Sample records for enormous surface area

  1. Northwest Ius Chasma Landslide and Dune Field

    NASA Image and Video Library

    2013-07-10

    Landslides in Valles Marineris are truly enormous, sometimes stretching from one wall to the base of another. This landslide, known as Ius Labes, would occupy the surface area of the state of Delaware, U.S., seen by NASA Mars Reconnaissance Orbiter.

  2. Lithographically defined microporous carbon structures

    DOEpatents

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  3. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  4. Customization of Discriminant Function Analysis for Prediction of Solar Flares

    DTIC Science & Technology

    2005-03-01

    lives such as telecommunication, commercial airlines, electrical power , wireless services, and terrestrial weather tracking and forecasting...the 1800’s can wreak havoc on today’s power , fuel, and telecommunication lines and finds its origin in solar activity. Enormous amounts of solar...inducing potential differences across large areas of the surface. Earth-bound power , fuel, and telecommunication lines grounded to the Earth provide an

  5. Volume to Surface Area Ratios of Foraminifera over the Phanerozoic

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Gomez, D.; Guo, D.; Jost, A.; Payne, J.

    2010-12-01

    Although there have been numerous studies regarding the issue of the volume to surface area ratio, no study has been extensive enough to include over 35000 species of foraminifera. The Stanford Paleobiology lab undertook the enormous task of extracting from the Catalogue of Foraminifera, by Ellis and Messina, all relevant data of the foraminifera, such as the three dimensions of the organism, the magnification, and the time period in which the organism existed. For the purpose of calculating the volume and surface area, the foraminifera were generalized as ellipsoids. It is known that the surface area of foraminifera represents where the exchange between the interior body and exterior environment of the foraminifera occurs. The volume of the foraminifera indicates the physical needs of the foraminifera. With more volume in foraminifera, more body functions are occurring and more exterior resources are needed to sustain those bodily functions. Thus with a larger volume to surface area ratio, foraminifera are disadvantaged because they must use more effort in order to acquire adequate resources to fulfill their biological needs. So, the hypothesis is that when there is an increase in oxygen (a vital exterior resource of the foraminifera), the average volume to surface area ratio would be greater because the abundance of oxygen allows foraminifera to work with greater ease in maintaining an exterior resource that they cannot survive without. To prove or refute this assertion, graphs were generated in this study; the graphs indeed suggested that there is a correlation between the volume to surface area ratios and oxygen levels, illustrating that it is plausible that oxygen is a limiting factor of the volume to surface area ratio in foraminifera.

  6. The Enhancement of Water Ice Content in the Local Area Northeast of Arcadia Planitia: Evidence from Neutron Data from HEND (Mars Odyssey) and Elevation from MOLA (MGS)

    NASA Technical Reports Server (NTRS)

    Sanin, A. B.; Mitrofanov, I. G.; Kozyrev, A. S.; Litvak, M. L.; Tretyakov, V.; Smith, D. E.; Zuber, M. T.; Boynton, W.; Saunders, R. S.

    2003-01-01

    The first year of neutron mapping measurements from the Mars Odyssey spacecraft revealed enormous hydrogen-rich regions in the southern and northern hemispheres of the Martian crust that imply significant amounts of near surface water ice. The hydrogen-rich areas of the southern and northern regions appear generally comparable in spatial extent and water ice content. This observation is interesting in light of topography measured by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS) spacecraft, which shows a significant difference in elevation between northern lowlands and southern highlands that could imply a difference in seasonal CO2 condensation. In this study we correlate the high energy neutron flux observed by HEND (Mars Odyssey) and surface elevation measured by MOLA in order to interpret the seasonal change in epithermal neutron flux in terms near-surface water ice content.

  7. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    PubMed

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  8. Worldwide distribution of subaquatic gas hydrates

    USGS Publications Warehouse

    Kvenvolden, K.A.; Ginsburg, G.D.; Soloviev, V.A.

    1993-01-01

    Sediments containing natural gas hydrates occur worldwide on continental and insular slopes and rises of active and passive margins, on continental shelves of polar regions, and in deep-water (> 300 m) environments of inland lakes and seas. The potential amount of methane in natural gas hydrates is enormous, with current estimates at about 1019 g of methane carbon. Subaquatic gas hydrates have been recovered in 14 different areas of the world, and geophysical and geochemical evidence for them has been found in 33 other areas. The worldwide distribution of natural gas hydrates is updated here; their global importance to the chemical and physical properties of near-surface subaquatic sediments is affirmed. ?? 1993 Springer-Verlag.

  9. Dawn at Vesta: Characterizing a minor planet

    NASA Astrophysics Data System (ADS)

    Pieters, C.; Russell, C.; Raymond, C.; Dawn Team

    2014-07-01

    The Dawn spacecraft arrived at Vesta in July 2011, spent more than a year exploring the surface with orbital instruments, and is now on its way to Ceres to do the same [1]. Beginning the investigations at Vesta, we were in the unique position of having what we believed to be samples from the surface (the HED family of meteorites) to guide our planning of scientific exploration. We also had telescopic spectra of Vesta that linked it to the meteorites [2] and had spatially resolved images of Vesta from HST [3] that indicated variations exist across the surface, and that an enormous depression occurs at the south pole. Since the HED meteorites show evidence of early melting and differentiation, we expected an ancient evolved anhydrous surface, perhaps similar to that of the Moon complete with early magma ocean. Although the Moon has often been considered a small body 'end member' that can be used to study early terrestrial planet evolution, with the year-long exploration of Vesta by Dawn, we now have extensive information for an even smaller differentiated planetary body with which to compare and test models and paradigms. We now know that both bodies are heavily cratered and exhibit at least one enormous basin that models predict should have excavated (and possibly exposed) the mantle [4]. Nevertheless, although compositional diversity is found on both, evidence for mantle material has been illusive. These two airless differentiated silicate bodies are ancient and essentially (but not completely) anhydrous. Regionally coherent areas containing H as well as OH are identified across the surface of Vesta [5] but exhibit no apparent relation to OH recently detected on the Moon [6]. Instead, Vesta's hydrated areas are spatially correlated with low-albedo regions, suggesting an exogeneous source (such as delivery by and mixing with carbonaceous chondritic material) [5,7]. Vesta exhibits its own style of space weathering that transforms fresh craters into background soils, one that involves regolith mixing instead of accumulation of nano-phase opaque components on surface grains [8]. The apparent dearth of nano-phase opaque coatings on regolith grains is due to a combination of factors involving Vesta's location and specific surface composition. The result is a mineralogically rich surface exposed to Dawn's sensors [9], although substantially rearranged by impact processes. Major scientific insights will continue to emerge as calibration improves for the Dawn instruments that measure spectral properties of the surface.

  10. Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro

    2013-01-01

    Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.

  11. Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhao, Z.

    2018-04-01

    In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.

  12. Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Hall, D. K.; Rigor, I. G; Li, P.; Neumann, G.

    2014-01-01

    Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.

  13. Features of Protein-Protein Interactions that Translate into Potent Inhibitors: Topology, Surface Area and Affinity

    PubMed Central

    Smith, Matthew C.; Gestwicki, Jason E.

    2013-01-01

    Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, may influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of “druggable” protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favor discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets. PMID:22831787

  14. Global Modeling, Field Campaigns, Upscaling and Ray Desjardins

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Hall, F. G.

    2012-01-01

    In the early 1980's, it became apparent that land surface radiation and energy budgets were unrealistically represented in Global Circulation models (GCM's), Shortly thereafter, it became clear that the land carbon budget was also poorly represented in Earth System Models (ESM's), A number of scientific communities, including GCM/ESM modelers, micrometeorologists, satellite data specialists and plant physiologists, came together to design field experiments that could be used to develop and validate the contemporary prototype land surface models. These experiments were designed to measure land surface fluxes of radiation, heat, water vapor and CO2 using a network of flux towers and other plot-scale techniques, coincident with satellite measurements of related state variables, The interdisciplinary teams involved in these experiments quickly became aware of the scale gap between plot-scale measurements (approx 10 - 100m), satellite measurements (100m - 10 km), and GCM grid areas (l0 - 200km). At the time, there was no established flux measurement capability to bridge these scale gaps. Then, a Canadian science learn led by Ray Desjardins started to actively participate in the design and execution of the experiments, with airborne eddy correlation providing the radically innovative bridge across the scale gaps, In a succession of brilliantly executed field campaigns followed up by convincing scientific analyses, they demonstrated that airborne eddy correlation allied with satellite data was the most powerful upscaling tool available to the community, The rest is history: the realism and credibility of weather and climate models has been enormously improved enormously over the last 25 years with immense benefits to the public and policymakers.

  15. Analysis of body form using biostereometrics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The general objective of the research was to provide the space and life sciences directorate with an improved biostereometric measurement capability. This objective was determined from the usefulness of stereophotogrametric techniques developed during the Apollo and Skylab Missions to measure body conformation, surface area, volume and relative density of astronauts. These noninvasive anthropometric measurements provided invaluable data concerning the physiological, biochemical and nutritional effects of the space environment upon the human body. The indirect nature of the technique has many advantages over other methods, and has a potential for many other applications. The stereophotographs contain an enormous amount of data which can be later reexamined should the need arise.

  16. Discovery and development of microporous metal carboxylates.

    PubMed

    Mori, Wasuke; Sato, Tomohiko; Kato, Chika Nozaki; Takei, Tohru; Ohmura, Tetsushi

    2005-01-01

    We have found a form of copper(II) terephthalate that occluded an enormous amount of gases such as N2, Ar, O2, and Xe. Copper(II) terephthalate is the first metal complex found capable of adsorbing gases. This complex has opened a new field of adsorbent chemistry and is recognized as a leader in the construction of microporous metal complexes. In extending the route for the synthesis of microporous complexes, we obtained many new porous materials that are widely recognized as useful materials for applications in areas such as gas storage, molecular sieves, catalysis, inclusion complexes, and surface science. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  17. Three decades of Martian surface changes

    USGS Publications Warehouse

    Geissler, P.E.

    2005-01-01

    The surface of Mars has changed dramatically during the three decades spanned by spacecraft exploration. Comparisons of Mars Global Surveyor images with Viking and Mariner 9 pictures suggest that more than one third of Mars' surface area has brightened or darkened by at least 10%. Such albedo changes could produce significant effects on solar heating and the global circulation of winds across the planet. All of the major changes took place in areas of moderate to high thermal inertia and rock abundance, consistent with burial of rocky surfaces by thin dust layers deposited during dust storms and subsequent exposure of the rocky surfaces by aeolian erosion. Several distinct mechanisms contribute to aeolian erosion on Mars. Prevailing winds dominate erosion at low latitudes, producing diffuse albedo boundaries and elongated wind streaks generally oriented in the direction of southern summer winds. Dust devils darken the mid to high latitudes from 45 to 70 degrees during the summer seasons, forming irregular albedo patterns consisting of dark linear tracks. Dust storms produce regional albedo variations with distinct but irregular margins. Dark sand duties in southern high latitudes appear to be associated with regional darkening that displays diffuse albedo boundaries. No surface changes were observed to repeat regularly on an annual basis, but many of the changes took place in areas that alternate episodically between high- and low-albedo states as thin mantles of dust are deposited and later stripped off. Hence the face of Mars remains recognizable after a century of telescopic observations, in spite of the enormous extent of alteration that has taken place during the era of spacecraft exploration.

  18. Surface Structure as a Foundation of Nanotechnology

    NASA Astrophysics Data System (ADS)

    Robinson, Ian

    2007-03-01

    The three generations of synchrotron sources achieved to date, parasitic, dedicated and undulator-based, have each time revolutionized the field of X-ray diffraction. Surface structure determination, demonstrated (but very difficult) already with Coolidge tube sources, benefited from the enormous flux gain in the first generation, such as SSRL. Dedicated 2nd-generation sources, such as NSLS, allowed in-situ surface preparation and reliable steady beams to be available when a surface was ready to measure. Third generation sources, such as APS, enormously improved the brightness, hence coherence, and thus allowed access to the surfaces of nanoparticles. This talk will illustrate how these technological advances led to two significant scientific breakthroughs. The concept of crystal truncation rods (CTR) led to new views of how the surface is a modification of, but still an extension of the bulk crystal structure. The development of lensless coherent x-ray diffraction (CXD) imaging has allowed access to the structure of nanocrystalline materials by three-dimensional phase mapping of the particle interiors. The structural principles of these new nano materials are being investigated at present using these new methods.

  19. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  20. Daily monitoring of the land surface of the Earth

    NASA Astrophysics Data System (ADS)

    Mascaro, J.

    2016-12-01

    Planet is an integrated aerospace and data analytics company that operates the largest fleet of Earth-imaging satellites. With more than 140 cube-sats successfully launched to date, Planet is now collecting approximately 10 million square kilometers of imagery per day (3-5m per pixel, in red, green, blue and near infrared spectral bands). By early 2017, Planet's constellation will image the entire land surface of the Earth on a daily basis. Due to investments in cloud storage and computing, approximately 75% of imagery collected is available to Planet's partners within 24 hours of capture through an Application Program Interface. This unique dataset has enormous applications for monitoring the status of Earth's natural ecosystems, as well as human settlements and agricultural welfare. Through our Ambassadors Program, Planet has made data available for researchers in areas as disparate as human rights monitoring in refugee camps, to assessments of the impact of hydroelectric installations, to tracking illegal gold mining in Amazon forests, to assessing the status of the cryosphere. Here, we share early results from Planet's research partner network, including enhanced spatial and temporal resolution of NDVI data for agricultural health in Saudi Arabia, computation of rates of illegal deforestation in Southern Peru, estimates of tropical forest carbon stocks based on data integration with active sensors, and estimates of glacial flow rates. We synthesize the potentially enormous research and scientific value of Planet's persistent monitoring capability, and discuss methods by which the data will be disseminated into the scientific community.

  1. Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A. (Editor); Whillans, I. M. (Editor)

    1990-01-01

    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.

  2. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

    PubMed Central

    Beeson, James G.; Drew, Damien R.; Boyle, Michelle J.; Feng, Gaoqian; Fowkes, Freya J.I.; Richards, Jack S.

    2016-01-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  3. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria.

    PubMed

    Beeson, James G; Drew, Damien R; Boyle, Michelle J; Feng, Gaoqian; Fowkes, Freya J I; Richards, Jack S

    2016-05-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. © FEMS 2016.

  4. Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, S. V.; Shim, Jaesool

    2018-03-01

    Two-dimensional (2D) layered structure transition metal dichalcogenides (TMDs) has gained huge attention and importance for photocatalytic energy conversion because of their unique properties. Molybdenum disulfide (MoS2) nanosheets were synthesized via one-pot method and exfoliated in (dimethylformamide) DMF solution. Subsequent exfoliated MoS2 nanosheets (e-MoS2) were used as photocatalysts for degradation of Rhodamine B (RhB) pollutant under solar light irradiation. The e-MoS2 nanosheets exhibited excellent photocatalytic activity than that of pristine MoS2, owing to high specific surface area with enormous active sites and light absorption capacity. In addition, e-MoS2 demonstrated remarkable photocatalytic stability.

  5. Plasmonic platforms of self-assembled silver nanostructures in application to fluorescence

    PubMed Central

    Luchowski, Rafal; Calander, Nils; Shtoyko, Tanya; Apicella, Elisa; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2011-01-01

    Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2–3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures. PMID:21403765

  6. Fine-tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang

    2017-12-01

    Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.

  7. Comparison of proposed alternative methods for rescaling dialysis dose: resting energy expenditure, high metabolic rate organ mass, liver size, and body surface area.

    PubMed

    Daugirdas, John T; Levin, Nathan W; Kotanko, Peter; Depner, Thomas A; Kuhlmann, Martin K; Chertow, Glenn M; Rocco, Michael V

    2008-01-01

    A number of denominators for scaling the dose of dialysis have been proposed as alternatives to the urea distribution volume (V). These include resting energy expenditure (REE), mass of high metabolic rate organs (HMRO), visceral mass, and body surface area. Metabolic rate is an unlikely denominator as it varies enormously among humans with different levels of activity and correlates poorly with the glomerular filtration rate. Similarly, scaling based on HMRO may not be optimal, as many organs with high metabolic rates such as spleen, brain, and heart are unlikely to generate unusually large amounts of uremic toxins. Visceral mass, in particular the liver and gut, has potential merit as a denominator for scaling; liver size is related to protein intake and the liver, along with the gut, is known to be responsible for the generation of suspected uremic toxins. Surface area is time-honored as a scaling method for glomerular filtration rate and scales similarly to liver size. How currently recommended dialysis doses might be affected by these alternative rescaling methods was modeled by applying anthropometric equations to a large group of dialysis patients who participated in the HEMO study. The data suggested that rescaling to REE would not be much different from scaling to V. Scaling to HMRO mass would mandate substantially higher dialysis doses for smaller patients of either gender. Rescaling to liver mass would require substantially more dialysis for women compared with men at all levels of body size. Rescaling to body surface area would require more dialysis for smaller patients of either gender and also more dialysis for women of any size. Of these proposed alternative rescaling measures, body surface area may be the best, because it reflects gender-based scaling of liver size and thereby the rate of generation of uremic toxins.

  8. Strategy for Ranking the Science Value of the Surface of Asteroid 101955 Bennu for Sample Site Selection for Osiris-REx

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Connolly, H. C., Jr.; Lauretta, D. S.

    2014-01-01

    OSRIS-REx is NASA's New Frontiers 3 sample return mission that will return at least 60 g of pristine surface material from near-Earth asteroid 101955 Bennu in September 2023. The scientific value of the sample increases enormously with the amount of knowledge captured about the geological context from which the sample is collected. The OSIRIS-REx spacecraft is highly maneuverable and capable of investigating the surface of Bennu at scales down to the sub-cm. The OSIRIS-REx instruments will characterize the overall surface geology including spectral properties, microtexture, and geochemistry of the regolith at the sampling site in exquisite detail for up to 505 days after encountering Bennu in August 2018. The mission requires at the very minimum one acceptable location on the asteroid where a touch-and-go (TAG) sample collection maneuver can be successfully per-formed. Sample site selection requires that the follow-ing maps be produced: Safety, Deliverability, Sampleability, and finally Science Value. If areas on the surface are designated as safe, navigation can fly to them, and they have ingestible regolith, then the scientific value of one site over another will guide site selection.

  9. How Cyanobacterial Distributions Reveal Flow and Irradiance Conditions of Photosynthetic Biofilm Formation

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, Lee; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Microbial life on Earth is enormously abundant at sediment-water interfaces. The fossil record in fact contains abundant evidence of the preservation of life on such surfaces. It is therefore critical to our interpretation of early Earth history, and potentially to history of life on other planets, to be able to recognize life forms at these interfaces. On Earth this life often occurs as organized structures of microbes and their extracellular exudates known as biofilms. When such biofilms occur in areas receiving sunlight photosynthetic biofilms are the dominant form in natural ecosystems due to selective advantage inherent in their ability to utilize solar energy. Cyanobacteria are the dominant phototrophic microbes in most modern and ancient photosynthetic biofilms, microbial mats and stromatolites. Due to their long (3.5 billion year) evolutionary history, this group has extensively diversified resulting in an enormous array of morphologies and physiological abilities. This enormous diversity and specialization results in very specific selection for a particular cyanobacterium in each available photosynthetic niche. Furthermore these organisms can alter their spatial orientation, cell morphology, pigmentation and associations with heterotrophic organisms in order to fine tune their optimization to a given micro-niche. These adaptations can be detected, and if adequate knowledge of the interaction between environmental conditions and organism response is available, the detectable organism response can be used to infer the environmental conditions causing that response. This presentation will detail two specific examples which illustrate this point, Light and water are essential to photosynthesis in cyanobacteria and these organisms have specific detectable behavioural responses to these parameters. We will present cyanobacterial responses to quantified flow and irradiance to demonstrate the interpretative power of distribution and orientation information. This study presents new results, but many such examples are already found in the literature.

  10. Nanobiotechnology of Carbon Dots: A Review.

    PubMed

    Durán, Nelson; Simões, Mateus B; de Moraes, Ana C M; Fávaro, Wagner J; Seabra, Amedea B

    2016-07-01

    In recent years, carbon dots (CDs) have gained increasing attention owing to their unique properties and enormous potential for several biomedical and technological applications. CDs are biocompatible, have a small size with a relatively large surface area, are photostable, and have customizable photoluminescence properties. This review is divided into the following discussions of CDs: general definitions; an overview of recent reviews; methods of green and classical synthesis; applications in bioimaging, involving supercapacitors, nanocarriers and nanomedicine; toxicological evaluations (including cytotoxic, genotoxic and anti-cancer properties of CDs); their conjugation with enzymes, biosensors, and cell labeling. Finally the remaining drawbacks and challenges of CD applications are highlighted. In this context, this article aims to provide critical insight and inspire further developments in the synthesis and application of CDs.

  11. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers

    NASA Astrophysics Data System (ADS)

    Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-01

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  12. The economic benefits of vegetation in the upstream area of Ciliwung watershed

    NASA Astrophysics Data System (ADS)

    Saridewi, T. R.; Nazaruddin

    2018-04-01

    Ciliwung watershed has strategic values since its entire downstream area is located in the Special Administrative Region of Jakarta (DKI Jakarta), the capital of Indonesia. This causes forest and farmland areas are converted into open areas or built-up areas. The existence of these areas provides enormous environmental and economic benefits. Economic benefit values are very important to be considered in developing a policy development plan, but they have not been calculated yet. This study aims to determine the economic benefits provided by trees and other vegetation anddevelops a development policy that takes into account simultaneously ecological and economic aspects. The study is conducted in the upstream Ciliwung watershed, by using land cover patterns in 1989, 2000, 2010 and 2014, and employs GIS and CITY green analysis. The results show that conversion of forest and farmland areas reduces the ability of Ciliwung upstream watershed to store water. Therefore, its ability to reduce the flow of surface has been decreased. This creates a decrease in the cost savings of annual stormwater, from US 15,175,721 in 1989 to US 13,317,469 in 2014. The Environmental Services Payment Policy (PES) for upstream community groups managing the watershed has been considered as a fairly effective policy.

  13. Sea surface temperature 1871-2099 in 38 cells in the Caribbean region.

    PubMed

    Sheppard, Charles; Rioja-Nieto, Rodolfo

    2005-09-01

    Sea surface temperature (SST) data with monthly resolution are provided for 38 cells in the Caribbean Sea and Bahamas region, plus Bermuda. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 coupled climate model for predicted SST (1950-2099). Statistical scaling of the forecast data sets are performed to produce confluent SST series according to a now established method. These SST series are available for download. High water temperatures in 1998 killed enormous amounts of corals in tropical seas, though in the Caribbean region the effects at that time appeared less marked than in the Indo-Pacific. However, SSTs are rising in accordance with world-wide trends and it has been predicted that temperature will become increasingly important in this region in the near future. Patterns of SST rise within the Caribbean region are shown, and the importance of sub-regional patterns within this biologically highly interconnected area are noted.

  14. Development of Sub-Daily Intensity Duration Frequency (IDF) Curves for Major Urban Areas in India

    NASA Astrophysics Data System (ADS)

    Ali, H.; Mishra, V.

    2014-12-01

    Extreme precipitation events disrupt urban transportation and cause enormous damage to infrastructure. Urban areas are fast responding catchments due to significant impervious surface. Stormwater designs based on daily rainfall data provide inadequate information. We, therefore, develop intensity-duration-frequency curves using sub-daily (1 hour to 12 hour) rainfall data for 57 major urban areas in India. While rain gage stations data from urban areas are most suitable, but stations are unevenly distributed and their data have gaps and inconsistencies. Therefore, we used hourly rainfall data from the Modern Era Retrospective-analysis for Research and Applications (MERRA), which provides a long term data (1979 onwards). Since reanalysis products have uncertainty associated with them we need to enhance their accuracy before their application. We compared daily rain gage station data obtained from Global Surface Summary of Day Data (GSOD) available for 65 stations for the period of 2000-2010 with gridded daily rainfall data provided by Indian Meteorological Department (IMD). 3-hourly data from NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) were aggregated to daily for comparison with GSOD station data . TMPA is found to be best correlated with GSOD data. We used TMPA data to correct MERRA's hourly precipitation, which were applied to develop IDF curves. We compared results with IDF curves from empirical methods and found substantial disparities in the existing stormwater designs in India.

  15. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  16. Human Intestinal Barrier Function in Health and Disease

    PubMed Central

    König, Julia; Wells, Jerry; Cani, Patrice D; García-Ródenas, Clara L; MacDonald, Tom; Mercenier, Annick; Whyte, Jacqueline; Troost, Freddy; Brummer, Robert-Jan

    2016-01-01

    The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed. PMID:27763627

  17. Integrating Lung Physiology, Immunology, and Tuberculosis.

    PubMed

    Torrelles, Jordi B; Schlesinger, Larry S

    2017-08-01

    Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes.

    PubMed

    Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang

    2015-03-12

    The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.

  19. Preventing Scars after Injury with Partial Irreversible Electroporation

    PubMed Central

    Golberg, Alexander; Villiger, Martin; Khan, Saiqa; Quinn, Kyle P.; Lo, William C. Y.; Bouma, Brett E.; Mihm, Martin C.; Austen, William G.; Yarmush, Martin L.

    2017-01-01

    Preventing the formation of hypertrophic scars, especially those that are a result of major trauma or burns, would have enormous impact in the fields of regenerative and trauma medicine. In this report, we introduce a non-invasive method to prevent scarring based on non-thermal partial irreversible electroporation. Contact burn injuries in rats were treated with varying treatment parameters to optimize the treatment protocol. Scar surface area and structural properties of the scar were assessed with histology and non-invasive, longitudinal imaging with polarization-sensitive optical coherence tomography. We found that partial irreversible electroporation using 200 pulses of 250 V and 70 μs duration, delivered at 3 Hz every 20 days during a total of five therapy sessions after the initial burn injury resulted in a 57.9% reduction of the scar area in comparison with untreated scars and structural features approaching those of normal skin. Noteworthy, unlike humans, rats do not develop hypertrophic scars. Therefore, the use of a rat animal model is the limiting factor of this work. PMID:27393126

  20. Scientific approach as an understanding and applications of hydrological concepts of tropical rainforest

    NASA Astrophysics Data System (ADS)

    Haryanto, Z.; Setyasih, I.

    2018-04-01

    East Kalimantan has a variety of biomes, one of which is tropical rain forests. Tropical rain forests have enormous hydrological potential, so it is necessary to provide understanding to prospective teachers. Hydrology material cannot be separated from the concept of science, for it is needed the right way of learning so students easily understand the material. This research uses descriptive method with research subject is geography education students taking hydrology course at Faculty of Teacher Training and Education, Mulawarman University. The results showed that the students were able to observe, ask question, collect data, give reason, and communicate the hydrological conditions of tropical rain forest biomes, especially related to surface ground water and groundwater conditions. Tropical rainforests are very influenced by the hydrological conditions of the region and the availability of water is affected by the forest area as a catchment area. Therefore, the tropical rainforest must be maintained in condition and its duration, so that there is no water crisis and hydrological related disasters.

  1. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  2. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    NASA Astrophysics Data System (ADS)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  3. Noachian Faulting: What Do Faults Tell Us About the Tectonic History of Tharsis?

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.

    2001-01-01

    The western hemisphere of Mars is dominated by the formation of Tharsis, which is an enormous high-standing region (roughly 25% of the surface area of the planet) capped by volcanics, including the solar system's largest shield volcanoes. Tharsis is surrounded by an enormous radiating system of grabens and a circumferential system of wrinkle ridges that extends over the entire western hemisphere of Mars. This region is perhaps the largest and most long lived tectonic and volcanic province of any of the terrestrial planets with a well-preserved history of magmatic-driven activity that began in the Noachian and has lasted throughout Martian geologic time. Tharsis and the surrounding regions comprise numerous components, including volcanic constructs of varying sizes and extensive lava flow fields, large igneous plateaus, fault and ridge systems of varying extent and relative age of formation, gigantic outflow channel systems, vast system of canyons, and local and regional centers of tectonic activity. Many of these centers are interpreted to be the result of magmatic-related activity, including uplift, faulting, dike emplacement, volcanism, and local hydrothermal activity. Below we present a summary of our work for Tharsis focusing primarily on the earliest stage of development, the Noachian period. Here we hone in on the early centers and how they relate to the early development of the Tharsis Magmatic Complex (TMC).

  4. Technical Workshop: Advanced Helicopter Cockpit Design

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C. (Editor); Callas, G. P. (Editor)

    1984-01-01

    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.

  5. PC-BASED SUPERCOMPUTING FOR UNCERTAINTY AND SENSITIVITY ANALYSIS OF MODELS

    EPA Science Inventory

    Evaluating uncertainty and sensitivity of multimedia environmental models that integrate assessments of air, soil, sediments, groundwater, and surface water is a difficult task. It can be an enormous undertaking even for simple, single-medium models (i.e. groundwater only) descr...

  6. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    PubMed Central

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks. PMID:25408295

  7. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects.

    PubMed

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-19

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  8. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  9. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  10. Factors controlling the spatio-temporal distribution of the 2009 Chattonella antiqua bloom in the Yatsushiro Sea, Japan

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuhiro; Onitsuka, Goh; Shimizu, Manabu; Kuroda, Hiroshi; Matsuyama, Yukihiko; Kimoto, Katsunori; Matsuo, Hitoshi; Kitadai, Yuuki; Sakurada, Kiyonari; Nishi, Hiromi; Tahara, Yoshio

    2012-12-01

    A harmful bloom due to the raphidophycean flagellate, Chattonella antiqua, was found in the Yatsushiro Sea, western Kyushu, Japan, from the end of July to the beginning of August 2009. The bloom resulted in enormous economic damage to cultured finfish production in aquaculture farms concentrated in the southwestern area. To investigate the factors controlling the spatio-temporal distribution of the bloom, data analysis and numerical simulations were conducted using field monitoring data and a three-dimensional hydrodynamic model coupled to a Lagrangian particle-tracking model. Results of the monitoring data analysis showed that the initial development of the C. antiqua bloom occurred in Kusuura Bay and the northeastern area near the mouth of the Kuma River, and subsequently the bloom expanded rapidly to the whole area. The simulation results indicated that the source region of the widespread bloom was not Kusuura Bay but the northeastern area. The southwestward evolution of the bloom was primarily controlled by the passive transport due to the surface residual current driven by fresh water discharge from the Kuma River and northeasterly winds. On the favorable conditions of river discharge and wind, the massive bloom of C. antiqua that formed in the northeastern area was quickly transported southwestward within a few days.

  11. Crowdsourced social media monitoring system development.

    DOT National Transportation Integrated Search

    2017-08-01

    Crowdsourcing is a relatively new area of research, but it is already generating an enormous amount of interest among both researchers and practitioners, and is finding applications in multiple domains. It is particularly useful for efficient traffic...

  12. Vesta Surface in 3-D: A Big Mountain at the Asteroid South Pole

    NASA Image and Video Library

    2011-09-16

    When NASA Dawn spacecraft sent the first images of the giant asteroid Vesta to the ground, scientists were fascinated by an enormous mound inside a big circular depression at the south pole. You need 3D glasses to view this image.

  13. Surface properties of Indonesian-made narrow dynamic compression plates.

    PubMed

    Dewo, P; Sharma, P K; van der Tas, H F; van der Houwen, E B; Timmer, M; Magetsari, R; Busscher, H J; van Horn, J R; Verkerke, G J

    2008-07-01

    The enormous need of orthopaedic (surgical) implants such as osteosynthesis plates is difficult to be fulfilled in developing countries commonly rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, to overcome this problem. Surface properties are some of the determining factors of safety for those implants. We have succeeded in developing prototype of osteosynthesis plate and the results indicate that Indonesian-made plates need improvement with regards to the surface quality of physical characterization.

  14. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  15. The CEOS constellation for land surface imaging

    USGS Publications Warehouse

    Bailey, G.B.; Berger, Marsha; Jeanjean, H.; Gallo, K.P.

    2007-01-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  16. Inside Job: Methods for Delivering Proteins to the Interior of Mammalian Cells.

    PubMed

    Bruce, Virginia J; McNaughton, Brian R

    2017-08-17

    Currently, 7 of the top 10 selling drugs are biologics, and all of them are proteins. Their large size, structural complexity, and molecular diversity often results in surfaces capable of potent and selective recognition of receptors that challenge, or evade, traditional small molecules. However, most proteins do not penetrate the lipid bilayer exterior of mammalian cells. This severe limitation dramatically limits the number of disease-relevant receptors that proteins can target and modulate. Given the major role proteins play in modern medicine, and the magnitude of this limitation, it is unsurprising that an enormous amount of effort has been dedicated to overcoming this pesky impediment. In this article, we summarize and evaluate current approaches for intracellular delivery of exogenous proteins to mammalian cells and, in doing so, aim to illuminate fertile ground for future discovery in this critical area of research. Copyright © 2017. Published by Elsevier Ltd.

  17. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Compressed air-assisted solvent extraction (CASX) for metal removal.

    PubMed

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  19. Observational data needs for plasma phenomena

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.

    1981-01-01

    Bright comets display a rich variety of interesting plasma phenomena which occur over an enormous range of spatial scales, and which require different observational techniques to be studied effectively. Wide-angle photography of high time resolution is probably the best method of studying the phenomenon of largest known scale: the plasma tail disconnection event (DE), which has been attributed to magnetic reconnection at interplanetary sector boundary crossings. These structures usually accelerate as they recede from the head region and observed velocities are typically in the range 50 V km/s. They are often visible for several days following the time of disconnection, and are sometimes seen out past 0.2 AU from the cometary head. The following areas pertaining to plasma phenomena in the ionoshere are addressed: the existence, size, and heliocentric distance variations of the contact surface, and the observational signatures of magnetic reconnection at sector boundary crossings.

  20. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Tibbitts, Luke; Newell, Jaclyn; Panthi, Basu; Mukhopadhyay, Ahana; Rioux, Robert M.; Pursell, Christopher J.; Janik, Michael; Chandler, Bert D.

    2018-03-01

    Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal-support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.

  1. Tree-ring 14C links seismic swarm to CO2 spike at Yellowstone, USA

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGeehin, J.P.; King, J.C.; Heasler, H.

    2010-01-01

    Mechanisms to explain swarms of shallow seismicity and inflation-deflation cycles at Yellowstone caldera (western United States) commonly invoke episodic escape of magma-derived brines or gases from the ductile zone, but no correlative changes in the surface efflux of magmatic constituents have ever been documented. Our analysis of individual growth rings in a tree core from the Mud Volcano thermal area within the caldera links a sharp ~25% drop in 14C to a local seismic swarm in 1978. The implied fivefold increase in CO2 emissions clearly associates swarm seismicity with upflow of magma-derived fluid and shows that pulses of magmatic CO2 can rapidly traverse the 5-kmthick brittle zone, even through Yellowstone's enormous hydrothermal reservoir. The 1978 event predates annual deformation surveys, but recognized connections between subsequent seismic swarms and changes in deformation suggest that CO2 might drive both processes. ?? 2010 Geological Society of America.

  2. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications

    PubMed Central

    Labiris, N R; Dolovich, M B

    2003-01-01

    As the end organ for the treatment of local diseases or as the route of administration for systemic therapies, the lung is a very attractive target for drug delivery. It provides direct access to disease in the treatment of respiratory diseases, while providing an enormous surface area and a relatively low enzymatic, controlled environment for systemic absorption of medications. As a major port of entry, the lung has evolved to prevent the invasion of unwanted airborne particles from entering into the body. Airway geometry, humidity, mucociliary clearance and alveolar macrophages play a vital role in maintaining the sterility of the lung and consequently are barriers to the therapeutic effectiveness of inhaled medications. In addition, a drug's efficacy may be affected by where in the respiratory tract it is deposited, its delivered dose and the disease it may be trying to treat. PMID:14616418

  3. Improving Goods Movement in a Metropolitan Area Adjacent to a Port

    DOT National Transportation Integrated Search

    2009-01-01

    Southern California and specifically Los Angeles faces enormous congestion associated with increase in cargo movement from/to the regional Ports. The region has started to drown in a sea of trucks and trains. This growing congestion has elevated the ...

  4. Soil Surface Organic Layers in Alaska's Arctic Foothills: Development, Distribution and Microclimatic Feedbacks

    NASA Astrophysics Data System (ADS)

    Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.

    2013-12-01

    Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.

  5. Tectonic interpretation of the 13 february 2001, mw 6.6, El Salvador Earthquake: New evidences of coseismic surface rupture and paleoseismic activity.

    NASA Astrophysics Data System (ADS)

    Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.

    2009-04-01

    In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.

  6. Using remote sensing to predict earthquake impacts

    NASA Astrophysics Data System (ADS)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  7. Continental Drift

    ERIC Educational Resources Information Center

    Field, John

    2012-01-01

    Adult learning has benefited from the visibility and profile of lifelong learning across a range of European policy areas. The overall profile of adult learning benefited enormously from the European Commission's decision to group all its education and training programmes together under the brand of the "Lifelong Learning Programme." The…

  8. Host preference of the vector beetle, host resistance, and expanding patterns of Japanese oak wilt in a stand

    Treesearch

    Kazuyoshi Futai; Hiroaki Kiku; Hong-ye Qi; Hagus Tarn; Yuko Takeuchi; Michimasa Yamasaki

    2012-01-01

    Since the early 1980s, an epidemic forest disease, Japanese Oak Wilt (JOW), has been spreading from coastal areas along the Sea of Japan to the interior of Honshu island and has been devastating huge areas of forests by killing an enormous number of oak trees in urban fringe mountains, gardens, and parks. The disease is caused by a fungus, Raffaelea...

