147 of whom (azilsartan 76; candesartan 71) had a baseline morning BP surge. In surge group patients, azilsartan significantly reduced both the sleep trough surge and the prewaking surge at week 14 compared with candesartan (least squares means of the between-group differences −5.8 mmHg, P=0.0395; and −5.7 mmHg, P=0.0228, respectively). Once-daily azilsartan improved sleep trough surge and prewaking surge to a greater extent than candesartan in Japanese patients with grade I–II essential hypertension. PMID:24710336

  7. Effect of azilsartan versus candesartan on morning blood pressure surges in Japanese patients with essential hypertension.

    PubMed

    Rakugi, Hiromi; Kario, Kazuomi; Enya, Kazuaki; Sugiura, Kenkichi; Ikeda, Yoshinori

    2014-06-01

    Morning blood pressure (BP) surge is reported as a risk factor for cardiovascular events and end-organ damage independent of the 24-h BP level. Controlling morning BP surge is therefore important to help prevent onset of cardiovascular disease. We compared the efficacy of azilsartan and candesartan in controlling morning systolic BP (SBP) surges by analyzing relevant ambulatory BP monitoring data in patients with/without baseline BP surges. As part of a 16-week randomized, double-blind study of azilsartan (20-40 mg once daily) and candesartan (8-12 mg once daily) in Japanese patients with essential hypertension, an exploratory analysis was carried out using ambulatory BP monitoring at baseline and week 14. The effects of study drugs on morning BP surges, including sleep trough surge (early morning SBP minus the lowest night-time SBP) and prewaking surge (early morning SBP minus SBP before awakening), were evaluated. Patients with sleep trough surge of at least 35 mmHg were defined by the presence of a morning BP surge (the 'surge group'). Sleep trough surge and prewaking surge data were available at both baseline and week 14 in 548 patients, 147 of whom (azilsartan 76; candesartan 71) had a baseline morning BP surge. In surge group patients, azilsartan significantly reduced both the sleep trough surge and the prewaking surge at week 14 compared with candesartan (least squares means of the between-group differences -5.8 mmHg, P=0.0395; and -5.7 mmHg, P=0.0228, respectively). Once-daily azilsartan improved sleep trough surge and prewaking surge to a greater extent than candesartan in Japanese patients with grade I-II essential hypertension.

  8. Comparison of the 2008-2011 and 1993-1995 Surges of Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2011-12-01

    The 1993-1995 surge of Bering Glacier, Earth's largest surging temperate glacier, was intensively studied. A new surge, which began prior to March 9, 2009, was still active in early August 2011. As was the 1993-1995 surge, the current surge is being studied using multiple remote sensing and ground-based methodologies. The wealth of observations available of both surges permit comparisons to be drawn about similarities and differences regarding processes, timing, intensities, and related topics. For more than a year prior to each surge, the intensity of calving and the rate of terminus retreat in Tashalich Arm increased dramatically, approaching 4 m/d in late 2010. This was abruptly followed by a significant terminus advance. In the current surge, maximum advance rates exceeded 19 m/d between March 18 and May 10, 2011. Through July 20, maximum terminus advance approached 3.2 km with velocities above 8 m/d. Similar rates applied in the earlier surge. Each surge has resulted in a rapid and significant advance of the central Bering Lobe's terminus into Vitus Lake. The terminus advance results from the transfer of a substantial volume of ice from the Bagley Ice Valley into the expanding piedmont lobe. In both surges, conspicuous evidence of tens of meters of glacier surface lowering is visible on the south wall of Juniper Island. In the 1993-1995 surge, terminus advance between October 17, 1993 and May 16, 1994 was nearly 7.8 km, an average advance rate of more than 36 m/d. With the current surge, between January 8 and 14, 2011, the terminus advanced a maximum of 125 m, averaging nearly 21 m/d. By July 11, 2011, maximum velocities still approached 15 m per day, with maximum ice displacements of nearly 2 km and a maximum terminus advance of 1.7 km. In the 1993-1995 surge, the first evidence of surge activity was observed in April 1993, the development of a fractured ice bulge on the northwest side of the Grindle Hills. The surge front reached Bering's terminus at the end of August 1993 and left it heavily fractured. With the current surge, until July 2009, surface displacements were restricted to the area from west of, to northeast of the Grindle Hills. By November 18, 2010, the surge front reached Bering's terminus and left it more heavily fractured than in 1993. The current surge shows the same style and types of surface disruptions and deformations at the same locations as did the earlier surge. For example, in both surges, sinusoidal crevasses were first noted north of the Grindle Hills, while rifts were noted in the upper central piedmont lobe. The current surge has produced much more fracturing of the Medial Moraine Band than did the 1993-95 surge. Similarly, the extent of surface fracturing up-glacier from the piedmont lobe is significantly greater in the current surge. During the 1993-95 surge, surface expression of the surge extended about 45 km east of the western end of Juniper Island. In late July 2011, surge-related surface fractures extended nearly 90 km to the east. The Steller lobe of the Bering Glacier System has not been involved in either surge. Continued observations of the current surge, in the context of the 1993-95 surge, are providing significant insights into repeatable patterns of surging glacier behavior. Bering Glacier is an amazing natural laboratory at which to conduct these observations.

  9. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  10. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    USGS Publications Warehouse

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  11. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765).

    PubMed

    Burger, Jan A; Buggy, Joseph J

    2013-11-01

    Over the past 3 years, ibrutinib (PCI-32765) has emerged as a breakthrough in targeted therapy for patients with certain types of B cell malignancies. Early stage clinical trials found ibrutinib to be particularly active in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), providing the rationale for ongoing phase 3 trials. In contrast to conventional chemo-immunotherapy, ibrutinib is not myelosuppressive, and responses are not affected by disease features that predict failure to respond to or short remission durations after chemo-immunotherapy, such as del17p. In CLL, ibrutinib characteristically causes an early redistribution of tissue-resident CLL cells into the blood, with rapid resolution of enlarged lymph nodes, along with a surge in lymphocytosis. Later, after weeks to months of continuous ibrutinib therapy, the growth- and survival-inhibitory activities of ibrutinib result in the normalization of lymphocyte counts and remissions in a majority of patients. This review discusses the discovery, preclinical and clinical development of ibrutinib, its pathophysiological basis, and outlines perspectives for future use of ibrutinib.

  12. Complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Jansson, Krister N.; Stroeven, Arjen P.; Preusser, Frank; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2016-04-01

    Over the last decades, numerous paleoglacial reconstructions have been carried out in Central Asian mountain ranges because glaciers in this region are sensitive to climate change, and thus their associated glacial deposits can be used as proxies for paleoclimate inference. However, non-climatic factors can complicate the relationship between glacier fluctuation and climate change. Careful investigations of the geomorphological and sedimentological context are therefore required to understand the mechanisms behind glacier retreat and expansion. In this study we present the first detailed paleoglacial reconstruction of the Chagan Uzun valley, located in the Russian Altai. This reconstruction is based on detailed geomorphological mapping, sedimentological logging, in situ cosmogenic 10Be and 26Al surface exposure dating of glacially transported boulders, and Optically Stimulated Luminescence (OSL) dating. The Chagan Uzun valley includes extensive lobate moraine belts (>100 km2) deposited in the intramontane Chuja basin, reflecting a series of pronounced former glacial advances. Observation of "hillside-scale" folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, indicate that these moraine belts were formed during glacier-surge like events. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley indicate that they were deposited by retreat of temperate valley glaciers and do not include features indicative of surging. Cosmogenic ages associated with the outermost, innermost and intermediary stages, all indicate deposition times clustered around 19.5 ka, although the 10Be ages of the outermost margin are likely slightly underestimated due to brief episode of glacial lake water coverage. Such close deposition timings are consistent with periods of fast or surge advances, followed by active glacier retreat. OSL dating yields significantly older ages of thick lacustrine accumulation along the Chagan Uzun River, which confirms the presence of lacustrine sediments in the Chagan Uzun glacier foreland before the glacier advances. Such sediments could have acted as a soft bed over which fast or unstable glacier flow occurred. This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.

  13. Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development.

    PubMed

    Bresso, Edgardo G; Chorostecki, Uciel; Rodriguez, Ramiro E; Palatnik, Javier F; Schommer, Carla

    2018-02-01

    The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA -like TCPs ( TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2 ) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis ( Arabidopsis thaliana ) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesis-related genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10 Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development. © 2018 American Society of Plant Biologists. All Rights Reserved.

  14. Massive nerve root enlargement in chronic inflammatory demyelinating polyneuropathy.

    PubMed Central

    Schady, W; Goulding, P J; Lecky, B R; King, R H; Smith, C M

    1996-01-01

    OBJECTIVE: To report three patients with chronic inflammatory demyelinating polyneuropathy (CIDP) presenting with symptoms suggestive of cervical (one patient) and lumbar root disease. METHODS: Nerve conduction studies, EMG, and nerve biopsy were carried out, having found the nerve roots to be very enlarged on MRI, CT myelography, and at surgery. RESULTS: Clinically, peripheral nerve thickening was slight or absent. Subsequently one patient developed facial nerve hypertrophy. This was mistaken for an inner ear tumour and biopsied, with consequent facial palsy. Neurophysiological tests suggested a demyelinating polyneuropathy. Sural nerve biopsy showed in all cases some loss of myelinated fibres, inflammatory cell infiltration, and a few onion bulbs. Hypertrophic changes were much more prominent on posterior nerve root biopsy in one patient: many fibres were surrounded by several layers of Schwann cell cytoplasm. There was an excellent response to steroids in two patients but not in the third (most advanced) patient, who has benefited only marginally from intravenous immunoglobulin therapy. CONCLUSIONS: MRI of the cauda equina may be a useful adjunct in the diagnosis of CIDP. Images PMID:8971116

  15. Congenital lymphangioma circumscriptum of vulva presenting as multiple giant mass lesions: a case report and literature review.

    PubMed

    Akhavan, Setareh; Agah, Jila; Nili, Fatemeh

    2018-05-01

    A G2L2 33-year-old woman presented to our clinic with large verrucous warty masses in labia major, perinea and the end portion of her spine measuring about 15 × 7, 9 × 7 and 8 × 8 cm, which had been enlarged following puberty and pregnancy. Her right upper and left lower limbs had gross congenital lymphedema. The masses were removed by superficial partial vulvectomy with a qualified margin and repaired without skin graft. Pathology report showed lymphangioma circumscriptum. Several months of follow up revealed normal healing and no recurrence. In conclusion, congenital vulvar lymphangioma, which is a rare disorder, can be highly triggered by hormonal-stimulating situations like puberty and pregnancy. Thus, it is better to visit the affected cases in a timely manner in order to excise these lesions before massive enlargement. In our experience, a superficial partial vulvectomy without skin graft can be a sufficient procedure. Obviously, an appropriate approach during and after surgery would be very important for obtaining a desirable healing. © 2018 Japan Society of Obstetrics and Gynecology.

  16. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  17. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2017-01-01

    In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.

  18. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ∼20 km of the shelf break by ∼24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ∼22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ∼24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (∼150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several readvances. Sedimentary evidence of dilatant till deposition suggests that the readvances may have been rapid and possibly associated with ice streaming or surging. The largest lobe extended offshore from Galway Bay and deposited the Galway Lobe Readvance Moraine by <18,500 Cal BP. Further to the north, an ice lobe readvanced at least 50 km offshore from Killary Harbour, possibly by ≤15,100 Cal BP. The existing chronology currently does not allow us to determine conclusively whether these readvances were a glaciodynamic (internally-driven) response of the ice sheet during deglaciation or were climatically-driven. Following the <18,500 Cal BP readvance, the Galway Lobe experienced accelerated eastward retreat at an estimated rate of ∼113 m/yr.

  19. Developments in a centrifugal compressor surge control -- a technology assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Henderson, J.F.

    1994-04-01

    There are a number of surge control schemes in current use for centrifugal compressors employed in natural gas transmission systems. Basically, these schemes consist of a set of detection devices that either anticipate surge or detect it at its inception, and a set of control devices that act to prevent surge from occurring. A patent search was conducted in an attempt to assess the level and direction of technology development over the last 20 years and to define the focus for future R D activities. In addition, the paper presents the current state of technology in three areas: surge control,more » surge detection, and surge suppression. Patent data obtained from on-line databases showed that most of the emphasis has been on surge control rather than on detection and control and that the current trend in surge control will likely continue toward incremental improvement of a basic or conventional surge control strategy. Various surge suppression techniques can be grouped in two categories: (1) those that are focused on better compressor interior design, and (2) others that attempt to suppress surge by external and operational means.« less

  20. [Diagnostic and prognostic value of p53 oncogene and the selected neoplastic markers (Ki67, PCNA, DNA ploidy) of the ultrastructure in patients with laryngeal cancer].

    PubMed

    Golusiński, W; Szmeja, Z; Olofsson, J; Biczysko, W; Krygier-Stojałowska, A; Majewski, P

    1996-01-01

    A comparison was performed of staining intensity of immunohistochemical proliferating antigens (p53, PCNA, Ki67), DNA flow cytometry and ultrastructure of the carcinoma cells in 120 cases of laryngeal cancer. Clinically very advanced tumors were in majority (T3 - 43%, T4 - 18%). A 5 graded scale was adapted to evaluate the level of immunohistochemical staining of the carcinoma cell nuclei. A positive staining was obtained in 70% for p53, 57% for Ki67 and in 80(2/3) for PCNA. 62% of the cases were DNA diploid and 38% DNA aneuploid. The DNA diploid carcinomas were accompanied by the enlargement of the cell nuclei, preserving of the nuclei's wide margins of heterochromatine, enlargement of the nuclear area and increase of the number of nuclei. In the aneuploid-polyploid cancer the nuclei had a substantial polymorphism with large cleaved nuclei and with significant variation in size, and with nuclear envelope. A frequent finding was euchromatization of chromatine. Dense chromatine appeared in the form of small clumps spread over the whole area of these irregular nuclei. Enlargement and activation of nucleoli occurred. There was a positive correlation (Chi-square) between T- and N-stage and immunohistochemical staining. There was also a positive correlation in staining intensity between p53, Ki67 and PCNA. There is also strong correlation between these markers of proliferative activity and the degree of aggressiveness of the tumour.

  1. Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland

    NASA Astrophysics Data System (ADS)

    Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur

    2016-09-01

    Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.

  2. Lung Metastasis in a Case of Recurrent Poorly Differentiated Leiomyosarcoma of the Bartholin Gland: A Case Report and Review of the Literature

    PubMed Central

    Alfieri, Joanne

    2016-01-01

    Vulvar neoplasms represent four percent of all gynecological cancers. While most cases of vulvar neoplasms are benign, two percent of patients present with malignant disease. We present the case of a 37-year-old premenopausal female who presented to an outside institution with a lump in her left vulva, which had progressively enlarged to the size of an egg. A wide local excision of the left vulva was performed, and the pathology revealed a high-grade sarcoma, not otherwise specified (NOS), with negative margins. Imaging showed enlarged bilateral external iliac lymph nodes, likely metastatic. After discussion at a multidisciplinary gynecology oncology tumor board, she was treated with gemcitabine/docetaxel chemotherapy, followed by a left inguinal lymph node dissection and a left radical vulvectomy after being referred to our centre. The final pathology at that time showed a residual sarcoma of 3.5 mm in the left vulva with no lympho-vascular invasion (LVI) and negative margins, with the closest, laterally, at 2 mm. A total of three lymph nodes were negative. She received additional chemotherapy postoperatively. Approximately one year later, she returned to her gynecologist with a 1 cm mass on the left vulva. She underwent a left hemi-vulvectomy and lymph node dissection, and pathology confirmed the presence of a high-grade sarcoma with close margins. She received adjuvant radiotherapy. Three months later, she presented with persistent cough and pneumonia. Imaging revealed a 10 cm lung mass, which was believed to be metastasis from the vulva. This was confirmed with biopsy and was completely resected. Any mass in the Bartholin gland area should be investigated carefully. Poorly differentiated vulvar leiomyosarcoma in the Bartholin gland can recur locally but may also lead to distant metastasis. Despite surgical and systemic treatment, as well as adjuvant radiation, the tumor recurred. Due to the rarity of this condition, there are no clear recommendations for treatment of this disease. To our knowledge, this is the first report of vulvar leiomyosarcoma of the Bartholin gland with metastasis to the lung. PMID:27158579

  3. Risk assessment of storm surge disaster based on numerical models and remote sensing

    NASA Astrophysics Data System (ADS)

    Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu

    2018-06-01

    Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.

  4. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after myopic LASIK. [J Refract Surg. 2018;34(2):121-130.]. Copyright 2018, SLACK Incorporated.

  5. Primary (de novo) dedifferentiated liposarcoma in the extremities: a multi-institution Tohoku Musculoskeletal Tumor Society study of 18 cases in northern Japan.

    PubMed

    Okada, Kyoji; Hasegawa, Tadashi; Kawai, Akira; Ogose, Akira; Nishida, Jun; Yanagisawa, Michiro; Morita, Tetsuro; Tajino, Takahiro; Tsuchiya, Takashi

    2011-09-01

    Dedifferentiated liposarcomas usually occur in the retroperitoneal space and relatively rarely in the extremities. We identified 18 patients with primary dedifferentiated liposarcoma in the extremities from the files of Tohoku Musculoskeletal Tumor Society and analyzed demographics, histologic findings, treatments and prognostic factors. The average follow-up period was 58 months. The subjects were 12 men and 6 women with a mean age of 65 years. All tumors were in the thigh. Nine patients noticed a rapid enlargement of the long-standing tumor. Histologic subtypes of the dedifferentiated area were undifferentiated pleomorphic sarcoma (n = 12), osteosarcoma (n = 2), rhabdomyosarcoma (n = 2), leiomyosarcoma (n = 1) and malignant peripheral nerve sheath tumor (n = 1). In the patient with rhabdomyosarcoma-like dedifferentiated area, extensive necrosis was observed after the preoperative chemotherapy. One patient who underwent marginal excision developed a local recurrence, but inadequate surgical margin was not associated with a risk of local recurrence. Three patients had lung metastasis at initial presentation, and four other patients developed lung metastases during the follow-up period. The overall survival rate was 61.1% at 5 years. On univariate analyses, large size of the dedifferentiated area (>8 cm), high MIB-1-labeling index (>30%) for the dedifferentiated area and lung metastasis at initial presentation were significantly associated with poor prognosis. Primary dedifferentiated liposarcoma in the extremities predominantly occurred in the thigh and a rapid enlargement of long-standing tumors was a characteristic symptom. Although the local behavior of these tumors was less aggressive than that of retroperitoneal dedifferentiated liposarcomas, they had a relatively high metastatic potential.

  6. Energy efficient engine fan component detailed design report

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Michael, C. J.

    1981-01-01

    The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.

  7. Performance of a low-pressure-ratio centrifugal compressor with four diffuser designs

    NASA Technical Reports Server (NTRS)

    Klassen, H. A.

    1973-01-01

    A low-pressure-ratio centrifugal compressor was tested with four different diffuser configurations. One diffuser had airfoil vanes. Two were pipe diffusers. One pipe diffuser had 7.5 deg cone diffusing passages. The other had trumpet-shaped passages designed for linear static-pressure rise from throat to exit. The fourth configuration had flat vanes with elliptical leading edges similar to those of pipe diffusers. The side walls were contoured to produce a linear pressure rise. Peak compressor efficiencies were 0.82 with the airfoil vane and conical pipe diffusers, 0.80 with the trumpet, and 0.74 with the flat-vane design. Surge margin and useful range were greater for the airfoil-vane diffuser than for the other three.

  8. Cutaneous haemangiosarcoma of the lower eyelid in an elderly white cat.

    PubMed

    Hartley, Claudia; Ladlow, Jane; Smith, Ken C

    2007-02-01

    A case of cutaneous haemangiosarcoma of the left lower eyelid in a 15-year-old white domestic shorthair cat is reported. A protuberant red mass occupying one-third of the lower eyelid margin length was present. Intermittent haemorrhage occurred from the mass surface. Surgical biopsy had revealed a locally invasive tumour composed of numerous irregular blood-filled spaces lined by a single layer of plump endothelial cells and separated by thin fibrous septa. Mitotic activity was rare and the appearance was consistent with a low-grade haemangiosarcoma. The mass continued to enlarge and referral was sought. Due to financial constraints and the owner's wish for a single procedure, enucleation with an axial pattern flap based on the superficial temporal artery was undertaken. Histopathology of the excised tissue confirmed the presence of a well-differentiated haemangiosarcoma. Tumour-free excisional margins were confirmed, the surgical area healed uneventfully, and there has been no recurrence during the subsequent 16 months.

  9. H{α} Surges Aroused by Newly-emerging Satellite Bipolar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Zhou, T. H.; Ji, H. S.

    2013-07-01

    An Hα surge event occurred at AR NOAA 11259 on 2011 July 22. According to the BBSO (Big Bear Solar Observatory) Hα line-center observations, three surges continuously ejected from the same region to the north of the main-sunspot of AR 11259. All of surges ejected along a straight trajectory, and looked like the reversed Eiffel Tower. The first and second surges had the same process. Two bright points firstly appeared to the north of the main-sunspot. After several minutes, a surge appeared between the two bright points, and then rapidly ejected when the two points got most brightness.When the surge reached the maximum height, it disappeared quickly. However, the third surge appeared without bright points, and its height was only half of the others. Compared with SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) line-of-sight magnetogram, more than one hour before the first surge appeared, a satellite bipolar magnetic field emerged from the surge-ejection region. The newly-emerging positive magnetic flux showed a distinct decrease several minutes earlier than the ejection of the surges. We assumed that the surges was associated with the reconnection between the newly-emerging bipolar magnetic field and the existing (sunspot) magnetic field.

  10. Centrifugal Compressor Surge Controlled

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  11. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    NASA Astrophysics Data System (ADS)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  12. Advances in using satellite altimetry to observe storm surge

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2017-04-01

    Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  13. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  14. Numerical Evaluation of Storm Surge Indices for Public Advisory Purposes

    NASA Astrophysics Data System (ADS)

    Bass, B.; Bedient, P. B.; Dawson, C.; Proft, J.

    2016-12-01

    After the devastating hurricane season of 2005, shortcomings with the Saffir-Simpson Hurricane Scale's (SSHS) ability to characterize a tropical cyclones potential to generate storm surge became widely apparent. As a result, several alternative surge indices were proposed to replace the SSHS, including Powell and Reinhold's Integrated Kinetic Energy (IKE) factor, Kantha's Hurricane Surge Index (HSI), and Irish and Resio's Surge Scale (SS). Of the previous, the IKE factor is the only surge index to-date that truly captures a tropical cyclones integrated intensity, size, and wind field distribution. However, since the IKE factor was proposed in 2007, an accurate assessment of this surge index has not been performed. This study provides the first quantitative evaluation of the IKEs ability to serve as a predictor of a tropical cyclones potential surge impacts as compared to other alternative surge indices. Using the tightly coupled ADvanced CIRCulation and Simulating WAves Nearshore models, the surge and wave responses of Hurricane Ike (2008) and 78 synthetic tropical cyclones were evaluated against the SSHS, IKE, HSI and SS. Results along the upper TX coast of the Gulf of Mexico demonstrate that the HSI performs best in capturing the peak surge response of a tropical cyclone, while the IKE accounting for winds greater than tropical storm intensity (IKETS) provides the most accurate estimate of a tropical cyclones regional surge impacts. These results demonstrate that the appropriate selection of a surge index ultimately depends on what information is of interest to be conveyed to the public and/or scientific community.

  15. Comparative Analysis of Glaciers in the Chugach-St.-Elias Mountains

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Mayer, H.

    2003-12-01

    The phenomenon of glacier surges has to date been studied for only relatively few examples. 136 of the 204 surge-type glaciers in North America listed by Post (1969) are located in the St. Elias Mountains. In August 2003 we increased our data inventory of observations on surge glaciers by collecting material for 19 glaciers in the Glacier Bay area and neighboring regions in the eastern St. Elias Mountains, including 6 surge-type glaciers (Carroll, Rendu, Ferris, Grand Pacific, Margerie, and Johns Hopkins Glaciers). Analyses utilize digital video and photographic data, satellite data and GPS data. Geostatistical classification parameters and algebraic parameters characteristic of surge motions are derived for selected glaciers. During the 1993-1995 surge of Bering Glacier the entire surface of Alaska's longest glacier was crevassed and could be segmented into several dynamic provinces, where patterns changed as the surge progressed and the affected areas expanded downglacier and upglacier, finally affecting the Bagley Ice Field. The middle moraine of Grand Pacific and Ferris Glaciers is pushed over to the Grand Pacific side, caused by a recent surge of the heavily crevassed Ferris Glacier. The front of Johns Hopkins Glacier advances, as its lower reaches are affected by a surge. The surge history of Bering Glacier goes back to the Holocene, whereas Carroll and Rendu Glaciers have surged only 3-4 times. These observations pose questions on the possible relationship between surge dynamics and climatic changes.

  16. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two or...

  17. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two or...

  18. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two or...

  19. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two or...

  20. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two or...

  1. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  2. Modelling the 2013 Typhoon Haiyan Storm Surge: Effect of Waves, Offshore Winds, Tide Phase, and Translation Speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.

    2016-02-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  3. Emergency department surge capacity: recommendations of the Australasian Surge Strategy Working Group.

    PubMed

    Bradt, David A; Aitken, Peter; FitzGerald, Gerry; Swift, Roger; O'Reilly, Gerard; Bartley, Bruce

    2009-12-01

    For more than a decade, emergency medicine (EM) organizations have produced guidelines, training, and leadership for disaster management. However, to date there have been limited guidelines for emergency physicians (EPs) needing to provide a rapid response to a surge in demand. The aim of this project was to identify strategies that may guide surge management in the emergency department (ED). A working group of individuals experienced in disaster medicine from the Australasian College for Emergency Medicine Disaster Medicine Subcommittee (the Australasian Surge Strategy Working Group) was established to undertake this work. The Working Group used a modified Delphi technique to examine response actions in surge situations and identified underlying assumptions from disaster epidemiology and clinical practice. The group then characterized surge strategies from their corpus of experience; examined them through available relevant published literature; and collated these within domains of space, staff, supplies, and system operations. These recommendations detail 22 potential actions available to an EP working in the context of surge, along with detailed guidance on surge recognition, triage, patient flow through the ED, and clinical goals and practices. The article also identifies areas that merit future research, including the measurement of surge capacity, constraints to strategy implementation, validation of surge strategies, and measurement of strategy impacts on throughput, cost, and quality of care.

  4. The influence of supraglacial debris cover variability on de-icing processes - examples from Svalbard

    NASA Astrophysics Data System (ADS)

    Lukas, Sven; Benn, Douglas I.; Boston, Clare M.; Hawkins, Jack; Lehane, Niall E.; Lovell, Harold; Rooke, Michael

    2014-05-01

    Extensive supraglacial debris covers are widespread near the margins of many cold-based and polythermal surging and non-surging glaciers in Svalbard. Despite their importance for current glacier dynamics and a detailed understanding of how they will affect the de-icing of ice-marginal areas, little work has been carried out to shed light on the sedimentary processes operating in these debris covers. We here present data from five different forelands in Svalbard. In all five cases, surfaces within the debris cover can be regarded as stable where debris cover thickness exceeds that of the active layer; vegetation development and absence of buried ice exposures at the surface support this conclusion, although test pits and geophysical investigations have revealed the presence of buried ice at greater depths (> 1-3 m). These findings imply that even seemingly stable surfaces at present will be subject to change by de-icing in the future. Factors and processes that contribute towards a switch from temporarily stable to unstable conditions have been identified as: 1. The proximity to englacial or supraglacial meltwater channels. These channels enlarge due to thermo-erosion, which can lead to the eventual collapse of tunnel roofs and the sudden generation of linear instabilities in the system. Along such channels, ablation is enhanced compared to adjacent debris-covered ice, and continued thermo-erosion continuously exposes new areas of buried ice at the surface. This works in conjunction with 2. Debris flows that occur on all sloping ground and transfer material from stable to less stable (sloping) locations within the debris cover and eventually into supraglacial channels, from where material is then removed from the system. Several generations of debris flows have been identified in all five debris covers, strongly suggesting that these processes are episodic and that the loci of these processes switch. This in turn indicates that transfer of material by debris flows downslope can lead to localised thickening of the debris cover, thereby resulting in the creation of new temporarily-stable areas in downslope locations. 3. The renewed and continued re-distribution of material causes de-icing to proceed in a stepwise fashion. While de-icing is ongoing, this results in the formation of debris cones or even larger ridges and mounds that have been termed "moraine-mound complexes" by previous workers (e.g. Graham et al., 2007). These are temporary landforms that will not survive de-icing over longer timescales, and projection of continued reworking into the future shows that perhaps an undulating spread of material will remain (cf. Lukas, 2007). The formation of supraglacial lakes during overall melting can lead to the formation of thick sequences of sorted sediments that in turn insulate the underlying ice after lake drainage. The presence of such sorted sediments in current ridge-top locations in some of the debris covers gives further weight to the interpretation of a mode of stepwise de-icing; crumbling and erosion by snowmelt and wind attests the shortlived nature of such deposits in topographic highs. Our findings strongly support an interpretation of a de-icing mode that takes place in a stepwise fashion that leads to several generations of sediment transfer within the debris covers and repeated relief inversion. References Graham, D.J., Bennett, M.R., Glasser, N.F., Hambrey, M.J., Huddart, D., Midgley, N.G., 2007. 'A test of the englacial thrusting hypothesis of ''hummocky''moraine formation: case studies from the northwest Highlands, Scotland': Comments. Boreas 36, 103-107. Lukas, S., 2007. Englacial thrusting and (hummocky) moraine formation: a reply to comments by Graham et al. (2007). Boreas 36, 108-113.

  5. The relationship between a blunted morning surge and a reversed nocturnal blood pressure dipping or "riser" pattern.

    PubMed

    Fujiwara, Takeshi; Tomitani, Naoko; Sato, Keiko; Okura, Ayako; Suzuki, Noriyuki; Kario, Kazuomi

    2017-11-01

    The authors sought to determine the association between the blunted morning blood pressure (BP) surge and nocturnal BP dipping of the "riser" pattern in 501 patients with hypertension enrolled in the ACHIEVE-ONE (Ambulatory Blood Pressure Control and Home Blood Pressure [Morning and Evening] Lowering by the N-Channel Blocker Cilnidipine) trial. The patients' sleep-trough morning BP surge and prewaking surge were calculated and then classified according to their nocturnal systolic BP reduction pattern as extreme dippers, dippers, nondippers, and risers. The prevalence of the riser pattern was significantly higher in both the lowest sleep-trough morning BP surge decile and the prewaking surge decile (blunted surge group) compared with the remaining deciles (56.0% vs 10.4% [P<.0001] and 59.2% vs 10.2% [P<.0001], respectively). The riser pattern was a significant determinant of both blunted sleep-trough morning BP surge (odds ratio, 73.3; P<.0001) and blunted prewaking surge (odds ratio, 14.8; P<.0001). The high prevalence of the riser pattern in patients with blunted morning BP surges may account for the cardiovascular risk previously reported in such patients. ©2017 Wiley Periodicals, Inc.

  6. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  7. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  8. The eSurge-Venice project: how satellite data can improve the storm surge forecasting in the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; Vignudelli, Stefano; Donlon, Craig; De Biasio, Francesco; Della Valle, Antonio; Umgiesser, Georg; Bajo, Marco

    The Data User Element (DUE) program of the European Space Agency (ESA) is funding two projects (eSurge and eSurge-Venice) aimed to demonstrate the improvement of the storm surge forecasting through the use of Earth Observation (EO) data. eSurge-Venice (http://www.esurge-venice.eu/), is specifically focused on the Gulf of Venice, northern Adriatic Sea. The project objectives are: a) Select a number of Storm Surge Events occurred in the Venice lagoon since 1999; b) Provide the available satellite EO data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts; c) Provide a demonstration Near Real Time service (eSurge-Venice live) of EO data products and services in support of operational and experimental forecasting and warning services; d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data. Present storm surge models use atmospheric model wind fields as forcing. These are know to underestimate the wind in small basins like the Adriatic Sea (~1000 km by 300 km), where the orography plays an important role in shaping the winds. Therefore there is the need to verify and tune the atmospheric model wind fields used in the storm surge modeling, an activity which can easily done using satellite scatterometer winds. The project is now in the middle of his life, and promising preliminary results have been achieved using satellite scatterometer wind data to forge the atmospheric model wind fields forcing the storm surge model. This contribution will present the methodology adopted to tune the model wind fields according to the bias with scatterometer winds and the improvements induced in the storm surge model hindcast.

  9. Coastal emergency managers' preferences for storm surge forecast communication.

    PubMed

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  10. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.

    PubMed

    Georgescu, Dan; Payne, Marielle; Olson, Randall J

    2007-03-01

    To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.

  11. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Hagen, J. O.; Kääb, A.; Schuler, T. V.; Reijmer, C. H.

    2015-02-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the polar regions. Here we present continuous GPS measurements and satellite synthetic-aperture-radar-based velocity maps from Basin-3, the largest drainage basin of the Austfonna ice cap, Svalbard. Our observations demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of Basin-3. The resulting iceberg discharge of 4.2±1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. With the seawater displacement by the terminus advance accounted for, the related sea-level rise contribution amounts to 7.2±2.6 Gt a-1. This rate matches the annual ice-mass loss from the entire Svalbard archipelago over the period 2003-2008, highlighting the importance of dynamic mass loss for glacier mass balance and sea-level rise. The active role of surface melt, i.e. external forcing, contrasts with previous views of glacier surges as purely internal dynamic instabilities. Given sustained climatic warming and rising significance of surface melt, we propose a potential impact of the hydro-thermodynamic feedback on the future stability of ice-sheet regions, namely at the presence of a cold-based marginal ice plug that restricts fast drainage of inland ice. The possibility of large-scale dynamic instabilities such as the partial disintegration of ice sheets is acknowledged but not quantified in global projections of sea-level rise.

  12. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.

    2012-02-01

    Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.

  13. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael

    2013-04-01

    The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (<10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.

  14. Intraoperative Raman spectroscopy of soft tissue sarcomas.

    PubMed

    Nguyen, John Q; Gowani, Zain S; O'Connor, Maggie; Pence, Isaac J; Nguyen, The-Quyen; Holt, Ginger E; Schwartz, Herbert S; Halpern, Jennifer L; Mahadevan-Jansen, Anita

    2016-10-01

    Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated through surgical resection. Current intraoperative margin assessment methods are limited and highlight the need for an improved approach with respect to time and specificity. Here we investigate the potential of near-infrared Raman spectroscopy for the intraoperative differentiation of STS from surrounding normal tissue. In vivo Raman measurements at 785 nm excitation were intraoperatively acquired from subjects undergoing STS resection using a probe based spectroscopy system. A multivariate classification algorithm was developed in order to automatically identify spectral features that can be used to differentiate STS from the surrounding normal muscle and fat. The classification algorithm was subsequently tested using leave-one-subject-out cross-validation. With the exclusion of well-differentiated liposarcomas, the algorithm was able to classify STS from the surrounding normal muscle and fat with a sensitivity and specificity of 89.5% and 96.4%, respectively. These results suggest that single point near-infrared Raman spectroscopy could be utilized as a rapid and non-destructive surgical guidance tool for identifying abnormal tissue margins in need of further excision. Lasers Surg. Med. 48:774-781, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Storm surge along the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Flick, Reinhard E.; Miller, Arthur J.

    2017-01-01

    Storm surge is an important factor that contributes to coastal flooding and erosion. Storm surge magnitude along eastern North Pacific coasts results primarily from low sea level pressure (SLP). Thus, coastal regions where high surge occurs identify the dominant locations where intense storms make landfall, controlled by storm track across the North Pacific. Here storm surge variability along the Pacific coast of North America is characterized by positive nontide residuals at a network of tide gauge stations from southern California to Alaska. The magnitudes of mean and extreme storm surge generally increase from south to north, with typically high amplitude surge north of Cape Mendocino and lower surge to the south. Correlation of mode 1 nontide principal component (PC1) during winter months (December-February) with anomalous SLP over the northeast Pacific indicates that the dominant storm landfall region is along the Cascadia/British Columbia coast. Although empirical orthogonal function spatial patterns show substantial interannual variability, similar correlation patterns of nontide PC1 over the 1948-1975 and 1983-2014 epochs with anomalous SLP suggest that, when considering decadal-scale time periods, storm surge and associated tracks have generally not changed appreciably since 1948. Nontide PC1 is well correlated with PC1 of both anomalous SLP and modeled wave height near the tide gauge stations, reflecting the interrelationship between storms, surge, and waves. Weaker surge south of Cape Mendocino during the 2015-2016 El Niño compared with 1982-1983 may result from changes in Hadley circulation. Importantly from a coastal impacts perspective, extreme storm surge events are often accompanied by high waves.

  16. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts

    NASA Astrophysics Data System (ADS)

    Needham, Hal F.; Keim, Barry D.; Sathiaraj, David

    2015-06-01

    Tropical cyclone-generated storm surges are among the world's most deadly and destructive natural hazards. This paper provides the first comprehensive global review of tropical storm surge data sources, observations, and impacts while archiving data in SURGEDAT, a global database. Available literature has provided data for more than 700 surge events since 1880, the majority of which are found in the western North Atlantic (WNA), followed by Australia/Oceania, the western North Pacific (WNP), and the northern Indian Ocean (NIO). The Bay of Bengal (BOB) in the NIO consistently observes the world's highest surges, as this subbasin averages five surges ≥5 m per decade and has observed credible storm tide levels reaching 13.7 m. The WNP observes the highest rate of low-magnitude surges, as the coast of China averages 54 surges ≥1 m per decade, and rates are likely higher in the Philippines. The U.S. Gulf Coast observes the second highest frequency of both high-magnitude (≥5 m) and low-magnitude (≥1 m) surges. The BOB observes the most catastrophic surge impacts, as 59% of global tropical cyclones that have killed at least 5000 people occurred in this basin. The six deadliest cyclones in this region have each killed at least 140,000 people, and two events have killed 300,000. Storm surge impacts transportation, agriculture, and energy sectors in the WNA. Oceania experiences long-term impacts, including contamination of fresh water and loss of food supplies, although the highest surges in this region are lower than most other basins.

  17. Storm surges formation in the White and Barents Seas

    NASA Astrophysics Data System (ADS)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav

    2016-04-01

    Investigation of storm surges in the Arctic seas are of high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the safety of navigation. It is important to study the variability of surges, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. Surges in the White and Barents Seas are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and western. The average height of the storm surges in the White Sea is 0.6-0.9 m. An average duration of storm surges is about 80 hours. Mathematical modeling is used to analyze the characteristics of storm surges formation in the Dvina Bay of the White Sea, and in the Varandey village on the Barents Sea coast. Calculating storm surge heights in the White and Barents seas is performed using the ADCIRC model on an unstructured grid with a step from 20 km in the Barents Sea to 100 m in the White Sea. Unstructured grids allowed keeping small features of the coastline of the White and Barents seas, small islands and shallow banks, and assessing their impact on the development and transformation of wind-generated waves. The ADCIRC model used data of wind field reanalysis CFSv2. The storm surges were simulated for the time period from 1979 to 2010 and included scenarios with / without direct atmospheric pressure forcing, waves and tides. Numerical experiments have revealed distribution of storm surges in channels of the Northern Dvina River delta. The storm surges spreads in the model from the north-north-west of the Dvina Bay. As storm surge moves from the wellhead to the seaside estuary of the Northern Dvina (district Solombala), its height increases from 0.5 to 2 m. We also found a non-linear interaction of the surge and tide during the phase of surge destruction. This phenomenon is the highest in the period of low water, and the smallest in the period full of water. Analysis of storm surges in the Varandey village (the southern part of the Barents Sea) showed that the maximum height of storm surge reached 2.9 m in this region in July, 2010. The work performed was supported by the RSCF (grant № 14-37-00038)

  18. Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lamont, Peter A.; Gage, John D.

    2000-01-01

    Morphological adaptation to low dissolved oxygen consisting of enlarged respiratory surface area is described in polychaete species belonging to the family Spionidae from the Oman margin where the oxygen minimum zone impinges on the continental slope. Similar adaptation is suggested for species in the family Cossuridae. Such morphological adaptation apparently has not been previously recorded among polychaetes living in hypoxic conditions. The response consists of enlargement in size and branching of the branchiae relative to similar species living in normal levels of dissolved oxygen. Specimens were examined in benthic samples from different depths along a transect through the oxygen minimum zone. There was a highly significant trend shown to increasing respiratory area relative to body size in two undescribed spionid species with decreasing depth and oxygen within the OMZ. Yet the size and number of branchiae are often used as taxonomic characters. These within-species differences in size and number of branchiae may be a direct response by the phenotype to intensity of hypoxia. The alternative explanations are that they either reflect a pattern of differential post-settlement selection among a highly variable genotype, or represent early genetic differentiation among depth-isolated sub-populations.

  19. AGT100 turbomachinery. [for automobiles

    NASA Technical Reports Server (NTRS)

    Tipton, D. L.; Mckain, T. F.

    1982-01-01

    High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.

  20. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  1. Effect of hurricane paths on storm surge response at Tianjin, China

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Yin, Baoshu; Yang, Dezhou

    2012-06-01

    A hurricane induced storm surge simulation system was developed for Tianjin coast, which consists of a hurricane model and a storm surge model. The peak storm surge result of the simulation agreed well with that of the observation. Three observed paths (Rita, Mimie and WINNIE) and a hypothetical path (Rita2) were chosen as the selective hurricane paths according to their positions relative to Tianjin. The sensitivity of Tianjin storm surge to the four paths was investigated using the validated storm surge simulation system. Three groups of experiments were done. In group one, the models were forced by the wind field and air pressure; in group two and three the models were forced by the wind only and the air pressure only respectively. In the experiments, the hurricane moved with a fixed speed and an intensity of 50 year return period. The simulation results show that path of the type Rita2 is the easiest to cause storm surge disaster in Tianjin, and the effect of air pressure forcing is most evident for path of the type Rita in Tianjin storm surge process. The above conclusions were analyzed through the evolution of the wind fields and the air pressure distributions. Comparing the experiment results of Group one, two and three, it can be seen that the storm surge is mainly induced by the wind forcing and the nonlinear interaction between the effect of wind forcing and air pressure forcing on the storm surge tends to weaken the storm surge.

  2. Hα Surges Initiated by Newly-emerging Satellite Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Jun-feng; Zhou, Tuan-hui; Ji, Hai-sheng

    2014-01-01

    On July 22, 2011 and in the active region NOAA 11259 there ap- peared the event of the ejection of solar atmospheric Hα surges. According to the full-disc Hα observations of the Big Bear Solar Observatory in United States, three consecutive surges at one and the same place in the north of the main spot of the active region were discovered. The trajectories of these three surges exhib- ited the figure of straight lines, and their integral configuration is like an inverted Eiffel Tower. The first two surges are quite similar, and in each of them there appeared two bright points in the northern part of the main spot. After several minutes, the surges appeared in the midst of bright points. When the bright- ness of the bright points attained the maximum value, the surges spouted out from the midst of bright points. And after reaching the maximum altitude, they quickly vanished. Before the ejection of the third surge took place, no bright points appeared. Besides, its maximal altitude is merely one half of that of the first two surges. Via a comparison with the SDO/HMI (Solar Dynamics Obser- vatory/Helioseismic and Magnetic Imager) data of radial magnetic fields, it is found that in more than one hour before the appearance of the first surge there emerged bipolar magnetic fields in the region of ejection. Besides, in several min- utes before the ejection of each Hα surge the magnetic fluxes of positive polarity diminished. Via our analysis it is found that there appeared reconnections be- tween the newly emerging satellite magnetic fields and the preexisting magnetic fields in the spot, and this caused the continuous ejections of Hα surges.

  3. Comparison of two recent storm surge events based on results of field surveys

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  4. Brief communication: The Khurdopin glacier surge revisited - extreme flow velocities and formation of a dammed lake in 2017

    NASA Astrophysics Data System (ADS)

    Steiner, Jakob F.; Kraaijenbrink, Philip D. A.; Jiduc, Sergiu G.; Immerzeel, Walter W.

