NASA Astrophysics Data System (ADS)
Kaurkin, M. N.; Ibrayev, R. A.; Belyaev, K. P.
2018-01-01
A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.
Bayesian Tracking of Emerging Epidemics Using Ensemble Optimal Statistical Interpolation
Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D.
2014-01-01
We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590
Interpolation of property-values between electron numbers is inconsistent with ensemble averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda-Quintana, Ramón Alain; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1; Ayers, Paul W.
2016-06-28
In this work we explore the physical foundations of models that study the variation of the ground state energy with respect to the number of electrons (E vs. N models), in terms of general grand-canonical (GC) ensemble formulations. In particular, we focus on E vs. N models that interpolate the energy between states with integer number of electrons. We show that if the interpolation of the energy corresponds to a GC ensemble, it is not differentiable. Conversely, if the interpolation is smooth, then it cannot be formulated as any GC ensemble. This proves that interpolation of electronic properties between integermore » electron numbers is inconsistent with any form of ensemble averaging. This emphasizes the role of derivative discontinuities and the critical role of a subsystem’s surroundings in determining its properties.« less
A New Ensemble Canonical Correlation Prediction Scheme for Seasonal Precipitation
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, William K. M.; Li, Guilong; Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)
2001-01-01
Department of Mathematical Sciences, University of Alberta, Edmonton, Canada This paper describes the fundamental theory of the ensemble canonical correlation (ECC) algorithm for the seasonal climate forecasting. The algorithm is a statistical regression sch eme based on maximal correlation between the predictor and predictand. The prediction error is estimated by a spectral method using the basis of empirical orthogonal functions. The ECC algorithm treats the predictors and predictands as continuous fields and is an improvement from the traditional canonical correlation prediction. The improvements include the use of area-factor, estimation of prediction error, and the optimal ensemble of multiple forecasts. The ECC is applied to the seasonal forecasting over various parts of the world. The example presented here is for the North America precipitation. The predictor is the sea surface temperature (SST) from different ocean basins. The Climate Prediction Center's reconstructed SST (1951-1999) is used as the predictor's historical data. The optimally interpolated global monthly precipitation is used as the predictand?s historical data. Our forecast experiments show that the ECC algorithm renders very high skill and the optimal ensemble is very important to the high value.
Vedadi, Farhang; Shirani, Shahram
2014-01-01
A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.
Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long
2001-01-01
This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.
Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
NASA Astrophysics Data System (ADS)
Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim
2017-07-01
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
Liu, Wei; Du, Peijun; Wang, Dongchen
2015-01-01
One important method to obtain the continuous surfaces of soil properties from point samples is spatial interpolation. In this paper, we propose a method that combines ensemble learning with ancillary environmental information for improved interpolation of soil properties (hereafter, EL-SP). First, we calculated the trend value for soil potassium contents at the Qinghai Lake region in China based on measured values. Then, based on soil types, geology types, land use types, and slope data, the remaining residual was simulated with the ensemble learning model. Next, the EL-SP method was applied to interpolate soil potassium contents at the study site. To evaluate the utility of the EL-SP method, we compared its performance with other interpolation methods including universal kriging, inverse distance weighting, ordinary kriging, and ordinary kriging combined geographic information. Results show that EL-SP had a lower mean absolute error and root mean square error than the data produced by the other models tested in this paper. Notably, the EL-SP maps can describe more locally detailed information and more accurate spatial patterns for soil potassium content than the other methods because of the combined use of different types of environmental information; these maps are capable of showing abrupt boundary information for soil potassium content. Furthermore, the EL-SP method not only reduces prediction errors, but it also compliments other environmental information, which makes the spatial interpolation of soil potassium content more reasonable and useful.
Assimilation of glider and mooring data into a coastal ocean model
NASA Astrophysics Data System (ADS)
Jones, Emlyn M.; Oke, Peter R.; Rizwi, Farhan; Murray, Lawrence M.
We have applied an ensemble optimal interpolation (EnOI) data assimilation system to a high resolution coastal ocean model of south-east Tasmania, Australia. The region is characterised by a complex coastline with water masses influenced by riverine input and the interaction between two offshore current systems. Using a large static ensemble to estimate the systems background error covariance, data from a coastal observing network of fixed moorings and a Slocum glider are assimilated into the model at daily intervals. We demonstrate that the EnOI algorithm can successfully correct a biased high resolution coastal model. In areas with dense observations, the assimilation scheme reduces the RMS difference between the model and independent GHRSST observations by 90%, while the domain-wide RMS difference is reduced by a more modest 40%. Our findings show that errors introduced by surface forcing and boundary conditions can be identified and reduced by a relatively sparse observing array using an inexpensive ensemble-based data assimilation system.
NASA Astrophysics Data System (ADS)
Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping
2017-10-01
A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3.9 and 6.5 °C for 2050s and 2080s relative to 1990s in Ontario, respectively; Cooling degree days and hot days will significantly increase over southern Ontario and heating degree days and cold days will significantly decrease in northern Ontario. Annual total precipitation will increase over Ontario and heavy precipitation events will increase as well. These results are consistent with conclusions in many other studies in the literature.
Data assimilation of citizen collected information for real-time flood hazard mapping
NASA Astrophysics Data System (ADS)
Sayama, T.; Takara, K. T.
2017-12-01
Many studies in data assimilation in hydrology have focused on the integration of satellite remote sensing and in-situ monitoring data into hydrologic or land surface models. For flood predictions also, recent studies have demonstrated to assimilate remotely sensed inundation information with flood inundation models. In actual flood disaster situations, citizen collected information including local reports by residents and rescue teams and more recently tweets via social media also contain valuable information. The main interest of this study is how to effectively use such citizen collected information for real-time flood hazard mapping. Here we propose a new data assimilation technique based on pre-conducted ensemble inundation simulations and update inundation depth distributions sequentially when local data becomes available. The propose method is composed by the following two-steps. The first step is based on weighting average of preliminary ensemble simulations, whose weights are updated by Bayesian approach. The second step is based on an optimal interpolation, where the covariance matrix is calculated from the ensemble simulations. The proposed method was applied to case studies including an actual flood event occurred. It considers two situations with more idealized one by assuming continuous flood inundation depth information is available at multiple locations. The other one, which is more realistic case during such a severe flood disaster, assumes uncertain and non-continuous information is available to be assimilated. The results show that, in the first idealized situation, the large scale inundation during the flooding was estimated reasonably with RMSE < 0.4 m in average. For the second more realistic situation, the error becomes larger (RMSE 0.5 m) and the impact of the optimal interpolation becomes comparatively less effective. Nevertheless, the applications of the proposed data assimilation method demonstrated a high potential of this method for assimilating citizen collected information for real-time flood hazard mapping in the future.
NASA Astrophysics Data System (ADS)
Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun
2018-05-01
A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
NASA Astrophysics Data System (ADS)
Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter
2018-03-01
An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.
Real-Time Fourier Synthesis of Ensembles with Timbral Interpolation
NASA Astrophysics Data System (ADS)
Haken, Lippold
1990-01-01
In Fourier synthesis, natural musical sounds are produced by summing time-varying sinusoids. Sounds are analyzed to find the amplitude and frequency characteristics for their sinusoids; interpolation between the characteristics of several sounds is used to produce intermediate timbres. An ensemble can be synthesized by summing all the sinusoids for several sounds, but in practice it is difficult to perform such computations in real time. To solve this problem on inexpensive hardware, it is useful to take advantage of the masking effects of the auditory system. By avoiding the computations for perceptually unimportant sinusoids, and by employing other computation reduction techniques, a large ensemble may be synthesized in real time on the Platypus signal processor. Unlike existing computation reduction techniques, the techniques described in this thesis do not sacrifice independent fine control over the amplitude and frequency characteristics of each sinusoid.