  9. Opting for Science and Technology!

    ERIC Educational Resources Information Center

    Biermans, Maarten; de Jong, Uulkje; van Leeuwen, Marko; Roeleveld, Jaap

    2005-01-01

    Efforts aimed at solving the enormous shortage of higher education graduates in science and technology in the Netherlands should start by evaluating what is available in this area. Research shows that the country's vast resources include considerable reserves of science and technology talent. These reserves comprise students who, although having…

  10. Compact multilayer film structure for angle insensitive color filtering.

    PubMed

    Yang, Chenying; Shen, Weidong; Zhang, Yueguang; Li, Kan; Fang, Xu; Zhang, Xing; Liu, Xu

    2015-03-19

    Here we report a compact multilayer film structure for angle robust color filtering, which is verified by theoretical calculations and experiment results. The introduction of the amorphous silicon in the proposed unsymmetrical resonant cavity greatly reduces the angular sensitivity of the filters, which is confirmed by the analysis of the phase shift within the structure. The temperature of the substrate during the deposition is expressly investigated to obtain the best optical performance with high peak reflectance and good angle insensitive color filtering by compromising the refractive index of dielectric layer and the surface roughness of the multilayer film. And the outlayer of the structure, worked as the anti-reflection layer, have an enormous impact on the filtering performance. This method, described in this paper, can have enormous potential for diverse applications in display, colorful decoration, anti-counterfeiting and so forth.

  11. Synthesis of Fe3O4@nickel-silicate core-shell nanoparticles for His-tagged enzyme immobilizing agents

    NASA Astrophysics Data System (ADS)

    Shin, Moo-Kwang; Kang, Byunghoon; Yoon, Nam-Kyung; Kim, Myeong-Hoon; Ki, Jisun; Han, Seungmin; Ahn, Jung-Oh; Haam, Seungjoo

    2016-12-01

    Immobilizing enzymes on artificially fabricated carriers for their efficient use and easy removal from reactants has attracted enormous interest for decades. Specifically, binding platforms using inorganic nanoparticles have been widely explored because of the benefits of their large surface area, easy surface modification, and high stability in various pH and temperatures. Herein, we fabricated Fe3O4 encapsulated ‘sea-urchin’ shaped nickel-silicate nanoparticles with a facile synthetic route. The enzymes were then rapidly and easily immobilized with poly-histidine tags (His-tags) and nickel ion affinity. Porous nickel silicate covered nanoparticles achieved a high immobilization capacity (85 μg mg-1) of His-tagged tobacco etch virus (TEV) protease. To investigate immobilized TEV protease enzymatic activity, we analyzed the cleaved quantity of maltose binding protein-exendin-fused immunoglobulin fusion protein, which connected with the TEV protease-specific cleavage peptide sequence. Moreover, TEV protease immobilized nanocomplexes conveniently removed and recollected from the reactant by applying an external magnetic field, maintained their enzymatic activity after reuse. Therefore, our newly developed nanoplatform for His-tagged enzyme immobilization provides advantageous features for biotechnological industries including recombinant protein processing.

  12. TOPICAL REVIEW Recent developments in inorganically filled carbon nanotubes: successes and challenges

    NASA Astrophysics Data System (ADS)

    Gautam, Ujjal K.; Costa, Pedro M. F. J.; Bando, Yoshio; Fang, Xiaosheng; Li, Liang; Imura, Masataka; Golberg, Dmitri

    2010-10-01

    Carbon nanotubes (CNTs) are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.

  13. Sodium hydroxide pretreatment of genetically modified switchgrass for improved enzymatic release of sugars

    USDA-ARS?s Scientific Manuscript database

    Overcoming biomass recalcitrance to biological conversion has been the focus of enormous research efforts in the cellulosic biofuel area in the past decades. In this study, Alamo switchgrass was genetically transformed to suppress the expression of 4-coumarate-CoA ligase (4CL). The transgenic plants...

  14. Toward an Instructionally Oriented Theory of Example-Based Learning

    ERIC Educational Resources Information Center

    Renkl, Alexander

    2014-01-01

    Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from…

  15. Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Senli; Jesse, Stephen; Kalnaus, Sergiy

    2011-01-01

    The strong coupling between the molar volume and mobile ion concentration in ionically-conductive solids is used for spatially-resolved studies of ionic transport on the polycrystalline LiCoO2 surface by time-resolved spectroscopy. Strong variability between ionic transport at the grain boundaries and within the grains is observed, and the relationship between relaxation and hysteresis loop formation is established. The use of the strain measurements allows ionic transport be probed on the nanoscale, and suggests enormous potential for probing ionic materials and devices.

  16. Pele Erupting on Lo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of Jupiter's moon, lo, was taken by the Chandra X-Ray Observatory (CXO). Shown here is the most extreme example of the effect of tidal forces as Lo is being pulled by massive Jupiter on one side and by the outer moons Europa, Callisto, and Ganymede on the other. The opposing tidal forces alternately squeeze and stretch its interior, causing the solid surface to rise and fall by about 100 meters. The enormous amount of heat and pressure generated by the resulting friction creates colossal volcanoes and fractures on the surface of this moon.

  17. The Jupiter system through the eyes of Voyager 1

    USGS Publications Warehouse

    Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.

    1979-01-01

    The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.

  18. The variation of riverbed material due to tropical storms in Shi-Wen River, Taiwan.

    PubMed

    Lin, Chin-Ping; Wang, Yu-Min; Tfwala, Samkele S; Chen, Ching-Nuo

    2014-01-01

    Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively.

  19. The Variation of Riverbed Material due to Tropical Storms in Shi-Wen River, Taiwan

    PubMed Central

    Lin, Chin-Ping; Tfwala, Samkele S.; Chen, Ching-Nuo

    2014-01-01

    Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively. PMID:24526910

  20. Graphene-based flexible and wearable electronics

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Sharma, Bhupendra K.; Katiyar, Ajit K.; Ahn, Jong-Hyun

    2018-01-01

    Graphene with an exceptional combination of electronic, optical and outstanding mechanical features has been proved to lead a completely different kind of 2-D electronics. The most exciting feature of graphene is its ultra-thin thickness, that can be conformally contacted to any kind of rough surface without losing much of its transparency and conductivity. Graphene has been explored demonstrating various prototype flexible electronic applications, however, its potentiality has been proven wherever transparent conductive electrodes (TCEs) are needed in a flexible, stretchable format. Graphene-based TCEs in flexible electronic applications showed greatly superior performance over their conventionally available competitor indium tin oxide (ITO). Moreover, enormous applications have been emerging, especially in wearable devices that can be potentially used in our daily life as well as in biomedical areas. However, the production of high-quality, defect-free large area graphene is still a challenge and the main hurdle in the commercialization of flexible and wearable products. The objective of the present review paper is to summarize the progress made so far in graphene-based flexible and wearable applications. The current developments including challenges and future perspectives are also highlighted. Project supported by the National Research Foundation of Korea (No. NRF-2015R1A3A2066337).

  1. FOREWORD: The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009) The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009)

    NASA Astrophysics Data System (ADS)

    Orlando, Thomas M.; Diebold, Ulrike

    2010-03-01

    The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) took place from 19-23 April 2009 in Pine Mountain, Georgia, USA. This was the 12th conference in a strong and vibrant series, which dates back to the early 1980s. DIET XII continued the tradition of exceptional interdisciplinary science and focused on the study of desorption and dynamics induced by electronic excitations of surfaces and interfaces. The format involved invited lectures, contributed talks and a poster session on the most recent developments and advances in this area of surface physics. The Workshop International Steering Committee and attendees wish to dedicate DIET XII to the memory of the late Professor Theodore (Ted) Madey. Ted was one of the main pioneers of this field and was one of the primary individuals working to keep this area of science exciting and adventurous. His overall contributions to surface science were countless and his contributions to the DIET field and community were enormous. He is missed and remembered by many friends and colleagues throughout the world. The papers collected in this issue cover many of the highlights of DIET XII. Topics include ultrafast electron transfer at surfaces and interfaces, quantum and spatially resolved mapping of surface dynamics and desorption, photon-, electron- and ion-beam induced processes at complex interfaces, the role of non-thermal desorption in astrochemistry and astrophysics and laser-/ion-based methods of examining soft matter and biological media. Although the workshop attracted many scientists active in the general area of non-thermal surface processes, DIET XII also attracted many younger scientists (i.e., postdoctoral fellows, advanced graduate students, and a select number of advanced undergraduate students). This field has had an impact in a number of areas including nanoscience, device physics, astrophysics, and now biophysics. We believe that this special issue of Journal of Physics: Condensed Matter will help foster further progress in the study of DIET processes. Since the field remains vibrant and exciting, the workshop series will continue with DIET XIII. Professor Richard Palmer (University of Birmingham, UK) will chair DIET XIII in the UK in early summer 2012. We gratefully acknowledge financial support from SPECS, HIDEN Analytical, BRUKER, The United States National Science Foundation, Georgia Institute of Technology and The State University of New Jersey, Rutgers.

  2. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  3. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    USDA-ARS?s Scientific Manuscript database

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been pro...

  4. Perception of Online Legal Education among Recently Retired Law School Faculty

    ERIC Educational Resources Information Center

    Bigelow, Robert W.

    2017-01-01

    Within some areas of traditional legal education there has been discussion of and advocacy for greater acceptance and integration of online technology. This study addresses the enormous gap in the legal literature concerning perceptions of online legal education and adds to the robust body of literature concerning perceptions of online education…

  5. Using Design Experiments to Understand Secondary Classroom Comprehension Practices

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Simmons, Deborah; Wanzek, Jeanne

    2013-01-01

    Adolescents in the United States and their teachers face an enormous academic challenge with respect to reading comprehension. College and career readiness standards outlined in the Common Core (2012) place increased emphasis on preparing students to read increasingly complex text across a range of disciplinary content areas. At issue is how to…

  6. Toward a better understanding of the impact of mass transit air pollutants on human health

    USDA-ARS?s Scientific Manuscript database

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  7. 5 Smart Investments for Your Tech Dollars

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2010-01-01

    A downturn in the economic climate and an upturn in the technological climate might be higher education IT's "perfect storm." The confluence of budget cuts with the increased reliance on technology in almost all disciplines and administrative areas has put enormous pressure on campus IT leaders to pinpoint and fund tech services that achieve…

  8. The Tuition Dilemma and the Politics of "Mass" Higher Education

    ERIC Educational Resources Information Center

    Wellen, Richard

    2004-01-01

    The prospect of tuition fee increases for public sector universities has attracted an enormous amount of attention in recent years as governments in all industrialized countries have responded to the converging pressures of increased demands for higher education and rising costs of competing areas of social spending. I show that this dilemma is…

  9. Beyond Literacy: Non-Formal Education Programmes for Adults in Mozambique

    ERIC Educational Resources Information Center

    van der Linden, Josje; Manuel, Alzira Munguambe

    2011-01-01

    Thirty-five years after independence the Mozambican illiteracy rate has been reduced from 93% to just over 50% according to official statistics. Although this indicates an enormous achievement in the area of education, the challenge of today still is to design appropriate adult basic education programmes including literacy, numeracy and life…

  10. Math Task Force's Bad Calculation

    ERIC Educational Resources Information Center

    Winders, Mike; Bisk, Richard

    2014-01-01

    The number of incoming college students who require development mathematics coursework is a national problem. This is an enormous area of concern for a number of reasons--such as the monetary cost to students who must take courses for which they are not granted credit, and colleges and universities who must pay instructors to teach such courses.…

  11. University Outreach and Engagement: Responding to a Changing World

    ERIC Educational Resources Information Center

    Hrabowski, Freeman A., III; Weidemann, Craig D.

    2004-01-01

    Rapid and dramatic demographic and technological changes present the nation with enormous challenges for educating students, growing the economy, and responding to society's needs. America's colleges and universities have a central role to play in all of these critical areas--serving as agents of change as they themselves change institutionally in…

  12. Intraoperative application of thermal camera for the assessment of during surgical resection or biopsy of human's brain tumors

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Piatkowski, T.; Polakowski, H.; Kaczmarska, K.; Czernicki, Z.; Bogucki, J.; Zebala, M.

    2014-05-01

    Motivation to undertake research on brain surface temperature in clinical practice is based on a strong conviction that the enormous progress in thermal imaging techniques and camera design has a great application potential. Intraoperative imaging of pathological changes and functionally important areas of the brain is not yet fully resolved in neurosurgery and remains a challenge. A study of temperature changes across cerebral cortex was performed for five patients with brain tumors (previously diagnosed using magnetic resonance or computed tomography) during surgical resection or biopsy of tumors. Taking into account their origin and histology the tumors can be divided into the following types: gliomas, with different degrees of malignancy (G2 to G4), with different metabolic activity and various temperatures depending on the malignancy level (3 patients), hypervascular tumor associated with meninges (meningioma), metastatic tumor - lung cancer with a large cyst and noticeable edema. In the case of metastatic tumor with large edema and a liquid-filled space different temperature of a cerebral cortex were recorded depending on metabolic activity. Measurements have shown that the temperature on the surface of the cyst was on average 2.6 K below the temperature of surrounding areas. It has been also observed that during devascularization of a tumor, i.e. cutting off its blood vessels, the tumor temperature lowers significantly in spite of using bipolar coagulation, which causes additional heat emission in the tissue. The results of the measurements taken intra-operatively confirm the capability of a thermal camera to perform noninvasive temperature monitoring of a cerebral cortex. As expected surface temperature of tumors is different from surface temperature of tissues free from pathological changes. The magnitude of this difference depends on histology and the origin of the tumor. These conclusions lead to taking on further experimental research, implementation and further verification of the thermal imaging method and its usefulness in clinical practice. In particular the research will be undertaken on intraoperative temperature changes of active cerebral cortex areas in post-anesthetic recovery.

  13. Madeira Extreme Floods: 2009/2010 Winter. Case study - 2nd and 20th of February

    NASA Astrophysics Data System (ADS)

    Pires, V.; Marques, J.; Silva, A.

    2010-09-01

    Floods are at world scale the natural disaster that affects a larger fraction of the population. It is a phenomenon that extends it's effects to the surrounding areas of the hydrographic network (basins, rivers, dams) and the coast line. Accordingly to USA FEMA (Federal Emergency Management Agency) flood can be defined as:"A general and temporary condition of partial or complete inundation of two or more acres of normally dry land area or of two or more properties from: Overflow of inland or tidal waters; Unusual and rapid accumulation or runoff of surface waters from any source; Mudflow; Collapse or subsidence of land along the shore of a lake or similar body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels that result in a flood as defined above." A flash flood is the result of intense and long duration of continuous precipitation and can result in dead casualties (i.e. floods in mainland Portugal in 1967, 1983 and 1997). The speed and strength of the floods either localized or over large areas, results in enormous social impacts either by the loss of human lives and or the devastating damage to the landscape and human infrastructures. The winter of 2009/2010 in Madeira Island was characterized by several episodes of very intense precipitation (specially in December 2009 and February 2010) adding to a new record of accumulated precipitation since there are records in the island. In February two days are especially rainy with absolute records for the month of February (daily records since 1949): 111mm and 97mm on the 2nd and 20th respectively. The accumulated precipitation ended up with the terrible floods on the 20th of February causing the lost of dozens of human lives and hundreds of millions of Euros of losses The large precipitation occurrences either more intense precipitation in a short period or less intense precipitation during a larger period are sometimes the precursor of geological phenomena resulting in land movement, many times in the same or very near areas from previous episodes. Although flood episodes have a strong dependency in the topography and hydrological capacity of the terrains, the human intervention is also an enormously important factor, more specifically the anthropogenic factors such deforestation, dams, change of water fluxes, and impermeabilization of the terrain surface. The risk assessment of floods should be address based not only on the knowledge of the meteorological and hidrometeorological factors, such the accumulated precipitation and soil water balance but also in the river path and water amounts and well the surrounding geomorphology of the water basins. The current work is focused in the meteorological contribution for the floods occurrence episode of 2010 in the Madeira Island, specifically the climatic characterization of the 2009/2010 Winter with particular incidence on the days of the 2nd and 20th of February.

  14. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors.

    PubMed

    Ye, Shibing; Feng, Jiachun

    2014-06-25

    A three-dimensional hierarchical graphene/polypyrrole aerogel (GPA) has been fabricated using graphene oxide (GO) and already synthesized one-dimensional hollow polypyrrole nanotubes (PNTs) as the feedstock. The amphiphilic GO is helpful in effectively promoting the dispersion of well-defined PNTs to result in a stable, homogeneous GO/PNT complex solution, while the PNTs not only provide a large accessible surface area for fast transport of hydrate ions but also act as spacers to prevent the restacking of graphene sheets. By a simple one-step reduction self-assembly process, hierarchically structured, low-density, highly compressible GPAs are easily obtained, which favorably combine the advantages of graphene and PNTs. The supercapacitor electrodes based on such materials exhibit excellent electrochemical performance, including a high specific capacitance up to 253 F g(-1), good rate performance, and outstanding cycle stability. Moreover, this method may be feasible to prepare other graphene-based hybrid aerogels with structure-controllable nanostructures in large scale, thereby holding enormous potential in many application fields.

  15. Urban Expansion Modeling Approach Based on Multi-Agent System and Cellular Automata

    NASA Astrophysics Data System (ADS)

    Zeng, Y. N.; Yu, M. M.; Li, S. N.

    2018-04-01

    Urban expansion is a land-use change process that transforms non-urban land into urban land. This process results in the loss of natural vegetation and increase in impervious surfaces. Urban expansion also alters the hydrologic cycling, atmospheric circulation, and nutrient cycling processes and generates enormous environmental and social impacts. Urban expansion monitoring and modeling are crucial to understanding urban expansion process, mechanism, and its environmental impacts, and predicting urban expansion in future scenarios. Therefore, it is important to study urban expansion monitoring and modeling approaches. We proposed to simulate urban expansion by combining CA and MAS model. The proposed urban expansion model based on MSA and CA was applied to a case study area of Changsha-Zhuzhou-Xiangtan urban agglomeration, China. The results show that this model can capture urban expansion with good adaptability. The Kappa coefficient of the simulation results is 0.75, which indicated that the combination of MAS and CA offered the better simulation result.

  16. Unexpected carboxylate like CO adsorption at the Sr3Ru2O7 (001) surface

    NASA Astrophysics Data System (ADS)

    Hieckel, Marcel; Mittendorfer, Florian; Redinger, Josef; Stoeger, Bernhard; Wang, Zhiming; Schmid, Michael; Diebold, Ulrike

    2014-03-01

    Oxide perovskite materials have attracted enormous attention because of a variety of intriguing physical properties ranging from catalysis to multiferroicity. We present a combined experimental and ab-initio (DFT) study with the Vienna Ab initio Simulation Package (VASP) on the adsorption of CO at the Sr3Ru2O7 (001) surface. We identify both a physisorbed and a chemisorbed CO configuraton. Unexpectedly, in the latter case adsorption occurs in a carboxylate (COO) like state. Both configurations have been confirmed by detailed STM experiments and simulations. In addition we find only a small barrier for the carboxylate formation on the surface. Work supported by the Austrian FWF, SFB F45 (FOXSI).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of themore » Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials that discourage us from pursuing these materials further.« less

  18. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.

    PubMed

    Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke

    2016-12-20

    The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be divided into three main sections: (1) useful background on carbon materials for supercapacitor applications, (2) the importance of MOF-derived carbons, and (3) potential future developments of MOF-derived carbons for supercapacitors. This Account focuses mostly on carbons derived from two types of MOFs, namely, zeolite imidazolate framework-8 (ZIF-8) and ZIF-67. By using examples from our previous works, we will show the uniqueness of these carbons for achieving high performance by control of the chemical reactions/conditions as well proper utilization in asymmetric/symmetric supercapacitor configurations. This Account will promote further developments of MOF-derived multifunctional carbon materials with controlled porous architectures for optimization of their electrochemical performance toward supercapacitor applications.

  19. Mineralogical Mapping in the Cuprite Mining District, Nevada

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Srivastava, V.

    1985-01-01

    The airborne imaging spectrometer (AIS) has provided for the first time, the possibility to map mineralogical constituents in the Earth's surface and thus has enormously increased the value of remote-sensing data as a tool in the solution of geologic problems. The question addressed with AIS at Cuprite was how well could the mineral components at the surface of a hydrothermal alteration zone be detected, identified and mapped? The question was answered positively and is discussed. A relatively rare mineral, buddingtonie, that could not have been detected by conventional means, was discovered and mapped by the use of AIS.

  20. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    PubMed

    La Scala, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  1. Better Spectrometers, Beautiful Spectra and Confusion for All

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Brauer, C. S.; Drouin, B. J.; Yu, S.

    2009-01-01

    The confluence of enormous improvements in submillimeter receivers and the development of powerful large scale observatories is about to force astrophysics and the sciences that support it to develop novel approaches for interpretation of data. The historical method of observing one or two lines and carefully analyzing them in the context of a simple model is now only applicable for distant objects where only a few lines are strong enough to be observable. Modern observatories collect many GHz of high signal-to-noise spectra in a single observation and in many cases, at sufficiently high spatial resolution to start resolving chemically distinct regions. The observatories planned for the near future and the inevitable upgrades of existing facilities will make large spectral data sets the rule rather than the exception in many areas of molecular astrophysics. The methodology and organization required to fully extract the available information and interpret these beautiful spectra represents a challenge to submillimeter astrophysics similar in magnitude to the last few decades of effort in improving receivers. The quality and abundance of spectra effectively prevents line-by-line analysis from being a time efficient proposition, however, global analysis of complex spectra is a science in its infancy. Spectroscopy at several other wavelengths have developed a number of techniques to analyze complex spectra, which can provide a great deal of guidance to the molecular astrophysics community on how to attack the complex spectrum problem. Ultimately, the challenge is one of organization, similar to building observatories, requiring teams of specialists combining their knowledge of dynamical, structural, chemical and radiative models with detailed knowledge in molecular physics and gas and grain surface chemistry to extract and exploit the enormous information content of complex spectra. This paper presents a spectroscopists view of the necessary elements in a tool for complex spectral analysis.

  2. The Geographic Concentration of Enterprise in Developing Countries

    PubMed Central

    Felkner, John S.; Townsend, Robert M.

    2011-01-01

    A nation’s economic geography can have an enormous impact on its development. In Thailand, we show that a high concentration of enterprise in an area predicts high subsequent growth in and around that area. We also find spatially contiguous convergence of enterprise with stagnant areas left behind. Exogenous physiographic conditions are correlated with enterprise location and growth. We fit a structural, micro-founded model of occupation transitions with fine-tuned geographic capabilities to village data and replicate these salient facts. Key elements of the model include costs, credit constraints on occupation choice, and spatially varying expansion of financial service providers. PMID:22844158

  3. Exploration for heavy crude oil and natural bitumen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

  4. The Transmission of Attachment across Three Generations: A Study in Adulthood

    ERIC Educational Resources Information Center

    Cassibba, Rosalinda; Coppola, Gabrielle; Sette, Giovanna; Curci, Antonietta; Costantini, Alessandro

    2017-01-01

    One of the most striking pieces of evidence in attachment research is that attachment security is transmitted from 1 generation to the next. Although there has been an enormous advance in the understanding of this process, this area of research suffers from some significant gaps, as for example the transmission across 3 generations when…

  5. The Role of Building Learning Cities in the Rejuvenation of Africa

    ERIC Educational Resources Information Center

    Biao, Idowu; Esaete, Josephine; Oonyu, Joseph

    2013-01-01

    Although Africa has been home to famous ancient cities in the past, its modern conurbation areas are poor living spaces characterised by squalor, poor planning and human misery. The authors of this paper argue that the learning city concept, still almost unknown in Africa, holds enormous potential for redressing the dysfunctional state of things…

  6. What Is the Future of Learning in Canada?

    ERIC Educational Resources Information Center

    Canadian Council on Learning, 2011

    2011-01-01

    In its final report to Canadians, the Canadian Council on Learning (CCL) reveals that Canada is slipping down the international learning curve. The needs in this area are stark. The potential rewards are enormous. But Canada is falling behind competitor countries and economies. It is on the wrong road and must make a dramatic change in the course…

  7. JPRS Report, Nuclear Developments

    DTIC Science & Technology

    1991-04-23

    East countries. Bush once expressed Taishan. the hope of reducing arms sales to the Middle East but has never taken effective measures to weaken the flow...structure containing sand armament will bring enormous effects in strategic envi- 350 meters to 500 meters below the surface and then ronment in Northeast...underestimation of its consequences may have some Kozloduy Nuclear Power Plant which results in radioac- tragic effects on Bulgaria’s population which

  8. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 sun Illumination.

    PubMed

    Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun

    2018-05-09

    Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.

  9. On the Trojan asteroid sample and return mission via solar-power sail -- an innovative engineering demonstration

    NASA Astrophysics Data System (ADS)

    Kawaguchi, J.; Mori, O.; Shirasawa, Y.; Yoshikawa, M.

    2014-07-01

    The science and engineering communities in the world are seeking what comes next. Especially for asteroids and comets, as those objects lie in relatively far area in our solar system, and new engineering solutions are essential to explore them. JAXA has studied the next-step mission since 2000, a solar-power sail demonstrator combining the use of photon propulsion with electric propulsion, ion thruster, targeting the untrodden challenge for the sample return attempt from a Trojan asteroid around the libration points in the Sun-Jupiter system. The Ikaros spacecraft was literally developed and launched as a preliminary technology demonstration. The mission will perform in-situ measurement and on-site analysis of the samples in addition to the sample return to the Earth, and will also deploy a small lander on the surface for collecting surface samples and convey them to the mother spacecraft. From a scientific point of view, there is an enormous reward in the most primitive samples containing information about the ancient solar system and also about the origin of life in our solar system. JAXA presently looks for international partners to develop and build the lander. The presentation will elaborate the current mission scenario as well as what we think the international collaboration will be.

  10. How Cyanobacterial Distributions Reveal Flow and Irradiance Conditions of Photosynthetic Biofilm Formation

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, Lee

    2001-01-01

    Microbial life on Earth is enormously abundant at sediment-water interfaces. The fossil record in fact contains abundant evidence of the preservation of life on such surfaces. It is therefore critical to our interpretation of early Earth history, and potentially to history of life on other planets, to be able to recognize life forms at these interfaces. On Earth this life often occurs as organized structures of microbes and their extracellular exudates known as biofilms. When such biofilms occur in areas receiving sunlight photosynthetic biofilms are the dominant form in natural ecosystems due to selective advantage inherent in their ability to utilize solar energy. Cyanobacteria are the dominant phototrophic microbes in most modern and ancient photosynthetic biofilms, microbial mats and stromatolites. Due to their long (3.5 billion year) evolutionary history, this group has extensively diversified resulting in an enormous array of morphologies and physiological abilities. This enormous diversity and specialization results in very specific selection for a particular cyanobacterium in each available photosynthetic niche. Furthermore these organisms can alter their spatial orientation, cell morphology, pigmentation and associations with heterotrophic organisms in order to fine tune their optimization to a given micro-niche. These adaptations can be detected, and if adequate knowledge of the interaction between environmental conditions and organism response is available, the detectable organism response can be used to infer the environmental conditions causing that response. This presentation will detail two specific examples which illustrate this point. Light and water are essential to photosynthesis in cyanobacteria and these organisms have specific detectable behavioral responses to these parameters. We will present cyanobacterial responses to quantified flow and irradiance to demonstrate the interpretative power of distribution and orientation information. This study presents new results, but many such examples are already found in the literature. However this information exists in such a wide variety of journals, spanning decades of research that the utility of the vast storehouse of information is limited, not by the ability of cyanobacteria to respond in recognizable ways to environmental stimuli, but by our ability to compile and use this information. Recent advances in information technology will soon allow us to overcome these difficulties and utilize the detailed responses of cyanobacteria to environmental microniches as powerful records of the interaction between the biosphere and lithosphere.

  11. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  12. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  13. Introducing "Green" and "Nongreen" Aspects of Noble Metal Nanoparticle Synthesis: An Inquiry-Based Laboratory Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Paluri, Sesha L. A.; Edwards, Michelle L.; Lam, Nhi H.; Williams, Elizabeth M.; Meyerhoefer, Allie; Pavel Sizemore, Ioana E.

    2015-01-01

    In recent years, nanoscience and nanotechnology have been drawing enormous attention due to the numerous applications of nanomaterials. In an attempt to nurture interest towards these areas in young minds and to develop the next generation of environmentally conscious scientists and engineers, this new laboratory module focuses on the green and…

  14. Defining Openness: Updating the Concept of "Open" for a Connected World

    ERIC Educational Resources Information Center

    Brent, Isabelle; Gibbs, Graham R.; Gruszczynska, Anna Katarzyna

    2012-01-01

    The field of Social Research Methods is shared not only by the social sciences, but by many other disciplines. There is therefore enormous scope for the creation and re-use of open educational resources (OERs) in this area. However, our work with social scientists on a number of recent projects suggests that barriers exist to OER creation and use…

  15. The Eco-Village Experience at California State University, Fresno: An Integrated Approach to Service Learning

    ERIC Educational Resources Information Center

    Luo, Yupeng; Crask, Lloyd; Dyson, Arthur; Zoghi, Manoochehr; Hyatt, Brad

    2011-01-01

    Poverty has caused enormous pressures and urgent needs in the city of Fresno. In an effort to incorporate a deep awareness of social, cultural, and environmental needs of the Fresno area in engineering and design education, a pilot design-build program entitled Eco-village at California State University, Fresno, has been established. Students from…

  16. Origin of Amazon mudbanks along the northeastern coast of South America

    USGS Publications Warehouse

    Allison, M.A.; Lee, M.T.; Ogston, A.S.; Aller, R.C.

    2000-01-01

    Seismic profiles, sediment cores, and water column measurements were collected along the northeastern coast of Brazil to examine the origin of mudbanks in the Amazon coastal mud belt. These 10-60-km-long, shore-attached features previously had been observed to migrate along the 1200 km coast of the Guianas in response to wave forcing. CHIRP (3.5 kHz) seismic profiles of the shoreface and inner shelf located two mudbanks updrift of the previous eastern limit in French Guiana. 210Pb geochronology shows that these two banks are migrating to the northwest over a relict mud surface in 5-20 m water depth. The mudbanks are 3-4 m thick and are translating over a modern shoreface mud wedge deposited by previous mudbank passage in < 5 m water depth. Initial mudbank development is taking place on the intertidal and shallow subtidal mudflats at Cabo Cassipore, associated with an alongshore-accreting clinoform feature. Sediment trapping in this area is controlled by the nearshore presence of strong water column stratification produced by the enormous Amazon freshwater discharge on the shelf and by proximity to the Cassipore River estuary. Seasonal and decadal periods of sediment supply and starvation in this area likely are controlled by variations in northwest trade wind intensity. (C) 2000 Elsevier Science B.V.

  17. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field

    PubMed Central

    Halib, Nadia; Perrone, Francesca; Dapas, Barbara; Farra, Rossella; Abrami, Michela; Chiarappa, Gianluca; Forte, Giancarlo; Zanconati, Fabrizio; Pozzato, Gabriele; Murena, Luigi; Fiotti, Nicola; Lapasin, Romano; Cansolino, Laura; Grassi, Gabriele

    2017-01-01

    Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field. PMID:28825682

  18. Tri-Service Thermal Flash Test Facility. Summary Report.

    DTIC Science & Technology

    1980-01-15

    degradation of materials exposed to the radiant heating generated by a nuclear blast can very enormously. The intense radiation needed to simulate a...Photography - Motion picture photo- graphy of surface degradation would be an asset to data analysis. Although this procedure is relatively straightforward...Polyvinylchloride 68 Rubber 69 Army Systems Camouflage MIL-E-52798A over TTP-636 primer 70 Army Systems Camouflage MIL-E-52835A over TTP-636 primer 71 Army

  19. Assessment of Mars Pathfinder landing site predictions

    USGS Publications Warehouse

    Golombek, M.P.; Moore, H.J.; Haldemann, A.F.C.; Parker, T.J.; Schofield, J.T.

    1999-01-01

    Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered surface around the Pathfinder lander compared to the Viking landing sites. Comparisons with the experiences of selecting the Viking landing sites demonstrate the enormous benefit the Viking data and its analyses and models had on the successful predictions of the Pathfinder site. The Pathfinder experience demonstrates that, in certain locations, geologic processes observed in orbiter data can be used to infer surface characteristics where those processes dominate over other processes affecting the Martian surface layer. Copyright 1999 by the American Geophysical Union.

  20. Cars on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  1. Creation of the BMA ensemble for SST using a parallel processing technique

    NASA Astrophysics Data System (ADS)

    Kim, Kwangjin; Lee, Yang Won

    2013-10-01

    Despite the same purpose, each satellite product has different value because of its inescapable uncertainty. Also the satellite products have been calculated for a long time, and the kinds of the products are various and enormous. So the efforts for reducing the uncertainty and dealing with enormous data will be necessary. In this paper, we create an ensemble Sea Surface Temperature (SST) using MODIS Aqua, MODIS Terra and COMS (Communication Ocean and Meteorological Satellite). We used Bayesian Model Averaging (BMA) as ensemble method. The principle of the BMA is synthesizing the conditional probability density function (PDF) using posterior probability as weight. The posterior probability is estimated using EM algorithm. The BMA PDF is obtained by weighted average. As the result, the ensemble SST showed the lowest RMSE and MAE, which proves the applicability of BMA for satellite data ensemble. As future work, parallel processing techniques using Hadoop framework will be adopted for more efficient computation of very big satellite data.

  2. Upgrading protected areas to conserve wild biodiversity.

    PubMed

    Pringle, Robert M

    2017-05-31

    International agreements mandate the expansion of Earth's protected-area network as a bulwark against the continued extinction of wild populations, species, and ecosystems. Yet many protected areas are underfunded, poorly managed, and ecologically damaged; the conundrum is how to increase their coverage and effectiveness simultaneously. Innovative restoration and rewilding programmes in Costa Rica's Área de Conservación Guanacaste and Mozambique's Parque Nacional da Gorongosa highlight how degraded ecosystems can be rehabilitated, expanded, and woven into the cultural fabric of human societies. Worldwide, enormous potential for biodiversity conservation can be realized by upgrading existing nature reserves while harmonizing them with the needs and aspirations of their constituencies.

  3. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

    NASA Astrophysics Data System (ADS)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-01

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells. Electronic supplementary information (ESI) available: Procedures for CVD growth of 3D-NG, XRD and TEM measurements, a comparison with other graphene-based biosensors, a detailed study on the universality of 3D-NG as an enzyme carrier and more CV data on selectivity and stability. See DOI: 10.1039/c4nr05325g

  4. Why Aren't Dollars Following Need? The Need for Professional Development Is Enormous and Expressed; the Question Is, Where's the Money?

    ERIC Educational Resources Information Center

    Fletcher, Geoffrey H.

    2005-01-01

    The demand for professional development for integrating technology is growing. According to the MDR report The Impact of No Child Left Behind, when leaders were asked about the areas in which they feel their teachers need the most training over the next year or two, technology integration came in fourth behind "assessment," "dealing…

  5. The Mission Partner Environment: Challenges To Multinational Information Sharing

    DTIC Science & Technology

    2016-02-15

    Harvey , Royal Air Force 15 February 2016 DISTRIBUTION A. Approved for public release: distribution unlimited. ii Disclaimer The views expressed...troops, with non-U.S. commanders in charge of vast areas of inhospitable geography . The enormous size and scope of this mission created incredibly...between people and organizations separated by wide geography is the requirement for a persistent and durable means for multinational communication and

  6. Why Interventions to Reduce Bullying and Violence in Schools May (Or May Not) Succeed: Comments on This Special Section

    ERIC Educational Resources Information Center

    Smith, Peter K.

    2011-01-01

    The research area around aggression and violence in schools, and especially that on school bullying, has grown enormously in the last 30 years. There are good grounds for concern about these issues, given the negative effects of school bullying on mental health and in the more extreme cases, links to suicides. Intervention and prevention programs…

  7. AulaNet[TM]--An Environment for the Development and Maintenance of Courses on the Web.

    ERIC Educational Resources Information Center

    de Lucena, Carlos J. P.; Fuks, Hugo; Milidiu, Ruy; Macedo, Lucas; Santos, Neide; Laufer, Carlos; Blois, Marcelo; Fontoura, Marcus; Chorena, Ricardo; Crespo, Sergio; Torres, Viviane; Daflon, Leandro; Lukowiecki, Leticia

    As yet, there are no specialists in the application of information technology to education and training. However, this is one of the fastest growing areas on the Internet due to the recent perception of the enormous potential for the use of Web resources for this purpose. This has attracted the attention of researchers in industry and the academic…

  8. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  9. Removal of phenol by powdered activated carbon prepared from coal gasification tar residue.