    2018-01-01

    Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually led to a rapid surge in May 2017 peaking with velocities above 5000 m a-1, which were among the fastest rates globally for a mountain glacier. Our data reveal that velocities on the lower tongue increase steadily during a 4-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at ca. 20 years. We show the potential of a combination of repeat Planet and ASTER imagery to (a) capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b) observe surface changes that indicate potential drivers of a surge and (c) monitor hazards associated with a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in the case of a sudden breach.

  5. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    USGS Publications Warehouse

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys. ?? 1989 Springer-Verlag.

  6. Hurricane Katrina storm surge distribution and field observations on the Mississippi Barrier Islands

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Blount, Chris; Sokoloski, Robert; Singleton, Justin; Fuggle, Andrew; McAdoo, Brian G.; Moore, Andrew; Grass, Chad; Tate, Banks

    2007-08-01

    Hurricane Katrina (23-30 August 2005) struck low-lying coastal plains particularly vulnerable to storm surge flooding. Maximum storm surges, overland flow depths, and inundation distances were measured along the Gulf Coast of Florida, Alabama, Mississippi and Louisiana. The vehicle based survey was complemented by inspections with the reconnaissance boat along the Gulf Coast and the Mississippi Barrier Islands. The storm surge peaked to the East of Katrina's path exceeding 10 meters in several locations along the Mississippi coastline. The storm surge measurements show that the lower floors of specially designed buildings were damaged by the surge of seawater and associated wave action, while the upper floors sustained minimal wind damage. Furthermore, the storm surge measurements along New Orleans's Lake shore indicate that the 17th Street Canal levee failed prior to overtopping. The land loss on the barrier islands resulted in an increased vulnerability of the US Gulf Coast to future hurricane storm surges.

  7. Observing storm surges from space: Hurricane Igor off Newfoundland

    PubMed Central

    Han, Guoqi; Ma, Zhimin; Chen, Dake; deYoung, Brad; Chen, Nancy

    2012-01-01

    Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John's and Argentia are associated with free equatorward-propagating continental shelf waves (with a phase speed of ~10 m/s and a cross-shelf decaying scale of ~100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. PMID:23259048

  8. Efficacy of Cruise Control in controlling postocclusion surge with Legacy and Millennium venturi phacoemulsification machines.

    PubMed

    Wade, Matthew; Isom, Ryan; Georgescu, Dan; Olson, Randall J

    2007-06-01

    To determine the efficacy of the Cruise Control surge-limiting device (Staar Surgical) with phacoemulsification machines known to have high levels of surge. John A. Moran Eye Center Clinical Laboratories. In an in vitro study, postocclusion anterior chamber depth changes were measured in fresh phakic human eye-bank eyes using the Alcon Legacy and Bausch & Lomb Millennium venturi machines in conjunction with the Staar Cruise Control device. Both machines were tested with 19-gauge non-Aspiration Bypass System tips at high-surge settings (500 mm Hg vacuum pressure, 75 cm bottle height, 40 mL/min flow rate for the Legacy) and low-surge settings (400 mm Hg vacuum pressure, 125 cm bottle height, 40 mL/min flow rate for the Legacy). Adjusted parameters of flow, vacuum, and irrigation were used based on previous studies to create identical conditions for each device tested. The effect of the Cruise Control device on aspiration rates was also tested with both machines at the low-surge settings. At the high setting with the addition of Cruise Control, surge decreased significantly with the Legacy but was too large to measure with the Millennium venturi. At the low setting with the addition of Cruise Control, surge decreased significantly with both machines. Surge with the Millennium decreased from more than 1.0 mm to a mean of 0.21 mm +/- 0.02 (SD) (P<.0001). Surge with the Legacy decreased from a mean of 0.09 +/- 0.02 mm to 0.05 +/- 0 mm, a 42.9% decrease (P<.0001). The Millennium had the highest surge and aspiration rate before Cruise Control and the greatest percentage decrease in the surge and aspiration rates as a result of the addition of Cruise Control. In the Legacy machine, the Cruise Control device had a statistically and clinically significant effect. Cruise Control had a large effect on fluidics as well as surge amplitude with the Millennium machine. The greater the flow or greater the initial surge, the greater the impact of the Cruise Control device.

  9. Storm Surge and Tide Interaction: A Complete Paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model in the Bay of Bengal with tropical cyclones from the IBTrACs database; we demonstrate that - just as with the extra-tropical case - higher storm surges on the Bangladesh coastline are generated during smaller tides.

  10. Development of Dimensionless Surge Response Functions for Hazard Assessment at Panama City, Florida

    NASA Astrophysics Data System (ADS)

    Taylor, N. R.; Irish, J. L.; Hagen, S. C.; Kaihatu, J. M.; McLaughlin, P. W.

    2013-12-01

    Reliable and robust methods of extreme value analysis in hurricane surge forecasting are of high importance in the coastal engineering profession. The Joint Probability Method (JPM) has become the preferred statistical method over the Historical Surge Population (HSP) method, due to its ability to give more accurate surge predictions, as demonstrated by Irish et. al in 2011 (J. Geophys. Res.). One disadvantage to this method is its high computational cost; a single location can require hundreds of simulated storms, each needing one thousand computational hours or more to complete. One way of overcoming this issue is to use an interpolating function, called a surge response function, to reduce the required number of simulations to a manageable number. These sampling methods, which use physical scaling laws, have been shown to significantly reduce the number of simulated storms needed for application of the JPM method. In 2008, Irish et. al. (J. Phys. Oceanogr.) demonstrated that hurricane surge scales primarily as a function of storm size and intensity. Additionally, Song et. al. in 2012 (Nat. Hazards) has shown that surge response functions incorporating bathymetric variations yield highly accurate surge estimates along the Texas coastline. This study applies the Song. et. al. model to 73 stations along the open coast, and 273 stations within the bays, in Panama City, Florida. The model performs well for the open coast and bay areas; surge levels at most stations along the open coast were predicted with RMS errors below 0.40 meters, and R2 values at or above 0.80. The R2 values for surge response functions within bays were consistently at or above 0.75. Surge levels at most stations within the North Bay and East Bay were predicted with RMS errors below 0.40 meters; within the West Bay, surge was predicted with RMS errors below 0.52 meters. Accurately interpolating surge values along the Panama City coast and bays enables efficient use of the JPM model in order to develop reliable probabilistic surge estimates for use in planning and design for hurricane mitigation.

  11. Conductive surge testing of circuits and systems

    NASA Technical Reports Server (NTRS)

    Richman, P.

    1980-01-01

    Techniques are given for conductive surge testing of powered electronic equipment. The correct definitions of common and normal mode are presented. Testing requires not only spike-surge generators with a suitable range of open-circuit voltage and short-circuit current waveshapes, but also appropriate means, termed couplers, for connecting test surges to the equipment under test. Key among coupler design considerations is minimization of fail positives resulting from reduction in delivered surge energy due to the coupler. Back-filters and the lines on which they are necessary, are considered as well as ground-fault and ground potential rise. A method for monitoring delivered and resulting surge waves is mentioned.

  12. Compressor surge counter

    DOEpatents

    Castleberry, Kimberly N.

    1983-01-01

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  13. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    PubMed

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  14. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    PubMed Central

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  15. Application of short-data methods on extreme surge levels

    NASA Astrophysics Data System (ADS)

    Feng, X.

    2014-12-01

    Tropical cyclone-induced storm surges are among the most destructive natural hazards that impact the United States. Unfortunately for academic research, the available time series for extreme surge analysis are very short. The limited data introduces uncertainty and affects the accuracy of statistical analyses of extreme surge levels. This study deals with techniques applicable to data sets less than 20 years, including simulation modelling and methods based on the parameters of the parent distribution. The verified water levels from water gauges spread along the Southwest and Southeast Florida Coast, as well as the Florida Keys, are used in this study. Methods to calculate extreme storm surges are described and reviewed, including 'classical' methods based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD), and approaches designed specifically to deal with short data sets. Incorporating global-warming influence, the statistical analysis reveals enhanced extreme surge magnitudes and frequencies during warm years, while reduced levels of extreme surge activity are observed in the same study domain during cold years. Furthermore, a non-stationary GEV distribution is applied to predict the extreme surge levels with warming sea surface temperatures. The non-stationary GEV distribution indicates that with 1 Celsius degree warming in sea surface temperature from the baseline climate, the 100-year return surge level in Southwest and Southeast Florida will increase by up to 40 centimeters. The considered statistical approaches for extreme surge estimation based on short data sets will be valuable to coastal stakeholders, including urban planners, emergency managers, and the hurricane and storm surge forecasting and warning system.

  16. Risk Assessment of Hurricane Storm Surge for Tampa Bay

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2011-12-01

    Hurricane storm surge presents a major hazard for the United States and many other coastal areas around the world. Risk assessment of current and future hurricane storm surge provides the basis for risk mitigation and related decision making. This study investigates the hurricane surge risk for Tampa Bay, located on the central west coast of Florida. Although fewer storms have made landfall in the central west Florida than in regions farther west in the Gulf of Mexico and the east coast of U.S., Tampa Bay is highly vulnerable to storm surge due to its geophysical features. It is surrounded by low-lying lands, much of which may be inundated by a storm tide of 6 m. Also, edge waves trapped on the west Florida shelf can propagate along the coastline and affect the sea level outside the area of a forced storm surge; Tampa Bay may be affected by storms traversing some distance outside the Bay. Moreover, when the propagation speed of the edge wave is close to that of a storm moving parallel to the coast, resonance may occur and the water elevation in the Bay may be greatly enhanced. Therefore, Tampa Bay is vulnerable to storms with a broad spectrum of characteristics. We apply a model-based risk assessment method to carry out the investigation. To estimate the current surge risk, we apply a statistical/deterministic hurricane model to generate a set of 1500 storms for the Tampa area, under the observed current climate (represented by 1981-2000 statistics) estimated from the NCAR/NCEP reanalysis. To study the effect of climate change, we use four climate models, CNRM-CM3, ECHAM, GFDL-CM2.0, and MIROC3.2, respectively, to drive the hurricane model to generate four sets of 1500 Tampa storms under current climate conditions (represented by 1981-2000 statistics) and another four under future climate conditions of the IPCC-AR4 A1B emission scenario (represented by 2081-2100 statistics). Then, we apply two hydrodynamic models, the Advanced Circulation (ADCIRC) model and the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model with grids of various resolutions to simulate the surges induced by the synthetic storms. The surge risk under each of the climate scenarios is depicted by a surge return level curve (exceedance probability curve). For the city of Tampa, the heights of the 100-year, 500-year, and 1000-year surges under the current climate are estimated to be 3.85, 5.66, and 6.31 m, respectively. Two of the four climate models predict that surge return periods will be significantly shortened in the future climates due to the change of storm climatology; the current 100-year surge may happen every 50 years or less, the 500-year surge every 200 years or less, and the 1000-year surge every 300 years or less. The other two climate models predict that the surge return periods will become moderately shorter or remain almost unchanged in the future climates. Extreme surges up to 12 m at Tampa appear in our simulations. Although occurring with very small probabilities, these extreme surges would have a devastating impact on the Tampa Bay area. By examining the generated synthetic surge database, we study the characteristics of the extreme storms at Tampa Bay, especially for the storms that may interact with edge waves along the Florida west coast.

  17. Noninvasive treatment of keloid using customized Re-188 skin patch.

    PubMed

    Bhusari, Priya; Shukla, Jaya; Kumar, Munish; Vatsa, Rakhee; Chhabra, Anupriya; Palarwar, Kanchan; Rathore, Yogesh; De, Dipanker; Kumaran, Sendhil; Handa, Sanjeev; Mittal, B R

    2017-09-01

    Keloids are developed as fibrotic scar at the site of surgery or trauma and often enlarge beyond the original scar margins. Re-188 colloid coated customized patch was superficially fixed onto the lesion for 3 hrs. The same patch was reapplied on the lesion on third day for 3 hrs. The patients were followed up at 1, 3,6 and 12 months post treatment. The size and elevation of the keloid lesion was reduced after treatment. The total radiation dose from the patch (day-1 and day-3) was 100 Gy/mCi of Re-188. The radioactive patch treatment of keloids is noninvasive, painless and safe with prolonged outcome. © 2017 Wiley Periodicals, Inc.

  18. Reliability of light microscopy and a computer-assisted replica measurement technique for evaluating the fit of dental copings.

    PubMed

    Rudolph, Heike; Ostertag, Silke; Ostertag, Michael; Walter, Michael H; Luthardt, Ralph Gunnar; Kuhn, Katharina

    2018-02-01

    The aim of this in vitro study was to assess the reliability of two measurement systems for evaluating the marginal and internal fit of dental copings. Sixteen CAD/CAM titanium copings were produced for a prepared maxillary canine. To modify the CAD surface model using different parameters (data density; enlargement in different directions), varying fit was created. Five light-body silicone replicas representing the gap between the canine and the coping were made for each coping and for each measurement method: (1) light microscopy measurements (LMMs); and (2) computer-assisted measurements (CASMs) using an optical digitizing system. Two investigators independently measured the marginal and internal fit using both methods. The inter-rater reliability [intraclass correlation coefficient (ICC)] and agreement [Bland-Altman (bias) analyses]: mean of the differences (bias) between two measurements [the closer to zero the mean (bias) is, the higher the agreement between the two measurements] were calculated for several measurement points (marginal-distal, marginal-buccal, axial-buccal, incisal). For the LMM technique, one investigator repeated the measurements to determine repeatability (intra-rater reliability and agreement). For inter-rater reliability, the ICC was 0.848-0.998 for LMMs and 0.945-0.999 for CASMs, depending on the measurement point. Bland-Altman bias was -15.7 to 3.5 μm for LMMs and -3.0 to 1.9 μm for CASMs. For LMMs, the marginal-distal and marginal-buccal measurement points showed the lowest ICC (0.848/0.978) and the highest bias (-15.7 μm/-7.6 μm). With the intra-rater reliability and agreement (repeatability) for LMMs, the ICC was 0.970-0.998 and bias was -1.3 to 2.3 μm. LMMs showed lower interrater reliability and agreement at the marginal measurement points than CASMs, which indicates a more subjective influence with LMMs at these measurement points. The values, however, were still clinically acceptable. LMMs showed very high intra-rater reliability and agreement for all measurement points, indicating high repeatability.

  19. Reliability of light microscopy and a computer-assisted replica measurement technique for evaluating the fit of dental copings

    PubMed Central

    Rudolph, Heike; Ostertag, Silke; Ostertag, Michael; Walter, Michael H.; LUTHARDT, Ralph Gunnar; Kuhn, Katharina

    2018-01-01

    Abstract The aim of this in vitro study was to assess the reliability of two measurement systems for evaluating the marginal and internal fit of dental copings. Material and Methods Sixteen CAD/CAM titanium copings were produced for a prepared maxillary canine. To modify the CAD surface model using different parameters (data density; enlargement in different directions), varying fit was created. Five light-body silicone replicas representing the gap between the canine and the coping were made for each coping and for each measurement method: (1) light microscopy measurements (LMMs); and (2) computer-assisted measurements (CASMs) using an optical digitizing system. Two investigators independently measured the marginal and internal fit using both methods. The inter-rater reliability [intraclass correlation coefficient (ICC)] and agreement [Bland-Altman (bias) analyses]: mean of the differences (bias) between two measurements [the closer to zero the mean (bias) is, the higher the agreement between the two measurements] were calculated for several measurement points (marginal-distal, marginal-buccal, axial-buccal, incisal). For the LMM technique, one investigator repeated the measurements to determine repeatability (intra-rater reliability and agreement). Results For inter-rater reliability, the ICC was 0.848-0.998 for LMMs and 0.945-0.999 for CASMs, depending on the measurement point. Bland-Altman bias was −15.7 to 3.5 μm for LMMs and −3.0 to 1.9 μm for CASMs. For LMMs, the marginal-distal and marginal-buccal measurement points showed the lowest ICC (0.848/0.978) and the highest bias (-15.7 μm/-7.6 μm). With the intra-rater reliability and agreement (repeatability) for LMMs, the ICC was 0.970-0.998 and bias was −1.3 to 2.3 μm. Conclusion LMMs showed lower interrater reliability and agreement at the marginal measurement points than CASMs, which indicates a more subjective influence with LMMs at these measurement points. The values, however, were still clinically acceptable. LMMs showed very high intra-rater reliability and agreement for all measurement points, indicating high repeatability. PMID:29412364

  20. Incentives and pharmaceutical reimbursement reforms in Spain.

    PubMed

    Puig-Junoy, Jaume

    2004-02-01

    The aim of this paper is to assess whether cost containment has been affected by recent pharmaceutical reimbursement reforms that have been introduced in the Spanish health care system over the period 1996-2002, under the conservative Popular Party Government. Four main reimbursement policies can be observed in the Spanish pharmaceutical market after 1996, each of them largely unintegrated with the other three. First, a second supplementary negative list of excluded pharmaceutical products was introduced in 1998. Second, a reference pricing (RP) system was introduced in December 2000, with annual updating and enlargement. Third, the pharmacies' payment system has moved from the traditional set margin on the consumer price to a margin that varies according to the consumer price of the product, the generic status of the product, and the volume of sales by pharmacies. And fourth, general agreements between the government and the industry have been reached with cost containment objectives. In the final section of this paper, we present an overall assessment of the impact of these pharmaceutical reimbursement policies on the behaviour of the agents in the pharmaceutical market.

  1. 48 CFR 252.217-7001 - Surge option.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Surge option. 252.217-7001... Clauses 252.217-7001 Surge option. As prescribed in 217.208-70(b), use the following clause: Surge Option (AUG 1992) (a) General. The Government has the option to— (1) Increase the quantity of supplies or...

  2. 30 CFR 57.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... NONMETAL MINES Materials Storage and Handling § 57.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled...

  3. 30 CFR 56.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... MINES Materials Storage and Handling § 56.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled or...

  4. Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle

    Science.gov Websites

    Charging Idaho Surges Ahead with Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle Charging on Twitter Bookmark

  5. Storm Surges. Teacher Guide and Activity Book. OEAGLS Investigation No. 25.

    ERIC Educational Resources Information Center

    Keir, John; Mayer, Victor J.

    This investigation is designed to help students understand storm surges on Lake Erie. Activity A includes experiments and discussions intended to help students understand what causes storm surges on Lake Erie. Activity B considers how storm surges affect water levels and, in turn, coastal areas. The student booklet contains questions, experiments,…

  6. Storm Surge Measurement with an Airborne Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Krabill, W. B.; Shaffer, W. A.; Baig, S. R.; Peng, M.; Pietrafesa, L. J.; Garcia, A. W.; Marks, F. D., Jr.; Black, P. G.; hide

    2008-01-01

    Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.

  7. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    NASA Astrophysics Data System (ADS)

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  8. Entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, K.R.; Elinson, R.P.

    1988-05-01

    The body plan of Xenopus laevis can be respecified by briefly exposing early cleavage stage embryos to lithium. Such embryos develop exaggerated dorsoanterior structures such as a radial eye and cement gland. In this paper, we demonstrate that the enhanced dorsoanterior phenotype results from an overcommitment of mesoderm to dorsoanterior mesoderm. Histological and immunohistochemical observations reveal that the embryos have a greatly enlarged notochord with very little muscle tissue. In addition, they develop a radial, beating heart, suggesting that lithium also specifies anterior mesoderm and pharyngeal endoderm. Randomly oriented diametrically opposed marginal zone grafts from lithium-treated embryos, when transplanted intomore » ultraviolet (uv)-irradiated axis-deficient hosts, rescue dorsal axial structures. These transplantation experiments demonstrate that the entire marginal zone of the early gastrula consists of presumptive dorsal mesoderm. Vital dye marking experiments also indicate that the entire marginal zone maps to the prominent proboscis that is composed of chordamesoderm and represents the long axis of the embryo. These results suggest that lithium respecifies the mesoderm of Xenopus laevis embryos so that it differentiates into the Spemann organizer. We suggest that the origin of the dorsoanterior enhanced phenotypes generated by lithium and the dorsoanterior deficient phenotypes generated by uv irradiation are due to relative quantities of organizer. Our evidence demonstrates the existence of a continuum of body plan phenotypes based on this premise.« less

  9. Analysis of multiple positive feedback paradigms demonstrates a complete absence of LH surges and GnRH activation in mice lacking kisspeptin signaling.

    PubMed

    Dror, Tal; Franks, Jennifer; Kauffman, Alexander S

    2013-06-01

    Kisspeptin stimulates gonadotropin-releasing hormone (GnRH) neurons via the kisspeptin receptor, Kiss1r. In rodents, estrogen-responsive kisspeptin neurons in the rostral hypothalamus have been postulated to mediate estrogen-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. However, conflicting evidence exists regarding the ability of mice lacking Kiss1r to display LH surges in response to exogenous hormones. Whether the discrepancy reflects different mouse strains used and/or utilization of different surge-induction paradigms is unknown. Here, we tested multiple hormonal paradigms in one Kiss1r knockout (KO) model to see which paradigms, if any, could generate circadian-timed LH surges. Kiss1r KO and wild-type (WT) females were ovariectomized, given sex steroids in various modes, and assessed several days later for LH levels in the morning or evening (when surges occur). Serum LH levels were very low in all morning animals, regardless of genotype or hormonal paradigm. In each paradigm, virtually all WT females displayed clear LH surges in the evening, whereas none of the KO females demonstrated LH surges. The lack of LH surges in KO mice reflects a lack of GnRH secretion rather than diminished pituitary responsiveness from a lifetime lack of GnRH exposure because KO mice responded to GnRH priming with robust LH secretion. Moreover, high cfos-GnRH coexpression was detected in WT females in the evening, whereas low cfos-GnRH coexpression was present in KO females at all time points. Our findings conclusively demonstrate that WT females consistently display LH surges under multiple hormonal paradigms, whereas Kiss1r KO mice do not, indicating that kisspeptin-Kiss1r signaling is mandatory for GnRH/LH surge induction.

  10. Spatial distribution of erosion and deposition during a glacier surge: Brúarjökull, Iceland

    NASA Astrophysics Data System (ADS)

    Korsgaard, Niels J.; Schomacker, Anders; Benediktsson, Ívar Örn; Larsen, Nicolaj K.; Ingólfsson, Ólafur; Kjær, Kurt H.

    2015-12-01

    Time-series of digital elevation models (DEMs) of the forefield of the Brúarjökull surge-type glacier in Iceland were used to quantify the volume of material that was mobilized by the 1963-1964 surge. The DEMs were produced by stereophotogrammetry on aerial photographs from before the surge (1961) and after (1988 and 2003). The analysis was performed on two DEMs of Difference (DoDs), i.e., a 1961-2003 DoD documenting the impact of the surge and a 1988-2003 DoD documenting the post-surge modification of the juvenile surging glacier landsystem. Combined with a digital geomorphological map, the DoDs allow us to quantify the impact of the surge on a landsystem scale down to individual landforms. A total of 34.2 ± 11.3 × 106 m3 of material was mobilized in the 30.7-km2 study area as a result of the most recent surge event. Of these, 17.4 ± 6.6 × 106 m3 of the material were eroded and 16.8 ± 4.7 × 106 m3 were deposited. More than half of the deposited volume was ice-cored landforms. This study demonstrates that although the total mobilized mass volume is high, the net volume gain of ice and sediment deposited as landforms in the forefield caused by the surge is low. Furthermore, deposition of new dead-ice from the 1963-1964 surge constitutes as much as 64% of the volume gain in the forefield. The 1988-2003 DoD is used to quantify the melt-out of this dead-ice and other paraglacial modification of the recently deglaciated forefield of Brúarjökull.

  11. Improvements of Storm Surge Modelling in the Gulf of Venice with Satellite Data: The ESA Due Esurge-Venice Project

    NASA Astrophysics Data System (ADS)

    De Biasio, F.; Bajo, M.; Vignudelli, S.; Papa, A.; della Valle, A.; Umgiesser, G.; Donlon, C.; Zecchetto, S.

    2016-08-01

    Among the most detrimental natural phenomena, storm surges heavily endanger the environment, the economy and the everyday life of sea-side countries and coastal zones. Considering that 120.000.000 people live in the Mediterranean area, with additional 200.000.000 presences in Summer for tourism purposes, the correct prediction of storm surges is crucial to avoid fatalities and economic losses. Earth Observation (EO) can play an important role in operational storm surge forecasting, yet it is not widely diffused in the storm surge community. In 2011 the European Space Agency (ESA), through its Data User Element (DUE) programme, financed two projects aimed at encouraging the uptake of EO data in this sector: eSurge and eSurge-Venice (eSV). The former was intended to address the issues of a wider users' community, while the latter was focused on a restricted geographical area: the northern Adriatic Sea and the Gulf of Venice. Among the objectives of the two projects there were a number of storm surge hindcast experiments using satellite data, to demonstrate the improvements on the surge forecast brought by EO. We report here the results of the hindcast experiments of the eSV project. They were aimed to test the sensitivity of a storm surge model to a forcing wind field modified with scatterometer data in order to reduce the bias between simulated and observed winds. Hindcast experiments were also performed to test the response of the storm surge model to the assimilation, with a dual 4D-Var system, of satellite altimetry observations as model errors of the initial state of the sea surface level. Remarkable improvements on the storm surge forecast have been obtained for what concerns the modified model wind forcing. Encouraging results have been obtained also in the assimilation experiments.

  12. The “Ram Effect”: A “Non-Classical” Mechanism for Inducing LH Surges in Sheep

    PubMed Central

    Fabre-Nys, Claude; Chanvallon, Audrey; Dupont, Joëlle; Lardic, Lionel; Lomet, Didier; Martinet, Stéphanie; Scaramuzzi, Rex J.

    2016-01-01

    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the “ram effect” in ewes that had a “precocious” LH surge (starting within 6 hours), a “normal” surge (between 6 and 28h) and “late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. “Precocious” LH surges were not preceded by a large increase in E2 unlike “normal” surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the “precocious” LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the “ram effect”. Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators. PMID:27384667

  13. Extreme Storm Surges in the North Sea

    NASA Astrophysics Data System (ADS)

    Goennert, G.; Buß, Th.; Mueller, O.; Thumm, S.

    2009-04-01

    Extreme Storm Surges in the North Sea Gabriele Gönnert, Olaf Müller, Thomas Buß and Sigrid Thumm Climate Change will cause a rise of the sea level and probably more frequent and more violent storm surges. This has serious consequences for the safety of people as well as for their values and assets behind the dikes. It is therefore inevitable to first assess how sea level rise and an extreme storm surge event designes. In a second step it is possible to determine the risk for specific locations and develop strategies. The Project XtremRisk - Extreme Storm Surges at the North Sea Coast and in Estuaries. Risk calculation and risk strategies, funded by the German Federal Government will help answering these questions. The „Source-Pathway-Receptor" Concept will be used as a basis for risk analysis and development of new strategies. The Project offers methods to assess the development of extreme events under the conditions of today. Under conditions reflecting the climate change it will be tried to design an extreme event. For these three main points will be considered: a) Analysis and calculation of each factor, which produce a storm surge and its maximum level occurring in the last 100 years. These are: - maximum surge level: surge (due to the wind), - influence of the tide and the interaction between surge and tide, - influence of external surges , b) The hydrodynamics of a storm surge cause nonlinear effects in the interaction of the named factors. These factors and effects will both be taken into account to calculate the magnitude of the extreme storm surge. This step is very complex and need additional examination by numerical models. c) Analysis of the different scenarios to mean sea level rise and to the increase of wind speed due to the climate change. The presentation will introduce methods and show first results of the analysis of extreme events and the mean sea level rise.

  14. Association of morning blood pressure surge with carotid intima-media thickness and cardiac dysfunction in patients with cardiac syndrome-X.

    PubMed

    Mahfouz, Ragab A; Goda, Mohammad; Galal, Islam; Ghareb, Mohamed S

    2018-05-23

    Background & hypothesis: We hypothesized that exaggerated morning blood pressure surge, may contribute in cardiac dysfunction and arterial stiffness in patients with cardiac syndrome X. Thus we investigated the impact of morning blood pressure surge on cardiac function and carotid intima-media thickness in subjects with cardiac syndrome X. We studied patients with cardiac syndrome X using ambulatory blood pressure monitoring and investigated the association of morning blood pressure surge with carotid intima thickness, left atrial volume index and left ventricular filling (E/e'). Seventy patients with cardiac syndrome X were enrolled for the study and compared with 70 age and sex matched controls. Patients with cardiac syndrome X were stratified based on the systolic morning blood pressure surge value of control subjects to patients with exaggerated blood pressure surge (n = 42) and those with normal morning blood pressure surge (n = 28). Basal heart rate (p < .05), high sensitive C-reactive protein (p < .01), left atrial volume index (p < .01), E/e' (p < .01); carotid intima-media thickness (p < .001) and percentage of detected plaque (p < .005) were significantly higher in patients with exaggerated morning blood pressure surge group than those with morning blood pressure surge group. Morning blood pressure surge was significantly correlated with carotid intima-media thickness, high sensitive C-reactive protein, left atrial volume index and E/e' ratio in patients with cardiac syndrome X. In multivariate analysis, exaggerated morning blood pressure surge was the only independent predictor of increased carotid intima-media thickness (OR = 2.379; p < .001), and diastolic dysfunction (OR = 2.464; p < .001) in patients with cardiac syndrome X. Our data suggest that excessive morning blood pressure surge is an independent predictor for arterial stiffness and diastolic dysfunction in patients with cardiac syndrome X.

  15. Magnitude of Morning Surge in Blood Pressure Is Associated with Sympathetic but Not Cardiac Baroreflex Sensitivity

    PubMed Central

    Johnson, Aaron W.; Hissen, Sarah L.; Macefield, Vaughan G.; Brown, Rachael; Taylor, Chloe E.

    2016-01-01

    The ability of the arterial baroreflex to regulate blood pressure may influence the magnitude of the morning surge in blood pressure (MSBP). The aim was to investigate the relationships between sympathetic and cardiac baroreflex sensitivity (BRS) and the morning surge. Twenty-four hour ambulatory blood pressure was recorded in 14 young individuals. The morning surge was defined via the pre-awakening method, which is calculated as the difference between mean blood pressure values 2 h before and 2 h after rising from sleep. The mean systolic morning surge, diastolic morning surge, and morning surge in mean arterial pressures were 15 ± 2, 13 ± 1, and 11 ± 1 mmHg, respectively. During the laboratory protocol, continuous measurements of blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) were made over a 10-min period of rest. Sympathetic BRS was quantified by plotting MSNA burst incidence against diastolic pressure (sympathetic BRSinc), and by plotting total MSNA against diastolic pressure (sympathetic BRStotal). Cardiac BRS was quantified using the sequence method. The mean values for sympathetic BRSinc, sympathetic BRStotal and cardiac BRS were −1.26 ± 0.26 bursts/100 hb/mmHg, −1.60 ± 0.37 AU/beat/mmHg, and 13.1 ± 1.5 ms/mmHg respectively. Significant relationships were identified between sympathetic BRSinc and the diastolic morning surge (r = 0.62, p = 0.02) and the morning surge in mean arterial pressure (r = 0.57, p = 0.03). Low sympathetic BRS was associated with a larger morning surge in mean arterial and diastolic blood pressure. Trends for relationships were identified between sympathetic BRStotal and the diastolic morning surge (r = 0.52, p = 0.066) and the morning surge in mean arterial pressure (r = 0.48, p = 0.095) but these did not reach significance. There were no significant relationships between cardiac BRS and the morning surge. These findings indicate that the ability of the baroreflex to buffer increases in blood pressure via reflexive changes in MSNA may play a role in determining the magnitude of the MSBP. PMID:27660603

  16. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability analysis for flood risk analysis considering multiple flood producing mechanisms. This is the first step in applying a Monte Carlo based joint probability method for flood risk assessment.

  17. Storm surge and tide interaction: a complete paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, Kevin; Williams, Jane; Proctor, Robert

    2014-05-01

    Globally, 200 million people live on coastal floodplains and about 1 trillion worth of assets lie within 1 metre of mean sea level. Any change in the statistics of flood frequency or severity would impact on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. This has been shown previously by analytical models but not as yet confirmed by fully non-linear models of the continental shelf. We present results from an operational model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are generally greater when tidal range is low. Our results contradict the absence of any such correlation observed in the complete record of UK tide gauge data. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that operational models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model in the Bay of Bengal with tropical cyclones from the IBTrACs database; we demonstrate that - just as with the extra-tropical case - higher storm surges on the Bangladesh coastline are generated during smaller tides.

  18. Identifying surging glaciers in the Central Karakoram for improved climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Bolch, Tobias; Mölg, Nico; Rastner, Philipp

    2015-04-01

    Several recent studies have investigated glacier changes in the Karakoram mountain range, a region where glaciers behave differently (mass gain and advancing tongues) compared to most other regions in the world. Attribution of this behaviour to climate change is challenging, as many glaciers in the Karakoram are of surge type and have actively surged in the recent past. The measured changes in length, area, volume or velocity in this region are thus depending on the time-period analysed and include non-climatic components. Hence, a proper analysis of climate change impacts on glaciers in this region requires a separation of the surging from the non-surging glaciers. This is challenging as the former often lack the typical surface characteristics such as looped moraines (e.g. when they are steep and small) and/or they merge (during a surge) with a larger non-surging glacier and create looped moraines on its surface. By analysing time series of satellite images that are available since 1961, the heterogeneous behaviour of glaciers in the Karakoram can be revealed. In this study, we have analysed changes in glacier terminus positions in the Karakoram over different time periods from 1961 to 2014 for several hundred glaciers using Corona KH-4 and KH-4B, Hexagon KH-9, Terra ASTER, and Landsat MSS, TM, ETM+ and OLI satellite data. For the last 15 years, high-speed animations of image time-series reveal details of glacier flow and surge dynamics that are otherwise difficult to detect. For example, several of the larger glaciers with surging tributaries (e.g. Panmah, Sarpo Laggo, Skamri, K2 glacier) are stationary and downwasting despite the mass contributions from the surging glaciers. The analysis of the entire time series reveals a complex pattern of changes through time with retreating, advancing, surging and stationary glaciers that are partly regionally clustered. While most of the non-surging glaciers show only small changes in terminus position (±100 m or less) over the analysed time period, length changes of surging glaciers can exceed several kilometres with a continuum of advance rates and surge durations (from 2 to >10 years). Their highly variable extents have thus to be considered when glacier-specific volume changes and flow velocities are calculated. In the presentation we will show our revised assignment of surging glaciers, their changing extents through time along with an analysis of their variable advance rates, and a spatio-temporal overview of glacier changes over the past 50 years.

  19. Cyclic steps due to the surge-type turbidity currents in flume experiments: effect of surge duration on the topography of steps

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamano, Junpei; Miyai, Masatomo; Hughes Clarke, John; Izumi, Norihiro

    2017-04-01

    Field observations of turbidity currents and seabed topography on the Squamish delta in British Columbia, Canada revealed that cyclic steps formed by the surge-type turbidity currents (e.g., Hughes Clarke et al., 2014). The high-density portion of the flow, which affects the sea floor morphology, lasted only 30-60 seconds. We are doing flume experiments aiming to investigate the relationship between the condition of surges and topography of resultant steps. In this presentation, we are going to discuss about the effect of surge duration on the topography of steps. The experiments have been performed at Osaka Institute of Technology. A flume, which is 7.0 m long, 0.3 m deep and 2 cm wide, was suspended in a larger tank, which is 7.6 m long, 1.2 m deep and 0.3 m wide, filled with water. The inner flume tilted at 7 degrees. As a source of turbidity currents, mixture of salt water (1.17 g/cm^3) and plastic particles (1.3 g/cm^3, 0.1-0.18 mm in diameter) was prepared. The concentration of the sediments was 6.1 weight % (5.5 volume %) in the head tank. This mixture of salt water and plastic particles poured into the upstream end of the inner flume from head tank for 3 seconds or 7 seconds. 140 surges were made respectively. Discharge of the currents were fluctuated but range from 306 to 870 mL for 3s-surge, and from 1134 to 2030 mL for 7s-surge. As a result, five or six steps were formed respectively. At the case of 3s-surge, steps located at upstream portion of the flume moved vigorously toward upstream direction, whereas steps at downstream portion of the flume moved toward upstream direction at the case of 7s-surge. The wavelengths and wave heights of the steps by 3s-surge are larger than those of 7s-surge at the upstream portion of the flume, but the size of steps of 3s-surge are smaller than those of 7s-surge at the downstream portion of the flume. In this condition of slope and concentration, the longer surge duration, i.e. larger discharge of the current transports the sediment further and makes the steps larger and active at the further location from the source of the currents.

  20. 30 CFR 77.209 - Surge and storage piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...

  1. 30 CFR 77.209 - Surge and storage piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...

  2. The Response of Extreme Precipitation to Climate Change in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Pascale, S.; Bordoni, S.; Kapnick, S. B.; Delworth, T. L.; Murakami, H.

    2017-12-01

    Gulf of California moisture surges (GoC surges) transport lower-level moisture in the southwestern United States and can trigger widespread convective bursts during the summertime North American monsoon (NAM). The intensity of such bursts varies over a wide spectrum, going from drier-than-average to extremely intense and persisting events. In this study we use a 50 km-horizontal resolution global coupled model (FLOR) developed at the NOAA Geophysical Fluid Dynamics Laboratory and featuring a realistic simulation of the GoC surges. We evaluate the model's ability to reproduce the intensity of precipitation during GoC surge and non-surge periods in present and doubled CO2 climatic conditions. We find that the mean number of GoC surge events per monsoon season (i.e., approximately 15) is not significantly affected by CO2 forcing. Nevertheless, when SST biases are minimized through flux adjustment, FLOR predicts a reduction in monsoonal precipitation over the southwestern United States. Our simulations further suggest that surge-related rainfall adjusts towards lower and higher percentiles, while becoming less important at intermediate values. Convective precipitation not occurring during GoC surges is instead not coherently affected by doubled CO2. Finally, the influence of CO2 forcing on the large-scale drivers of monsoonal precipitation during GoC surge events, such as the position of the monsoonal ridge, is investigated and related to precipitation changes.

  3. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  4. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  5. Mapping Dependence Between Extreme Rainfall and Storm Surge

    NASA Astrophysics Data System (ADS)

    Wu, Wenyan; McInnes, Kathleen; O'Grady, Julian; Hoeke, Ron; Leonard, Michael; Westra, Seth

    2018-04-01

    Dependence between extreme storm surge and rainfall can have significant implications for flood risk in coastal and estuarine regions. To supplement limited observational records, we use reanalysis surge data from a hydrodynamic model as the basis for dependence mapping, providing information at a resolution of approximately 30 km along the Australian coastline. We evaluated this approach by comparing the dependence estimates from modeled surge to that calculated using historical surge records from 79 tide gauges around Australia. The results show reasonable agreement between the two sets of dependence values, with the exception of lower seasonal variation in the modeled dependence values compared to the observed data, especially at locations where there are multiple processes driving extreme storm surge. This is due to the combined impact of local bathymetry as well as the resolution of the hydrodynamic model and its meteorological inputs. Meteorological drivers were also investigated for different combinations of extreme rainfall and surge—namely rain-only, surge-only, and coincident extremes—finding that different synoptic patterns are responsible for each combination. The ability to supplement observational records with high-resolution modeled surge data enables a much more precise quantification of dependence along the coastline, strengthening the physical basis for assessments of flood risk in coastal regions.

  6. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    NASA Astrophysics Data System (ADS)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  7. Centrifugal compressor controller for minimizing power consumption while avoiding surge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, P.F.; Junk, B.S.; Renaud, M.A.

    1987-08-18

    For use with a variable capacity centrifugal compressor driven by an electric motor, a controller is described for adjusting the capacity of the compressor to satisfy a demand, minimize electric power consumption and avoid a surge condition. The controller consists of: a. means for sensing an operating parameter that is indicative of the capacity of the compressor; b. means for setting a selected setpoint that represents a desired value of the operating parameter; c. surge sensing means for detecting an impending surge by sensing fluctuation in the electric current supplied to the compressor motor, wherein an impending surge is detectedmore » whenever fluctuations in excess of a predetermined amplitude occur in excess of a predetermined frequency; and d. control means, responsive to the operating parameter sensing means, the setpoint setting means, and the surge sensing means, for controlling the compressor, such that its capacity is minimally above a level that would cause a surge condition yet is sufficient to maintain the operating parameter at the setpoint.« less

  8. Geodetic measurements used to estimate ice transfer during Bering Glacier surge

    NASA Astrophysics Data System (ADS)

    Sauber, Jeanne; Plafker, George; Gipson, John

    The application of geodetic measurements to glacial research has found a new testing ground: near a surging Alaskan glacier. A set of geodetic measurements collected adjacent to the Bagley Icefield (Figure 1) and along the Gulf of Alaska (Figure 2) are being used to estimate the effects of the Bering Glacier surge that began in the spring of 1993. When ice is removed from a glacier's reservoir during a surge, its surface lowers by tens or hundreds of meters and ice is added to the receiving area, where it thickens and advances.The dramatic changes in a surging glacier's extent and thickness should result in elastic deformation of the solid Earth. At Bering Glacier, calculations show that ice transfer may have caused up to 17 cm of the solid Earth to subside. Although recent surges at the Bering and Variegated Glaciers have been well documented, little is known about most surges, particularly about what happens in the upper reaches of the glaciers.

  9. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  10. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    NASA Astrophysics Data System (ADS)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  11. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    NASA Astrophysics Data System (ADS)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is configured to take advantage of far-field information on developing tidal surges provided by tide gauges in NW Scotland (the 'external surge'), supported by observations of wind and atmospheric pressure and the predicted astronomical tide at Immingham. Missing data can cause problems with ANN models and a novel aspect of our implementation is the use of multiple redundant inputs (nearby tide gauges that experience a high degree of surge coherence) to synthesise a single external surge input. A similar approach is taken with meteorological forcings, creating an ANN that is resilient against data drop-outs within its input vector. The ANN generates 6 to 24 hour surge forecasts at Immingham with accuracy better than the present UK Storm Tide Warning Service. These can be used to cross-check national forecasts, generate more accurate estimates of likely flood depths, timings and durations and trigger planned responses to severe forecasts. Crucially, this capability can be 'owned' by the port operator, which encourages the development of a shared understanding of storm surge hazards and the challenges of port resilience planning between scientist and stakeholder.

  12. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  13. Storm surges in the White and Barents Seas: formation, statistics, analysis

    NASA Astrophysics Data System (ADS)

    Korablina, Anastasia; Arkhipkin, Victor

    2017-04-01

    Arctic seas storm surges investigation are high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the navigation safety. It is important to study the surges variability, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. White and Barents Seas storm surges are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and Atlantic from the west. The surge height was defined as the excess of the level that was obtained as the difference between the observed level and subtracting tide level and low-frequency level. The period of low-frequency level oscillation was determined by spectral analysis of the in-situ data. ADCIRC model is used for calculating the storm surge height. We did the calculations on unstructured grid with variable step from 50 to 5000 m. The ADCIRC model was based on the data on wind field, the sea level pressure, the concentration of ice reanalysis CFSR (1979-2010) in increments 0.3°, CFSv2 (2011-2015) in increments 0.2°. On the boundary conditions harmonic constants from Finite Element Solution tide model 2004 (FES2004) in increments 1/8° were set. The following stations on the coast Varandey, Pechora Bay, Chosha Bay, Severodvinsk, Onega, Solovki and other were selected for the storm surges statistical analysis in the period 1979-2015. The number of storm surges (> 0.3 m) long-term variability was obtained, the number of surges at a height (m) range (0.3-0.6, 0.6-0.9, 0.9-1.2, >1.2) was estimated. It shows that 1980 and 1998 are the years with the fewest number storms. For example, the largest number of storm surge (53) was observed in 1995 in Varandey. The height of the surge, possible only once in 100 years, is counted. This maximum height (m) of the surge was noted in Varandey (4.1), Chosha Bay (3.4), Barents Sea, Onega Bay (2.4), White Sea. Quantitative assessment of the pressure and wind contributing to the surge formation was made. The analysis has shown that the wind has a larger contribution (90%) to surge formation in the study area. The study was performed in the framework of the Russian Science Foundation (project 14-37-00038).