NASA Astrophysics Data System (ADS)
Chen, Xin; Luo, Yong; Xing, Pei; Nie, Suping; Tian, Qinhua
2015-04-01
Two sets of gridded annual mean surface air temperature in past millennia over the Northern Hemisphere was constructed employing optimal interpolation (OI) method so as to merge the tree ring proxy records with the simulations from CMIP5 (the fifth phase of the Climate Model Intercomparison Project). Both the uncertainties in proxy reconstruction and model simulations can be taken into account applying OI algorithm. For better preservation of physical coordinated features and spatial-temporal completeness of climate variability in 7 copies of model results, we perform the Empirical Orthogonal Functions (EOF) analysis to truncate the ensemble mean field as the first guess (background field) for OI. 681 temperature sensitive tree-ring chronologies are collected and screened from International Tree Ring Data Bank (ITRDB) and Past Global Changes (PAGES-2k) project. Firstly, two methods (variance matching and linear regression) are employed to calibrate the tree ring chronologies with instrumental data (CRUTEM4v) individually. In addition, we also remove the bias of both the background field and proxy records relative to instrumental dataset. Secondly, time-varying background error covariance matrix (B) and static "observation" error covariance matrix (R) are calculated for OI frame. In our scheme, matrix B was calculated locally, and "observation" error covariance are partially considered in R matrix (the covariance value between the pairs of tree ring sites that are very close to each other would be counted), which is different from the traditional assumption that R matrix should be diagonal. Comparing our results, it turns out that regional averaged series are not sensitive to the selection for calibration methods. The Quantile-Quantile plots indicate regional climatologies based on both methods are tend to be more agreeable with regional reconstruction of PAGES-2k in 20th century warming period than in little ice age (LIA). Lager volcanic cooling response over Asia and Europe in context of recent millennium are detected in our datasets than that revealed in regional reconstruction from PAGES-2k network. Verification experiments have showed that the merging approach really reconcile the proxy data and model ensemble simulations in an optimal way (with smaller errors than both of them). Further research is needed to improve the error estimation on them.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
Context dependent anti-aliasing image reconstruction
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.; Hunt, A.; Arlia, N.
1989-01-01
Image Reconstruction has been mostly confined to context free linear processes; the traditional continuum interpretation of digital array data uses a linear interpolator with or without an enhancement filter. Here, anti-aliasing context dependent interpretation techniques are investigated for image reconstruction. Pattern classification is applied to each neighborhood to assign it a context class; a different interpolation/filter is applied to neighborhoods of differing context. It is shown how the context dependent interpolation is computed through ensemble average statistics using high resolution training imagery from which the lower resolution image array data is obtained (simulation). A quadratic least squares (LS) context-free image quality model is described from which the context dependent interpolation coefficients are derived. It is shown how ensembles of high-resolution images can be used to capture the a priori special character of different context classes. As a consequence, a priori information such as the translational invariance of edges along the edge direction, edge discontinuity, and the character of corners is captured and can be used to interpret image array data with greater spatial resolution than would be expected by the Nyquist limit. A Gibb-like artifact associated with this super-resolution is discussed. More realistic context dependent image quality models are needed and a suggestion is made for using a quality model which now is finding application in data compression.
Zheng, Jingjing; Frisch, Michael J
2017-12-12
An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.
Faheem, Muhammad; Heyden, Andreas
2014-08-12
We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.
Regional Climate Models Downscaling in the Alpine Area with Multimodel SuperEnsemble
NASA Astrophysics Data System (ADS)
Cane, D.; Barbarino, S.; Renier, L.; Ronchi, C.
2012-04-01
The climatic scenarios show a strong signal of warming in the Alpine area already for the mid XXI century. The climate simulation, however, even when obtained with Regional Climate Models (RCMs), are affected by strong errors where compared with observations in the control period, due to their difficulties in representing the complex orography of the Alps and limitations in their physical parametrization. In this work we use a selection of RCMs runs from the ENSEMBLES project, carefully chosen in order to maximise the variety of leading Global Climate Models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observation for the Greater Alpine Area are extracted from the European dataset E-OBS produced by the project ENSEMBLES with an available resolution of 25 km. For the study area of Piemonte daily temperature and precipitation observations (1957-present) were carefully gridded on a 14-km grid over Piemonte Region with an Optimal Interpolation technique. We applied the Multimodel SuperEnsemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We propose also the first application to RCMs of a brand new probabilistic Multimodel SuperEnsemble Dressing technique to estimate precipitation fields, already applied successfully to weather forecast models, with careful description of precipitation Probability Density Functions conditioned to the model outputs. This technique reduces the strong precipitation overestimation by RCMs over the alpine chain and reproduces the monthly behaviour of observed precipitation in the control period far better than the direct model outputs.
NASA Astrophysics Data System (ADS)
Newman, A. J.; Clark, M. P.; Nijssen, B.; Wood, A.; Gutmann, E. D.; Mizukami, N.; Longman, R. J.; Giambelluca, T. W.; Cherry, J.; Nowak, K.; Arnold, J.; Prein, A. F.
2016-12-01
Gridded precipitation and temperature products are inherently uncertain due to myriad factors. These include interpolation from a sparse observation network, measurement representativeness, and measurement errors. Despite this inherent uncertainty, uncertainty is typically not included, or is a specific addition to each dataset without much general applicability across different datasets. A lack of quantitative uncertainty estimates for hydrometeorological forcing fields limits their utility to support land surface and hydrologic modeling techniques such as data assimilation, probabilistic forecasting and verification. To address this gap, we have developed a first of its kind gridded, observation-based ensemble of precipitation and temperature at a daily increment for the period 1980-2012 over the United States (including Alaska and Hawaii). A longer, higher resolution version (1970-present, 1/16th degree) has also been implemented to support real-time hydrologic- monitoring and prediction in several regional US domains. We will present the development and evaluation of the dataset, along with initial applications of the dataset for ensemble data assimilation and probabilistic evaluation of high resolution regional climate model simulations. We will also present results on the new high resolution products for Alaska and Hawaii (2 km and 250 m respectively), to complete the first ensemble observation based product suite for the entire 50 states. Finally, we will present plans to improve the ensemble dataset, focusing on efforts to improve the methods used for station interpolation and ensemble generation, as well as methods to fuse station data with numerical weather prediction model output.
NASA Astrophysics Data System (ADS)
Liu, Danian; Zhu, Jiang; Shu, Yeqiang; Wang, Dongxiao; Wang, Weiqiang; Cai, Shuqun
2018-06-01
The Northwestern Tropical Pacific Ocean (NWTPO) moorings observing system, including 15 moorings, was established in 2013 to provide velocity profile data. Observing system simulation experiments (OSSEs) were carried out to assess the ability of the observation system to monitor intraseasonal variability in a pilot study, where ideal "mooring-observed" velocity was assimilated using Ensemble Optimal Interpolation (EnOI) based on the Regional Oceanic Modeling System (ROMS). Because errors between the control and "nature" runs have a mesoscale structure, a random ensemble derived from 20-90-day bandpass-filtered nine-year model outputs is proved to be more appropriate for the NWTPO mooring array assimilation than a random ensemble derived from a 30-day running mean. The simulation of the intraseasonal currents in the North Equatorial Current (NEC), North Equatorial Countercurrent (NECC), and Equatorial Undercurrent (EUC) areas can be improved by assimilating velocity profiles using a 20-90-day bandpass-filtered ensemble. The root mean square errors (RMSEs) of the intraseasonal zonal (U) and meridional velocity (V) above 500 m depth within the study area (between 0°N-18°N and 122°E-147°E) were reduced by 15.4% and 16.9%, respectively. Improvements in the downstream area of the NEC moorings transect were optimum where the RMSEs of the intraseasonal velocities above 500 m were reduced by more than 30%. Assimilating velocity profiles can have a positive impact on the simulation and forecast of thermohaline structure and sea level anomalies in the ocean.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
NASA Astrophysics Data System (ADS)
Cofino, A. S.; Santos, C.; Garcia-Moya, J. A.; Gutierrez, J. M.; Orfila, B.
2009-04-01
The Short-Range Ensemble Prediction System (SREPS) is a multi-LAM (UM, HIRLAM, MM5, LM and HRM) multi analysis/boundary conditions (ECMWF, UKMetOffice, DWD and GFS) run twice a day by AEMET (72 hours lead time) over a European domain, with a total of 5 (LAMs) x 4 (GCMs) = 20 members. One of the main goals of this project is analyzing the impact of models and boundary conditions in the short-range high-resolution forecasted precipitation. A previous validation of this method has been done considering a set of climate networks in Spain, France and Germany, by interpolating the prediction to the gauge locations (SREPS, 2008). In this work we compare these results with those obtained by using a statistical downscaling method to post-process the global predictions, obtaining an "advanced interpolation" for the local precipitation using climate network precipitation observations. In particular, we apply the PROMETEO downscaling system based on analogs and compare the SREPS ensemble of 20 members with the PROMETEO statistical ensemble of 5 (analog ensemble) x 4 (GCMs) = 20 members. Moreover, we will also compare the performance of a combined approach post-processing the SREPS outputs using the PROMETEO system. References: SREPS 2008. 2008 EWGLAM-SRNWP Meeting (http://www.aemet.es/documentos/va/divulgacion/conferencias/prediccion/Ewglam/PRED_CSantos.pdf)
Regional climate models downscaling in the Alpine area with Multimodel SuperEnsemble
NASA Astrophysics Data System (ADS)
Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.