    PubMed

    Wang, Xiong-Lei; Shen, Jun; Niu, Yan-Xia; Wang, Yu-Gao; Liu, Gang; Sheng, Qing-Tao

    2018-03-01

    Coal gasification tar residue (CGTR) is a kind of environmentally hazardous byproduct generated in fixed-bed coal gasification process. The CGTR extracted by ethyl acetate was used to prepare powdered activated carbon (PAC), which is applied later for adsorption of phenol. The results showed that the PAC prepared under optimum conditions had enormous mesoporous structure, and the iodine number reached 2030.11 mg/g, with a specific surface area of 1981 m 2 /g and a total pore volume of 0.92 ml/g. Especially, without loading other substances, the PAC, having a strong magnetism, can be easily separated after it adsorbs phenol. The adsorption of phenol by PAC was studied as functions of contact time, temperature, PAC dosage, solution concentration and pH. The results showed a fast adsorption speed and a high adsorption capacity of PAC. The adsorption process was exothermic and conformed to the Freundlich models. The adsorption kinetics fitted better to the pseudo-second-order model. These results show that CGTR can be used as a potential adsorbent of phenols in wastewater.

  10. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review.

    PubMed

    Sharma, Gaurav; Kumar, Deepak; Kumar, Amit; Al-Muhtaseb, Ala'a H; Pathania, Deepak; Naushad, Mu; Mola, Genene Tessema

    2017-02-01

    Trimetallic nanoparticles are mainly formed by the combination of three different metals. The trimetallic catalysts were considerably more professional than bimetallic one. The trimetallic and bimetallic nanoparticles are of enormous attention than that of monometallic in both technological and scientific view as in these nanoparticles the catalytic properties can be tailored better than that of in the single monometallic catalyst. The trimetallic nanoparticles have been synthesized by different methods such as microwave, selective catalytic reduction, micro-emulsion, co-precipitation and hydrothermal etc. The surfaces area of trimetallic nanoparticles is comparatively unstable and thus gets simply precipitated away from their solution and ultimately resulted in their reduced catalytic activity. By using stabilizers like block copolymers, organic ligands, surfactants and dendrimers the trimetallic nanoparticles can be stabilized. The nanocomposites of trimetallics have been synthesized with inorganic and organic compounds such as: carbon, graphene, gelatin, cellulose, starch, chitosan, alginate, collagen and Al 2 O 3 etc. Trimetallic nanoparticles are used as a catalyst due to their outstanding electrochemical catalytic activity in comparison with the monometallic or bimetallic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Aquatic balance in Vegoritis Lake, West Macedonia, Greece, relating to lignite mining works in the area

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, D.; Grigorakou, E.; Koumantakis, J.

    2003-04-01

    Vegoritis Lake, which is located at Vegoritis closed Basin in West Macedonia, Greece, is the biggest lake in Greece. In 1994 the area of the lake was 35 Km2 with maximum depth 42 m at the northwestern part of the lake. It is the final receiving body of the surface runoff of the hydrological basin. Moreover, it is the surficial appearance of an enormous and not well-known karstic aquifer. Being a closed hydrological basin any interference in surface or groundwater conditions in every part of its area affects the level of the lake. The level of the lake in 1900 was 525 masl, in 1942 was 542 masl reaching the higher level of 543 masl in 1956. The increase of the level of the lake was due to the drainage of Ptolemais (Sarigiol) swamp through Soulou drain ditches that transfer the water in the lake. Since then, a continuous drawdown took place with small periods of rising of water level. Today, the level of the lake is declined in a smaller rate having reached the level of 510 masl. Water coming from the lake has been used in the past, and in some cases still does, for agricultural, industrial and domestic use, for hydropower generation and for the cooling system of power plants. Moreover, P.P.C. (Public Power Corporation of Greece) develops an intense activity in the area with the exploitation of the lignite deposits of the basin and power generation in several Power Plants. Few years ago significant quantities from Vegoritis Lake were used for hydro power of Agras Power Plant. With the elaboration of the existent data (water level measurements, recharge, discharge) the connection between the lowering of the surface of the lake and the subtracted quantities through the Arnissa Tunel the first years of its use, is obvious. The last twenty years the condition has change. Outflow through the Arnissa Tunnel for hydropower has stopped. The continued lowering of the level of the lake is caused, mainly, by overexploitation due to the intense increase of the irrigating land. The dewatering of the aquifers for the protection of the lignite mine seems to have an insignificant influence on the aquatic balance, as the water is discharged again into the streams and rivers of the closed basin.

  12. Cytosolic proteins can exploit membrane localization to trigger functional assembly

    PubMed Central

    2018-01-01

    Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. PMID:29505559

  13. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  14. Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.

    2002-01-01

    Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.

  15. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as detailed later in this Report.

  16. Policy Relevance in Studies of Urban Residential Water Demand

    NASA Astrophysics Data System (ADS)

    Martin, William E.; Thomas, John F.

    1986-12-01

    Precise estimates of demand elasticities for a given area may not be necessary for policy purposes. Given the general nature of the demand for urban water, simple cross-sectional comparisons of prices and quantities in similar areas may be most reliable for policy use. Short-run elasticities give little information for policy purposes. Comparison of well-defined price and quantity data from five cities with similar arid environments suggests a long-run price elasticity for residential water of about -0.5 over a wide range of water prices. The potential for price adjustments to affect use is enormous.

  17. Incorporating Polymer Science Lecture Topics into the Beginning Organic Chemistry Course to Engage Students' Interest in Current and Future Applications

    ERIC Educational Resources Information Center

    Howell, Bob A.

    2017-01-01

    The impact of polymeric materials on the well-being of citizens of the modern world is enormous. These materials enhance virtually every facet of life--from clothing and personal care items to housing and transportation. Yet despite this, and the fact that most chemists work in a polymer or polymer-related area, polymeric materials have…

  18. High surface area silicon materials: fundamentals and new technology.

    PubMed

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  19. Fabrication of novel compound SERS substrates composed of silver nanoparticles and porous gold nanoclusters: A study on enrichment detection of urea

    NASA Astrophysics Data System (ADS)

    Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee

    2018-01-01

    A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.

  20. Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument

    NASA Astrophysics Data System (ADS)

    Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.

    2016-10-01

    We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.

  1. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  2. Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

  3. Biomarker Constraints on Arctic Surface Water Conditions During the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Reichart, G.; Brinkhuis, H.; Sinninghe Damste, J. S.; de Leeuw, J. M.; van Kempen, M.

    2007-12-01

    Through analyses of unique microlaminated sediments of Arctic drill cores, recovered from the Lomonosov Ridge in the central Arctic Ocean during Integrated Ocean Drilling Program (IODP) Expedition 302, it has been shown that enormous quantities of the free floating freshwater fern \\textit {Azolla} grew and reproduced in situ in the Arctic Ocean during the middle Eocene (Brinkhuis et al., Nature, 2006).The presence of the freshwater fern Azolla, both within the Arctic Basin and in all Nordic seas, suggests that at least the sea surface waters were frequently dominated by fresh- to brackish water during an interval of at least 800 kyr. However, to which degree the Arctic Basin became fresh and what the consequences of these enormous Azolla blooms were for regional and global nutrient cycles is still largely unknown. Comparing samples of extant Azolla, including its nitrogen fixing symbionts, with samples from the Arctic Azolla interval revealed the presence of a group of highly specific biomarkers. These biomarkers are closely related to similar organic compounds that have been suggested to play a crucial role in the biogeochemistry of nitrogen fixing bacteria. This finding, therefore, potentially implies that this symbioses dates back to at least the middle Eocene. Furthermore, this particular symbiosis was probably crucial in triggering basin wide Azolla blooms. We now aim to measure compound specific stable hydrogen isotope values of these biomarkers which should provide insight into the degree of mixing between high salinity (isotopically heavy) deeper and low salinity surface water (isotopically light). The results of these compound specific isotope analyses will be extrapolated using calibrations from controlled growth experiments and subsequently evaluated using climate modeling experiments.

  4. Effects of anisotropic surface texture on the performance of ionic polymer-metal composite (IPMC)

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Ding, Haitao; Guo, Dongjie; Dai, Zhendong

    2010-04-01

    Ionic polymer metal composite (IPMC), an electrically activated polymer (EAP), has attracted great attention for the excellent properties such as large deformation, light weight, low noise, flexibility and low driving voltages, which makes the material a possible application as artificial muscle if the output force can be increased. To improve the property, we manufactured the Nafion membrane by casting from liquid solution, modified the surface by sandblasting or polishing, and obtained the isotropic and anisotropic surface texture respectively. The microstructure of the Nafion surface and metal electrode, effects of surface texture on the output force and displacement of IPMC were studied. Results show that the output force of IPMC with the anisotropic surface texture is 2~4 times higher than that with the isotropic surface texture without enormous sacrifice of the displacement. The output force may reach to 6.63gf (Sinusoidal 3.5V and 0.1Hz, length 20mm, width 5mm and thickness 0.66mm), which suggest an effective way to improve the mechanical properties of IPMC.

  5. Mars. [evolution and surface features

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1975-01-01

    The evolution and physical structure of Mars are discussed primarily on the basis of Mariner 9 observations. The Martian atmosphere, density, and iron abundance are compared with those of earth, and it is noted that the planet was probably formed in less than 100,000 years. Stages in Martian differentiation are described together with the atmospheric composition, condensation and dust clouds, and surface winds. The surface is shown to have a wide diversity of geological landforms resulting from a variety of processes, including meteoroid bombardment, volcanic and tectonic activity, sapping, the action of running water, and wind action. Described landforms include impact craters, volcanic plains and domes, shield volcanoes, sinuous channels and gullies apparently formed by running water, and the enormous canyon system. Mechanisms for climatic change are considered, and questions are posed regarding the possibility of life on Mars.

  6. Surface modification of oxygen-deficient ZnO nanotubes by interstitially incorporated carbon: a superior photocatalytic platform for sustainable water and surface treatments

    NASA Astrophysics Data System (ADS)

    Ninnora Meethal, Bhabhina; Ramanarayanan, Rajita; Swaminathan, Sindhu

    2018-05-01

    An interesting architecture of robust, highly reproducible, template-free synthesis of phase pure carbon-incorporated short ZnO nanotubes through polymer assisted sol-gel method is presented here. These nanotubes exhibit enormous surface oxygen vacancies and mid bandgap levels confirmed by X-ray photoelectron spectroscopy. These carbon-modified nanotubes exhibit encouraging results in photocatalytic studies, as there is a 16% greater degradation of contaminant dye than in the pristine ZnO nanotube. The reactive oxygen species generated from the photocatalysts were experimentally confirmed and quantified. Super hydrophilic nature renders these nanotubes suitable for antifogging application as observed from contact angle measurements. Characterisation and mechanism of a competent material with improved photoresponse, promising greater energy efficiency and anti-fog have been described in this investigation.

  7. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals in a hexane suspension and assembled on charge patterns. See DOI: 10.1039/c3nr02734a

  8. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean

    PubMed Central

    Rodriguez, J. Alexis P.; Fairén, Alberto G.; Tanaka, Kenneth L.; Zarroca, Mario; Linares, Rogelio; Platz, Thomas; Komatsu, Goro; Miyamoto, Hideaki; Kargel, Jeffrey S.; Yan, Jianguo; Gulick, Virginia; Higuchi, Kana; Baker, Victor R.; Glines, Natalie

    2016-01-01

    It has been proposed that ~3.4 billion years ago an ocean fed by enormous catastrophic floods covered most of the Martian northern lowlands. However, a persistent problem with this hypothesis is the lack of definitive paleoshoreline features. Here, based on geomorphic and thermal image mapping in the circum-Chryse and northwestern Arabia Terra regions of the northern plains, in combination with numerical analyses, we show evidence for two enormous tsunami events possibly triggered by bolide impacts, resulting in craters ~30 km in diameter and occurring perhaps a few million years apart. The tsunamis produced widespread littoral landforms, including run-up water-ice-rich and bouldery lobes, which extended tens to hundreds of kilometers over gently sloping plains and boundary cratered highlands, as well as backwash channels where wave retreat occurred on highland-boundary surfaces. The ice-rich lobes formed in association with the younger tsunami, showing that their emplacement took place following a transition into a colder global climatic regime that occurred after the older tsunami event. We conclude that, on early Mars, tsunamis played a major role in generating and resurfacing coastal terrains. PMID:27196957

  9. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean.

    PubMed

    Rodriguez, J Alexis P; Fairén, Alberto G; Tanaka, Kenneth L; Zarroca, Mario; Linares, Rogelio; Platz, Thomas; Komatsu, Goro; Miyamoto, Hideaki; Kargel, Jeffrey S; Yan, Jianguo; Gulick, Virginia; Higuchi, Kana; Baker, Victor R; Glines, Natalie

    2016-05-19

    It has been proposed that ~3.4 billion years ago an ocean fed by enormous catastrophic floods covered most of the Martian northern lowlands. However, a persistent problem with this hypothesis is the lack of definitive paleoshoreline features. Here, based on geomorphic and thermal image mapping in the circum-Chryse and northwestern Arabia Terra regions of the northern plains, in combination with numerical analyses, we show evidence for two enormous tsunami events possibly triggered by bolide impacts, resulting in craters ~30 km in diameter and occurring perhaps a few million years apart. The tsunamis produced widespread littoral landforms, including run-up water-ice-rich and bouldery lobes, which extended tens to hundreds of kilometers over gently sloping plains and boundary cratered highlands, as well as backwash channels where wave retreat occurred on highland-boundary surfaces. The ice-rich lobes formed in association with the younger tsunami, showing that their emplacement took place following a transition into a colder global climatic regime that occurred after the older tsunami event. We conclude that, on early Mars, tsunamis played a major role in generating and resurfacing coastal terrains.

  10. Industrial radiography with cosmic-ray muons: A progress report

    NASA Astrophysics Data System (ADS)

    Gilboy, W. B.; Jenneson, P. M.; Simons, S. J. R.; Stanley, S. J.; Rhodes, D.

    2007-09-01

    Cosmic-ray produced muons arrive at the surface of the earth with enormous energies ranging up to 1012 GeV. There have been sporadic attempts to exploit their extreme penetration through matter to probe the internal structures of very large objects, including an Egyptian pyramid and a volcano but their very low intensity per unit area ( ≈1 cm-2 per min) generally restricts the practicably attainable spatial resolution to large dimensions. Nevertheless the more intense low energy region of the muon spectrum has recently been shown to be capable of detecting high-Z objects with dimensions of the order of 10 cm hidden inside large transport containers in measurement times of minutes. These various developments have encouraged further studies of potential industrial uses of cosmic-ray muons in industrial applications. In order to gain maximum benefit from the low muon flux large area detectors are required and plastic scintillators offer useful advantages in size, cost and simplicity. Scintillator slabs up to 1 m2 square and 76.2 mm thick are undergoing testing for applications in the nuclear industry. The most direct approach employs photomultiplier tubes at each corner to measure the relative sizes of muon induced pulses to determine the location of each muon track passing through the scintillator. The performance of this technique is reported and its imaging potential is assessed.

  11. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less

  12. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the forthcoming ISM will be normal or weaker/stronger.

  13. Reading and Writing a Better World. A Response to the Education for All (EFA) Global Monitoring Report 2008, from an Adult Literacy Perspective (Including Numeracy)

    ERIC Educational Resources Information Center

    Eldred, Jan

    2008-01-01

    The six EFA goals help to shape policies and priorities especially in developing countries; they can be seen as discrete targets or as a cohesive collection of complimentary developmental areas to improve learning for people of all ages and stages. The paper argues that the cohesion, success and impact of the EFA would be improved enormously if…

  14. The future of energy gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the abovemore » rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.« less

  15. An Agro-Climatological Early Warning Tool Based on the Google Earth Engine to Support Regional Food Security Analysis

    NASA Astrophysics Data System (ADS)

    Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.

  16. Adaptive optics based non-null interferometry for optical free form surfaces test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhou, Sheng; Li, Jingsong; Yu, Benli

    2018-03-01

    An adaptive optics based non-null interferometry (ANI) is proposed for optical free form surfaces testing, in which an open-loop deformable mirror (DM) is employed as a reflective compensator, to compensate various low-order aberrations flexibly. The residual wavefront aberration is treated by the multi-configuration ray tracing (MCRT) algorithm. The MCRT algorithm based on the simultaneous ray tracing for multiple system models, in which each model has different DM surface deformation. With the MCRT algorithm, the final figure error can be extracted together with the surface misalignment aberration correction after the initial system calibration. The flexible test for free form surface is achieved with high accuracy, without auxiliary device for DM deformation monitoring. Experiments proving the feasibility, repeatability and high accuracy of the ANI were carried out to test a bi-conic surface and a paraboloidal surface, with a high stable ALPAOTM DM88. The accuracy of the final test result of the paraboloidal surface was better than 1/20 Μ PV value. It is a successful attempt in research of flexible optical free form surface metrology and would have enormous potential in future application with the development of the DM technology.

  17. Coal Mining, Germany

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years.

    The image is centered at 51 degrees north latitude, 6.4 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  18. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    PubMed

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  20. Climate change in the Brazilian northeast

    NASA Astrophysics Data System (ADS)

    Rodrigues, Regina R.; Haarsma, Reindert J.; Hoelzemann, Judith J.

    2012-10-01

    Climate Change, Impacts and Vulnerabilities in Brazil: Preparing the Brazilian Northeast for the Future; Natal, Brazil, 27 May to 01 June 2012 The variability of the semiarid climate of the Brazilian northeast has enormous environmental and social implications. Because most of the population in this area depends on subsistence agriculture, periods of severe drought in the past have caused extreme poverty and subsequent migration to urban centers. From the ecological point of view, frequent and prolonged droughts can lead to the desertification of large areas. Understanding the causes of rainfall variability, in particular periods of severe drought, is crucial for accurate forecasting, mitigation, and adaptation in this important region of Brazil.

  1. Safe anesthesia: some general considerations.

    PubMed

    Smalhout, B

    1978-01-01

    Most of the articles on safety in anesthesia take the mortality as the criterion. This is fallacious. The anesthetist's area of responsibility must be clearly defined before his contribution to any given mortality can be assessed. The development of the field of anesthesiology has extended this area enormously. As a result, the techniques employed and the results obtained need to be reviewed and reconsidered. Outdated attitudes must be resolutely abandoned, particularly with regard to monitoring. The use of a coding system for anesthetic complications helps towards an objective assessment of the degree of safety achieved. The results obtained by this means in the Institute of Anesthesiology in Utrecht are reported.

  2. Impacts of hypoxia on the structure and processes in the pelagic community (zooplankton, macro-invertebrates and fish)

    NASA Astrophysics Data System (ADS)

    Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.

    2009-05-01

    Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 ml L-1 and show impact on growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 ml L-1. A change in the average or the minimum or maximum DO in an area may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence of the deleterious effects of oxygen depletion on species of the pelagic realm is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with different DOs and find adaptive mechanisms, nektonic species may avoid areas of inconvenient DO and develop adapted migrational strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, in deep waters many organisms have developed vertical migration strategies to use, pass and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity.

  3. Monitoring and modeling of runoff from a natural and an urbanized part of a small stream catchment

    NASA Astrophysics Data System (ADS)

    Kalicz, P.; Kucsara, M.; Gribovszki, Z.; Erős, M.; Csáfordi, P.

    2012-04-01

    Runoff processes in natural catchments are significantly different compared to urbanized areas. Human impacts are manifested in high amount of paved surfaces like roofs, roads, parking plots and the compacted soils of quasi natural areas like public gardens and parks. Decay of permeability and storage capacity both induce higher amount of runoff. The common practice to treat the increased volume of runoff is to collect in pipes and drain to a stream as soon as possible. These interventions induce flash floods with smaller time of concentration and higher flood peaks as normal food waves therefore strongly load discharge capacity of stream channel. Streams in urban areas are strongly modified and regulated. Sometimes the stream channel are dredged out to increase the discharge capacity. In worst case some smaller brooks are crowded with lid to increase urbanized habitat. Many climate change scenarios predict higher probability of heavy storm events, therefore increasing volume of runoff induces higher demands of strongly modified and enormous concrete channels. This study presents one year monitoring of a small stream comparing runoff from natural, rural and urban sections. In this paper we also introduce the process of a model setup and an evaluation to investigate the weak points of a stream section in urbanized areas. The pilot area of this research is the Rák Brook which is the second largest stream of city Sopron (western Hungary). The natural headwater catchment is long-term research area of Hidegvíz Valley Project, therefore we had a good basis to extend the research catchment monitoring in the direction of urbanized lower part of the stream. Seven monitoring points are established along the longitudinal section of the stream. In each point the water stage is recorded continuously beside several other water quality parameters. These data sets help the later validation of the hydrodynamic model.

  4. Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking.

    PubMed

    Kihara, Daisuke; Sael, Lee; Chikhi, Rayan; Esquivel-Rodriguez, Juan

    2011-09-01

    The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhuan; Yuan, Jiangtan; Zhou, Haiqing

    The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. A major challenge to this integration is the identification of suitable materials that can emit and absorb light at the same wavelength. In this paper we utilize unique excitonic transitions in WS 2 monolayers and show that WS 2 exhibits a perfect overlap between its absorption and photoluminescence spectra. By coupling WS 2 to Ag nanowires, we then show that WS 2 monolayers are able to excite and absorb surface plasmons of Ag nanowires at the same wavelength of exciton photoluminescence. This resonant absorptionmore » by WS 2 is distinguished from that of the ohmic propagation loss of silver nanowires, resulting in a short propagation length of surface plasmons. Our demonstration of resonant optical generation and detection of surface plasmons enables nanoscale optical communication and paves the way for on-chip electronic–photonic integrated circuits.« less

  6. User-Computer Interactions: Some Problems for Human Factors Research

    DTIC Science & Technology

    1981-09-01

    accessibility from the work place or home of R. information stored in major repositories. o Two-way real-time communication between broadcasting - facilities...Miller, and R.W. Pew (BBN Inc.) MDA 903-80-C-0551 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS...average U.S. home has gone from about 10 in 1940 to about 100 in 1960 to a few thousand in 1930. Collectively, these trends represent an enormous

  7. Reunification of Korea: A Forty Year Stalemate,

    DTIC Science & Technology

    1986-04-07

    TASK AREA & WORK UNIT NUMBERS U.S. Army War College Carlisle Barracks, PA 17013 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 7 April 1986 SAME...South Korea, the north have proposed that they co-h.’,cst these games. This cannot work as South Korca i:: not th: hcst of the 1988 Olympic Games--the...events is enormous. The President of the International Olympic Committee must work very closely with all countries in an attempt to gain maximum

  8. Excitonic Resonant Emission–Absorption of Surface Plasmons in Transition Metal Dichalcogenides for Chip-Level Electronic–Photonic Integrated Circuits

    DOE PAGES

    Zhu, Zhuan; Yuan, Jiangtan; Zhou, Haiqing; ...

    2016-04-19

    The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. A major challenge to this integration is the identification of suitable materials that can emit and absorb light at the same wavelength. In this paper we utilize unique excitonic transitions in WS 2 monolayers and show that WS 2 exhibits a perfect overlap between its absorption and photoluminescence spectra. By coupling WS 2 to Ag nanowires, we then show that WS 2 monolayers are able to excite and absorb surface plasmons of Ag nanowires at the same wavelength of exciton photoluminescence. This resonant absorptionmore » by WS 2 is distinguished from that of the ohmic propagation loss of silver nanowires, resulting in a short propagation length of surface plasmons. Our demonstration of resonant optical generation and detection of surface plasmons enables nanoscale optical communication and paves the way for on-chip electronic–photonic integrated circuits.« less

  9. Water ball collision

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.

    1986-01-01

    What happens if a stainless steel ball hits a water ball in the weightless space ot the Universe? In other words, it was the objective of our experiments in the Space to observe the surface tension of liquid by means of making a solid collide with a liquid. Place a small volume of water between 2 glass sheets to make a thin water membrane: the 2 glass sheets cannot be separated unless an enormous force is applied. It is obvious from this phenomenom that the surface tension of water is far greater than presumed. On Earth, however, it is impossible in most cases to observe only the surface tension of liquid, because gravity always acts on the surface tension. Water and stainless steel balls were chosen the liquid and solids for the experiments. Because water is the liquid most familiar to us, its properties are well known. And it is also of great interest to compare its properties on the Earth with those in the weightless space.

  10. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.

    PubMed

    Guo, Nannan; Li, Min; Wang, Yong; Sun, Xingkai; Wang, Feng; Yang, Ru

    2016-12-14

    Soybeans are extensively cultivated worldwide as human food. However, large quantities of soybean roots (SRs), which possess an abundant three-dimensional (3D) structure, remain unused and produce enormous pressure on the environment. Here, 3D hierarchical porous carbon was prepared by the facile carbonization of SRs followed by chemical activation. The as-prepared material, possessing large specific surface area (2143 m 2 g -1 ), good electrical conductivity, and unique 3D hierarchical porosity, shows outstanding electrochemical performance as an electrode material for supercapacitors, such as a high capacitance (276 F g -1 at 0.5 A g -1 ), superior cycle stability (98% capacitance retention after 10,000 cycles at 5 A g -1 ), and good rate capability in a symmetric two-electrode supercapacitor in 6 M KOH. Furthermore, the maximum energy density of as-assembled symmetric supercapacitor can reach 100.5 Wh kg -1 in neat EMIM BF 4 . Moreover, a value of 40.7 Wh kg -1 is maintained at ultrahigh power density (63000 W kg -1 ). These results show that the as-assembled supercapacitor can simultaneously deliver superior energy and power density.

  11. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    PubMed

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  13. Using ESRI Online Mapping Tools to Support STEM Learning through Analysis of the Impact of Land Use/Land Cover Change on Water Quality

    NASA Astrophysics Data System (ADS)

    Powley, C.; Alian, S.; Mayer, A.

    2017-12-01

    In the 2004 National Water Quality Report to the Congress, the US EPA states that about 44% of the streams, 64% of lakes and 30% of estuaries that were assessed were not suitable for basic use like fishing and swimming. Pollutants from nonpoint sources are most likely the cause. The needs of landowners to use their land for other uses is enormous and most are likely willing to forgo the potential damage to achieve monetary gains. These are difficult decisions as there are many positive gains in commercialized development, although this comes with a cost. So it is imperative for all entities to work together in developing an awareness that benefits all stakeholders. We used this water quality management context to prepare lessons for high school students to map water quality problem areas in Rifle River and the West Branch in Ogemaw County, Michigan based on field samples and by using ESRI online data entry and mapping tools. The students also used Long Term Hydrologic Impact Analysis (L-THIA) to evaluate the impacts of different land use/cover types, developing an understanding of the implication of land management on surface water quality.

  14. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  15. A Review on Potential of Proteins as an Excipient for Developing a Nano-Carrier Delivery System.

    PubMed

    Chakraborty, Amrita; Dhar, Pubali

    2017-01-01

    In neo-age research, nano-materials have emerged as potential tools for the revolution of diagnostic and therapeutic field because of their nano-scale effects, increased surface area-volume ratio, and other beneficial properties. For the last few decades, protein has been regarded as the most attractive and versatile natural bio-macromolecule among all of the available biopolymers. Protein is largely exploited as a nano-carrier system in the pharmaceutical industry due to its low cytotoxocity, biocompatibility, biodegradability, abundant renewable sources, significant attaching ability, clinically useful targeting, and site-specific efficient uptake. This review mainly emphasizes on the latest development and progress achieved in the utilization of protein as a nano-vehicle for a large number of therapeutics such as drugs, genes, hormones, enzymse, nutraceuticals, antibodies, peptides, etc. We also discuss the sources of protein materials, fabrication aspects, advantages, constraints, in vivo and in vitro studies and provide a comparative analysis between the different types of proteins as nano-carriers. The variation of the release pattern and molecular mechanism of the encapsulated molecule with respect to different protein types and various nano-structures are also highlighted here to explore the enormous promises of this novel approach.

  16. Recent evolution of glacial lakes in the Eastern Himalayas: the case-study of Mt. Everest (Nepal)

    NASA Astrophysics Data System (ADS)

    Salerno, Franco; D'Agata, Carlo; Diolaiuti, Guglielmina; Smiraglia, Claudio; Viviano, Gaetano; Tartari, Gianni

    2010-05-01

    In this contribution we analyze the glacier and lakes surface variations since the end of the 1950s until 2008 (around 50 years) through hystorical maps and remote sensing images. The Sagarmatha National Park (SNP), Eastern Hymalaian range (Nepal) covers an area of 1141km2, ranging from 2845 m to 8848 m (Mt Everest). Nearly all (28 out of a total of 29 in SNP) are ‘black glaciers', known also as D-type or debris-covered. Overall, SNP experienced a small net reduction in glacier cover of 19.6 km2 (4.9%) from 403.9 km2 at the end of the ‘50s to 384.6 km2 at the start of the ‘90s. As regards lakes surface variations, SNP experienced a very large net increasing in lake surface cover of 1.6 km2 (26%) from 6.0 km2 at the end of the ‘50s to 7.6 km2 in 2008. Moreover the number of lakes is enormously increased (by 36%, from 124 to 169). The new lakes have appeared at higher elevations (42 m higher than the lakes of 50's) probably following the glaciers retreat. As previously documented in bibliography, the Proglacial lakes (Moraine-dammed and in contact with the glacier front) is the typology of glacial lakes more effected by the climate change. These lakes are susceptible to Glacial Lake Outburst Floods (GLOFs) with the potential of releasing million cubic meters of water in a few hours causing catastrophic flooding up. We conclude this contribution pointing out the emerged scientific questions to address future research activities.

  17. Instability and Transition of Flow at, and Near, an Attachment-line - Including Control by Surface Suction

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1996-01-01

    Advances in aviation during and following the Second World War led to an enormous improvement in the performance of aircraft. The push for enhanced efficiency brought cruise speeds into the transonic range, where the associated drag rise due to the appearance of shock-waves became a limiting factor. Wing sweep was adopted to delay the onset of this drag rise, but with this development came several new and unforeseen problems. Preliminary theoretical work assumed that the boundary layer transition characteristics of a swept wing would be subject to the independence principle, so the chordwise transition position could be predicted from two-dimensional work Gas turbine development has now reached a point where additional increases in efficiency are both difficult and expensive to achieve. Consequently, aircraft manufacturers are looking elsewhere for ways to reduce Direct Operating Costs (DOC's) or increase military performance. The attention of industry is currently focusing on Hybrid Laminar Flow Control (HLFC) as a possible method of reducing DOC's for civil aircraft. Following this study and discussions with NASA Langley and Boeing a different series of questions have been addressed in the present work. There are five areas of interest: Relaminarisation of the attachment-line boundary layer when the value of R exceeds 600. The effects of large suction levels on transition in the attachment-line boundary layer (ie critical oversuction). The transition characteristics of a relaminarised attachment-line flow which encounters a non-porous surface. The effect of attachment-line suction on the spanwise propagation of gross disturbances emanating from the wing-fuselage junction. The attachment-line transition caused by surface blowing.

  18. Climate change in the Seychelles: implications for water and coral reefs.

    PubMed

    Payet, Rolph; Agricole, Wills

    2006-06-01

    The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCM3 model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.

  19. The east coast petroleum province: Science and society

    USGS Publications Warehouse

    Jordan, R.R.

    1999-01-01

    The U.S. Atlantic offshore, especially the mid-Atlantic, was an exciting exploration area from the 1970s into the 1980s. Much pioneering 'frontier' activity in both scientific and policy matters occurred in this area. Although production was not achieved, objective geological evidence indicates that the province does have potential. Major population centers of the mid-Atlantic area demand large amounts of energy and enormous amounts of crude and product are shipped through East Coast waters. Nevertheless, exploration has been shut down by moratoria, environmental concerns, and international pricing. It is suggested that the province will be revisited in the future and that the geologic and environmental information that has been generated at great cost should be preserved for use by the next generation of explorationists and policy-makers.

  20. Update on progress in HIV vaccine development.

    PubMed

    Watkins, David I

    2012-01-01

    The 19th Conference on Retroviruses and Opportunistic Infections heralded the arrival of a new crop of potent, broadly neutralizing antibodies against HIV. This advance has given the entire vaccine field enormous hope that it will be possible one day to develop an antibody-based vaccine for HIV. However, substantial obstacles still exist in the induction of these antibodies by vaccination, given the enormous number of somatic mutations needed to develop these highly efficient antibodies. It is likely that follicular helper T cells will be involved in the development of these antibodies, and this will be a key area of interest in the future. Cellular immune responses will also be an important part of any vaccine regimen. Evidence showed that protection provided by an attenuated vaccine correlated with the frequency of vaccine-induced helper cells and killer cells, underlining the importance of these key immune cells. An alternative approach to the development of potent neutralizing antibodies was presented as part of an update on the Thai Phase III Vaccine Trial RV144. Data were shown suggesting that binding antibodies may play a role in protection from HIV infection.

  1. The First Expert CAI System

    PubMed Central

    Feurzeig, Wallace

    1984-01-01

    The first expert instructional system, the Socratic System, was developed in 1964. One of the earliest applications of this system was in the area of differential diagnosis in clinical medicine. The power of the underlying instructional paradigm was demonstrated and the potential of the approach for valuably supplementing medical instruction was recognized. Twenty years later, despite further educationally significant advances in expert systems technology and enormous reductions in the cost of computers, expert instructional methods have found very little application in medical schools.

  2. Why Do People Use Facebook?

    PubMed

    Nadkarni, Ashwini; Hofmann, Stefan G

    2012-02-01

    The social networking site, Facebook, has gained an enormous amount of popularity. In this article, we review the literature on the factors contributing to Facebook use. We propose a model suggesting that Facebook use is motivated by two primary needs: (1) The need to belong and (2) the need for self-presentation. Demographic and cultural factors contribute to the need to belong, whereas neuroticism, narcissism, shyness, self-esteem and self-worth contribute to the need for self presentation. Areas for future research are discussed.

  3. Symposium on Automation, Robotics and Advanced Computing for the National Space Program (2nd) Held in Arlington, Virginia on 9-11 March 1987

    DTIC Science & Technology

    1988-02-28

    enormous investment in software. This is an area extremely important objective. We need additional where better methodologies , tools and theories...microscopy (SEM) and optical mi- [131 Hanson, A., et a. "A Methodology for the Develop- croscopy. Current activities include the study of SEM im- ment...through a phased knowledge engineering methodology Center (ARC) and NASA Johnson Space Center consisting of: prototype knowledge base develop- iJSC

  4. Office managers' perception of stress, control, and satisfaction: a comparison between primary care and specialty practices.

    PubMed

    Chang, Jyh-Hann; Whittier, Nathan; DeFries, Erin; Garfinkle, Amanda

    2006-01-01

    Perception of stress, control, and satisfaction was measured by office managers in medical practices. Office managers spend enormous amounts of time each day handling difficult interpersonal issues among staff physicians, and patients. As a group, physician disruptions were the most prevalent per day. Other staff members were considered the most stressful by rank order. Significant differences were discovered between primary care practices versus specialty practices in the areas of interactions with physicians.

  5. Why Do People Use Facebook?

    PubMed Central

    Nadkarni, Ashwini; Hofmann, Stefan G.

    2011-01-01

    The social networking site, Facebook, has gained an enormous amount of popularity. In this article, we review the literature on the factors contributing to Facebook use. We propose a model suggesting that Facebook use is motivated by two primary needs: (1) The need to belong and (2) the need for self-presentation. Demographic and cultural factors contribute to the need to belong, whereas neuroticism, narcissism, shyness, self-esteem and self-worth contribute to the need for self presentation. Areas for future research are discussed. PMID:22544987

  6. Communications satellite system for Africa

    NASA Astrophysics Data System (ADS)

    Kriegl, W.; Laufenberg, W.

    1980-09-01

    Earlier established requirement estimations were improved upon by contacting African administrations and organizations. An enormous demand is shown to exist for telephony and teletype services in rural areas. It is shown that educational television broadcasting should be realized in the current African transport and communications decade (1978-1987). Radio broadcasting is proposed in order to overcome illiteracy and to improve educational levels. The technical and commercial feasibility of the system is provided by computer simulations which demonstrate how the required objectives can be fulfilled in conjunction with ground networks.

  7. Self-healing and thermoreversible rubber from supramolecular assembly.

    PubMed

    Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik

    2008-02-21

    Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.

  8. Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica†

    PubMed Central

    Kong, Xianming; Xi, Yuting; LeDuff, Paul; Li, Erwen; Liu, Ye; Cheng, Li-Jing; Rorrer, Gregory L.; Tan, Hua; Wang, Alan X.

    2016-01-01

    Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106–107) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10−17 g trinitrotoluene from only 200 nanoliter solution. PMID:27714122

  9. Protecting Dark Skies in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Sanhueza, Pedro; Phillips, Mark

    2018-01-01

    Current projections indicate that Chile will host approximately 70% of the astronomical collecting area on Earth by 2030, augmenting the enormous area of ALMA with that of three next-generation optical telescopes: LSST, GMTO, and E-ELT. These cutting-edge facilities represent billions of dollars of investment in the astronomical facilities hosted in Chile. The Chilean government, Chilean astronomical community, and the international observatories in Chile have recognized that these investments are threatened by light pollution, and have formed a strong collaboration to work at managing the threats. We will provide an update on the work being done in Chile, ranging from training municipalities about new lighting regulations to exploring international recognition of the dark sky sites of Northern Chile.