  14. Reassessing Storm Surge Risk for New York City (Invited)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2013-12-01

    New York City (NYC) is highly vulnerable to tropical cyclone (TC) storm surge flooding. In a previous study, we coupled a (reanalysis- or GCM-driven) hurricane model with hydrodynamic models to simulate large numbers of synthetic surge events under observed and projected climates and assess surge threat for NYC. The storm surge return levels under the current and future climates (IPCC AR4 A1B scenario) were obtained. The results showed that the distribution of surge levels may shift to higher values in the future by a magnitude comparable to the projected sea-level rise. The study focused on typical TCs that have a storm size of the climatological mean for the Atlantic Basin and pass within a 200-km radius of the Battery, NYC. In October 2012, Hurricane Sandy, a barely Category-1 storm that made landfall about 200-km southwest from the Battery, caused the highest surge flooding of the instrumental record (~3.5 m above the mean sea level or ~2.8 m surge over the high tide) at the Battery. The extreme surge was due to the fact that the storm was a 'hybrid' event, undergoing extensive extratropical transition when making landfall almost perpendicularly to the NJ coast with an unusually large size. Sandy's case calls for a reassessment of storm surge risk for NYC that account for the special features of the storms in this region. In this reassessment, we account for the effect of extratropical transition on the wind fields through improving the surface background wind estimation, which was assumed to be uniform for typical TCs, by developing a representation of the interaction between the highly localized potential vorticity anomaly of the TC and its environmental baroclinic fields. We account for the storm size variation through incorporating the full probability distribution of the size for the region. Our preliminary results show that estimated wind and surge return levels are much higher with the effect of extratropical transition. The effect of the storm size variation is relatively large in the upper tail of the surge distribution. Also, we will update the prediction for future climates using the IPCC AR5 RCP 8.5 and RCP 4.5 scenarios, and extend our focus area further south to capture storms that can induce high surges at the Battery, although making landfall relatively further away on the NJ coast. The results will be compared with those using the AR4 scenario in our previous study. The combined effects of storm climatology change and sea level rise on the risk of NYC surge flooding will be discussed.

  15. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2010-01-01

    A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation

  16. Circumferential resection margins and perineal complications after neoadjuvant long-course chemoradiotherapy followed by extralevator abdominoperineal excision of the rectum: Five years of activity at a single institution.

    PubMed

    Gravante, Gianpiero; Miah, Anur; Mann, Christopher D; Stephenson, James Andrews; Gani, Mohamed Akil Dilawar; Sharpe, David; Norwood, Michael; Boyle, Kirsten; Miller, Andrew; Hemingway, David

    2016-07-01

    Prone extralevator abdominoperineal excision of the rectum (ELAPE) has been introduced to improve the circumferential resection margins (CRM) compared with traditional APER. We present short-term results achieved with prone ELAPE preceded by neoadjuvant chemoradiotherapy during the last 5 years of activity. A retrospective review was conducted. Prone ELAPE operations performed between September 2010 and August 2014 at Leicester Royal Infirmary preceded by neoadjuvant chemoradiotherapy. Data regarding demographics, staging, neoadjuvant therapies, intraoperative perforations, and perineal complications were collected. Seventy-two patients were included. Pretreatment radiological T4 were 25.0%, histological T4 2.8%. Intraoperative perforations occurred in 2.8%, CRM was involved in 11.1%. Perineal complications consisted of superficial wound infections (20.8%), full thickness dehiscences (16.7%), hematomas (9.7%), pelvic collections (6.9%), and perineal hernias (5.6%). In our experience, prone ELAPE preceded by long-course chemoradiotherapy has been successfully used in the last 5 years to resect low rectal tumors. Perineal wound complications rates are similar to those presented in series using direct perineal closures. J. Surg. Oncol. 2016;114:86-90. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.

    2018-03-01

    Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.

  18. Numerical experiments of dynamical processes during the 2011-2013 surge of the Bering-Bagley Glacier System, using a full-Stokes finite element model

    NASA Astrophysics Data System (ADS)

    Trantow, Thomas

    The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the current model. Documentation of the effects that altering glaciological parameters and boundary conditions have on ice rheology in a large complex glacial system comes as secondary result. Simulations have yet to reveal any quasi-cyclic behavior or natural surge initiation.

  19. A new dynamical index for classification of cold surge types over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Jeong, Jee-Hoon; Heo, Jin-Woo; Deng, Yi

    2015-11-01

    The cold surges over East Asia can be classified into wave-train type and blocking type according to their dynamic origins. In the present study, two dynamic indices are proposed to objectively identify cold surge types using potential temperature ( θ) on the dynamic tropopause at 2-potential vorticity units (2-PVU) surface. The two indices are designed to represent primary characteristics of the two types of cold surge. The wave-train index ( WI) is defined as a difference of anomalous θ on the 2-PVU surface between the western North Pacific and northeast China, which captures a southward (northward) intrusion of cold (warm) air mass related to the trough-ridge pattern. The blocking index ( BI) is defined as a difference of anomalous θ between the subarctic region and northeast China, which indicates air mass overturning related to a reversal of the usual meridional θ gradient commonly observed in the occurrence of blocking type cold surge. Composite analyses based on the distribution of the WI and BI clearly demonstrate the dynamic evolutions of corresponding cold surge types. The wave-train cold surge is associated with a southeastward expansion of the Siberian High and northerly wind near surface, which is caused by growing baroclinic waves. During the blocking cold surge, a geopotential height dipole indicating the subarctic blocking and deepening of East Asian coastal trough induces a southward expansion of the Siberian High and northeasterly wind. Compared to the wave-train type, the blocking cold surge exhibits a longer duration and stronger intensity. In the new framework of these dynamic indices, we can detect a third type of cold surge when both the wave-train and the blocking occur together. In addition, we can exclude the events that do not have the essential features of the upper tropospheric disturbances or the subarctic anticyclonic circulation, which are responsible for cold surge occurrence, using the new indices.

  20. Long-term clinical impact of PSA surge in castration-resistant prostate cancer patients treated with abiraterone.

    PubMed

    Conteduca, Vincenza; Caffo, Orazio; Lolli, Cristian; Aieta, Michele; Scarpi, Emanuela; Bianchi, Emanuela; Maines, Francesca; Schepisi, Giuseppe; Salvi, Samanta; Massari, Francesco; Carrozza, Francesco; Veccia, Antonello; Chiuri, Vincenzo E; Campadelli, Enrico; Facchini, Gaetano; De Giorgi, Ugo

    2017-06-01

    Early changes in PSA have been evaluated in association to treatment outcome. The aim of this study was to assess PSA surge phenomenon in castration-resistant prostate cancer (CRPC) patients treated with abiraterone and to correlate those variations with long-term treatment outcome. We retrospectively evaluated 330 CRPC patients in 11 Italian hospitals, monitoring PSA levels at baseline and every 4 weeks. Other clinical, biochemical and molecular parameters were determined at baseline. We considered PSA surge as PSA increase within the first 8 weeks from starting abiraterone more than 1% from baseline followed by a PSA decline. The log-rank test was applied to compare survival between groups of patients according to PSA surge. The impact of PSA surge on survival was evaluated by Cox regression analyses. A total of 330 patients with CRPC, median age 74 years (range, 45-90), received abiraterone (281 chemotherapy-treated and 49 chemotherapy-naïve). PSA surge was observed in 20 (7%) post-chemotherapy and 2 (4%) chemotherapy-naïve patients. For overall patients presenting PSA surge, timing of PSA peak from baseline was 5 ± 1.8 weeks and PSA rise from baseline was 21 ± 18.4%. The overall median follow-up was 23 months (range 1-62). No significant differences in progression-free survival and overall survival were observed between patients with and without PSA surge (P = 0.16 and =0.86, respectively). In addition, uni- and multivariate analyses showed no baseline factors related to PSA surge. PSA surge occurs in both chemotherapy-treated and chemotherapy-naïve patients treated with abiraterone resulting, however, in no long-term impact on outcome. Physicians and patients should be aware of PSA surge challenge to prevent a premature discontinuation of potentially effective therapy with abiraterone. Further larger and prospective studies are warranted to investigate this not infrequent phenomenon. © 2017 Wiley Periodicals, Inc.

  1. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram

    NASA Astrophysics Data System (ADS)

    Round, Vanessa; Leinss, Silvan; Huss, Matthias; Haemmig, Christoph; Hajnsek, Irena

    2017-03-01

    The recent surge cycle of Kyagar Glacier, in the Chinese Karakoram, caused formation of an ice-dammed lake and subsequent glacial lake outburst floods (GLOFs) exceeding 40 million m3 in 2015 and 2016. GLOFs from Kyagar Glacier reached double this size in 2002 and earlier, but the role of glacier surging in GLOF formation was previously unrecognised. We present an integrative analysis of the glacier surge dynamics from 2011 to 2016, assessing surge mechanisms and evaluating the surge cycle impact on GLOFs. Over 80 glacier surface velocity fields were created from TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), Sentinel-1A, and Landsat satellite data. Changes in ice thickness distribution were revealed by a time series of TanDEM-X elevation models. The analysis shows that, during a quiescence phase lasting at least 14 years, ice mass built up in a reservoir area at the top of the glacier tongue, and the terminus thinned by up to 100 m, but in the 2 years preceding the surge onset this pattern reversed. The surge initiated with the onset of the 2014 melt season, and in the following 15 months velocity evolved in a manner consistent with a hydrologically controlled surge mechanism. Dramatic accelerations coincided with melt seasons, winter deceleration was accompanied by subglacial drainage, and rapid surge termination occurred following the 2015 GLOF. Rapid basal motion during the surge is seemingly controlled by high water pressure, caused by input of surface water into either an inefficient subglacial drainage system or unstable subglacial till. The potential lake volume increased to more than 70 million m3 by late 2016, as a result of over 60 m of thickening at the terminus. Lake formation and the evolution of the ice dam height should be carefully monitored through remote sensing to anticipate large GLOFs in the near future.

  2. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and...

  3. Developmental Programming: Postnatal Steroids Complete Prenatal Steroid Actions to Differentially Organize the GnRH Surge Mechanism and Reproductive Behavior in Female Sheep

    PubMed Central

    Jackson, Leslie M.; Mytinger, Andrea; Roberts, Eila K.; Lee, Theresa M.; Foster, Douglas L.; Padmanabhan, Vasantha

    2013-01-01

    In female sheep, estradiol (E2) stimulates the preovulatory GnRH/LH surge and receptive behavior, whereas progesterone blocks these effects. Prenatal exposure to testosterone disrupts both the positive feedback action of E2 and sexual behavior although the mechanisms remain unknown. The current study tested the hypothesis that both prenatal and postnatal steroids are required to organize the surge and sex differences in reproductive behavior. Our approach was to characterize the LH surge and mating behavior in prenatally untreated (Control) and testosterone-treated (T) female sheep subsequently exposed to one of three postnatal steroid manipulations: endogenous E2, excess E2 from a chronic implant, or no E2 due to neonatal ovariectomy (OVX). All females were then perfused at the time of the expected surge and brains processed for estrogen receptor and Fos immunoreactivity. None of the T females exposed postnatally to E2 exhibited an E2-induced LH surge, but a surge was produced in five of six T/OVX and all Control females. No surges were produced when progesterone was administered concomitantly with E2. All Control females were mounted by males, but significantly fewer T females were mounted by a male, including the T/OVX females that exhibited LH surges. The percentage of estrogen receptor neurons containing Fos was significantly influenced in a brain region-, developmental stage-, and steroid-specific fashion by testosterone and E2 treatments. These findings support the hypothesis that the feedback controls of the GnRH surge are sensitive to programming by prenatal and postnatal steroids in a precocial species. PMID:23417422

  4. View of Stand Pipe (Surge Tank) from FS 502. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Stand Pipe (Surge Tank) from FS 502. Looking northeast - Childs-Irving Hydroelectric Project, Childs System, Stand Pipe (Surge Tank), Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  5. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Feldmann, Johannes; Levermann, Anders

    2017-08-01

    Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  6. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems.

    PubMed

    Sharif-Kashani, Pooria; Fanney, Douglas; Injev, Val

    2014-07-30

    Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery.

  7. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems

    PubMed Central

    2014-01-01

    Background Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Methods Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. Results The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. Conclusions In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery. PMID:25074069

  8. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    NASA Astrophysics Data System (ADS)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  9. Storm Surge Simulation and Ensemble Forecast for Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2012-12-01

    Hurricane Irene, raking the U.S. East Coast during the period of 26-30 August 2011, caused widespread damage estimated at $15.8 billion and was responsible for 49 direct deaths (Avila and Cangialosi, 2011). Although the most severe impact in the northeastern U.S. was catastrophic inland flooding, with its unusually large size, Irene also generated high waves and storm surges and caused moderate to major coastal flooding. The most severe surge damage occurred between Oregon Inlet and Cape Hatteras in North Carolina (NC). Significant storm surge damage also occurred along southern Chesapeake Bay, and moderate and high surges were observed along the coast from New Jersey (NJ) northward. A storm surge of 0.9-1.8 m caused hundreds of millions of dollars in property damage in New York City (NYC) and Long Island, despite the fact that the storm made landfall to the west of NYC with peak winds of no more than tropical storm strength. Making three U.S. landfalls (in NC, NJ, and NY), Hurricane Irene provides a unique case for studying storm surge along the eastern U.S. coastline. We apply the hydrodynamic model ADCIRC (Luettich et al. 1992) to conduct surge simulations for Pamlico Sound, Chesapeake Bay, and NYC, using best track data and parametric wind and pressure models. The results agree well with tidal-gauge observations. Then we explore a new methodology for storm surge ensemble forecasting and apply it to Irene. This method applies a statistical/deterministic hurricane model (Emanuel et al. 2006) to generate large numbers of storm ensembles under the storm environment described by the 51 ECMWF ensemble members. The associated surge ensembles are then generated with the ADCIRC model. The numerical simulation is computationally efficient, making the method applicable to real-time storm surge ensemble forecasting. We report the results for NYC in this presentation. The ADCIRC simulation using the best track data generates a storm surge of 1.3 m and a storm tide of 2.1 m at the Battery, NYC, which agree well with the observed storm surge of 1.33 m and storm tide of 2.12 m, although the simulated surge arrives about 2 hours earlier than the observed. Based on the surge climatology estimated by Lin et al. (2012), Hurricane Irene's storm surge is approximately a 60-year event for NYC, but its storm tide, with the surge happening right at the high astronomical tide, is a 100-year event. Lin et al. (2012) also projected that such 100-year storm tide events might occur on average every 3-20 years by the end of the century, under the IPCC A1B emission scenario and a 1-m sea level rise. The ensemble forecasting, starting from two and one days (each with 1000 ensembles) before Irene's first landfall in NC, shows that Irene's actual storm surge at the Battery had a chance of about 9% and 10% to be exceeded, respectively. The largest surges among the two ensemble sets are 2.28 m and 2.05 m, respectively. If happening at the high tide, as with Hurricane Irene, the worst-case storm tides would be about 3-3.2 m, similar to the highest historical water level at the Battery due to a hurricane in 1821. Lin et al. (2012) estimated that such a storm tide of about 3.1 m had a return period of about 500 years under current climate conditions, but the return period might become 25-240 years by the end of the century, under the IPCC A1B emission scenario and a 1-m sea level rise.

  10. The Potential of Wetlands in Reducing Storm Surge

    DTIC Science & Technology

    2010-01-01

    threatened by erosion and damage due to storm waves, wind, and surge. The risk of damage and loss of life is exacerbated by many factors, including coastal...obtained when attempting to correlate hurricane translation speed, surge hydrograph at the coast, and surge elevations inland. However, a trend was...greater surface roughness. In addition to reducing wind speeds, the models eliminate the wind stress in forested wetlands which inhibit wind from

  11. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    PubMed

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (P<.001). Postocclusion surge decreased linearly with increasing bottle height in the Infiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  12. Landsat imagery and its treatment in a publicly available data portal to monitor flow velocity variations of Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Scheinert, M.; Rosenau, R.; Ebermann, B.; Horwath, M.

    2016-12-01

    Utilizing the freely available Landsat archive we have set up a monitoring system to process and provide flow-velocity fields for more than 300 outlet glaciers along the margin of the Greenland ice sheet. We will present major processing steps. These include, among others, an improved orthorectification that is based on the Global Digital Elevation Map V2 (GDEM-V2) of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). For those Landsat 7 products which feature the scan line corrector (SLC) failure a destriping correction was applied. An adaptive, recursive filter approach was applied in order to remove outliers. Altogether, the enhanced processing leads to a higher accuracy of the flow-velocity fields. By mid-2016 we succeeded in incorporating more than 37,000 optical multi-sensoral scenes from Landsat 1 to 8. These scenes cover the period from 1972 to 2015. Until now, for almost 300 glaciers we processed more than 100,000 flow-velocity fields for the time span until 2012. For the time until 2015 velocity fields were inferred only for the fastest flowing glaciers. However, new recordings of Landsat 7 and Landsat 8 as well as the availability of further scenes through the Landsat Global Archive Consolidation (LGAC) effort will help to enlarge the database. With a further quality check, we can provide more than 40,000 flow-velocity for public accessibility. More products will be added continuously while the almost automated processing is ongoing. The long time span enables to determine trends of the flow velocity over different (long) periods. A major achievement can be seen in the fact that a high temporal resolution facilitates the analysis of seasonal flow-velocity variations. We will discuss prominent examples of the non-uniform pattern of ice flow velocity changes. For this, a powerful tool is provided by the monitoring system and its web-based data portal. It allows to study the flow-velocity changes in time and space, and to possibly identify distinctive patterns. Rapid changes like surge events can be detected and analyzed in detail. The presentation will demonstrate how the data portal enables to interactively perform the calculation of profiles or time series for locations the user can select on the map. Also, the user can choose from different options to download the examined data.

  13. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2007-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both sides of the South Atlantic, western India, eastern Australia, and possibly in Antarctica. Our results show that we cannot simply assume that these elevations were produced either at the time of rifting or as underplating at the time of plume impact. There is, however, no general agreement as to what caused them and we suggest that the history of these margins need to be re-assessed in the light of our results.

  14. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2004-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both sides of the South Atlantic, western India, eastern Australia, and possibly in Antarctica. Our results show that we cannot simply assume that these elevations were produced either at the time of rifting or as underplating at the time of plume impact. There is, however, no general agreement as to what caused them and we suggest that the history of these margins need to be re-assessed in the light of our results.

  15. Effects of Hurricane Katrina’s storm surge on the quality of shallow aquifers near the northern shoreline of Lake Pontchartrain, southeastern Louisiana: Chapter 7D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.

    2007-01-01

    The U.S. Geological Survey (USGS) sampled 13 wells on the northern shoreline of Lake Pontchartrain to determine the effect of Hurricane Katrina-induced storm surge water on the shallow groundwater resources. Surge water entering damaged wells did not contaminate the entire aquifer; however, contamination did occur locally at well sites. Because the storm surge from Katrina lasted only a few hours, surge water entering the aquifer will probably have only a short-term effect.

  16. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  17. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  18. Improvement of Surge Protection by Using an AlGaN/GaN-Based Metal-Semiconductor-Metal Two-Dimensional Electron Gas Varactor

    NASA Astrophysics Data System (ADS)

    Ferng, Yi-Cherng; Chang, Liann-Be; Das, Atanu; Lin, Ching-Chi; Cheng, Chun-Yu; Kuei, Ping-Yu; Chow, Lee

    2012-12-01

    In this paper, a varactor with metal-semiconductor-metal diodes on top of the (NH4)2S/P2S5-treated AlGaN/GaN two-dimensional electron gas epitaxial structure (MSM-2DEG) is proposed to the surge protection for the first time. The sulfur-treated MSM-2DEG varactor properties, including current-voltage (I-V), capacitance-voltage (C-V), and frequency response of the proposed surge protection circuit, are presented. To verify its capability of surge protection, we replace the metal oxide varistor (MOV) and resistor (R) in a state-of-the-art surge protection circuit with the sulfur-treated MSM-2DEG varactor under the application conditions of system-level surge tests. The measured results show that the proposed surge protection circuit, consisted of a gas discharge arrester (GDA) and a sulfur-treated MSM-2DEG varactor, can suppress an electromagnetic pulse (EMP) voltage of 4000 to 360 V, a reduction of 91%, whereas suppression is to 1780 V, a reduction of 55%, when using only a GDA.

  19. A Stability Enhancement Method for Centrifugal Compressors using Active Control Casing Treatment System

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le

    2015-08-01

    The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.

  20. Experiments and modelling of surge in small centrifugal compressor for automotive engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo, J.; Serrano, J.R.; Climent, H.

    2008-01-15

    In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneousmore » pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)« less

  1. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf.

    PubMed

    Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro

    2014-07-28

    Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5-6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast.

  2. Progression of the 2011-2012 Surge of Bering Glacier and Bagley Ice Field, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Stachura, M.; Hale, R.; Trantow, T.; Weltman, A.; Chen, P.

    2012-12-01

    Bering Glacier, Alaska, started a surge in late spring 2011. The surge reached the ice front in May 2011 and extended into Bagley Ice Field by summer 2011. New surge-related crevassing was observed in July 2012. We collected aerial observations, including systematic videographic and photographic imagery, GPS data and laser altimeter data in September 2011 and in July 2012. In this talk, an analysis of surge progression and comparison to the early, mature and late stages of the 1993-1995 surge of Bering Glacier and Bagley Ice Field will be presented. A suite of approaches will be used to this end: Analysis of elevation changes based on CryoSat data, 2009 and 2010 IceBridge data and 2011 and 2012 laser altimeter data collected by our group, geostatistical classification of crevasse types based on imagery, classification of laser altimeter data and analysis of high-resolution satellite imagery (Worldview and GEOS).

  3. A surge observed in H alpha and C IV

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Mein, P.; Vial, J. C.; Tandberg-Hanssen, E.

    1982-01-01

    Results are presented of simultaneous measurements of H-alpha (MSDP at Meudon) and C IV (UVSP onboard SMM) of Active Region 2701 made on October 2, 1980. Isodensity and velocity maps were obtained for both lines and these maps were superimposed. Results show a good correlation between the H-alpha and C IV velocities with a surge being observed for 10 minutes. The base of the surge was determined to be located in a bright point in C IV and H-alpha, while the escaping matter followed the same channel ('absorbing' in H-alpha, 'emitting' in C IV). It was found that the velocity along the surge was about 80 km/s in H-alpha and 100 km/s in C IV. In addition, a loop appeared in C IV during the surge. It is concluded that the vertical pressure gradient was capable of driving the surge.

  4. Planning for a medical surge incident: Is rehabilitation the missing link?

    PubMed

    Vonderschmidt, Kay

    2017-01-01

    This mixed methods study explored surge planning for patients who will need rehabilitative care after a mass casualty incident. Planning for a patient surge incident typically considers only prehospital and hospital care. However, in many cases, disaster patients need rehabilitation for which planning is often overlooked. The purpose of this study was to explore this hidden dimension of patient rehabilitation for surge planning and preparedness and ask: 1. To what extent can an analysis of standard patient acuity assessment tools [Simple Triage and Rapid Treatment and Injury Severity Score] be used to project future demand for admission to rehabilitative care? 2. What improvements to medical disaster planning are needed to address patient surge related to rehabilitation? This study found that standard patient benchmarks can be used to project demand for rehabilitation following a mass casualty incident, and argues that a reconceptualization of surge planning to include rehabilitation would improve medical disaster planning.

  5. Oil Production, The Price Crash and Uncertainty in Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2015-12-01

    World oil production increased to about 74 million barrels per day by January 2005, and was fairly constant until 2011 when it started to increase to 77.8 mb/d in 2014. This spectacular increase of 4 mb/d was almost entirely due to a sharp increase in production in the US from shale formations, called light tight oil (LTO). World oil production minus this increase in US LTO Production has been flat since 2005 at about 74 mb/d. When US production starts to decline, world oil production likely will as well. That surge is forecast to end soon because LTO is expensive to produce, the first year decline rates are extremely high requiring many new wells each year to maintain or increase production and the most productive locations have already been drilled. It is unprofitable for the Exploration and Production (E&P) companies. Full-year free cash flow has been negative for most tight oil E&P companies since 2009. The total negative cash flow for the 19 largest E&P companies totaled 10.5B in 2014. The surge in US LTO production created an imbalance in global supply and demand and resulted in a 50% decrease in the price of oil. The tight-oil producers who were are financially marginal at an oil price greater than 90 per barrel are even more so at the lower price. As a result the surge in US production of LTO is declining, making it unlikely that world oil production will exceed the present value of about 28 Gb/yr (equivalent to 75 mb/d) (175 EJ/yr). Many of the SRES (IPCC Special Report on Emission Scenarios) and RCP (IPCC Representative Concentration Pathways) projections (especially RCP 8.5 and 6) require CO2 emissions due to oil consumption in the range of 32 Gb/yr to 57 Gb/yr (200 to 350 EJ/yr). The higher values would require a doubling of world oil production. It is highly uncertain whether the higher CO2 scenarios will be reached. This is an element of uncertainty missing from most considerations of future climate change.

  6. A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Deng, Yi

    2014-08-01

    Through an agglomerative hierarchical clustering method, cold surges over East Asia are classified into two distinct types based on the spatial pattern of the geopotential height anomalies at 300 hPa. One is the wave-train type that is associated with developing large-scale waves across the Eurasian continent. The other is the blocking type whose occurrence accompanies subarctic blocking. During the wave-train cold surge, growing baroclinic waves induce a southeastward expansion of the Siberian High and strong northerly winds over East Asia. Blocking cold surge, on the other hand, is associated with a southward expansion of the Siberian High and northeasterly winds inherent to a height dipole consisting of the subarctic blocking and the East Asian coastal trough. The blocking cold surge tends to be more intense and last longer compared to the wave-train type. The wave-train cold surge is associated with the formation of a negative upper tropospheric height anomaly southeast of Greenland approximately 12 days before the surge occurrence. Further analysis of isentropic potential vorticity reveals that this height anomaly could originate from the lower stratosphere over the North Atlantic. Cold surge of the blocking type occurs with an amplifying positive geopotential and a negative potential vorticity anomaly over the Arctic and the northern Eurasia in stratosphere. These anomalies resemble the stratospheric signature of a negative phase of the Arctic Oscillation. This stratospheric feature is further demonstrated by the observation that the blocking type cold surge occurs more often when the Arctic Oscillation is in its negative phase.

  7. Surges and Si IV Bursts in the Solar Atmosphere: Understanding IRIS and SST Observations through RMHD Experiments

    NASA Astrophysics Data System (ADS)

    Nóbrega-Siverio, D.; Martínez-Sykora, J.; Moreno-Insertis, F.; Rouppe van der Voort, L.

    2017-12-01

    Surges often appear as a result of the emergence of magnetized plasma from the solar interior. Traditionally, they are observed in chromospheric lines such as Hα 6563 \\mathringA and Ca II 8542 \\mathringA . However, whether there is a response to the surge appearance and evolution in the Si IV lines or, in fact, in many other transition region lines has not been studied. In this paper, we analyze a simultaneous episode of an Hα surge and a Si IV burst that occurred on 2016 September 03 in active region AR 12585. To that end, we use coordinated observations from the Interface Region Imaging Spectrograph and the Swedish 1-m Solar Telescope. For the first time, we report emission of Si IV within the surge, finding profiles that are brighter and broader than the average. Furthermore, the brightest Si IV patches within the domain of the surge are located mainly near its footpoints. To understand the relation between the surges and the emission in transition region lines like Si IV, we have carried out 2.5D radiative MHD (RMHD) experiments of magnetic flux emergence episodes using the Bifrost code and including the nonequilibrium ionization of silicon. Through spectral synthesis, we explain several features of the observations. We show that the presence of Si IV emission patches within the surge, their location near the surge footpoints and various observed spectral features are a natural consequence of the emergence of magnetized plasma from the interior to the atmosphere and the ensuing reconnection processes.

  8. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    NASA Astrophysics Data System (ADS)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of computational models to simulate storm surge flow over wetlands specifically designed to represent Virginia's aquatic vegetation and to improve our fundamental knowledge of tide and storm surge hydrodynamics in estuarine wetlands. This poster will present the results of the field measurements for events during the 2013 Hurricane Season, tidal flows within the study areas, and surge attenuation rates according to vegetation characteristics.

  9. Different critical perinatal periods and hypothalamic sites of oestradiol action in the defeminisation of luteinising hormone surge and lordosis capacity in the rat.

    PubMed

    Sakakibara, M; Deura, C; Minabe, S; Iwata, Y; Uenoyama, Y; Maeda, K-I; Tsukamura, H

    2013-03-01

    Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the critical period for defeminising the mechanism regulating the GnRH/LH surge. Animals given perinatal treatments, such as steroidal manipulations, brain local implantation of oestradiol (E(2) ) or administration of an NMDA antagonist, were examined for their ability to show an E(2) -induced LH surge at adulthood. Lordosis behaviour was examined to compare the mechanisms defeminising the GnRH/LH surge and sexual behaviour. A single s.c. oestradiol-benzoate administration on either the day before birth (E21), the day of birth (D0) or day 5 (D5) postpartum completely abolished the E(2) -induced LH surge at adulthood in female rats, although the same treatment did not inhibit lordosis. Perinatal castration on E21 or D0 partially rescued the E2-induced LH surge in genetically male rats, whereas castration from E21 to D5 totally rescued lordosis. Neonatal E(2) implantation in the anterior hypothalamus including the anteroventral periventricular nucleus (AVPV)/preoptic area (POA) abolished the E(2) -induced LH surge in female rats, whereas E(2) implantation in the mid and posterior hypothalamic regions had no inhibitory effect on the LH surge. Lordosis was not affected by neonatal E(2) implantation in any hypothalamic regions. In male rats, neonatal NMDA antagonist treatment rescued lordosis but not the LH surge. Taken together, these results suggest that an anterior hypothalamic region such as the AVPV/POA region is a perinatal site of oestrogen action where the GnRH/LH regulating system is defeminised to abolish the oestrogen-induced surge. The mechanism for defeminisation of the GnRH/LH surge system might be different from that of sexual behaviour, in terms of the site(s) of oestrogen action and critical period, as well as the neurotransmitter system involved. © 2012 British Society for Neuroendocrinology.

  10. Toward an integrated storm surge application: ESA Storm Surge project

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www.surgesymposium.org, organized by the WMO-IOC Joint technical Commission for Oceanography and Marine Meteorology, JCOMM) and following activities, that have been supported by the Intergovernmental Oceanographic Commission (IOC) of UNESCO through JCOMM. The paper also reviews the capabilities of storm surge models, and current status in using Earth Observation (EO) information for advancing storm surge application tools, and further, for improving operational forecasts and warning capability for coastal inundation. In this context, the plans and expected results of the ESA Storm Surge Project (2010-2011) will be introduced.

  11. Coordinated Ground and Space Measurements of Auroral Surge over South Pole.

    DTIC Science & Technology

    1988-02-01

    3y V. Coordinated Ground and Space Measurements of co an Auroral Surge over South Pole T. J. ROSENBERG and D. L. DETRICK Institute for Physical...Measurements of an Auroral Surge over South Pole 12. PERSONAL AUTHOR(S) Rosenberg, T. J., and DetrickD. L., University of Maryland; Mizera, Paul F., 13a. TYPE...premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a

  12. Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Kim, K.

    2008-12-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.

  13. Investigating Typhoon Induced River-Surge Interactions in the Tamsui Estuary, Taiwan.

    NASA Astrophysics Data System (ADS)

    Maskell; J. H.; Grieser, J.; Rodney, J.; Howe, N. J.

    2016-02-01

    It is increasingly important to understand the combined influence of the main drivers of coastal risk due to sea level rise and the potential increase in extreme weather events. An Asian Basin stochastic typhoon set was used to force a storm surge model of Taiwan to investigate the interaction between storm surge and high river discharges (50, 100 and 200 year return period discharges) in the Tamsui River. Taiwan is a mountainous country leading to the combined risk of surge and high river discharge occurring simultaneously in estuary regions. The typhoon tracks were selected using a Hurricane Surge Index (Kantha, 2006) and cross the northern tip of Taiwan with maximum sustained winds (Vmax) between 51 m/s and 75 m/s (Cat 3-5). Peak surge elevations in the Tamsui River range from 5.7 m to 10.3 m. The surge interacts with the river flow to induce changes in the water elevation between -8 m and 4 m depending on the surge elevation and river discharge and increases the inundated area in the range 37 km to 204 km. Significant positive interactions occur in the Tamsui Estuary (Fig. 1a) but do not have implications for increased inundation and occur at the start of the flood phase and the end of the ebb phase as previously shown in idealized test cases (Maskell et al., 2013). Current vectors in the estuary show that at the time leading up to high water the river outflow starts to become dominant in the mid-channel reducing maximum water levels by up to 10% in the combined surge and river solution. However, surge inhibits downstream propagation of the flood wave in the upper river channels increasing water levels by up to 2 m. The maximum inundated area (1330 km2) is caused by the combination of defence overflow due to the maximum surge (10.27 m) and increased river levels (RP100) in the upper channels leading to significant inundation either side of the Keelung River (Fig. 1b). The Erchung floodway is effective in diverting some of the flow (up to 10,443 m3/s) reducing inundation elsewhere in the river network.

  14. Rotor redesign for a highly loaded 1800 ft/sec tip speed fan, 2

    NASA Technical Reports Server (NTRS)

    Bolt, C. R.

    1980-01-01

    Tests were conducted on a 0.5 hub/tip ratio single-stage fan designed to produce a pressure ratio of 2.280 at an efficiency of 83.8 percent with a rotor tip speed of 548.6 m/sec (1800 ft/sec). The rotor was designed utilizing a quasi three dimensional design system and four-part, multiple-circular-arc airfoil sections. The rotor is the third in a series of single-stage fans that have included a precompression airfoil design and a multiple-circular-arc airfoil design. The stage achieved a peak efficiency of 82.8 percent after performance had deteriorated by 0.6 of a point. The design mass flow was achieved at the peak efficiency point, and the stage total pressure ratio was 2.20, which is lower than the design goal of 2.28. The surge margin of 13% from the peak efficiency point exceeded the design goal of 7%.

  15. [Intraoperative floppy iris syndrome].

    PubMed

    Mazal, Z

    2007-04-01

    In the year 2005, Chang and Cambell described unusual reaction of the iris during the cataract surgery in patients treated with tamsulosine. This was named as IFIS, an acronym for the Intraoperative Floppy Iris Syndrome. In its advanced stage, the syndrome is characterized by insufficient mydfiasis before the surgery, narrowing of the pupil during the surgery, its impossible dilatation during the surgery by means of stretching, unusual elasticity of the pupilar margin, surging and fluttering iris with tendency to prolapse. The same manifestations we observed in our patients and we confirm the direct connection with tamsulosine hydrochloride treatment. Tamsulosine is the antagonist of alpha 1A adrenergic receptors whose are present, except in the smooth musculature of the prostate gland and the urinary bladder, in the iris dilator as well. At the same time we observed this syndrome rarely in some patients not using tamsulosine. In most cases, these patients were treated with antipsychotic drugs.

  16. JT8D high pressure compressor performance improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1981-01-01

    An improved performance high pressure compressor with potential application to all models of the JT8D engine was designed. The concept consisted of a trenched abradable rubstrip which mates with the blade tips for each of the even rotor stages. This feature allows tip clearances to be set so blade tips run at or near the optimum radius relative to the flowpath wall, without the danger of damaging the blades during transients and maneuvers. The improved compressor demonstrated thrust specific fuel consumption and exhaust gas temperature improvements of 1.0 percent and at least 10 C over the takeoff and climb power range at sea level static conditions, compared to a bill-of-material high pressure compressor. Surge margin also improved 4 percentage points over the high power operating range. A thrust specific fuel consumption improvement of 0.7 percent at typical cruise conditions was calculated based on the sea level test results.

  17. Sweet spots, EROI, and the limits to Bakken production

    NASA Astrophysics Data System (ADS)

    Waggoner, Egan Greiner

    The Bakken Formation has generated attention due to its substantial role in the recent surge in US domestic oil production. However there may be significant problems in extrapolating past successes because production is not distributed equally, but is concentrated in "sweet spots." These sweet spots are saturated with wells, and some productive fields are declining already. If we are to maintain a consistent or increasing level of production from more marginal areas, an increasing number of wells must be drilled. As the most attractive areas for exploration and production appear already to have been drilled, new fields are likely to be less energetically and economically profitable. I analyze current and future production using the Energy Return on Investment (EROI) metric, a ratio of energy outputs over energy inputs. My results indicate that EROISTND for the sweet spot Parshall Field is 63:1 and the more energy cost-inclusive EROIFIN is 9:1.

  18. The use of coastal altimetry to support storm surge studies in project eSurge

    NASA Astrophysics Data System (ADS)

    Cipollini, P.; Harwood, P.; Snaith, H.; Vignudelli, S.; West, L.; Zecchetto, S.; Donlon, C.

    2012-04-01

    One of the most promising applications of the new field of coastal altimetry, i.e. the discipline aiming to recover meaningful estimates of geophysical parameters (sea level, significant wave height and wind speed) from satellite altimeter data in the coastal zone, is the study of storm surges. The understanding and realistic modelling of surges supports both preparation and mitigation activities and should eventually bring enormous societal benefits, especially to some of the world's poorest countries (like Bangladesh). Earth Observation data have an important role to play in storm surge monitoring and forecasting, but the full uptake of these data by users (such as environmental agencies and tidal prediction centres) must first be encouraged by showcasing their usefulness, and then supported by providing easy access. Having recognized the above needs, The European Space Agency has recently launched a Data User Element (DUE) project called eSurge. The main purposes of eSurge are a) to contribute to an integrated approach to storm surge, wave, sea-level and flood forecasting through Earth Observation, as part of a wider optimal strategy for building an improved forecast and early warning capability for coastal inundation; and b) to increase the use of the advanced capabilities of ESA and other satellite data for storm surge applications. The project is led by Logica UK, with NOC (UK), DMI (Denmark), CMRC (Ireland) and KNMI (Netherlands) as scientific partners. A very important component of eSurge is the development, validation and provision of dedicated coastal altimetry products, which is the focus of the present contribution. Coastal altimetry has a prominent role to play as it measures the total water level envelope directly, and this is one of the key quantities required by storm surge applications and services. But it can also provide important information on the wave field in the coastal strip, which helps the development of more realistic wave models that in turn can be used to improve the forecast of wave setup and overtopping processes. We will present examples of how altimetry has captured a few significant surge events in European Seas, and we will describe how a multi-mission coastal altimetry processor is going to be integrated in the eSurge system. The delayed-time reprocessed coastal altimetry data will be blended with tide gauge data to extract the main modes of variability in the coastal regions. Then data from the tide gauges can be used to estimate water level in real time, based on the modes of variability found. In a later phase of the project, the eSurge coastal altimetry processor will be extended to be able to ingest Near-Real-time (NRT) raw altimetric waveforms and generate the relevant NRT products, a definite first for coastal altimetry. The pilot regions for this application will be the European Seas (where an area of specific interest is the Northern Adriatic, which is being investigated within a related initiative called eSurge-Venice) and the North Indian Ocean. In summary, we expect eSurge to be one of the first pre-operational applications of coastal altimetry and a proof of the benefits to society that can be brought by this relatively new branch of marine remote sensing.

  19. Developing an early warning system for storm surge inundation in the Philippines

    NASA Astrophysics Data System (ADS)

    Tablazon, Judd; Mahar Francisco Lagmay, Alfredo; Francia Mungcal, Ma. Theresa; Gonzalo, Lia Anne; Dasallas, Lea; Briones, Jo Brianne Louise; Santiago, Joy; Suarez, John Kenneth; Lapidez, John Phillip; Caro, Carl Vincent; Ladiero, Christine; Malano, Vicente

    2014-05-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 08 November 2013 where more than 6,000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency (JMA) Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10-minute intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter-measures for a given PSWS.

  20. Developing an early warning system for storm surge inundation in the Philippines

    NASA Astrophysics Data System (ADS)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter-measures for a given PSWS.

  1. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  2. Storm surge and tidal range energy

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and predictability of tidal range energy with 2D hydrodynamic models.

  3. A numerical study on hurricane-induced storm surge and inundation in Charleston Harbor, South Carolina

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    2006-08-01

    A storm surge and inundation model is configured in Charleston Harbor and its adjacent coastal region to study the harbor's response to hurricanes. The hydrodynamic component of the modeling system is based on the Princeton Ocean Model, and a scheme with multiple inundation speed options is imbedded in the model for the inundation calculation. Historic observations (Hurricane Hugo and its related storm surge and inundation) in the Charleston Harbor region indicate that among three possible inundation speeds in the model, taking Ct (gd)1/2 (Ct is a terrain-related parameter) as the inundation speed is the best choice. Choosing a different inundation speed in the model has effects not only on inundation area but also on storm surge height. A nesting technique is necessary for the model system to capture the mesoscale feature of a hurricane and meanwhile to maintain a higher horizontal resolution in the harbor region, where details of the storm surge and inundation are required. Hurricane-induced storm surge and inundation are very sensitive to storm tracks. Twelve hurricanes with different tracks are simulated to investigate how Charleston Harbor might respond to tracks that are parallel or perpendicular to the coastline or landfall at Charleston at different angles. Experiments show that large differences of storm surge and inundation may have occurred if Hurricane Hugo had approached Charleston Harbor with a slightly different angle. A hurricane's central pressure, radius of maximum wind, and translation speed have their own complicated effects on surge and inundation when the hurricane approaches the coast on different tracks. Systematic experiments are performed in order to illustrate how each of such factors, or a combination of them, may affect the storm surge height and inundation area in the Charleston Harbor region. Finally, suggestions are given on how this numerical model system may be used for hurricane-induced storm surge and inundation forecasting.

  4. Model-data comparisons of crevasses in accelerating glaciers exemplified for the 2011-2013 surge of Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2017-12-01

    Glacier acceleration, ubiquitous along the periphery of the major icesheets, presents one of the main uncertainties in modeling future global sea-level rise according to the IPCC 5th Assessment Report (2013). The surge phenomenon is one type of glacial acceleration and is the least understood. During a surge, large-scale elevation change and significant crevassing occurs throughout the entire ice system. Crevasses are the most obvious manifestations of the surge dynamics and provide a source of geophysical information that allows reconstruction of deformation processes. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2011-2013 provides an excellent test case to study surging through airborne and satellite observations together with numerical modeling. A 3D full-Stokes finite element model of the BBGS has been created using the Elmer/Ice software for structural and dynamical investigations of the surge. A von Mises condition is applied to modeled surface stresses to predict where crevassing would occur during the surge. The model uses CryoSat-2 derived surface topography (Baseline-C), bedrock topography, Glen's flow law with an isothermal assumption and a uniform linear friction law at the ice/bedrock boundary to represent the surge state in early 2011 when peak velocities were observed. Additionally, geostatistical characterization applied to optical satellite imagery provides an observational data set for model-data comparisons. Observed and modeled crevasse characteristics are compared with respect to their location, magnitude and orientation. Similarity mapping applied to the modeled von Mises stress and observed surface roughness values indicates that the two quantities are correlated. Results indicate that large-scale surface crevasses resulting from a surge are connected to the bedrock topography of the glacier system. The model-data comparisons used in this analysis serve to validate the numerical model and provide insight into the quality of our model input.

  5. Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System

    NASA Technical Reports Server (NTRS)

    Scroggins, Ashley R.; Fiebig, Mark D.

    2014-01-01

    The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.

  6. The Fate of the Civilian Surge in a Changing Environment

    DTIC Science & Technology

    2016-08-01

    THE FATE OF THE CIVILIAN SURGE IN A CHANGING ENVIRONMENT Ryan S. McCannellUSAWC Website FOR THIS AND OTHER PUBLICATIONS, VISIT US AT http...FATE OF THE CIVILIAN SURGE IN A CHANGING ENVIRONMENT Ryan S. McCannell The views expressed in this report are those of the authors and do not...in Strategic Studies from the U.S. Army War College. 1 The Fate of the Civilian Surge in a Changing Environment Ryan S. McCannell Introduction

  7. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep

    PubMed Central

    Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-01-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30–90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level. PMID:25919188

  8. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep.