2012-08-01
The climatic scenarios show a strong signal of warming in the Alpine area already for the mid XXI century. The climate simulations, however, even when obtained with Regional Climate Models (RCMs), are affected by strong errors where compared with observations, due to their difficulties in representing the complex orography of the Alps and limitations in their physical parametrization. Therefore the aim of this work is reducing these model biases using a specific post processing statistic technique to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we use a selection of RCMs runs from the ENSEMBLES project, carefully chosen in order to maximise the variety of leading Global Climate Models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observation for the Greater Alpine Area are extracted from the European dataset E-OBS produced by the project ENSEMBLES with an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (1957-present) were carefully gridded on a 14-km grid over Piedmont Region with an Optimal Interpolation technique. Hence, we applied the Multimodel SuperEnsemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We propose also the first application to RCMS of a brand new probabilistic Multimodel SuperEnsemble Dressing technique to estimate precipitation fields, already applied successfully to weather forecast models, with careful description of precipitation Probability Density Functions conditioned to the model outputs. This technique reduces the strong precipitation overestimation by RCMs over the alpine chain and reproduces well the monthly behaviour of precipitation in the control period.
Balancing building and maintenance costs in growing transport networks
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco
2017-09-01
The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.
QCD with two light dynamical chirally improved quarks: Mesons
NASA Astrophysics Data System (ADS)
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2012-02-01
We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 163×32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both Gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain FK/Fπ=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values.
Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang
2016-01-01
For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system. PMID:27835638
Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang
2016-01-01
For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.
NASA Astrophysics Data System (ADS)
Chase, Patrick; Vondran, Gary
2011-01-01
Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.
Ding, Qian; Wang, Yong; Zhuang, Dafang
2018-04-15
The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord
2017-04-01
This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.
A hierarchical transition state search algorithm
NASA Astrophysics Data System (ADS)
del Campo, Jorge M.; Köster, Andreas M.
2008-07-01
A hierarchical transition state search algorithm is developed and its implementation in the density functional theory program deMon2k is described. This search algorithm combines the double ended saddle interpolation method with local uphill trust region optimization. A new formalism for the incorporation of the distance constrain in the saddle interpolation method is derived. The similarities between the constrained optimizations in the local trust region method and the saddle interpolation are highlighted. The saddle interpolation and local uphill trust region optimizations are validated on a test set of 28 representative reactions. The hierarchical transition state search algorithm is applied to an intramolecular Diels-Alder reaction with several internal rotors, which makes automatic transition state search rather challenging. The obtained reaction mechanism is discussed in the context of the experimentally observed product distribution.
Ducru, Pablo; Josey, Colin; Dibert, Karia; ...
2017-01-25
This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less
2012-08-15
Environmental Model ( GDEM ) 72 levels) was conserved in the interpolated profiles and small variations in the vertical field may have lead to large...Planner ETKF Ensemble Transform Kalman Filter G8NCOM 1/8⁰ Global NCOM GA Genetic Algorithm GDEM Generalized Digital Environmental Model GOST
Hybrid Data Assimilation without Ensemble Filtering
NASA Technical Reports Server (NTRS)
Todling, Ricardo; Akkraoui, Amal El
2014-01-01
The Global Modeling and Assimilation Office is preparing to upgrade its three-dimensional variational system to a hybrid approach in which the ensemble is generated using a square-root ensemble Kalman filter (EnKF) and the variational problem is solved using the Grid-point Statistical Interpolation system. As in most EnKF applications, we found it necessary to employ a combination of multiplicative and additive inflations, to compensate for sampling and modeling errors, respectively and, to maintain the small-member ensemble solution close to the variational solution; we also found it necessary to re-center the members of the ensemble about the variational analysis. During tuning of the filter we have found re-centering and additive inflation to play a considerably larger role than expected, particularly in a dual-resolution context when the variational analysis is ran at larger resolution than the ensemble. This led us to consider a hybrid strategy in which the members of the ensemble are generated by simply converting the variational analysis to the resolution of the ensemble and applying additive inflation, thus bypassing the EnKF. Comparisons of this, so-called, filter-free hybrid procedure with an EnKF-based hybrid procedure and a control non-hybrid, traditional, scheme show both hybrid strategies to provide equally significant improvement over the control; more interestingly, the filter-free procedure was found to give qualitatively similar results to the EnKF-based procedure.
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.
Accurate B-spline-based 3-D interpolation scheme for digital volume correlation
NASA Astrophysics Data System (ADS)
Ren, Maodong; Liang, Jin; Wei, Bin
2016-12-01
An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.
Learning the dynamics of objects by optimal functional interpolation.
Ahn, Jong-Hoon; Kim, In Young
2012-09-01
Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.
Optimized Quasi-Interpolators for Image Reconstruction.
Sacht, Leonardo; Nehab, Diego
2015-12-01
We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.
NASA Astrophysics Data System (ADS)
Rienecker, M. M.; Adamec, D.
1995-01-01
An ensemble of fraternal-twin experiments is used to assess the utility of optimal interpolation and model-based vertical empirical orthogonal functions (eofs) of streamfunction variability to assimilate satellite altimeter data into ocean models. Simulated altimeter data are assimilated into a basin-wide 3-layer quasi-geostrophic model with a horizontal grid spacing of 15 km. The effects of bottom topography are included and the model is forced by a wind stress curl distribution which is constant in time. The simulated data are extracted, along altimeter tracks with spatial and temporal characteristics of Geosat, from a reference model ocean with a slightly different climatology from that generated by the model used for assimilation. The use of vertical eofs determined from the model-generated streamfunction variability is shown to be effective in aiding the model's dynamical extrapolation of the surface information throughout the rest of the water column. After a single repeat cycle (17 days), the analysis errors are reduced markedly from the initial level, by 52% in the surface layer, 41% in the second layer and 11% in the bottom layer. The largest differences between the assimilation analysis and the reference ocean are found in the nonlinear regime of the mid-latitude jet in all layers. After 100 days of assimilation, the error in the upper two layers has been reduced by over 50% and that in the bottom layer by 38%. The essence of the method is that the eofs capture the statistics of the dynamical balances in the model and ensure that this balance is not inappropriately disturbed during the assimilation process. This statistical balance includes any potential vorticity homogeneity which may be associated with the eddy stirring by mid-latitude surface jets.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan
2017-04-04
Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal interpolation and the Kalman filter. [for analysis of numerical weather predictions
NASA Technical Reports Server (NTRS)
Cohn, S.; Isaacson, E.; Ghil, M.
1981-01-01
The estimation theory of stochastic-dynamic systems is described and used in a numerical study of optimal interpolation. The general form of data assimilation methods is reviewed. The Kalman-Bucy, KB filter, and optimal interpolation (OI) filters are examined for effectiveness in performance as gain matrices using a one-dimensional form of the shallow-water equations. Control runs in the numerical analyses were performed for a ten-day forecast in concert with the OI method. The effects of optimality, initialization, and assimilation were studied. It was found that correct initialization is necessary in order to localize errors, especially near boundary points. Also, the use of small forecast error growth rates over data-sparse areas was determined to offset inaccurate modeling of correlation functions near boundaries.
Polyhedral Interpolation for Optimal Reaction Control System Jet Selection
NASA Technical Reports Server (NTRS)
Gefert, Leon P.; Wright, Theodore
2014-01-01
An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
Fast adaptive flat-histogram ensemble to enhance the sampling in large systems
NASA Astrophysics Data System (ADS)
Xu, Shun; Zhou, Xin; Jiang, Yi; Wang, YanTing
2015-09-01
An efficient novel algorithm was developed to estimate the Density of States (DOS) for large systems by calculating the ensemble means of an extensive physical variable, such as the potential energy, U, in generalized canonical ensembles to interpolate the interior reverse temperature curve , where S( U) is the logarithm of the DOS. This curve is computed with different accuracies in different energy regions to capture the dependence of the reverse temperature on U without setting prior grid in the U space. By combining with a U-compression transformation, we decrease the computational complexity from O( N 3/2) in the normal Wang Landau type method to O( N 1/2) in the current algorithm, as the degrees of freedom of system N. The efficiency of the algorithm is demonstrated by applying to Lennard Jones fluids with various N, along with its ability to find different macroscopic states, including metastable states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Jun; Zhang, Jiangjiang; Li, Weixuan
2016-10-01
The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less
Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.
Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao
2018-02-01
Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.
Inverse Regional Modeling with Adjoint-Free Technique
NASA Astrophysics Data System (ADS)
Yaremchuk, M.; Martin, P.; Panteleev, G.; Beattie, C.