  10. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Bi, Dongqin; Yi, Chenyi; Décoppet, Jean-David; Luo, Jingshan; Zakeeruddin, Shaik Mohammed; Hagfeldt, Anders; Grätzel, Michael

    2016-07-01

    Metal halide perovskite solar cells (PSCs) currently attract enormous research interest because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication costs, but their practical development is hampered by difficulties in achieving high performance with large-size devices. We devised a simple vacuum flash-assisted solution processing method to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas. This enabled us to fabricate solar cells with an aperture area exceeding 1 square centimeter, a maximum efficiency of 20.5%, and a certified PCE of 19.6%. By contrast, the best certified PCE to date is 15.6% for PSCs of similar size. We demonstrate that the reproducibility of the method is excellent and that the cells show virtually no hysteresis. Our approach enables the realization of highly efficient large-area PSCs for practical deployment.

  11. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  12. Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Barlow, Nadine G.

    2006-10-01

    Martian meteorites (MMs) have been launched from an estimated 5-9 sites on Mars within the last 20 Myr. Some 80-89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near-surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1-2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial-derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic-ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ˜45 km, ˜19 km, and ˜10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.

  13. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.

    PubMed

    Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying

    2017-12-26

    Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a < 50 nm, ball-on-disk set up). The WPM particles (D h = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.

  14. The Risky Shift Toward Online Activism: Do Hacktivists Pose an Increased Threat to the Homeland?

    DTIC Science & Technology

    2014-09-01

    Cow and was intended to refer to the use of technology to foster human rights and the open exchange of information.11 The term has since evolved to...Orbit Ion Cannon (LOIC) has become a favorite of the hacktivist group Anonymous. The tool, originally created to perform witting stress tests of...that were generating the enormous heat , the enormous pressure, the enormous growth, and really shaping the political.”249 This failed approach to align

  15. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    PubMed

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a consequence of ideal hyperbranched architecture and the biocompatible nature of engineered dendrimers, their utilization has been included in the scope of this review, which focuses on current surface alteration strategies of dendrimers for their potential use in drug delivery and explains the possible beneficial applications of these engineered dendrimers in the biomedical field.

  16. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA.

    PubMed Central

    Kaetzel, C S; Robinson, J K; Chintalacharuvu, K R; Vaerman, J P; Lamm, M E

    1991-01-01

    The polymeric immunoglobulin receptor (pIgR) on mucosal epithelial cells binds dimeric IgA (dIgA) on the basolateral surface and mediates transport of dIgA to the apical surface. Using Madin-Darby canine kidney epithelial cells stably transfected with pIgR cDNA, we found that soluble immune complexes (ICs) of 125I-labeled rat monoclonal antidinitrophenyl (DNP) dIgA (125I-dIgA) and DNP/biotin-bovine serum albumin were transported from the basolateral to the apical surface and then released. Monomeric IgA ICs were not transported, consistent with the specificity of pIgR for polymeric immunoglobulins. Essentially all the 125I-dIgA in apical culture supernatants was streptavidin precipitable, indicating that dIgA remained bound to antigen during transcytosis. While both dIgA and dIgA ICs bound pIgR with equal affinity (Kd approximately 8 nM), the number of high-affinity binding sites per cell was 2- to 3-fold greater for dIgA than for dIgA ICs. The extent of endocytosis of dIgA and dIgA ICs was correlated with the number of high-affinity binding sites. SDS/PAGE analysis of intracellular dIgA and dIgA ICs demonstrated that in both cases IgA remained undegraded during transport. The results suggest that the pathways of epithelial transcytosis of free dIgA and dIgA ICs are the same. Given the high population density of mucosal IgA plasma cells and the enormous surface area of pIgR-expressing mucosal epithelium, it is likely that significant local transcytosis of IgA ICs occurs in vivo. Such a process would allow direct elimination of IgA ICs at the mucosal sites where they are likely to form, thus providing an important defense function for IgA. Images PMID:1924341

  17. Ultrasound-assisted synthesis and processing of carbon materials

    NASA Astrophysics Data System (ADS)

    Fortunato, Maria E.

    2011-12-01

    Part I: Porous carbons are of interest in many applications because of their high surface areas and other physicochemical properties, and much effort has been directed towards developing new methods for controlling the porosity of carbons. Ultrasonic spray pyrolysis (USP) is an aerosol method suitable for large-scale, continuous synthesis of materials. Ultrasound is used to create aerosol droplets of a precursor solution which serve as micron-sized spherical reactors for materials synthesis. This work presents a precursor system for the template-free USP synthesis of porous carbons using low-cost precursors that do not evolve or require hazardous chemicals: sucrose was used as the carbon source, and sodium carbonate, sodium bicarbonate, or sodium nitrate was added as a decomposition catalyst and porogen. The USP carbons had macroporous interiors and microporous shells with surface areas as high as 800 m2/g and a narrow pore size distribution. It was determined that the interior porosity was a result of the gas evolution from salt decomposition and not from the presence of a salt template. Porous carbon is frequently used as a catalyst support because it provides high surface area and it is chemically and physically stable under many anoxic reaction conditions. Typically, the preparation of supported catalysts requires multiple steps for carbonization and metal impregnation. In this work, iron-impregnated porous carbon microspheres (Fe-C) were prepared by a one-step USP process by incorporating both the carbon and metal sources into the precursor solution. Carbonization, pore formation, metal impregnation, and metal activation occurred simultaneously to produce Fe-C materials with surface areas as high as 800 m2/g and up to 10 wt% Fe incorporated as nanoparticles < 20 nm in diameter. Fe-C was used as a catalyst to reduce aqueous hexavalent chromium, which demonstrated the accessibility of the iron nanoparticles despite the fact that they are likely encapsulated in the porous carbon support. Part II: The effects of high intensity ultrasound arise from acoustic cavitation: the formation, growth, and collapse of bubbles in a liquid. Bubble collapse produces intense localized heating (˜5000 K), high pressures (˜300 atm), and enormous heating and cooling rates (>109 K/sec). In solid-liquid slurries, surface erosion and particle fracture occur due to the shockwaves and microjets formed from asymmetric bubble collapse at extended surfaces. The chemical and physical effects of ultrasound have been studied as an adjunct to the traditional chemical pretreatment of lignocellulosic biomass for ethanol production. Lignocellulosic biomass consists of cellulose, hemicellulose, and lignin. The surface effects of ultrasound were used in this work to increase the accessibility of the cellulose, which can be converted to glucose and then fermented into ethanol. The lignocellulosic biomass used in this work was Miscanthus x giganteus (Mxg) which was grown at the University of Illinois at Urbana-Champaign. The chemical effects of NaOH pretreatment on Mxg were enhanced by ultrasound: greater delignification and a significant increase in the amount of pores >5 nm were observed. ˜ 70% of the theoretical glucose yield was obtained by enzymatic saccharification of the ultrasound-assisted NaOH-pretreated Mxg; this is comparable to the yields that can be obtained by traditional alkaline pretreatments, but it was achieved in a shorter time and at a lower temperature. Because the apparatus used for laboratory studies is not a likely device for scale-up, the economics of ultrasound with regards to energy balance are not yet resolved.

  18. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1992-07-01

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  19. NASA 360 - Talks Alien Ocean

    NASA Image and Video Library

    2015-11-13

    Could life exist on Europa? It may sound farfetched, but this Jovian moon is the most likely place to find life in our solar system thanks to an enormous underground ocean positioned just beneath its icy surface. Watch as Robert Pappalardo, Europa Project Scientist at NASA Jet Propulsion Laboratory, discusses Europa, its potential for life, and the upcoming mission that is being planned to visit this compelling moon. This video was developed from a live recording at the AIAA SPACE 2015 conference in September 2015. To watch the full talk given at the conference please visit: http://bit.ly/1LPWZwV

  20. Transfer of knowledge and skills: some implications for nursing and nurse education.

    PubMed

    Lauder, W; Reynolds, W; Angus, N

    1999-08-01

    The construct of transfer has enormous importance to nursing as it begins to highlight potential problems in the transfer of knowledge and skills from the campus to the clinical area, from one part of the clinical area to another (e.g. surgical to medical), and from community to the clinical area. Thus, any adequate conceptualization of transfer must account for problems of practice-practice transfer as well as theory-practice transfer. These potential problems are the concern of educators, students and managers who have a responsibility for agency nurses and bank nurses who may find themselves in different specialities on a regular basis. Transfer has relevance to a whole raft of other issues ranging from the application of theories to nursing practice, through to the validity of claims that courses which develop intellectual skills prepare nurses for lifelong learning.

  1. Future projections of total snowfall and heavy snowfall in Japan simulated by large ensemble regional climate simulations.

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.

    2017-12-01

    We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.

  2. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network.

    PubMed

    Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian

    2017-02-01

    Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung. Copyright © 2017 the American Physiological Society.

  3. Implication of Intrastorm Rainfall-Canopy Interaction on Interception Performance of Broadleaf Evergreen Shrubs in Urban Setting

    NASA Astrophysics Data System (ADS)

    Yerk, W.; Montalto, F. A.

    2014-12-01

    Because of its ability to intercept a portion of rainfall, vegetated canopy has a significant influence on the urban hydrological cycle. In turn, urban watersheds, characterized by large impervious areas, have an enormous and often adverse impact on receiving waters. However, most historical interception research has been dedicated to forest canopies. The goal of our research was to quantify rainfall partitioning by isolated evergreen canopies in an urban setting. Two years of the field experiment involved three exemplars of Cherry Laurel (Prunus laurocerasus'Otto Luyken'.) Each plant had ten rain gauges to measure throughfall with a five second sampling frequency. A number of preventive techniques were introduced to minimize the gauges' errors (e.g., splash-in, splash-out and excessive wetting.) Leaf area index was measured manually. We estimated the canopy storage capacity to be less than 0.5 mm. An on-site automated weather station provided meteorological data. Cumulative interception loss for the periods of August-December 2013 and April-July 2014 was 51%. Phenological change did not show a stable pattern of influence on throughfall depths. Measurements in May and July 2014 showed a high variability of stemflow (2-16%) between rain events. Throughfall and precipitation intensities (mm/hr) expressed strong linear relationships (adjusted coefficient of determination R20.79) for the entire range of observed rainfall intensities. The ratio of throughfall to precipitation intensity was 0.49:1. The observations suggest that reduction of throughfall intensity by the canopy during a rainstorm determines the bulk of interception depth. In contrast, the amount of water stored on the canopy and evaporated between and after rain events contributes minimally to interception. Simulations of potential evaporation based on the Penman-Monteith method revealed a serious underestimation of evaporation from the wet canopy surfaces during the rain events. Mechanisms other than heat balance models of potential evaporation from a still water surface are being discussed in order to explain large intrastorm evaporation from within an isolated canopy.

  4. The promise of organ and tissue preservation to transform medicine.

    PubMed

    Giwa, Sebastian; Lewis, Jedediah K; Alvarez, Luis; Langer, Robert; Roth, Alvin E; Church, George M; Markmann, James F; Sachs, David H; Chandraker, Anil; Wertheim, Jason A; Rothblatt, Martine; Boyden, Edward S; Eidbo, Elling; Lee, W P Andrew; Pomahac, Bohdan; Brandacher, Gerald; Weinstock, David M; Elliott, Gloria; Nelson, David; Acker, Jason P; Uygun, Korkut; Schmalz, Boris; Weegman, Brad P; Tocchio, Alessandro; Fahy, Greg M; Storey, Kenneth B; Rubinsky, Boris; Bischof, John; Elliott, Janet A W; Woodruff, Teresa K; Morris, G John; Demirci, Utkan; Brockbank, Kelvin G M; Woods, Erik J; Ben, Robert N; Baust, John G; Gao, Dayong; Fuller, Barry; Rabin, Yoed; Kravitz, David C; Taylor, Michael J; Toner, Mehmet

    2017-06-07

    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science.

  5. The promise of organ and tissue preservation to transform medicine

    PubMed Central

    Giwa, Sebastian; Lewis, Jedediah K; Alvarez, Luis; Langer, Robert; Roth, Alvin E; Church, George M; Markmann, James F; Sachs, David H; Chandraker, Anil; Wertheim, Jason A; Rothblatt, Martine; Boyden, Edward S; Eidbo, Elling; Lee, W P Andrew; Pomahac, Bohdan; Brandacher, Gerald; Weinstock, David M; Elliott, Gloria; Nelson, David; Acker, Jason P; Uygun, Korkut; Schmalz, Boris; Weegman, Brad P; Tocchio, Alessandro; Fahy, Greg M; Storey, Kenneth B; Rubinsky, Boris; Bischof, John; Elliott, Janet A W; Woodruff, Teresa K; Morris, G John; Demirci, Utkan; Brockbank, Kelvin G M; Woods, Erik J; Ben, Robert N; Baust, John G; Gao, Dayong; Fuller, Barry; Rabin, Yoed; Kravitz, David C; Taylor, Michael J; Toner, Mehmet

    2017-01-01

    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science. PMID:28591112

  6. Non-native three-dimensional block copolymer morphologies

    DOE PAGES

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; ...

    2016-12-22

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  7. Non-native three-dimensional block copolymer morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  8. Polarization-dependent transverse-stress sensing characters of the gold-coated and liquid crystal filled photonic crystal fiber based on Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei

    2018-03-01

    A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.

  9. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  10. Environmental Pollution and Health

    EPA Science Inventory

    Enormous progress has been made in identifying chemicals in the environment that adversely affect human health. The environment is cleaner, and, partly as a result, people are living longer and healthier lives. Major uncertainties remain, however, regarding the enormous number o...

  11. Center for Building Science: Annual report, FY 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairns, E.J.; Rosenfeld, A.H.

    1987-05-01

    The Center for Building Science consists of four programs in the Applied Science Division: energy analysis, buildings energy systems, windows and lighting, and indoor environment. It was established to provide an umbrella so that goups in different programs but with similar interests could combine to perform joint research, develop new research areas, share resources, and produce joint publications. As detailed below, potential savings for the U.S. society from energy efficient buildings are enormous. But these savings can only be realized through an expanding federal RandD program that develops expertise in this new area. The Center for Building Science develops efficientmore » new building componenets, computer models, data and information systems, and trains needed builidng scientists. 135 refs., 72 figs., 18 tabs.« less

  12. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  13. Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Rochelle; Jo, Min Hyeok; Kim, TaeWan; Kim, Hyo Jin; Kim, Doo Gun; Shin, Jae Cheol

    2018-05-01

    A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

  14. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer

    NASA Astrophysics Data System (ADS)

    Walton, Brian M.; Jackson, George W.; Deutz, Nicolaas; Cote, Gerard

    2017-07-01

    A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids.

  15. Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Rochelle; Jo, Min Hyeok; Kim, TaeWan; Kim, Hyo Jin; Kim, Doo Gun; Shin, Jae Cheol

    2018-03-01

    A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

  16. Image-based tracking: a new emerging standard

    NASA Astrophysics Data System (ADS)

    Antonisse, Jim; Randall, Scott

    2012-06-01

    Automated moving object detection and tracking are increasingly viewed as solutions to the enormous data volumes resulting from emerging wide-area persistent surveillance systems. In a previous paper we described a Motion Imagery Standards Board (MISB) initiative to help address this problem: the specification of a micro-architecture for the automatic extraction of motion indicators and tracks. This paper reports on the development of an extended specification of the plug-and-play tracking micro-architecture, on its status as an emerging standard across DoD, the Intelligence Community, and NATO.

  17. Implementing renewable energy in Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, W.; Stone, L.; Perez, V.B.H.

    Since the collapse of the Soviet Union and the tightening of the US embargo, Cuba has found itself in an energy crisis of enormous magnitude. Faced with this energy crisis and its ensuing black-outs and productivity reductions, Cuba has developed a national energy plan which focuses on energy self-sufficiency and sustainability. Energy efficiency, solar energy, wind power, micro-hydro, and biomass are each included in the plan. Implementation of renewable energy projects in each of these areas has begun throughout the country with the enthusiastic support of Cubasolar, the Cuban renewable energy professional association.

  18. The new structure and contents of employers' juridical responsibility for workers' health and safety in the post-industrial system.

    PubMed

    Ichino, P

    2006-01-01

    1. The enlargement of the labour law application area in the post-industrial system. 2. The enormous growth of differences in productivity between workers and its consequences on the employer's safety obligation. 3. Depressive disorders as a typical professional risk in the post-industrial system and the employer's prevention responsibility. 4. Harassment in the work-place as a typical pathologic consequence of the de-standardization of jobs. The specific employer's prevention responsibility in this field. 5. A conclusive remark.

  19. Sensitive magnetic sensors without cooling in biomedical engineering.

    PubMed

    Nowak, H; Strähmel, E; Giessler, F; Rinneberg, G; Haueisen, J

    2003-01-01

    Magnetic field sensors are used in various fields of technology. In the past few years a large variety of magnetic field sensors has been established and the performance of these sensors has been improved enormously. In this review article all recent developments in the area of sensitive magnetic field sensory analysis (resolution better than 1 nT) are presented and examined regarding their parameters. This is mainly done under the aspect of application fields in biomedical engineering. A comparison of all commercial and available sensitive magnetic field sensors shows current and prospective ranges of application.

  20. [Management and complications of tumor resections of the midface].

    PubMed

    Beule, Achim G

    2018-05-24

    Only about 8% of head and neck tumors affect the midface. This anatomical area is characterized by an enormous number of functionally important structures, and it is frequently only possible to achieve small resection margin distances. To avoid complications and unfavorable results, a dedicated preparation of both patient and surgeon is warranted. This review aims to provide encouragement for the postgraduate training of interested ENT specialists. Following the clinical course and based on recent literature, strategies to avoid complications of tumor surgery to the midface are given.

  1. Anomalous optical scattering from intersecting fine particles

    NASA Astrophysics Data System (ADS)

    Paley, Alina V.; Radchik, Alex V.; Smith, Geoffrey B.

    1995-09-01

    There are many areas of science and technology where the scattering of electromagnetic waves by clusters or merging particles are of interest. The merging particles under study might be inclusions in high-density composites, liquid drops, biological cells, macroscopic ceramic particles, etc. As intersecting particles are bounded by a complex physical surface, the problem of scattering from these particles valid for any degree of merging, including touching, and for arbitrary materials of the constituents, has received limited attention. Here we present solutions which are valid and exact in the long wavelength limit compared with the size of intersecting spherical particles and cardioidal particles of similar dimensions. Both shapes are almost coincident everywhere except in the region of intersection. We treat the case when the waves are polarized along the common axis (longitudinal field). The solutions of Laplace's equation are integrals (spheres) or sums (cardioids) over continuous or discrete eigenvalue spectra respectively. The spectral dependencies of the resulting extinction coefficients and the scattering for the spherical and cardioidal particles are quite distinct. There is an enormous difference in the magnitude of absorption responses. Overall the cardioidal particle behaves as if it is almost invisible in terms of effects on the external field for a very broad band of optical frequencies. THe latter result was checked for a number of dielectric permittivities and seems to be universal. It scatters far more weakly than the isolated sphere. In constrast the intersecting sphere has an extinction band which is broad and is much enhanced at longer wavelegnths relative to the simple sphere. This result has significant implications for the design of surfaces with minimum scattering.

  2. Thermal camera used for the assessment of metabolism and functions of the rat brain

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Piatkowski, Tadeusz; Polakowski, Henryk; Kaczmarska, Katarzyna; Czernicki, Zbigniew; Koźniewska, Ewa; Przykaza, Lukasz

    2014-05-01

    Motivation to undertake research on brain surface temperature in clinical practice is based on a strong conviction that the enormous progress in thermal imaging techniques and camera design has a great application potential. Intraoperative imaging of pathological changes and functionally important areas of the brain is not yet fully resolved in neurosurgery and remains a challenge. Extensive knowledge of the complex mechanisms controlling homeostasis (thermodynamic status of an organism being a part of it ) and laws of physics (which are the foundations of thermography), make this method very good and a simple imaging tool in comparison with other modern techniques, such as computed tomography, magnetic resonance imaging and angiography. Measurements of temperature distribution across the brain surface were performed on four rats (Wistar strain) weighing approximately 300 g each. Animals have remained under general anesthesia typically conducted using isoflurane. The brain was unveiled (the dura mater remained untouched) through the skin incision and removal of the bone cranial vault. Cerebrocortical microflow was measured using laser-Doppler flow meter. Arterial blood pressure was also measured in rat femoral artery. From the above data the cerebrovascular resistance index was calculated. Cerebral flow was modified by increasing the CO2 concentration in the inspired air to 5% for the duration of 6 minutes. Another change in cerebral flow was induced by periodic closing of right middle cerebral artery. Artery occlusion was performed by introducing a filament for a period of 15 minutes, then an artery was opened again. Measurements were carried out before, during and after the artery occlusion. Paper presents results and methodology of measurements.

  3. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA

    PubMed Central

    Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.

    2014-01-01

    The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere. PMID:25429287

  4. Models to support students’ understanding of measuring area of circles

    NASA Astrophysics Data System (ADS)

    Rejeki, S.; Putri, R. I. I.

    2018-01-01

    Many studies showed that enormous students got confused about the concepts of measuring area of circles. The main reason is because mathematics classroom practices emphasized on memorizing formulas rather than understanding concepts. Therefore, in this study, a set of learning activities were designed as an innovation in learning area measurement of circles. The activities involved two models namely grid paper and reshaping which are respectively as a means and a strategy to support students’ learning of area measurement of circles. Design research was used as the research approach to achieve the aim. Thirty-eight of 8th graders in Indonesia were involved in this study. In this study, together with the contextual problems, the grid paper and reshaping sectors, which used as the models in this learning, helped the students to gradually develop their understanding of the area measurement of circles. The grid papers plays important role in comparing and estimating areas. Whereas, the reshaping sectors might support students’ understanding of the circumference and the area measurement of circles. Those two models could be the tool for promoting the informal theory of area measurement. Besides, the whole activities gave important role on distinguishing the area and perimeter of circles.

  5. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review.

    PubMed

    Lipczynska-Kochany, Ewa

    2018-07-01

    Depicted as large polymers by the traditional model, humic substances (HS) tend to be considered resistant to biodegradation. However, HS should be regarded as supramolecular associations of rather small molecules. There is evidence that they can be degraded not only by aerobic but also by anaerobic bacteria. HS presence alters biological transformations of organic pollutants in water and soil. HS, including humin, have a great potential for an application in aerobic and anaerobic wastewater treatment as well as in bioremediation. Black carbon materials, including char (biochar) and activated carbon (AC), long recognized effective sorbents, have been recently discovered to act as effective redox mediators (RM), which may significantly accelerate degradation of organic pollutants in a way similar to HS. Humic-like coating on the biochar surface has been identified. Explanation of mechanisms and possibility of applications of black carbon materials have only started to be explored. Results of many original and review papers, presented and discussed in this article, show an enormous potential for an interesting, multidisciplinary research as well as for a development of new, green technologies for biological wastewater treatment and bioremediation. Future research areas have been suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    NASA Astrophysics Data System (ADS)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  7. Developing satellite communications for public service: Prospects in four service areas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Public Service Satellite Consortium evaluated prospects for satellite telecommunications in four areas of the public service: the U.S. health care system, elementary and secondary education, American libraries, and that sector of the public service which is concerned with the provision of continuing education to health professionals. Three important conclusions were reached. First, throughout the public service there are three recurring needs: improved access, cost containment, and maintenance of quality. Appropriate application of communication satellite systems could ameliorate each of these concerns. Second, there appears to be an enormous latent demand for data communication services throughout the public service. The potential demand in 1982 to support requirements in hospital administration, library services and other information-retrieval activities, equipment maintenance, and environmental monitoring may be in excess of $300 million a year. Third, administrative applications of data communication networks show particular promise, especially in rural areas.

  8. Effects of the Upper Taum Sauk Reservoir Embankment Breach on the Surface-Water Quality and Sediments of the East Fork Black River and the Black River, Southeastern Missouri - 2006-07

    USGS Publications Warehouse

    Barr, Miya N.

    2009-01-01

    On December 14, 2005, a 680-foot wide section of the upper reservoir embankment of the Taum Sauk pump-storage hydroelectric powerplant located in Reynolds County, Missouri, suddenly failed. This catastrophic event sent approximately 1.5 billion gallons of water into the Johnson's Shut-Ins State Park and into the East Fork Black River, and deposited enormous quantities of rock, soil, and vegetation in the flooded areas. Water-quality data were collected within and below the impacted area to study and document the changes to the riverene system. Data collection included routine, event-based, and continuous surface-water quality monitoring as well as suspended- and streambed-sediment sampling. Surface water-quality samples were collected and analyzed for a suite of physical and chemical constituents including: turbidity; nutrients; major ions such as calcium, magnesium, and potassium; total suspended solids; total dissolved solids; trace metals such as aluminum, iron, and lead; and suspended-sediment concentrations. Suspended-sediment concentrations were used to calculate daily sediment discharge. A peculiar blue-green coloration on the water surface of the East Fork Black River and Black River was evident downstream from the lower reservoir during the first year of the study. It is possible that this phenomenon was the result of 'rock flour' occurring when the upper reservoir embankment was breached, scouring the mountainside and producing extremely fine sediment particles, or from the alum-based flocculent used to reduce turbidity in the lower reservoir. It also was determined that no long-term effects of the reservoir embankment breach are expected as the turbidity and concentrations of trace metals such as total recoverable aluminum, dissolved aluminum, dissolved iron, and suspended-sediment concentration graphically decreased over time. Larger concentrations of these constituents during the beginning of the study also could be a direct result of the alum-based flocculent used in the lower reservoir. Suspended-sediment concentrations and turbidity measurements were largest at the site downstream from the lower reservoir. This is because of the large amounts of debris deposited in the lower reservoir from the breach, which in turn were redeposited into the East Fork Black River during releases. When these constituents were plotted over time, the concentrations decreased and were similar to the other two sites in the study. Trend analyses were studied at one site with historical data. No major trends were discovered for streamflow, turbidity, suspended-sediment concentrations, or suspended-sediment discharges before or after the event. Although long-term effects of the elevated turbidity, major trace metals, and suspended sediments in the study area as a result of the reservoir embankment breach are not expected, there could possibly be other effects not measured during this study that could potentially affect the surface-water quality, such as loss of riparian habitat, changes in biological ecosystems, and large-scale reworking of sediments.

  9. Geologic assessments and characterization of marine sand resources - Gulf of Mexico region

    USGS Publications Warehouse

    Williams, S. Jeffress; Cichon, Helana A.

    1993-01-01

    The U.S. Geological Survey conducts geologic surveys and research in marine areas of the United States and its territories and possessions. An objective in some of the investigations is locating and evaluating marine sand and gravel resources and interpretation of the origins of the sand body deposits. Results from such studies over the past 30 years show that many extremely large deposits are located close to expanding metropolitan areas, which have a need for aggregate materials for construction, and near-developed coastal areas, where beach replenishment may be used to mitigate coastal erosion. The Gulf of Mexico continental shelf from the Florida Peninsula to the Mexico border is an enormous area, but little attention has been directed on sand and gravel resources. Based on limited surveys, the total sand and gravel resources for the entire Gulf of Mexico is estimated to be 269 billion cubic meters. However, the sand tends to be fine-grained and is often mixed with mud; gravel deposits, except for shell, are mostly nonexistent.

  10. Long-duration drought variability and impacts on ecosystem services: A case study from Glacier National Park, Montana

    USGS Publications Warehouse

    Pederson, Gregory T.; Gray, Stephen T.; Fagre, Daniel B.; Graumlich, Lisa J.

    2006-01-01

    Using a suite of paleoproxy reconstructions and information from previous studies examining the relationship between climate variability and natural processes, the authors explore how such persistent moisture anomalies affect the delivery of vital goods and services provided by Glacier NP and surrounding areas. These analyses show that regional water resources and tourism are particularly vulnerable to persistent moisture anomalies in the Glacier NP area. Many of these same decadal-scale wet and dry events were also seen among a wider network of hydroclimatic reconstructions along a north–south transect of the Rocky Mountains. Such natural climate variability can, in turn, have enormous impacts on the sustainable provision of natural resources over wide areas. Overall, these results highlight the susceptibility of goods and services provided by protected areas like Glacier NP to natural climate variability, and show that this susceptibility will likely be compounded by the effects of future human-induced climate change.

  11. Big Hydrophobic Capillary Fluidics; Basically Water Ping Pong in Space

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark; Attari, Babak; Wollman, Andrew; Cardin, Karl; Geile, John; Lindner, Thomas

    2016-11-01

    Capillary surfaces can be enormous in environments where the effects of gravity are small. In this presentation we review a number of interesting examples from demonstrative experiments performed in drop towers and aboard the International Space Station. The topic then focuses on large length scale hydrophobic phenomena including puddle jumping, spontaneous particle ejections, and large drop rebounds akin to water ping pong in space. Unseen footage of NASA Astronaut Scott Kelly playing water ping pong in space will be shown. Quantitative and qualitative results are offered to assist in the design of experiments for ongoing research. NASA NNX12A047A.

  12. Some recent applications of Navier-Stokes codes to rotorcraft

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1992-01-01

    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.

  13. Substratum location and zoospore behaviour in the fouling alga Enteromorpha.

    PubMed

    Callow, M E; Callow, J A

    2000-01-01

    The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'.

  14. Pathfinder: A Retrospective

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Mars is one of the most interesting planets in the solar system, featuring enormous canyons, giant volcanoes, and indications that, early in its history, it might have had rivers and perhaps even oceans. Five years ago, in July of 1997, the Pathfinder mission landed on Mars, bringing with it the microwave-oven sized Sojourner rover to wander around on the surface and analyse rocks. Among the experiments on the mission was one designed to analyse dust deposition. Pathfinder is only the first of an armada of spacecraft which will examine Mars from the pole to the equator in the next decade, culminating with a mission to bring humans to Mars.

  15. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  16. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  17. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    NASA Astrophysics Data System (ADS)

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-09-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Liu, Z. K.; Sun, Y.

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less

  19. Eco-friendly surface modification on polyester fabrics by esterase treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  20. Signature of Type-II Weyl Semimetal Phase in MoTe2

    NASA Astrophysics Data System (ADS)

    Jiang, Juan; Liu, Zhongkai; Yang, Haifeng; Yang, Lexian; Chen, Cheng; Peng, Han; Hwang, Chan-Cuk; Mo, Sung-Kwan; Chen, Yulin; ShanghaiTech University Collaboration; Oxford University Collaboration; Lawrence Berkeley National Lab Collaboration; Pohang University of Science; Technology Collaboration

    Topological Weyl semimetal (TWS) is a new state of quantum matter, which has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. Here, by using angle-resolved photoemission spectroscopy, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS, which do not respect Lorentz symmetry compared with type-I TWS. Furthermore, we unravel the unique surface Fermi arcs, in good agreement with our ab-initio calculations, which have non-trivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity and their topological order.

  1. Signature of type-II Weyl semimetal phase in MoTe2

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C.-C.; Sun, S. Z.; Mo, S.-K.; Vobornik, I.; Fujii, J.; Parkin, S. S. P.; Felser, C.; Yan, B. H.; Chen, Y. L.

    2017-01-01

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.

  2. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei

    2015-09-01

    A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j

  3. FPGA-based coprocessor for matrix algorithms implementation

    NASA Astrophysics Data System (ADS)

    Amira, Abbes; Bensaali, Faycal

    2003-03-01

    Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

  4. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Large-area high-efficiency flexible PHOLED lighting panels

    NASA Astrophysics Data System (ADS)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  6. Modeling pCO2 variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Huang, W.-J.; Tian, H.

    2014-08-01

    A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.

  7. Modeling pCO2 Variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.

    2014-12-01

    A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.

  8. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall

  9. Resident training in point-of-care testing.

    PubMed

    Campbell, Sheldon; Howanitz, Peter J

    2007-06-01

    Although central laboratory testing has been the norm for the last few decades and point-of-care testing (POCT) is considered an emerging area, physicians were performing POCT long before the existence of central laboratory testing. As medical directors of POCT programs, pathologists need the basic knowledge and skills associated with directing laboratory-based testing programs as well as additional knowledge and skills about testing at the point of care. Although the essential elements of quality testing are the same for laboratory-based and POCT, the enormous variety of settings, technologies, and workers involved present unique challenges.

  10. Administrative Management of Small Group Physician Practice.

    DTIC Science & Technology

    1982-12-01

    wound around the right side in an S -shape for about 35 feet. A 87 solarium allowed children to play outside while in the waiting room. An enormous...four physicians. It reflects the findings of a questionnaire survey about the operation of their private offices. Such areas as conflict resolution...may be useful in comparing the 00 1 P’j 1473 EolyIOm Ov Iu~ 0O " Is 6OL972 S /N0I0014501I SCumrIT CLAMSICATIO6 OP TIr" s PACE IR CSYW i m -omI m~uo -ov r

  11. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-10-01

    This progress report is for the September-October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  12. The impact of geo-tagging on the photo industry and creating revenue streams

    NASA Astrophysics Data System (ADS)

    Richter, Rolf; Böge, Henning; Weckmann, Christoph; Schloen, Malte

    2010-02-01

    Internet geo and mapping services like Google Maps, Google Earth and Microsoft Bing Maps have reinvented the use of geographical information and have reached an enormous popularity. Besides that, location technologies like GPS have become affordable and are now being integrated in many camera phones. GPS is also available for standalone cameras as add on products or integrated in cameras. These developments are the enabler for new products for the photo industry or they enhance existing products. New commercial opportunities have been identified in the areas of photo hardware, internet/software and photo finishing.

  13. How dangerous are mobile phones, transmission masts, and electricity pylons?

    PubMed

    Wood, A W

    2006-04-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence.

  14. [Gastrointestinal surgery and gastroenterology. I. Introduction].

    PubMed

    van Lanschot, J J

    1999-09-25

    The enormous increase in theoretical knowledge and technical possibilities in general surgery has led to differentiation and subspecialization. Gastrointestinal surgery is now recognized as a distinguished area of specific interest within the field of general surgery. It covers the surgical diagnosis and treatment of benign and malignant diseases of the digestive tract, including liver and pancreas. Most gastrointestinal diseases require a multidisciplinary approach in which the gastroenterologist and the gastrointestinal surgeon are key figures. This Journal is planning a series of articles highlighting the recent developments and current state of the art of gastrointestinal surgery, with special emphasis on the close connection with gastroenterology.

  15. Ultrahigh Error Threshold for Surface Codes with Biased Noise

    NASA Astrophysics Data System (ADS)

    Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.

    2018-02-01

    We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.

  16. Editorial JAES AVCOR-Special Issue

    NASA Astrophysics Data System (ADS)

    Kervyn, François; d'Oreye, Nicolas

    2017-10-01

    In the last decades, the Kivu Rift Basin has attracted special attention from the international community. This region, one of the most densely populated areas in Africa, is experiencing enormous difficulties in managing tensions, often leading to armed conflicts, and is also the site of major natural hazards which may have catastrophic extent and affect the population heavily. The eruption of the Nyiragongo volcano in January 2002, which devastated part of the city of Goma, raised a significant mobilization of international aid and helped remind us of the threat posed by the Nyiragongo volcano known for its intriguing Lava lake. But this area of the western branch of the East African Rift is also affected by major earthquakes, such as the one that struck the city of Bukavu in February 2008 (M 6.2) and caused significant damage in the Cyangugu area to the south- Western Rwanda. This zone of continental rupture is characterized by a contrasting landscape of a graben with alluvial plains confined between the strong reliefs of the rift shoulders. The active volcanism of the Virunga has developed partly within the rift whereas the high topography and weathered lithology combined to land use and humid climate are often associated to important landslides. The societal challenges facing this region are therefore enormous and the concordance between the rift and the political boundaries makes the study and monitoring of hazards as well as the management and reduction of risks more complex. But the Rift Kivu Basin is also an area of opportunity that has given rise to new initiatives. Lake Kivu is known for the dissolved gases it contains and the extraction of methane now gives hope of a complementary energy resource to the whole region. The difficulty of carrying out long-term scientific research and answering the most pressing questions is probably responsible for the limited number of research teams involved. Between risks and opportunities, it is therefore essential to create forums for meetings and exchanges between scientists in order to discuss new findings but also facilitate dialogue between these experts and decision makers. These latter will then be better equipped to implement the recommendations of Hyogo and Sendai

  17. The tremendous potential of deep-sea mud as a source of rare-earth elements.

    PubMed

    Takaya, Yutaro; Yasukawa, Kazutaka; Kawasaki, Takehiro; Fujinaga, Koichiro; Ohta, Junichiro; Usui, Yoichi; Nakamura, Kentaro; Kimura, Jun-Ichi; Chang, Qing; Hamada, Morihisa; Dodbiba, Gjergj; Nozaki, Tatsuo; Iijima, Koichi; Morisawa, Tomohiro; Kuwahara, Takuma; Ishida, Yasuyuki; Ichimura, Takao; Kitazume, Masaki; Fujita, Toyohisa; Kato, Yasuhiro

    2018-04-10

    Potential risks of supply shortages for critical metals including rare-earth elements and yttrium (REY) have spurred great interest in commercial mining of deep-sea mineral resources. Deep-sea mud containing over 5,000 ppm total REY content was discovered in the western North Pacific Ocean near Minamitorishima Island, Japan, in 2013. This REY-rich mud has great potential as a rare-earth metal resource because of the enormous amount available and its advantageous mineralogical features. Here, we estimated the resource amount in REY-rich mud with Geographical Information System software and established a mineral processing procedure to greatly enhance its economic value. The resource amount was estimated to be 1.2 Mt of rare-earth oxide for the most promising area (105 km 2  × 0-10 mbsf), which accounts for 62, 47, 32, and 56 years of annual global demand for Y, Eu, Tb, and Dy, respectively. Moreover, using a hydrocyclone separator enabled us to recover selectively biogenic calcium phosphate grains, which have high REY content (up to 22,000 ppm) and constitute the coarser domain in the grain-size distribution. The enormous resource amount and the effectiveness of the mineral processing are strong indicators that this new REY resource could be exploited in the near future.