    PubMed

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-07-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.

  9. Neurokinin-3 Receptor Activation in the Retrochiasmatic Area is Essential for the Full Preovulatory LH Surge in Ewes

    PubMed Central

    Porter, Katrina L.; Hileman, Stanley M.; Hardy, Steven L.; Nestor, Casey C; Lehman, Michael N.; Goodman, Robert L.

    2014-01-01

    Neurokinin B (NKB) is essential for human reproduction and has been shown to stimulate LH secretion in several species, including sheep. Ewes express the neurokinin-3 receptor (NK3R) in the retrochiasmatic area (RCh) and there is one report that placement of senktide, an NK3R agonist, therein stimulates LH secretion that resembles an LH surge in ewes. In this study, we first confirmed that local administration of senktide to the RCh produced a surge-like increase in LH secretion, and then tested the effects of this agonist in two other areas implicated in the control of LH secretion and where NK3R is found in high abundance: the preoptic area (POA) and arcuate nucleus (ARC). Bilateral microimplants containing senktide induced a dramatic surge-like increase in LH when given in the POA similar to that seen with RCh treatment. In contrast, senktide treatment in the ARC resulted in a much smaller, but significant, increase in LH concentrations suggestive of an effect on tonic secretion. The possible role of POA and RCh NK3R activation in the LH surge was next tested by treating ewes with SB222200, an NK3R antagonist, in each area during an E2-induced LH surge. SB222200 in the RCh, but not in the POA, reduced LH surge amplitude by about 40% compared to controls, indicating that NK3R activation in the former region is essential for full expression of the preovulatory LH surge. Based on these data, we propose that NKB actions in the RCh are an important component of the preovulatory LH surge in ewes. PMID:25040132

  10. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    NASA Astrophysics Data System (ADS)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  11. 7 CFR 760.203 - Eligible losses, adverse weather, and other loss conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrator, including, but not limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic... Administrator, including, but not limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic... wind, flood, hurricane, tidal surge, tornado, volcanic eruption, and wildfire. (h) For honeybee colony...

  12. 7 CFR 760.203 - Eligible losses, adverse weather, and other loss conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Administrator, including, but not limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic... Administrator, including, but not limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic... wind, flood, hurricane, tidal surge, tornado, volcanic eruption, and wildfire. (h) For honeybee colony...

  13. 7 CFR 760.203 - Eligible losses, adverse weather, and other loss conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic eruption, wildfire on non-Federal... to, blizzard, flood, hurricane, tidal surge, tornado, volcanic eruption, wildfire on non-Federal land... limited to, earthquake, excessive wind, flood, hurricane, tidal surge, tornado, volcanic eruption, and...

  14. 7 CFR 760.203 - Eligible losses, adverse weather, and other loss conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic eruption, wildfire on non-Federal... to, blizzard, flood, hurricane, tidal surge, tornado, volcanic eruption, wildfire on non-Federal land... limited to, earthquake, excessive wind, flood, hurricane, tidal surge, tornado, volcanic eruption, and...

  15. 7 CFR 760.203 - Eligible losses, adverse weather, and other loss conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... limited to, blizzard, flood, hurricane, tidal surge, tornado, volcanic eruption, wildfire on non-Federal... to, blizzard, flood, hurricane, tidal surge, tornado, volcanic eruption, wildfire on non-Federal land... limited to, earthquake, excessive wind, flood, hurricane, tidal surge, tornado, volcanic eruption, and...

  16. Directional Analysis of the Storm Surge from Hurricane Sandy 2012, with Applications to Charleston, New Orleans, and the Philippines

    PubMed Central

    Drews, Carl; Galarneau, Thomas J.

    2015-01-01

    Hurricane Sandy in late October 2012 drove before it a storm surge that rose to 4.28 meters above mean lower low water at The Battery in lower Manhattan, and flooded the Hugh L. Carey automobile tunnel between Brooklyn and The Battery. This study examines the surge event in New York Harbor using the Weather Research and Forecasting (WRF) atmospheric model and the Coupled-Ocean-Atmosphere-Wave- Sediment Transport / Regional Ocean Modeling System (COAWST/ROMS). We present a new technique using directional analysis to calculate and display maps of a coastline's potential for storm surge; these maps are constructed from wind fields blowing from eight fixed compass directions. This analysis approximates the surge observed during Hurricane Sandy. The directional analysis is then applied to surge events at Charleston, South Carolina, New Orleans, Louisiana, and Tacloban City, the Philippines. Emergency managers could use these directional maps to prepare their cities for an approaching storm, on planning horizons from days to years. PMID:25822480

  17. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf

    PubMed Central

    Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro

    2014-01-01

    Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5–6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast. PMID:25821268

  18. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  19. Directional analysis of the storm surge from Hurricane Sandy 2012, with applications to Charleston, New Orleans, and the Philippines.

    PubMed

    Drews, Carl; Galarneau, Thomas J

    2015-01-01

    Hurricane Sandy in late October 2012 drove before it a storm surge that rose to 4.28 meters above mean lower low water at The Battery in lower Manhattan, and flooded the Hugh L. Carey automobile tunnel between Brooklyn and The Battery. This study examines the surge event in New York Harbor using the Weather Research and Forecasting (WRF) atmospheric model and the Coupled-Ocean-Atmosphere-Wave- Sediment Transport/Regional Ocean Modeling System (COAWST/ROMS). We present a new technique using directional analysis to calculate and display maps of a coastline's potential for storm surge; these maps are constructed from wind fields blowing from eight fixed compass directions. This analysis approximates the surge observed during Hurricane Sandy. The directional analysis is then applied to surge events at Charleston, South Carolina, New Orleans, Louisiana, and Tacloban City, the Philippines. Emergency managers could use these directional maps to prepare their cities for an approaching storm, on planning horizons from days to years.

  20. Question mark ears, temporo-mandibular joint malformation and hypotonia: auriculo-condylar syndrome or a distinct entity?

    PubMed

    Priolo, M; Lerone, M; Rosaia, L; Calcagno, E P; Sadeghi, A K; Ghezzi, F; Ravazzolo, R; Silengo, M

    2000-10-01

    We report a boy with prominent, peculiarly malformed ears, abnormality of the ramus of the mandible and hypotonia. An isolated peculiar bilateral ear deformity named 'question mark ear' has been delineated in plastic reconstruction surgery reviews [Cosman et al., 1970 Plast Reconstr Surg 46:454-457; Cosman (1984) Plast Reconstr Surg 73:572-576; Takato et al. (1989) Ann Plast Surg 22:69-73; Brodovsky (1997) Plast Reconstr Surg 100:1254-1257; Park (1998) Plast Reconstr Surg 101:1620-1623; Al-Quattan (1998) Plast Reconstr Surg 102:439-441] and a similar deformity of the ear and changes in the temporo-mandibular joint and condyle has been described by Jampol et al. [(1998) Am J Med Genet 75:449-452] and by Guion-Almeida et al. [(1999) Am J Med Genet 86:130-133]. The present case may be the third description of this malformation complex with additional clinical features characterized by hypotonia and mild developmental delay, or possibly a new distinct entity.

  1. Development of Return Period Inundation Maps In A Changing Climate Using a Systems of Systems Approach

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.; Alizad, K.; Passeri, D. L.; Irish, J. L.

    2016-12-01

    Worldwide, coastal land margins are experiencing increased vulnerability from natural and manmade disasters [Nicholls et al., 1999]. Specifically, coastal flooding is expected to increase due to the effects of climate change, and sea level rise (SLR) in particular. A systems of systems (SoS) approach has been implemented to better understand the dynamic and nonlinear effects of SLR on tropical cyclone-induced coastal flooding along a low-gradient coastal landscape (northern Gulf of Mexico [NGOM]). The backbone of the SoS framework is a high-resolution, physics-based, tide, wind-wave, and hurricane storm surge model [Bilskie et al., 2016a] that includes systems of SLR scenarios [Parris et al., 2012], shoreline morphology [Passeri et al., 2016; Plant et al., 2016], marsh evolution [Alizad et al., 2016], and population dynamics driven by carbon emission scenarios [Bilskie et al., 2016b]. Prior to considering future conditions, the storm surge model was comprehensively validated for present-day conditions [Bilskie et al., 2016a]. The present-day model was then modified to represent the potential future landscape based on four SLR scenarios prescribed by Parris et al. [2012] linked to carbon emissions scenarios for the year 2100. Numerical simulations forced by hundreds of synthetic tropical cyclones were performed and the results facilitate the development of return period inundation maps across the NGOM that reflect changes to the coastal landscape. The SoS approach allows new patterns and properties to emerge (i.e. nonlinear and dynamic effects of SLR) that would otherwise be unobserved using a static SLR model.

  2. Developments in Surge Research Priorities: A Systematic Review of the Literature Following the Academic Emergency Medicine Consensus Conference, 2007-2015.

    PubMed

    Morton, Melinda J; DeAugustinis, Matthew L; Velasquez, Christina A; Singh, Sonal; Kelen, Gabor D

    2015-11-01

    In 2006, Academic Emergency Medicine (AEM) published a special issue summarizing the proceedings of the AEM consensus conference on the "Science of Surge." One major goal of the conference was to establish research priorities in the field of "disasters" surge. For this review, we wished to determine the progress toward the conference's identified research priorities: 1) defining criteria and methods for allocation of scarce resources, 2) identifying effective triage protocols, 3) determining decision-makers and means to evaluate response efficacy, 4) developing communication and information sharing strategies, and 5) identifying methods for evaluating workforce needs. Specific criteria were developed in conjunction with library search experts. PubMed, Embase, Web of Science, Scopus, and the Cochrane Library databases were queried for peer-reviewed articles from 2007 to 2015 addressing scientific advances related to the above five research priorities identified by AEM consensus conference. Abstracts and foreign language articles were excluded. Only articles with quantitative data on predefined outcomes were included; consensus panel recommendations on the above priorities were also included for the purposes of this review. Included study designs were randomized controlled trials, prospective, retrospective, qualitative (consensus panel), observational, cohort, case-control, or controlled before-and-after studies. Quality assessment was performed using a standardized tool for quantitative studies. Of the 2,484 unique articles identified by the search strategy, 313 articles appeared to be related to disaster surge. Following detailed text review, 50 articles with quantitative data and 11 concept papers (consensus conference recommendations) addressed at least one AEM consensus conference surge research priority. Outcomes included validation of the benchmark of 500 beds/million of population for disaster surge capacity, effectiveness of simulation- and Internet-based tools for forecasting of hospital and regional demand during disasters, effectiveness of reverse triage approaches, development of new disaster surge metrics, validation of mass critical care approaches (altered standards of care), use of telemedicine, and predictions of optimal hospital staffing levels for disaster surge events. Simulation tools appeared to provide some of the highest quality research. Disaster simulation studies have arguably revolutionized the study of disaster surge in the intervening years since the 2006 AEM Science of Surge conference, helping to validate some previously known disaster surge benchmarks and to generate new surge metrics. Use of reverse triage approaches and altered standards of care, as well as Internet-based tools such as Google Flu Trends, have also proven effective. However, there remains significant work to be done toward standardizing research methodologies and outcomes, as well as validating disaster surge metrics. © 2015 by the Society for Academic Emergency Medicine.

  3. Analysis of Storm Surge in Hong Kong

    NASA Astrophysics Data System (ADS)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  4. Observing Storm Surges from Space: A New Opportunity

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  5. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  6. Development of Operational Wave-Tide-Storm surges Coupling Prediction System

    NASA Astrophysics Data System (ADS)

    You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.

    2009-04-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.

  7. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge and...

  8. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge and...

  9. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge and...

  10. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    DOT National Transportation Integrated Search

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  11. Development of wave and surge atlas for the design and protection of coastal bridges in South Louisiana : [research project capsule].

    DOT National Transportation Integrated Search

    2015-03-01

    The recently completed Louisiana Department of Transportation and Development : (DOTD) Storm Surge and Wave Atlas contains signi cant hydraulic information that will : be useful in analyzing storm surge and wave forces on existing and new coastal ...

  12. Coastal Storm Surge Analysis: Storm Surge Results. Report 5: Intermediate Submission No. 3

    DTIC Science & Technology

    2013-11-01

    Vickery, P., D. Wadhera, A. Cox, V. Cardone , J. Hanson, and B. Blanton. 2012. Coastal storm surge analysis: Storm forcing (Intermediate Submission No...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeffrey L. Hanson, Michael F. Forte, Brian Blanton

  13. 76 FR 15315 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... threats. Surge is defined as a marked increase in demand for resources such as personnel, space and material. Health care providers manage both routine surge (predictable fluctuations in demand associated with the weekly calendar, for example) as well as unusual surge (larger fluctuations in demand caused...

  14. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.

  15. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  16. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-01-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100 and 1000 year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows to obtain storm surge level maps that can be of major interest for coastal planners and decision makers in terms of risk management.

  17. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  18. An initial report on the intraoperative use of indocyanine green fluorescence imaging in the surgical management of liver tumorss.

    PubMed

    Takahashi, Hideo; Zaidi, Nisar; Berber, Eren

    2016-10-01

    There has been a recent interest in the use of Indocyanine green (ICG) imaging. The aim of this study is to review our initial experience in liver surgery. ICG fluorescent imaging was used in 15 patients undergoing surgical treatment of their liver tumors between 2015 and 2016. ICG imaging was initially performed, followed by intraoperative ultrasound (IOUS). Findings on fluorescence were compared with preoperative cross-sectional imaging and IOUS. Sixty-two lesions were identified, with 34 located superficially and 28 deeply in the liver. While 13 patients underwent surgery for malignant liver metastases, two patients had operations for benign liver diseases. Seven patients underwent open or robotic liver resections, five laparoscopic microwave liver ablation, and three diagnostic laparoscopy. ICG identified all of the superficial lesions. IOUS identified 98% of all lesions. The most benefit of ICG was in showing the margins of the superficial lesions in real-time and guiding surgical treatment, which was limited by IOUS. This is the first North American study to evaluate the potential utility of ICG during liver surgery. Its major benefit seems to be in providing real-time feedback to the surgeon about the margins of superficial tumors for resection or ablation. J. Surg. Oncol. 2016;114:625-629. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Real-time confocal laser endomicroscopic evaluation of primary liver cancer based on human liver autofluorescence.

    PubMed

    Maki, Harufumi; Kawaguchi, Yoshikuni; Arita, Junichi; Akamatsu, Nobuhisa; Kaneko, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Harihara, Yasushi; Kokudo, Norihiro

    2017-02-01

    Confocal laser endomicroscopy (CLE) is available for real-time microscopic examination. This study aims to evaluate the usefulness of intraoperative CLE examination as a modality to evaluate surgical margins in surgery for primary liver cancer. A probe-based CLE system (Cellvizio 100, Mauna Kea Technologies, Paris, France) was used. The subjects comprised seven specimens obtained from six patients with primary liver cancer in November 2015. The probe was manually attached to the surfaces of specimens, and images were collected without external fluorophores. CLE images were compared with hematoxylin and eosin-stained slides. Fluorescence intensity (FI) values of the CLE images were assessed using luminance-analyzing software. CLE examination visualized non-cancerous regions in the background liver as regular structures with high fluorescence because of human liver autofluorescence. Conversely, hepatocellular carcinoma and intrahepatic cholangiocarcinoma were depicted as irregular structures with low fluorescence. The median FI values of the non-cancerous regions and the cancerous regions were 104 (79.8-156) and 74.9 (60.6-106), respectively, and were significantly different (P = 0.031). The probe-based CLE enables real-time differentiation of cancerous regions from non-cancerous tissues in surgical specimens because of human liver autofluorescence. CLE can be used to confirm negative surgical margins in the operating room. J. Surg. Oncol. 2017;115:151-157. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010 eras. Results will provide insight into how storm surge has evolved in coastal Louisiana from 1930 to 2010 and assist to inform policy makers of regions with temporally accelerating storm surge.

  1. Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of tide, surge and non-linear interaction

    NASA Astrophysics Data System (ADS)

    Zijl, Firmijn; Verlaan, Martin; Gerritsen, Herman

    2013-07-01

    In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of tide-surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted tide, accurately known from harmonic analysis of tide gauge measurements, is added to forecast the full water-level signal at tide gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of tide and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear tide-surge interaction is affected by the poor representation of the tide signal in the tide-surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic tide is known through a harmonic analysis of in situ measurements at tide gauge stations. This provides a strong motivation to improve both tide and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation tide-surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both tide and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter uncertainty. Historic DCSMv6 model simulations are compared against shelf wide observations for a full calendar year. For a selection of stations, these results are compared to those with astronomical correction, which confirms that the tide representation in coastal regions has sufficient accuracy, and that forecasting total water levels directly yields superior results.

  2. Impacts of land cover changes on hurricane storm surge in the lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Denton, M.; Lawler, S.; Ferreira, C.

    2013-12-01

    The Chesapeake Bay is the largest estuary in the United States with more than 150 rivers draining into the bay's tidal wetlands. Coastal wetlands and vegetation play an important role in shaping the hydrodynamics of storm surge events by retaining water and slowing the propagation of storm surge. In this way coastal wetlands act as a natural barrier to inland flooding, particularly against less intense storms. Threats to wetlands come from both land development (residential or commercial/industrial) and sea level rise. The lower region of the Chesapeake Bay near its outlet is especially vulnerable to flooding from Atlantic storm surge brought in by hurricanes, tropical storms and nor'easters (e.g., hurricanes Isabel [2003] and Sandy [2012]). This region is also intensely developed with nearly 1.7 million residents within the greater Hampton Roads metropolitan area. Anthropogenic changes to land cover in the lower bay can directly impact basin drainage and storm surge propagation with impacts reaching beyond the immediate coastal zone to affect flooding in inland areas. While construction of seawall barriers around population centers may provide storm surge protection to a specifically defined area, these barriers deflect storm surge rather than attenuate it, underscoring the importance of wetlands. To analyze these impacts a framework was developed combining numerical simulations with a detailed hydrodynamic characterization of flow through coastal wetland areas. Storm surges were calculated using a hydrodynamic model (ADCIRC) coupled to a wave model (SWAN) forced by an asymmetric hurricane vortex model using the FEMA region 3 unstructured mesh (2.3 million nodes) under a High Performance Computing (HPC) environment. Multiple model simulations were performed using historical hurricanes data and hypothetical storms to compare the predicted storm surge inundation with various levels of wetland reduction and/or beach hardening. These data were combined and overlaid with a geospatial inventory of critical infrastructure assets to evaluate the potential for storm damage associated with each level of wetland reduction. This poster will present quantitative analyses of the benefits and losses regarding storm surge inundation and damage from land cover changes in the study region.

  3. Optical dating of late Holocene storm surges from Schokland (Noordoostpolder, the Netherlands)

    NASA Astrophysics Data System (ADS)

    van den Biggelaar, Don; Kluiving, Sjoerd; van Balen, Roland; Kasse, Cronelils; Troelstra, Simon; Prins, Maarten; Wallinga, Jakob; Versendaal, Alice

    2015-04-01

    Storm surges have a major impact on land use and human habitation in coastal regions. Our understanding of this impact can be improved by correlating long-term historical storm records with sedimentary evidence of storm surges, but so far few studies use such an approach. Here we present detailed geological and historical data on late Holocene storm surges from the former island Schokland, located in the northern part of Flevoland (central Netherlands). During the late Holocene, Schokland transformed from a peat area that gradually inundated (~1200 yr ago) via an island in a marine environment (~400 yr ago) to a land-locked island in the reclaimed Province of Flevoland (~70 yr ago). Deposits formed between 1200 and 70 year ago on lower parts of the island, consist of a stacked sequence of clay and sand layers, with the latter being deposited during storm surges. We dated the sandy laminae of late Holocene storm surges in the clay deposit on Schokland to improve the age model of the island's flooding history during the last 1200 years. Samples for dating were obtained from a mechanical core at Schokland. The top of the peat underlying the clay and sand deposits was dated using 14C accelerator mass spectrometry (AMS) of terrestrial plant and seed material. Sandy intervals of the flood deposits were dated using a series of ten quartz OSL ages, which were obtained using state-of-the-art methods to deal with incomplete resetting of the OSL signal. These new dates, together with laboratory analyses on the clay deposit (thermogravimetric analysis, grain-size analyses, foraminifera, bivalves and ostracods) and a literature study show that storm surges had a major impact on both the sedimentary and the anthropogenic history of Schokland. The results show that the stacked clay sequence is younger than expected, indicating either an increasing sedimentation rate or reworking of the clay by storm surges. Furthermore, the results indicate that a correlation can be made between the sedimentary remains of late Holocene storm surges and several major storm surges mentioned in the historical sources that eroded parts of Schokland.

  4. Thermodynamic and dynamic structure of atmosphere over the east coast of Peninsular Malaysia during the passage of a cold surge

    NASA Astrophysics Data System (ADS)

    Samah, Azizan Abu; Babu, C. A.; Varikoden, Hamza; Jayakrishnan, P. R.; Hai, Ooi See

    2016-08-01

    An intense field observation was carried out for a better understanding of cold surge features over Peninsular Malaysia during the winter monsoon season. The study utilizes vertical profiles of temperature, humidity and wind at high vertical and temporal resolution over Kota Bharu, situated in the east coast of Peninsular Malaysia. LCL were elevated during the passage of the cold surge as the relative humidity values decreased during the passage of cold surge. Level of Free Convection were below 800 hPa and equilibrium levels were close to the LFC in most of the cases. Convective available potential energy and convection inhibition energy values were small during most of the observations. Absence of local heating and instability mechanism are responsible for the peculiar thermodynamic structure during the passage of the cold surge. The wind in the lower atmosphere became northeasterly and was strong during the entire cold surge period. A slight increase in temperature near the surface and a drop in temperature just above the surface were marked by the passage of the cold surge. A remarkable increase in specific humidity was observed between 970 and 900 hPa during the cold surge period. Further, synoptic scale features were analyzed to identify the mechanism responsible for heavy rainfall. Low level convergence, upper level divergence and cyclonic vorticity prevailed over the region during the heavy rainfall event. Dynamic structure of the atmosphere as part of the organized convection associated with the winter monsoon was responsible for the vertical lifting and subsequent rainfall.

  5. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    NASA Astrophysics Data System (ADS)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  6. On the Importance of the Nonequilibrium Ionization of Si IV and O IV and the Line of Sight in Solar Surges

    NASA Astrophysics Data System (ADS)

    Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.

    2018-05-01

    Surges are ubiquitous cool ejections in the solar atmosphere that often appear associated with transient phenomena like UV bursts or coronal jets. Recent observations from the Interface Region Imaging Spectrograph show that surges, although traditionally related to chromospheric lines, can exhibit enhanced emission in Si IV with brighter spectral profiles than for the average transition region (TR). In this paper, we explain why surges are natural sites to show enhanced emissivity in TR lines. We performed 2.5D radiative-MHD numerical experiments using the Bifrost code including the nonequilibrium (NEQ) ionization of silicon and oxygen. A surge is obtained as a by-product of magnetic flux emergence; the TR enveloping the emerged domain is strongly affected by NEQ effects: assuming statistical equilibrium would produce an absence of Si IV and O IV ions in most of the region. Studying the properties of the surge plasma emitting in the Si IV λ1402.77 and O IV λ1401.16 lines, we find that (a) the timescales for the optically thin losses and heat conduction are very short, leading to departures from statistical equilibrium, and (b) the surge emits in Si IV more and has an emissivity ratio of Si IV to O IV larger than a standard TR. Using synthetic spectra, we conclude the importance of line-of-sight effects: given the involved geometry of the surge, the line of sight can cut the emitting layer at small angles and/or cross it multiple times, causing prominent, spatially intermittent brightenings in both Si IV and O IV.

  7. Role of exogenous estrogen in initiation of estrus and induction of an LH surge

    USDA-ARS?s Scientific Manuscript database

    Among cattle the LH surge that causes ovulation occurs shortly after the onset of a spontaneous estrus. In addition an injection of 100 'g of GnRH can induce an LH surge capable of inducing ovulation. We hypothesized that different preovulatory estradiol profiles would result in different ovulator...

  8. Phase I Report for SERRI Project No. 80037: Investigation of surge and wave reduction by vegetation

    USDA-ARS?s Scientific Manuscript database

    Surge and waves generated by hurricanes and other severe storms can cause devastating damage of property and loss of life in coastal areas. Vegetation in wetlands, coastal fringes and stream floodplains can reduce storm surge and waves while providing ecological benefits and complementing traditiona...

  9. Phase II Report for SERRI Project No. 80037: Investigation of surge and wave reduction by vegetation (Phase II)

    USDA-ARS?s Scientific Manuscript database

    To better understand and quantify the effectiveness of wetland vegetation in mitigating the impact of hurricane and storm surges, this SERRI project (No. 80037) examined surge and wave attenuation by vegetation through laboratory experiments, field observations and computational modeling. It was a c...

  10. [Analysis of articles published in Chin J Surg since founded in 1951].

    PubMed

    Xia, Shuang; Li, Jing

    2016-01-01

    To discuss the characteristics of the articles published in Chin J Surg from 1951 to 2015. The journals and articles of Acad Surg from 1951 to 1952 and Chin J Surg from 1953 to 2015 were analyzed. The subjects, foundation, basic medical study, international cooperation of the articles were recorded. In 65 years, there were 20 090 academic articles published in Chin J Surg. The proportions of general surgery, orthopedic surgery, thoracocardiac surgery, urology surgery and neurosurgery articles were 34.08%, 17.96%, 13.09%, 11.91% and 5.85%, respectively. There were 14.83% (1 728/11 653) articles receiving foundation, and 9.42% (1 817/19 290) articles reporting basic medical study. There were 14.8% articles from international authors and 119 articles with international cooperation. From 2000 to 2003, 29 articles in original English were published. The coverage of Chin J Surg contains all the fields of surgery. It tends to publish the studies focus on clinical issues.Through reinforcing the content plan and optimizing the show form, the more Chinese surgical research achievements could be shared by the surgeons worldwide.

  11. The optimization of design parameters for surge relief valve for pipeline systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjun; Hur, Jisung; Kim, Sanghyun

    2017-06-01

    Surge is an abnormal pressure which induced by rapid changes of flow rate in pipeline systems. In order to protect pipeline system from the surge pressure, various hydraulic devices have been developed. Surge-relief valve(SRV) is one of the widely applied devices to control surge due to its feasibility in application, efficiency and cost-effectiveness. SRV is designed to automatically open under abnormal pressure and discharge the flow and makes pressure of the system drop to the allowable level. The performance of the SRV is influenced by hydraulics. According to previous studies, there are several affecting factors which determine performance of the PRV such as design parameters (e.g. size of the valve), system parameters (e.g. number of the valves and location of the valve), and operation parameters (e.g. set point and operation time). Therefore, the systematic consideration for factors affecting performance of SRV is required for the proper installation of SRV in the system. In this study, methodology for finding optimum parameters of the SRV is explored through the integration of Genetic Algorithm(GA) into surge analysis.

  12. Base surge in recent volcanic eruptions

    USGS Publications Warehouse

    Moore, J.G.

    1967-01-01

    A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.

  13. Introduction on the operational storm surge forecasting system in Korea Operational Oceanographic System (KOOS)

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Il; Park, Kwang-Soon; Choi, Jung-Woon; Lee, Jong-Chan; Heo, Ki-Young; Kim, Sang-Ik

    2017-04-01

    During last more than 50 years, 258 typhoons passed and affected the Korean peninsula in terms of high winds, storm surges and extreme waves. In this study we explored the performance of the operational storm surge forecasting system in the Korea Operational Oceanographic System (KOOS) with 8 typhoons from 2010 to 2016. The operation storm surge forecasting system for the typhoon in KOOS is based on 2D depth averaged model with tides and CE (U.S. Army Corps of Engineers) wind model. Two key parameters of CE wind model, the locations of typhoon center and its central atmospheric pressure are based from Korea Meteorological administrative (KMA)'s typhoon information provided from 1 day to 3 hour intervals with the approach of typhoon through the KMA's web-site. For 8 typhoons cases, the overall errors, other performances and analysis such as peak time and surge duration are presented in each case. The most important factor in the storm surge errors in the operational forecasting system is the accuracy of typhoon passage prediction.

  14. Designsafe-Ci a Cyberinfrastructure for Natural Hazard Simulation and Data

    NASA Astrophysics Data System (ADS)

    Dawson, C.; Rathje, E.; Stanzione, D.; Padgett, J.; Pinelli, J. P.

    2017-12-01

    DesignSafe is the web-based research platform of the Natural Hazards Engineering Research Infrastructure (NHERI) network that provides the computational tools needed to manage and analyze critical data for natural hazards research, with wind and storm surge related hazards being a primary focus. One of the simulation tools under DesignSafe is the Advanced Circulation (ADCIRC) model, a coastal ocean model used in storm surge analysis. ADCIRC is an unstructured, finite element model with high resolution capabilities for studying storm surge impacts, and has long been used in storm surge hind-casting and forecasting. In this talk, we will demonstrate the use of ADCIRC within the DesignSafe platform and its use for forecasting Hurricane Harvey. We will also demonstrate how to analyze, visualize and archive critical storm surge related data within DesignSafe.

  15. Secondary Surge Capacity: A Framework for Understanding Long-Term Access to Primary Care for Medically Vulnerable Populations in Disaster Recovery

    PubMed Central

    Brock-Martin, Amy; Karmaus, Wilfried; Svendsen, Erik R.

    2012-01-01

    Disasters create a secondary surge in casualties because of the sudden increased need for long-term health care. Surging demands for medical care after a disaster place excess strain on an overtaxed health care system operating at maximum or reduced capacity. We have applied a health services use model to identify areas of vulnerability that perpetuate health disparities for at-risk populations seeking care after a disaster. We have proposed a framework to understand the role of the medical system in modifying the health impact of the secondary surge on vulnerable populations. Baseline assessment of existing needs and the anticipation of ballooning chronic health care needs following the acute response for at-risk populations are overlooked vulnerability gaps in national surge capacity plans. PMID:23078479

  16. Purple Pitcher Plant (Sarracenia rosea) Dieback and Partial Community Disassembly following Experimental Storm Surge in a Coastal Pitcher Plant Bog

    PubMed Central

    Abbott, Matthew J.; Battaglia, Loretta L.

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  17. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    PubMed

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  18. Controlled Ovarian Hyperstimulation with Intrauterine Insemination Is More Successful After r-hCG Administration Than Spontaneous LH Surge.

    PubMed

    Taerk, Evan; Hughes, Edward; Greenberg, Cassandra; Neal, Michael; Amin, Shilpa; Faghih, Mehrnoosh; Karnis, Megan

    2017-01-01

    The purpose of this study was to evaluate whether clinical pregnancy rate is affected by timing intrauterine insemination (IUI) according to serum LH surge, r-hCG trigger, or a combination of LH surge and r-hCG trigger in controlled ovarian hyperstimulation (COH) cycles for patients with a variety of infertility etiologies. The last 365 consecutive COH-IUI cycles performed at ONE Fertility Burlington in 2014 were reviewed and categorized according to method of IUI timing. Associations between categorical variables were analyzed using a combination of Chi-square and Fisher's Exact tests, and between continuous variables using independent sample t-tests and logistic regression to a level of significance of p<0.05. The overall clinical pregnancy rate in this sample was 18.1% (66/365). Administration of r-hCG prior to IUI resulted in a higher clinical pregnancy rate compared with spontaneous serum LH surge: 18.2% vs . 5.8%, p=0.012. Patients in whom r-hCG was administered concomitantly with a serum LH surge had a higher clinical pregnancy than the r-hCG trigger group (30.8% vs . 18.2%, p=0.004) and LH surge group (30.8% vs . 5.8%, p<0.001). A sub-group analysis revealed that patients receiving r-FSH, rather than clomiphene or letrozole, had a significantly higher clinical pregnancy rate after r-hCG trigger as compared to the LH surge group (21.7% vs . 2.1%, p=0.01). In subfertile couples undergoing COH-IUI, r-hCG administration was associated with an increased clinical pregnancy rate compared with spontaneous serum LH surge. When r-hCG was administered concomitantly with a serum LH surge, this benefit was amplified. The effect appears to be of particular importance in r-FSH-medicated cycles.

  19. Liftoff of the 18 May 1980 surge of Mount St. Helens (USA) and the deposits left behind

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Andrews, Benjamin J.; Dennen, Robert

    2017-01-01

    The distance that ground-hugging pyroclastic density currents travel is limited partly by when they reverse buoyancy and liftoff into the atmosphere. It is not clear, however, what deposits are left behind by lofting flows. One current that was seen to liftoff was the surge erupted from Mount St. Helens on the morning of 18 May 1980. Before lofting, it had leveled a large area of thick forest (the blowdown zone). The outer edge of the devastated area—where trees were scorched but left standing (the scorched zone)—is where the surge is thought to have lifted off. Deposits in the outer parts of the blowdown and in the scorched zone were examined at 32 sites. The important finding is that the laterally moving surge traveled through the scorched zone, and hence, the change in tree damage does not mark the runout distance of the surge. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards. We propose, based on interpretation of eyewitness accounts and the impacts of the surge on trees and vehicles, that the surge consisted of a faster, dilute "overcurrent" and a slower "undercurrent," where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that where the overcurrent began to liftoff, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, however, scorching trees, but lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from ˜30 m s-1 when it entered the scorched zone to ˜3 m s-1 at the far end.

  20. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  1. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  2. Development of Inundation Map for Bantayan Island, Cebu Using Delft3D-Flow Storm Surge Simulations of Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.

  3. Effects of TORC1 Inhibition during the Early and Established Phases of Polycystic Kidney Disease

    PubMed Central

    Ta, Michelle H. T.; Schwensen, Kristina G.; Foster, Sheryl; Korgaonkar, Mayuresh; Ozimek-Kulik, Justyna E.; Phillips, Jacqueline K.; Peduto, Anthony; Rangan, Gopala K.

    2016-01-01

    The disease-modifying effects of target of rapamycin complex 1 (TORC1) inhibitors during different stages of polycystic kidney disease (PKD) are not well defined. In this study, male Lewis Polycystic Kidney Disease (LPK) rats (a genetic ortholog of human NPHP9, phenotypically characterised by diffuse distal nephron cystic growth) and Lewis controls received either vehicle (V) or sirolimus (S, 0.2 mg/kg by intraperitoneal injection 5 days per week) during the early (postnatal weeks 3 to 10) or late stages of disease (weeks 10 to 20). In early-stage disease, sirolimus reduced kidney enlargement (by 63%), slowed the rate of increase in total kidney volume (TKV) in serial MRI by 78.2% (LPK+V: 132.3±59.7 vs. LPK+S: 28.8±12.0% per week) but only partly reduced the percentage renal cyst area (by 19%) and did not affect the decline in endogenous creatinine clearance (CrCl) in LPK rats. In late-stage disease, sirolimus reduced kidney enlargement (by 22%) and the rate of increase in TKV by 71.8% (LPK+V: 13.1±6.6 vs. LPK+S: 3.7±3.7% per week) but the percentage renal cyst area was unaltered, and the CrCl only marginally better. Sirolimus reduced renal TORC1 activation but not TORC2, NF-κB DNA binding activity, CCL2 or TNFα expression, and abnormalities in cilia ultrastructure, hypertension and cardiac disease were also not improved. Thus, the relative treatment efficacy of TORC1 inhibition on kidney enlargement was consistent at all disease stages, but the absolute effect was determined by the timing of drug initiation. Furthermore, cystic microarchitecture, renal function and cardiac disease remain abnormal with TORC1 inhibition, indicating that additional approaches to normalise cellular dedifferentiation, inflammation and hypertension are required to completely arrest the progression of PKDs. PMID:27723777

  4. The Danger of Deja Vu: Why the Iraq Surge is Not a Lesson for Afghanistan

    DTIC Science & Technology

    2010-01-01

    JAN 2010 2. REPORT TYPE 3. DATES COVERED 00-12-2009 to 00-01-2010 4. TITLE AND SUBTITLE The danger of deja vu . Why the Iraq surge is not a lesson...of five brigade combat teams — eerily mim- icked the surge number for Iraq. And there was more déjà vu when our senior civilian and military leaders...Department. PERSPECTIVES The danger of déjà vu Why the Iraq surge is not a lesson for Afghanistan BY COL. CHARLES D. ALLEN (RET.) The thing we take hold of

  5. Performance Comparison of the European Storm Surge Models and Chaotic Model in Forecasting Extreme Storm Surges

    NASA Astrophysics Data System (ADS)

    Siek, M. B.; Solomatine, D. P.

    2009-04-01

    Storm surge modeling has rapidly developed considerably over the past 30 years. A number of significant advances on operational storm surge models have been implemented and tested, consisting of: refining computational grids, calibrating the model, using a better numerical scheme (i.e. more realistic model physics for air-sea interaction), implementing data assimilation and ensemble model forecasts. This paper addresses the performance comparison between the existing European storm surge models and the recently developed methods of nonlinear dynamics and chaos theory in forecasting storm surge dynamics. The chaotic model is built using adaptive local models based on the dynamical neighbours in the reconstructed phase space of observed time series data. The comparison focused on the model accuracy in forecasting a recently extreme storm surge in the North Sea on November 9th, 2007 that hit the coastlines of several European countries. The combination of a high tide, north-westerly winds exceeding 50 mph and low pressure produced an exceptional storm tide. The tidal level was exceeded 3 meters above normal sea levels. Flood warnings were issued for the east coast of Britain and the entire Dutch coast. The Maeslant barrier's two arc-shaped steel doors in the Europe's biggest port of Rotterdam was closed for the first time since its construction in 1997 due to this storm surge. In comparison to the chaotic model performance, the forecast data from several European physically-based storm surge models were provided from: BSH Germany, DMI Denmark, DNMI Norway, KNMI Netherlands and MUMM Belgium. The performance comparison was made over testing datasets for two periods/conditions: non-stormy period (1-Sep-2007 till 14-Oct-2007) and stormy period (15-Oct-2007 till 20-Nov-2007). A scalar chaotic model with optimized parameters was developed by utilizing an hourly training dataset of observations (11-Sep-2005 till 31-Aug-2007). The comparison results indicated the chaotic model yields better forecasts than the existing European storm surge models. The best performance of European storm surge models for non-storm and storm conditions was achieved by KNMI (with Kalman filter data assimilation) and BSH with errors of 8.95cm and 10.92cm, respectively. Whereas the chaotic model can provide 6 and 48 hours forecasts with errors of 3.10cm and 8.55cm for non-storm condition and 5.04cm and 15.21cm for storm condition, respectively. The chaotic model can provide better forecasts primarily due to the fact that the chaotic model forecasting are estimated by local models which model and identify the similar development of storm surges in the past. In practice, the chaotic model can serve as a reliable and accurate model to support decision-makers in operational ship navigation and flood forecasting.

  6. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    NASA Astrophysics Data System (ADS)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  7. The art and science of surge: experience from Israel and the U.S. military.

    PubMed

    Tadmor, Boaz; McManus, John; Koenig, Kristi L

    2006-11-01

    In a disaster or mass casualty incident, health care resources may be exceeded and systems may be challenged by unusual requirements. These resources may include pharmaceuticals, supplies, and equipment as well as certain types of academic and administrative expertise. New agencies and decision makers may need to work together in an unfamiliar environment. Furthermore, large numbers of casualties needing treatment, newer therapies required to care for these casualties, and increased workforce and space available for these casualties all contribute to what is often referred to as "surge." Surge capacity in emergency care can be described in technical, scientific terms that are measured by numbers and benchmarks (e.g., beds, patients, and medications) or can take on a more conceptual and abstract form (e.g., decisions, authority, and responsibility). The former may be referred to as the "science" of surge, whereas the latter, an equal if not more important component of surge systems that is more conceptual and abstract, can be considered the "art" of surge. The experiences from Israel and the U.S. military may serve to educate colleagues who may be required to respond or react to an event that taxes the current health care system. This report presents concrete examples of surge capacity strategies used by both Israel and the U.S. military and provides solutions that may be applied to other health care systems when faced with similar situations.

  8. Morning blood pressure surge and arterial stiffness in newly diagnosed hypertensive patients.

    PubMed

    Kıvrak, Ali; Özbiçer, Süleyman; Kalkan, Gülhan Yüksel; Gür, Mustafa

    2017-06-01

    We aimed to investigate the relationship between the morning blood pressure (BP) surge and arterial stiffness in patients with newly diagnosed hypertension. Three hundred and twenty four (mean age 51.7 ± 11.4 years) patients who had newly diagnosed hypertension with 24 h ambulatory BP monitoring were enrolled. Parameters of arterial stiffness, pulse wave velocity and augmentation index (Aix) were measured by applanation tonometry and aortic distensibility was calculated by echocardiography. Compared with the other groups, pulse wave velocity, day-night systolic BP (SBP) difference (p < 0.001, for all) and hs-CRP (p = 0.005) were higher in morning BP surge high group. Aortic distensibility values were significantly lower in morning BP surge high group compared to the other groups (p < 0.05, for all). Morning BP surge was found to be independently associated with pulse wave velocity (β = 0.286, p < 0.001), aortic distensibility (β= -0.384, p < 0.001) and day-night SBP difference (β = 0.229, p < 0.001) in multivariate linear regression analysis. We found independent relationship between morning BP surge and arterial stiffness which is a surrogate endpoint for cardiovascular diseases. The inverse relationship between morning BP surge and aortic distensibility and direct relation found in our study is new to the literature.

  9. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    USGS Publications Warehouse

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  10. The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges

    PubMed Central

    Barbier, Edward B.; Georgiou, Ioannis Y.; Enchelmeyer, Brian; Reed, Denise J.

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively. PMID:23536815

  11. Typhoon Haiyan-Induced Storm Surge Simulation in Metro Manila Using High-Resolution LiDAR Topographic Data

    NASA Astrophysics Data System (ADS)

    Santiago, J. T.

    2015-12-01

    Storm surge is the abnormal rise in sea water over and above astronomical tides due to a forthcoming storm. Developing an early warning system for storm surges is vital due to the high level of hazard they might cause. On 08 November 2013, Typhoon Haiyan generated storm surges that killed over 6,000 people in the central part of the Philippines. The Nationwide Operational Assessment of Hazards under the Department of Science and Technology was tasked to create storm surge hazard maps for the country's coastal areas. The research project aims to generate storm surge hazard maps that can be used for disaster mitigation and planning. As part of the research, the team explored a scenario wherein a tropical cyclone hits the Metro Manila with strength as strong as Typhoon Haiyan. The area was chosen primarily for its political, economic and cultural significance as the country's capital. Using Japan Meteorological Agency Storm Surge model, FLO2D flooding software, LiDAR topographic data, and GIS technology, the effects of a Haiyan-induced tropical cyclone passing through Metro Manila was examined. The population affected, number of affected critical facilities, and potential evacuation sites were identified. The outputs of this study can be used by the authorities as basis for policies that involve disaster risk reduction and management.

  12. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    PubMed

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  13. Radiation field size and dose determine oncologic outcome in esophageal cancer.

    PubMed

    Gemici, Cengiz; Yaprak, Gokhan; Batirel, Hasan Fevzi; Ilhan, Mahmut; Mayadagli, Alpaslan

    2016-10-13

    Locoregional recurrence is a major problem in esophageal cancer patients treated with definitive concomitant chemoradiotherapy. Approximately half of the patients fail locoregionally. We analyzed the impact of enlarged radiation field size and higher radiation dose incorporated to chemoradiotherapy on oncologic outcome. Seventy-four consecutive patients with histologically proven nonmetastatic squamous or adenocarcinoma of the esophagus were included in this retrospective analysis. All patients were locally advanced cT3-T4 and/or cN0-1. Treatment consisted of either definitive concomitant chemoradiotherapy (Def-CRT) (n = 49, 66 %) or preoperative concomitant chemoradiotherapy (Pre-CRT) followed by surgical resection (n = 25, 34 %). Patients were treated with longer radiation fields. Clinical target volume (CTV) was obtained by giving 8-10 cm margins to the craniocaudal borders of gross tumor volume (GTV) instead of 4-5 cm globally accepted margins, and some patients in Def-CRT group received radiation doses higher than 50 Gy. Isolated locoregional recurrences were observed in 9 out of 49 patients (18 %) in the Def-CRT group and in 1 out of 25 patients (3.8 %) in the Pre-CRT group (p = 0.15). The 5-year survival rate was 59 % in the Def-CRT group and 50 % in the Pre-CRT group (p = 0.72). Radiation dose was important in the Def-CRT group. Patients treated with >50 Gy (11 out of 49 patients) had better survival with respect to patients treated with 50 Gy (38 out of 49 patients). Five-year survivals were 91 and 50 %, respectively (p = 0.013). Radiation treatment planning by enlarged radiation fields in esophageal cancer decreases locoregional recurrences considerably with respect to the results reported in the literature by standard radiation fields (18 vs >50 %). Radiation dose is as important as radiation field size; patients in the Def-CRT group treated with ≥50 Gy had better survival in comparison to patients treated with 50 Gy.