2016-02-01
The ongoing parallelization trend in computer technologies facilitates the use ensemble methods in geophysical data assimilation. Of particular interest are ensemble techniques which do not require the development of tangent linear numerical models and their adjoints for optimization. These ``adjoint-free'' methods minimize the cost function within the sequence of subspaces spanned by a carefully chosen sets perturbations of the control variables. In this presentation, an adjoint-free variational technique (a4dVar) is demonstrated in an application estimating initial conditions of two numerical models: the Navy Coastal Ocean Model (NCOM), and the surface wave model (WAM). With the NCOM, performance of both adjoint and adjoint-free 4dVar data assimilation techniques is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic Sea in 2006. Numerical experiments have shown that a4dVar is capable of providing forecast skill similar to that of conventional 4dVar at comparable computational expense while being less susceptible to excitation of ageostrophic modes that are not supported by observations. Adjoint-free technique constrained by the WAM model is tested in a series of data assimilation experiments with synthetic observations in the southern Chukchi Sea. The types of considered observations are directional spectra estimated from point measurements by stationary buoys, significant wave height (SWH) observations by coastal high-frequency radars and along-track SWH observations by satellite altimeters. The a4dVar forecast skill is shown to be 30-40% better than the skill of the sequential assimilaiton method based on optimal interpolation which is currently used in operations. Prospects of further development of the a4dVar methods in regional applications are discussed.
Image interpolation via regularized local linear regression.
Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang
2011-12-01
The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Fink, Manfred; Pfannschmidt, Kai; Knevels, Raphel; Fischer, Christian; Brenning, Alexander
2017-04-01
Decisions on measures for adapting to possible climate impacts are critical at both regional and local levels of authority. Currently, the data from EURO-CORDEX is only provided at resolutions (0.11 and 0.44 degrees) that are sufficient for climate analysis in larger scale regions. Therefore, there is a need for more detailed climate information that can assist decision making at the county and town levels. To tackle this challenge, we have developed a tool for the Just Another Modelling System (JAMS; Kralisch et al. 2007) that produces approx. 50 climate characterizing parameters (e.g. average temperature, ice days, climatic water balance, among others) for different time intervals. This tool is combined within the JAMS environment with the J2000g distributed conceptual hydrological model (Krause and Hanisch 2009) to additionally calculate hydro-meteorological parameters, such as actual evapotranspiration, ground water recharge and runoff generation. The resolution of the data was transformed to a higher resolution (250 m) by applying an inverse distance weights (IDW) interpolation. The IDW was combined with an altitude regression approach using digital elevation model data to represent more detailed information of the land surface. We applied this downscaling approach for the federal state of Thuringia, Germany, which is represented by 371206 model units. An ensemble of 10 different EURO-CORDEX models (0.11 degree resolution) in a time period from 1961 to 2100 and measured data from 1960 to 1990 were analyzed. The climate change impacts were estimated by analyzing the changes between historical periods (1960 - 1990) and future periods (2020 - 2050, 2070 -2100) within the modeled EURO-CORDEX ensemble members. We also improved our interpolation approach by replacing IDW with kriging; this approach was especially an advantage for the interpolation of irregularly distributed measurement stations. The results were used to estimate the effects of climate change for the federal state of Thuringia and to support Thuringian climate-change mitigation and adaptation strategies. Future work will concentrate on bias correction of the ensemble members using the measured data. References Kralisch, S., P. Krause, M. Fink, C. Fischer, and W. Flügel (2007): Component based environmental modelling using the JAMS framework, in Proceedings of the MODSIM 2007 International Congress on Modelling and Simulation, edited by D. Kulasiri and L. Oxley, Christchurch, New Zealand Krause P, Hanisch S (2009): Simulation and analysis of the impact of projected climate change on the spatially distributed water balance in Thuringia, Germany. Adv Geosci 21:33-48. doi:10.5194/adgeo-21-33-2009
Rufo, Montaña; Antolín, Alicia; Paniagua, Jesús M; Jiménez, Antonio
2018-04-01
A comparative study was made of three methods of interpolation - inverse distance weighting (IDW), spline and ordinary kriging - after optimization of their characteristic parameters. These interpolation methods were used to represent the electric field levels for three emission frequencies (774kHz, 900kHz, and 1107kHz) and for the electrical stimulation quotient, Q E , characteristic of complex electromagnetic environments. Measurements were made with a spectrum analyser in a village in the vicinity of medium-wave radio broadcasting antennas. The accuracy of the models was quantified by comparing their predictions with levels measured at the control points not used to generate the models. The results showed that optimizing the characteristic parameters of each interpolation method allows any of them to be used. However, the best results in terms of the regression coefficient between each model's predictions and the actual control point field measurements were for the IDW method. Copyright © 2018 Elsevier Inc. All rights reserved.
High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles
2006-12-01
6.20 Max DR Yawing Moment History. ...............................................................270 Figure 6.21 Snapshot from MATLAB “Profile...Propagation using “ode45” (Euler Angles)...........................................330 Figure 6.114 Interpolated Elevon Controls using Various MATLAB ...Schemes.................332 Figure 6.115 Interpolated Flap Controls using Various MATLAB Schemes.....................333 Figure 6.116 Interpolated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.
2011-08-15
A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less
Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia
NASA Astrophysics Data System (ADS)
Kim, Hyunjung; Kim, Hyun Mee; Kim, Jinwoong; Cho, Chun-Ho
2018-02-01
In this study, CarbonTracker, an inverse modeling system based on the ensemble Kalman filter, was used to evaluate the effects of data assimilation parameters (assimilation window length and ensemble size) on the estimation of surface CO2 fluxes in Asia. Several experiments with different parameters were conducted, and the results were verified using CO2 concentration observations. The assimilation window lengths tested were 3, 5, 7, and 10 weeks, and the ensemble sizes were 100, 150, and 300. Therefore, a total of 12 experiments using combinations of these parameters were conducted. The experimental period was from January 2006 to December 2009. Differences between the optimized surface CO2 fluxes of the experiments were largest in the Eurasian Boreal (EB) area, followed by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger in boreal summer than in boreal winter. The effect of ensemble size on the optimized biosphere flux is larger than the effect of the assimilation window length in Asia, but the importance of them varies in specific regions in Asia. The optimized biosphere flux was more sensitive to the assimilation window length in EB, whereas it was sensitive to the ensemble size as well as the assimilation window length in ET. The larger the ensemble size and the shorter the assimilation window length, the larger the uncertainty (i.e., spread of ensemble) of optimized surface CO2 fluxes. The 10-week assimilation window and 300 ensemble size were the optimal configuration for CarbonTracker in the Asian region based on several verifications using CO2 concentration measurements.
The Weighted-Average Lagged Ensemble.
DelSole, T; Trenary, L; Tippett, M K
2017-11-01
A lagged ensemble is an ensemble of forecasts from the same model initialized at different times but verifying at the same time. The skill of a lagged ensemble mean can be improved by assigning weights to different forecasts in such a way as to maximize skill. If the forecasts are bias corrected, then an unbiased weighted lagged ensemble requires the weights to sum to one. Such a scheme is called a weighted-average lagged ensemble. In the limit of uncorrelated errors, the optimal weights are positive and decay monotonically with lead time, so that the least skillful forecasts have the least weight. In more realistic applications, the optimal weights do not always behave this way. This paper presents a series of analytic examples designed to illuminate conditions under which the weights of an optimal weighted-average lagged ensemble become negative or depend nonmonotonically on lead time. It is shown that negative weights are most likely to occur when the errors grow rapidly and are highly correlated across lead time. The weights are most likely to behave nonmonotonically when the mean square error is approximately constant over the range forecasts included in the lagged ensemble. An extreme example of the latter behavior is presented in which the optimal weights vanish everywhere except at the shortest and longest lead times.
CONORBIT: constrained optimization by radial basis function interpolation in trust regions
Regis, Rommel G.; Wild, Stefan M.
2016-09-26
Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less
Mass Spectra of Ds and Ωc in Lattice QCD with Nf = 2 + 1 + 1 Domain-Wall Quarks
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai
2018-03-01
We perform hybrid Monte Carlo simulation of lattice QCD with Nf = 2+1+1 optimal domain-wall quarks on the 323 × 64 lattice with lattice spacing a 0:06 fm, and generate a gauge ensemble with physical s and c quarks, and pion mass 280 MeV. Using 2-quark (meson) and 3-quark (baryon) interpolating operators, the mass spectra of the lowest-lying states containing s and c quarks (Ds and Ωc) are extracted [1], which turn out in good agreement with the high energy experimental values, together with the predictions of the charmed baryons which have not been observed in experiments. For the five new narrow c states observed by the LHCb Collaboration [2], the lowest-lying Ωc(3000) agrees with our predicted mass 3015(29)(34) MeV of the lowest-lying Ωc with JP = 1/2-. This implies that JP of Ωc(3000) is 1/2-.