  18. Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy

    PubMed Central

    Al-Zahrani, S; Zaric, M; McCrudden, C; Scott, C; Kissenpfennig, A; Donnelly, Ryan F.

    2014-01-01

    Introduction We describe the use of microneedle arrays for delivery to targets within the skin itself. Breaching the skin’s stratum corneum barrier raises the possibility of administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. Areas Covered Intradermal vaccine delivery, in particular, holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed and here we discuss each one in turn. We also describe the importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination. Expert Opinion Microneedle-mediated vaccine holds enormous potential for patient benefit. In order for microneedle vaccine strategies to fulfil their potential, however, the proportion of an immune response that is due to local action of delivered vaccines on skin antigen presenting cells and what is due to a systemic effect from vaccine reaching the systemic circulation must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried- and-tested needle-and-syringe based-approaches. PMID:22475249

  19. Economics of global burden of road traffic injuries and their relationship with health system variables.

    PubMed

    Dalal, Koustuv; Lin, Zhiquin; Gifford, Mervyn; Svanström, Leif

    2013-12-01

    To estimate the economic loss due to road traffic injuries (RTIs) of the World Health Organization (WHO) member countries and to explore the relationship between the economic loss and relevant health system factors. Data from the World Bank and the WHO were applied to set up the databases. Disability-adjusted life year (DALY) and gross domestic product per capita were used to estimate the economic loss relating to RTIs. Regression analysis was used. Data were analyzed by IBM SPSS Statistics, Versions 20.0. In 2005, the total economic loss of RTIs was estimated to be 167,752.4 million United States Dollars. High income countries (HIC) showed the greatest economic losses. The majority (96%) of the top 25 countries with the greatest DALY losses are low and middle income countries while 48% of the top 25 countries with the highest economic losses are HIC. The linear regression model indicates an inverse relationship between nurse density in the health system and economic loss due to RTI. RTIs cause enormous death and DALYs loss in low-middle income countries and enormous economic loss in HIC. More road traffic prevention programs should be promoted in these areas to reduce both incidence and economic burden of RTIs.

  20. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete.

    PubMed

    Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan

    2017-07-15

    The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation measures need development to make them relevant to various climates and throughout the year. There are also many possible sources of future study, and alternative measures for mitigation have been described, thereby providing scope for future research and development following this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals.

    PubMed

    White, Craig R

    2003-01-01

    Two competing but nonexclusive hypotheses to explain the reduced basal metabolic rate (BMR) of mammals that live and forage underground (fossorial species) are examined by comparing this group with burrowing mammals that forage on the surface (semifossorial species). These hypotheses suggest that the low BMR of fossorial species either compensates for the enormous energetic demands of subterranean foraging (the cost-of-burrowing hypothesis) or prevents overheating in closed burrow systems (the thermal-stress hypothesis). Because phylogentically informed allometric analysis showed that arid burrowing mammals have a significantly lower BMR than mesic ones, fossorial and semifossorial species were compared within these groups. The BMRs of mesic fossorial and semifossorial mammals could not be reliably distinguished, nor could the BMRs of large (>77 g) arid fossorial and semifossorial mammals. This finding favours the thermal-stress hypothesis, because the groups appear to have similar BMRs despite differences in foraging costs. However, in support of the cost-of-burrowing hypothesis, small (<77 g) arid fossorial mammals were found to have a significantly lower BMR than semifossorial mammals of the similar size. Given the high mass-specific metabolic rates of small animals, they are expected to be under severe energy and water stress in arid environments. Under such conditions, the greatly reduced BMR of small fossorial species may compensate for the enormous energetic demands of subterranean foraging.

  2. Climate in the Absence of Ocean Heat Transport

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  3. Assessing honeybee and wasp thermoregulation and energetics—New insights by combination of flow-through respirometry with infrared thermography

    PubMed Central

    Stabentheiner, Anton; Kovac, Helmut; Hetz, Stefan K.; Käfer, Helmut; Stabentheiner, Gabriel

    2012-01-01

    Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O2 consumption or CO2 production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13–30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of respiratory traces. PMID:22723718

  4. A Novel Approach for High Deposition Rate Cladding with Minimal Dilution with an Arc - Laser Process Combination

    NASA Astrophysics Data System (ADS)

    Barroi, A.; Hermsdorf, J.; Prank, U.; Kaierle, S.

    First results of the process development of a novel approach for a high deposition rate cladding process with minimal dilution are presented. The approach will combine the enormous melting potential of an electrical arc that burns between two consumable wire electrodes with the precision of a laser process. Separate test for the plasma melting and for the laser based surface heating have been performed. A steadily burning arc between the electrodes could be established and a deposition rate of 10 kg/h could be achieved. The laser was able to apply the desired heat profile, needed for the combination of the processes. Process problems were analyzed and solutions proposed.

  5. ARC-1979-A79-7097

    NASA Image and Video Library

    1979-07-08

    Range : 85,000 kilometers (53,000 miles) This photo of Jupiter's satellite Ganymede shows ancient cratered terrain. A variety of impact craters of different ages are shown. The brightest craters are the youngest. The ejecta blankets fade with age. The center shows a bright patch that represents the rebounding of the floor of the crater. The dirty ice has lost all topography except for faint circular patterns. Also shown are the 'Callisto type' curved troughs and ridges that mark an ancient enormous impact basin. The basin itself has been destroyed by later geologic processes. Only the ring features are preserved on the ancient surface. Near the bottom of the picture, these curved features are trumcated by the younger grooved terrain.

  6. Early Archean stromatolites: Paleoenvironmental setting and controls on formation

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1991-01-01

    The earliest record of terrestrial life is contained in thin, silicified sedimentary layers within enormously thick, predominantly volcanic sequences in South Africa and Western Australia. This record includes bacteria-like microfossils, laminated carbonaceous structures resembling flat bacterial mats and stromatolites, and a morphologically diverse assemblage of carbonaceous particles. These structures and particles and their host sediments provide the only direct source of information on the morphology, paleoecology, and biogeochemistry of early life; the nature of interactions between organisms and surface systems on the early earth; and possible settings within which life might have evolved. The three known occurrences of 3.5 to 3.2 billion-year-old stromalites were evaluated in terms of depositional setting and biogenicity.

  7. South Asia's health promotion kaleidoscope.

    PubMed

    Mukhopadhyay, Alok

    2007-01-01

    South Asia has 22 percent of the world's population but only 1.3 percent of the global income. Consequently 40 percent of the population is living in absolute poverty. However the health transition in some of its countries including India and Sri Lanka is a testimony to the fact that there are proven solutions to the problems of health and development within the region. The countries of the region have much in common, including a democratic political system, four major religions, a vibrant and living tradition of voluntarism and an extensive health infrastructure which is operating well below par. Despite the underlying unity, South Asia enjoys enormous cultural, linguistic and ethnic diversity. In this large, complex and vibrant region, health promotion is a challenging task, but it also holds the key to a dramatic change in the global health situation. Many of these solutions lie in wider areas of socio-political action. There are much needed shifts in the health promotion and development efforts, particularly in the area of poverty and social justice; gender inequity; population stabilisation; health and environment; control of communicable and non-communicable diseases; and urban health strategies. The principle of cooperation, partnership and intersectoral collaboration for health will be explored. Developing an appropriate, sustainable and people centred health and development strategy in the coming decades is an enormous challenge. There has been an attempt to focus on the emerging needs of the region, which call for health promotion, and involvement of civil society, private sector and the governments bestowed with the increased responsibility of ensuring health security for people. Strengthening the existing health systems, allocating adequate resources for health development and ensuring community participation are all prerequisites to the success of health promotion in the region.

  8. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    PubMed Central

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon

    2018-01-01

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861

  9. Piezoelectricity in two dimensions: Graphene vs. molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxue; Hui, Fei; Knobloch, Theresia; Wang, Bingru; Fan, Zhongchao; Grasser, Tibor; Jing, Xu; Shi, Yuanyuan; Lanza, Mario

    2017-08-01

    The synthesis of piezoelectric two-dimensional (2D) materials is very attractive for implementing advanced energy harvesters and transducers, as these materials provide enormously large areas for the exploitation of the piezoelectric effect. Among all 2D materials, molybdenum disulfide (MoS2) has shown the largest piezoelectric activity. However, all research papers in this field studied just a single material, and this may raise concerns because different setups could provide different values depending on experimental parameters (e.g., probes used and areas analyzed). By using conductive atomic force microscopy, here we in situ demonstrate that the piezoelectric currents generated in MoS2 are gigantic (65 mA/cm2), while the same experiments in graphene just showed noise currents. These results provide the most reliable comparison yet reported on the piezoelectric effect in graphene and MoS2.

  10. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces.

    PubMed

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong

    2018-01-24

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  11. The Spokane flood controversy

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    An enormous plexus of proglacial channels that eroded into the loess and basalt of the Columbia Plateau, eastern Washington is studied. This channeled scabland contained erosional and depositional features that were unique among fluvial phenomena. Documentation of the field relationships of the region explains the landforms as the product of a relatively brief, but enormous flood, then so-called the Spokane flood.

  12. The Resulting Perceptions of "Greening" a Local School: A Case Study

    ERIC Educational Resources Information Center

    Brewer, Daniel R.

    2017-01-01

    The world today faces enormous challenges on the environmental front. Schools may be part of the problem as they use enormous amounts of energy, create thousands of tons of waste, and often operate in less than ideal environments, all of which may negatively impact the health and welfare of students. Some environmental educators and researchers…

  13. Gatekeepers or Marketers: Reclaiming the Educational Role of Chief Admission Officers

    ERIC Educational Resources Information Center

    McDonough, Patricia; Robertson, Larry

    2012-01-01

    The U.S. college admission environment has changed enormously over the last three decades. What have those changes meant for the profession of college admission officers? In this paper, the authors will describe the enormous changes that have taken place in high schools, colleges, and the entrepreneurial admission sector. They will describe how…

  14. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    NASA Astrophysics Data System (ADS)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  15. Okavango Delta, Botswana as seen from STS-66 shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This November 1994 view looking south-southeast shows clouds over the Okavango Delta area of northern Botswana. The Okavango is one of the wilder, less spoiled regions of Africa. The Okavango River (lower left of view) brings water from the high, wet plateaus of Angola into the Kalahari Dessert, and enormous inland basin. As a result of a series of small faults (upper center of the view) related to the African Rift System, the river is dammed up in the form of a swampy inland delta. The visual patterns of the area are strongly linear: straight sand dunes occur in many places and can be seen across the bottom portion of the photograph. Numerous brush-fire scars produce a complex, straight-edged pattern over much of the lower portion of this view. Lake Ngami (upper right of view) was once permanently full as late as the middle 1800s. Changes in the climate of the area over the last 100 years has changed the size and shape of the inland delta.

  16. Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan

    USGS Publications Warehouse

    Back, W.; Hanshaw, B.B.

    1970-01-01

    Aquifers of the peninsulas of Florida and northern Yucatan are Tertiary marine carbonate formations showing many lithologic and faunal similarities. In addition, the tropical to subtropical climates of the two areas are similar, each having annual rainfall of about 1000 to 1500 mm. Despite similarities in these fundamental controls, contrasts in the hydrologic and geochemical systems are numerous and striking. For example, Florida has many rivers; Yucatan has none. Maximum thickness of fresh ground water in Florida is about 700 meters; in the Yucatan it is less than 70 meters. In Florida the gradient of the potentiometric surface averages about 1 meter per kilometer; in the Yucatan it is exceedingly low, averaging about 0.02 meter per kilometer. In Florida the chemical character of water changes systematically downgradient, owing to solution of minerals of the aquifer and corresponding increases in total dissolved solids, sulfate, calcium, and Mg-Ca ratio; in the Yucatan no downgradient change exists, and dominant processes controlling the chemical character of the water are solution of minerals and simple mixing of the fresh water and the body of salt water that underlies the peninsula at shallow depth. Hydrologic and chemical differences are caused in part by the lower altitude of the Yucatan plain. More important, however, these differences are due to the lack of an upper confining bed in Yucatan that is hydrologically equivalent to the Hawthorn Formation of Florida. The Hawthorn cover prevents recharge and confines the artesian water except where it is punctured by sinkholes, but sands and other unconsolidated sediments fill sinkholes and cavities and impede circulation. In the Yucatan the permeability of the entire section is so enormous that rainfall immediately infiltrates to the water table and then moves laterally to discharge areas along the coasts. ?? 1970.

  17. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish)

    NASA Astrophysics Data System (ADS)

    Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.

    2010-05-01

    Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 mL O2 L-1 through impacted growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 mL O2 L-1. A change in the average or the range of DO may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence for the deleterious effects of oxygen depletion on pelagic species is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with variable DOs and exploit adaptive mechanisms, nektonic species may avoid areas of unfavourable DO and develop adapted migration strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, but in deep waters many organisms have developed vertical migration strategies to use, pass through and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity. We describe processes in two contrasting systems, the semi-enclosed Baltic Sea and the coastal upwelling system of the Benguela Current to demonstrate the consequences of increasing hypoxia on ecosystem functioning and services.

  18. Evaluation of anogenital injuries using white and UV-light among adult volunteers following consensual sexual intercourse.

    PubMed

    Joki-Erkkilä, Minna; Rainio, Juha; Huhtala, Heini; Salonen, Aki; Karhunen, Pekka J

    2014-09-01

    New clinical forensic examination techniques for sexual assaults have not been introduced over the last few decades. We evaluated the benefit of ultraviolet light compared to white light for detecting minor anogenital injuries and scars, following consensual sexual intercourse among adult volunteers. A prospective study comparing female genital findings utilising white and ultraviolet light. A colposcopy with photographic documentation was used. Personal invitation to healthcare students, hospital employees or acquaintances to volunteer for a gynecological examination, with a focus on clinical forensic aspects. Eighty-eight adult female volunteers were recruited for the study. The examination was performed after consensual intercourse. Age ranged from 20 to 52 years (median 26.5 years). Presence of acute findings and scars in the genital area using white and UV-light. Acute genital injury rate was 14.8% under white light colposcopy and 23.0% using UV light. Submucosal hemorrhages in the genital area were documented significantly better under UV-light than white light (14.9% vs. 6.8%; p=0.016), whereas petechiaes (4.5%) and abrasions (2.3%) were detected using either method. UV-light revealed significantly more often delivery-associated genital scars compared to white light (39.8% vs. 31.8%; p=0.016). Furthermore, 10 out of 31 (33.3%) women had no residual anogenital skin or mucosal surface findings, despite a prior episiotomy or rupture of the vaginal outlet wall during delivery, supporting its enormous ability to heal even after major trauma. UV-light may provide additional value for the evaluation of physical findings in clinical forensic examinations after sexual assault, and is especially useful in detecting otherwise invisible early submucosal hemorrhages and scars. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Assessment of radargrammetric DSMs from TerraSAR-X Stripmap images in a mountainous relief area of the Amazon region

    NASA Astrophysics Data System (ADS)

    de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz

    The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.

  20. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  1. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W. , Jr. (Editor)

    1995-01-01

    Mars Pathfinder will place a single lander on the surface of Mars on July 4, 1997, following a December 1996 launch. As a result of the very successful first Mars Pathfinder Landing Site Workshop, the project has selected the Ares Vallis outflow channel in Chryse Planitia as the landing site. This location is where a large catastrophic outflow channel debouches into the northern lowlands. A second workshop and series of field trips, entitled Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington, were held in Spokane and Moses Lake, Washington. The purpose of the workshop was to provide a focus for learning as much as possible about the Ares Vallis region on Mars before landing there. The rationale is that the more that can be learned about the general area prior to landing, the better scientists will be able interpret the observations made by the lander and rover and place them in the proper geologic context. The field trip included overflights and surface investigations of the Channeled Scabland (an Earth analog for the martian catastrophic outflow channels), focusing on areas particularly analogous to Ares Vallis and the landing site. The overflights were essential for placing the enormous erosional and depositional features of the Channeled Scabland into proper three-dimensional context. The field trips were a joint educational outreach activity involving K-12 science educators, Mars Pathfinder scientists and engineers, and interested scientists from the Mars scientific community. Part 1 of the technical report on this workshop includes a description of the Mars Pathfinder mission, abstracts accepted for presentation at the workshop, an introduction to the Channeled Scabland, and field trip guides for the overflight and two field trips. This part, Part 2, includes the program for the workshop, summaries of the workshop technical sessions, a summary of the field trips and ensuing discussions, late abstracts of workshop presentations, reports on the education and public outreach activities carried out by the educators, and a list of the workshop and field trip participants.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, R.; Lawrence, S.; Swart, R.

    Namibia`s territorial waters occupy a large portion of West Africa`s continental shelf. The area to the 1,000 m isobath is comparable in size to the combined offshore areas of Gabon, Congo, Zaire, and Angola. Around half as much again lies in 1,000--2,500 m of water. The whole unlicensed part of this area will be open for bidding when the Third Licensing Round starts Oct. 1, 1998. Offshore Namibia is underexplored by drilling with only seven exploration wells drilled. Shell`s Kudu field represents a considerable gas resource with reserves of around 3 tcf and is presently the only commercial discovery.Namibia`s offshoremore » area holds enormous exploration potential. Good quality sandstone reservoirs are likely to be distributed widely, and a number of prospective structural and stratigraphic traps have been identified. The recognition of Cretaceous marine oil-prone source rocks combined with the results of new thermal history reconstruction and maturity modeling studies are particularly significant in assessment of the oil potential. The paper discusses resource development and structures, oil source potential, maturity, and hydrocarbon generation.« less

  3. Mapping and monitoring of crop intensity, calendar and irrigation using multi-temporal MODIS data

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Boes, S.; Mulukutla, G.; Proussevitch, A.; Routhier, M.

    2005-12-01

    Agriculture is the most extensive land use and water use on the Earth. Because of the diverse range of natural environments and human needs, agriculture is also the most complicated land use and water use system, which poses an enormous challenge to the scientific community, the public and decision-makers. Updated and geo-referenced information on crop intensity (number of crops per year), calendar (planting date, harvesting date) and irrigation is critically needed to better understand the impacts of agriculture on biogeochemical cycles (e.g., carbon, nitrogen, trace gases), water and climate dynamics. Here we present an effort to develop a novel approach for mapping and monitoring crop intensity, calendar and irrigation, using multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) image data. Our algorithm employed three vegetation indices that are sensitive to the seasonal dynamics of leaf area index, light absorption by leaf chlorophyll and land surface water content. Our objective is to generate geospatial databases of crop intensity, calendar and irrigation at 500-m spatial resolution and at 8-day temporal resolution. In this presentation, we report a preliminary geospatial dataset of paddy rice crop intensity, calendar and irrigation in Asia, which is developed from the 8-day composite images of MODIS in 2002. The resultant dataset could be used in many applications, including hydrological and climate modeling.

  4. A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    NASA Astrophysics Data System (ADS)

    Salvaggio, Katie N.

    Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points and no rays passed through the area). Voids in the voxel space are manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint locations at aircraft altitude at which the voids in the point clouds could theoretically be imaged. This work is based on the assumption that inclusion of more images of the void areas in the 3D reconstruction process will reduce the number of voids in the point cloud that were a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from more imagery in the reconstruction process, and thus are identified and removed prior to the determination of future potential imaging locations.

  5. High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence.

    PubMed

    Thomas, Pious; Sekhar, Aparna C; Shaik, Sadiq Pasha

    2017-11-01

    Molecular and microscopic analyses reveal enormous non-cultivable endophytic bacteria in grapevine field shoots with functional significance. Diverse bacteria enter tissue cultures through surface-sterilized tissues and survive surreptitiously with varying taxonomic realignments. The study was envisaged to assess the extent of endophytic bacterial association with field shoot tissues of grapevine and the likelihood of introduction of such internally colonizing bacteria in vitro adopting molecular techniques targeting the non-cultivable bacterial community. PowerFood ® -kit derived DNA from surface-sterilized field shoot tips of grapevine Flame Seedless was employed in a preliminary bacterial class-specific PCR screening proving positive for major prokaryotic taxa including Archaea. Taxonomic and functional diversity were analyzed through whole metagenome profiling (WMG) which revealed predominantly phylum Actinobacteria, Proteobacteria, and minor shares of Firmicutes, Bacteroidetes, and Deinococcus-Thermus with varying functional roles ascribable to the whole bacterial community. Field shoot tip tissues and callus derived from stem segments were further employed in 16S rRNA V3-V4 amplicon taxonomic profiling. This revealed elevated taxonomic diversity in field shoots over WMG, predominantly Proteobacteria succeeded by Actinobacteria, Firmicutes, Bacteroidetes, and 15 other phyla including several candidate phyla (135 families, 179 genera). Callus stocks also displayed broad bacterial diversity (16 phyla; 96 families; 141 genera) bearing resemblance to field tissues with Proteobacterial dominance but a reduction in its share, enrichment of Actinobacteria and Firmicutes, disappearance of some field-associated phyla and detection of a few additional taxonomic groups over field community. Similar results were documented during 16S V3-V4 amplicon taxonomic profiling on Thompson Seedless field shoot tip and callus tissues. Video microscopy on tissue homogenates corroborated enormous endophytic bacteria. This study elucidates a vast diversity of cultivation-recalcitrant endophytic bacteria prevailing in grapevine field shoots, their in vitro introduction, and unsuspecting sustenance with possible silent participation in tissue culture processes.

  6. Toward an instructionally oriented theory of example-based learning.

    PubMed

    Renkl, Alexander

    2014-01-01

    Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from worked examples, observational learning, and analogical reasoning. This theory has descriptive and prescriptive elements. The descriptive subtheory deals with (a) the relevance and effectiveness of examples, (b) phases of skill acquisition, and (c) learning processes. The prescriptive subtheory proposes instructional principles that make full exploitation of the potential of example-based learning possible. Copyright © 2013 Cognitive Science Society, Inc.

  7. Individual differences in working memory capacity and dual-process theories of the mind.

    PubMed

    Barrett, Lisa Feldman; Tugade, Michele M; Engle, Randall W

    2004-07-01

    Dual-process theories of the mind are ubiquitous in psychology. A central principle of these theories is that behavior is determined by the interplay of automatic and controlled processing. In this article, the authors examine individual differences in the capacity to control attention as a major contributor to differences in working memory capacity (WMC). The authors discuss the enormous implications of this individual difference for a host of dual-process theories in social, personality, cognitive, and clinical psychology. In addition, the authors propose several new areas of investigation that derive directly from applying the concept of WMC to dual-process theories of the mind.

  8. Individual Differences in Working Memory Capacity and Dual-Process Theories of the Mind

    PubMed Central

    Barrett, Lisa Feldman; Tugade, Michele M.; Engle, Randall W.

    2005-01-01

    Dual-process theories of the mind are ubiquitous in psychology. A central principle of these theories is that behavior is determined by the interplay of automatic and controlled processing. In this article, the authors examine individual differences in the capacity to control attention as a major contributor to differences in working memory capacity (WMC). The authors discuss the enormous implications of this individual difference for a host of dual-process theories in social, personality, cognitive, and clinical psychology. In addition, the authors propose several new areas of investigation that derive directly from applying the concept of WMC to dual-process theories of the mind. PMID:15250813

  9. Submicron bidirectional all-optical plasmonic switches

    PubMed Central

    Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang

    2013-01-01

    Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232

  10. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor

    NASA Astrophysics Data System (ADS)

    Belhocien, Ali; Omar, Wan Zaidi Wan

    Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  11. Topological and thermal properties of polypropylene composites based on oil palm biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less

  12. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less

  13. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    DOE PAGES

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; ...

    2017-03-06

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less

  14. Martian lineaments from Mariner 6 and 7 photographs

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Ingerson, F. E.

    1973-01-01

    Mariner 6 and 7 photographs were used to investigate the nature and importance of linear surface trends on Mars. Cross correlations of frequency-azimuth distributions of linear trends from different Mariner frames indicate that lineations not recognized as topographic features have a component of pseudoforms, probably introduced during digital reconstruction of the pictures. Similar statistical tests may aid in the analysis of surface trends from future satellites and space probes. The most reliable data were separated into photometrically defined provinces. Meridiani Sinus and Margaritifer Sinus display five major trends in common, which are interpreted as extensions of crustal weaknesses related to the enormous equatorial canyon revealed in Mariner 6 and 9 pictures. Alignments of crater wall segments generally match these trends and suggest structural control of crater plan. Crater chains, however, do not match these trends and are interpreted as secondary impacts. Rose diagrams of lineations in Deucalionis Regio exhibit much more complexity and are believed to reflect a better preserved or more complex geologic history.

  15. Multi-wavelength lenses for terahertz surface wave.

    PubMed

    Wei, Minggui; Yang, Quanlong; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-10-16

    Metasurface-based surface wave (SW) devices working at multi-wavelength has been continuously arousing enormous curiosity recently, especially in the terahertz community. In this work, we propose a multi-layer metasurface structure composed of metallic slit pairs to build terahertz SW devices. The slit pair has a narrow bandwidth and its response frequency can be altered by its geometric parameter, thereby suppressing the frequency crosstalk and reducing the difficulty of design. By elaborately tailoring the distribution of the slit pairs, a series of achromatic SW lenses (SWLs) working at 0.6, 0.75 and 1 THz are experimentally demonstrated by the near field scanning terahertz microscope (NSTM) system. In addition, a wavelength-division-multiplexer (WDM) is further designed and implemented, which is promising in building multiplexed devices for plasmonic circuits. The structure proposed here cannot only couple the terahertz wave from free space to SWs, but also control its propagation. Moreover, our findings demonstrate the great potential to design multi-wavelength plasmonic metasurface devices, which can be extended to microwave and visible frequencies as well.

  16. Signature of type-II Weyl semimetal phase in MoTe 2

    DOE PAGES

    Jiang, J.; Liu, Z. K.; Sun, Y.; ...

    2017-01-13

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less

  17. Dynamics of premelted liquid films

    NASA Astrophysics Data System (ADS)

    Worster, Grae

    2005-11-01

    On small scales, surface tension forces are enormously powerful. When such forces act on every grain of a fine soil, they can move mountains, quite literally, in a process called frost heave. In fact, it is not surface tension per se but the intermolecular forces that underlie surface tension that also cause frost heave in partially solidified soils. In detail, these forces cause the premelting of solids. For example, at temperatures below 0^oC, water is solid (ice) in bulk but remains liquid in thin films adjacent to surfaces in contact with many other materials, such as silica. The intermolecular forces, such as the van der Waals force, acting between the materials on either side of an interface can cause interfacial premelting and simultaneously produce a strong normal stress across the premelted film. Whether these stresses cause large-scale motions relies significantly on the fluid mechanics of the microscopic films. I shall introduce the fundamental thermodynamic principles of premelting and illustrate its fluid mechanical consequences with simple theoretical models and experimental results. Applications of these ideas include the rejection of particulate matter during solidification, with consequences for the fabrication of composite materials, the freezing of colloidal suspensions, with consequences for the cryopreservation of biological systems, and the evolution of grain boundaries, with consequences for the redistribution of climate proxies sequestered in the Earth's ice sheets.

  18. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  19. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE PAGES

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...

    2018-01-09

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  20. Increasing Registered Nurse Retention Using Mentors in Critical Care Services.

    PubMed

    Schroyer, Coreena C; Zellers, Rebecca; Abraham, Sam

    2016-01-01

    Recruiting and training 1 newly hired registered nurse can cost thousands of dollars. With a high percentage of these newly hired nurses leaving their first place of employment within their first year, the financial implications may be enormous. It is imperative that health care facilities invest in recruiting and retention programs that retain high-quality nurses. Mentorship programs in retaining and easing the transition to practice for new graduate nurses, re-entry nurses, and nurses new to a specialty area are critical in nurse retention. Discussion in this study includes the effect of implementing a mentor program into the critical care services area of a 325-bed not-for-profit community hospital in northern Indiana. Based on this study, nurses with a mentor were retained at a 25% higher rate than those not mentored. Implementation of a mentor program reduced the training cost to the facility and increased retention and morale.

  1. Environmental geology and hydrology

    NASA Astrophysics Data System (ADS)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  2. Interactive emergency communication involving persons in crisis.

    PubMed

    Nordby, Halvor; Nøhr, Øyvind

    2009-01-01

    We studied the dialogue between telephone operators at medical emergency communication centres in Norway and parents of children later diagnosed with sudden infant death syndrome. The aim was to understand how the parents experienced the communication with the telephone operators. The qualitative method involved semi-structured interviews. We interviewed six respondents from urban areas and five from rural areas. An important finding was that all the parents were satisfied with the resuscitation instructions they received. It was also perceived as important that the emergency operators expressed empathy and care. We believe that it is not merely the quality of the resuscitation attempts that the operators' efforts should be measured against. It is also important that the operators provide good explanations and express emotional support. Our findings indicate that this will be enormously appreciated, even if callers do not feel that they are capable of performing optimum resuscitation.

  3. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  4. Perspectives on avian stem cells for poultry breeding.

    PubMed

    Kagami, Hiroshi

    2016-09-01

    Stem cells have prulipotency to differentiate into many types of cell lineages. Recent progress of avian biotechnology enabled us to analyze the developmental fate of the stem cells: embryonic stem cells / primordial germ cells (PGCs). The stem cells were identified in the central area of the area pellucida of the stage X blastoderms. These cells could be applied for production of germline chimeras and organ regeneration. Generation of medical substrate in transgenic chickens has considerable interests in pharmaceuticals. Sex alteration of the offspring should be enormously beneficial to the poultry industry. Fertilization of the sex-reversed sperm could lead to sexual alteration of the offspring. These strategies using stem cells / PGCs should be one of the most powerful tools for future poultry breeding. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  5. A Survey on Cyber Security awareness among college students in Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Easwaramoorthy, Sathishkumar

    2017-11-01

    The aim of the study is to analyse the awareness of cyber security on college students in Tamil Nadu by focusing various security threats in the internet. In recent years cybercrime is an enormous challenge in all areas including national security, public safety and personal privacy. To prevent from a victim of cybercrime everyone must know about their own security and safety measures to protect by themselves. A well-structured questionnaire survey method will be applied to analyse the college student’s awareness in the area of cyber security. This survey will be going to conducted in major cities of Tamil Nadu by focusing various security threats like email, virus, phishing, fake advertisement, popup windows and other attacks in the internet. This survey examines the college students’ awareness and the level of awareness about the security issues and some suggestions are set forth to overcome these issues.

  6. Under the Lens: Investigating the Sun's Mysteries

    NASA Astrophysics Data System (ADS)

    Harwood, William; Klotz, Irene

    2008-11-01

    Sometime around 2012, the waxing 11-year solar cycle once again will reach its peak. Between now and then, magnetically turbulent sunspots, spawned by some still mysterious process, will form near the poles in increasing numbers and migrate toward the Sun's faster-rotating equator in pairs of opposite polarity. Titanic magnetic storms will rage as immense flux tubes rise to the surface in active regions around sunspots and spread out in a boiling sea of electric charge. Magnetic field lines across an enormous range of scales will arc and undulate, rip apart and reconnect, heating the Sun's upper atmosphere and occasionally triggering brilliant flares and multibillion-megaton coronal mass ejections (CMEs) that travel through the solar wind and slam into Earth.

  7. Prominin‐1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection

    PubMed Central

    Karbanová, Jana; Lorico, Aurelio; Bornhäuser, Martin; Fargeas, Christine A.

    2017-01-01

    Summary The cell surface antigen prominin‐1 (alias CD133) has gained enormous interest in the past 2 decades and given rise to debates as to its utility as a biological stem and cancer stem cell marker. Important and yet often overlooked knowledge that is pertinent to its physiological function has been generated in other systems given its more general expression beyond primitive cells. This article briefly discusses the importance of particular biochemical features of CD133 with relation to its association with membrane microdomains (lipid rafts) and proper immunodetection. It also draws attention toward the adequate use of detergents and caveats that may apply to the interpretation of the results generated. Stem Cells Translational Medicine 2018;7:155–160 PMID:29271118

  8. Biological modulation of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1974-01-01

    Review of the evidence that the earth's atmosphere is regulated by life on the surface so that the probability of growth of the entire biosphere is maximized. Acidity, gas composition including oxygen level, and ambient temperature are enormously important determinants for the distribution of life. The earth's atmosphere deviates greatly from that of the other terrestrial planets in particular with respect to acidity, composition, redox potential and temperature history as predicted from solar luminosity. These deviations from predicted steady state conditions have apparently persisted over millions of years. These anomalies may be evidence for a complex planet-wide homeostasis that is the product of natural selection. Possible homeostatic mechanisms that may be further investigated by both theoretical and experimental methods are suggested.

  9. Defect inspection of actuator lenses using swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  10. Construction and screening of marine metagenomic libraries.

    PubMed

    Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth

    2010-01-01

    Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

  11. Simulations of thermionic suppression during tungsten transient melting experiments

    NASA Astrophysics Data System (ADS)

    Komm, M.; Tolias, P.; Ratynskaia, S.; Dejarnac, R.; Gunn, J. P.; Krieger, K.; Podolnik, A.; Pitts, R. A.; Panek, R.

    2017-12-01

    Plasma-facing components receive enormous heat fluxes under steady state and especially during transient conditions that can even lead to tungsten (W) melting. Under these conditions, the unimpeded thermionic current density emitted from the W surfaces can exceed the incident plasma current densities by several orders of magnitude triggering a replacement current which drives melt layer motion via the {\\boldsymbol{J}}× {\\boldsymbol{B}} force. However, in tokamaks, the thermionic current is suppressed by space-charge effects and prompt re-deposition due to gyro-rotation. We present comprehensive results of particle-in-cell modelling using the 2D3V code SPICE2 for the thermionic emissive sheath of tungsten. Simulations have been performed for various surface temperatures and selected inclinations of the magnetic field corresponding to the leading edge and sloped exposures. The surface temperature dependence of the escaping thermionic current and its limiting value are determined for various plasma parameters; for the leading edge geometry, the results agree remarkably well with the Takamura analytical model. For the sloped geometry, the limiting value is observed to be proportional to the thermal electron current and a simple analytical expression is proposed that accurately reproduces the numerical results.

  12. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes

    PubMed Central

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-01

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. PMID:25548187

  13. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.

    PubMed

    Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui

    2018-04-18

    One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.

  14. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.

    PubMed

    Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R

    2017-08-02

    Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.

  15. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    PubMed

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  16. Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-03-01

    The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.

  17. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery.

    PubMed

    Yang, Yue; Xu, Shengming; Li, Zhen; Wang, Jianlong; Zhao, Zhongwei; Xu, Zhenghe

    2016-11-15

    Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO4 or NiMoO4) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90°C, 0.1wt% SDS, 2.0wt% NaOH and 10ml/gL/S ratio for 4h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO4 is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region.

    PubMed

    Maltchik, Leonardo; Dalzochio, Marina Schmidt; Stenert, Cristina; Rolon, Ana Silvia

    2012-03-01

    The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.

  19. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  20. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    PubMed

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  1. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  2. Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas.