  14. Diagnostic utility of endobronchial ultrasound features in differentiating malignant and benign lymph nodes.

    PubMed

    Agrawal, Sumita P; Ish, Pranav; Goel, Akhil D; Gupta, Nitesh; Chakrabarti, Shibdas; Bhattacharya, Dipak; Sen, Manas K; Suri, Jagdish C

    2018-06-25

    Endobronchial ultrasound (EBUS) features have been shown to be useful in predicting etiology of enlarged malignant lymph nodes. However, there is dearth of evidence especially from developing countries. We assessed the EBUS characteristics across various mediastinal and hilar lymphadenopathies. In this prospective study, all patients with mediastinal and hilar lymphadenopathy on CT Chest and who were planned for EBUS-FNA (Fine Needle Aspiration) were included. EBUS features of lymph nodes studied were shape, size, margins, echogenicity, central hilar structure (CHS), coagulation necrosis sign and colour power doppler index (CPDI). These were scored and compared between benign and malignant lymphadenopathies. A total of 86 lymph nodes in 46 patients were prospectively studied of which 23 (26.7%) were malignant, 27 (31.3%) tuberculosis and 36 (41.8%) sarcoidosis. There was significant difference between malignant and benign lymph nodes in terms of CHS [central hilar structutre] (p=0.011), margins (p=0.036) and coagulation necrosis sign (p<0.001). On comparison of features of malignancy and tuberculosis, there were significant differences in margins (p=0.016) and coagulation necrosis sign (p 0.001). However, when malignancy and sarcoidosis was compared, there were differences in echogenicity (p=0.002), CHS (p=0.009) and coagulation necrosis sign (p<0.001). Only coagulation necrosis sign was found to be highly consistent with malignant lymph nodes. The other features cannot be used to distinguish malignant from benign lymph nodes, especially in a developing country like India where tuberculosis is a common cause of mediastinal lymphadenopathy.

  15. Surge-type glaciers in the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kriti; Bolch, Tobias

    2016-04-01

    Surge-type glaciers in High Mountain Asia are mostly observed in Karakoram and Pamir. However, few surge-type glaciers also exist in the Tien Shan, but have not comprehensively studied in detail in the recent literature. We identified surge-type glaciers in the Tien Shan either from available literature or by manual interpretation using available satellite images (such as Corona, Hexagon, Landsat, SPOT, IRS) for the period 1960 to 2014. We identified 39 possible surge-type glaciers, showing typical characteristics like looped moraines. Twenty-two of them rapidly advanced during different periods or a surge was clearly described in the literature. For the remaining possible surge-type glaciers either the advance, in terms of time and length, were not mentioned in detail in the literature, or the glaciers have remained either stable or retreated during the entire period of our study. Most of the surge-type glaciers cluster in the Inner Tien Shan (especially in the Ak-Shiirak rage) and the Central Tien Shan, are in size and are facing North, West or North West. Pronounced surge events were observed for North Inylchek and Samoilowitsch glaciers, both of which are located in the Central Tien Shan. Samoilowitsch Glacier retreated by more than 3 km between 1960 (length ~8.9 km) and 1992 (~5.8 km), advanced by almost 3 km until 2006 and slightly retreated thereafter. The most pronounced advance occurred between 2000 and 2002. DEM differencing (based on SRTM3 data and stereo Hexagon and Cartosat-1 data) revealed a significant thickening in the middle reaches (reservoir area) of the glacier between 1973 and 2000 while the surface significantly lowered in the middle and upper parts of the glacier between 2000 and 2006. Hence, the ice mass was transferred to the lower reaches (receiving area) and caused the advance with a maximum thickening of more than 80 m. The ~30 km long North Inylchek Glacier retreated since 1943 and showed a very rapid advance of ~3.5 km especially in the year 1997 with a thickening of the tongue of more than 120 m. Both glaciers showed a surge cycle of about 50 years. The advance was not so pronounced for all other surge-type glaciers. Some of the tributary glaciers behaved differently than the main glaciers in the sense that they continuously advanced during almost the entire period of our study, whereas the main glaciers have remained almost stable or retreated.

  16. Identification of Critical Vulnerable Areas During a Typhoon Haiyan Event in the Metro Manila Area Using Storm Surge Hazard Maps

    NASA Astrophysics Data System (ADS)

    Briones, J. B. L. T.; Puno, J. V.; Lapidez, J. P. B.; Muldong, T. M. M.; Ramos, M. M.; Caro, C. V.; Ladiero, C.; Bahala, M. A.; Suarez, J. K. B.; Santiago, J. T.

    2014-12-01

    Sudden rises in sea water over and above astronomical tides due to an approaching storm are known as storm surges. The development of an early warning system for storm surges is imperative, due to the high threat level of these events; Typhoon Haiyan in 08 November 2013 generated storm surges that caused casualties of over 6,000. Under the Department of Science and Technology, the Nationwide Operational Assessment of Hazards (DOST - Project NOAH) was tasked to generate storm surge hazard maps for all the coastal areas in the Philippines. The objective of this paper is to create guidelines on how to utilize the storm surge hazard map as a tool for planning and disaster mitigation. This study uses the case of the hypothetical situation in which a tropical storm with an intensity similar to Typhoon Haiyan hits Metro Manila. This site was chosen for various reasons, among them the economic, political, and cultural importance of Metro Manila as the location of the capital of the Philippines and the coastal bay length of the area. The concentration of residential areas and other establishments were also taken into account. Using the Japan Meteorology Association (JMA) Storm Surge Model, FLO-2D flood modelling software and the application of other GIS technology, the impact of Haiyan-strength typhoon passing through Manila was analysed. We were able to identify the population affected, number of affected critical facilities under each storm surge hazard level, and possible evacuation sites. The results of the study can be used as the basis of policies involving disaster response and mitigation by city authorities. The methods used by the study can be used as a replicable framework for the analysis of other sites in the Philippines.

  17. Numerical investigation of rotating stall in centrifugal compressor with vaned and vaneless diffuser

    NASA Astrophysics Data System (ADS)

    Halawa, Taher; Alqaradawi, Mohamed; Gadala, Mohamed S.; Shahin, Ibrahim; Badr, Osama

    2015-06-01

    This study presents a numerical simulation of the stall and surge in a centrifugal compressor and presents a descriptionof the stall development in two different cases. The first case is for a compressor with vaneless diffuser and the second is for a compressor with vaned diffuser of the vane island shape. The main aim of this study is to compare the flow characteristics and behavior for the two compressors near the surge operating condition and provide further understanding of the diffuser role when back flow occurs at surge. Results showed that for a locationnear the diffuser entrance, the amplitude of the static pressure fluctuations for the vaneless diffuser case is higher than that for the vaned diffuser case near surge condition. These pressure fluctuations in the case of the vaneless diffuser appear with a gradual decrease of the mean pressure value as a part of the surge cycle. While for the case of the vaned diffuser, the pressure drop during surge occurs faster than the case of the vaneless diffuser. Also, results indicated that during surge in the case of vaneless diffuser, there is a region with low velocity and back flow that appears as a layer connecting all impeller passages near shroud surface and this layer develops in size with time. On the other hand, for the case of vaned diffuser during surge, the low velocity regions appear in random locations in some passages and these regions expand with time towards the shroud surface. Results showed that during stall, the impeller passages are exposed to identical impact from stall cells in the case of vaneless diffuser while the stall effect varies from passage to another in the case of the vaned diffuser.

  18. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Leung, Lai-Yung R.

    The northern coasts of the Gulf of Mexico are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks can be potentially exacerbated by land subsidence and global sea level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea level rise in the northern Gulf coast. An unstructured-grid Finite Volume Coastal Ocean Model was used to simulate tides and hurricane-induced storm surges in the Gulf of Mexico.more » Simulated distributions of co-amplitude and co-phase of semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea level rise on coastal inundation in the Louisiana coast were evaluated using a parameter “change of inundation depth” through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.« less

  19. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    USGS Publications Warehouse

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  20. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-08-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.

  1. A simplified real time method to forecast semi-enclosed basins storm surge

    NASA Astrophysics Data System (ADS)

    Pasquali, D.; Di Risio, M.; De Girolamo, P.

    2015-11-01

    Semi-enclosed basins are often prone to storm surge events. Indeed, their meteorological exposition, the presence of large continental shelf and their shape can lead to strong sea level set-up. A real time system aimed at forecasting storm surge may be of great help to protect human activities (i.e. to forecast flooding due to storm surge events), to manage ports and to safeguard coasts safety. This paper aims at illustrating a simple method able to forecast storm surge events in semi-enclosed basins in real time. The method is based on a mixed approach in which the results obtained by means of a simplified physics based model with low computational costs are corrected by means of statistical techniques. The proposed method is applied to a point of interest located in the Northern part of the Adriatic Sea. The comparison of forecasted levels against observed values shows the satisfactory reliability of the forecasts.

  2. Hurricane modification and adaptation in Miami-Dade County, Florida.

    PubMed

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  3. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  4. Algorithm for Controlling a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  5. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  6. [The role of patient flow and surge capacity for in-hospital response in mass casualty events].

    PubMed

    Sefrin, Peter; Kuhnigk, Herbert

    2008-03-01

    Mass casualty events make demands on emergency services and disaster control. However, optimized in- hospital response defines the quality of definitive care. Therefore, German federal law governs the role of hospitals in mass casualty incidents. In hospital casualty surge is depending on resources that have to be expanded with a practicable alarm plan. Thus, in-hospital mass casualty management planning is recommended to be organized by specialized persons. To minimise inhospital patient overflow casualty surge principles have to be implemented in both, pre-hospital and in-hospital disaster planning. World soccer championship 2006 facilitated the initiation of surge and damage control principles in in-hospital disaster planning strategies for German hospitals. The presented concept of strict control of in-hospital patient flow using surge principles minimises the risk of in-hospital breakdown and increases definitive hospital treatment capacity in mass casualty incidents.

  7. Application of Alkenone 14C-Based chronostratigraphy in carbonate barren sediments on the Peru Margin.

    NASA Astrophysics Data System (ADS)

    Higginson, M. J.; Altabet, M. A.; Herbert, T. D.

    2003-04-01

    Despite the availability of high-quality sediment cores in key locations, little paleoclimatic information exists for the Peru margin largely because poor carbonate preservation severely restricts the use of traditional carbonate-based proxies for stratigraphy, dating, and paleo-environmental reconstruction. Many sites also include hiatuses produced by the variable influence of undercurrents on sediment accumulation. To overcome these difficulties, we have developed (in collaboration with T. Eglinton, WHOI) a laboratory facility to successfully extract and purify haptophyte-derived alkenones for compound specific 14C AMS dating (modified from OHKOUCHI et al., 2002). This avoids potential problems with dating bulk organic carbon which we assume, even in an upwelling environment as highly productive as the Peru margin, is not a priori solely of marine origin. In a recently collected, mid-Peru Margin core (ODP Leg 201 Site 1228D), comparison of our alkenone 14C dates with bulk sediment organic carbon dates and known stratigraphic markers produces a very well constrained, curvilinear age-depth relationship for at least the last 14 Kyr. A discrete ash layer at Site 1228D with an adjacent alkenone 14C age of 3890 ± 350 yr, is within error identical to the 14C age of a prominent ash layer (3800 ± 50 yr) found west of the large Peruvian El Misti volcano (16^o18'S, 71^o24'W). In summary, these results show that the Peru margin alkenones are autochthonous (i.e. not from an older, distant source) and provide sufficient dating precision to permit, for the first time, high-resolution paleoceanographic studies in this highly important marine province. Based upon this new chronology, synchronous changes in alkenone-derived SST estimates in two of our independently-dated records are the first to record at high-resolution (a) a large LGM-Holocene SST range in the Tropics (up to 7.8 ^oC during brief events in this upwelling location); and (b) sharp coolings (4 ^oC) consistent with the timing of the Younger Dryas. We presume that the enlarged SST amplitude of these sites comes from the sensitivity of the Peru margin to the dominant upwelling signal and its proximity to the Andes, from which there is evidence for a Younger Dryas response. The appearance of a Bolling-Allerod/Younger Dryas SST reversal consistent with published dates is further verification of our chronostratigraphic methods.

  8. Ultrasound of Inherited vs. Acquired Demyelinating Polyneuropathies

    PubMed Central

    Zaidman, Craig M.; Harms, Matthew B.; Pestronk, Alan

    2013-01-01

    Introduction We compared features of nerve enlargement in inherited and acquired demyelinating neuropathies using ultrasound. Methods We measured median and ulnar nerve cross-sectional areas in proximal and distal regions in 128 children and adults with inherited (Charcot-Marie Tooth-1 (CMT-1) (n=35)) and acquired (Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) (n=55), Guillaine-Barre Syndrome (GBS) (n=21) and Multifocal Motor Neuropathy (MMN) (n=17)) demyelinating neuropathies. We classified nerve enlargement by degree and number of regions affected. We defined patterns of nerve enlargement as: none- no enlargement; mild-nerves enlarged but never more than twice normal; regional- nerves normal at at least one region and enlarged more than twice normal at atleast one region; diffuse- nerves enlarged at all four regions with atleast one region more than twice normal size. Results Nerve enlargement was commonly diffuse (89%) and generally more than twice normal size in CMT-1, but not (p<0.001) in acquired disorders which mostly had either no, mild or regional nerve enlargement (CIDP (64%), GBS (95%), and MMN (100%)). In CIDP, subjects treated within three months of disease onset had less nerve enlargement than those treated later. Discussion Ultrasound identified patterns of diffuse nerve enlargement can be used to screen patients suspected of having CMT-1. Normal, mildly, or regionally enlarged nerves in demyelinating polyneuropathy suggests an acquired etiology. Early treatment in CIDP may impede nerve enlargement. PMID:24101129

  9. Global mortality from storm surges is decreasing

    NASA Astrophysics Data System (ADS)

    Bouwer, Laurens M.; Jonkman, Sebastiaan N.

    2018-01-01

    Changes in society’s vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (>10 000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.

  10. Surrogate modeling of joint flood risk across coastal watersheds

    NASA Astrophysics Data System (ADS)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  11. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    NASA Astrophysics Data System (ADS)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. These maps can also determine the best areas to build critical structures, or at least determine the level of protection of these structures should they be built in hazard areas. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate countermeasures for a given PSWS.

  12. Ability of regional hospitals to meet projected avian flu pandemic surge capacity requirements.

    PubMed

    Ten Eyck, Raymond P

    2008-01-01

    Hospital surge capacity is a crucial part of community disaster preparedness planning, which focuses on the requirements for additional beds, equipment, personnel, and special capabilities. The scope and urgency of these requirements must be balanced with a practical approach addressing cost and space concerns. Renewed concerns for infectious disease threats, particularly from a potential avian flu pandemic perspective, have emphasized the need to be prepared for a prolonged surge that could last six to eight weeks. The surge capacity that realistically would be generated by the cumulative Greater Dayton Area Hospital Association (GDAHA) plan is sufficient to meet the demands of an avian influenza pandemic as predicted by the [US] Centers for Disease Control and Prevention (CDC) models. Using a standardized data form, surge response plans for each hospital in the GDAHA were assessed. The cumulative results were compared to the demand projected for an avian influenza pandemic using the CDC's FluAid and FluSurge models. The cumulative GDAHA capacity is sufficient to meet the projected demand for bed space, intensive care unit beds, ventilators, morgue space, and initial personal protective equipment (PPE) use. There is a shortage of negative pressure rooms, some basic equipment, and neuraminidase inhibitors. Many facilities lack a complete set of written surge policies, including screening plans to segregate contaminated patients and staff prior to entering the hospital. Few hospitals have agreements with nursing homes or home healthcare agencies to provide care for patients discharged in order to clear surge beds. If some of the assumptions in the CDC's models are changed to match the morbidity and mortality rates reported from the 1918 pandemic, the surge capacity of GDAHA facilities would not meet the projected demand. The GDAHA hospitals should test their regional distributors' ability to resupply PPE for multiple facilities simultaneously. Facilities should retrofit current air exchange systems to increase the number of potential negative pressure rooms and include such designs in all future construction. Neuraminidase inhibitor supplies should be increased to provide treatment for healthcare workers exposed in the course of their duties. Each hospital should have a complete set of policies to address the special considerations for a prolonged surge. Additional capacity is required to meet the predicted demands of a threat similar to the 1918 pandemic.

  13. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials.

    PubMed

    Burger, Jan A

    2014-03-01

    BTK is a cytoplasmic, non-receptor tyrosine kinase that transmits signals from a variety of cell-surface molecules, including the B-cell receptor (BCR) and tissue homing receptors. Genetic BTK deletion causes B-cell immunodeficiency in humans and mice, making this kinase an attractive therapeutic target for B-cell disorders. The BTK inhibitor ibrutinib (PCI-32765, brand name: Imbruvica) demonstrated high clinical activity in B-cell malignancies, especially in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenstrom's macroglobulinemia (WM). Therefore, ibrutinib was granted a 'breakthrough therapy' designation for these indications and was recently approved for the treatment of relapsed MCL by the U.S. Food and Drug Administration. Other BTK inhibitors in earlier clinical development include CC-292 (AVL-292), and ONO-4059. In CLL and MCL, ibrutinib characteristically induces redistribution of malignant B cells from tissue sites into the peripheral blood, along with rapid resolution of enlarged lymph nodes and a surge in lymphocytosis. With continuous ibrutinib therapy, growth- and survival-inhibitory activities of ibrutinib result in the normalization of lymphocyte counts and remissions in a majority of patients. This review discusses the clinical advances with BTK inhibitor therapy, as well as its pathophysiological basis, and outlines perspectives for future use of BTK inhibitors.

  14. Sodium valproate induced gingival enlargement with pre-existing chronic periodontitis.

    PubMed

    Joshipura, Vaibhavi

    2012-04-01

    Gingival enlargement is a common clinical feature of gingival and periodontal diseases. Currently, more than 20 prescription medications are associated with gingival enlargement. Although the mechanisms of action may be different, the clinical and microscopic appearance of drug-induced gingival enlargement is similar with any drug. Gingival enlargement produces esthetic changes, and clinical symptoms including pain, tenderness, bleeding, speech disturbances, abnormal tooth movement, dental occlusion problems, enhancement of caries development and periodontal disorders. Sodium valproate is considered to produce gingival enlargement, but very rarely. This case report features sodium valproate induced gingival enlargement in a patient with pre-existing chronic periodontitis, who came to the Dental Department, Chinmaya Mission Hospital, Bangalore. The case is special as the patient did not develop the enlargement in spite of taking phenytoin for 1 year and developed enlargement with sodium valproate within 6 months.

  15. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  16. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.; Childers, V.A.

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  17. Malignant nerve-sheath neoplasms in neurofibromatosis: distinction from benign tumors by using imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, E.; Huntrakoon, M.; Wetzel, L.H.

    Malignant peripheral nerve-sheath neoplasms frequently complicate neurofibromatosis causing pain, enlarging masses, or neurologic deficits. However, similar findings sometimes also occur with benign nerve neoplasms. Our study was done retrospectively to determine if imaging techniques can differentiate malignant from benign nerve tumors in neurofibromatosis. Eight patients with symptomatic neoplasms (three benign, five malignant) were studied by CT in eight, MR in six, and /sup 67/Ga-citrate scintigraphy in seven. Uptake of /sup 67/Ga occurred in all five malignant lesions but not in two benign neoplasms studied. On CT or MR, all eight lesions, including three benign neoplasms, showed inhomogeneities. Of five lesionsmore » with irregular, infiltrative margins on CT or MR, four were malignant and one was benign. Of three lesions with smooth margins, one was malignant and two were benign. One malignant neoplasm caused irregular bone destruction. Accordingly, CT and MR could not generally distinguish malignant from benign lesions with certainty. However, both CT and MR provided structural delineation to help surgical planning for both types of lesion. /sup 67/Ga scintigraphy appears promising as a screening technique to identify lesions with malignant degeneration in patients with neurofibromatosis. Any area of abnormal radiogallium uptake suggests malignancy warranting further evaluation by CT or MR. Biopsy of any questionable lesion is essential.« less

  18. Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    PubMed Central

    Ihalainen, Teemu O.; Niskanen, Einari A.; Jylhävä, Juulia; Paloheimo, Outi; Dross, Nicolas; Smolander, Hanna; Langowski, Jörg; Timonen, Jussi; Vihinen-Ranta, Maija

    2009-01-01

    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications. PMID:19536327

  19. Comparison of Coastal Inundation in the Outer Banks during Three Recent Hurricanes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Sheng, Y.

    2012-12-01

    Coastal inundation in the Outer Banks and Chesapeake Bay during several recent hurricanes - Isabel, Earl and Irene, in 2005, 2010 and 2011, respectively, have been successfully simulated using the storm surge modeling system, CH3D-SSMS, which includes coupled coastal and basin-scale storm surge and wave models. Hurricane Isabel, which made landfall at the Outer Banks area in 2005, generated high waves up to 20 m offshore and 2.5 m inside the Chesapeake Bay which significantly affected the peak surge, with wave induced set-up contributing up to about 20% of the peak surge. During Isabel, the observed wave height at Duck station (1 km offshore) reached over 6 meters at landfall time, while Earl and Irene generated relatively moderate waves, with peak wave height around 4 meters at that station but a much lower wave height before landfall. Simulations show that during Earl and Irene, wave induced set-up did not contribute as much as that during Isabel. At Duck Pier, wave effects accounted for ~36 cm or 20% of the peak surge of 1.71 m during Isabel, while waves contributed ~10 cm (10%) toward the peak surge of 1 m during Irene and even less during Earl. The maximum surge during Irene was largely caused by the strong wind, as confirmed by the model using H* wind. Inundation maps have been generated and compared based on the simulations of Isabel, Earl and Irene.

  20. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    USGS Publications Warehouse

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  1. Linkage of Rainfall-Runoff and Hurricane Storm Surge in Galveston Bay

    NASA Astrophysics Data System (ADS)

    Deitz, R.; Christian, J.; Wright, G.; Fang, N.; Bedient, P.

    2012-12-01

    In conjunction with the SSPEED Center, large rainfall events in the upper Gulf of Mexico are being studied in an effort to help design a surge gate to protect the Houston Ship Channel during hurricane events. The ship channel is the world's second largest petrochemical complex and the Coast Guard estimates that a one-month closure would have a $60 billion dollar impact on the national economy. In this effort, statistical design storms, such as the 24-hour PMP, as well as historical storms, like Hurricane Ike, Hurricane Katrina, and Hurricane Rita, are being simulated in a hydrologic/hydraulic model using radar and rain gauge data. VfloTM, a distributed hydrologic model, is being used to quantify the effect that storm size, intensity, and location has on timing and peak flows in the in the upper drainage area. These hydrographs were input to a hydraulic model with various storm surges from Galveston Bay. Results indicate that there is a double peak phenomenon with flows from the west draining days earlier than flows from the north. With storm surge typically lasting 36-48 hours, this indicates the flows from the west are interacting with the storm surge, whereas flows from the north would arrive once the storm surge is receding. Gate operations were optimized in the model to account for the relative timing of upland runoff and hurricane surge, and to quantify the capability of the gate structure to protect the Ship Channel industry.

  2. The Propagation of a Surge Front on Bering Glacier, Alaska, 2001-2011

    NASA Technical Reports Server (NTRS)

    Turrin, James; Forster, Richard R.; Larsen, Chris; Sauber, Jeanne

    2013-01-01

    Bering Glacier, Alaska, USA, has a 20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 plus or minus 0.017 kilometers per a in the mid-ablation zone, which decreased to 1.2 plus or minus 0.015 kilometers per a in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 plus or minus 0.03 kilometers per a in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 plus or minus 2.0 kilometers per a between September 2002 and April 2009, then accelerated to 13.9 plus or minus 2.0 kilometers per a as it entered the piedmont lobe between April 2009 and September 2010. Thewave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.

  3. On using scatterometer and altimeter data to improve storm surge forecasting in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Bajo, Marco; Umgiesser, Georg; De Biasio, Francesco; Vignudelli, Stefano; Zecchetto, Stefano

    2017-04-01

    Satellite data are seldom used in storm surge forecasting. Among the most important issues related to the storm surge forecasting are the quality of the model wind forcing and the initial condition of the sea surface elevation. In this work, focused on storm surge forecasting in the Adriatic Sea, satellite scatterometer wind data are used to correct the wind speed and direction biases of the ECMWF global atmospheric model by tuning the spatial fields, as an alternative to data assimilation. The capability of such an unbiased wind is tested against that of a high resolution wind, produced by a regional non-hydrostatic model. On the other hand, altimeter Total Water Level Envelope (TWLE) data, which provide the sea level elevation, are used to improve the accuracy of the initial state of the model simulations. This is done by assimilating into a storm surge model the TWLE obtained by the altimeter observations along ground tracks, after subtraction of the tidal components. In order to test the methodology, eleven storm surge events recorded in Venice, from 2008 to 2012, have been simulated using different configurations of forcing wind and altimeter data assimilation. Results show that the relative error on the estimation of the maximum surge peak, averaged over the cases considered, decreases from 13% to 7% using both the unbiased wind and the altimeter data assimilation, while forcing the hydrodynamic model with the high resolution wind (no tuning), the altimeter data assimilation reduces the error from 9% to 6%.

  4. Impact of using scatterometer and altimeter data on storm surge forecasting

    NASA Astrophysics Data System (ADS)

    Bajo, Marco; De Biasio, Francesco; Umgiesser, Georg; Vignudelli, Stefano; Zecchetto, Stefano

    2017-05-01

    Satellite data are rarely used in storm surge models because of the lack of established methodologies. Nevertheless, they can provide useful information on surface wind and sea level, which can potentially improve the forecast. In this paper satellite wind data are used to correct the bias of wind originating from a global atmospheric model, while satellite sea level data are used to improve the initial conditions of the model simulations. In a first step, the capability of global winds (biased and unbiased) to adequately force a storm surge model are assessed against that of a high resolution local wind. Then, the added value of direct assimilation of satellite altimeter data in the storm surge model is tested. Eleven storm surge events, recorded in Venice from 2008 to 2012, are simulated using different configurations of wind forcing and altimeter data assimilation. Focusing on the maximum surge peak, results show that the relative error, averaged over the eleven cases considered, decreases from 13% to 7%, using both the unbiased wind and assimilating the altimeter data, while, if the high resolution local wind is used to force the hydrodynamic model, the altimeter data assimilation reduces the error from 9% to 6%. Yet, the overall capabilities in reproducing the surge in the first day of forecast, measured by the correlation and by the rms error, improve only with the use of the unbiased global wind and not with the use of high resolution local wind and altimeter data assimilation.

  5. Adapting NEMO for use as the UK operational storm surge forecasting model

    NASA Astrophysics Data System (ADS)

    Furner, Rachel; Williams, Jane; Horsburgh, Kevin; Saulter, Andrew

    2016-04-01

    The United Kingdom is an area vulnerable to damage due to storm surges, particularly the East Coast which suffered losses estimated at over £1 billion during the North Sea surge event of the 5th and 6th December 2013. Accurate forecasting of storm surge events for this region is crucial to enable government agencies to assess the risk of overtopping of coastal defences so they can respond appropriately, minimising risk to life and infrastructure. There has been an operational storm surge forecast service for this region since 1978, using a numerical model developed by the National Oceanography Centre (NOC) and run at the UK Met Office. This is also implemented as part of an ensemble prediction system, using perturbed atmospheric forcing to produce an ensemble surge forecast. In order to ensure efficient use of future supercomputer developments and to create synergy with existing operational coastal ocean models the Met Office and NOC have begun a joint project transitioning the storm surge forecast system from the current CS3X code base to a configuration based on the Nucleus for European Modelling of the Ocean (NEMO). This work involves both adapting NEMO to add functionality, such as allowing the drying out of ocean cells and changes allowing NEMO to run efficiently as a two-dimensional, barotropic model. As the ensemble surge forecast system is run with 12 members 4 times a day computational efficiency is of high importance. Upon completion this project will enable interesting scientific comparisons to be made between a NEMO based surge model and the full three-dimensional baroclinic NEMO based models currently run within the Met Office, facilitating assessment of the impact of baroclinic processes, and vertical resolution on sea surface height forecasts. Moving to a NEMO code base will also allow many future developments to be more easily used within the storm surge model due to the wide range of options which currently exist within NEMO or are planned for future NEMO releases, such as data assimilation, and surge-wave coupling. Assessment of tidal performance of the NEMO-surge configuration and comparison to the existing operational CS3X model has been carried out. Evaluation of the models focus on performance relative to the UK Class A tide gauge network, a dataset which was established following the devastating flood of 1953 and which is managed by the British Oceanographic Data Service (BODC) based at NOC. Trials of the NEMO model in tide-only mode have illustrated the importance of having a well specified bathymetry and, for the 7km scaled model, a secondary sensitivity to bed friction coefficient and the specification of the coastline. Preliminary results will also be presented from model runs with atmospheric (wind stress and pressure at mean sea-level) forcing.

  6. Palaeo-tsunami in the southern Caribbean: clarity through new geological archives?

    NASA Astrophysics Data System (ADS)

    Engel, M.; Brückner, H.; Messenzehl, K.; Frenzel, P.; Wennrich, V.; May, S. M.; Daut, G.; Willershäuser, T.; Scheffers, A.; Scheffers, S.; Vött, A.; Kelletat, D.

    2010-12-01

    A general lack of accounts of palaeo-tsunami deposits in back barrier environments throughout the Caribbean and diverging and conflicting interpretation of onshore coarse-clast deposits and landforms on the Leeward Netherlands Antilles (Bonaire, Curaçao, Aruba) encouraged the investigation of coastal stratigraphies along the coast of Bonaire. This work was conducted in order to (i) identify overwash deposits and reconstruct the regional history of high-energy wave events and (ii) provide a scientific basis for local hazard assessment. Vibracores and push cores at the windward (Playa Grandi, Lagun) and leeward coast (Saliña Tam, Klein Bonaire) were analyzed in terms of sedimentary characteristics, geochemical composition and fossil content. The coring sites in exposure to wave energy, foreshore morphology, sediment budgets, relief gradient and vegetation cover. Accordingly the pattern of subsurface overwash deposits varies significantly from site to site depending on exposure direction. For instance, although a prominent layer of sand and shell debris identified at the Lagun embayment (2000-1700 BP) has a counterpart at the sheltered lagoon of Saliña Tam, it is obviously absent at the northern coast. Along the entire island major layers of extreme wave deposits were radiocarbon dated to around 3300 BP, 2000-1700 BP and >500 BP. Sedimentary characteristics, bedforms and geochemical signatures did not provide unequivocal evidence for either tsunami or hurricane storm surge. However, evidence from the taphonomic characteristics of mollusc shells (articulation, fragmentation, rounding, encrustations, abrasion/dissolution) found within candidate coarse sediment layers and by comparison with the marginal sediment input of recent category 4/5 hurricane storm surges, the deposits were classified as representatives for palaeo-tsunami events.

  7. Topography and flooding of coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska: Implications for sea level rise

    USGS Publications Warehouse

    Jorgenson, Torre; Ely, Craig R.

    2001-01-01

    We measured surface elevations, stage of annual peak flooding, and sedimentation along 10 toposequences across coastal ecosystems on the Yukon-Kuskokwim (Y-K) Delta in western Alaska during 1994-1998 to assess some of the physical processes affecting ecosystem distribution. An ecotype was assigned to each of 566 points, and differences in elevations among 24 ecotypes were analyzed within individual toposequences and across the 40 x 40-km study area. Elevations of vegetated ecotypes along the longest toposequence rose only ~1 m over a distance of 7.5 km, and mean elevations of most ecotype across the study area were within 0.5 m of mean higher-high water (1.47 m). During 1994 to 1998, monitoring of annual peak stage using crest gauges revealed flooding from the highest fall storm surge reached 2.58 m (1.11 m above mean higher-high tide). In each year, only the highest surface was unaffected by flooding. Mean annual sedimentation rates for the various ecotypes were 8.0 ram/y on tidal flats, 1.4 to 3.8 mm/y on the active floodplain, 0.1-0.2 mm/y on the inactive floodplain, and 0 mm/ on the abandoned floodplain. If sea levels in the Bering Sea rise ~0.5 m by 2100, as predicted by some on a global basis, large portions of the coastal margin of the delta could be regularly inundated by water during high tides, and even the highest ecotypes could be affected by storm surges. Predicting the extent of future inundation is difficult, however, because of the changes in the ground-surface elevation through sedimentation, organic matter accumulation, and permafrost development.

  8. Assessment of Coastal and Urban Flooding Hazards Applying Extreme Value Analysis and Multivariate Statistical Techniques: A Case Study in Elwood, Australia

    NASA Astrophysics Data System (ADS)

    Guimarães Nobre, Gabriela; Arnbjerg-Nielsen, Karsten; Rosbjerg, Dan; Madsen, Henrik

    2016-04-01

    Traditionally, flood risk assessment studies have been carried out from a univariate frequency analysis perspective. However, statistical dependence between hydrological variables, such as extreme rainfall and extreme sea surge, is plausible to exist, since both variables to some extent are driven by common meteorological conditions. Aiming to overcome this limitation, multivariate statistical techniques has the potential to combine different sources of flooding in the investigation. The aim of this study was to apply a range of statistical methodologies for analyzing combined extreme hydrological variables that can lead to coastal and urban flooding. The study area is the Elwood Catchment, which is a highly urbanized catchment located in the city of Port Phillip, Melbourne, Australia. The first part of the investigation dealt with the marginal extreme value distributions. Two approaches to extract extreme value series were applied (Annual Maximum and Partial Duration Series), and different probability distribution functions were fit to the observed sample. Results obtained by using the Generalized Pareto distribution demonstrate the ability of the Pareto family to model the extreme events. Advancing into multivariate extreme value analysis, first an investigation regarding the asymptotic properties of extremal dependence was carried out. As a weak positive asymptotic dependence between the bivariate extreme pairs was found, the Conditional method proposed by Heffernan and Tawn (2004) was chosen. This approach is suitable to model bivariate extreme values, which are relatively unlikely to occur together. The results show that the probability of an extreme sea surge occurring during a one-hour intensity extreme precipitation event (or vice versa) can be twice as great as what would occur when assuming independent events. Therefore, presuming independence between these two variables would result in severe underestimation of the flooding risk in the study area.

  9. Abdominal Wall Desmoid during Pregnancy: Diagnostic Challenges

    PubMed Central

    Awwad, Johnny; Hammoud, Nadine; Farra, Chantal; Fares, Farah; Abi Saad, George; Ghazeeri, Ghina

    2013-01-01

    Background. Desmoids are benign tumors, with local invasive features and no metastatic potential, which have rarely been described to be pregnancy associated. Case. We described the rapid growth of an anterior abdominal wall mass in a 40-year-old pregnant woman. Due to its close proximity to the enlarged uterus, it was misdiagnosed to be a uterine leiomyoma by ultrasound examination. Final tissue diagnosis and radical resection were done at the time of abdominal delivery. Conclusion. Due to the diagnostic limitations of imaging techniques, desmoids should always be considered when the following manifestations are observed in combination: progressive growth of a solitary abdominal wall mass during pregnancy and well-delineated smooth tumor margins demonstrated by imaging techniques. This case emphasizes the importance of entertaining uncommon medical conditions in the differential diagnosis of seemingly common clinical manifestations. PMID:23346436

  10. Amino acid racemization analysis (AAR) as a successful tool for dating Holocene coastal sediments: Stratigraphy of a barrier island spit (Southern Sylt/North Sea)

    NASA Astrophysics Data System (ADS)

    Tillmann, Tanja; Ziehe, Daniel

    2014-05-01

    Dating of Holocene sediments in shallow coastal areas of the German North Sea by conventional techniques is commonly problematic. In particular the marine reservoir effect of radiocarbon means that radiocarbon dating cannot be applied to sediments younger than about 400 years. Amino acid racemization dating (AAR) is a viable alternative for dating young sediments. The method is based on the determination of ratios of D and L amino acid enantiomers in organic matrices of biogenic carbonates. In this study we use AAR as a tool for dating Holocene barrier islands sediments. Based on an AAR derived chronological framework we develop a model of barrier spit accretion which describes the interaction between extreme events, fair weather coastal processes and sedimentary development that constrains the major episodes of barrier island evolution. The stratigraphy was defined using ground-penetrating radar (GPR) surveys complemented by sedimentological coring data. The stratigraphy is then conceptualised in a AAR chronostratigraphic framework to define a chronological order and allow the development of a stratigraphic model of the evolution of Southern Sylt. The AAR data provide high temporal resolution and have been used for dating stages of barrier spit accretion. The time lines are marked as storm surge generated erosion unconformities in the stratigraphic profile. Individual shells and shell fragments of Cerastoderma edule, Mya arenaria, Mytilus edulis and Scrobicularia plana have been accumulated by short-term storm events as shell layers associated with the erosion unconformities and have been dated by AAR. Time lines reveal that the barrier spit accretion occurred episodically, and is dependant on the provided rate of sand delivery. The general trend is that sequences young to the. South. The AAR derived time lines have been verified and correlated by historic maps and sea charts. It is apparent that spit enlargement at this site increased significantly during the Middle Ages (1593 - 1794) and was coupled with several intensive storm surges in this period. The findings indicate that when combined with GRR stratigraphy AAR provides useful results of high accuracy for dating stages of barrier spit progradation.

  11. Alberca De Guadalupe Maar Crater, Zacapu Basin : A Rare Type of Volcano within the Michoacán-Guanajuato Volcanic Field, México

    NASA Astrophysics Data System (ADS)

    Kshirsagar, P. V.; Siebe, C.; Guilbaud, M. N.; Salinas, S.

    2014-12-01

    Phreato-magmatic vents (esp. maar craters) are rare in the ~40,000 Km2 Plio-Quaternary monogenetic Michoacán-Guanajuato Volcanic Field (MGVF) located in the central part of the Mexican Volcanic Belt. In contrast to >1000 scoria cones, only 2 dozen phreato-magmatic monogenetic vents (e.g. tuff cones, tuff rings, and maars) have been identified. About half of these form a cluster near Valle de Santiago in the Lerma river valley at the northern margin of the MGVF, while the others occur in a rather scattered fashion. Here we discuss the origin of Alberca de Guadalupe maar crater, one of the three phreato-magmatic vents (in addition to El Caracol and Alberca de Los Espinos) that occur within the boundaries of the inter-montane lacustrine Zacapu basin, a tectonic graben bound by an ENE-WSW normal fault system. The maar crater came into existence between 20,000 and 23,000 y BP, forming a 140 m deep hole in the otherwise planar surrounding ground of theearly Pleistocene lava flows of Cerro Pelón.The maar crater has a diameter of ~1 Km and bears a 9 m deep lake. Eruptive products include typical surge deposits that are best exposed around the rim and inner crater walls. They are poorly sorted (Mdø= -1.56 to -3.75, ø= 1.43 to 3.23), rich in accidental lithics (angular andesitic lava and ignimbrite clasts) constituting 51-88% of the deposit with few juveniles (basaltic andesite with phenocrysts of plagioclase, olivine, and pyroxene in a quenched glassy matrix; SiO2=54-58 wt. %). Dry surge units are friable and clast-supported, in contrast the wet surge units are fairly indurated and bear accretionary lapilli. Bedding is frequently distorted by ballistic impact-sag structures. The entire construct is disrupted by an E-W trending regional fault, downthrowing the northern part by ~30 m.The unusual formation of this maar crater in the semi-arid highlands of Zacapu was favored by the local hydrological and topographical conditions. Such conditions still prevail in several parts of the MGVF, making it possible for such an event to occur again, considering the active nature of this region, which is famous for its historic 1943-1952 eruption of Paricutin.

  12. An unusual case of generalized severe gingival enlargement during pregnancy.

    PubMed

    McIntosh, Crystal L; Kolhatkar, Shilpa; Winkler, James R; Ojha, Junu; Bhola, Monish

    2010-01-01

    Increased hormone levels that are present during puberty and pregnancy are associated with localized or generalized gingival enlargement. This article reviews the gingival alterations that can occur during pregnancy and describes a case of generalized severe gingival enlargement associated with pregnancy and its management. A 36-year-old woman had severe bilateral gingival enlargement of short duration. The patient denied taking any medications. The laboratory report revealed no systemic abnormalities; however, the report disclosed that she was pregnant. Surgical therapy for the gingival enlargement included gingivectomy and gingivoplasty of all quadrants, which reduced the size of the enlarged gingiva. Postoperative visits demonstrated uneventful healing, with no recurrence seen at the one-year follow-up appointment. It appears that the English literature includes only one other case report that discusses generalized gingival enlargement during pregnancy. Pregnancy-related gingival enlargement should be included as a differential diagnosis in women who have non-drug-induced generalized gingival enlargement.

  13. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  14. 40 CFR Table 2 to Subpart H of... - Surge Control Vessels and Bottoms Receivers at Existing Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Surge Control Vessels and Bottoms Receivers at Existing Sources 2 Table 2 to Subpart H of Part 63 Protection of Environment ENVIRONMENTAL... Equipment Leaks Pt. 63, Subpt. H, Table 2 Table 2 to Subpart H of Part 63—Surge Control Vessels and Bottoms...

  15. 40 CFR Table 3 to Subpart H of... - Surge Control Vessels and Bottoms Receivers at New Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Surge Control Vessels and Bottoms Receivers at New Sources 3 Table 3 to Subpart H of Part 63 Protection of Environment ENVIRONMENTAL... Equipment Leaks Pt. 63, Subpt. H, Table 3 Table 3 to Subpart H of Part 63—Surge Control Vessels and Bottoms...

  16. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    NASA Astrophysics Data System (ADS)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  17. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    NASA Astrophysics Data System (ADS)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as compared to the base case with only currently existing mitigation features in place. This study is part of a larger effort to evaluate the costs and benefits of several storm surge mitigation configurations proposed by the H-GAPS project.

  18. Surge capacity principles: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    PubMed

    Hick, John L; Einav, Sharon; Hanfling, Dan; Kissoon, Niranjan; Dichter, Jeffrey R; Devereaux, Asha V; Christian, Michael D

    2014-10-01

    This article provides consensus suggestions for expanding critical care surge capacity and extension of critical care service capabilities in disasters or pandemics. It focuses on the principles and frameworks for expansion of intensive care services in hospitals in the developed world. A companion article addresses surge logistics, those elements that provide the capability to deliver mass critical care in disaster events. The suggestions in this article are important for all who are involved in large-scale disasters or pandemics with injured or critically ill multiple patients, including front-line clinicians, hospital administrators, and public health or government officials. The Surge Capacity topic panel developed 23 key questions focused on the following domains: systems issues; equipment, supplies, and pharmaceuticals; staffing; and informatics. Literature searches were conducted to identify evidence on which to base key suggestions. Most reports were small scale, were observational, or used flawed modeling; hence, the level of evidence on which to base recommendations was poor and did not permit the development of evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. Suggestions from the previous task force were also included for validation by the expert panel. This article presents 10 suggestions pertaining to the principles that should guide surge capacity and capability planning for mass critical care, including the role of critical care in disaster planning; the surge continuum; targets of surge response; situational awareness and information sharing; mitigating the impact on critical care; planning for the care of special populations; and service deescalation/cessation (also considered as engineered failure). Future reports on critical care surge should emphasize population-based outcomes as well as logistical details. Planning should be based on the projected number of critically ill or injured patients resulting from specific scenarios. This should include a consideration of ICU patient care requirements over time and must factor in resource constraints that may limit the ability to provide care. Standard ICU management forms and patient data forms to assess ICU surge capacity impacts should be created and used in disaster events.