NASA Astrophysics Data System (ADS)
Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu
2016-06-01
To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.
Research progress and hotspot analysis of spatial interpolation
NASA Astrophysics Data System (ADS)
Jia, Li-juan; Zheng, Xin-qi; Miao, Jin-li
2018-02-01
In this paper, the literatures related to spatial interpolation between 1982 and 2017, which are included in the Web of Science core database, are used as data sources, and the visualization analysis is carried out according to the co-country network, co-category network, co-citation network, keywords co-occurrence network. It is found that spatial interpolation has experienced three stages: slow development, steady development and rapid development; The cross effect between 11 clustering groups, the main convergence of spatial interpolation theory research, the practical application and case study of spatial interpolation and research on the accuracy and efficiency of spatial interpolation. Finding the optimal spatial interpolation is the frontier and hot spot of the research. Spatial interpolation research has formed a theoretical basis and research system framework, interdisciplinary strong, is widely used in various fields.
Quasi interpolation with Voronoi splines.
Mirzargar, Mahsa; Entezari, Alireza
2011-12-01
We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Yin, Dong-shan; Gao, Yu-ping; Zhao, Shu-hong
2017-07-01
Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observations are not evenly sampled, and the internals between two data points range from several hours to more than half a month. Further more, these data sets are sparse. All this makes it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, a cubic spline interpolation is used to densify the data set, and make the intervals between data points uniform. Then, the Vondrak filter is employed to smooth the data set, and get rid of the high-frequency noises, and finally the weighted average method is adopted to generate the ensemble pulsar time scale. The newly released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set is used to generate the ensemble pulsar time scale. This data set includes the 9-year observational data of 37 millisecond pulsars observed by the 100-meter Green Bank telescope and the 305-meter Arecibo telescope. It is found that the algorithm used in this paper can reduce effectively the influence caused by the noises in pulsar timing residuals, and improve the long-term stability of the ensemble pulsar time scale. Results indicate that the long-term (> 1 yr) stability of the ensemble pulsar time scale is better than 3.4 × 10-15.
The NRL relocatable ocean/acoustic ensemble forecast system
NASA Astrophysics Data System (ADS)
Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.
2009-04-01
A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.
Optimizing inhomogeneous spin ensembles for quantum memory
NASA Astrophysics Data System (ADS)
Bensky, Guy; Petrosyan, David; Majer, Johannes; Schmiedmayer, Jörg; Kurizki, Gershon
2012-07-01
We propose a method to maximize the fidelity of quantum memory implemented by a spectrally inhomogeneous spin ensemble. The method is based on preselecting the optimal spectral portion of the ensemble by judiciously designed pulses. This leads to significant improvement of the transfer and storage of quantum information encoded in the microwave or optical field.
Towards extracting the timelike pion form factor on CLS twoflavour ensembles
NASA Astrophysics Data System (ADS)
Erben, Felix; Green, Jeremy; Mohler, Daniel; Wittig, Hartmut
2018-03-01
Results are presented from an ongoing study of the ρ resonance. The focus is on CLS 2-flavour ensembles generated using O(a) improved Wilson fermions with pion masses ranging from 265 to 437 MeV. The energy levels are extracted by solving the GEVP of correlator matrices, created with the distillation approach involving ρ and ππ interpolators. The study is done in the centre-of-mass frame and several moving frames. One aim of this work is to extract the timelike pion form factor after applying the Lüscher formalism. We therefore plan to integrate this study with the existing Mainz programme for the calculation of the hadronic vacuum polarization contribution to the muon g - 2.
NASA Astrophysics Data System (ADS)
Kunii, Masaru; Saito, Kazuo; Seko, Hiromu; Hara, Masahiro; Hara, Tabito; Yamaguchi, Munehiko; Gong, Jiandong; Charron, Martin; Du, Jun; Wang, Yong; Chen, Dehui
2011-05-01
During the period around the Beijing 2008 Olympic Games, the Beijing 2008 Olympics Research and Development Project (B08RDP) was conducted as part of the World Weather Research Program short-range weather forecasting research project. Mesoscale ensemble prediction (MEP) experiments were carried out by six organizations in near-real time, in order to share their experiences in the development of MEP systems. The purpose of this study is to objectively verify these experiments and to clarify the problems associated with the current MEP systems through the same experiences. Verification was performed using the MEP outputs interpolated into a common verification domain with a horizontal resolution of 15 km. For all systems, the ensemble spreads grew as the forecast time increased, and the ensemble mean improved the forecast errors compared with individual control forecasts in the verification against the analysis fields. However, each system exhibited individual characteristics according to the MEP method. Some participants used physical perturbation methods. The significance of these methods was confirmed by the verification. However, the mean error (ME) of the ensemble forecast in some systems was worse than that of the individual control forecast. This result suggests that it is necessary to pay careful attention to physical perturbations.
A kriging metamodel-assisted robust optimization method based on a reverse model
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao
2018-02-01
The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
NASA Astrophysics Data System (ADS)
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
NASA Astrophysics Data System (ADS)
Lahmiri, Salim; Boukadoum, Mounir
2015-08-01
We present a new ensemble system for stock market returns prediction where continuous wavelet transform (CWT) is used to analyze return series and backpropagation neural networks (BPNNs) for processing CWT-based coefficients, determining the optimal ensemble weights, and providing final forecasts. Particle swarm optimization (PSO) is used for finding optimal weights and biases for each BPNN. To capture symmetry/asymmetry in the underlying data, three wavelet functions with different shapes are adopted. The proposed ensemble system was tested on three Asian stock markets: The Hang Seng, KOSPI, and Taiwan stock market data. Three statistical metrics were used to evaluate the forecasting accuracy; including, mean of absolute errors (MAE), root mean of squared errors (RMSE), and mean of absolute deviations (MADs). Experimental results showed that our proposed ensemble system outperformed the individual CWT-ANN models each with different wavelet function. In addition, the proposed ensemble system outperformed the conventional autoregressive moving average process. As a result, the proposed ensemble system is suitable to capture symmetry/asymmetry in financial data fluctuations for better prediction accuracy.
Behn, Andrew; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin
2011-12-13
The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%).
NASA Astrophysics Data System (ADS)
Clark, E.; Wood, A.; Nijssen, B.; Newman, A. J.; Mendoza, P. A.
2016-12-01
The System for Hydrometeorological Applications, Research and Prediction (SHARP), developed at the National Center for Atmospheric Research (NCAR), University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation, is a fully automated ensemble prediction system for short-term to seasonal applications. It incorporates uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 plausible temperature and precipitation time series through the Sacramento/Snow-17 model. The forcing ensemble explicitly accounts for measurement and interpolation uncertainties in the development of gridded meteorological forcing time series. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. To select the IHCs that are most consistent with the observations, we employ a particle filter (PF) that weights IHC ensemble members based on observations of streamflow and SWE. These particles are then used to initialize ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS), generating a streamflow forecast ensemble. We test this method in two basins in the Pacific Northwest that are important for water resources management: 1) the Green River upstream of Howard Hanson Dam, and 2) the South Fork Flathead River upstream of Hungry Horse Dam. The first of these is characterized by mixed snow and rain, while the second is snow-dominated. The PF-based forecasts are compared to forecasts based on a single IHC (corresponding to median streamflow) paired with the full GEFS ensemble, and 2) the full IHC ensemble, without filtering, paired with the full GEFS ensemble. In addition to assessing improvements in the spread of IHCs, we perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts at 1- to 7-day lead times.
Optimized theory for simple and molecular fluids.
Marucho, M; Montgomery Pettitt, B
2007-03-28
An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.
Space-time interpolation of satellite winds in the tropics
NASA Astrophysics Data System (ADS)
Patoux, Jérôme; Levy, Gad
2013-09-01
A space-time interpolator for creating average geophysical fields from satellite measurements is presented and tested. It is designed for optimal spatiotemporal averaging of heterogeneous data. While it is illustrated with satellite surface wind measurements in the tropics, the methodology can be useful for interpolating, analyzing, and merging a wide variety of heterogeneous and satellite data in the atmosphere and ocean over the entire globe. The spatial and temporal ranges of the interpolator are determined by averaging satellite and in situ measurements over increasingly larger space and time windows and matching the corresponding variability at each scale. This matching provides a relationship between temporal and spatial ranges, but does not provide a unique pair of ranges as a solution to all averaging problems. The pair of ranges most appropriate for a given application can be determined by performing a spectral analysis of the interpolated fields and choosing the smallest values that remove any or most of the aliasing due to the uneven sampling by the satellite. The methodology is illustrated with the computation of average divergence fields over the equatorial Pacific Ocean from SeaWinds-on-QuikSCAT surface wind measurements, for which 72 h and 510 km are suggested as optimal interpolation windows. It is found that the wind variability is reduced over the cold tongue and enhanced over the Pacific warm pool, consistent with the notion that the unstably stratified boundary layer has generally more variable winds and more gustiness than the stably stratified boundary layer. It is suggested that the spectral analysis optimization can be used for any process where time-space correspondence can be assumed.