    PubMed

    Volotskova, O; Levchenko, I; Shashurin, A; Raitses, Y; Ostrikov, K; Keidar, M

    2010-10-01

    The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

  3. A 24-year-old Ethiopian Farmer with Burning Feet

    PubMed Central

    Visser, Benjamin Jelle; Korevaar, Daniel Arnoldus; van der Zee, Janneke

    2012-01-01

    Podoconiosis is a non-infectious tropical disease caused by exposure of bare feet to irritant alkalic clay soils. This causes an asymmetrical swelling of the feet and lower limbs due to lymphoedema. This swelling is called “elephantiasis” and may lead to severe disability of the patient. It is found in areas of tropical Africa, Central and South America and north-west India, where such soils coexist with high altitude, high seasonal rainfall and low income. Social stigmatization of people with the disease is widespread and economic losses are enormous. Podoconiosis is unique in being an entirely preventable non-communicable tropical disease. However, so far it has received little attention from health care policy makers. PMID:23042845

  4. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    NASA Astrophysics Data System (ADS)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  5. Bosnian Franciscans and the Monasteries in Kresevo and Fojnica as Source of Scientific Bibliography

    PubMed Central

    Skrbo, Armin; Masic, Izet; Skrbo, Selma; Ramakic, Elma; Zunic, Lejla

    2017-01-01

    All of these centuries-old records contain enormous treasures, and the modern medicine is increasingly searching for the sources of natural remedies. The Franciscans should be credited for carefully collecting the methods folk treatment and passed them on to future generations. In the words of Br. Marko Karamatić: „The fact that the Friars were engaged in healthcare, that they became the first graduate doctors in Bosnia and Herzegovina, that they wrote” herbal manuals „ and other medical records, is the result of historical opportunities in these areas, and this activity became one of the most important tasks for the Franciscans. They performed their duties regardless of the circumstances. PMID:28883781

  6. Towards autonomous environmental monitoring systems.

    PubMed

    Sequeira, Margaret; Bowden, Michaela; Minogue, Edel; Diamond, Dermot

    2002-02-11

    The concept of micro total analysis systems (muTAS) or Lab-on-a-chip is based on the twin strategies of integration and miniaturisation that have been so successful in the electronics industry. This paper will look at the materials issues, particularly with respect to the new polymeric materials that are becoming available, and strategies for integrating optical (colorimetric) detection. The influence of breakthroughs in apparently unrelated areas on the range of chemistries that can be applied will be illustrated. For environmental monitoring, the further integration of wireless communications with micro-dimensioned analytical instruments and sensors will become the ultimate driving force. The emergence of these compact, self-sustaining, networked instruments will have enormous impact on all field-based environmental measurements.

  7. GP commissioning in England.

    PubMed

    Charlton, Rodger

    2013-02-01

    The NHS, yet again, is in transition with an emphasis on groups of general practitioners (GPs) (clinical commissioning groups) making decisions on which specialist services should be chosen for patients requiring referral from primary care. It is an area of new terminology with a new language and further change for all working in the NHS and the all-important interface between primary and secondary care, and its impact on teamwork. There are many drivers including choice, efficiency, franchising of services, coordination and leadership in an enormous organisation, but not least reducing costs and keeping to a budget. There are many logistical issues and ethical anxieties, and only time will inform patients, practitioners, stakeholders and politicians as to its success.

  8. De-quantisation

    NASA Astrophysics Data System (ADS)

    Gruska, Jozef

    2012-06-01

    One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.

  9. Measurement of Subsidence Across the Sacramento Delta: Applying InSAR to a Coherence-challenged Area

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Sharma, P.

    2014-12-01

    InSAR-based measurement of ground subsidence rates are notoriously challenging in agricultural areas because of rapid temporal decorrelation introduced by physical disturbance of the ground and water content changes. This can be mitigated by the use of longer wavelength instruments and time series techniques, but measurement remains a challenge particularly in areas where the deformation rates are low. Here we discuss techniques developed to work with low coherence data in a project to measure sub-island scale subsidence rates across the Sacramento-San Joaquin Delta using SBAS processing of L-band UAVSAR data collected between July 2009 and February 2014. Determination of rates in this area is particularly valuable because of the Delta's critical importance as a water resource for the State of California and as an enormously productive estuarine ecosystem. Subsidence across the region has left most of the man-made islands below mean sea level and the levees maintaining their integrity are subject to a wide range of threats, including failure during earthquakes on the nearby Hayward and San Andreas fault. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. Case Study of the California Low Level Coastal Jet Comparisons Between Observed and Model-Estimated Winds and Temperatures using WRF and COAMPS

    NASA Astrophysics Data System (ADS)

    Tomé, Ricardo; Semedo, Alvaro; Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla

    2010-05-01

    A low level coastal jet (LLCJ) is a low-troposphereic wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over sea. This feature has been identified and studied in several areas of the world, where such a land-sea temperature contrast exist: off the coast of Somalia, near Lima, Peru, off the Mediterranean coast of Spain, in the Southwest coast of Africa, or in the South China Sea coast. Nevertheless, the California LLCJ is probably the most studied coastal jet in the world, with several studies available in the literature. Coastal jets have a notorious impact on coastal areas. Climatologically they are associated with coastal upwelling processes. The major coastal fishing grounds in the world are usually in areas of upwelling, and the abundance of fish at the surface is supported by the upwelled nutrient-rich waters from deeper levels. The effect of this upwelled water to the fishing industry and to the habitat of an enormous diversity of marine life is of paramount importance, and has led to numerous studies in this field. Littoral areas are usually densely populated, and often airports are built in areas where a LLCJ may occur. Thus, aviation operations are deeply influenced by this weather feature, which has a significant impact on the takeoff and landing of airplanes. Therefore the forecasting of LLCJ features is very important for several reasons.The forecasting skills of mesoscale models, while challenging in any region, become particularly complex near coastlines, where processes associated with the coastal boundary add additional complexity: interaction of the flow with the coastal orography, sharp sea-land temperature gradients, highly baroclinic environment, complex air-sea exchanging processes, etc. The purpose of this study is to assess the forecasting skills of the limited-area models WRF (Weather Research and Forecasting) and COAMPS® (Coupled Ocean-Atmosphere Mesoscale Prediction System) in resolving the California LLCJ, off the Big Sur coast. Model runs with different resolutions (6Km and 2Km) are verified against vertical profiles of wind speed and direction, and temperature, from radiosondes. The radiosondes profiles used here were collected during a scientific cruise, off the coast of California, on board the research vessel Point Sur, from 4 to 7 August, 2004. The data were collected along and perpendicular to the coast of Big Sur, south of Point Sur, where an area of supercritical flow adjustment took place.

  11. Environmental hazard mapping using GIS and AHP - A case study of Dong Trieu District in Quang Ninh Province, Vietnam

    NASA Astrophysics Data System (ADS)

    Anh, N. K.; Phonekeo, V.; My, V. C.; Duong, N. D.; Dat, P. T.

    2014-02-01

    In recent years, Vietnamese economy has been growing up rapidly and caused serious environmental quality plunging, especially in industrial and mining areas. It brings an enormous threat to a socially sustainable development and the health of human beings. Environmental quality assessment and protection are complex and dynamic processes, since it involves spatial information from multi-sector, multi-region and multi-field sources and needs complicated data processing. Therefore, an effective environmental protection information system is needed, in which considerable factors hidden in the complex relationships will become clear and visible. In this paper, the authors present the methodology which was used to generate environmental hazard maps which are applied to the integration of Analytic Hierarchy Process (AHP) and Geographical Information system (GIS). We demonstrate the results that were obtained from the study area in Dong Trieu district. This research study has contributed an overall perspective of environmental quality and identified the devastated areas where the administration urgently needs to establish an appropriate policy to improve and protect the environment.

  12. Variation of serum selenium concentrations in German sheep flocks and implications for herd health management consultancy.

    PubMed

    Humann-Ziehank, Esther; Tegtmeyer, Philip C; Seelig, Bjoern; Roehrig, Petra; Ganter, Martin

    2013-11-19

    This study was performed to demonstrate the widespread distribution and severity of selenium (Se) deficiency in sheep flocks and to evaluate the impact of influencing factors. In 150 flocks, ten serum samples of adult ewes were analysed for Se concentration. The farmers were interviewed concerning flock size, provision of mineral supplement, predominant form of husbandry (stationary fenced pasture/transhumance), predominant form of water provision (tap water/well/surface water) and predominant soil (sandy, silty/loamy, clay) in the area. The location of the flock was recorded as well as the production stage/season at the time of sampling. Intra-group variation and the validity to analyse pooled samples were tested. Pools of five samples correlated well with the mean of individually analysed samples. The intra-group range of serum Se concentration varied enormously (mean 45.4 ± 18.8 μg Se/l). About 60% of the flocks showed mean serum Se concentrations below 80 μg/l, 37.4% were below 60 μg Se/l, representing a Se deficient stage. Using mineral supplement in general was no key factor for Se status. Stationary flocks on fenced pasture had constantly higher mean serum Se concentrations during breeding (outdoors, August-November), lambing (mainly indoors, December-March) and lactation (outdoors, April-July), whereas flocks practising transhumance had significantly lower Se status, except during lambing. There was no significant correlation between the soil type and the Se status, but flocks in Southern Germany tend to show a lower Se status compared to Central and Northern Germany. Increasing flock size was associated with lower mean serum Se concentrations. In stationary flocks only, the use of surface water was accompanied by significantly lower Se status. Se deficiency is widespread in German sheep flocks. More than one third of the flocks showed Se deficiency, indicating the need to optimise the nutritional management. Factors raising suspicion of Se deficiency are large flocks, transhumance during lactation and the breeding season as well as surface water provision in stationary flocks.

  13. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung.

    PubMed

    Maina, J N

    2007-01-15

    Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.

  14. Lp-dual affine surface area

    NASA Astrophysics Data System (ADS)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  15. Charon's Surface in Detail

    NASA Image and Video Library

    2017-07-14

    On July 14, 2015, NASA's New Horizons spacecraft made its historic flight through the Pluto system. This detailed, high-quality global mosaic of Pluto's largest moon, Charon, was assembled from nearly all of the highest-resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. The mosaic is the most detailed and comprehensive global view yet of Charon's surface using New Horizons data. It includes topography data of the hemisphere visible to New Horizons during the spacecraft's closest approach. The topography is derived from digital stereo-image mapping tools that measure the parallax -- or the difference in the apparent relative positions -- of features on the surface obtained at different viewing angles during the encounter. Scientists use these parallax displacements of high and low terrain to estimate landform heights. The global mosaic has been overlain with transparent, colorized topography data wherever on the surface stereo data is available. Terrain south of about 30°S was in darkness leading up to and during the flyby, so is shown in black. All feature names on Pluto and Charon are informal. The global mosaic has been overlain with transparent, colorized topography data wherever on their surfaces stereo data is available. Standing out on Charon is the Caleuche Chasma ("C") in the far north, an enormous trough at least 350 kilometers (nearly 220 miles) long, and reaching 14 kilometers (8.5 miles) deep -- more than seven times as deep as the Grand Canyon. https://photojournal.jpl.nasa.gov/catalog/PIA21860

  16. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  17. Arizona Copper

    NASA Image and Video Library

    2014-03-19

    Arizona produces 60% of the total copper mined in the US; in 2007, 750,000 tons of copper came out of the state. One of the major mining districts is located about 30 km south of Tucson. Starting around 1950, open-pit mining replaced underground operations, and the ASARCO-Mission complex, Twin Buttes, and Sierrita mines became large open pit operations. Accompanying copper mineralization, silver, molybdenum, zinc, lead and gold are extracted. In addition to the pits themselves, enormous leach ponds and tailings piles surround the pits. The image was acquired May 31, 2012, covers an area of 22 by 28 km, and is located at 31.9 degrees north, 111 degrees west. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/ Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. State-of-the-art molecular approaches to elucidate the genetic inventory of spacecraft surfaces and associated environments

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Kasthuri; La Duc, Myron; James; Osman, Shariff; Andersen, Gary; Huber, Julie; Sogin, Mitchell

    The scientific literature teems with reports of microbial diversity from seemingly every niche imaginable, from deep within Antarctic ice to ocean-floor hydrothermal systems. The fields of applied microbiology and molecular biology have made enormous technological advancements over the past two decades, from the development of PCR-amplification of DNA to the forensic detection of what many consider to be "miniscule" amounts of blood and other such biomatter. Despite advances in the specificity and sensitivity of molecular biological technologies, the abilities to efficiently sample and extract nucleic acids from low-biomass matrices, and accurately describe the true microbial diversity housed in such samples, remain significant challenges. To minimize the likelihood of forward contamination of Mars, Europa, or any other extraterrestrial environment, significant effort is invested to ensure that environments in which spacecraft are assembled are maintained appropriately and kept as free of microbial contamination as possible. To this end, routine analyses, largely based on spore-counts and cultivation-based approaches, are carried out to validate the cleanliness of such surfaces. However, only by applying the most efficient and accurate molecular means of analysis can conclusions be drawn on the actual bioburden and microbial diversity associated with these environments. For any measure of sample-derived bioburden, a large portion is inevitably lost in sampling. Furthermore, a 90 Since the surface area of a spacecraft is fixed, it is not possible to simply increase sample size to improve yield. It is therefore critical to assure that current methods of purification of biomolecules sampled from this limited resource are 1) optimal for achieving total yield of biota present and 2) conserving of the true microbial diversity of the sampled environment. This project focuses on the development of capabilities to effectively and efficiently generate a genetic inventory of microbes present about the surfaces of spacecraft and associated clean-room facilities. This entails the evaluation and optimization of molecular-based strategies designed to assess microbial burden and diversity arising from samples of low biomass. Such strategies include conventional clone library analysis, DNA microarray screening, and V6-Tag Sequencing. The capabilities resulting from this work will enable NASA to establish genetic inventories of spacecraft, as recommended by the National Research Council, to better understand the risk of forward contamination.

  19. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  20. Study on erosion behaviour of hybrid aluminium composite

    NASA Astrophysics Data System (ADS)

    Vishwas, D. K.; Chandrappa, C. N.; Venkatesh, Shreyas

    2018-04-01

    The origin of the light metals, as compared to other metals in this century, is noticeable and an exciting area of expansion for innovation. Light metals, are need of the day in engineering, among them application of aluminium and its alloys is enormous. we observe that these metals tend to have a progressive loss of metal from having contact surface with other metals. Erosion is one such wear process, where damage occurs by the repeated application of high localised stresses. Erosion due to impact of solid particle, is a significant problem. In the present work, the erosion behaviour of hybrid aluminium composite is studied. AL 6061 is used as the base alloy. AL 6061 alloy has excellent corrosion resistance but poor wear resistance. So, in order to have improved properties, it is reinforced with Tungsten Chromium Nickel powder in varied proportions by the method of stir casting. The results are compared with the as-cast Al-alloy to determine the improvement in mechanical properties. The tests were conducted in ASTM G76 setup, to determine solid particle erosion behaviour and the results of the hybrid composite were compared with that of as-cast AL 6061 alloy. It was evident that mass loss was maximum at 300 inclinations, which is a characteristic of ductile materials. It was observed that upon increasing the percentages of reinforcement (wt.%), the wear resistance of the hybrid composite increased significantly. It was also observed that the inclusion of tungsten-chromium-nickel powder increased the hardness of the hybrid composite significantly.

  1. The transit of dosage forms through the small intestine.

    PubMed

    Yuen, Kah-Hay

    2010-08-16

    The human small intestine, with its enormous absorptive surface area, is invariably the principal site of drug absorption. Hence, the residence time of a dosage form in this part of the gut can have a great influence on the absorption of the contained drug. Various methods have been employed to monitor the gastrointestinal transit of pharmaceutical dosage forms, but the use of gamma-scintigraphy has superceded all the other methods. However, careful consideration of the time interval for image acquisition and proper analysis of the scintigraphic data are important for obtaining reliable results. Most studies reported the mean small intestinal transit time of various dosage forms to be about 3-4h, being closely similar to that of food and water. The value does not appear to be influenced by their physical state nor the presence of food, but the timing of food intake following administration of the dosage forms can influence the small intestinal transit time. While the mean small intestinal transit time is quite consistent among dosage forms and studies, individual values can vary widely. There are differing opinions regarding the effect of density and size of dosage forms on their small intestinal transit properties. Some common excipients employed in pharmaceutical formulations can affect the small intestinal transit and drug absorption. There is currently a lack of studies regarding the effects of excipients, as well as the timing of food intake on the small intestinal transit of dosage forms and drug absorption. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Coalbed methane produced water in China: status and environmental issues.

    PubMed

    Meng, Yanjun; Tang, Dazhen; Xu, Hao; Li, Yong; Gao, Lijun

    2014-01-01

    As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In the USA, Canada, and Australia, much research has been done on the effects and management of coalbed methane produced water (CMPW). However, in China, the environmental effects of CMPW were overlooked. The quantity and the quality of CMPW both vary enormously between coal basins or stratigraphic units in China. The unit produced water volume of CBM wells in China ranges from 10 to 271,280 L/well/day, and the concentration of total dissolved solids (TDS) ranges from 691 to 93,898 mg/L. Most pH values of CMPW are more than 7.0, showing the alkaline feature, and the Na-HCO3 and Na-HCO3-Cl are typical types of CMPW in China. Treatment and utilization of CMPW in China lag far behind the USA and Australia, and CMPW is mainly managed by surface impoundments and evaporation. Currently, the core environmental issues associated with CMPW in China are that the potential environmental problems of CMPW have not been given enough attention, and relevant regulations as well as environmental impact assessment (EIA) guidelines for CMPW are still lacking. Other potential issues in China includes (1) water quality monitoring issues for CMPW with special components in special areas, (2) groundwater level decline issues associated with the dewatering process, and (3) potential environmental issues of groundwater pollution associated with hydraulic fracturing.

  3. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  4. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE PAGES

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; ...

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  5. Molecular mechanism of direct proflavine-DNA intercalation: evidence for drug-induced minimum base-stacking penalty pathway.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2012-10-11

    DNA intercalation, a biophysical process of enormous clinical significance, has surprisingly eluded molecular understanding for several decades. With appropriate configurational restraint (to prevent dissociation) in all-atom metadynamics simulations, we capture the free energy surface of direct intercalation from minor groove-bound state for the first time using an anticancer agent proflavine. Mechanism along the minimum free energy path reveals that intercalation happens through a minimum base stacking penalty pathway where nonstacking parameters (Twist→Slide/Shift) change first, followed by base stacking parameters (Buckle/Roll→Rise). This mechanism defies the natural fluctuation hypothesis and provides molecular evidence for the drug-induced cavity formation hypothesis. The thermodynamic origin of the barrier is found to be a combination of entropy and desolvation energy.

  6. A dynamical systems approach to studying midlatitude weather extremes

    NASA Astrophysics Data System (ADS)

    Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide

    2017-04-01

    Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.

  7. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

    PubMed

    Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi

    2007-12-14

    A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.

  8. Calculating landscape surface area from digital elevation models

    Treesearch

    Jeff S. Jenness

    2004-01-01

    There are many reasons to want to know the true surface area of the landscape, especially in landscape analysis and studies of wildlife habitat. Surface area provides a better estimate of the land area available to an animal than planimetric area, and the ratio of this surface area to planimetric area provides a useful measure of topographic roughness of the landscape...

  9. On the influence of substrate morphology and surface area on phytofauna

    USGS Publications Warehouse

    Becerra-Munoz, S.; Schramm, H.L.

    2007-01-01

    The independent effects and interactions between substrate morphology and substrate surface area on invertebrate density or biomass colonizing artificial plant beds were assessed in a clear-water and a turbid playa lake in Castro County, Texas, USA. Total invertebrate density and biomass were consistently greater on filiform substrates than on laminar substrates with equivalent substrate surface areas. The relationship among treatments (substrates with different morphologies and surface areas) and response (invertebrate density or biomass) was assessed with equally spaced surface areas. Few statistically significant interactions between substrate morphology and surface area were detected, indicating that these factors were mostly independent from each other in their effect on colonizing invertebrates. Although infrequently, when substrate morphology and surface area were not independent, the effects of equally spaced changes in substrate surface area on the rate of change of phytofauna density or biomass per unit of substrate surface area were dependent upon substrate morphology. The absence of three-way interactions indicated that effects of substrate morphology and substrate area on phytofauna density or biomass were independent of environmental conditions outside and inside exclosures. ?? 2006 Springer Science+Business Media B.V.

  10. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.

  11. Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis

    PubMed Central

    Hennes, Marc; Tailleur, Julien; Charron, Gaëlle

    2017-01-01

    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover, experimentally, a mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. Although capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming, we show that this much faster “colony surfing” still occurs in mutant strains of Bacillus subtilis lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms, which could each play an important role in the migration of microorganisms in humid environment. PMID:28536199

  12. Plasmon resonance and the imaging of metal-impregnated neurons with the laser scanning confocal microscope

    PubMed Central

    Thompson, Karen J; Harley, Cynthia M; Barthel, Grant M; Sanders, Mark A; Mesce, Karen A

    2015-01-01

    The staining of neurons with silver began in the 1800s, but until now the great resolving power of the laser scanning confocal microscope has not been utilized to capture the in-focus and three-dimensional cytoarchitecture of metal-impregnated cells. Here, we demonstrate how spectral confocal microscopy, typically reserved for fluorescent imaging, can be used to visualize metal-labeled tissues. This imaging does not involve the reflectance of metal particles, but rather the excitation of silver (or gold) nanoparticles and their putative surface plasmon resonance. To induce such resonance, silver or gold particles were excited with visible-wavelength laser lines (561 or 640 nm), and the maximal emission signal was collected at a shorter wavelength (i.e., higher energy state). Because the surface plasmon resonances of noble metal nanoparticles offer a superior optical signal and do not photobleach, our novel protocol holds enormous promise of a rebirth and further development of silver- and gold-based cell labeling protocols. DOI: http://dx.doi.org/10.7554/eLife.09388.001 PMID:26670545

  13. Cloud-System Resolving Models: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncreiff, Mitch

    2008-01-01

    Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.

  14. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes

    PubMed Central

    Maxson, Michelle E; Naj, Xenia; O'Meara, Teresa R; Plumb, Jonathan D; Cowen, Leah E

    2018-01-01

    Candida albicans hyphae can reach enormous lengths, precluding their internalization by phagocytes. Nevertheless, macrophages engulf a portion of the hypha, generating incompletely sealed tubular phagosomes. These frustrated phagosomes are stabilized by a thick cuff of F-actin that polymerizes in response to non-canonical activation of integrins by fungal glycan. Despite their continuity, the surface and invaginating phagosomal membranes retain a strikingly distinct lipid composition. PtdIns(4,5)P2 is present at the plasmalemma but is not detectable in the phagosomal membrane, while PtdIns(3)P and PtdIns(3,4,5)P3 co-exist in the phagosomes yet are absent from the surface membrane. Moreover, endo-lysosomal proteins are present only in the phagosomal membrane. Fluorescence recovery after photobleaching revealed the presence of a diffusion barrier that maintains the identity of the open tubular phagosome separate from the plasmalemma. Formation of this barrier depends on Syk, Pyk2/Fak and formin-dependent actin assembly. Antimicrobial mechanisms can thereby be deployed, limiting the growth of the hyphae. PMID:29553370

  15. Magnetic field gradient driven self-assembly of superparamagnetic nanoparticles using programmable magnetically-recorded templates

    NASA Astrophysics Data System (ADS)

    Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.

    2013-03-01

    Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.

  16. SOLAR - ASTRONOMY

    NASA Image and Video Library

    1973-09-09

    S73-33788 (10 June 1973) --- The solar eruption of June 10, 1973, is seen in this spectroheliogram obtained during the first manned Skylab mission (Skylab 2), with the SO82A experiment, an Apollo Telescope Mount (ATM) component covering the wavelength region from 150 to 650 angstroms (EUV). The solid disk in the center was produced from 304 angstrom ultraviolet light from He + ions. At the top of this image a great eruption is visible extending more than one-third of a solar radius from the sun's surface. This eruption preceded the formation of an enormous coronal bubble which extended a distance of several radii from the sun's surface, and which was observed with the coronagraph aboard Skylab. In contrast, the Fe XV image at 285 angstrom just to the right of the 304 angstrom image does not show this event. Instead, it shows the bright emission from a magnetic region in the lower corona. In this picture, solar north is to the right, and east is up. The wavelength scale increases to the left. The U.S. Naval Research Laboratory is principal investigator in charge of the SO82 experiment. Photo credit: NASA

  17. Impacts of the Detection of Cassiopeia A Point Source.

    PubMed

    Umeda; Nomoto; Tsuruta; Mineshige

    2000-05-10

    Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.

  18. The Role of Water in the Storage of Hydrogen in Metals

    NASA Technical Reports Server (NTRS)

    Hampton, Michael D.; Lomness, Janice K.; Giannuzzi, Lucille A.

    2001-01-01

    One major problem with the use of hydrogen is safe and efficient storage. In the pure form, bulky and heavy containers are required greatly reducing the efficiency of its use. Safety is also a great concern. Storage of hydrogen in the form of a metal hydride offers distinct advantages both in terms of volumetric efficiency and in terms of safety. As a result, an enormous amount of research is currently being done on metal-hydrogen systems. Practical application of these systems to storage of hydrogen can only occur when they are very well understood. In this paper, the preliminary results of a study of the surfaces of magnesium nickel alloys will be presented. Alloys that have been rendered totally unreactive with hydrogen as well as those that have been activated with liquid water and with water vapor were studied. Data obtained from XPS (X-ray Photoelectron Spectrometer) analysis, with samples held in vacuum for the shortest possible time to minimize the hydroxide degradation will be presented. Furthermore, TEM data on samples prepared in a new way that largely protects the surface from the high vacuum will be discussed.

  19. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    PubMed

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches.

    PubMed

    Saxena, Urmila; Das, Asim Bikas

    2016-01-15

    Importance of cholesterol biosensors is already recognized in the clinical diagnosis of cardiac and brain vascular diseases as discernible from the enormous amount of research in this field. Nevertheless, the practical application of a majority of the fabricated cholesterol biosensors is ordinarily limited by their inadequate performance in terms of one or more analytical parameters including stability, sensitivity and detection limit. Nanoscale materials offer distinctive size tunable electronic, catalytic and optical properties which opened new opportunities for designing highly efficient biosensor devices. Incorporation of nanomaterials in biosensing devices has found to improve the electroactive surface, electronic conductivity and biocompatibility of the electrode surfaces which then improves the analytical performance of the biosensors. Here we have reviewed recent advances in nanomaterial-based cholesterol biosensors. Foremost, the diverse roles of nanomaterials in these sensor systems have been discussed. Later, we have exhaustively explored the strategies used for engineering cholesterol biosensors with nanotubes, nanoparticles and nanocomposites. Finally, this review concludes with future outlook signifying some challenges of these nanoengineered cholesterol sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The selectivity of protein-imprinted gels and its relation to protein properties: A computer simulation study.

    PubMed

    Yankelov, Rami; Yungerman, Irena; Srebnik, Simcha

    2017-07-01

    Polymer-based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer-based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse-grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Franklin

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less

  3. Mapping the articular contact area of the long head of the biceps tendon on the humeral head.

    PubMed

    Morris, Brent J; Byram, Ian R; Lathrop, Ray A; Dunn, Warren R; Kuhn, John E

    2014-01-01

    The purpose of this investigation was to calculate the contact surface area of the long head of the biceps (LHB) in neutral position and abduction. We sought to determine whether the LHB articulates with the humeral head in a consistent pattern comparing articular contact area in neutral position and abduction. Eleven fresh frozen matched cadaveric shoulders were analyzed. The path of the biceps tendon on the articular surface of the humeral head and the total articular surface were digitized using a MicronTracker 2 H3-60 three-dimensional optical tracker. Contact surface area was significantly less in abduction than in neutral position (P = 0.002) with a median ratio of 41% (36%, 47.5%). Ratios of contact area in neutral position to full articular surface area were consistent between left and right shoulders (rho = 1, P = 0.017) as were ratios of abduction area to full articular surface area (rho = 0.97, P = 0.005). The articular contact surface area is significantly greater in neutral position than abduction. The ratios of articular contact surface areas to total humeral articular surface areas have a narrow range and are consistent between left and right shoulders of the same cadaver.

  4. Development of unbonded and bonded areas in relation to Populus species wood characteristics in grinding

    Treesearch

    L.K. Lehtonen; J.H. Lehto; A.W. Rudie

    2004-01-01

    In terms of fibre development in mechanical pulping, most of the energy is spent on the creation of specific surface area. The total surface area created can be divided into two categories: surface area that adds to the unbonded area (optical properties) and surface area that adds to the bonded area (strength properties) of mechanical papers. This paper considers these...

  5. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.

    PubMed

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F

    2017-01-01

    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R 2 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also discussed.

  6. [Cleaning and disinfection in nursing homes. Data on quality of structure, process and outcome in nursing homes in Frankfurt am Main, Germany, 2011].

    PubMed

    Heudorf, U; Gasteyer, S; Samoiski, Y; Voigt, K

    2012-08-01

    Due to the Infectious Disease Prevention Act, public health services in Germany are obliged to check the infection prevention in hospitals and other medical facilities as well as in nursing homes. In Frankfurt/Main, Germany, standardized control visits have been performed for many years. In 2011 focus was laid on cleaning and disinfection of surfaces. All 41 nursing homes were checked according to a standardized checklist covering quality of structure (i.e. staffing, hygiene concept), quality of process (observation of the cleaning processes in the homes) and quality of output, which was monitored by checking the cleaning of fluorescent marks which had been applied some days before and should have been removed via cleaning in the following days before the final check. In more than two thirds of the homes, cleaning personnel were salaried, in one third external personnel were hired. Of the homes 85% provided service clothing and all of them offered protective clothing. All homes had established hygiene and cleaning concepts, however, in 15% of the homes concepts for the handling of Norovirus and in 30% concepts for the handling of Clostridium difficile were missing. Regarding process quality only half of the processes observed, i.e. cleaning of hand contact surfaces, such as handrails, washing areas and bins, were correct. Only 44% of the cleaning controls were correct with enormous differences between the homes (0-100%). The correlation between quality of process and quality of output was significant. There was good quality of structure in the homes but regarding quality of process and outcome there was great need for improvement. This was especially due to faults in communication and coordination between cleaning personnel and nursing personnel. Quality outcome was neither associated with the number of the places for residents nor with staffing. Thus, not only quality of structure but also quality of process and outcome should be checked by the public health services.

  7. Country-wide rainfall maps from cellular communication networks

    PubMed Central

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-01-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal’s attenuation between transmitter and receiver. Here, we show how one such a network can be used to retrieve the space–time dynamics of rainfall for an entire country (The Netherlands, ∼35,500 km2), based on an unprecedented number of links (∼2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrates the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. PMID:23382210

  8. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  9. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    PubMed

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Harvesting electricity from human hair.

    PubMed

    Tulachan, Brindan; Singh, Sushil K; Philip, Deepu; Das, Mainak

    2016-01-01

    Electrical conductivity of human hair is a debatable issue among hair experts and scientists. There are unsubstantiated claims that hair conducts electricity. However, hair experts provided ample evidence that hair is an insulator. Although wet hair exhibited drastic reduction in resistivity; scientists regarded hair as a proton semiconductor at the best. Here, we demonstrate that hair filaments generate electricity on absorbing water vapor between 50 degrees and 80 degrees C. This electricity can operate low power electronic systems. Essentially, we are exposing the hydrated hair polymer to a high temperature (50 degrees-80 degrees C). It has long been speculated that when certain biopolymers are simultaneously hydrated and exposed to high temperature, they exhibit significant proton hopping at a specific temperature regime. This happens due to rapid movement of water molecules on the polymer surface. This lead us to speculate that the observed flow of current is partly ionic and partly due to "proton hopping" in the hydrated nano spaces of hair filament. Such proton hopping is exceptionally high when the hydrated hair polymer is exposed to a temperature between 50 degrees and 80 degrees C. Differential scanning calorimetry data further corroborated the results and indicated that indeed at this temperature range, there is an enormous movement of water molecules on the hair polymer surface. This enormously rapid movement of water molecules lead to the "making and breaking" of innumerable hydrogen bonds and thus resulting in hopping of the protons. What is challenging is "how to tap these hopping protons to obtain useful electricity?" We achieved this by placing a bundle of hair between two different electrodes having different electro negativities, and exposing it to water vapor (water + heat). The two different electrodes offered directionality to the hopping protons and the existing ions and thus resulting in the generation of useful current. Further, by continuously hydrating the polymer with water vapor, we prolonged the process. If this interesting aspect of polymer is exploited further and fine tuned, then it will open new avenues for development of sophisticated polymer-based systems, which could be used to harvest electricity from waste heat.

  11. Adolescent gun violence prevention: what we know, and what we can do to keep young people safe.

    PubMed

    Dodson, Nancy A

    2016-08-01

    This review will focus on recent research, initiatives, and legislation regarding the issue of gun violence as it pertains to adolescents. Homicide and suicide continue to be major killers of adolescents in the United States. Gun homicide kills teens in the most urban areas of the United States at the same rate as suicide kills teens in the most rural areas of the United States. Research on assault-injured youth sheds light on risk factors for teen gun homicide, and has found high rates of illegal gun carrying and retaliatory attitudes among at-risk teens. Suicide research continues to show a strong correlation between gun ownership and accessibility, and risk of completed suicide. Stand Your Ground laws and campus carry laws present unique threats to different populations of American teens. Given the enormous toll that gun violence takes on adolescent lives, pediatricians should ask about guns in the home and become involved in efforts to strengthen laws that would decrease gun violence.

  12. Design of programmable intelligent cell phone jammer

    NASA Astrophysics Data System (ADS)

    Elangovan, Divya; Ravi, Aswin

    2011-12-01

    The usage of cell phones has increased enormously; at present silence and security is the need of the hour in many places. This can be done by using cell phone jammer, which blocks all the signals. This paper describes the design of an enhanced technique for jamming the cell phone signals. Our main objective is to concentrate on a specific band of frequency, which makes communication possible, by jamming this frequency we block out the specific signal that are responsible for making the call. This method enables the jammer to be more precise and effective, so precise that it can focus on specific area and allowing the programmer to define the area. The major advancement will be that emergency services can be availed which is very crucial in case of any calamity, they are intelligent devices as they act only after they receive signals and also it has a lesser power consumption than existing models. This technique has infinite potentials and sure can this be modified to match all our imaginations.

  13. Salinity and temperature structure of a freezing Arctic fjord-monitored by white whales (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Lydersen, Christian; Nøst, Ole Anders; Lovell, Phil; McConnell, Bernie J.; Gammelsrød, Tor; Hunter, Colin; Fedak, Michael A.; Kovacs, Kit M.

    2002-12-01

    In this study we report results from satellite-linked conductivity-temperature-depth (CTD) loggers that were deployed on wild, free-ranging white whales to study the oceanographic structure of an Arctic fjord, Storfjorden, Svalbard. The whales dove to the bottom of the fjord routinely during the study and occupied areas with up to 90% ice-cover, where performance of conventional ship-based CTD-casts would have been difficult. During the initial period of freezing in the fjord, over a period of approximately 2 weeks, 540 CTD profiles were successfully transmitted. The data indicate that Storfjorden has a substantial inflow of warm North Atlantic Water; this is contrary to conventional wisdom that has suggested that it contains only cold Arctic water. This study confirms that marine-mammal-based CTDs have enormous potential for cost-effective, future oceanographic studies; many different marine mammal species target oceanographic discontinuities for foraging and thus may be good `adaptive samplers' that naturally seek areas of high oceanographic interest.

  14. Five years of designing wireless sensor networks in the Doñana Biological Reserve (Spain): an applications approach.

    PubMed

    Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos

    2013-09-10

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.

  15. The oasis of Tiout in the southwest of Algeria: Water resources and sustainable development

    NASA Astrophysics Data System (ADS)

    Hadidi, Abdelkader; Remini, Boualem; Habi, Mohamed; Saba, Djamel; Benmedjaed, Milloud

    2016-07-01

    The Tiout oasis is located in the municipality of Naama at the south west of Algeria is known by their ksour, the palm plantations and the good quality of their fruit and vegetables, in particular the dates and its varieties. This area contains enormous capacities of subsoil and superficial water. For several centuries, domestic consumption and the irrigation are carried out by the use of the traditional techniques of water collecting such as; the pendulum wells and foggaras them. Currently, this hydraulic heritage encounters technical and social problems, in particular with the contribution of drillings and the motor- pumps. The main issues are quoted: • Beating and draining of the water sources; • Degradation and abandonment of the traditional techniques.This study objective is to make an inventory of all the water sources in the study area, to study the impact of the modern technologies contribution on the ancestral techniques and finally to propose recommendations for the backup of the hydraulic heritage.

  16. Problems and Issues of High Rise Low Cost Housing in Malaysia

    NASA Astrophysics Data System (ADS)

    Wahi, Noraziah; Mohamad Zin, Rosli; Munikanan, Vikneswaran; Mohamad, Ismail; Junaini, Syahrizan

    2018-03-01

    Major cities in developing countries are undergoing an enormous migration of peoples from countryside regions. This migration from the countryside regions were mostly to develop carrier and expecting for higher salary for their living survival. Consequently, the large amount of immigrants from countryside to the cities each year had created a great demand for urban housing. The impact from that, Kuala Lumpur, Selangor and its surrounding area now is crowded by the low-income group who cannot afford to own an affordable house. The government of Malaysia had aware of this situation and therefore had created the low cost housing especially for urban poor. However, there are many issues and problems arise regarding the low cost housing in Malaysia especially in urban area. The research is regarding a study on problems and issues of high rise low-cost housing in Malaysia. The need to examine the problems associated with the high rise low cost housing is to ensure the success of future low cost housing development in Malaysia.

  17. Adapting bioinformatics curricula for big data.

    PubMed

    Greene, Anna C; Giffin, Kristine A; Greene, Casey S; Moore, Jason H

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. © The Author 2015. Published by Oxford University Press.

  18. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.