  19. A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard)

    NASA Astrophysics Data System (ADS)

    Lønne, Ida

    2016-01-01

    Svalbard is a key area for the investigation of glacial surges, and almost two centuries worth of field observations exists from this region. Studies have shown that the course of a surge and the associated formation of landforms are strongly influenced by basinal factors, and that the broad range of variables involved can hamper interpretations and comparisons. Based on a review of surges in Svalbard, a new concept for glacial geological investigations has been developed that combines ice-flows, ice-front movements, and morphostratigraphy. The concept is comprised of the following four elements: 1) classification based on the configuration and characteristics of the receiving basin, 2) division of the surge cycle into six stages, 3) guidelines for morphological mapping, and 4) use of an allostratigraphic approach for interpreting ice-front movements. In this context, delineation of the active phase is critical, which include the history of terminus movements, and four main categories of receiving basins are recognized. These are (A) terrestrial basins with deformable substrates, (B) terrestrial basins with poorly deformable substrates, (C) shallow water basins, and (D) deep water basins. The ice-front movement history is reconstructed by coupling information from the proglacial moraines (syn-surge), the supraglacial moraines (post-surge), and the associated traces of meltwater to the surge stages (I-VI). This approach has revealed a critical relationship between the termination of the active phase and three morphological elements, namely, the maximum ice-front position, the maximum moraine extent and the youngest proglacial moraine, which are unique for each of the basins A-D. The concept is thus a novel and more precise approach for mapping the active phase and the active phase duration, as shown by the ∼12-year long surge of Fridtjovbreen, where stage I was 30 months (inception), stage II was 54 months (ice-front advance), stage III was 12 months (stillstand), and stage IV was 48 months (retreat during active flow). The glacier has been in quiescent phase (stages V/VI) since 2002.

  20. Discontinuous Galerkin methods for modeling Hurricane storm surge

    NASA Astrophysics Data System (ADS)

    Dawson, Clint; Kubatko, Ethan J.; Westerink, Joannes J.; Trahan, Corey; Mirabito, Christopher; Michoski, Craig; Panda, Nishant

    2011-09-01

    Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability. Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution. The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh ( h) and polynomial order ( p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method. In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.

  1. What's New | Galaxy of Images

    Science.gov Websites

    ] View Images Details ID: SIL32-035-02 Enlarge Image View Images Details ID: SIL32-038-02 Enlarge Image View Images Details ID: SIL-2004_CT_6_1 Enlarge Image View Images Details ID: SIL32-010-01 Enlarge Image View Images Details ID: SIL32-013-05 Enlarge Image View Images Details ID: SIL32-014-02 Enlarge

  2. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as well as local scale bathymetry. Additionally, significant dependence can be observed over spatial distances of up to several hundred kilometers, implying that meso-scale meteorological forcings may play an important role in driving the dependence. This is also consistent with the result which shows that significant dependence often remaining for lags of up to one or two days between extremal rainfall and storm surge events. The influence of storm burst duration can also be observed, with rainfall extremes lasting more than several hours typically being more closely associated with storm surge compared with sub-hourly rainfall extremes. These results will have profound implications for how flood risk is evaluated along the coastal zone in Australia, with the strength of dependence varying depending on: (1) the dominant meteorological conditions; (2) the local estuary configuration, influencing the strength of the surge; and (3) the catchment attributes, influencing the duration of the storm burst that will deliver the peak flood events. Although a strong random component remains, we show that the probability of an extreme storm surge during an extreme rainfall event (or vice versa) can be up to ten times greater than under the situation under which there is no dependence, suggesting that failure to account for these interactions can result in a substantial underestimation of flood risk.

  3. Recurrence of stroke caused by nocturnal hypoxia-induced blood pressure surge in a young adult male with severe obstructive sleep apnea syndrome.

    PubMed

    Yoshida, Tetsuro; Kuwabara, Mitsuo; Hoshide, Satoshi; Kario, Kazuomi

    2016-03-01

    Obstructive sleep apnea syndrome (OSAS) causes resistant hypertension and a hypopnea-related nocturnal blood pressure (BP) surge. This could lead to an increase of not only the nocturnal BP level but also nocturnal BP variability, both of which increase an individual's cardiovascular risk. We recently developed a trigger sleep BP monitoring method that initiates BP measurement when an individual's oxygen desaturation falls below a variable threshold, and we demonstrated that it can detect a BP surge during apnea episodes. We here report the case of a 36-year-old man with severe OSAS who experienced the recurrence of stroke due to nocturnal hypoxia and a nocturnal BP surge measured by this trigger sleep BP monitoring device. A nocturnal BP surge during sleep in OSAS patients could be a strong trigger of cardiovascular events. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  4. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  5. Current & future vulnerability of sarasota county Florida to hurricane storm surge & sea level rise

    USGS Publications Warehouse

    Frazier, T.; Wood, N.; Yarnal, B.

    2008-01-01

    Coastal communities in portions of the United States are vulnerable to storm-surge inundation from hurricanes and this vulnerability will likely increase, given predicted rises in sea level from climate change and growing coastal development. In this paper, we provide an overview of research to determine current and future societal vulnerability to hurricane storm-surge inundation and to help public officials and planners integrate these scenarios into their long-range land use plans. Our case study is Sarasota County, Florida, where planners face the challenge of balancing increasing population growth and development with the desire to lower vulnerability to storm surge. Initial results indicate that a large proportion of Sarasota County's residential and employee populations are in areas prone to storm-surge inundation from a Category 5 hurricane. This hazard zone increases when accounting for potential sea-level-rise scenarios, thereby putting additional populations at risk. Subsequent project phases involve the development of future land use and vulnerability scenarios in collaboration with local officials. Copyright ASCE 2008.

  6. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    USGS Publications Warehouse

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  7. Direct and system effects of water ingestion into jet engine compresors

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.

    1986-01-01

    Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.

  8. Venice: Fifty years after the great flood of November 4, 1966

    NASA Astrophysics Data System (ADS)

    Rizzoli, P. M.

    2017-12-01

    Fifty years ago Venice and its lagoon suffered the most devastating flood in their millennial history. The causes of the increasingly recurring floods will be examined, namely the man-induced subsidence in the period 1925-1970 and the storm surges of the Adriatic sea. The engineering solution designed for their protection , named the MOSE system, will be discussed in detail. The MOSE was started in 2003 and is near completion. It consists of four barriers , invisible in normal conditions, which will close the inlets to the lagoon under the prediction of a forthcoming flood. Finally, the perspective of the MOSE capability of protecting the city under scenarios of future global sea level rise will be assessed. This assessment must critically take into account that Venice and its lagoon are confined in the northernmost corner of the semi-enclosed, marginal Mediterranean sea for which the uncertainties of future sea level rise greatly exceed the uncertainties of the global averages.

  9. Dynamical Influence and Operational Impacts of an Extreme Mediterranean Cold Surge

    DTIC Science & Technology

    2013-06-01

    over 45 cm of snowfall in Souda Bay, Crete, which significantly impacted operations at Naval Support Activity Souda Bay. The extratropical wave...cold surge event and its dependence on the upstream synoptic scale events. 14. SUBJECT TERMS Extratropical Cyclone, Souda Bay...Activity Souda Bay. The extratropical wave associated with the cold surge could be classified as a classic life-cycle 1 wave break. The wave-breaking

  10. Planning for partnerships: Maximizing surge capacity resources through service learning.

    PubMed

    Adams, Lavonne M; Reams, Paula K; Canclini, Sharon B

    2015-01-01

    Infectious disease outbreaks and natural or human-caused disasters can strain the community's surge capacity through sudden demand on healthcare activities. Collaborative partnerships between communities and schools of nursing have the potential to maximize resource availability to meet community needs following a disaster. This article explores how communities can work with schools of nursing to enhance surge capacity through systems thinking, integrated planning, and cooperative efforts.

  11. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    PubMed

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  12. Factors associated with preparedness of the US healthcare system to respond to a pediatric surge during an infectious disease pandemic: Is our nation prepared?

    PubMed

    Anthony, Christy; Thomas, Tito Joe; Berg, Bridget M; Burke, Rita V; Upperman, Jeffrey S

    2017-01-01

    Recent incidents have demonstrated that the US health system is unprepared for infectious pandemics resulting in a pediatric surge. Development of efficient plans and a structured and coordinated regional response to pediatric pandemic surge remains an opportunity. To address this gap, we conducted a literature review to assess current efforts, propose a response plan structure, and recommend policy actions. A literature review, utilizing MEDLINE and PubMed, through March 2017 identified articles regarding infectious disease pandemics affecting the US pediatric population. After review of current literature, a proposed response plan structure for a pediatric pandemic surge was designed. Inclusion and exclusion criteria reduced an initial screening of 1,787 articles to 162 articles. Articles ranged in their discussion of pediatric pandemic surge. Review of the articles led to the proposal of organizing the results according to 4 S's; (1) Structure, (2) Staff, (3) Stuff (Resources), and (4) Space. The review has supported the concern that the US health system is unprepared for a pediatric surge induced by infectious disease pandemics. Common themes suggest that response plans should reflect the 4Ss and national guidelines must be translated into regional response systems that account for local nuances.

  13. Numerical Study of the Port of Miami (Importance of Dodge Island) in Storm Surge and Flooding Forecasting in North Biscayne Bay

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, K.; Li, Y.

    2011-12-01

    The importance of Port of Miami (Dodge Island) in storm surge and flooding forecasting in North Biscayne Bay was investigated by using the numerical model Coastal and Estuarine Storm Tide (CEST). Firstly, CEST was applied to Hurricane Andrew of 1992 in the Biscayne Bay basin and validated by in situ measurements, which indicated the model results had good agreement with measured data. Secondly, two sets of experiments using Hurricane Miami of 1926 were conducted to study the role of Dodge Island in storm surge and flooding forecasting in North Biscayne Bay: one set of experiments were run in today's Biscayne Bay basin and another set of experiments were run in Biscayne Bay basin of 1926 in which Dodge Island was not created yet. Results indicated that storm surge and flooding areas were reduced a little bit in Miami River areas when Dodge Island was not there. Meanwhile, storm surge and flooding areas in North Miami and Miami Beach regions were largely increased. Results further indicated that as long as the hurricane made landfall in south of Dodge Island, it can provide a good protection for Miami Beach area to reduce storm surge and flooding impacts.

  14. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    USGS Publications Warehouse

    Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina L.; Needham, H.F.; Cox, A.

    2016-01-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  15. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  16. The Development of High-speed Full-function Storm Surge Model and the Case Study of 2013 Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Tsai, Y. L.; Wu, T. R.; Lin, C. Y.; Chuang, M. H.; Lin, C. W.

    2016-02-01

    An ideal storm surge operational model should feature as: 1. Large computational domain which covers the complete typhoon life cycle. 2. Supporting both parametric and atmospheric models. 3. Capable of calculating inundation area for risk assessment. 4. Tides are included for accurate inundation simulation. Literature review shows that not many operational models reach the goals for the fast calculation, and most of the models have limited functions. In this paper, a well-developed COMCOT (COrnell Multi-grid Coupled of Tsunami Model) tsunami model is chosen as the kernel to establish a storm surge model which solves the nonlinear shallow water equations on both spherical and Cartesian coordinates directly. The complete evolution of storm surge including large-scale propagation and small-scale offshore run-up can be simulated by nested-grid scheme. The global tide model TPXO 7.2 established by Oregon State University is coupled to provide astronomical boundary conditions. The atmospheric model named WRF (Weather Research and Forecasting Model) is also coupled to provide metrological fields. The high-efficiency thin-film method is adopted to evaluate the storm surge inundation. Our in-house model has been optimized by OpenMp (Open Multi-Processing) with the performance which is 10 times faster than the original version and makes it an early-warning storm surge model. In this study, the thorough simulation of 2013 Typhoon Haiyan is performed. The detailed results will be presented in Oceanic Science Meeting of 2016 in terms of surge propagation and high-resolution inundation areas.

  17. Bythaelurus bachi n. sp., a new deep-water catshark (Carcharhiniformes, Scyliorhinidae) from the southwestern Indian Ocean, with a review of Bythaelurus species and a key to their identification.

    PubMed

    Weigmann, Simon; Ebert, David A; Clerkin, Paul J; Stehmann, Matthias F W; Naylor, Gavin J P

    2016-12-19

    A new deep-water catshark, Bythaelurus bachi, is described based on 44 specimens caught on the southern Madagascar Ridge in the southwestern Indian Ocean. The new species is the only stout-bodied Bythaelurus with oral papillae in the region and is distinguished from all congeners by the plain beige to light gray-brown coloration, high diversity in dermal denticle morphology, and presence of composite oral papillae. Despite resemblance in body shape, Bythaelurus bachi n. sp. is distinguished from its closest congener, B. naylori Ebert & Clerkin, 2015, by the presence of numerous large, partially composite papillae on the tongue and roof of the mouth (vs. papillae lacking), plain light coloration (vs. medium to dark brown ground color, light fin edges and a distinctly dark dusky-colored snout), only slightly enlarged dermal denticles on the anterior upper caudal-fin margin (vs. dermal denticles distinctly enlarged), a higher diversity in dermal denticle morphology in general, and smaller maximum size and size at maturity. The distinction of both species is also supported by molecular results. The new species differs from all other congeners in the western Indian Ocean in the stout body shape of large specimens, coloration, larger size, as well as several morphometrics, including larger claspers, longer eyes and dorsal fins, and shorter pelvic-anal and pelvic-caudal spaces. The genus is reviewed, a key to its species given.

  18. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  19. Saker falcon research and conservation efforts in Mongolia, 1997

    USGS Publications Warehouse

    Ellis, D.H.; Tsengeg, Pu; Whitlock, P.L.

    1998-01-01

    This past summer. our small field team followed a 4000 km route through central and eastern Mongolia. Even though there was a population crash underway for picas (Ochotona sp.) and voles (Microtus sp.). we found 38 new saker nests and visited 60 eyries found in previous years. Many of the former eyries were unoccupied. Others were occupied but without young. Productivity was good at eyries with large young. and southeastern Mongolia seemed unaffected by food shortages. The main goal for 1997 was to create new eyries and enlarge. stabilise. or otherwise alter marginal eyries. \\Ve created 65 eyries as follows: 8 on wooden powerlines or telephone supports, 8 on metal power line towers, 3 in trees, 3 on boulders, 11 on cliffs, 17 on abandoned buildings, 9 on metal geological survey towers, and 6 on miscellaneous structures. \\Ve also enlarged or repaired three establishedeyries and did minor repairs on several others. Lesser accomplishments include what may be the first observation of siblicide for the saker falcon (please contact us immediately if you have other records of sakerchicks attacking or killing their nest mates) and the description of a new saker flight display. We also documented an unusual golden eagle eyrie containing the remains of nearly 30 foxes, several predatory birds, and a number of gazelle. In 1998. we plan to return to Mongolia to see how many of our 'fake eyries' attracted falcons. Our work in 1997 was supported by Mr. Howell. another philanthropist (anonymous) and the Institute of Raptor Studies.

  20. Mapping infectious disease hospital surge threats to lessons learnt in Singapore: a systems analysis and development of a framework to inform how to DECIDE on planning and response strategies.

    PubMed

    Singh, Shweta R; Coker, Richard; Vrijhoef, Hubertus J-M; Leo, Yee Sin; Chow, Angela; Lim, Poh Lian; Tan, Qinghui; Chen, Mark I-Cheng; Hildon, Zoe Jane-Lara

    2017-09-04

    Hospital usage and service demand during an Infectious Disease (ID) outbreak can tax the health system in different ways. Herein we conceptualize hospital surge elements, and lessons learnt from such events, to help build appropriately matched responses to future ID surge threats. We used the Interpretive Descriptive qualitative approach. Interviews (n = 35) were conducted with governance and public health specialists; hospital based staff; and General Practitioners. Key policy literature in tandem with the interview data were used to iteratively generate a Hospital ID Surge framework. We anchored our narrative account within this framework, which is used to structure our analysis. A spectrum of surge threats from combinations of capacity (for crowding) and capability (for treatment complexity) demands were identified. Starting with the Pyramid scenario, or an influx of high screening rates flooding Emergency Departments, alongside fewer and manageable admissions; the Reverse-Pyramid occurs when few cases are screened and admitted but those that are, are complex; during a 'Black' scenario, the system is overburdened by both crowding and complexity. The Singapore hospital system is highly adapted to crowding, functioning remarkably well at constant near-full capacity in Peacetime and resilient to Endemic surges. We catalogue 26 strategies from lessons learnt relating to staffing, space, supplies and systems, crystalizing institutional memory. The DECIDE model advocates linking these strategies to types of surge threats and offers a step-by-step guide for coordinating outbreak planning and response. Lack of a shared definition and decision making of surge threats had rendered the procedures somewhat duplicative. This burden was paradoxically exacerbated by a health system that highly prizes planning and forward thinking, but worked largely in silo until an ID crisis hit. Many such lessons can be put into play to further strengthen our current hospital governance and adapted to more diverse settings.

  1. Integrated plan to augment surge capacity.

    PubMed

    Dayton, Christopher; Ibrahim, Jamil; Augenbraun, Michael; Brooks, Steven; Mody, Kiaran; Holford, Donald; Roblin, Patricia; Arquilla, Bonnie

    2008-01-01

    Surge capacity is defined as a healthcare system's ability to rapidly expand beyond normal services to meet the increased demand for appropriate space, qualified personnel, medical care, and public health in the event ofbioterrorism, disaster, or other large-scale, public health emergencies. There are many individuals and agencies, including policy makers, planners, administrators, and staff at the federal, state, and local level, involved in the process of planning for and executing policy in respect to a surge in the medical requirements of a population. They are responsible to ensure there is sufficient surge capacity within their own jurisdiction. The [US] federal government has required New York State to create a system of hospital bed surge capacity that provides for 500 adult and pediatric patients per 1 million population, which has been estimated to be an increase of 15-20% in bed availability. In response, the New York City Department of Health and Mental Hygiene (NYC DOH) has requested that area hospitals take an inventory of available beds and set a goal to provide for a 20% surge capacity to be available during a mass-casualty event or other conditions calling for increased inpatient bed availability. In 2003, under the auspices of the NYC DOH, the New York Institute of All Hazard Preparedness (NYIHP) was formed from four unaffiliated, healthcare facilities in Central Brooklyn to address this and other goals. The NYIHP hospitals have developed a surge capacity plan to provide necessary space and utilities. As these plans have been applied, a bed surge capacity of approximately 25% was identified and created for Central Brooklyn to provide for the increased demand on the medical care system that may accompany a disaster. Through the process of developing an integrated plan that would engage a public health incident, the facilities of NYIHP demonstrate that a model of cooperation may be applied to an inherently fractioned medical system.

  2. Dendrochronology and late Holocene history of Bering piedmont glacier, Alaska

    USGS Publications Warehouse

    Wiles, G.C.; Post, A.; Muller, E.H.; Molnia, B.F.

    1999-01-01

    Fluctuations of the piedmont lobe of Bering Glacier and its sublobe Steller Glacier over the past two millennia are reconstructed using 34 radiocarbon dates and tree-ring data from 16 sites across the glaciers' forelands. The general sequence of glacial activity is consistent with well-dated fluctuations of tidewater and land-terminating glaciers elsewhere along the Gulf of Alaska. Extensive forested areas along 25 km of the Bering ice margin were inundated by glacio-lacustrine and glacio-fluvial sediments during a probable ice advance shortly before 500 cal yr A.D. Regrowth of forests followed the retreating ice as early as the 7th century A.D., with frequent interruptions of tree growth due to outwash aggradation. Forests overrun by ice and buried in outwash indicate readvance about 1080 cal yr A.D. Retreat followed, with ice-free conditions maintained along the distal portions of the forefield until the early 17th century after which the ice advanced to within a few kilometers of its outer Neoglacial moraine. Ice reached this position after the mid-17th century and prior to 200 yr ago. Since the early 20th century, glacial retreat has been punctuated by periodic surges. The record from forests overrun by the nonsurging Steller Lobe shows that this western ice margin was advancing by 1250 A.D., reaching near its outer moraine after 1420 cal yr A.D. Since the late 19th century, the lobe has dominantly retreated.

  3. A probabilistic storm surge risk model for the German North Sea and Baltic Sea coast

    NASA Astrophysics Data System (ADS)

    Grabbert, Jan-Henrik; Reiner, Andreas; Deepen, Jan; Rodda, Harvey; Mai, Stephan; Pfeifer, Dietmar

    2010-05-01

    The German North Sea coast is highly exposed to storm surges. Due to its concave bay-like shape mainly orientated to the North-West, cyclones from Western, North-Western and Northern directions together with astronomical tide cause storm surges accumulating the water in the German bight. Due to the existence of widespread low-lying areas (below 5m above mean sea level) behind the defenses, large areas including large economic values are exposed to coastal flooding including cities like Hamburg or Bremen. The occurrence of extreme storm surges in the past like e.g. in 1962 taking about 300 lives and causing widespread flooding and 1976 raised the awareness and led to a redesign of the coastal defenses which provide a good level of protection for today's conditions. Never the less the risk of flooding exists. Moreover an amplification of storm surge risk can be expected under the influence of climate change. The Baltic Sea coast is also exposed to storm surges, which are caused by other meteorological patterns. The influence of the astronomical tide is quite low instead high water levels are induced by strong winds only. Since the exceptional extreme event in 1872 storm surge hazard has been more or less forgotten. Although such an event is very unlikely to happen, it is not impossible. Storm surge risk is currently (almost) non-insurable in Germany. The potential risk is difficult to quantify as there are almost no historical losses available. Also premiums are difficult to assess. Therefore a new storm surge risk model is being developed to provide a basis for a probabilistic quantification of potential losses from coastal inundation. The model is funded by the GDV (German Insurance Association) and is planned to be used within the German insurance sector. Results might be used for a discussion of insurance cover for storm surge. The model consists of a probabilistic event driven hazard and a vulnerability module, furthermore an exposure interface and a financial module to account for specific (re-) insurance conditions. This contribution will mainly concentrate on the hazard module. The hazard is covered by an event simulation engine enabling Monte Carlo simulations. The event generation is done on-the-fly. A classification of historical storm surges is used based on observed sea water levels at gauging stations and extended literature research. To characterize the origin of storm events and storm surges caused by those, also meteorological parameters like wind speed and wind direction are being used. If high water levels along the coast are mainly caused by strong wind from particular directions as observed at the North Sea, there is a clear empirical relationship between wind and surge (where surge is defined as the wind-driven component of the sea water level) which can be described by the ATWS (Average Transformed Wind speed). The parameters forming the load at the coastal defense elements are water level and wave parameters like significant wave height, wave period and wave direction. To assess the wave characteristics at the coast the numerical model SWAN (Simulating Waves Near Shore) from TU Delft has been used. To account for different probabilities of failure and inundation the coast is split into segments with similar defense characteristics like type of defense, height, width, orientation and others. The chosen approach covers the most relevant failure mechanisms for coastal dikes induced by wave overtopping and overflow. Dune failure is also considered in the model. Inundation of the hinterland after defense failure is modeled using a simple dynamical 2d-approach resulting in distributed water depths and flood outlines for each segment. Losses can be estimated depending on the input exposure data either coordinate based for single buildings or aggregated on postal code level using a set of depths-damage functions.

  4. Non-Impact, Blast-Induced Mild TBI and PTSD: Concepts and Caveats

    DTIC Science & Technology

    2011-07-01

    has been verified by wound ballistics experiments in animals and finite element simulation of blast loads on the torso. Blood surge caused by...ballistic pressure waves in animals An experimental study of wound ballistics demon- strates that a ballistic pressure wave can cause a remote injury to...surge. This hypothesis has been supported by some experimental data. A volumetric surge of blood moved through the thorax and abdomen has been observed

  5. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Ogawa, Tatsuya; Yasui, Ryutaro; Tsujita, Hoshio

    2017-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, the compressed air at the exit of centrifugal compressor was re-circulated and injected to the impeller inlet by using two injection nozzles in order to suppress the surge phenomenon. The most effective circumferential position was examined to reduce the flow rate at the surge inception. Moreover, the influences of the injection on the fluctuating property of the flow field before and after the surge inception were investigated by examining the frequency of static pressure fluctuation on the wall surface and visualizing the compressor wall surface by oil-film visualization technique.

  6. Simulation Analysis of DC and Switching Impulse Superposition Circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang

    2018-03-01

    Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.

  7. Sputtering, Surging Sun [HD Video

    NASA Image and Video Library

    2017-12-08

    STEREO (Ahead) caught the action as one edge of a single active region spurted out more than a dozen surges of plasma in less than two days (Feb. 15-16, 2010). As seen in extreme UV light, the surges were narrow and directional outbursts driven by intense magnetic activity in the active region. While these kinds of outbursts have been observed numerous times, it was the frequency of so many surges in a short span of time that caught our attention. In this wavelength of UV light we are seeing singly ionized Helium at about 60,000 degrees C. For more information: stereo.gsfc.nasa.gov/ Credit: NASA/GSFC/STEREO To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  8. Injection and adhesion palatoplasty: a preliminary study in a canine model.

    PubMed

    Martínez-Álvarez, Concepción; González-Meli, Beatriz; Berenguer-Froehner, Beatriz; Paradas-Lara, Irene; López-Gordillo, Yamila; Rodríguez-Bobada, Cruz; González, Pablo; Chamorro, Manuel; Arias, Pablo; Hilborn, Jöns; Casado-Gómez, Inmaculada; Martínez-Sanz, Elena

    2013-08-01

    Raising mucoperiosteal flaps in traditional palatoplasty impairs mid-facial growth. Hyaluronic acid-based hydrogels have been successfully tested for minimally invasive craniofacial bone generation in vivo as carriers of bone morphogenetic protein-2 (BMP-2). We aimed to develop a novel flapless technique for cleft palate repair by injecting a BMP-2 containing hydrogel. Dog pups with congenital cleft palate were either non-treated (n=4) or treated with two-flap palatoplasty (n=6) or with the proposed injection/adhesion technique (n=5). The experimental approach was to inject a hyaluronic acid-based hydrogel containing hydroxyapatite and BMP-2 subperiosteally at the cleft palate margins of pups aged six weeks. At week ten, a thin strip of the medial edge mucosa was removed and the margins were closed directly. Occlusal photographs and computed tomography (CT) scans were obtained up to week 20. Four weeks after the gel injection the cleft palate margins had reached the midline and engineered bone had enlarged the palatal bones. Removal of the medial edge mucosa and suturing allowed complete closure of the cleft. Compared to traditional palatoplasty, the injection/adhesion technique was easier, and the post-surgical recovery was faster. CT on week 20 revealed some overlapping or "bending" of palatal shelves in the two-flap repair group, which was not observed in the experimental nor control groups. A minimally invasive technique for cleft palate repair upon injectable scaffolds in a dog model of congenital cleft palate is feasible. Results suggest better growth of palatal bones. This represents an attractive clinical alternative to traditional palatoplasty for cleft palate patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  10. Opposing interactions between homothorax and Lobe define the ventral eye margin of Drosophila eye

    PubMed Central

    Singh, Amit; Tare, Meghana; Kango-Singh, Madhuri; Son, Won-Seok; Cho, Kyung-Ok; Choi, Kwang-wook

    2011-01-01

    SUMMARY Patterning in multi-cellular organisms involves progressive restriction of cell fates by generation of boundaries to divide an organ primordium into smaller fields. We have employed the Drosophila eye model to understand the genetic circuitry responsible for defining the boundary between the eye and the head cuticle on the ventral margin. The default state of the early eye is ventral and depends on the function of Lobe (L) and the Notch ligand Serrate (Ser). We identified homothorax (hth) as a strong enhancer of the L mutant phenotype of loss of ventral eye. Hth is a MEIS class gene with a highly conserved Meis-Hth (MH) domain and a homeodomain (HD). Hth is known to bind Extradenticle (Exd) via its MH domain for its nuclear translocation. Loss-of-function of hth, a negative regulator of eye, results in ectopic ventral eye enlargements. This phenotype is complementary to the L mutant phenotype of loss-of-ventral eye. However, if L and hth interact during ventral eye development remains unknown. Here we show that (i) L acts antagonistically to hth, (ii) Hth is upregulated in the L mutant background, and (iii) MH domain of Hth is required for its genetic interaction with L, while its homeodomain is not, (iv) in L mutant background ventral eye suppression function of Hth involves novel MH domain-dependent factor(s), (v) Nuclear localization of Exd is not sufficient to mediate the Hth function in the L mutant background. Further, Exd is not a critical rate-limiting factor for the Hth function. Thus, optimum levels of L and Hth are required to define the boundary between the developing eye and head cuticle on the ventral margin. PMID:21920354

  11. Chamber for the optical manipulation of microscopic particles

    DOEpatents

    Buican, Tudor N.; Upham, Bryan D.

    1992-01-01

    A particle control chamber enables experiments to be carried out on biological cells and the like using a laser system to trap and manipulate the particles. A manipulation chamber provides a plurality of inlet and outlet ports for the particles and for fluids used to control or to contact the particles. A central manipulation area is optically accessible by the laser and includes first enlarged volumes for containing a selected number of particles for experimentation. A number of first enlarged volumes are connected by flow channels through second enlarged volumes. The second enlarged volumes act as bubble valves for controlling the interconnections between the first enlarged volumes. Electrode surfaces may be applied above the first enlarged volumes to enable experimentation using the application of electric fields within the first enlarged volumes. A variety of chemical and environmental conditions may be established within individual first enlarged volumes to enable experimental conditions for small scale cellular interactions.

  12. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to provide reliable probabilities of surge levels for the entire Atlantic basin. References Demuth, J., DeMaria, M., and Knaff, J.A. (2006). Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. Journal of Applied Meteorology., 45, pp. 1573-1581. Emanuel, K., Ravela, S., Vivant, E. and Risi, C. (2006). A statistical deterministic approach to hurricane risk assessment. Bulletin of the American Meteorological Society, 87(3), pp.299-314. Holland, G.J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8), pp.1212-1218. Lin, N. and D. Chavas (2012). On hurricane parametric wind and applications in storm surge modeling. Journal of Geophysical Research - Atmospheres. 117. doi:10.1029/2011jd017126. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(7:11969), 1-11.

  13. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which in combination with a scientific evaluation of the data can be employed to provide (a) immediate hazard assessments in remote mountainous regions and (b) to raise local awareness about these risks and provide pathways for local stakeholders to assess future hazard potentials.

  14. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ˜2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.

  15. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ???2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.

  16. Tropical Cyclone Storm Surge Inundation and Velocity Hazard Mapping of the State of Andhra Pradesh (India) using ADCIRC

    NASA Astrophysics Data System (ADS)

    Brackins, J. T.; Kalyanapu, A. J.

    2017-12-01

    The Northern Indian Ocean Bay of Bengal region, including parts of India, Bangladesh, Myanmar, and Sri Lanka, is the largest bay in the world and is structured in such a manner as to produce the world's largest tropical cyclone (TC) storm surges (SS), with approximately five surge events greater than 5 meters in magnitude each decade. (Needham et al. 2015). Although some studies have been performed to attempt to capture the magnitude and location of historical surges (Shaji et al. 2014) and to model surges in the immediate sense, there is a notable lack of application to the effects on coastal infrastructure in these areas. Given that these areas are some of the most densely populated and least economically able to prepare and recover, it is important to consider the potential effects of storm surge to discover areas where improvements can be made with the limited resources available to these areas. To this end, an ADvanced-CIRCulation (ADCIRC) model (Luettich and Westerink 2004) was created for the Bay of Bengal, using the General Bathymetric Chart of the Oceans (GEBCO 2014) as bathymetric and topographic data, and a combination of the Joint Typhoon Warning Center (JTWC) and India Meteorological Department (IMD) records for storm tracks. For the state of Andhra Pradesh, several major TC events ranging from 1977 to 2014 were selected to be modeled with the goal of creating hazard maps of storm surge inundation and velocity for the state. These hazard maps would be used to identify high-vulnerability areas with the goal of implementing land-use planning and coastal development practices that will aid in ameliorating both the loss of life and economic damages sustained as a result of these TCs.

  17. Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks

    NASA Astrophysics Data System (ADS)

    Caffrey, M.; Beavers, R. L.; Slayton, I. A.

    2013-12-01

    The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.

  18. Properties of the Central American cold surge

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Reding, Philip J.; Zhang, Yuxia

    1993-01-01

    The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors.

  19. Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study

    NASA Astrophysics Data System (ADS)

    Mel, Riccardo; Viero, Daniele Pietro; Carniello, Luca; Defina, Andrea; D'Alpaos, Luigi

    2014-09-01

    Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.

  20. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  1. Volume-based characterization of postocclusion surge.

    PubMed

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  2. Changes in the Earth's largest surge glacier system from satellite and airborne altimetry and imagery

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2015-12-01

    The Bering-Bagley Glacier System (BBGS), Alaska, one of the largest ice systems outside of Greenland and Antarctica, has recently surged (2011-2013), providing a rare opportunity to study the surge phenomenon in a large and complex system. Understanding fast-flowing glaciers and accelerations in ice flow, of which surging is one type, is critical to understanding changes in the cryosphere and ultimately changes in sea level. It is important to distinguish between types of accelerations and their consequences, especially between reversible or quasi-cyclic and irreversible forms of glacial acceleration, but current icesheet models treat all accelerating ice identically. Additionally, the surge provides an exceptional opportunity to study the influence of surface roughness and water content on return signals of altimeter systems. In this presentation, we analyze radar and laser altimeter data from CryoSat-2, NASA's Operation IceBridge (OIB), the ICESat Geoscience Laser Altimeter System (GLAS), ICESat-2's predecessor the Multiple Altimeter Beam Experimental Lidar (MABEL), and airborne laser altimeter and imagery campaigns by our research group. These measurements are used to study elevation, elevation change and crevassing throughout the glacier system. Analysis of the imagery from our airborne campaigns provides comprehensive characterizations of the BBGS surface over the course of the surge. Results from the data analysis are compared to numerical modeling experiments.

  3. A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary

    USGS Publications Warehouse

    Kelin, Hu; Qin, Chen; Wang, Hongqing

    2014-01-01

    Coastal wetlands play a unique role in extreme hurricane events. The impact of wetlands on storm surge depends on multiple factors including vegetation, landscape, and storm characteristics. The Delft3D model, in which vegetation effects on flow and turbulence are explicitly incorporated, was applied to the semi-enclosed Breton Sound (BS) estuary in coastal Louisiana to investigate the wetland impact. Guided by extensive field observations, a series of numerical experiments were conducted based on variations of actual vegetation properties and storm parameters from Hurricane Isaac in 2012. Both the vegetation-induced maximum surge reduction (MSR) and maximum surge reduction rate (MSRR) increased with stem height and stem density, and were more sensitive to stem height. The MSR and MSRR decreased significantly with increasing wind intensity. The MSRR was the highest with a fast-moving weak storm. It was also found that the MSRR varied proportionally to the expression involving the maximum bulk velocity and surge over the area of interest, and was more dependent on the maximum bulk surge. Both MSR and MSRR appeared to increase when the area of interest decreased from the whole BS estuary to the upper estuary. Within the range of the numerical experiments, the maximum simulated MSR and MSRR over the upper estuary were 0.7 m and 37%, respectively.

  4. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  5. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  6. Administration of a leptin antagonist during the neonatal leptin surge induces alterations in the redox and inflammatory state in peripubertal /adolescent rats.

    PubMed

    Mela, Virginia; Hernandez, Oskarina; Hunsche, Caroline; Diaz, Francisca; Chowen, Julie A; De la Fuente, Mónica

    2017-10-15

    The importance of the neonatal leptin surge in rodents in neurodevelopmental processes has aroused curiosity in its implication in other physiological systems. Given the role of leptin in neuro-immune interactions, we hypothesized that the neonatal leptin surge could have an effect on the oxidative and inflammatory stress situations of both systems. We blocked the neonatal leptin surge by a leptin antagonist and measured several parameters of oxidative and inflammatory stress in the spleen, hypothalamus and adipose tissue of peripubertal/adolescent rats. The treated rats showed lower activity of several antioxidant enzymes in the spleen and their leukocytes released lower levels of mitogen-stimulated IL-10 and IL-13 and higher levels of TNF-alpha. In conclusion, the neonatal leptin surge may have a key role in the establishment of adequate redox and inflammatory states in the immune system, which is important for the generation of adequate immune responses and to obtain and maintain good health. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Increasing the highest storm surge in Busan harbor

    NASA Astrophysics Data System (ADS)

    Oh, Sang Myeong; Moon, Il-Ju; Kwon, Suk Jae

    2017-04-01

    One of the most pronounced effects of climate change in coastal regions is sea level rise and storm surges. Busan in particular, the fifth largest container handling port in the world, has suffered from serious storm surges and experienced a remarkable mean sea level (MSL) rise. This study investigates a long-term variation of annual maximum surge height (AMSH) using sea level data observed in Busan over 53 years (1962 2014). The decomposition of astronomical tides and surge components shows that the AMSH has increased 18 cm over 53 years (i.e., 3.5 mm/year), which is much larger than the MSL trend (2.5 mm/year) in Busan. This significant increase in AMSH is mostly explained by the increased intensity of landfall typhoons over the Korean peninsula (KP), which is associated with the increase of sea surface temperature and the decrease of vertical wind shear at mid-latitudes of the western North Pacific. In a projected future warming environment, the combination of an increasing MSL and AMSH will accelerate the occurrence of record-breaking extreme sea levels, which will be a potential threat in Busan harbor.

  8. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer.

    PubMed

    Shalaby, Nourhan; Al-Ebraheem, Alia; Le, Du; Cornacchi, Sylvie; Fang, Qiyin; Farrell, Thomas; Lovrics, Peter; Gohla, Gabriela; Reid, Susan; Hodgson, Nicole; Farquharson, Michael

    2018-03-01

    One of the major problems in breast cancer surgery is defining surgical margins and establishing complete tumor excision within a single surgical procedure. The goal of this work is to establish instrumentation that can differentiate between tumor and normal breast tissue with the potential to be implemented in vivo during a surgical procedure. A time-resolved fluorescence and reflectance spectroscopy (tr-FRS) system is used to measure fluorescence intensity and lifetime as well as collect diffuse reflectance (DR) of breast tissue, which can subsequently be used to extract optical properties (absorption and reduced scatter coefficient) of the tissue. The tr-FRS data obtained from patients with Invasive Ductal Carcinoma (IDC) whom have undergone lumpectomy and mastectomy surgeries is presented. A preliminary study was conducted to determine the validity of using banked pre-frozen breast tissue samples to study the fluorescence response and optical properties. Once the validity was established, the tr-FRS system was used on a data-set of 40 pre-frozen matched pair cases to differentiate between tumor and normal breast tissue. All measurements have been conducted on excised normal and tumor breast samples post surgery. Our results showed the process of freezing and thawing did not cause any significant differences between fresh and pre-frozen normal or tumor breast tissue. The tr-FRS optical data obtained from 40 banked matched pairs showed significant differences between normal and tumor breast tissue. The work detailed in the main study showed the tr-FRS system has the potential to differentiate malignant from normal breast tissue in women undergoing surgery for known invasive ductal carcinoma. With further work, this successful outcome may result in the development of an accurate intraoperative real-time margin assessment system. Lasers Surg. Med. 50:236-245, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Solitary fibrous tumor of the breast: A case report and the review of the literature.

    PubMed

    Salemis, Nikolaos S

    2018-01-01

    Solitary fibrous tumors (SFT) are rare mesenchymal neoplasms. They were first described as spindle-cell tumors originating from the pleura, but they may arise in any anatomical site. SFT of the breast is an exceedingly rare clinical entity. Our literature review yielded only 21 cases reported so far. We describe a case of a SFT of the breast in a premenopausal patient who presented with a gradually enlarging palpable breast mass. Diagnostic evaluation and management are discussed along with a review of the relevant literature. There are no pathognomonic imaging findings of SFT of the breast. Complete surgical resection with clear margins is the gold standard of treatment. Thorough immunohistochemical analysis is crucial to obtain a definitive diagnosis. Although most SFTs run an indolent course, in some cases the clinical behavior can be unpredictable and a long-term follow-up for all patients is therefore mandatory. © 2017 Wiley Periodicals, Inc.

  10. Follicular carcinoma of the thyroid with hyperthyroidism. A case report.

    PubMed

    Sharma, Prashant; Kumar, Neeta; Gupta, Ruchika; Jain, Shyama

    2004-01-01

    Follicular carcinoma of the thyroid in association with hyperthyroidism is rare. The malignant lesion may remain occult for a long time. Certain clinical and cytologic features may be helpful in raising the alarm. An elderly male with a history of occupational exposure to X rays, long-standing toxic multinodular goiter and clinical hyperthyroidism presented with a rapidly enlarging mass in the neck. Cytologic smears showed a prominent microfollicular pattern, scanty colloid, anisonucleosis and nuclear overlapping. The noteworthy feature was the presence of marginal vacuoles. The cytologic diagnosis of follicular neoplasm with highly suggestive malignancy was made. Subsequently, multiple pulmonary nodules provided radiologic evidence of possible metastatic spread. This case report demonstrates the rare association of follicular carcinoma of the thyroid with hyperthyroidism and analyzes certain high-risk clinical and cytologic features to be considered in the follow-up of long-standing hyperfunctioning multinodular goiter.

  11. Clinical NMR imaging of the brain in children: normal and neurologic disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.A,; Pennock, J.M.; Bydder, G.M.

    1983-11-01

    The results of initial clinical nuclear magnetic resonance imaging of the brain in eight normal and 52 children with a wide variety of neurologic diseases were reviewed. The high level of gray-white matter contrast available with inversion-recovery sequences provided a basis for visualizing normal myelination as well as delays or deficits in this process. The appearances seen in cases of parenchymal hemorrhage, cerebral infarction, and proencephalic cysts are described. Ventricular enlargement was readily identified and marginal edema was demonstrated with spin-echo sequences. Abnormalities were seen in cerebral palsy, congenital malformations, Hallervorden-Spatz disease, aminoaciduria, and meningitis. Space-occupying lesions were identified bymore » virtue of their increased relaxation times and mass effects. Nuclear magnetic resonance imaging has considerable potential in pediatric neuroradiologic practice, in some conditions supplying information not available by computed tomography or sonography.« less

  12. Cecal duplication: A mimicker of intussusception: A case report and review.

    PubMed

    Radhakrishna, Veerabhadra; Rijhwani, Ashok; Jadhav, Bhushanrao

    2018-07-01

    Cecal duplication is a rare congenital anomaly and to the best of our knowledge, only 43 cases have been reported in the literature till date. Most of them present within the first year of life. They can mimic intussusception, and the delay in diagnosis can lead to high morbidity. A five-year boy presented with pain abdomen for a week. He was found to have ileocolic intussusception. The intussusception could only be partially reduced by the hydrostatic method. On laparotomy, a submucosal solid mass was found in the cecum with multiple enlarged lymph nodes. Mass was resected with clear margins and lymph nodes sampled. Histopathology was conclusive of cecal duplication. Post-operative course was uneventful, and the child is thriving well, last reviewed at three-year follow-up. Incomplete reduction of intussusception, intussusception with atypical presentation or intussusception in atypical age group should alert to the possibility of cecal duplication.

  13. Surgical management of a progressive iris melanocytoma in a Mustang.

    PubMed

    Scotty, Nicole C; Barrie, Kathleen B; Brooks, Dennis E; Taylor, David

    2008-01-01

    A 7-year-old gray Mustang gelding weighing 454 kg was presented for evaluation of a brown mass within the left eye (OS) of 1 year's duration with recent enlargement. A nonpainful, 8 mm diameter, brown, vascularized mass was identified in the anterior chamber of the OS. Ocular B-scan ultrasound confirmed iris involvement and corneal endothelial contact. Histopathology confirmed the presumptive diagnosis of a uveal melanocytic neoplasm, and revealed 1-3 mitotic figures per high power (400x) field. The mass was removed via sector iridectomy without complications, but without complete margins. Three cutaneous melanocytomas noted 1.5 months postoperatively were completely excised. No tumor regrowth was noted 15 months postoperatively, supporting a diagnosis of melanocytoma for the iridal mass. Sector iridectomy is a reasonable treatment option for uncomplicated iridal melanocytomas in horses. Mitotic index and presence of cutaneous melanocytic neoplasms may be irrelevant to the prognosis of equine iridal melanocytic neoplasms.