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
NASA Astrophysics Data System (ADS)
Protopopescu, V.; D'Helon, C.; Barhen, J.
2003-06-01
A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.
An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts.
Barghash, Mahmoud
2015-01-01
Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN's performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.
Gradient Flow and Scale Setting on MILC HISQ Ensembles
Bazavov, A.; Bernard, C.; Brown, N.; ...
2016-05-25
We report on a scale determination with gradient-flow techniques on the N f = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales p √t 0/a and w 0/a and their tree-level improvements,√t 0;imp and w 0;imp, are computed on each ensemble using Symanzik ow and the cloverleaf definition of the energy density E. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence,more » the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We also determine the scales p t 0 = 0:1416( +8 -5) fm and w 0 = 0:1717( +12 -11) fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of w 0 and √t 0 is comparable to or more precise than the best previous estimates, respectively. We also find the continuum mass-dependence of w 0 that will be useful for estimating the scales of other ensembles. Furthermore, we estimate the integrated autocorrelation length of . For long flow times, the autocorrelation length of appears to be comparable to or smaller than that of the topological charge.« less
Knowledge-Based Methods To Train and Optimize Virtual Screening Ensembles
2016-01-01
Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2N). A recursive approximation to the optimal solution scales as O(N2), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets. PMID:27097522
A second-order unconstrained optimization method for canonical-ensemble density-functional methods
NASA Astrophysics Data System (ADS)
Nygaard, Cecilie R.; Olsen, Jeppe
2013-03-01
A second order converging method of ensemble optimization (SOEO) in the framework of Kohn-Sham Density-Functional Theory is presented, where the energy is minimized with respect to an ensemble density matrix. It is general in the sense that the number of fractionally occupied orbitals is not predefined, but rather it is optimized by the algorithm. SOEO is a second order Newton-Raphson method of optimization, where both the form of the orbitals and the occupation numbers are optimized simultaneously. To keep the occupation numbers between zero and two, a set of occupation angles is defined, from which the occupation numbers are expressed as trigonometric functions. The total number of electrons is controlled by a built-in second order restriction of the Newton-Raphson equations, which can be deactivated in the case of a grand-canonical ensemble (where the total number of electrons is allowed to change). To test the optimization method, dissociation curves for diatomic carbon are produced using different functionals for the exchange-correlation energy. These curves show that SOEO favors symmetry broken pure-state solutions when using functionals with exact exchange such as Hartree-Fock and Becke three-parameter Lee-Yang-Parr. This is explained by an unphysical contribution to the exact exchange energy from interactions between fractional occupations. For functionals without exact exchange, such as local density approximation or Becke Lee-Yang-Parr, ensemble solutions are favored at interatomic distances larger than the equilibrium distance. Calculations on the chromium dimer are also discussed. They show that SOEO is able to converge to ensemble solutions for systems that are more complicated than diatomic carbon.
NASA Astrophysics Data System (ADS)
Maglevanny, I. I.; Smolar, V. A.
2016-01-01
We introduce a new technique of interpolation of the energy-loss function (ELF) in solids sampled by empirical optical spectra. Finding appropriate interpolation methods for ELFs poses several challenges. The sampled ELFs are usually very heterogeneous, can originate from various sources thus so called "data gaps" can appear, and significant discontinuities and multiple high outliers can be present. As a result an interpolation based on those data may not perform well at predicting reasonable physical results. Reliable interpolation tools, suitable for ELF applications, should therefore satisfy several important demands: accuracy and predictive power, robustness and computational efficiency, and ease of use. We examined the effect on the fitting quality due to different interpolation schemes with emphasis on ELF mesh optimization procedures and we argue that the optimal fitting should be based on preliminary log-log scaling data transforms by which the non-uniformity of sampled data distribution may be considerably reduced. The transformed data are then interpolated by local monotonicity preserving Steffen spline. The result is a piece-wise smooth fitting curve with continuous first-order derivatives that passes through all data points without spurious oscillations. Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points. It is found that proposed technique gives the most accurate results and also that its computational time is short. Thus, it is feasible using this simple method to address practical problems associated with interaction between a bulk material and a moving electron. A compact C++ implementation of our algorithm is also presented.
[Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].
Chen, Hao; Yu, Haizhong
2014-04-01
Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.
An optimized ensemble local mean decomposition method for fault detection of mechanical components
NASA Astrophysics Data System (ADS)
Zhang, Chao; Li, Zhixiong; Hu, Chao; Chen, Shuai; Wang, Jianguo; Zhang, Xiaogang
2017-03-01
Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions.
Bricault, Ivan; Ferretti, Gilbert
2005-01-01
While multislice spiral computed tomography (CT) scanners are provided by all major manufacturers, their specific interpolation algorithms have been rarely evaluated. Because the results published so far relate to distinct particular cases and differ significantly, there are contradictory recommendations about the choice of pitch in clinical practice. In this paper, we present a new tool for the evaluation of multislice spiral CT z-interpolation algorithms, and apply it to the four-slice case. Our software is based on the computation of a "Weighted Radiation Profile" (WRP), and compares WRP to an expected ideal profile in terms of widening and heterogeneity. It provides a unique scheme for analyzing a large variety of spiral CT acquisition procedures. Freely chosen parameters include: number of detector rows, detector collimation, nominal slice width, helical pitch, and interpolation algorithm with any filter shape and width. Moreover, it is possible to study any longitudinal and off-isocenter positions. Theoretical and experimental results show that WRP, more than Slice Sensitivity Profile (SSP), provides a comprehensive characterization of interpolation algorithms. WRP analysis demonstrates that commonly "preferred helical pitches" are actually nonoptimal regarding the formerly distinguished z-sampling gap reduction criterion. It is also shown that "narrow filter" interpolation algorithms do not enable a general preferred pitch discussion, since they present poor properties with large longitudinal and off-center variations. In the more stable case of "wide filter" interpolation algorithms, SSP width or WRP widening are shown to be almost constant. Therefore, optimal properties should no longer be sought in terms of these criteria. On the contrary, WRP heterogeneity is related to variable artifact phenomena and can pertinently characterize optimal pitches. In particular, the exemplary interpolation properties of pitch = 1 "wide filter" mode are demonstrated.
NASA Astrophysics Data System (ADS)
Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.
2012-10-01
Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.
PIV Data Validation Software Package
NASA Technical Reports Server (NTRS)
Blackshire, James L.
1997-01-01
A PIV data validation and post-processing software package was developed to provide semi-automated data validation and data reduction capabilities for Particle Image Velocimetry data sets. The software provides three primary capabilities including (1) removal of spurious vector data, (2) filtering, smoothing, and interpolating of PIV data, and (3) calculations of out-of-plane vorticity, ensemble statistics, and turbulence statistics information. The software runs on an IBM PC/AT host computer working either under Microsoft Windows 3.1 or Windows 95 operating systems.
Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang
2013-07-01
Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
EnOI-IAU Initialization Scheme Designed for Decadal Climate Prediction System IAP-DecPreS
NASA Astrophysics Data System (ADS)
Wu, Bo; Zhou, Tianjun; Zheng, Fei
2018-02-01
A decadal climate prediction system named as IAP-DecPreS was constructed in the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, based on a fully coupled model FGOALS-s2 and a newly developed initialization scheme, referred to as EnOI-IAU. In this paper, we introduce the design of the EnOI-IAU scheme, assess the accuracies of initialization integrations using the EnOI-IAU and preliminarily evaluate hindcast skill of the IAP-DecPreS. The EnOI-IAU scheme integrates two conventional assimilation approaches, ensemble optimal interpolation (EnOI) and incremental analysis update (IAU). The EnOI and IAU were applied to calculate analysis increments and incorporate them into the model, respectively. Three continuous initialization (INIT) runs were conducted for the period of 1950-2015, in which observational sea surface temperature (SST) from the HadISST1.1 and subsurface ocean temperature profiles from the EN4.1.1 data set were assimilated. Then nine-member 10 year long hindcast runs initiated from the INIT runs were conducted for each year in the period of 1960-2005. The accuracies of the INIT runs are evaluated from the following three aspects: upper 700 m ocean temperature, temporal evolution of SST anomalies, and dominant interdecadal variability modes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). Finally, preliminary evaluation of the ensemble mean of the hindcast runs suggests that the IAP-DecPreS has skill in the prediction of the PDO-related SST anomalies in the midlatitude North Pacific and AMO-related SST anomalies in the tropical North Atlantic.