    PubMed

    Takeda, Shunichi; Kaneko, Hiromasa; Funatsu, Kimito

    2016-10-24

    To discover drug compounds in chemical space containing an enormous number of compounds, a structure generator is required to produce virtual drug-like chemical structures. The de novo design algorithm for exploring chemical space (DAECS) visualizes the activity distribution on a two-dimensional plane corresponding to chemical space and generates structures in a target area on a plane selected by the user. In this study, we modify the DAECS to enable the user to select a target area to consider properties other than activity and improve the diversity of the generated structures by visualizing the drug-likeness distribution and the activity distribution, generating structures by substructure-based structural changes, including addition, deletion, and substitution of substructures, as well as the slight structural changes used in the DAECS. Through case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine H1 receptor, the modified DAECS can generate high diversity drug-like structures, and the usefulness of the modification of the DAECS is verified.

  19. The December 2012 Mayo River debris flow triggered by Super Typhoon Bopha in Mindanao, Philippines: lessons learned and questions raised

    NASA Astrophysics Data System (ADS)

    Rodolfo, Kelvin S.; Lagmay, A. Mahar F.; Eco, Rodrigo C.; Herrero, Tatum Miko L.; Mendoza, Jerico E.; Minimo, Likha G.; Santiago, Joy T.

    2016-12-01

    Category 5 Super Typhoon Bopha, the world's worst storm of 2012, formed abnormally close to the Equator, and its landfall on Mindanao set the record proximity to the Equator for its category. Its torrential rains generated an enormous debris flow in the Mayo River watershed that swept away much of the village Andap in the New Bataan municipality, burying areas under rubble as thick as 9 m and killing 566 people. Established in 1968, New Bataan had never experienced super typhoons and debris flows. This unfamiliarity compounded the death and damage. We describe Bopha's history, debris flows and the Mayo River disaster, and then we discuss how population growth contributed to the catastrophe, as well as the possibility that climate change may render other near-Equatorial areas vulnerable to hazards brought on by similar typhoons. Finally, we recommend measures to minimize the loss of life and damage to property from similar future events.

  20. Adapting bioinformatics curricula for big data

    PubMed Central

    Greene, Anna C.; Giffin, Kristine A.; Greene, Casey S.

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. PMID:25829469

  1. Environmental and workplace contamination in the semiconductor industry: implications for future health of the workforce and community.

    PubMed Central

    Edelman, P

    1990-01-01

    The semiconductor industry has been an enormous worldwide growth industry. At the heart of computer and other electronic technological advances, the environment in and around these manufacturing facilities has not been scrutinized to fully detail the health effects to the workers and the community from such exposures. Hazard identification in this industry leads to the conclusion that there are many sources of potential exposure to chemicals including arsenic, solvents, photoactive polymers and other materials. As the size of the semiconductor work force expands, the potential for adverse health effects, ranging from transient irritant symptoms to reproductive effects and cancer, must be determined and control measures instituted. Risk assessments need to be effected for areas where these facilities conduct manufacturing. The predominance of women in the manufacturing areas requires evaluating the exposures to reproductive hazards and outcomes. Arsenic exposures must also be evaluated and minimized, especially for maintenance workers; evaluation for lung and skin cancers is also appropriate. PMID:2401268

  2. [CYTED-RITMOS network: toward the search for solutions to promote mobile health in Latin America].

    PubMed

    Saigí-Rubió, Francesc; Novillo-Ortiz, David; Piette, John D

    2017-05-25

    The area of mobile technologies applied to health (mHealth) is a growing worldwide trend that has generated enormous expectations for the mitigation of problems related to medical services delivery and public health stemming from a lack of resources and the limited number of specialists. The numerous opportunities offered by mobile technologies, together with their ease of use, have attracted the interest both of governments and universities. This is the case of the Ibero-American Mobile Technologies and Health Network (CYTED-RITMOS, Spanish acronym). As a result of the network's first year of activity, in October 2015 the RITMOS International Workshop was held in Barcelona to present the priority areas in Latin America where research, development, and innovation (R&D+i) projects on mobile health could be carried out and possible solutions found. The objective of this article is to present the potentialities and applicability of mHealth in the Region of the Americas.

  3. Broad area quantum cascade lasers operating in pulsed mode above 100 °C λ ∼4.7 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Yan, Fangliang; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Wang, Zhanguo

    2017-07-01

    We demonstrate a broad area (400 μm) high power quantum cascade laser (QCL). A total peak power of 62 W operating at room temperature is achieved at λ ∼4.7 μm. The temperature dependence of the peak power characteristic is given in the experiment, and also the temperature of the active zone is simulated by a finite-element-method (FEM). We find that the interface roughness of the active core has a great effect on the temperature of the active zone and can be enormously improved using the solid source molecular beam epitaxy (MBE) growth system. Project supported by the National Basic Research Program of China (No. 2013CB632801), the National Key Research and Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61306058, 61404131), the Key Projects of Chinese Academy of Sciences (No. ZDRW-XH-20164), and the Beijing Natural Science Foundation (No. 4162060).

  4. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  5. The use of psychotropic medications in young children: the facts, the controversy, and the practice.

    PubMed

    Stubbe, D E; Martin, A

    2000-06-01

    There has been recent concern by the public and physicians alike over reports that increasing numbers of young children are being prescribed psychotropic medications. The report by Zito and colleagues addressing this subject that appeared in the 23 February 2000 issue of JAMA sparked enormous controversy and was the impetus for a White House Conference just one month in its wake (20 March 2000). State and federal agencies have considered legislation to regulate the practice of prescribing psychotropic medications to preschool children. Special aspects of the use of psychotropic medication in preschool children are reviewed, with recommendations for evaluation and treatment decisions. The need for data and research in this area is highlighted.

  6. Social Communication Effects of Peer-Mediated Recess Intervention for Children with Autism

    PubMed Central

    McFadden, Brandon; Kamps, Debra; Heitzman-Powell, Linda

    2015-01-01

    Children with ASD face enormous challenges in the area of social functioning. Research has shown that impairments in social functioning distinguish this population from both typically developing children and children with disabilities. This study incorporated several evidence-based social skills-teaching procedures (i.e., direct instruction, priming, prompting, peer-mediation, contingent reinforcement, and token economies) directly in the recess setting to increase appropriate social behaviors for four children with ASD (ages 6–8). Elements of Peer Networks and Pivotal Response Training (two types of social skills intervention packages in the literature) were included. Results showed significant increases in social communication between focus children and their peers, as well as generalization of skills to non-intervention recesses. PMID:26312064

  7. Increasing the Impact of Materials in and beyond Bio-Nano Science.

    PubMed

    Björnmalm, Mattias; Faria, Matthew; Caruso, Frank

    2016-10-19

    This is an exciting time for the field of bio-nano science: enormous progress has been made in recent years, especially in academic research, and materials developed and studied in this area are poised to make a substantial impact in real-world applications. Herein, we discuss ways to leverage the strengths of the field, current limitations, and valuable lessons learned from neighboring fields that can be adopted to accelerate scientific discovery and translational research in bio-nano science. We identify and discuss five interconnected topics: (i) the advantages of cumulative research; (ii) the necessity of aligning projects with research priorities; (iii) the value of transparent science; (iv) the opportunities presented by "dark data"; and (v) the importance of establishing bio-nano standards.

  8. Hi-Tech for Archeology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Remote sensing is the process of acquiring physical information from a distance, obtaining data on Earth features from a satellite or an airplane. Advanced remote sensing instruments detect radiations not visible to the ordinary camera or the human eye in several bands of the spectrum. These data are computer processed to produce multispectral images that can provide enormous amounts of information about Earth objects or phenomena. Since every object on Earth emits or reflects radiation in its own unique signature, remote sensing data can be interpreted to tell the difference between one type of vegetation and another, between densely populated urban areas and lightly populated farmland, between clear and polluted water or in the archeological application between rain forest and hidden man made structures.

  9. Stellan Hjertén’s contribution to the development of monolithic stationary phases

    PubMed Central

    Svec, Frantisek

    2009-01-01

    This overview is presented to celebrate birthday of one of the luminaries of the separation science and my friend – Stellan Hjertén. He made significant contributions to a variety of areas in the separation science such as electrophoresis, liquid chromatography, and capillary electrochromatography to name just a few. Since the scope of his work was enormous, this review will focus only on a single aspect of his scientific activities, design and applications of monolithic materials. During the years starting from 1989, Stellan Hjertén published many excellent papers concerning the preparation of acrylamide chemistry-based monoliths and their use in both micro-HPLC and capillary electrochromatography. The following text details his works in field. PMID:18383033

  10. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    PubMed

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  11. Specific surface area of a crushed welded tuff before and after aqueous dissolution

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1994-01-01

    Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.

  12. Lp-mixed affine surface area

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  13. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  14. Prediction of future subsurface temperatures in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kim, S. K.; Jeong, J.; SHIN, E.

    2017-12-01

    The importance of climate change has been increasingly recognized because it has had the huge amount of impact on social, economic, and environmental aspect. For the reason, paleoclimate change has been studied intensively using different geological tools including borehole temperatures and future surface air temperatures (SATs) have been predicted for the local areas and the globe. Future subsurface temperatures can have also enormous impact on various areas and be predicted by an analytical method or a numerical simulation using measured and predicted SATs, and thermal diffusivity data of rocks. SATs have been measured at 73 meteorological observatories since 1907 in Korea and predicted at same locations up to the year of 2100. Measured SATs at the Seoul meteorological observatory increased by about 3.0 K from the year of 1907 to the present. Predicted SATs have 4 different scenarios depending on mainly CO2 concentration and national action plan on climate change in the future. The hottest scenario shows that SATs in Korea will increase by about 5.0 K from the present to the year of 2100. In addition, thermal diffusivity values have been measured on 2,903 rock samples collected from entire Korea. Data pretreatment based on autocorrelation analysis was conducted to control high frequency noise in thermal diffusivity data. Finally, future subsurface temperatures in Korea were predicted up to the year of 2100 by a FEM simulation code (COMSOL Multiphysics) using measured and predicted SATs, and thermal diffusivity data in Korea. At Seoul, the results of predictions show that subsurface temperatures will increase by about 5.4 K, 3.0 K, 1.5 K, and 0.2 K from the present to 2050 and then by about 7.9 K, 4.8 K, 2.5 K, and 0.5 K to 2100 at the depths of 10 m, 50 m, 100 m, and 200 m, respectively. We are now proceeding numerical simulations for subsurface temperature predictions for 73 locations in Korea.

  15. Spatial and temporal assessment of driving and conditioning factors and their impact on land use / land cover change in the Xiangxi Catchment, Three Gorges Region

    NASA Astrophysics Data System (ADS)

    Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz

    2010-05-01

    Land use / land cover change (LUCC) is the most important human alteration of the earth's surface and is primarily studied in cases where it leads to severe environmental problems. The construction of the Three Gorges Dam on the Yangtze River in China has an extensive impact on the ecosystems and the local population. To assess its impact, the Xiangxi Catchment is taken as an example. The outlet of the Xiangxi River, a northern tributary of the Yangtze River, is located about 40 km upstream of the Three Gorges Dam. Due to the loss of fertile arable land and residential land which is mainly induced by the inundation and measures of resettlement, enormous LUCC is observed in the study area by depicting the land use / land cover by classification of LandsatTM data retrieved in 1987 and 2007. LUCC in the Xiangxi Catchment during this period can generally be characterized as decrease of cultivated land, increase of woodland and fallow land, and a shift in cropping from traditional smallholder farming to the establishment of citrus orchards, which are implemented as cash crops. Not only the inundation and the resettlement have an impact on LUCC, also the newly built and improved traffic infrastructure, growth of urban structures and land use policies in terms of environmental protection are expected to play an important role concerning LUCC. To assess the spatial and temporal impact of influencing factors, a LUCC gradient is generated based on post-classification change analysis of multispectral data. Furthermore, inter-stages between 1987 and 2007 have to be examined, to reach for a higher temporal resolution, which shall help to figure out temporal relationships between LUCC and the occurrence of driving factors. Once influence factors and and their spatial and temporal impacts are identified, a basis for predicting LUCC in the future for is provided for this area.

  16. Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.

    PubMed

    Khachikian, Crist S; Harmon, Thomas C

    2002-01-01

    This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.

  17. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  18. Neutron Radiography Based Visualization and Profiling of Water Uptake in (Un)cracked and Autonomously Healed Cementitious Materials

    PubMed Central

    Van den Heede, Philip; Van Belleghem, Bjorn; Alderete, Natalia; Van Tittelboom, Kim; De Belie, Nele

    2016-01-01

    Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic), the economic impacts involved would be enormous. Under those circumstances, it might be useful to have concrete with an embedded autonomous healing mechanism. In this paper, the effectiveness of incorporating encapsulated high and low viscosity polyurethane-based healing agents to ensure (multiple) crack healing has been investigated by means of capillary absorption tests on mortar while monitoring the time-dependent water ingress with neutron radiography. Overall visual interpretation and water front/sample cross-section area ratios as well as water profiles representing the area around the crack and their integrals do not show a preference for the high or low viscosity healing agent. Another observation is that in presence of two cracks, only one is properly healed, especially when using the latter healing agent. Exposure to water immediately after release of the healing agent stimulates the foaming reaction of the polyurethane and ensures a better crack closure. PMID:28773436

  19. Arctic National Wildlife Refuge, 1002 area, petroleum assessment, 1998, including economic analysis

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2001-01-01

    The Alaska National Interest Lands Conservation Act (1980) established the Arctic National Wildlife Refuge (ANWR). In section 1002 of that act, Congress deferred a decision regarding future management of the 1.5-million-acre coastal plain ("1002 area") in recognition of the area’s potentially enormous oil and gas resources and its importance as wildlife habitat. A report on the resources (including petroleum) of the 1002 area was submitted in 1987 to Congress by the Department of the Interior (DOI). Since completion of that report, numerous wells have been drilled and oil fields discovered near ANWR, new geologic and geophysical data have become available, seismic processing and interpretation capabilities have improved, and the economics of North Slope oil development have changed significantly.The U.S. Geological Survey (USGS) commonly is asked to provide the Federal Government with timely scientific information in support of decisions regarding land management, environmental quality, and economic and strategic policy. To do so, the USGS must anticipate issues most likely to be the focus of policymakers in the future. Anticipating the need for scientific information and considering the decade-old perspective of the petroleum resource estimates included in the 1987 Report to Congress, the USGS has reexamined the geology of the ANWR 1002 area and has prepared a new petroleum resource assessment.

  20. Airborne Multi-Band SAR in the Arctic

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Liang, R.; Ball, D.; Holt, B.; Thomson, J.

    2016-12-01

    As one component of the Office of Naval Research supported Sea State Departmental Research Initiative during October of 2015 the Naval Research Laboratory flew an ultrawide-band, low-frequency, polarimetric SAR over the southward advancing sea ice in Beaufort Sea. The flights were coordinated with the research team aboard the R/V Sikuliaq working near and in the advancing pack ice. The majority of the SAR data were collected with the L-Band sensor (1000-1500 MHz) from an altitude of 10,000', providing a useful swath 6 km wide with 75o and 25 o angles of incidence at the inner and outer edge of the swath respectively. Some data were also collected with the P-Band SAR (215-915 MHz). The extremely large bandwidths allowed for formation of image pixels as small as 30 cm, however, we selected 60 cm pixel size to reduce image speckle. The separate polarimetric images are calibrated to one pixel to allow for calculations such as polarimetric decompositions that require the images to be well aligned. Both frequencies are useful particularly for the detection of ridges and areas of deformed ice. There are advantages and disadvantages to airborne SAR imagery compared to satellites. The chief advantages being the enormous allowable bandwidth leading to very fine range resolution, and the ability to fly arbitrary trajectories on demand. The latter permits specific areas to be imaged at a given time with a specified illumination direction. An area can even be illuminated from all directions by flying a circular trajectory around the target area. This captures ice features that are sensitive to illumination direction such as cracks, sastrugi orientation, and ridges. The disadvantages include variation of intensity across the swath with range and incidence angle. In addition to the SAR data, we collected photogrammetric imagery from a DSS-439, scanning lidar from a Riegl Q560 and surface brightness temperatures from a KT-19. However, since all of these sensors are nadir pointing, and some restricted to relatively low-altitude, it was difficult to obtain data co-registered with the SAR. At this meeting we will present some initial results from the SAR imagery, including differentiation of young, thin, and older ice features, and comparisons with satellite SAR with L-band and C-band frequencies.

  1. Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Cooper, Paul D.; Sittler, Edward C.; Sturner, Steven J.; Rymer, Abigail M.; Hill, Matthew E.

    2007-01-01

    Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing.

  2. Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement.

    PubMed

    Huang, Yu; Chen, Yun; Xue, Xiaotian; Zhai, Yanni; Wang, Lingling; Zhang, Zhengjun

    2018-05-15

    We have numerically demonstrated the feasibility and possibility to achieve broadband surface-enhanced Raman scattering (SERS) enhancement in the visible and near-infrared wavelength range using single nanoparticle (NP) dimer hotspot systems. Instead of the conventionally reported sub-100 nm, we find that the optimal NP size is as large as 200 nm in diameter for both Ag and Au. The key lies in the continuous arising of the bonding dipole plasmon mode and higher-order resonances at shorter wavelengths. Further, it is revealed that the near- and far-field optical responses of these hotspot systems correlate well with each other, despite the intrinsic enormous near- to far-field redshift for individual large NPs. The physical principles demonstrated here benefit significantly the fundamental understanding and engineering optimization of broadband SERS substrates.

  3. Endovascular abdominal aortic aneurysm sizing and case planning using the TeraRecon Aquarius workstation.

    PubMed

    Lee, W Anthony

    2007-01-01

    The gold standard for preoperative evaluation of an aortic aneurysm is a computed tomography angiogram (CTA). Three-dimensional reconstruction and analysis of the computed tomography data set is enormously helpful, and even sometimes essential, in proper sizing and planning for endovascular stent graft repair. To a large extent, it has obviated the need for conventional angiography for morphologic evaluation. The TeraRecon Aquarius workstation (San Mateo, Calif) represents a highly sophisticated but user-friendly platform utilizing a combination of task-specific hardware and software specifically designed to rapidly manipulate large Digital Imaging and Communications in Medicine (DICOM) data sets and provide surface-shaded and multiplanar renderings in real-time. This article discusses the basics of sizing and planning for endovascular abdominal aortic aneurysm repair and the role of 3-dimensional analysis using the TeraRecon workstation.

  4. Engineering with uncertainty: monitoring air bag performance.

    PubMed

    Wetmore, Jameson M

    2008-06-01

    Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.

  5. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Guedel, M.

    2017-10-01

    Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with the current instrumentation. Recently, seven small planets have been discovered orbiting the ultracool dwarf TRAPPIST-1 te{Gillon16,Gillon17}. We examine the role of electromagnetic induction heating of these planets, caused by the star's rotation and the planet's orbital motion. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the three innermost planets, one of which is in the habitable zone, to either evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the four outermost planets remain mostly unaffected.

  6. Geothermal wells drilled in Transcarpathians

    NASA Astrophysics Data System (ADS)

    Kuzma, A.

    1984-12-01

    The lion's share of the Earth's electric power is known to be produced by thermal electric power plants wwich burn coal and gas. New storehouses of energy must be sought. It became known that the main reserves of heat in the Earth's interior are concentrated in rock. In simple terms, the technology of delivering the Earth's heat to the surface is as follows: water injected under high pressure from a river into one well comes in contact with hot beds situated at enormous depth, after which it returns by a second well in the form of a steam-water mixture, which then operates turbines of an electric power plant. The water would be used many times over in a closed cycle. This method promises many advantages. It will provide a possibility for generating cheap electric power while excluding all pollution of the environment.

  7. Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami

    2017-01-01

    Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.

  8. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    PubMed Central

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  9. Getting the temperature right: Understanding thermal emission from airless bodies

    NASA Astrophysics Data System (ADS)

    Bandfield, J.; Greenhagen, B. T.; Hayne, P. O.; Williams, J. P.; Paige, D. A.

    2016-12-01

    Thermal infrared measurements are crucial for understanding a wide variety of processes present on airless bodies throughout the solar system. Although these data can be complex, they also contain an enormous amount of useful information. By building a framework for understanding thermal infrared datasets, significant advances are possible in the understanding of regolith development, detection of H2O and OH-, characterizing the nature and magnitude of Yarkovsky and YORP effects, and determination of the properties of newly identified asteroids via telescopic measurements. Airless bodies can have both extremely rough and insulating surfaces. For example, these two properties allow for sunlit and shaded or buried lunar materials separated by just a few centimeters to vary by 200K. In this sense, there is no "correct" temperature interpretable from orbital, or even in-situ, measurements. The surface contains a wide mixture of temperatures in the field of view, and rougher surfaces greatly enhance this anisothermality. We have used the Lunar Reconnaissance Orbiter Diviner Radiometer to characterize these effects by developing new targeting and analysis methods, including extended off-nadir observations and combined surface roughness and thermal modeling (Fig. 1). These measurements and models have shown up to 100K brightness temperature differences from measurements that differ only in the viewing angle of the observation. In addition, the thermal emission near 3 μm can be highly dependent on the surface roughness, resulting in more extensive and prominent lunar 3 μm H2O and OH-absorptions than indicated in data corrected by isothermal models. The datasets serve as a foundation for the derivation and understanding of surface spectral and thermophysical properties. Roughness and anisothermality effects are likely to dominate infrared measurements from many spacecraft, including LRO, Dawn, BepiColombo, OSIRIS-REx, Hayabusa-2, and Europa Clipper.

  10. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    PubMed

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  11. Designing marine reserve networks for both conservation and fisheries management.

    PubMed

    Gaines, Steven D; White, Crow; Carr, Mark H; Palumbi, Stephen R

    2010-10-26

    Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.

  12. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  13. Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions.

    PubMed

    Wang, Shu; Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing

    2016-01-01

    The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models.

  14. Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions

    PubMed Central

    Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing

    2016-01-01

    The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models. PMID:27648943

  15. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  16. Estimated probabilities and volumes of postwildfire debris flows—A prewildfire evaluation for the Pikes Peak area, El Paso and Teller Counties, Colorado

    USGS Publications Warehouse

    Elliott, John G.; Ruddy, Barbara C.; Verdin, Kristine L.; Schaffrath, Keelin R.

    2012-01-01

    Debris flows are fast-moving, high-density slurries of water, sediment, and debris that can have enormous destructive power. Although debris flows, triggered by intense rainfall or rapid snowmelt on steep hillsides covered with erodible material, are a common geomorphic process in some unburned areas, a wildfire can transform conditions in a watershed with no recent history of debris flows into conditions that pose a substantial hazard to residents, communities, infrastructure, aquatic habitats, and water supply. The location, extent, and severity of wildfire and the subsequent rainfall intensity and duration cannot be known in advance; however, hypothetical scenarios based on empirical debris-flow models are useful planning tools for conceptualizing potential postwildfire debris flows. A prewildfire study to determine the potential for postwildfire debris flows in the Pikes Peak area in El Paso and Teller Counties, Colorado, was initiated in 2010 by the U.S. Geological Survey, in cooperation with the City of Colorado Springs, Colorado Springs Utilities. The study was conducted to provide a relative measure of which subwatersheds might constitute the most serious potential debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall.

  17. Assessment of geometrical characteristics of dental endodontic micro-instruments utilizing X-ray micro computed tomography

    PubMed Central

    Al JABBARI, Youssef S.; TSAKIRIDIS, Peter; ELIADES, George; AL-HADLAQ, Solaiman M.; ZINELIS, Spiros

    2012-01-01

    Objective The aim of this study was to quantify the surface area, volume and specific surface area of endodontic files employing quantitative X-ray micro computed tomography (mXCT). Material and Methods Three sets (six files each) of the Flex-Master Ni-Ti system (Nº 20, 25 and 30, taper .04) were utilized in this study. The files were scanned by mXCT. The surface area and volume of all files were determined from the cutting tip up to 16 mm. The data from the surface area, volume and specific area were statistically evaluated using the one-way ANOVA and SNK multiple comparison tests at α=0.05, employing the file size as a discriminating variable. The correlation between the surface area and volume with nominal ISO sizes were tested employing linear regression analysis. Results The surface area and volume of Nº 30 files showed the highest value followed by Nº 25 and Nº 20 and the differences were statistically significant. The Nº 20 files showed a significantly higher specific surface area compared to Nº 25 and Nº 30. The increase in surface and volume towards higher file sizes follows a linear relationship with the nominal ISO sizes (r2=0.930 for surface area and r2=0.974 for volume respectively). Results indicated that the surface area and volume demonstrated an almost linear increase while the specific surface area exhibited an abrupt decrease towards higher sizes. Conclusions This study demonstrates that mXCT can be effectively applied to discriminate very small differences in the geometrical features of endodontic micro-instruments, while providing quantitative information for their geometrical properties. PMID:23329248

  18. A Geomorphic Analysis of Floodplain Lakes along the Embanked Lower Mississippi River for Managing Hydrologic Connectivity

    NASA Astrophysics Data System (ADS)

    Hudson, Paul; Boot, Dax; Sounny-Slitinne, M. Anwar; Kristensen, Kristiaan

    2015-04-01

    A Geomorphic Analysis of Floodplain Lakes along the Embanked Lower Mississippi River for Managing Hydrologic Connectivity Floodplain lakes are vital to the environmental integrity of lowland rivers. Embankment by levees (dikes) for flood control greatly reduces the size of lowland floodplains and is detrimental to the quality and functioning of floodplain water bodies, presenting a challenge to government agencies charged with environmental management. The embanked floodplain of the Lower Mississippi River is an enormous surface which includes a variety of lake types formed by geomorphic and anthropogenic processes. While much is known about the channel and hydrologic regime, very little is known about the physical structure and functioning of the embanked floodplain of the lower Mississippi. Importantly, management agencies do not have an inventory of the basic characteristics (e.g., type, frequency, location, size, shape) of water bodies within the lower Mississippi embanked floodplain. An analysis of lakes along the Lower Mississippi River embanked floodplain is performed by utilizing the National Hydrographic Dataset (NHD) from the U.S. Geological Survey, a LiDAR digital elevation model (DEM), as well as streamflow data from the USGS. The vector NHD data includes every official mapped water body (blue line polygons) on USGS topographic maps at scales of 1:100,000 and 1:24,000. Collectively, we identify thousands of discreet water bodies within the embanked floodplain. Utilizing planimetric properties the water bodies were classified into the following lake types: cutoffs (neck and chute), sloughs, crevasse (scour), local drainage (topographic), and borrow pits. The data is then statistically analyzed to examine significant differences in the spatial variability in lake types along the entire lower Mississippi embanked floodplain in association with geomorphic divisions and hydrologic regime. The total embanked floodplain area of the LMR is 7,303 km2,. The total area of floodplain lakes within the embanked floodplain is 382 km2, or 5.2% of the embanked floodplain surface area. Considerable variability in embanked floodplain area along the lower Mississippi, however, results in spatial variability in the frequency of specific lake types. Meander cutoff lakes represent the largest proportion of lake area, at 49%, with approximately half of this area comprised of artificial cutoff lakes. The next largest class of lakes are borrow pit lakes (at 16%), which are anthropogenic water bodies created for the process of levee (dike) construction and maintenance, but which represent valuable environmental habitat. Meander cutoff lakes are especially dominant in the upper reaches of the Lower Mississippi and diminish moving downstream, where the area of embanked floodplain also decreases. Interestingly, anthropogenic lakes (borrow pits) become increasingly prevalent further downstream and dominate over natural formed lakes. The location of lake types along the Lower Mississippi does not correspond with recent historic geomorphic and hydrologic activity. The highest frequency of meander cutoff and crevasse lakes are not located within floodplain sections which historically had the highest rates of lateral migration (m/yr) and flooding (duration). Although overbank hydrologic connectivity varies along the river, it does not vary necessarily where it would be most advantageous to the connectivity of specific types of lakes. The research results provide government agencies with a spatial inventory and methodological approach to improve the management of floodplain water bodies for sustaining valuable aquatic habitat, whether by artificially restricting or enhancing hydrologic connectivity. Key words: floodplain lakes, fluvial geomorphology, hydrologic connectivity, anthropogenic impacts, Lower Mississippi River

  19. A Mathematical Method to Calculate Tumor Contact Surface Area: An Effective Parameter to Predict Renal Function after Partial Nephrectomy.

    PubMed

    Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang

    2016-07-01

    We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p <0.001). On multivariate analysis contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p <0.001 and p=0.03, respectively). On ROC curve analysis contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW wavelengths are micrometers in scale whereas indentation depths are usually confined to the nanometer scale. This dissertation demonstrates the effectiveness of LiSAW on both thin porous layers and rough surfaces and shows the challenges faced by nanoindentation on the same films. Zeolite thin films are studied extensively in this work as a model system because of their porous crystalline framework and enormous economic market. Many types of zeolite exist and their widely varying structures and levels of porosity present a unique opportunity for mechanical characterization. For a fully dense ZSM-5 type zeolite with wear and corrosion resistance properties, nanoindentation was used to compare its mechanical properties to industrial chromium and cadmium films. Through tribological and indentation tests, it was shown that the zeolite film possesses exceptional resilience and hardness therefore demonstrating superior wear resistance to chromium and cadmium. This also highlighted the quality of nanoindentation measurements on thick dense layers where traditional nanoindentation excels. Nanoindentation was then performed on porous and non-porous MFI zeolite films with low-k (low dielectric constant) properties. These films were softer and much thinner than the ZSM-5 coatings resulting in significant substrate effects, evidenced by inflation of the measurements from the hard silicon substrate, during indentation. Such effects were avoided with the LiSAW technique on the same films where properties were readily extracted without complications. An alternative indentation analysis method was demonstrated to produce accurate mechanical measurements in line with the LiSAW results, but the non-traditional technique requires substantial computational intensity. Thus LiSAW was proven to be an accurate and efficient means of mechanical characterization for thin porous layers. The case for LiSAW was further supported by utilizing the technique on a porous nanostructured V2O5 electrode film. The surface roughness, on the same scale as indentation depths, created difficulty in obtaining consistent nanoindentation results. Since the film was too delicate for mechanical polishing, the nanoindentation results possessed a high level of uncertainty. It was demonstrated that the LiSAW technique could extract the mechanical properties from such layers without substrate effects and with higher accuracy than nanoindentation. The research in this dissertation directly demonstrates the areas where nanoindentation excels and the areas where it encounters difficulty. It is shown how the LiSAW technique can be an efficient alternative in the challenging areas through its dependence on bulk dispersive wave motion rather than localized deformation. Thus, LiSAW opens up many avenues towards the mechanical characterization of thin, porous, soft, or rough films. Nanoindentation remains an extremely useful technique for thin film characterization, especially with the alternative analysis adaptation. However, as films continue trending towards smaller length scales, more complex porous morphologies, and engineered nanoscale surfaces, LiSAW may well become an equally valuable and indispensable technique.

  1. Revolutionizing medicine in the 21st century through systems approaches.

    PubMed

    Hood, Leroy; Balling, Rudi; Auffray, Charles

    2012-08-01

    Personalized medicine is a term for a revolution in medicine that envisions the individual patient as the central focus of healthcare in the future. The term "personalized medicine", however, fails to reflect the enormous dimensionality of this new medicine that will be predictive, preventive, personalized, and participatory-a vision of medicine we have termed P4 medicine. This reflects a paradigm change in how medicine will be practiced that is revolutionary rather than evolutionary. P4 medicine arises from the confluence of a systems approach to medicine and from the digitalization of medicine that creates the large data sets necessary to deal with the complexities of disease. We predict that systems approaches will empower the transition from conventional reactive medical practice to a more proactive P4 medicine focused on wellness, and will reverse the escalating costs of drug development an will have enormous social and economic benefits. Our vision for P4 medicine in 10 years is that each patient will be associated with a virtual data cloud of billions of data points and that we will have the information technology for healthcare to reduce this enormous data dimensionality to simple hypotheses about health and/or disease for each individual. These data will be multi-scale across all levels of biological organization and extremely heterogeneous in type - this enormous amount of data represents a striking signal-to-noise (S/N) challenge. The key to dealing with this S/N challenge is to take a "holistic systems approach" to disease as we will discuss in this article. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Connectivity of Tiger (Panthera tigris) Populations in the Human-Influenced Forest Mosaic of Central India

    PubMed Central

    Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma

    2013-01-01

    Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent. PMID:24223132

  3. Connectivity of tiger (Panthera tigris) populations in the human-influenced forest mosaic of Central India.

    PubMed

    Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma

    2013-01-01

    Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.

  4. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say there is a planetary rover interacting with our sand simulation environment. Sand that is actively interacting with a rover wheel will be represented as individual particles whereas sand that is further under the surface will be represented by larger regions of sand. The result of this technique allows for many particles to be represented without the computational complexity. In developing this method, we have further generalized these subdivision regions into any volumetric area suitable for use in the simulation. This is a further improvement of our method as it allows for more compact subdivision sand regions. This helps to fine tune the simulation so that more emphasis can be placed on regions of actively participating sand. We feel that through the generalization of our technique, our research can provide other opportunities within the earth and planetary sciences. Through collaboration with our academic colleagues, we continue to refine our technique and look for other opportunities to utilize our research.

  5. Nanoparticles for Nonaqueous-phase liquids (NAPLs) Remediation

    NASA Astrophysics Data System (ADS)

    Jiemvarangkul, Pijit

    Nanotechnology has gained attention in various fields of science and engineering for more than decades. Many nanotechnologies using nanosorbents, nanosensors, and nanoparticles have been developed, studied, and used to solve environmental problems. This dissertation contributes to the applications of two types of nanoparticles: 1) using zero valent iron nanoparticle technology (nZVI) for treatment of groundwater contaminated by chlorinated hydrocarbons and study effect of polyelectrolyte polymers on enhancing the mobility of nZVI in porous media and 2) testing a new type of nanoparticle, nano-scale calcium peroxide (CaO2) particles (nano-peroxide); particles have been synthesized and preliminarily tests on their chemical properties and oxidizing reactions with petroleum hydrocarbons investigated. Trichloroethylene (TCE) is one of the high toxic, dense, non-aqueous phase liquids (DNAPLs) and it is one of the major problems of groundwater contamination. The direct reaction of nano-scale zerovalent iron (nZVI) particles and TCE liquid phase batch experiments shows that nZVI has capability to remove pure phase TCE and there is the reduction reaction occurred with reaction byproduct. Mass balance of nZVI-TCE reaction demonstrates that 7--9 % TCE mass was trapped in 1 g of nZVI sludge indicating that absorption occurred during the removal process confirming the absorption of TCE into nZVI sludge. The reaction and absorption abilities of nZVI are depended upon its surface areas. Increasing amount of nZVI reduces the space of batch experiment systems, so TCE removal efficiency of nZVI is decreased. These experiments show the practicability of using nZVI to directly remove TCE from contaminated groundwater. The transport of nanoscale zero-valent iron (nZVI) particles stabilized by three polyelectrolytes: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A), poly(acrylic acid) (PAA) and soy proteins were examined. The study shows the increase in nZVI mobility by reducing particle size and generating negatively charged surfaces of nZVI by those polyelectrolyte polymers. PV3A stabilized nZVI has the best transport performance among the three materials. It was found that approximately 100% of nZVI flowed through the column. Retardation of nZVI is observed in all tests. Due to the large surface area of nZVI, large amounts of polyelectrolytes are often needed. For example, soy proteins exhibited an excellent stabilization capability only at the dose over 30% of nZVI mass. Approximately 57% of nZVI remained in the column when nZVI was stabilized with PAA at the dosage of 50%. Results suggest that nZVI may be prepared with tunable travel distance to form an iron reactive zone for the in situ remediation. The new nano size particles of calcium peroxide (nano-peroxide) were synthesized by the mechanical milling method. The particle size diameter (d 50) is around 120 nm with the enormous specific surface area at 30 m 2/g. The dissolution and reaction rate of nano-peroxide is faster than typical micro powder calcium peroxide around 1.5 times. With metal catalyzes (Fe2+), nano-peroxide promoted modified Fenton's chemistry (MF) and showed an excellent performance for oxidizing hydrocarbon. Benzene solutions were completely oxidized as high as 800 mg/L of benzene and gasoline contaminated solution was significantly decreased within 24 hours. pH is a major factor to increase the oxidizing of nano-peroxide. This research also reports the synthesis method, images and composition of nano-peroxide.

  6. Influence of specific surface area on coal dust explosibility using the 20-L chamber.

    PubMed

    Zlochower, Isaac A; Sapko, Michael J; Perera, Inoka E; Brown, Connor B; Harris, Marcia L; Rayyan, Naseem S

    2018-07-01

    The relationship between the explosion inerting effectiveness of rock dusts on coal dusts, as a function of the specific surface area (cm 2 /g) of each component is examined through the use of 20-L explosion chamber testing. More specifically, a linear relationship is demonstrated for the rock dust to coal dust (or incombustible to combustible) content of such inerted mixtures with the specific surface area of the coal and the inverse of that area of the rock dust. Hence, the inerting effectiveness, defined as above, is more generally linearly dependent on the ratio of the two surface areas. The focus on specific surface areas, particularly of the rock dust, provide supporting data for minimum surface area requirements in addition to the 70% less than 200 mesh requirement specified in 30 CFR 75.2.