  14. Benchmarking the Integration of WAVEWATCH III Results into HAZUS-MH: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Holland, Donald; McKellip, Rodney; Sciaudone, Jeff; Vickery, Peter; Wang, Zhanxian; Ying, Ken

    2005-01-01

    The report summarizes the results from the preliminary benchmarking activities associated with the use of WAVEWATCH III (WW3) results in the HAZUS-MH MR1 flood module. Project partner Applied Research Associates (ARA) is integrating the WW3 model into HAZUS. The current version of HAZUS-MH predicts loss estimates from hurricane-related coastal flooding by using values of surge only. Using WW3, wave setup can be included with surge. Loss estimates resulting from the use of surge-only and surge-plus-wave-setup were compared. This benchmarking study is preliminary because the HAZUS-MH MR1 flood module was under development at the time of the study. In addition, WW3 is not scheduled to be fully integrated with HAZUS-MH and available for public release until 2008.

  15. Passive seismic monitoring of the Bering Glacier during its last surge event

    NASA Astrophysics Data System (ADS)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  16. Storm surge modeling and applications in coastal areas

    USGS Publications Warehouse

    Dube, Shisir K.; Murty, Tad S.; Feyen, Jesse C.; Cabrera, Reggina; Harper, Bruce A.; Bales, Jerad D.; Amer, Saud A.

    2010-01-01

    This chapter introduces the reader to a wide spectrum of storm surge modeling systems used to assess the impact of tropical cyclones, covering a range of numerical methods, model domains, forcing and boundary conditions, and purposes. New technologies to obtain data such as deployment of temporary sensors and remote sensing practices to support modeling are also presented. Extensive storm surge modeling applications have been made with existing modeling systems and some of them are described in this chapter.The authors recognize the importance of evaluating river-ocean interactions in coastal environments during tropical cyclones. Therefore, the coupling of hydraulic (riverine) and storm surge models is discussed. In addition, results from studies performed in the coast of India are shown which generated maps to help emergency managers and reduce risk due to coastal inundation.

  17. Pleistocene glaciation of Fenland, England, and its implications for evolution of the region

    PubMed Central

    West, R. G.; Hughes, P. D.

    2018-01-01

    Detailed investigation of landforms and their underlying deposits on the eastern margin of Fenland, East Anglia, demonstrated that they represent a series of glaciofluvial delta-fan and related sediments. Associated with these deposits are glacially dislocated sediments including tills, meltwater and pre-existing fluvial sediments. These ‘Skertchly Line’ deposits occur in the context of a substantial ice lobe that entered Fenland from the N to NE, dammed the streams entering the basin and caused glacial lakes to form in the valleys on the margins. Bulldozing by the ice lobe caused a series of ice-pushed ridges to form at the dynamic margin, especially at the ice maximum and during its retreat phases. Meltwater formed a series of marginal fans that coalesced into marginal accumulations in the SE of the basin. The ice lobe is named the Tottenhill glaciation. Further investigations of the Fenland margin have revealed the extent of the Tottenhill glaciation in the Fenland Basin, to the south and west, in sufficient detail to demonstrate the nature of the Tottenhill ice lobe and the landscape left on deglaciation. The ice lobe is likely to have been prone to surging. This is indicated by the low gradient of the ice lobe, the presence of underlying ductile Mesozoic clays, the evidence of ice-marginal flooding and the presence of arcuate glaciotectonic push moraines. Regional correlation, supported by independent numerical geochronology, indicates that the glaciation occurred ca 160 ka, i.e. during the late Middle Pleistocene, Marine Isotope Stage (MIS) 6, the Wolstonian Stage. Comparison and correlation across the southern North Sea Basin confirms that the glaciation is the equivalent of that during the Late Saalian Drenthe Stadial in The Netherlands. The implications of this correlation are presented. Before the glaciation occurred, the Fenland Basin did not exist. It appears to have been initiated by a subglacial tunnel valley system beneath the Anglian (=Elsterian, MIS 12) ice sheet. During the subsequent Hoxnian (=Holsteinian; approx. MIS 11) interglacial, the sea invaded the drainage system inherited following the glacial retreat. The evolution through the subsequent ca 200 ka Early to Middle Wolstonian substages, the interval between the Hoxnian (Holsteinian) temperate Stage and the Wolstonian glaciation, represents a period during which fluvial and periglacial activity modified the landscape under cold climates, and organic sediments were laid down during a warmer event. Palaeolithic humans were also periodically present during this interval, their artefacts having been reworked by the subsequent glaciation. The deglaciation was followed by re-establishment of the rivers associated with the deposition of Late Wolstonian (Warthe Stadial) gravels and sands, and later, deposits of the Ipswichian interglacial (=Eemian, approx. MIS 5e) including freshwater, then estuarine sediments. Subsequent evolution of the basin occurred during the Devensian Stage (=Weichselian, MIS 5d-2) under predominantly cold, periglacial conditions. PMID:29410798

  18. Pleistocene glaciation of Fenland, England, and its implications for evolution of the region.

    PubMed

    Gibbard, P L; West, R G; Hughes, P D

    2018-01-01

    Detailed investigation of landforms and their underlying deposits on the eastern margin of Fenland, East Anglia, demonstrated that they represent a series of glaciofluvial delta-fan and related sediments. Associated with these deposits are glacially dislocated sediments including tills, meltwater and pre-existing fluvial sediments. These 'Skertchly Line' deposits occur in the context of a substantial ice lobe that entered Fenland from the N to NE, dammed the streams entering the basin and caused glacial lakes to form in the valleys on the margins. Bulldozing by the ice lobe caused a series of ice-pushed ridges to form at the dynamic margin, especially at the ice maximum and during its retreat phases. Meltwater formed a series of marginal fans that coalesced into marginal accumulations in the SE of the basin. The ice lobe is named the Tottenhill glaciation. Further investigations of the Fenland margin have revealed the extent of the Tottenhill glaciation in the Fenland Basin, to the south and west, in sufficient detail to demonstrate the nature of the Tottenhill ice lobe and the landscape left on deglaciation. The ice lobe is likely to have been prone to surging. This is indicated by the low gradient of the ice lobe, the presence of underlying ductile Mesozoic clays, the evidence of ice-marginal flooding and the presence of arcuate glaciotectonic push moraines. Regional correlation, supported by independent numerical geochronology, indicates that the glaciation occurred ca 160 ka, i.e. during the late Middle Pleistocene, Marine Isotope Stage (MIS) 6, the Wolstonian Stage. Comparison and correlation across the southern North Sea Basin confirms that the glaciation is the equivalent of that during the Late Saalian Drenthe Stadial in The Netherlands. The implications of this correlation are presented. Before the glaciation occurred, the Fenland Basin did not exist. It appears to have been initiated by a subglacial tunnel valley system beneath the Anglian (=Elsterian, MIS 12) ice sheet. During the subsequent Hoxnian (=Holsteinian; approx. MIS 11) interglacial, the sea invaded the drainage system inherited following the glacial retreat. The evolution through the subsequent ca 200 ka Early to Middle Wolstonian substages, the interval between the Hoxnian (Holsteinian) temperate Stage and the Wolstonian glaciation, represents a period during which fluvial and periglacial activity modified the landscape under cold climates, and organic sediments were laid down during a warmer event. Palaeolithic humans were also periodically present during this interval, their artefacts having been reworked by the subsequent glaciation. The deglaciation was followed by re-establishment of the rivers associated with the deposition of Late Wolstonian (Warthe Stadial) gravels and sands, and later, deposits of the Ipswichian interglacial (=Eemian, approx. MIS 5e) including freshwater, then estuarine sediments. Subsequent evolution of the basin occurred during the Devensian Stage (=Weichselian, MIS 5d-2) under predominantly cold, periglacial conditions.

  19. The simulation of Typhoon-induced coastal inundation in Busan, South Korea applying the downscaling technique

    NASA Astrophysics Data System (ADS)

    Jang, Dongmin; Park, Junghyun; Yuk, Jin-Hee; Joh, MinSu

    2017-04-01

    Due to typhoons, the south coastal cities including Busan in South Korea coastal are very vulnerable to a surge, wave and corresponding coastal inundation, and are affected every year. In 2016, South Korea suffered tremendous damage by typhoon 'Chaba', which was developed near east-north of Guam on Sep. 28 and had maximum 10-minute sustained wind speed of about 50 m/s, 1-minute sustained wind speed of 75 m/s and a minimum central pressure of 905 hpa. As 'Chaba', which is the strongest since typhoon 'Maemi' in 2003, hit South Korea on Oct. 5, it caused a massive economic and casualty damage to Ulsan, Gyeongju and Busan in South Korea. In particular, the damage of typhoon-induced coastal inundation in Busan, where many high-rise buildings and residential areas are concentrated near coast, was serious. The coastal inundation could be more affected by strong wind-induced wave than surge. In fact, it was observed that the surge height was about 1 m averagely and a significant wave height was about 8 m at coastal sea nearby Busan on Oct. 5 due to 'Chaba'. Even though the typhoon-induced surge elevated the sea level, the typhoon-induced long period wave with wave period of more than 15s could play more important role in the inundation. The present work simulated the coastal inundation induced by 'Chaba' in Busan, South Korea considering the effects of typhoon-induced surge and wave. For 'Chaba' hindcast, high resolution Weather Research and Forecasting model (WRF) was applied using a reanalysis data produced by NCEP (FNL 0.25 degree) on the boundary and initial conditions, and was validated by the observation of wind speed, direction and pressure. The typhoon-induced coastal inundation was simulated by an unstructured gird model, Finite Volume Community Ocean Model (FVCOM), which is fully current-wave coupled model. To simulate the wave-induced inundation, 1-way downscaling technique of multi domain was applied. Firstly, a mother's domain including Korean peninsula was simulated using wind and pressure produced by WRF to produce surge and wave. And then, the wave-induced inundation was simulated applying the surge height and wave height simulated by mother's model to the open boundary and initial condition of child's model which was ranged near Busan. Our simulated surge height is generally underestimated about 15 % due to the underestimation of surface pressure on WRF. However, since the effect of wave on inundation could be more significant than surge-induced forcing in this real system, our research could predict the typhoon-induced inundation by combining the surge and wave forcing in nested domain.

  20. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and Síðujökull (Sí.) outlet glaciers. The black and grey arrows show the azimuth of the satellite and the look direction, respectively. (a) Wrapped interferogram showing the surge deformation (2π = 28.3 mm deformation). (b) Unwrapped interferogram with the black star as the reference area and negative values indicating line of sight lengthening (Auriac et al., 2014, doi:10.1093/gji/ggu205).

  1. Updated Death and Injury Rates of U.S. Military Personnel During the Conflicts in Iraq and Afghanistan

    DTIC Science & Technology

    2014-12-01

    rates.11 Not all of the changes in casualty rates over time were statistically significant. The hostile death rates during the surges in Iraq and...hostile- death rates in each theater and period). However, the declines during the post-surge periods in both theaters were overwhelmingly significant...the more-seriously wounded in Vietnam were less likely to survive. 7 Figure 6. Hostile Death Rates Before, During, and After the Surges in Iraq

  2. Reconstruction Leaders’ Perceptions of the Commander’s Emergency Response Program in Iraq

    DTIC Science & Technology

    2012-04-30

    provided immediate support to the Iraqi people. American Commanders in Iraq used CERP funds to build schools , roads, health clinics, sewers, and...and 2008 we considered them as having served during the surge. If their time in Iraq was before those years we considered them to be pre- surge. If...their time in Iraq was after those years we considered them as having served post-surge. More details about our survey methodology are in Appendix

  3. Disaster metrics: quantitative benchmarking of hospital surge capacity in trauma-related multiple casualty events.

    PubMed

    Bayram, Jamil D; Zuabi, Shawki; Subbarao, Italo

    2011-06-01

    Hospital surge capacity in multiple casualty events (MCE) is the core of hospital medical response, and an integral part of the total medical capacity of the community affected. To date, however, there has been no consensus regarding the definition or quantification of hospital surge capacity. The first objective of this study was to quantitatively benchmark the various components of hospital surge capacity pertaining to the care of critically and moderately injured patients in trauma-related MCE. The second objective was to illustrate the applications of those quantitative parameters in local, regional, national, and international disaster planning; in the distribution of patients to various hospitals by prehospital medical services; and in the decision-making process for ambulance diversion. A 2-step approach was adopted in the methodology of this study. First, an extensive literature search was performed, followed by mathematical modeling. Quantitative studies on hospital surge capacity for trauma injuries were used as the framework for our model. The North Atlantic Treaty Organization triage categories (T1-T4) were used in the modeling process for simplicity purposes. Hospital Acute Care Surge Capacity (HACSC) was defined as the maximum number of critical (T1) and moderate (T2) casualties a hospital can adequately care for per hour, after recruiting all possible additional medical assets. HACSC was modeled to be equal to the number of emergency department beds (#EDB), divided by the emergency department time (EDT); HACSC = #EDB/EDT. In trauma-related MCE, the EDT was quantitatively benchmarked to be 2.5 (hours). Because most of the critical and moderate casualties arrive at hospitals within a 6-hour period requiring admission (by definition), the hospital bed surge capacity must match the HACSC at 6 hours to ensure coordinated care, and it was mathematically benchmarked to be 18% of the staffed hospital bed capacity. Defining and quantitatively benchmarking the different components of hospital surge capacity is vital to hospital preparedness in MCE. Prospective studies of our mathematical model are needed to verify its applicability, generalizability, and validity.

  4. High resolution field monitoring in coastal wetlands of the U.S. Mid-Atlantic to support quantification of storm surge attenuation at the regional scale

    NASA Astrophysics Data System (ADS)

    Paquier, A. E.; Haddad, J.; Lawler, S.; Garzon Hervas, J. L.; Ferreira, C.

    2015-12-01

    Hurricane Sandy (2012) demonstrated the vulnerability of the US East Coast to extreme events, and motivated the exploration of resilient coastal defenses that incorporate both hard engineering and natural strategies such as the restoration, creation and enhancement of coastal wetlands and marshes. Past laboratory and numerical studies have indicated the potential of wetlands to attenuate storm surge, and have demonstrated the complexity of the surge hydrodynamic interactions with wetlands. Many factors control the propagation of surge in these natural systems including storm characteristics, storm-induced hydrodynamics, landscape complexity, vegetation biomechanical properties and the interactions of these different factors. While previous field studies have largely focused on the impact of vegetation characteristics on attenuation processes, few have been undertaken with holistic consideration of these factors and their interactions. To bridge this gap of in-situ field data and to support the calibration of storm surge and wave numerical models such that wetlands can be correctly parametrized on a regional scale, we are carrying out high resolution surveys of hydrodynamics (pressure, current intensity and direction), morphology (topo-bathymetry, micro-topography) and vegetation (e.g. stem density, height, vegetation frontal area) in 4 marshes along the Chesapeake Bay. These areas are representative of the ecosystems and morphodynamic functions present in this region, from the tidal Potomac marshes to the barrier-island back-bays of the Delmarva Peninsula. The field monitoring program supports the investigation of the influence of different types of vegetation on water level, swell and wind wave attenuation and morphological evolution during storm surges. This dataset is also used to calibrate and validate numerical simulations of hurricane storm surge propagation at regional and local scales and to support extreme weather coastal resilience planning in the region. Figure 1 shows an area prone to storm surge impact within one of the 4 study sites: the Dameron Marsh Natural Area Preserve, located on the shoreline of the Northern Peninsula of Virginia, along the Chesapeake Bay.

  5. Strategic Engagement of Technical Surge Capacity for Intensified Polio Eradication Initiative in Nigeria, 2012-2015.

    PubMed

    Yehualashet, Yared G; Mkanda, Pascal; Gasasira, Alex; Erbeto, Tesfaye; Onimisi, Anthony; Horton, Janet; Banda, Richard; Tegegn, Sisay G; Ahmed, Haruna; Afolabi, Oluwole; Wadda, Alieu; Vaz, Rui G; Nsubuga, Peter

    2016-05-01

    Following the 65th World Health Assembly (WHA) resolution on intensification of the Global Poliomyelitis Eradication Initiative (GPEI), the Nigerian government, with support from the World Health Organization (WHO) and other partners, implemented a number of innovative strategies to curb the transmission of wild poliovirus (WPV) in the country. One of the innovations successfully implemented since mid 2012 is the WHO's engagement of surge capacity personnel. The WHO reorganized its functional structure, adopted a transparent recruitment and deployment process, provided focused technical and management training, and applied systematic accountability framework to successfully manage the surge capacity project in close collaboration with the national counterparts and partners. The deployment of the surge capacity personnel was guided by operational and technical requirement analysis. Over 2200 personnel were engaged, of whom 92% were strategically deployed in 11 states classified as high risk on the basis of epidemiological risk analysis and compromised security. These additional personnel were directly engaged in efforts aimed at improving the performance of polio surveillance, vaccination campaigns, increased routine immunization outreach sessions, and strengthening partnership with key stakeholders at the operational level, including community-based organizations. Programmatic interventions were sustained in states in which security was compromised and the risk of polio was high, partly owing to the presence of the surge capacity personnel, who are engaged from the local community. Since mid-2012, significant programmatic progress was registered in the areas of polio supplementary immunization activities, acute flaccid paralysis surveillance, and routine immunization with the support of the surge capacity personnel. As of 19 June 2015, the last case of WPV was reported on 24 July 2014. The surge infrastructure has also been instrumental in building local capacity; supporting other public health emergencies, such as the Ebola outbreak response and measles and meningitis outbreaks; and strengthening the integrated disease surveillance and response. Due to weak health systems in the country, it is vital to maintain a reasonable level of the surge capacity for successful implementation of the 2013-2018 global polio endgame strategy and beyond. © 2016 World Health Organization; licensee Oxford Journals.

  6. Strategic Engagement of Technical Surge Capacity for Intensified Polio Eradication Initiative in Nigeria, 2012–2015

    PubMed Central

    Yehualashet, Yared G.; Mkanda, Pascal; Gasasira, Alex; Erbeto, Tesfaye; Onimisi, Anthony; Horton, Janet; Banda, Richard; Tegegn, Sisay G.; Ahmed, Haruna; Afolabi, Oluwole; Wadda, Alieu; Vaz, Rui G.; Nsubuga, Peter

    2016-01-01

    Background. Following the 65th World Health Assembly (WHA) resolution on intensification of the Global Poliomyelitis Eradication Initiative (GPEI), the Nigerian government, with support from the World Health Organization (WHO) and other partners, implemented a number of innovative strategies to curb the transmission of wild poliovirus (WPV) in the country. One of the innovations successfully implemented since mid 2012 is the WHO's engagement of surge capacity personnel. Methods. The WHO reorganized its functional structure, adopted a transparent recruitment and deployment process, provided focused technical and management training, and applied systematic accountability framework to successfully manage the surge capacity project in close collaboration with the national counterparts and partners. The deployment of the surge capacity personnel was guided by operational and technical requirement analysis. Results. Over 2200 personnel were engaged, of whom 92% were strategically deployed in 11 states classified as high risk on the basis of epidemiological risk analysis and compromised security. These additional personnel were directly engaged in efforts aimed at improving the performance of polio surveillance, vaccination campaigns, increased routine immunization outreach sessions, and strengthening partnership with key stakeholders at the operational level, including community-based organizations. Discussion. Programmatic interventions were sustained in states in which security was compromised and the risk of polio was high, partly owing to the presence of the surge capacity personnel, who are engaged from the local community. Since mid-2012, significant programmatic progress was registered in the areas of polio supplementary immunization activities, acute flaccid paralysis surveillance, and routine immunization with the support of the surge capacity personnel. As of 19 June 2015, the last case of WPV was reported on 24 July 2014. The surge infrastructure has also been instrumental in building local capacity; supporting other public health emergencies, such as the Ebola outbreak response and measles and meningitis outbreaks; and strengthening the integrated disease surveillance and response. Due to weak health systems in the country, it is vital to maintain a reasonable level of the surge capacity for successful implementation of the 2013–2018 global polio endgame strategy and beyond. PMID:26912379

  7. Active identification and control of aerodynamic instabilities in axial and centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Krichene, Assad

    In this thesis, it is experimentally shown that dynamic cursors to stall and surge exist in both axial and centrifugal compressors using the experimental axial and centrifugal compressor rigs located in the School of Aerospace Engineering at the Georgia Institute of Technology. Further, it is shown that the dynamic cursors to stall and surge can be identified in real-time and they can be used in a simple control scheme to avoid the occurrence of stall and surge instabilities altogether. For the centrifugal compressor, a previously developed real-time observer is used in order to detect dynamic cursors to surge in real-time. An off-line analysis using the Fast Fourier Transform (FFT) of the open loop experimental data from the centrifugal compressor rig is carried out to establish the influence of compressor speed on the dynamic cursor frequency. The variation of the amplitude of dynamic cursors with compressor operating condition from experimental data is qualitatively compared with simulation results obtained using a generic compression system model subjected to white noise excitation. Using off-line analysis results, a simple control scheme based on fuzzy logic is synthesized for surge avoidance and recovery. The control scheme is implemented in the centrifugal compressor rig using compressor bleed as well as fuel flow to the combustor. Closed loop experimental results are obtained to demonstrate the effectiveness of the controller for both surge avoidance and surge recovery. The existence of stall cursors in an axial compression system is established using the observer scheme from off-line analysis of an existing database of a commercial gas turbine engine. However, the observer scheme is found to be ineffective in detecting stall cursors in the experimental axial compressor rig in the School of Aerospace Engineering at the Georgia Institute of Technology. An alternate scheme based on the amplitude of pressure data content at the blade passage frequency obtained using a pressure sensor located (in the casing) over the blade row is developed and used in the axial compressor rig for stall and surge avoidance and recovery. (Abstract shortened by UMI.)

  8. Femoral tunnel enlargement after anatomic ACL reconstruction: a biological problem?

    PubMed

    Silva, Alcindo; Sampaio, Ricardo; Pinto, Elisabete

    2010-09-01

    Tunnel enlargement after anterior cruciate ligament (ACL) reconstruction may compromise revision surgery. The cause of this tunnel enlargement is not yet fully understood, but it is thought to be multifactorial, with biomechanical and biological factors playing a role. Tunnel enlargement has been described particularly in patients who underwent ACL reconstruction with hamstring tendons with extracortical fixation devices. The purpose of our study was to evaluate prospectively with magnetic resonance imaging (MRI) the changes in femoral tunnel diameter following arthroscopic anatomic ACL reconstruction with hamstring tendons. At 3-month post-op, all tunnels had enlarged compared to the diameter of the drill and most tunnels enlarged more in the midsection than at the aperture. In the posterolateral tunnels, the entrance increased 16% in diameter and the middle of the tunnel increased 30% in diameter. In the anteromedial femoral tunnels, the tunnels enlarged 14% at the aperture and 35% in the midsection. All femoral tunnels enlarged and most of them enlarged in a fusiform manner. The biological factors explain better our findings than the mechanical theory, although mechanical factors may play a role and the cortical bone at the entrance of the tunnel may modify the way tunnels respond to mechanical stress.

  9. High Risk of Dementia in Ventricular Enlargement with Normal Pressure Hydrocephalus Related Symptoms1.

    PubMed

    Koivisto, Anne M; Kurki, Mitja I; Alafuzoff, Irina; Sutela, Anna; Rummukainen, Jaana; Savolainen, Sakari; Vanninen, Ritva; Jääskeläinen, Juha E; Soininen, Hilkka; Leinonen, Ville

    2016-03-22

    Differential diagnosis of ventricular enlargement with normal pressure hydrocephalus (NPH) related symptoms is challenging. Patients with enlarged ventricles often manifest cognitive deterioration but their long-term outcome is not well known. We aim to evaluate long-term cognitive outcome in patients with enlarged ventricles and clinically suspected NPH. A neurologist and a neurosurgeon clinically evaluated 468 patients with enlarged ventricles and suspected NPH using radiological methods, intraventricular pressure monitoring, and frontal cortical brain biopsy. The neurologist confirmed final diagnoses after a median follow-up interval of 4.8 years. Altogether, 232 patients (50%) with enlarged ventricles did not fulfill the criteria for shunt surgery. The incidence of dementia among patients with enlarged ventricles, and at least one NPH-related symptom with adequate follow-up data (n = 446) was high, varying from 77 (iNPH, shunt responders) to 141/1000 person-years (non-shunted patients with enlarged ventricles). At the end of the follow-up, 59% of all these patients were demented. The demented population comprised 73% of non-shunted patients with enlarged ventricles, 63% of shunted iNPH patients that did not respond to treatment, and 46% of iNPH patients that were initially responsive to shunting. The most common cause of dementia was Alzheimer's disease (n = 94, 36%), followed by vascular dementia (n = 68, 26%). One-half of patients with enlarged ventricles and clinically suspected NPH were not shunted after intraventricular pressure monitoring. Dementia caused by various neurodegenerative diseases was frequently seen in patients with ventricular enlargement. Thus, careful diagnostic evaluation in collaboration with neurologists and neurosurgeons is emphasized.

  10. Outcome of Dupuytren Contractures After Collagenase Clostridium Histolyticum Injection: A Single-institution Experience.

    PubMed

    Hwee, Yin Kan; Park, Daniel; Vinas, Marisa; Litts, Christopher; Friedman, David

    2017-08-01

    Collagenase clostridium histolyticum (CCH) injection is an alternative to surgery for patients with Dupuytren disease (DD) of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints. The success of surgical and nonsurgical treatment modalities for DD is reported to vary widely between 25% and 80% (J Bone Joint Surg Am. 1985;67:1439-1443; Plast Reconstr Surg. 2007;120:44e-54e; J Bone Joint Surg Am. 2007;89:189-198; J Hand Surg Am. 2011:36:936-942; J Hand Surg Am. 1990;15:755-761; J Hand Surg Br. 1996;21:797-800; J Bone Joint Surg Br. 2000;82:90-94; Plast Reconstr Surg. 2005;115:802-810; Ann Plast Surg. 2006;57:13-17). This study presents the outcomes of patients with DD contractures treated with CCH injections at a single institution. An institutional review board-approved retrospective study was conducted of patients with DD of the hand treated with CCH injections in a single institution from February 2010 to April 2015. All patients received the recommended dose of 0.58 mg of CCH and returned for joint manipulation the following day. Data for follow-up at 7 and 30 days postoperatively and up to 5 years for patients who returned seeking further therapy for recurrent symptoms were reviewed. One hundred thirteen patients with a total of 146 affected joints (72 MCP; 74 PIP) were treated with CCH injections (95 males; 18 females; age, 40-92 y). Successful CCH therapy occurred in 75% of injected joints (109/146 joints; 59 MCP; 50 PIP), as defined by less than 5 degrees of contracture after treatment. Twenty-three percent of treated joints had partial correction (34/146 joints; 13 MCP; 21 PIP), as defined by between 5 and 30 degrees of residual contracture after treatment. Three patients (2%) had a failure of treatment, as defined by unchanged or worsened contracture from pretreatment baseline measurements. Fifteen patients (13%) returned to the clinic seeking additional therapy for recurrent joint contracture symptoms in 17 joints over a span of 1.5 months to 4 years after initial successful or partially successful treatment (17/143, 12%; 5 MCP; 12 PIP). Recurrence was defined as patients who sought treatment for a return of symptoms or greater than 20 degrees contracture in the setting of a palpable cord after initial full or partial contracture correction. Our 5-year outcome of CCH injections for DD contractures revealed full correction in 75% and partial correction in 23% of treated joints, with failure of treatment seen in only 2% of patients. Thirteen percent of the patients returned for additional treatment because of symptoms resulting from contracture recurrence in 12% of initially corrected or partially corrected joints. These positive outcomes are comparable with current surgical treatment modalities (J Hand Surg Am. 1990;15:755-761; J Bone Joint Surg Am. 1962;44B:602-613; J Clin Epidemiol. 2000;53:291-296). The use of CCH injections is an important nonsurgical treatment alternative for DD contractures of the MCP and PIP joints.

  11. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the refractions from the anomalous zone, also the off-line reflections from the top of the intrusion were used for inversion. Presented results provide new information about the depth and horizontal extent of the high-velocity intrusion. The model is also compared with other seismic studies of similar velocity anomalies observed at continental margins.

  12. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  13. The Surge, Wave, and Tide Hydrodynamics (SWaTH) network of the U.S. Geological Survey—Past and future implementation of storm-response monitoring, data collection, and data delivery

    USGS Publications Warehouse

    Verdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.

    2017-06-20

    After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.

  14. Adriatic storm surges and related cross-basin sea-level slope

    NASA Astrophysics Data System (ADS)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  15. Blind, olfactory bulbectomized female rats do not have daily luteinizing hormone surges.

    PubMed

    Pieper, D R; Mortiere, M R

    1985-03-15

    Previous studies from other laboratories have shown that female hamsters on short photoperiod become acyclic and have daily LH surges. These effects are eliminated if the animals are pinealectomized (PX) before being placed on the short photoperiod. Reiter and colleagues have shown that pre-pubertally blinded (BL) and olfactory bulbectomized (BX) female rats also have irregular estrous cycles, and this effect is also eliminated by PX [Endocr. Rev., 1 (1983) 109]. The main question addressed by the present study was whether the BL + BX rats also have daily LH surges. Twenty-five-day-old female Sprague-Dawley rats were divided into 5 groups: LD 14:10 sham (control); BL + BX; BL + BX + PX; LD 6:18 sham; and LD 6:18 BX. Ten weeks following surgery, all animals were sampled (0.5 ml) every 5 h for 2 days from an indwelling atrial catheter. Daily vaginal smears indicated that the BL + BX group were in estrus much less frequently than controls (15.8 +/- 1.8 vs 27.3 +/- 1.5% of days cornified cells, 10 rats/group smeared for more than 23 days each) and in general had longer, irregular cycles. The other 3 groups all had smear patterns similar to controls. All 5 groups had LH surges on the day of proestrus (greater than 200 ng/ml maximum value), but no group had LH surges on 2 sequential days or an LH surge on any other day of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy

    USGS Publications Warehouse

    Rangoonwala, Amina; Enwright, Nicholas M.; Ramsey, Elijah W.; Spruce, Joseph P.

    2016-01-01

    This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.

  17. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  18. Electrodynamic parameters in the nighttime sector during auroral substorms

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Anderson, P. C.; Craven, J. D.; Sugiura, M.; Frank, L. A.; Maynard, N. C.

    1994-01-01

    The characteristics of the large-scale electrodynamic parameters, field-aligned currents (FACs), electric fields, and electron precipitation, which are associated with auroral substorm events in the nighttime sector, have been obtained through a unique analysis which places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. A generic bulge-type auroral emission region has been deduced from auroral images taken by the Dynamics Explorer 1 (DE 1) satellite during a number of isolated substorms, and the form has been divided into six sectors, based on the peculiar emission characteristics in each sector: west of bulge, surge horn, surge, middle surge, eastern bulge, and east of bulge. By comparing the location of passes of the Dynamics Explorer 2 (DE 2) satellite to the simultaneously obtained auroral images, each pass is placed onto the generic aurora. The organization of DE 2 data in this way has systematically clarified peculiar characteristics in the electrodynamic parameters. An upward net current mainly appears in the surge, with little net current in the surge horn and the west of bulge. The downward net current is distributed over wide longitudinal regions from the eastern bulge to the east of bulge. Near the poleward boundary of the expanding auroral bulge, a pair of oppositely directed FAC sheets is observed, with the downward FAC on the poleward side. This downward FAC and most of the upward FAC in the surge and the middle surge are assoc iated with narrow, intense antisunwqard convection, corresponding to an equatorward directed spikelike electric field. This pair of currents decreases in amplitude and latitudinal width toward dusk in the surge and the west of bulge, and the region 1 and 2 FACs become embedded in the sunward convection region. The upward FAC region associated with the spikelike field on the poleward edge of the bulge coincides well with intense electron precipitation and aurora appearing in this western and poleward protion of the bulge. The convection reversal is sharp in the west of bulge and surge horn sectors, and near the high-latitude boundary of the upward region 1, with a near stagnation region often extending over a large interval of latitude. In the eastern bulge and east of bulge sectors, the region 1 and 2 FACs are located in the sunward convection region, while a spikelike electric field occasionally appears poleward of the aurora but usually not associated with a pair of FAC sheets. In the eastern bulge, magnetic field data show complicated FAC distributions which correspond to current segments and filamentary currents.

  19. The eSurge-Venice project: altimeter and scatterometer satellite data to improve the storm surge forecasting in the city of Venice

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; De Biasio, Francesco; Umgiesser, Georg; Bajo, Marco; Vignudelli, Stefano; Papa, Alvise; Donlon, Craig; Bellafiore, Debora

    2013-04-01

    On the framework of the Data User Element (DUE) program, the European Space Agency is funding a project to use altimeter Total Water Level Envelope (TWLE) and scatterometer wind data to improve the storm surge forecasting in the Adriatic Sea and in the city of Venice. The project will: a) Select a number of Storm Surge Events occurred in the Venice lagoon in the period 1999-present day b) Provide the available satellite Earth Observation (EO) data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts c) Provide a demonstration Near Real Time service of EO data products and services in support of operational and experimental forecasting and warning services d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data The re-analysis experiments, based on hindcasts performed by the finite element 2-D oceanographic model SHYFEM (https://sites.google.com/site/shyfem/), will 1. use different forcing wind fields (calibrated and not calibrated with satellite wind data) 2. use Storm Surge Model initial conditions determined from altimeter TWLE data. The experience gained working with scatterometer and Numerical Weather Prediction (NWP) winds in the Adriatic Sea tells us that the bias NWP-Scatt wind is negative and spatially and temporally not uniform. In particular, a well established point is that the bias is higher close to coasts then offshore. Therefore, NWP wind speed calibration will be carried out on each single grid point in the Adriatic Sea domain over the period of a Storm Surge Event, taking into account of existing published methods. Point #2 considers two different methodologies to be used in re-analysis tests. One is based on the use of the TWLE values from altimeter data in the Storm Surge Model (SSM), applying data assimilation methodologies and trying to optimize the initial conditions of the simulation.The second possibility is an indirect exploitation of the TWLE data from altimeter in an ensemble-like framework, obtained by slight variations of the external forcing. In this case the wind data from NWP models will be weakly altered (shifted in phase), the drag coefficient will be modified, and the initial condition of the model slightly shifted in time to account for the uncertainty of these factors. This contribution will illustrate the geophysical context of work and outline the results.

  20. Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Rashid, Irfan; Abdullah, Tariq; Glasser, Neil F.; Naz, Heena; Romshoo, Shakil Ahmad

    2018-02-01

    This study analyses the behaviour of an actively surging glacier, Hispar, in Pakistan using remote sensing methods. We used 15 m panchromatic band of Landsat 8 OLI from 2013 to 2017 to assess the changes in glacier velocity, glacier geomorphology and supraglacial water bodies. For the velocity estimation, correlation image analysis (CIAS) was used, which is based on normalized cross-correlation (NCC) of satellite data. On-screen digitization was employed to quantify changes in the glacier geomorphology and dynamics of supraglacial water bodies on the glacier. Our velocity estimates indicate that the upper part of the glacier is presently undergoing an active surge which not only affects the debris distribution but also impacts the development of supraglacial water bodies. Velocities in the actively surging part of the main glacier trunk and its three tributaries reach up to 900 m yr- 1. The surge of Hispar also impacts the distribution of supraglacial debris causing folding of the medial moraines features present on the glacier surface. Changes in the number and size of supraglacial lakes and ponds were also observed during the observation period from 2013 to 2017.

  1. High resolution climate projection of storm surge at the Venetian coast

    NASA Astrophysics Data System (ADS)

    Mel, R.; Sterl, A.; Lionello, P.

    2013-04-01

    Climate change impact on storm surge regime is of great importance for the safety and maintenance of Venice. In this study a future storm surge scenario is evaluated using new high resolution sea level pressure and wind data recently produced by EC-Earth, an Earth System Model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). The study considers an ensemble of six 5 yr long simulations of the rcp45 scenario at 0.25° resolution and compares the 2094-2098 to the 2004-2008 period. EC-Earth sea level pressure and surface wind fields are used as input for a shallow water hydrodynamic model (HYPSE) which computes sea level and barotropic currents in the Adriatic Sea. Results show that a high resolution climate model is needed for producing realistic values of storm surge statistics and confirm previous studies in that they show little sensitivity of storm surge levels to climate change. However, some climate change signals are detected, such as increased persistence of high pressure conditions, an increased frequency of windless hour, and a decreased number of moderate windstorms.

  2. Numerical simulation of MEMS-based blade load distribution control in centrifugal compressor surge suppression

    NASA Astrophysics Data System (ADS)

    Beneda, Károly

    2012-11-01

    The utilization of turbomachines requires up-to-date technologies to ensure safe operation throughout the widest possible range that makes novel ideas necessary to cope with classic problems. One of the most dangerous instability in compression systems is surge that has to be suppressed before its onset to avoid structural damages as well as other adverse consequences in the system. As surge occurs at low delivered mass flow rates the conventional widely spread surge control is based on bypassing the unnecessary airflow back to the atmosphere. This method has been implemented on a large number of aircraft and provides a robust control on suppressing compressor surge while creating a significant efficiency loss. This paper deals with an idea that has been originally designed as a fixed geometry that could be realized using up-to-date MEMS technology resulting in moderate losses but comparable stability enhancement. Previously the author has established the one-dimensional mathematical model of the concept, but it is indispensable - before the real instrument can be developed - to carry out detailed numerical simulation of the device. The aim of the paper is to acquaint the efforts of this CFD simulation.

  3. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  4. Specific Consideration on Superior Performance and Evaluation Methods of Polymer-housed Surge Arresters

    NASA Astrophysics Data System (ADS)

    Ishizaki, Yoshihiro; Kobayashi, Misao; Suzuki, Hironori; Futagami, Koichi

    It is very suitable to select the polymer materials for the housings of surge arresters (SAs), because the polymer materials are generally soft and light weight. Therefore, many kinds of polymer-housed SAs using various polymer materials have been developed, and expanding into many countries. Considering these backgrounds, the JEC technical report (JEC-TR) 23002-2008; polymer-housed surge arrester(1) has been established based on the existent relevant standards of arresters, such as JEC-2371-2003; Insulator-housed surge arresters(2) and IEC 60099-4 Edition 2.2, Metal-oxide surge arresters (MOSAs) without gaps for a.c. systems(3) in order to introduce the technology and provide a common guide for testing of polymer-housed SAs. According as the JEC-TR, the various new applications of the polymer-housed SAs, which are caused by superior advantages such as compact, light weight, safe failure mode, anti-seismic performance, anti-pollution performance and cost efficiency design, have been realized recently in Japan. Therefore, this paper gives specific consideration on the superior performance of the polymer-housed SAs and the evaluation methods of the polymer-housed SAs, because there are some issues in the existent standards to be solved.

  5. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  6. Tide-surge Interaction Intensified by the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  7. LCoE Analysis of Surge-Mode WEC

    DOE Data Explorer

    Bill Staby

    2017-03-07

    Spreadsheet which provides estimates of reductions in Levelized Cost of Energy for a surge-mode wave energy converter (WEC). This is made available via adoption of the advanced control strategies developed during this research effort.

  8. A look inside the nerve - Morphology of nerve fascicles in healthy controls and patients with polyneuropathy.

    PubMed

    Grimm, Alexander; Winter, Natalie; Rattay, Tim W; Härtig, Florian; Dammeier, Nele M; Auffenberg, Eva; Koch, Marilin; Axer, Hubertus

    2017-12-01

    Polyneuropathies are increasingly analyzed by ultrasound. Summarizing, diffuse enlargement is typical in Charcot-Marie Tooth type 1 (CMT1a), regional enlargement occurs in inflammatory neuropathies. However, a distinction of subtypes is still challenging. Therefore, this study focused on fascicle size and pattern in controls and distinct neuropathies. Cross-sectional area (CSA) of the median, ulnar and peroneal nerve (MN, UN, PN) was measured at predefined landmarks in 50 healthy controls, 15 CMT1a and 13 MMN patients. Additionally, largest fascicle size and number of visible fascicles was obtained at the mid-upper arm cross-section of the MN and UN and in the popliteal fossa cross-section of the PN. Cut-off normal values for fascicle size in the MN, UN and PN were defined (<4.8mm 2 , <2.8mm 2 and <3.5mm 2 ). In CMT1a CSA and fascicle values are significantly enlarged in all nerves, while in MMN CSA and fascicles are regionally enlarged with predominance in the upper arm nerves. The ratio of enlarged fascicles and all fascicles was significantly increased in CMT1a (>50%) in all nerves (p<0.0001), representing diffuse fascicle enlargement, and moderately increased in MMN (>20%), representing differential fascicle enlargement (enlarged and normal fascicles at the same location) sparing the peroneal nerve (regional fascicle enlargement). Based on these findings distinct fascicle patterns were defined. Normal values for fascicle size could be evaluated; while CMT1a features diffuse fascicle enlargement, MMN shows regional and differential predominance with enlarged fascicles as single pathology. Pattern analysis of fascicles might facilitate distinction of several otherwise similar neuropathies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. The Long-term Natural History of Geographic Atrophy from Age-Related Macular Degeneration

    PubMed Central

    Sunness, Janet S.; Margalit, Eyal; Srikumaran, Divya; Applegate, Carol A.; Tian, Yan; Perry, Daniel; Hawkins, Barbara S.; Bressler, Neil M.

    2008-01-01

    Purpose To report the enlargement rate of geographic atrophy (GA) over time, its relationship to size of atrophy at baseline and to prior enlargement rate, and the implications for designing future treatment trials for GA. Design Prospective natural history study of GA resulting from age-related macular degeneration. Participants Two hundred twelve eyes of 131 patients were included in the analysis. Methods Annual follow-up included stereo color fundus photographs. The areas of GA were identified and measured, and the rate of enlargement of the atrophy was assessed. Sample sizes for clinical trials using systemic treatment and uniocular treatment were determined. Main Outcome Measure Rate of enlargement of the atrophy. Results The median overall enlargement rate was 2.1 mm2/year (mean, 2.6 mm2/year). Eyes with larger areas of atrophy at baseline tended to have larger enlargement rates, but knowledge of prior rates of enlargement was the most significant factor in predicting subsequent enlargement rates. There was high concordance between the enlargement rates in the 2 eyes of patients with bilateral GA (correlation coefficient, 0.76). To detect a 25% reduction in enlargement rate for a systemic treatment (α, 0.05; power, 0.80; losses to follow-up, 15%), 153 patients each in a control and treatment group would be required for a trial with a 2-year follow-up period for each patient. For a uniocular treatment, 38 patients with bilateral GA would be required, with the untreated eye serving as a control for the treated eye. Conclusions Treatment trials for GA with an outcome variable of change in enlargement rate are feasible. PMID:17270676

  10. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  11. Is Survival Time After Hemorrhage a Heritable, Quantitative Trait?: An Initial Assessment

    DTIC Science & Technology

    2008-06-01

    The epidemiology of traumatic death. A population-based analysis. Arch Surg 128:571Y575, 1993. 5. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R...therapeutic goals and early warning of death. Arch Surg 106:630Y636, 1973. 752 SHOCK VOL. 29, NO. 6 KLEMCKE ET AL. Copyright @ 200 by the Shock...Hemorrhagic shock in rats. Measured blood volumes as the basis for the extent of hemorrhage. Arch Surg 99:484Y488, 1969. 19. Nose H, Morita M, Yawata T

  12. The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia

    NASA Technical Reports Server (NTRS)

    Lau, N.-C.; Lau, K.-M.

    1984-01-01

    The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.

  13. Superior cervical ganglion mimicking retropharyngeal adenopathy in head and neck cancer patients: MRI features with anatomic, histologic, and surgical correlation.