Mahmoudzadeh, Amir Pasha; Kashou, Nasser H.
2013-01-01
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method. PMID:24000283
Mahmoudzadeh, Amir Pasha; Kashou, Nasser H
2013-01-01
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.
NASA Astrophysics Data System (ADS)
Liu, Li; Xu, Yue-Ping
2017-04-01
Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.
Design and optimization of color lookup tables on a simplex topology.
Monga, Vishal; Bala, Raja; Mo, Xuan
2012-04-01
An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.
A Canonical Ensemble Correlation Prediction Model for Seasonal Precipitation Anomaly
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Guilong
2001-01-01
This report describes an optimal ensemble forecasting model for seasonal precipitation and its error estimation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. This new CCA model includes the following features: (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States precipitation field. The predictor is the sea surface temperature.
A Comparative Study of Interferometric Regridding Algorithms
NASA Technical Reports Server (NTRS)
Hensley, Scott; Safaeinili, Ali
1999-01-01
THe paper discusses regridding options: (1) The problem of interpolating data that is not sampled on a uniform grid, that is noisy, and contains gaps is a difficult problem. (2) Several interpolation algorithms have been implemented: (a) Nearest neighbor - Fast and easy but shows some artifacts in shaded relief images. (b) Simplical interpolator - uses plane going through three points containing point where interpolation is required. Reasonably fast and accurate. (c) Convolutional - uses a windowed Gaussian approximating the optimal prolate spheroidal weighting function for a specified bandwidth. (d) First or second order surface fitting - Uses the height data centered in a box about a given point and does a weighted least squares surface fit.
Morabito, Marco; Pavlinic, Daniela Z; Crisci, Alfonso; Capecchi, Valerio; Orlandini, Simone; Mekjavic, Igor B
2011-07-01
Military and civil defense personnel are often involved in complex activities in a variety of outdoor environments. The choice of appropriate clothing ensembles represents an important strategy to establish the success of a military mission. The main aim of this study was to compare the known clothing insulation of the garment ensembles worn by soldiers during two winter outdoor field trials (hike and guard duty) with the estimated optimal clothing thermal insulations recommended to maintain thermoneutrality, assessed by using two different biometeorological procedures. The overall aim was to assess the applicability of such biometeorological procedures to weather forecast systems, thereby developing a comprehensive biometeorological tool for military operational forecast purposes. Military trials were carried out during winter 2006 in Pokljuka (Slovenia) by Slovene Armed Forces personnel. Gastrointestinal temperature, heart rate and environmental parameters were measured with portable data acquisition systems. The thermal characteristics of the clothing ensembles worn by the soldiers, namely thermal resistance, were determined with a sweating thermal manikin. Results showed that the clothing ensemble worn by the military was appropriate during guard duty but generally inappropriate during the hike. A general under-estimation of the biometeorological forecast model in predicting the optimal clothing insulation value was observed and an additional post-processing calibration might further improve forecast accuracy. This study represents the first step in the development of a comprehensive personalized biometeorological forecast system aimed at improving recommendations regarding the optimal thermal insulation of military garment ensembles for winter activities.
Quadratic trigonometric B-spline for image interpolation using GA
Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906
Quadratic trigonometric B-spline for image interpolation using GA.
Hussain, Malik Zawwar; Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation.
Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach
NASA Astrophysics Data System (ADS)
Kumral, Mustafa; Ozer, Umit
2013-03-01
Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution iteratively. A case study was conducted to demonstrate the performance of approach. The findings showed that the approach could be used to plan a new drilling campaign.
Markov random field model-based edge-directed image interpolation.
Li, Min; Nguyen, Truong Q
2008-07-01
This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.
Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography.
Zhang, Hua; Sonke, Jan-Jakob
2013-01-01
Cone-beam (CB) computed tomography (CT) is widely used in the field of medical imaging for guidance. Inspired by Betram's directional interpolation (BDI) methods, directional sinogram interpolation (DSI) was implemented to generate more CB projections by optimized (iterative) double-orientation estimation in sinogram space and directional interpolation. A new CBCT was subsequently reconstructed with the Feldkamp algorithm using both the original and interpolated CB projections. The proposed method was evaluated on both phantom and clinical data, and image quality was assessed by correlation ratio (CR) between the interpolated image and a gold standard obtained from full measured projections. Additionally, streak artifact reduction and image blur were assessed. In a CBCT reconstructed by 40 acquired projections over an arc of 360 degree, streak artifacts dropped 20.7% and 6.7% in a thorax phantom, when our method was compared to linear interpolation (LI) and BDI methods. Meanwhile, image blur was assessed by a head-and-neck phantom, where image blur of DSI was 20.1% and 24.3% less than LI and BDI. When our method was compared to LI and DI methods, CR increased by 4.4% and 3.1%. Streak artifacts of sparsely acquired CBCT were decreased by our method and image blur induced by interpolation was constrained to below other interpolation methods.
NASA Astrophysics Data System (ADS)
Ohmer, Marc; Liesch, Tanja; Goeppert, Nadine; Goldscheider, Nico
2017-11-01
The selection of the best possible method to interpolate a continuous groundwater surface from point data of groundwater levels is a controversial issue. In the present study four deterministic and five geostatistical interpolation methods (global polynomial interpolation, local polynomial interpolation, inverse distance weighting, radial basis function, simple-, ordinary-, universal-, empirical Bayesian and co-Kriging) and six error statistics (ME, MAE, MAPE, RMSE, RMSSE, Pearson R) were examined for a Jurassic karst aquifer and a Quaternary alluvial aquifer. We investigated the possible propagation of uncertainty of the chosen interpolation method on the calculation of the estimated vertical groundwater exchange between the aquifers. Furthermore, we validated the results with eco-hydrogeological data including the comparison between calculated groundwater depths and geographic locations of karst springs, wetlands and surface waters. These results show, that calculated inter-aquifer exchange rates based on different interpolations of groundwater potentials may vary greatly depending on the chosen interpolation method (by factor >10). Therefore, the choice of an interpolation method should be made with care, taking different error measures as well as additional data for plausibility control into account. The most accurate results have been obtained with co-Kriging incorporating secondary data (e.g. topography, river levels).
Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts
NASA Astrophysics Data System (ADS)
Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève
2013-04-01
Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the variance-enhanced products, compared to the bi-linear interpolation, which is a decisive advantage. The disaggregation technique of Perica and Foufoula-Georgiou (1996) hence represents an interesting way of bridging the gap between the meteorological models' resolution and the high degree of spatial precision sometimes required by hydrological models in their precipitation representation. References Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (3): RG3003, [np]. Doi: 10.1029/2009RG000314. Perica, S., and Foufoula-Georgiou, E. 1996. Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. Journal Of Geophysical Research, 101(D21): 26347-26361. Ruiz, J., Saulo, C. and Kalnay, E. 2009. Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America. Weather and forecasting, 24: 319-336. DOI: 10.1175/2008WAF2007098.1 This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.
NASA Astrophysics Data System (ADS)
Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.
2012-12-01
A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model which had been used for Western North Pacific (WNP) tropical cyclone (TC) genesis (Hall 2011) as well as North Atlantic tropical cyclone genesis (Hall and Jewson 2007). The introduction of these tracks complements the shortage of the historical samples and allows for more reliable PDFs required for implementation of JPM-OS. Using the 33,731 tracks and JPM-OS, an optimal storm ensemble is determined. This approach results in different storms/winds for storm surge and inundation modeling, and produces different Base Flood Elevation maps for coastal regions. Coastal inundation maps produced by the two different methods will be discussed in detail in the poster paper.
Assessment of Surface Air Temperature over China Using Multi-criterion Model Ensemble Framework
NASA Astrophysics Data System (ADS)
Li, J.; Zhu, Q.; Su, L.; He, X.; Zhang, X.