  7. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  8. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  9. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  10. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  11. The use of total lake-surface area as an indicator of climatic change: Examples from the Lahontan basin

    USGS Publications Warehouse

    Benson, L.V.; Paillet, Frederick L.

    1989-01-01

    Variation in the size of lakes in the Lahontan basin is topographically constrained. River diversion also has played a major role in regulating lake size in Lahontan subbasins. The proper gage of lake response to change in the hydrologic balance is neither lake depth (level) nor lake volume but instead lake-surface area. Normalization of surface area is necessary when comparing surface areas of lakes in basins having different topographies. To a first approximation, normalization can be accomplished by dividing the paleosurface area of a lake by its mean-historical, reconstructed surface area. ?? 1989.

  12. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation

    PubMed Central

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100–300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration. PMID:28392688

  13. Review of hydrofracking, the environmental pollution and some new methods may be used to skip the water in fracking process

    NASA Astrophysics Data System (ADS)

    Wang, B.

    2013-12-01

    Shale gas is natural gas that is found trapped within shale formations. And it has become an increasingly important source of natural gas in the United States since start of this century. Because shales ordinarily have insufficient permeability to allow significant fluid flow to a well bore, so gas production in commercial quantities requires fractures to provide permeability. Usually, the shale gas boom is due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. In the same time, horizontal drilling is often used with shale gas wells, to create maximum borehole surface area in contact with shale. However, the extraction and use of shale gas can affect the environment through the leaking of extraction into water supplies, and the pollution caused by improper processing of natural gas. The challenge to prevent pollution is that shale gas extractions varies widely even in the two wells that in the same project. What's more, the enormous amounts of water will be needed for drilling, while some of the largest sources of shale gas are found in deserts. So if we can find some technologies to substitute the water in the fracking process, we will not only solve the environmental problems, but also the water supply issues. There are already some methods that have been studied for this purpose, like the CO2 fracking process by Tsuyoshi Ishida et al. I will also propose our new method called air-pressure system for fracking the shales without using water in the fracking process at last.

  14. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland

    NASA Astrophysics Data System (ADS)

    Munkhtsetseg, Erdenebayar; Shinoda, Masato; Ishizuka, Masahide; Mikami, Masao; Kimura, Reiji; Nikolich, George

    2017-09-01

    Mongolian grasslands are a natural dust source region and they contribute to anthropogenic dust due to the long tradition of raising livestock there. Past decades of abrupt changes in a nomadic society necessitate a study on the effects of livestock trampling on dust emissions, so that research studies may help maintain a sustainable ecosystem and well-conditioned atmospheric environment. In this study, we conducted a mini wind tunnel experiment (using a PI-SWERL® device) to measure dust emissions fluxes from trampling (at three disturbance levels of livestock density, N) and zero trampling (natural as the background level) at test areas in a Mongolian temperate grassland. Moreover, we scaled anthropogenic dust emissions to natural dust emissions as a relative consequence of livestock trampling. We found a substantial increase in dust emissions due to livestock trampling. This effect of trampling on dust emissions was persistent throughout all wind friction velocities, u* (varying from 0.44 to 0.82 m s-1). Significantly higher dust loading occurs after a certain disturbance level has been reached by the livestock trampling. Our results suggest that both friction velocity (u*) and disturbance level of livestock density (N) have an enormous combinational effect on dust emissions from the trampling test surface. This means that the effect of livestock trampling on dust emissions can be seen or revealed when wind is strong. Our results also emphasize that better management for livestock allocation coupled with strategies to prevent anthropogenic dust loads are needed. However, there are many uncertainties and assumptions to be improved on in this study.

  15. A diagnostic Study of a High Impact Weather Episode in the Western Mediterranean Region: IOP8 a HyMeX case

    NASA Astrophysics Data System (ADS)

    Khodayar, Samiro; Kalthoff, Norbert; Raff, Fritz

    2013-04-01

    Fall season heavy rainfall in the western Mediterranean region is one of the most threatening phenomena in the area. Devastating flash floods occur every year somewhere in eastern Spain resulting in a large amount of property losses, destruction of infrastructures, enormous agricultural losses and human fatalities. The forecast of the underlying HIW is a subject of special concern for local meteorologist because of its catastrophic nature. Within the framework of HyMeX (Hydrological cycle in the Mediterranean eXperiment) a HIW (High Impact Weather) event took place on the south and eastern part of the Spanish coast, particularly in Andalusia, Murcia, Valencia, Catalonia and less pronouncedly in the Balearic Islands, moving afterwards towards France southern coast. During this event casualties and important economic damage were registered. The amounts of precipitation locally overpassed 200 mm in 24 hours and a tornado occurred in Gandia (Valencia). The main objective of this work is to provide a comprehensive description of the physical atmospheric processes giving rise to the intense precipitation in this event and its movement along the Spanish coast. High-resolution COSMO-CLM model simulations supported by the analysis of observational data sets will be presented. The model simulations and observational data sets, such as a dense network of global positioning systems (GPS), raingauges, surface measurements and radiosoundings are analyzed to document in detail the evolution of the warm and wet air masses which fed the high precipitation event (HPE) systems, as well as the low-level convergence to which the main convective systems were associated.

  16. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation.

    PubMed

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.

  17. Molecular codes for neuronal individuality and cell assembly in the brain

    PubMed Central

    Yagi, Takeshi

    2012-01-01

    The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporation into “cell assemblies” and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The clustered protocadherins (Pcdh) is a large subfamily within the diverse cadherin superfamily. The clustered Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of clustered Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric clustered Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of clustered Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, clustered Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features induce a hypothesis that the diverse clustered Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain. PMID:22518100

  18. The impact of malodour on communities: a review of assessment techniques.

    PubMed

    Hayes, J E; Stevenson, R J; Stuetz, R M

    2014-12-01

    Malodours remain the biggest source of complaints regarding environmental issues. This factor is likely to increase, as the urban development steadily encroaches into areas that have malodourous emitting industries (such as wastewater and waste management operations and intensive livestock practices), and has the potential to be both time and fiscally expensive. Despite the enormous amount of research involved in odour detection and abatement, as well as the creation of several distinct methodologies, there has yet been no definitive procedure to evaluate odour impact on communities, as well as community response. This paper is a review of the current methods that explore this problem, as well as a précis of this research field's goals and challenges. The first aim of this review is to illustrate the dichotomy between regulatory-established procedures, such as panellist testing, and methods that are centred around producing a more comprehensive explanation of factors that influence an odour's impact on a community or individual. In that regard, we have addressed several predominant paradigms of inquiry for this field: analytical methods, panellist testing, qualitative research, and survey methods, with associated variants. Secondly, the challenges of measuring and monitoring community impact are discussed. While the quantification of odorants is crucial to appreciating impact, individual-based modifiers of perception have an enormous scope for which to shape the effect of those odours. Perceptual differences are also likely the most dominant variables that influence the elicited behaviour of individuals who have experienced malodour exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2015-12-01

    Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.

  20. A dynamic monitoring approach for the surface morphology evolution measurement of plasma facing components by means of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongbei; Cui, Xiaoqian; Feng, Chunlei; Li, Yuanbo; Zhao, Mengge; Luo, Guangnan; Ding, Hongbin

    2017-11-01

    Plasma Facing Components (PFCs) in a magnetically confined fusion plasma device will be exposed to high heat load and particle fluxes, and it would cause PFCs' surface morphology to change due to material erosion and redeposition from plasma wall interactions. The state of PFCs' surface condition will seriously affect the performance of long-pulse or steady state plasma discharge in a tokamak; it will even constitute an enormous threat to the operation and the safety of fusion plasma devices. The PFCs' surface morphology evolution measurement could provide important information about PFCs' real-time status or damage situation and it would help to a better understanding of the plasma wall interaction process and mechanism. Meanwhile through monitoring the distribution of dust deposition in a tokamak and providing an upper limit on the amount of loose dust, the PFCs' surface morphology measurement could indirectly contribute to keep fusion operational limits and fusion device safety. Aiming at in situ dynamic monitoring PFCs' surface morphology evolution, a laboratory experimental platform DUT-SIEP (Dalian University of Technology-speckle interferometry experimental platform) based on the speckle interferometry technique has been constructed at Dalian University of Technology (DUT) in China. With directional specific designing and focusing on the real detection condition of EAST (Experimental Advanced Superconducting Tokamak), the DUT-SIEP could realize a variable measurement range, widely increased from 0.1 μm to 300 μm, with high spatial resolution (<1 mm) and ultra-high time resolution (<2 s for EAST measuring conditions). Three main components of the DUT-SIEP are all integrated and synchronized by a time schedule control and data acquisition terminal and coupled with a three-dimensional phase unwrapping algorithm, the surface morphology information of target samples can be obtained and reconstructed in real-time. A local surface morphology of the real divertor tiles adopted from EAST has been measured, and the feasibility and reliability of this new experimental platform have been demonstrated.

  1. Molar crown and root size relationship in anthropoid primates.

    PubMed

    Kupczik, Kornelius; Olejniczak, Anthony J; Skinner, Matthew M; Hublin, Jean-Jacques

    2009-01-01

    Mandibular corpus form is thought to reflect masticatory function and the size of the dentition, but there is no universal association between crown dimensions and corpus size across anthropoids. Previous research was based on the assumption that crown size is an appropriate proxy for overall tooth size, but this hypothesis remains largely untested. This study assesses the relationship between the volume and surface area of molar crowns and roots by examining two main hypotheses: (1) crown size correlates significantly with root size, and (2) the proportion of root-to-crown surface area is related to dietary proclivity. Permanent M2s (n=58) representing 19 anthropoid species were CT scanned and the volume and surface area of the crown and root were measured. Interspecific correlation and regression analyses reveal significant isometric relationships between crown and root volume and a positive allometric relationship between root and crown surface area (i.e. as crown surface area increases, root surface area becomes disproportionately greater). Intraspecifically, crown and root surface area correlate significantly in some species where such analyses were possible. In general, hard object feeders exhibit relatively larger root surface area per unit crown surface area compared to soft and tough object feeders. The results also show that despite differences in food specialization closely related species have similar root-to-crown surface area proportions, thus indicating a strong phylogenetic influence. Since it is possible that, at least in some species, crown and root size vary independently, future studies should elucidate the relationship between tooth root size and mandible form. Copyright (c) 2009 S. Karger AG, Basel.

  2. Age Differences in Prefrontal Surface Area and Thickness in Middle Aged to Older Adults.

    PubMed

    Dotson, Vonetta M; Szymkowicz, Sarah M; Sozda, Christopher N; Kirton, Joshua W; Green, Mackenzie L; O'Shea, Andrew; McLaren, Molly E; Anton, Stephen D; Manini, Todd M; Woods, Adam J

    2015-01-01

    Age is associated with reductions in surface area and cortical thickness, particularly in prefrontal regions. There is also evidence of greater thickness in some regions at older ages. Non-linear age effects in some studies suggest that age may continue to impact brain structure in later decades of life, but relatively few studies have examined the impact of age on brain structure within middle-aged to older adults. We investigated age differences in prefrontal surface area and cortical thickness in healthy adults between the ages of 51 and 81 years. Participants received a structural 3-Tesla magnetic resonance imaging scan. Based on a priori hypotheses, primary analyses focused on surface area and cortical thickness in the dorsolateral prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex. We also performed exploratory vertex-wise analyses of surface area and cortical thickness across the entire cortex. We found that older age was associated with smaller surface area in the dorsolateral prefrontal and orbitofrontal cortices but greater cortical thickness in the dorsolateral prefrontal and anterior cingulate cortices. Vertex-wise analyses revealed smaller surface area in primarily frontal regions at older ages, but no age effects were found for cortical thickness. Results suggest age is associated with reduced surface area but greater cortical thickness in prefrontal regions during later decades of life, and highlight the differential effects age has on regional surface area and cortical thickness.

  3. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  4. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  5. Urban Heat Island ın Ankara

    NASA Astrophysics Data System (ADS)

    Yılmaz, Erkan

    2016-04-01

    In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.

  6. Surface areas of fractally rough particles studied by scattering

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven

    1989-05-01

    The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.

  7. Towards the use of a census tract poverty indicator variable in cancer surveillance.

    PubMed

    Boscoe, Francis P

    2010-01-01

    Incidence rates for many cancer sites are strongly correlated with area measures of socioeconomic conditions such as poverty rate. Analyzing such measures at the county scale produces misleading results by masking enormous within-county variations. The census tract is a more suitable scale for assessing the relationship between cancer and socioeconomics. The North American Association of Central Cancer Registries (NAACCR) developed a census tract-level poverty indicator variable which was included as an optional item in its 2010 Call for Data. This variable does not allow the identification of individual census tracts as long as the county of diagnosis is not known. It is expected that this data item will be made available to researchers in future releases of the CINA Deluxe file.

  8. Robert Hooke, 1635-1703.

    PubMed

    Rowbury, Robin

    2012-01-01

    Robert Hooke was a polymath whose expertise during the 17th century spanned many different scientific areas. As a schoolboy on the Isle of Wight he was obsessed with the possibility of human flight and later became equally absorbed in cosmology and planetary motion. His skills as an artist were put to good use both as an architect following the Great Fire of London and before that in Micrographia. Although that book is best known for demonstrating the power of Hooke's microscope, Micrographia describes distant planetary bodies, the wave theory of light, the organic origin of fossils, and various other philosophical and scientific interests of its author The following thumbnail sketches of Hooke reveal him to be a man of enormous energy and imagination whose ideas were often pirated or under-rated.

  9. Frontiers of biomedical text mining: current progress

    PubMed Central

    Zweigenbaum, Pierre; Demner-Fushman, Dina; Yu, Hong; Cohen, Kevin B.

    2008-01-01

    It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or ‘BioNLP’ in general, focusing primarily on papers published within the past year. PMID:17977867

  10. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    PubMed

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  11. Occurrence of equine coital exanthema (ECE) in stallions in Japan and effectiveness of treatment with valacyclovir for ECE

    PubMed Central

    TOISHI, Yuko; TSUNODA, Nobuo; KIRISAWA, Rikio

    2017-01-01

    Equine coital exanthema (ECE) has been reported in many countries, but equine herpesvirus 3 (EHV-3) has been isolated only once in Japan. In 2015, symptoms of ECE were found, and EHV-3 was isolated in two stallions. Valacyclovir, an anti-herpesvirus agent, was administered orally. The stallions rested from mating for more than two weeks, causing enormous financial losses because of their high fees. This is the first study in which valacyclovir was administered for ECE. Though valacyclovir treatment did not shorten the duration of healing, the affected area did not expand after administration of valacyclovir. Valacyclovir therefore seems to be effective for suppression of EHV-3 infection. Further investigation about the administration protocol might be required. PMID:28123140

  12. Ten years of Nature Reviews Neuroscience: insights from the highly cited

    PubMed Central

    Luo, Liqun; Rodriguez, Eugenio; Jerbi, Karim; Lachaux, Jean-Philippe; Martinerie, Jacques; Corbetta, Maurizio; Shulman, Gordon L.; Piomelli, Daniele; Turrigiano, Gina G.; Nelson, Sacha B.; Joëls, Marian; de Kloet, E. Ronald; Holsboer, Florian; Amodio, David M.; Frith, Chris D.; Block, Michelle L.; Zecca, Luigi; Hong, Jau-Shyong; Dantzer, Robert; Kelley, Keith W.; Craig, A. D. (Bud)

    2012-01-01

    To celebrate the first 10 years of Nature Reviews Neuroscience, we invited the authors of the most cited article of each year to look back on the state of their field of research at the time of publication and the impact their article has had, and to discuss the questions that might be answered in the next 10 years. This selection of highly cited articles provides interesting snapshots of the progress that has been made in diverse areas of neuroscience. They show the enormous influence of neuroimaging techniques and highlight concepts that have generated substantial interest in the past decade, such as neuroimmunology, social neuroscience and the `network approach' to brain function. These advancements will pave the way for further exciting discoveries that lie ahead. PMID:20852655

  13. Limestone - A Crucial and Versatile Industrial Mineral Commodity

    USGS Publications Warehouse

    Bliss, James D.; Hayes, Timothy S.; Orris, Greta J.

    2008-01-01

    Limestone, as used by the minerals industry, is any rock composed mostly of calcium carbonate (CaCO3). Although limestone is common in many parts of the United States, it is critically absent from some. Limestone is used to produce Portland cement, as aggregate in concrete and asphalt, and in an enormous array of other products, making it a truly versatile commodity. Portland cement is essential to the building industry, but despite our Nation's abundance of limestone, there have been cement shortages in recent years. These have been caused in part by a need to find new areas suitable for quarrying operations. To help manage our Nation's resources of such essential mineral commodities, the U.S. Geological Survey (USGS) provides crucial data and scientific information to industry, policymakers, and the public.

  14. Functional genomics approaches in parasitic helminths.

    PubMed

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths. © 2011 Blackwell Publishing Ltd.

  15. Morphological abnormalities in prefrontal surface area and thalamic volume in attention deficit/hyperactivity disorder.

    PubMed

    Batty, Martin J; Palaniyappan, Lena; Scerif, Gaia; Groom, Madeleine J; Liddle, Elizabeth B; Liddle, Peter F; Hollis, Chris

    2015-08-30

    Although previous morphological studies have demonstrated abnormalities in prefrontal cortical thickness in children with attention deficit/hyperactivity disorder (ADHD), studies investigating cortical surface area are lacking. As the development of cortical surface is closely linked to the establishment of thalam-ocortical connections, any abnormalities in the structure of the thalamus are likely to relate to altered cortical surface area. Using a clinically well-defined sample of children with ADHD (n = 25, 1 female) and typically developing controls (n = 24, 1 female), we studied surface area across the cortex to determine whether children with ADHD had reduced thalamic volume that related to prefrontal cortical surface area. Relative to controls, children with ADHD had a significant reduction in thalamic volume and dorsolateral prefrontal cortical area in both hemispheres. Furthermore, children with ADHD with smaller thalamic volumes were found to have greater reductions in surface area, a pattern not evident in the control children. Our results are further evidence of reduced lateral prefrontal cortical area in ADHD. Moreover, for the first time, we have also shown a direct association between thalamic anatomy and frontal anatomy in ADHD, suggesting the pathophysiological process that alters surface area maturation is likely to be linked to the development of the thalamus. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Space filling minimal surfaces and sphere packings

    NASA Astrophysics Data System (ADS)

    Elser, Veit

    1994-05-01

    A space filling minimal surface is defined to be any embedded minimal surface without boundary with the property that the area and genus enclosed by any large spherical region scales in proportion to the volume of the region. The triply periodic minimal surfaces are one realization, but not necessarily the only one. By using the genus per unit volume of the surface, a meaningful comparison of surface areas can be made even in cases where there is no unit cell. Of the known periodic minimal surfaces this measure of the surface area is smallest for Schoen's FRD surface. This surface is one of several that is closely related to packings of spheres. Its low area is largely due to the fact that the corresponding sphere packing (fcc) has the maximal kissing number.

  17. Highly magnetized super-Chandrasekhar white dwarfs and their consequences

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, B.; Das, U.; Rao, A. R.

    2018-01-01

    Since 2012, we have been exploring possible existence of highly magnetized significantly super-Chandrasekhar white dwarfs with a new mass-limit. This explains several observations, e.g. peculiar over-luminous type Ia supernovae, some white dwarf pulsars, soft gamma-ray repeaters and anomalous X-ray pulsars, which otherwise puzzled us enormously. We have proceeded to uncover the underlying issues by exploiting the enormous potential in quantum, classical and relativistic effects lying with magnetic fields present in white dwarfs. We have also explored the issues related to the stability and gravitational radiation of these white dwarfs.

  18. Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules

    NASA Astrophysics Data System (ADS)

    Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus

    2016-06-01

    Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Chaikina, E. I.; Danilovskii, E. Yu.

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The resultsmore » obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.« less

  20. Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm.

    PubMed

    Diggikar, Rahul S; Patil, Rajendra H; Kale, Sheetal B; Thombre, Dipalee K; Gade, Wasudeo N; Kulkarni, Milind V; Kale, Bharat B

    2013-09-01

    Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.

  1. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament.

    PubMed

    Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G

    2004-02-01

    The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.

  2. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, S.; Wang, Z.; Huang, Q.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generatedmore » by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.« less

  3. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  4. A new route for degradation of volatile organic compounds under visible light: using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 atmosphere.

    PubMed

    Li, Danzhen; Chen, Zhixin; Chen, Yilin; Li, Wenjuan; Huang, Hanjie; He, Yunhui; Fu, Xianzhi

    2008-03-15

    The bifunctional photocatalyst Pt/TiO2-xNx has been successfully prepared by wet impregnation. The properties of Pt/ TiO2-xNx have been investigated by diffuse reflectance spectra, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, a photoluminescence technique with terephthalic acid, and electric field induced surface photovoltage spectra. The photocatalytic activity of the sample was evaluated by the decomposition of volatile organic pollutants (VOCs) in a H2-O2 atmosphere under visible light irradiation. The results demonstrated that nitrogen-doped and platinum-modified TiO2 in a H2-O2 atmosphere could enormously increase the quantum efficiency of the photocatalytic system with excellent photocatalytic activity and high catalytic stability. The increased quantum efficiency can be explained by enhanced separation efficiency of photogenerated electron-hole pairs, higher interface electron transfer rate, and an increased number of surface hydroxyl radicals in the photocatalytic process. A mechanism was proposed to elucidate the degradation of VOCs over PtTiO(2-x)Nx in a H2-O2 atmosphere under visible light irradiation.

  5. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air...) The regulations. (i) Through navigation of surface craft outside the target areas will be permitted at...

  6. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  7. New model for estimating the relationship between surface area and volume in the human body using skeletal remains.

    PubMed

    Kasabova, Boryana E; Holliday, Trenton W

    2015-04-01

    A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.

  8. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  9. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area.

    PubMed

    Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick

    2017-05-17

    Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.

  10. Surface premelting/recrystallization governing the collapse of open-cell nanoporous Cu via thermal annealing.

    PubMed

    Wang, L; Zhang, X M; Deng, L; Tang, J F; Xiao, S F; Deng, H Q; Hu, W Y

    2018-06-04

    We systematically investigate the collapse of a set of open-cell nanoporous Cu (np-Cu) materials with the same porosity and shape but different specific surface areas, during thermal annealing, by performing large-scale molecular dynamics simulations. Two mechanisms govern the collapse of np-Cu. One is direct surface premelting, facilitating the collapse of np-Cu, when the specific surface area is less than a critical value (∼2.38 nm-1). The other is recrystallization followed by surface premelting, accelerating the sloughing of ligaments and the annihilation of voids, when the critical specific surface area is exceeded. Surface premelting results from surface reconstruction by prompting localized "disordering" and "chaos" on the surface, and the melting temperature reduces linearly with the increase of the specific surface area. Recrystallization is followed by surface premelting as the melting temperature is below the supercooling point, where a liquid is unstable and instantaneously recrystallizes.

  11. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  12. Finite element analysis of human joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiringmore » data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.« less

  13. Dark matter influence on black objects thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  14. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP.

    PubMed

    Fan, Yuanjie; Yin, Yuehong

    2013-12-01

    Although exoskeletons have received enormous attention and have been widely used in gait training and walking assistance in recent years, few reports addressed their application during early poststroke rehabilitation. This paper presents a healthcare technology for active and progressive early rehabilitation using multisource information fusion from surface electromyography and force-position extended physiological proprioception. The active-compliance control based on interaction force between patient and exoskeleton is applied to accelerate the recovery of the neuromuscular function, whereby progressive treatment through timely evaluation contributes to an effective and appropriate physical rehabilitation. Moreover, a clinic-oriented rehabilitation system, wherein a lower extremity exoskeleton with active compliance is mounted on a standing bed, is designed to ensure comfortable and secure rehabilitation according to the structure and control requirements. Preliminary experiments and clinical trial demonstrate valuable information on the feasibility, safety, and effectiveness of the progressive exoskeleton-assisted training.

  15. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less

  16. Biotechnology

    NASA Image and Video Library

    2003-01-22

    ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include scanning chickens during processing to help prevent contaminated food from getting to the table. ProVision is working with Sanderson Farms of Mississippi and the U.S. Department of Agriculture. ProVision has a record in its spectral library of the unique spectral signature of fecal contamination, so chickens can be scanned and those with a positive reading can be separated. HSI sensors can also determine the quantity of surface contamination. Research in this application is quite advanced, and ProVision is working on a licensing agreement for the technology. The potential for future use of this equipment in food processing and food safety is enormous.

  17. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  18. Material Perception.

    PubMed

    Fleming, Roland W

    2017-09-15

    Under typical viewing conditions, human observers effortlessly recognize materials and infer their physical, functional, and multisensory properties at a glance. Without touching materials, we can usually tell whether they would feel hard or soft, rough or smooth, wet or dry. We have vivid visual intuitions about how deformable materials like liquids or textiles respond to external forces and how surfaces like chrome, wax, or leather change appearance when formed into different shapes or viewed under different lighting. These achievements are impressive because the retinal image results from complex optical interactions between lighting, shape, and material, which cannot easily be disentangled. Here I argue that because of the diversity, mutability, and complexity of materials, they pose enormous challenges to vision science: What is material appearance, and how do we measure it? How are material properties estimated and represented? Resolving these questions causes us to scrutinize the basic assumptions of mid-level vision.

  19. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean.

    PubMed

    Anderson, Thomas R; Rice, Tony

    2006-12-01

    While dredging in the Aegean Sea during the mid-19th century, Manxman Edward Forbes noticed that plants and animals became progressively more impoverished the greater the depth they were from the surface of the water. By extrapolation Forbes proposed his now infamous azoic hypothesis, namely that life would be extinguished altogether in the murky depths of the deep ocean. The whole idea seemed so entirely logical given the enormous pressure, cold and eternal darkness of this apparently uninhabitable environment. Yet we now know that the sea floor is teeming with life. Curiously, it took 25 years for the azoic hypothesis to fall from grace. This was despite the presence of ample contrary evidence, including starfishes, worms and other organisms that seemingly originated from the deep seabed. This is a tale of scientists ignoring observations that ran counter to their deep-seated, yet entirely erroneous, beliefs.

  20. Growing Embossed Nanostructures of Polymer Brushes on Wet-Etched Silicon Templated via Block Copolymers

    PubMed Central

    Lu, Xiaobin; Yan, Qin; Ma, Yinzhou; Guo, Xin; Xiao, Shou-Jun

    2016-01-01

    Block copolymer nanolithography has attracted enormous interest in chip technologies, such as integrated silicon chips and biochips, due to its large-scale and mass production of uniform patterns. We further modified this technology to grow embossed nanodots, nanorods, and nanofingerprints of polymer brushes on silicon from their corresponding wet-etched nanostructures covered with pendent SiHx (X = 1–3) species. Atomic force microscopy (AFM) was used to image the topomorphologies, and multiple transmission-reflection infrared spectroscopy (MTR-IR) was used to monitor the surface molecular films in each step for the sequential stepwise reactions. In addition, two layers of polymethacrylic acid (PMAA) brush nanodots were observed, which were attributed to the circumferential convergence growth and the diffusion-limited growth of the polymer brushes. The pH response of PMAA nanodots in the same region was investigated by AFM from pH 3.0 to 9.0. PMID:26841692

  1. Growing Embossed Nanostructures of Polymer Brushes on Wet-Etched Silicon Templated via Block Copolymers

    NASA Astrophysics Data System (ADS)

    Lu, Xiaobin; Yan, Qin; Ma, Yinzhou; Guo, Xin; Xiao, Shou-Jun

    2016-02-01

    Block copolymer nanolithography has attracted enormous interest in chip technologies, such as integrated silicon chips and biochips, due to its large-scale and mass production of uniform patterns. We further modified this technology to grow embossed nanodots, nanorods, and nanofingerprints of polymer brushes on silicon from their corresponding wet-etched nanostructures covered with pendent SiHx (X = 1-3) species. Atomic force microscopy (AFM) was used to image the topomorphologies, and multiple transmission-reflection infrared spectroscopy (MTR-IR) was used to monitor the surface molecular films in each step for the sequential stepwise reactions. In addition, two layers of polymethacrylic acid (PMAA) brush nanodots were observed, which were attributed to the circumferential convergence growth and the diffusion-limited growth of the polymer brushes. The pH response of PMAA nanodots in the same region was investigated by AFM from pH 3.0 to 9.0.

  2. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    NASA Astrophysics Data System (ADS)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  3. Asteroid exploration and utilization

    NASA Technical Reports Server (NTRS)

    Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar

    1992-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.

  4. Hyperspectral Imaging of fecal contamination on chickens

    NASA Technical Reports Server (NTRS)

    2003-01-01

    ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include scanning chickens during processing to help prevent contaminated food from getting to the table. ProVision is working with Sanderson Farms of Mississippi and the U.S. Department of Agriculture. ProVision has a record in its spectral library of the unique spectral signature of fecal contamination, so chickens can be scanned and those with a positive reading can be separated. HSI sensors can also determine the quantity of surface contamination. Research in this application is quite advanced, and ProVision is working on a licensing agreement for the technology. The potential for future use of this equipment in food processing and food safety is enormous.

  5. Construction and Screening of Marine Metagenomic Large Insert Libraries.

    PubMed

    Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A

    2017-01-01

    The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.

  6. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  7. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  8. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequatemore » to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.« less

  9. Progressive alterations of the auditory association areas in young non-psychotic offspring of schizophrenia patients.

    PubMed

    Bhojraj, Tejas S; Sweeney, John A; Prasad, Konasale M; Eack, Shaun; Rajarethinam, Rajaprabhakaran; Francis, Alan N; Montrose, Debra M; Keshavan, Matcheri S

    2011-02-01

    Schizophrenia may involve progressive alterations of structure and hemispheric lateralization of auditory association areas (AAA) within the superior temporal gyrus. These alterations may be greater in male patients. It is unclear if these deficits are state-dependent or whether they predate illness onset and reflect familial diathesis. We sought to compare AAA cortical thickness, surface area and lateralization across adolescent and young adult non-psychotic offspring of schizophrenia patients (OS) and healthy controls at baseline and one year follow-up. We also assessed the moderating effect of gender on these measures. Fifty-six OS and thirty-six control subjects were assessed at baseline and at follow-up on AAA surface area and thickness using FreeSurfer to process T1-MRI-images. We used repeated measures ANCOVAs, controlling intra cranial volume and age with assessment-time and side as within-subject factors and gender and study group as between-subject factors. Surface area deficit in OS was greater on the left than on the right, as reflected in a lower surface area laterality-index (left-right/left + right × 100) in OS compared to controls. Left, but not right surface area and surface area laterality-index showed a longitudinal decline in OS compared to controls. Male OS declined more than controls on surface area and thickness. Left AAA surface area may progressively decline in young non-psychotic offspring at familial diathesis for schizophrenia causing a continuing reversal of the leftward AAA lateralization. Progressive surface area reduction and thinning of AAA may be more prominent in young non-psychotic male offspring at risk for schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays

    NASA Astrophysics Data System (ADS)

    Shemeta, J. E.

    2011-12-01

    The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during an injection and used to assist the operators in the avoidance of geohazards (such as a karst feature or fault) or fracture height growth into undesirable formations such as water-bearing zones (that could ruin the well). An important objective for hydraulic fracture mapping is to map the effective fracture geometry: the specific volume of rock that is contributing to hydrocarbon flow in to the well. This, however, still remains an elusive goal that has yet to be completely understood with the current mapping technology.

  11. First-Principles Molecular Dynamics Study on the Electric-double layer Capacitance of Water-MXene interfaces

    NASA Astrophysics Data System (ADS)

    Ando, Yasunobu; Otani, Minoru

    MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.

  12. The varying stability of benthic homes: hydrologic regime and sediment supply control the timing and intensity of bed mobility

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.; Finnegan, N. J.

    2017-12-01

    Gravel river beds provide an ephemeral architecture for the benthic inhabitants of river ecosystems. Periphyton and benthic macroinvertebrates that live on or within the gravel are subject to catastrophic disruption upon mobilization of the surface gravel during floods. Because sediment supply varies by orders of magnitude across North America, and rivers have adjusted to convey their imposed loads, river bed surface mobility varies enormously. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydrologic patterns result in diverse regimes of benthic habitat stability. To quantitatively characterize these regimes, we calculate decades-scale time series of estimated bed surface mobility using sediment transport equations (Wilcock and Crowe, 2003). The method requires measurements of the bed surface grainsize distribution, channel slope, and standard USGS stream gauging records. We calculate the fraction of the bed surface grain size distribution that is mobile at any given flow, as well as the intensity of transport. We use the time series of bed mobility to compare between rivers and regions. In many snowmelt-dominated rivers in Idaho, a period of moderate bed mobility (W* > 0.002) generally occurs during the annual melt, and can last for days. In rivers draining the central and northern Appalachians, bed mobility is comparatively rare and occurs during short duration floods. Rivers on the tectonically active West Coast tend to experience bed mobility during most winter storms, with brief (hours long) periods of high transport rates (W* > 0.02) during storm peaks. The timing and intensity of bed mobility varies with hydrologic regime and sediment supply; these contrasts in bed mobility lead to diverse structural templates for river ecosystems.

  13. Parallel, stochastic measurement of molecular surface area.

    PubMed

    Juba, Derek; Varshney, Amitabh

    2008-08-01

    Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.

  14. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash

    2017-03-01

    Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.

  15. A spatial national health facility database for public health sector planning in Kenya in 2008.

    PubMed

    Noor, Abdisalan M; Alegana, Victor A; Gething, Peter W; Snow, Robert W

    2009-03-06

    Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized. A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care. The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries). This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79%) and the majority were dispensaries (91%). 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country. We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for improving planning. Expansion in public health care in Kenya has resulted in significant increases in geographic access although several areas of the country need further improvements. This information is key to future planning and with this paper we have released the digital spatial database in the public domain to assist the Kenyan Government and its partners in the health sector.

  16. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    USGS Publications Warehouse

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes with recent silicic ash-flow histories such as those found in the Andes and Alaska.

  17. [The economic consequences of AIDS in Africa].

    PubMed

    Ilinigumugabo, A

    1996-12-01

    The economic and social consequences of the AIDS epidemic in Africa are enormous because of the prevalence of the disease and the age structure of patients. AIDS has caused a rise in early childhood and adult mortality, leading to a younger age distribution and a less favorable dependency ratio. All epidemiological studies have shown a strong seroprevalence in urban areas, and some show higher infection rates among the educated. The consequences of AIDS at the household level begin with the appearance of symptoms and often continue past the death of the patient. Expenditures for medical care, treatment of opportunistic infections, loss of income of the patient (who frequently is the main breadwinner), depletion of savings, funeral expenses, and care for others who may have become infected create an enormous burden for most households. Widows with no inheritance rights are left destitute with their children, who may be taken out of school to reduce expenses. UNICEF estimates that some 5.5 million children in East and Central Africa will be orphaned by AIDS by the year 2000. Many such children end up in the streets, prime targets for prostitution and HIV infection. The coping mechanisms of poor communities with high prevalence rates are soon overwhelmed by demands for assistance. Businesses are affected by health care costs, lessened productivity, and absenteeism. Costs of training increase for jobs requiring skilled workers. AIDS tends to reduce agricultural productivity, especially in areas with little rainfall and high seasonal manpower needs. Cash crops, which frequently depend on advanced technology, are more vulnerable than is subsistence agriculture. Agronomists may be hard to replace, and large unskilled migratory labor forces living apart from families may develop habits of promiscuity that allow HIV to spread rapidly. The few studies done on direct health costs of AIDS show that they vary tremendously depending on the country's level of development and national health budget. AIDS-related expenditures already consume a large share of the health budgets of the most affected countries, and they are projected to increase significantly. The macroeconomic impact of the AIDS epidemic includes effects due to deteriorating health, such as decreased productivity, increased health expenditures, reduced savings, and decreased investment in education and human resources.

  18. The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique

    NASA Astrophysics Data System (ADS)

    Isa, N. A.; Mohd, W. M. N. Wan; Salleh, S. A.; Ooi, M. C. G.

    2018-02-01

    Matured trees contain high concentration of chlorophyll that encourages the process of photosynthesis. This process produces oxygen as a by-product and releases it into the atmosphere and helps in lowering the ambient temperature. This study attempts to analyse the effect of green area on air surface temperature of the Kuala Lumpur city. The air surface temperatures of two different dates which are, in March 2006 and March 2016 were simulated using the Weather Research and Forecasting (WRF) model. The green area in the city was extracted using the Normalized Difference Vegetation Index (NDVI) from two Landsat satellite images. The relationship between the air surface temperature and the green area were analysed using linear regression models. From the study, it was found that, the green area was significantly affecting the distribution of air temperature within the city. A strong negative correlation was identified through this study which indicated that higher NDVI values tend to have lower air surface temperature distribution within the focus study area. It was also found that, different urban setting in mixed built-up and vegetated areas resulted in different distributions of air surface temperature. Future studies should focus on analysing the air surface temperature within the area of mixed built-up and vegetated area.

  19. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...

  20. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...

Top