    PubMed

    Loke, S C; Karandikar, A; Ravanelli, M; Farina, D; Goh, J P N; Ling, E A; Maroldi, R; Tan, T Y

    2016-01-01

    To describe the unique MRI findings of superior cervical ganglia (SCG) that may help differentiate them from retropharyngeal lymph nodes (RPLNs). A retrospective review of post-treatment NPC patients from 1999 to 2012 identified three patients previously irradiated for NPC that were suspected of having recurrent nodal disease in retropharyngeal lymph nodes during surveillance MRI. Subsequent surgical exploration revealed enlarged SCG only; no retropharyngeal nodal disease was found. A cadaveric head specimen was also imaged with a 3T MRI before and after dissection. In addition, SCG were also harvested from three cadaveric specimens and subjected to histologic analysis. The SCG were found at the level of the C2 vertebral body, medial to the ICA. They were ovoid on axial images and fusiform and elongated with tapered margins in the coronal plane. T2-weighted (T2W) signal was hyperintense. No central elevated T1-weighted (T1W) signal was seen within the ganglia in non-fat-saturated sequences to suggest the presence of a fatty hilum. Enhancement after gadolinium was present. A central "black dot" was seen on axial T2W and post-contrast images in two of the three SCG demonstrated. Histology showed the central black line was comprised of venules and interlacing neurites within the central portion of the ganglion. The SCG can be mistaken for enlarged RPLNs in post-treatment NPC patients. However, there are features which can help differentiate them from RPLNs, preventing unnecessary therapy. These imaging findings have not been previously described.

  14. Brain anomalies in children exposed prenatally to a common organophosphate pesticide

    PubMed Central

    Rauh, Virginia A.; Perera, Frederica P.; Horton, Megan K.; Whyatt, Robin M.; Bansal, Ravi; Hao, Xuejun; Liu, Jun; Barr, Dana Boyd; Slotkin, Theodore A.; Peterson, Bradley S.

    2012-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9–11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical surface features; all participants had minimal prenatal exposure to environmental tobacco smoke and polycyclic aromatic hydrocarbons. High CPF exposure was associated with enlargement of superior temporal, posterior middle temporal, and inferior postcentral gyri bilaterally, and enlarged superior frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right hemisphere. Group differences were derived from exposure effects on underlying white matter. A significant exposure × IQ interaction was derived from CPF disruption of normal IQ associations with surface measures in low-exposure children. In preliminary analyses, high-exposure children did not show expected sex differences in the right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of normal behavioral sexual dimorphisms reported in animal models. High-exposure children also showed frontal and parietal cortical thinning, and an inverse dose–response relationship between CPF and cortical thickness. This study reports significant associations of prenatal exposure to a widely used environmental neurotoxicant, at standard use levels, with structural changes in the developing human brain. PMID:22547821

  15. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much less damage is expected up to the final runout distance of 4 km. For larger eruptions (base surge runout distance 4-6 km), Pdyn of > 35 kPa can be expected up to 2.5 km from source, ensuring complete destruction within this area. Moderate damage to reinforced structures and damage to weaker structures can be expected up to 6 km from source. In both cases hot ash may still cause damage due to igniting flammable materials in the distal-most regions of a base surge. This work illustrates our ability to combine field observations and numerical models to explore the depositional mechanisms, macroscale current dynamics, and potential impact of dilute PDCs. Thus, this approach may serve as a tool to understand the damage potential and extent of previous and potential future eruptions in the AVF.

  16. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the Gulf of Mexico, and improved the accuracy and resolution of the Probabilistic Storm Surge model.

  17. National assessment of hurricane-induced coastal erosion hazards: Mid-Atlantic Coast

    USGS Publications Warehouse

    Doran, Kara S.; Stockdon, Hilary F.; Sopkin, Kristin L.; Thompson, David M.; Plant, Nathaniel G.

    2013-01-01

    Beaches serve as a natural buffer between the ocean and inland communities, ecosystems, and natural resources. However, these dynamic environments move and change in response to winds, waves, and currents. During extreme storms, changes to beaches can be large, and the results are sometimes catastrophic. Lives may be lost, communities destroyed, and millions of dollars spent on rebuilding. During storms, large waves may erode beaches, and high storm surge shifts the erosive force of the waves higher on the beach. In some cases, the combined effects of waves and surge may cause overwash (when waves and surge overtop the dune, transporting sand inland) or flooding. Building and infrastructure on or near a dune can be undermined during wave attack and subsequent erosion. During Hurricane Ivan in 2004, a five-story condominium in Orange Beach, Alabama, collapsed after the sand dune supporting the foundation eroded. Hurricane Sandy, which made landfall as an extra-tropical cyclone on October 29, 2012, caused erosion and undermining that destroyed roads, boardwalks, and foundations in Seaside Heights, New Jersey. Waves overtopping a dune can transport sand inland, covering roads and blocking evacuation routes or emergency relief. If storm surge inundates barrier island dunes, currents flowing across the island can create a breach, or a new inlet, completely severing evacuation routes. Waves and surge during Hurricane Sandy, which made landfall on October 29, 2012, left a breach that cut the road and bridge to Mantoloking, N.J. Extreme coastal changes caused by hurricanes may increase the vulnerability of communities both during a storm and to future storms. For example, when sand dunes on a barrier island are eroded substantially, inland structures are exposed to storm surge and waves. Absent or low dunes also allow water to flow inland across the island, potentially increasing storm surge in the back bay, on the soundside of the barrier, and on the mainland.

  18. Storm surges and coastal impacts at Mar del Plata, Argentina

    NASA Astrophysics Data System (ADS)

    Fiore, Mónica M. E.; D'Onofrio, Enrique E.; Pousa, Jorge L.; Schnack, Enrique J.; Bértola, Germán R.

    2009-07-01

    Positive storm surges (PSS) lasting for several days can raise the water level producing significant differences between the observed level and the astronomical tide. These storm events can be more severe if they coincide with a high tide or if they bracket several tidal cycles, particularly in the case of the highest astronomical tide. Besides, the abnormal sea-level elevation near the coast can cause the highest waves generated to attack the upper beach. This combination of factors can produce severe erosion, threatening sectors located along the coastline. These effects would be more serious if the storm surge height and duration increase as a result of a climatic change. The Mar del Plata (Argentina) coastline and adjacent areas are exposed to such effects. A statistical characterization of PSS based on their intensity, duration and frequency, including a surge event classification, was performed utilizing tide-gauge records over the period 1956-2005. A storm erosion potential index (SEPI) was calculated from observed levels based on hourly water level measurements. The index was related to beach profile responses to storm events. Also, a return period for extreme SEPI values was calculated. Results show an increase in the average number of positive storm surge events per decade. Considering all the events, the last decade (1996-2005) exhibits an average 7% increase compared to each one of the previous decades. A similar behavior was found for the decadal average of the heights of maximum annual positive storm surges. In this case the average height of the last two decades exceeds that of the previous decades by approximately 8 cm. The decadal average of maximum annual duration of these meteorological events shows an increase of 2 h in the last three decades. A possible explanation of the changes in frequency, height and duration of positive storm surges at Mar del Plata would seem to lie in the relative mean sea-level rise.

  19. 27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  20. Dynamics of sea level rise and coastal flooding on a changing landscape

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Passeri, D. L.

    2014-02-01

    Standard approaches to determining the impacts of sea level rise (SLR) on storm surge flooding employ numerical models reflecting present conditions with modified sea states for a given SLR scenario. In this study, we advance this paradigm by adjusting the model framework so that it reflects not only a change in sea state but also variations to the landscape (morphologic changes and urbanization of coastal cities). We utilize a numerical model of the Mississippi and Alabama coast to simulate the response of hurricane storm surge to changes in sea level, land use/land cover, and land surface elevation for past (1960), present (2005), and future (2050) conditions. The results show that the storm surge response to SLR is dynamic and sensitive to changes in the landscape. We introduce a new modeling framework that includes modification of the landscape when producing storm surge models for future conditions.

  1. Effect of Rotor- and Stator-Blade Modifications on Surge Performance of an 11-Stage Axial-Flow Compressor. I - Original Production Compressor of XJ40-WE-6 Engine

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Essig, Robert H.; Conrad, E. William

    1952-01-01

    An investigation to increase the compressor surge-limit pressure ratio of the XJ40-WE-6 turbojet engine at high equivalent speeds was conducted at the NACA Lewis altitude wind tunnel. This report evaluates the compressor modifications which were restricted to (1) twisting rotor blades (in place) to change blade section angles and (2) inserting new stator diaphragms with different blade angles. Such configuration changes could be incorporated quickly and easily in existing engines at overhaul depots. It was found that slight improvements in the compressor surge limit were possible by compressor blade adjustment. However, some of the modifications also reduced the engine air flow and hence penalized the thrust. The use of a mixer assembly at the compressor outlet improved the surge limit with no appreciable thrust penalty.

  2. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    PubMed Central

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  3. Spatio-temporal variations in storm surges along the North Atlantic coasts

    NASA Astrophysics Data System (ADS)

    Marcos, Marta; Woodworth, Philip

    2017-04-01

    Extreme sea levels along the coasts of the North Atlantic Ocean and the Gulf of Mexico have been investigated using hourly tide gauge records compiled in the recently released GESLA-2 data set (www.gesla.org). These regions are among the most densely monitored coasts worldwide, with more than 300 high frequency quality-controlled tide gauge time series available. Here we estimate the storm surge component of extreme sea levels using both tidal residuals and skew surges, for which we explore the spatial and temporal coherency of their intensities, duration and frequency. We quantify the relationship of extremes with dominant large scale climate patterns and discuss the impact of mean sea level changes. Finally, we test the assumption of stationarity of the probability of extreme occurrence and to which extent it holds when mean sea level changes are considered in combination with storm surges.

  4. A parabolic model of drag coefficient for storm surge simulation in the South China Sea.

    PubMed

    Peng, Shiqiu; Li, Yineng

    2015-10-26

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  5. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  6. Top income shares in Canada: recent trends and policy implications

    PubMed Central

    Veall, Michael R

    2012-01-01

    According to Canadian taxfiler data, over the last thirty years there has been a surge in the income shares of the top 1%, top 0.1% and top 0.01% of income recipients, even with longitudinal smoothing by individual using three- or five-year moving averages. Top shares fell in 2008 and 2009, but only by a fraction of the overall surge. Alberta, British Columbia, and Ontario have much more pronounced surges than other provinces. Part of the Canadian surge is likely attributable to U.S. factors, but a comprehensive explanation remains elusive. Even so, I draw implications for policies that might achieve some support from across the political spectrum, including the elimination of tax preferences that favour those with high incomes, the promotion of shareholder democracy and, to maintain Canada's relatively high intergenerational mobility, continued wide accessibility to healthcare and education. PMID:23335814

  7. Observations of neutral circulation at mid-latitudes during the Equinox Transition Study

    NASA Technical Reports Server (NTRS)

    Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.

    1988-01-01

    Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.

  8. Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests

    USGS Publications Warehouse

    Denlinger, R.P.; Iverson, R.M.

    2001-01-01

    Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.

  9. Glacier surge triggered by massive rock avalanche: Teleseismic and satellite image study of long-runout landslide onto RGO Glacier, Pamirs

    NASA Astrophysics Data System (ADS)

    Stark, C. P.; Wolovick, M.; Ekstrom, G.

    2012-12-01

    Glacier surges are thought to result from changes in resistance to sliding at the base of the ice mass. The reasons for such changes in basal conditions are not entirely understood, and this is in part because empirical constraints are severely limited. Recent work in the Karakoram and Pamir mountains, home to the majority of Earth's surging mountain glaciers, has boosted observational data, but has led to diametrically opposed interpretations of their glacier surging mechanics, ranging from thermal to hydrological switching. In this context we describe a surge of the RGO (Russian Geographical Society) Glacier in the Pamirs triggered by a massive rock avalanche off Mt Garmo in 2001. Initial reports pegged the RGO Glacier landslide as having been triggered in 2002 by strong ground motion originating from a nearby tectonic earthquake. We used multitemporal satellite imagery to establish failure must have struck in August-September 2001. This revised date was confirmed by reexamining teleseismic data recorded at stations in central Asia: it became clear that a landslide seismic source of magnitude Msw≈5.4 on 2001/09/02 had been misinterpreted as two tectonic sources located within kilometers of Mt Garmo. Exploiting a new technique we have developed for inverting long-period seismic waveforms, we show that a mass of rock and ice around 2.8×{}1011 kg collapsed to the SSE from an elevation of around 5800m, accelerated to a peak speed of about 60m/s, collided with the valley wall ˜ 2 km to the south and turned east to run out a further 6km over significant fractions of the accumulation and ablation zones of the RGO Glacier. Based on this estimate of landslide mass, we deduce that the supraglacial debris blanket generated by this rock avalanches averaged about 20m in thickness. By this reckoning, the Mt Garmo landslide is one of the largest in the last 33 years. Next we mapped the velocity field of the RGO Glacier over time using multitemporal satellite imagery. We performed image correlation velocimetry (sometimes known as feature tracking or optical flow velocimetry) using around 120 Landsat 7 ETM+ scenes spanning 1999 through 2012. Reliable velocity fields were generated even after the loss of scan-line correction (SLC-off scenes) in 2003. Our preliminary results reveal two phases of glacier surge. The first began within a few months of the rock avalanche during the winter of 2001, with ice flow speeds rising by more than an order of magnitude to nearly 1000m/y mid-glacier at the landslide toe, and propagating as a wave down-glacier in less than a year. This phase ended in 2002-3. The second, milder surge phase began in 2005 and ended in 2007. Each phase led to an advance of the terminus over several 100m. We interpret surge initiation as being the direct consequence of rock avalanche deposition on the glacier. To explore the apparent link between rock avalanching and glacier surging, we have developed a 2D thermomechanical, higher-order, flowline model coupled to a basal hydrology scheme. We conclude with a discussion of the behavior of this model when heavily perturbed by abrupt debris deposition, and we explore whether the occurrence of landslide-triggered surging can in any way advance our understanding of glacier surge mechanics in general.

  10. Circadian rhythm disruption by a novel running wheel: Roles of exercise and arousal in blockade of the luteinizing hormone surge

    PubMed Central

    Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.

    2014-01-01

    Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters (Legan et al, 2010) [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7 hours before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2 days from ZT 5–11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10–14 days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P= 0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as in Expt. 1 except they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15 mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, P<0.02) and also inhibited wheel running and circadian phase shifts, indicating that activation of orexin 1 receptors is necessary for these effects. Expt. 3 tested the hypothesis that novel wheel exposure activates orexin neurons. Proestrous hamsters were transferred at ZT 5 to a nearby room within the animal facility and were exposed to a new cage with a locked or unlocked novel wheel or left in their home cages. At ZT 8, the hamsters were anesthetized, blood was withdrawn, they were perfused with fixative and brains were removed for immunohistochemical localization of Fos, GnRH, and orexin. Exposure to a wheel, whether locked or unlocked, suppressed circulating LH concentrations at ZT 8, decreased the proportion of Fos-activated GnRH neurons, and increased Fos-immunoreactive orexin cells. Unlocked wheels had greater effects than locked wheels on all three endpoints. Thus in a familiar environment, exercise potentiated the effect of the novel wheel on Fos expression because a locked wheel was not a sufficient stimulus to block the LH surge. In conclusion, these studies indicate that novel wheel exposure activates orexin neurons and that blockade of orexin 1 receptors prevents novel wheel blockade of the LH surge. These findings are consistent with a role for both exercise and arousal in mediating novel wheel blockade of the LH surge. PMID:24727338

  11. Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Judi, David R.; Leung, L. Ruby

    Coastal populations in the global tropics and sub-tropics are vulnerable to the devastating impacts of hurricane storm surge and this risk is only expected to rise under climate change. In this study, we address this issue for the U.S. Gulf and Florida coasts. Using the framework of Potential Intensity, observations and output from coupled climate models, we show that the future large-scale thermodynamic environment may become more favorable for hurricane intensification. Under the RCP 4.5 emissions scenario and for the peak hurricane season months of August–October, we show that the mean intensities of Atlantic hurricanes may increase by 1.8–4.2 %more » and their lifetime maximum intensities may increase by 2.7–5.3 % when comparing the last two decades of the 20th and 21st centuries. We then combine our estimates of hurricane intensity changes with projections of sea-level rise to understand their relative impacts on future storm surge using simulations with the National Weather Service’s SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model for five historical hurricanes that made landfall in the Gulf of Mexico and Florida. Considering uncertainty in hurricane intensity changes and sea-level rise, our results indicate a median increase in storm surge ranging between 25 and 47 %, with changes in hurricane intensity increasing future storm surge by about 10 % relative to the increase that may result from sea level rise alone, with highly non-linear response of population at risk.« less

  12. Forecasting of Storm Surge Floods Using ADCIRC and Optimized DEMs

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth; Fitzpatrick, Patrick

    2005-01-01

    Increasing the accuracy of storm surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite element based codes. It affords a capability for simulating tidal circulation and storm surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate.

  13. Numerical modeling of storm surges in the coast of Mozambique: the cases of tropical cyclones Bonita (1996) and Lisette (1997)

    NASA Astrophysics Data System (ADS)

    Bié, Alberto José; de Camargo, Ricardo; Mavume, Alberto Francisco; Harari, Joseph

    2017-11-01

    The coast of Mozambique is often affected by storms, particularly tropical cyclones during summer or sometimes midlatitude systems in the southern part. Storm surges combined with high freshwater discharge can drive huge coastal floods, affecting both urban and rural areas. To improve the knowledge about the impact of storm surges in the coast of Mozambique, this study presents the first attempt to model this phenomenon through the implementation of the Princeton Ocean Model (POM) in the Southwestern Indian Ocean domain (SWIO; 2-32°S, 28-85°E) using a regular grid with 1/6° of spatial resolution and 36 sigma levels. The simulation was performed for the period 1979-2010, and the most interesting events of surges were related to tropical cyclones Bonita (1996) and Lisette (1997) that occurred in the Mozambique Channel. The results showed that the model represented well the amplitude and phase of principal lunar and solar tidal constituents, as well as it captured the spatial pattern and magnitudes of SST with slight positive bias in summer and negative bias in winter months. In terms of SSH, the model underestimated the presence of mesoscale eddies, mainly in the Mozambique Channel. Our results also showed that the atmospheric sea level pressure had a significant contribution to storm heights during the landfall of the tropical cyclones Bonita (1996) and Lisette (1997) in the coast of Mozambique contributing with about 20 and 16% of the total surge height for each case, respectively, surpassing the contribution of the tide-surge nonlinear interactions by a factor of 2.

  14. Recycle dynamics during centrifugal compressor ESD, start-up and surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Jones, B.J.; Richards, D.J.

    1996-12-31

    Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less

  15. Crevasses as indicators of surge dynamics in the Bering Bagley Glacier System, Alaska: Numerical experiments and comparison to image data analysis

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2016-12-01

    During a surge, sections of a glacier will accelerate 10-100 times their normal flow velocity resulting in sudden changes in the local stress regime. A glacier surface can fracture when a critical stress threshold is exceeded resulting in surface deformation, i.e. crevassing. During a recent field campaign to Bering Glacier, Alaska, in 2011 (and later in 2012, 2013), large scale deformation of the glacier surface was observed, indicating a major surge phase had recently occurred (Herzfeld et al. 2013). In the current study, geostatistical analysis is applied to satellite imagery to characterize the surge-induced crevasses that were present during the surge phase that began in early 2011. Results are compared to a three-dimensional, isothermal, full-Stokes model of Bering Glacier implemented in the open-source finite element software Elmer/Ice, which predicts locations and orientations of crevassing based on a failure criterion involving the magnitude(s) of the principal stress(es). Since most of the movement during a surge is due to basal sliding from decreased friction at the ice-bedrock interface, a relatively accurate representation of the the basal conditions is required to accurately model the ice dynamics and hence its stress regime. To achieve this, we invert velocity data derived from image correlation to attain estimations of the basal friction coefficient that governs basal sliding in the model. The methods employed here provide a procedure to identify discrepancies between observations and models of ice-flow during acceleration events.

  16. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-11-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.

  17. Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages

    PubMed Central

    Chrisman, Cara J.; Albuquerque, Patricia; Guimaraes, Allan J.; Nieves, Edward; Casadevall, Arturo

    2011-01-01

    A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists. PMID:21637814

  18. Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus

    PubMed Central

    Miyashita, Atsushi; Kizaki, Hayato; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-01

    ABSTRACT Honeybee royal jelly is reported to have body-enlarging effects in holometabolous insects such as the honeybee, fly and silkmoth, but its effect in non-holometabolous insect species has not yet been examined. The present study confirmed the body-enlarging effect in silkmoths fed an artificial diet instead of mulberry leaves used in the previous literature. Administration of honeybee royal jelly to silkmoth from early larval stage increased the size of female pupae and adult moths, but not larvae (at the late larval stage) or male pupae. We further examined the body-enlarging effect of royal jelly in a non-holometabolous species, the two-spotted cricket Gryllus bimaculatus, which belongs to the evolutionarily primitive group Polyneoptera. Administration of royal jelly to G. bimaculatus from its early nymph stage enlarged both males and females at the mid-nymph and adult stages. In the cricket, the body parts were uniformly enlarged in both males and females; whereas the enlarged female silkmoths had swollen abdomens. Administration of royal jelly increased the number, but not the size, of eggs loaded in the abdomen of silkmoth females. In addition, fat body cells were enlarged by royal jelly in the silkmoth, but not in the cricket. These findings suggest that the body-enlarging effect of royal jelly is common in non-holometabolous species, G. bimaculatus, but it acts in a different manner than in holometabolous species. PMID:27185266

  19. Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth; Fitzpatrick, Patrick

    2006-01-01

    Increasing the accuracy of storm-surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm-surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm-surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and, most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite-element-based codes. It affords a capability for simulating tidal circulation and storm-surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm-surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate. To keep the computational load manageable, this work was conducted using only the wind stress, calculated by using historical data from Hurricane Camille, as the input condition for the model. Hurricane storm-surge simulations were performed on an eight-node Linux computer cluster. Each node contained dual 2-GHz processors, 2GB of memory, and a 40GB hard drive. The digital elevation model (DEM) for this region was specified using a combination of Navy data (over water), NOAA data (for the coastline), and optimized Interferometric Synthetic Aperture Radar data (over land). This high-resolution topographical data of the Mississippi coastal region provided the ADCIRC model with improved input with which to calculate improved storm-surge forecasts.

  20. Numerical simulation of rotating stall and surge alleviation in axial compressors

    NASA Astrophysics Data System (ADS)

    Niazi, Saeid

    Axial compression systems are widely used in many aerodynamic applications. However, the operability of such systems is limited at low-mass flow rates by fluid dynamic instabilities. These instabilities lead the compressor to rotating stall or surge. In some instances, a combination of rotating stall and surge, called modified surge, has also been observed. Experimental and computational methods are two approaches for investigating these adverse aerodynamic phenomena. In this study, numerical investigations have been performed to study these phenomena, and to develop control strategies for alleviation of rotating stall and surge. A three-dimensional unsteady Navier-Stokes analysis capable of modeling multistage turbomachinery components has been developed. This method uses a finite volume approach that is third order accurate in space, and first or second order in time. The scheme is implicit in time, permitting the use of large time steps. A one-equation Spalart-Allmaras model is used to model the effects of turbulence. The analysis is cast in a very general form so that a variety of configurations---centrifugal compressors and multistage compressors---may be analyzed with minor modifications to the analysis. Calculations have been done both at design and off-design conditions for an axial compressor tested at NASA Glenn Research Center. At off-design conditions the calculations show that the tip leakage flow becomes strong, and its interaction with the tip shock leads to compressor rotating stall and modified surge. Both global variations to the mass flow rate, associated with surge, and azimuthal variations in flow conditions indicative of rotating stall, were observed. It is demonstrated that these adverse phenomena may be eliminated, and stable operation restored, by the use of bleed valves located on the diffuser walls. Two types of controls were examined: open-loop and closed-loop. In the open-loop case mass is removed at a fixed, preset rate from the diffuser. In the closed-loop case, the rate of bleed is linked to pressure fluctuations upstream of the compressor face. The bleed valve is activated when the amplitude of pressure fluctuations sensed by the probes exceeds a certain range. Calculations show that both types of bleeding eliminate both rotating stall and modified surge, and suppress the precursor disturbances upstream of the compressor face. It is observed that smaller amounts of compressed air need to be removed with the closed-loop control, as compared to open-loop control.

  1. Surge capacity logistics: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    PubMed

    Einav, Sharon; Hick, John L; Hanfling, Dan; Erstad, Brian L; Toner, Eric S; Branson, Richard D; Kanter, Robert K; Kissoon, Niranjan; Dichter, Jeffrey R; Devereaux, Asha V; Christian, Michael D

    2014-10-01

    Successful management of a pandemic or disaster requires implementation of preexisting plans to minimize loss of life and maintain control. Managing the expected surges in intensive care capacity requires strategic planning from a systems perspective and includes focused intensive care abilities and requirements as well as all individuals and organizations involved in hospital and regional planning. The suggestions in this article are important for all involved in a large-scale disaster or pandemic, including front-line clinicians, hospital administrators, and public health or government officials. Specifically, this article focuses on surge logistics-those elements that provide the capability to deliver mass critical care. The Surge Capacity topic panel developed 23 key questions focused on the following domains: systems issues; equipment, supplies, and pharmaceuticals; staffing; and informatics. Literature searches were conducted to identify studies upon which evidence-based recommendations could be made. The results were reviewed for relevance to the topic, and the articles were screened by two topic editors for placement within one of the surge domains noted previously. Most reports were small scale, were observational, or used flawed modeling; hence, the level of evidence on which to base recommendations was poor and did not permit the development of evidence-based recommendations. The Surge Capacity topic panel subsequently followed the American College of Chest Physicians (CHEST) Guidelines Oversight Committee's methodology to develop suggestion based on expert opinion using a modified Delphi process. This article presents 22 suggestions pertaining to surge capacity mass critical care, including requirements for equipment, supplies, and pharmaceuticals; staff preparation and organization; methods of mitigating overwhelming patient loads; the role of deployable critical care services; and the use of transportation assets to support the surge response. Critical care response to a disaster relies on careful planning for staff and resource augmentation and involves many agencies. Maximizing the use of regional resources, including staff, equipment, and supplies, extends critical care capabilities. Regional coalitions should be established to facilitate agreements, outline operational plans, and coordinate hospital efforts to achieve predetermined goals. Specialized physician oversight is necessary and if not available on site, may be provided through remote consultation. Triage by experienced providers, reverse triage, and service deescalation may be used to minimize ICU resource consumption. During a temporary loss of infrastructure or overwhelmed hospital resources, deployable critical care services should be considered.

  2. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Mel, Riccardo; Lionello, Piero

    2014-12-01

    In the Adriatic Sea, storm surges present a significant threat to Venice and to the flat coastal areas of the northern coast of the basin. Sea level forecast is of paramount importance for the management of daily activities and for operating the movable barriers that are presently being built for the protection of the city. In this paper, an EPS (ensemble prediction system) for operational forecasting of storm surge in the northern Adriatic Sea is presented and applied to a 3-month-long period (October-December 2010). The sea level EPS is based on the HYPSE (hydrostatic Padua Sea elevation) model, which is a standard single-layer nonlinear shallow water model, whose forcings (mean sea level pressure and surface wind fields) are provided by the ensemble members of the ECMWF (European Center for Medium-Range Weather Forecasts) EPS. Results are verified against observations at five tide gauges located along the Croatian and Italian coasts of the Adriatic Sea. Forecast uncertainty increases with the predicted value of the storm surge and with the forecast lead time. The EMF (ensemble mean forecast) provided by the EPS has a rms (root mean square) error lower than the DF (deterministic forecast), especially for short (up to 3 days) lead times. Uncertainty for short lead times of the forecast and for small storm surges is mainly caused by uncertainty of the initial condition of the hydrodynamical model. Uncertainty for large lead times and large storm surges is mainly caused by uncertainty in the meteorological forcings. The EPS spread increases with the rms error of the forecast. For large lead times the EPS spread and the forecast error substantially coincide. However, the EPS spread in this study, which does not account for uncertainty in the initial condition, underestimates the error during the early part of the forecast and for small storm surge values. On the contrary, it overestimates the rms error for large surge values. The PF (probability forecast) of the EPS has a clear skill in predicting the actual probability distribution of sea level, and it outperforms simple "dressed" PF methods. A probability estimate based on the single DF is shown to be inadequate. However, a PF obtained with a prescribed Gaussian distribution and centered on the DF value performs very similarly to the EPS-based PF.

  3. Simulating storm surge inundation and damage potential within complex port facilities

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.

  4. A Simple Graphical Method for Quantification of Disaster Management Surge Capacity Using Computer Simulation and Process-control Tools.

    PubMed

    Franc, Jeffrey Michael; Ingrassia, Pier Luigi; Verde, Manuela; Colombo, Davide; Della Corte, Francesco

    2015-02-01

    Surge capacity, or the ability to manage an extraordinary volume of patients, is fundamental for hospital management of mass-casualty incidents. However, quantification of surge capacity is difficult and no universal standard for its measurement has emerged, nor has a standardized statistical method been advocated. As mass-casualty incidents are rare, simulation may represent a viable alternative to measure surge capacity. Hypothesis/Problem The objective of the current study was to develop a statistical method for the quantification of surge capacity using a combination of computer simulation and simple process-control statistical tools. Length-of-stay (LOS) and patient volume (PV) were used as metrics. The use of this method was then demonstrated on a subsequent computer simulation of an emergency department (ED) response to a mass-casualty incident. In the derivation phase, 357 participants in five countries performed 62 computer simulations of an ED response to a mass-casualty incident. Benchmarks for ED response were derived from these simulations, including LOS and PV metrics for triage, bed assignment, physician assessment, and disposition. In the application phase, 13 students of the European Master in Disaster Medicine (EMDM) program completed the same simulation scenario, and the results were compared to the standards obtained in the derivation phase. Patient-volume metrics included number of patients to be triaged, assigned to rooms, assessed by a physician, and disposed. Length-of-stay metrics included median time to triage, room assignment, physician assessment, and disposition. Simple graphical methods were used to compare the application phase group to the derived benchmarks using process-control statistical tools. The group in the application phase failed to meet the indicated standard for LOS from admission to disposition decision. This study demonstrates how simulation software can be used to derive values for objective benchmarks of ED surge capacity using PV and LOS metrics. These objective metrics can then be applied to other simulation groups using simple graphical process-control tools to provide a numeric measure of surge capacity. Repeated use in simulations of actual EDs may represent a potential means of objectively quantifying disaster management surge capacity. It is hoped that the described statistical method, which is simple and reusable, will be useful for investigators in this field to apply to their own research.

  5. Slumping and a sandbar deposit at the Cretaceous-Tertiary boundary in the El Tecolote section (northeastern Mexico): An impact-induced sediment gravity flow

    NASA Astrophysics Data System (ADS)

    Soria, Ana R.; Liesa, Carlos L.; Mata, Maria Pilar; Arz, José A.; Alegret, Laia; Arenillas, Ignacio; Meléndez, Alfonso

    2001-03-01

    Slumps affecting uppermost Méndez Formation marls, as well as the spherulitic layer and basal part of the sandy deposits of the Cretaceous-Tertiary (K-T) boundary clastic unit, are described at the new K-T El Tecolote section (northeastern Mexico). These K-T clastic deposits represent sedimentation at middle-bathyal water depths in channel and nonchannel or levee areas of reworked materials coming from environments ranging from outer shelf to shallower slope via a unidirectional, high- to low-density turbidite flow. We emphasize the development and accretion of a lateral bar in a channel area from a surging low-density turbidity current and under a high-flow regime. The slumps discovered on land and the sedimentary processes of the K-T clastic unit reflect destabilization and collapse of the continental margin, support the mechanism of gravity flows in the deep sea, and represent important and extensive evidence for the impact effects in the Gulf of México triggered by the Chicxulub event.

  6. Origin of the northern Atlantic`s Heinrich events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broecker, W.; Bond, G.; Klas, M.

    1992-01-01

    As first noted by Heinrich, 1988, glacial age sediments in the eastern part of the northern Atlantic contain layers with unusually high ratios of ice-rafted lithic fragments of foraminifera shells. He estimated that these layers are spaced at intervals of roughly 10000 years. In this paper we present detailed information documenting the existence of the upper five of these layers in ODP core 609 from 50{degrees}N and 24{degrees}W. Their ages are respectively 15000 radiocarbon years, 20000 radiocarbon years, 27000 radiocarbon years, about 40000 years, and about 50000 years. We also note that the high lithic fragment to foram ratio ismore » the result of a near absence of shells in these layers. Although we are not of one mind regarding the origin of these layers, we lean toward an explanation that the Heinrich layers are debris released during the melting of massive influxes of icebergs into the northern Atlantic. These sudden inputs may be the result of surges along the eastern margin of the Laurentide ice sheet. 7 refs., 3 figs., 2 tabs.« less

  7. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.

  8. Sea-Level Rise and Subsidence: Implications for Flooding in New Orleans, Louisiana

    USGS Publications Warehouse

    Burkett, V.R.; Zilkoski, D.B.; Hart, D.A.

    2003-01-01

    Global sea-level rise is projected to accelerate two-to four-fold during the next century, increasing storm surge and shoreline retreat along low-lying, unconsolidated coastal margins. The Mississippi River Deltaic Plain in southeastern Louisiana is particularly vulnerable to erosion and inundation due to the rapid deterioration of coastal barriers combined with relatively high rates of land subsidence. Land-surface altitude data collected in the leveed areas of the New Orleans metropolitan region during five survey epochs between 1951 and 1995 indicated mean annual subsidence of 5 millimeters per year. Preliminary results of other studies detecting the regional movement of the north-central Gulf Coast indicate that the rate may be as much as 1 centimeter per year. Considering the rate of subsidence and the mid-range estimate of sea-level rise during the next 100 years (480 millimeters), the areas of New Orleans and vicinity that are presently 1.5 to 3 meters below mean sea level will likely be 2.5 to 4.0 meters or more below mean sea level by 2100.

  9. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  10. Observations on Rotating Cavitation and Cavitation Surge from the Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.

    2000-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.

  11. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  12. Evaluation and Application of Overvoltage into Communication Equipment Due to Potential Rise at Earthing Terminal of Distribution Line Induced by Lightning Surge

    NASA Astrophysics Data System (ADS)

    Ito, Katsuji; Hirose, Yasuo

    Overvoltage induced by surge currents due to thunderstorm lightnings causes harmful breakdown troubles of CATV communication equipment installed in and with power distribution systems. In this paper, the origin and natures of surge currents, their invading route into the system, and the system components such as earth impedances affecting over voltages are studied. Transient analyses are then performed using an equivalent circuit to evaluate over voltages. Application of the obtained results to the field fault data of communication equipment and possible protection method of them are discussed.

  13. 'Reverse triage' adds to surge capacity.

    PubMed

    2009-06-01

    Providing adequate surge capacity during a disaster is one of the greatest challenges of emergency response. Now, researchers have proposed a new process called "reverse triage" to help create surge capacity that otherwise would not exist. Patients who have only a slight chance of experiencing an adverse event within four days of leaving the hospital may be discharged to free bed space. ED staff can provide a daily initial reverse triage score for patients being admitted, even if a disaster is not imminent. While general guidelines can have great value, take the interests of the patient and their family into account when making discharge decisions.

  14. Surge dynamics coupled to pore-pressure evolution in debris flows

    USGS Publications Warehouse

    Savage, S.B.; Iverson, R.M.; ,

    2003-01-01

    Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.

  15. Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin

    2017-08-01

    The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.

  16. Utilizing a Pediatric Disaster Coalition Model to Increase Pediatric Critical Care Surge Capacity in New York City.

    PubMed

    Frogel, Michael; Flamm, Avram; Sagy, Mayer; Uraneck, Katharine; Conway, Edward; Ushay, Michael; Greenwald, Bruce M; Pierre, Louisdon; Shah, Vikas; Gaffoor, Mohamed; Cooper, Arthur; Foltin, George

    2017-08-01

    A mass casualty event can result in an overwhelming number of critically injured pediatric victims that exceeds the available capacity of pediatric critical care (PCC) units, both locally and regionally. To address these gaps, the New York City (NYC) Pediatric Disaster Coalition (PDC) was established. The PDC includes experts in emergency preparedness, critical care, surgery, and emergency medicine from 18 of 25 major NYC PCC-capable hospitals. A PCC surge committee created recommendations for making additional PCC beds available with an emphasis on space, staff, stuff (equipment), and systems. The PDC assisted 15 hospitals in creating PCC surge plans by utilizing template plans and site visits. These plans created an additional 153 potential PCC surge beds. Seven hospitals tested their plans through drills. The purpose of this article was to demonstrate the need for planning for disasters involving children and to provide a stepwise, replicable model for establishing a PDC, with one of its primary goals focused on facilitating PCC surge planning. The process we describe for developing a PDC can be replicated to communities of any size, setting, or location. We offer our model as an example for other cities. (Disaster Med Public Health Preparedness. 2017;11:473-478).

  17. East China Sea Storm Surge Modeling and Visualization System: the Typhoon Soulik case.

    PubMed

    Deng, Zengan; Zhang, Feng; Kang, Linchong; Jiang, Xiaoyi; Jin, Jiye; Wang, Wei

    2014-01-01

    East China Sea (ECS) Storm Surge Modeling System (ESSMS) is developed based on Regional Ocean Modeling System (ROMS). Case simulation is performed on the Typhoon Soulik, which landed on the coastal region of Fujian Province, China, at 6 pm of July 13, 2013. Modeling results show that the maximum tide level happened at 6 pm, which was also the landing time of Soulik. This accordance may lead to significant storm surge and water level rise in the coastal region. The water level variation induced by high winds of Soulik ranges from -0.1 to 0.15 m. Water level generally increases near the landing place, in particular on the left hand side of the typhoon track. It is calculated that 0.15 m water level rise in this region can cause a submerge increase of ~0.2 km(2), which could be catastrophic to the coastal environment and the living. Additionally, a Globe Visualization System (GVS) is realized on the basis of World Wind to better provide users with the typhoon/storm surge information. The main functions of GVS include data indexing, browsing, analyzing, and visualization. GVS is capable of facilitating the precaution and mitigation of typhoon/storm surge in ESC in combination with ESSMS.

  18. Sedimentology and hydrodynamic implications of a coarse-grained hurricane sequence in a carbonate reef setting

    USGS Publications Warehouse

    Spiske, M.; Jaffe, B.E.

    2009-01-01

    Storms and associated surges are major coast-shaping processes. Nevertheless, no typical sequences for storm surge deposits in different coastal settings have been established. This study interprets a coarse-grained hurricane ridge deposit on the island of Bonaire, Netherlands Antilles. The sequence was deposited during Hurricane Lenny in November 1999. Insight is gained into the hydrodynamics of surge flow by interpreting textural trends, particle imbrication, and deposit geometry. Vertical textural variations, caused by time-dependent hydrodynamic changes, were used to subdivide the deposit into depositional units that correspond to different stages of the surge, such as setup, peak, and return flow. Particle size and imbrication trends and geometry of the units reflect landward bed-load transport of components during the setup, a nondirectional flow with sediment falling out of suspension during the peak, and a seaward bedload transport during the return flow. Formation of a ridge during setup affected the texture of the return flow unit. Changing angles of imbrication reflect alternating flow velocities during each phase. Normal grading during setup and inverse grading during return flow are caused by decelerating and accelerating flow, respectively. Hence, the interpreted deposit seems to represent the first described complete hurricane surge sequence from a carbonate environment. ?? 2009 Geological Society of America.

  19. Fetal adrenal gland enlargement - prenatal and postnatal management.

    PubMed

    Lackova, Eliska; Cunderlik, Anton; Ticha, Lubica; Gabor, Maria

    2017-11-01

    The enlargement of suprarenal gland is related to preterm birth and the birth weight. The ultrasound measurement of fetal adrenal gland volume may identify women at risk for impending preterm birth. The aim of our study was to investigate the newborns in the region of western Slovakia followed up due to suprarenal gland enlargement. To set the ratio of prenatally diagnosed suprarenal gland enlargment, postnatal managment and treatment and interventions. The newborns with congenital adrenal hyperplasia were excluded. We have analyzed 6 years of medical records of all cases from the western Slovakia region of suprarenal gland enlargement encountered to 1st Pediatric Department, Children's University Hospital Bratislava Republic in the time period of January 2010 to Janurary 2016. The diagnosis of suprarenal gland enlargement was set by ultrasound examination performed on the 4th postnatal day as an overall screening test. Newborns with positive laboratory screening on congenital adrenal hyperplasia (CAH) were excluded from our study. We analyzed the origin of surarenal gland enlargement, gestation week on the due date, the birth weight and other comorbidities and genetic pathologies in newborns with the enlarged suprarenal glands. There were 6 newborns followed up due to suprarenal gland enlargement. All of the patients had diagnosed the adrenal haemorrhage. Adrenal lesions like adrenal cysts or neuroblastomas were not confirmed. All of the adrenal enlargements were benign with no need of other medical or surgical intervention. None of the newborn patients had other genetic abnormalities, mineral or hormonal imbalances, problems with arterial pressure or haemodynamic instability. All of the patients underwent at least 5 prenatal ultrasound tests and at least 2 postnatal ultrasound measurements. The avarage birth weight was 3030 grams (2700 grams - to 3750 grams). The avarage birth lenght was 50 cm (47 centimeter to 53 cm).The average gestation week (gw) on due date was 39 gw. 85% from the patients were born on 40 gw, 15% on 39 gw. We didn't confirm the relation between the suprarenal gland enlargement and the preterm birth (≤ 34 weeks' gestation). In the period of 6 years we didn't find a newborn patient with the prenatal diagnosis of suprarenal gland enlargement. The adrenal gland enlargement didn't have a relation with the low gestation birth, weight, length or the preterm birth.

  20. A retrospective review of bone tunnel enlargement after anterior cruciate ligament reconstruction with hamstring tendons fixed with a metal round cannulated interference screw in the femur.

    PubMed

    Kobayashi, Masahiko; Nakagawa, Yasuaki; Suzuki, Takashi; Okudaira, Shuzo; Nakamura, Takashi

    2006-10-01

    To assess bone tunnel enlargement after anterior cruciate ligament (ACL) reconstruction with the use of hamstring tendons fixed with a round cannulated interference (RCI) screw in the femur. A consecutive series of 30 ACL reconstructions performed with hamstring tendons fixed with an RCI screw in the femur and with staples via Leeds-Keio ligament in the tibia was retrospectively reviewed. The clinical outcome was evaluated through the Lysholm score. Anterior instability was tested by Telos-SE (Telos Japan, Tokyo, Japan) measurement. The location and angle of each femoral and tibial tunnel were measured with the use of plain radiographs, and bone tunnel enlargement greater than 2 mm detected any time 3, 6, 12, and 24 months postoperatively was defined as positive. Each factor (location and angle of the tunnels, sex, affected side, age, Lysholm score, and Telos-SE measurement) was compared between enlarged and nonenlarged groups. Positive enlargement of the bone tunnel (>2.0 mm) was observed in 36.7% (11 of 30) on the femoral side and 33.3% (10 of 30) on the tibial side, and in 6 knees of both sides. Half of patients (15 of 30) had an enlarged tunnel on the femoral or the tibial side until 1 year postoperatively. In most cases, enlargement reached maximum at 6 months postoperatively. Female patients tended to have an enlarged tunnel, especially on the femoral side (P < .05). Tunnel enlargement was not correlated with location and angle of the tunnels. Moreover, no difference was found in Lysholm score and Telos-SE measurement between enlarged and nonenlarged groups, although the nonenlarged group tended to exhibit higher Lysholm score and lesser instability. Bone tunnel enlargement of the femoral or tibial side was observed in half of patients (6 in both sides, 5 only in the femur, and 4 only in the tibia) after ACL reconstruction was performed with a hamstring tendon fixed with an RCI screw. Female patients had a greater chance for enlargement of the femoral tunnel than did males. This enlargement had no significant impact on patient activity and on anterior instability of the knee 1 year after surgery. Level IV, Therapeutic case series.

Top