2017-12-01
The General Circulation Models (GCMs) are designed to simulate the present climate and project future trends. It has been noticed that the performances of GCMs are not always in agreement with each other over different regions. Model ensemble techniques have been developed to post-process the GCMs' outputs and improve their prediction reliabilities. To evaluate the performances of GCMs, root-mean-square error, correlation coefficient, and uncertainty are commonly used statistical measures. However, the simultaneous achievements of these satisfactory statistics cannot be guaranteed when using many model ensemble techniques. Meanwhile, uncertainties and future scenarios are critical for Water-Energy management and operation. In this study, a new multi-model ensemble framework was proposed. It uses a state-of-art evolutionary multi-objective optimization algorithm, termed Multi-Objective Complex Evolution Global Optimization with Principle Component Analysis and Crowding Distance (MOSPD), to derive optimal GCM ensembles and demonstrate the trade-offs among various solutions. Such trade-off information was further analyzed with a robust Pareto front with respect to different statistical measures. A case study was conducted to optimize the surface air temperature (SAT) ensemble solutions over seven geographical regions of China for the historical period (1900-2005) and future projection (2006-2100). The results showed that the ensemble solutions derived with MOSPD algorithm are superior over the simple model average and any single model output during the historical simulation period. For the future prediction, the proposed ensemble framework identified that the largest SAT change would occur in the South Central China under RCP 2.6 scenario, North Eastern China under RCP 4.5 scenario, and North Western China under RCP 8.5 scenario, while the smallest SAT change would occur in the Inner Mongolia under RCP 2.6 scenario, South Central China under RCP 4.5 scenario, and South Central China under RCP 8.5 scenario.
Fusing Satellite-Derived Irradiance and Point Measurements through Optimal Interpolation
NASA Astrophysics Data System (ADS)
Lorenzo, A.; Morzfeld, M.; Holmgren, W.; Cronin, A.
2016-12-01
Satellite-derived irradiance is widely used throughout the design and operation of a solar power plant. While satellite-derived estimates cover a large area, they also have large errors compared to point measurements from sensors on the ground. We describe an optimal interpolation routine that fuses the broad spatial coverage of satellite-derived irradiance with the high accuracy of point measurements. The routine can be applied to any satellite-derived irradiance and point measurement datasets. Unique aspects of this work include the fact that information is spread using cloud location and thickness and that a number of point measurements are collected from rooftop PV systems. The routine is sensitive to errors in the satellite image geolocation, so care must be taken to adjust the cloud locations based on the solar and satellite geometries. Analysis of the optimal interpolation routine over Tucson, AZ, with 20 point measurements shows a significant improvement in the irradiance estimate for two distinct satellite image to irradiance algorithms. Improved irradiance estimates can be used for resource assessment, distributed generation production estimates, and irradiance forecasts.
A study on characteristics of retrospective optimal interpolation with WRF testbed
NASA Astrophysics Data System (ADS)
Kim, S.; Noh, N.; Lim, G.
2012-12-01
This study presents the application of retrospective optimal interpolation (ROI) with Weather Research and Forecasting model (WRF). Song et al. (2009) suggest ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. Song and Lim (2011) improve the method by incorporating eigen-decomposition and covariance inflation. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In this study, ROI method is applied to WRF model to validate the algorithm and to investigate the capability. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance. Using the background error covariance in eigen-space, 1-profile assimilation experiment is performed. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation. The characteristics and strength/weakness of ROI method are investigated by conducting the experiments with other data assimilation method.
Ortho Image and DTM Generation with Intelligent Methods
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadeghian, S.
2013-10-01
Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.
Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation
Song, Genxin; Zhang, Jing; Wang, Ke
2014-01-01
In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129
AUC-Maximizing Ensembles through Metalearning.
LeDell, Erin; van der Laan, Mark J; Petersen, Maya
2016-05-01
Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.
AUC-Maximizing Ensembles through Metalearning
LeDell, Erin; van der Laan, Mark J.; Peterson, Maya
2016-01-01
Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree. PMID:27227721
Spatiotemporal Interpolation for Environmental Modelling
Susanto, Ferry; de Souza, Paulo; He, Jing
2016-01-01
A variation of the reduction-based approach to spatiotemporal interpolation (STI), in which time is treated independently from the spatial dimensions, is proposed in this paper. We reviewed and compared three widely-used spatial interpolation techniques: ordinary kriging, inverse distance weighting and the triangular irregular network. We also proposed a new distribution-based distance weighting (DDW) spatial interpolation method. In this study, we utilised one year of Tasmania’s South Esk Hydrology model developed by CSIRO. Root mean squared error statistical methods were performed for performance evaluations. Our results show that the proposed reduction approach is superior to the extension approach to STI. However, the proposed DDW provides little benefit compared to the conventional inverse distance weighting (IDW) method. We suggest that the improved IDW technique, with the reduction approach used for the temporal dimension, is the optimal combination for large-scale spatiotemporal interpolation within environmental modelling applications. PMID:27509497
NASA Astrophysics Data System (ADS)
Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin
2015-11-01
The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.
NASA Astrophysics Data System (ADS)
Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.
2015-12-01
The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.
A multiphysical ensemble system of numerical snow modelling
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel
2017-05-01
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.
An approach to unbiased subsample interpolation for motion tracking.
McCormick, Matthew M; Varghese, Tomy
2013-04-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder-Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique.
A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.
Liu, Wei; Zhang, Jingfeng; Fan, Jing-Song; Tria, Giancarlo; Grüber, Gerhard; Yang, Daiwen
2016-05-10
Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sim, K S; Kiani, M A; Nia, M E; Tso, C P
2014-01-01
A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Ouyang, Qi; Lu, Wenxi; Lin, Jin; Deng, Wenbing; Cheng, Weiguo
2017-08-01
The surrogate-based simulation-optimization techniques are frequently used for optimal groundwater remediation design. When this technique is used, surrogate errors caused by surrogate-modeling uncertainty may lead to generation of infeasible designs. In this paper, a conservative strategy that pushes the optimal design into the feasible region was used to address surrogate-modeling uncertainty. In addition, chance-constrained programming (CCP) was adopted to compare with the conservative strategy in addressing this uncertainty. Three methods, multi-gene genetic programming (MGGP), Kriging (KRG) and support vector regression (SVR), were used to construct surrogate models for a time-consuming multi-phase flow model. To improve the performance of the surrogate model, ensemble surrogates were constructed based on combinations of different stand-alone surrogate models. The results show that: (1) the surrogate-modeling uncertainty was successfully addressed by the conservative strategy, which means that this method is promising for addressing surrogate-modeling uncertainty. (2) The ensemble surrogate model that combines MGGP with KRG showed the most favorable performance, which indicates that this ensemble surrogate can utilize both stand-alone surrogate models to improve the performance of the surrogate model.
Decadal Prediction Skill in the GEOS-5 Forecast System
NASA Technical Reports Server (NTRS)
Ham, Yoo-Geun; Rienecker, Michael M.; Suarez, M.; Vikhliaev, Yury V.; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.
2012-01-01
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office?s GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). The hindcasts are initialized every December from 1959 to 2010 following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from the atmospheric reanalysis (MERRA, the Modern-Era Retrospective Analysis for Research and Applications) generated using the GEOS-5 atmospheric model. The forecast skill of a three-member-ensemble mean is compared to that of an experiment without initialization but forced with observed CO2. The results show that initialization acts to increase the forecast skill of Northern Atlantic SST compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. The annual-mean Atlantic Meridional Overturning Circulation (AMOC) index is predictable up to a 5-year lead time, consistent with the predictable signal in upper ocean heat content over the Northern Atlantic. While the skill measured by Mean Squared Skill Score (MSSS) shows 50% improvement up to 10-year lead forecast over the subtropical and mid-latitude Atlantic, however, prediction skill is relatively low in the subpolar gyre, due in part to the fact that the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region appears to be unrealistic. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.
Interpolation schemes for peptide rearrangements.
Bauer, Marianne S; Strodel, Birgit; Fejer, Szilard N; Koslover, Elena F; Wales, David J
2010-02-07
A variety of methods (in total seven) comprising different combinations of internal and Cartesian coordinates are tested for interpolation and alignment in connection attempts for polypeptide rearrangements. We consider Cartesian coordinates, the internal coordinates used in CHARMM, and natural internal coordinates, each of which has been interfaced to the OPTIM code and compared with the corresponding results for united-atom force fields. We show that aligning the methylene hydrogens to preserve the sign of a local dihedral angle, rather than minimizing a distance metric, provides significant improvements with respect to connection times and failures. We also demonstrate the superiority of natural coordinate methods in conjunction with internal alignment. Checking the potential energy of the interpolated structures can act as a criterion for the choice of the interpolation coordinate system, which reduces failures and connection times significantly.
Multi-criterion model ensemble of CMIP5 surface air temperature over China
NASA Astrophysics Data System (ADS)
Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming
2018-05-01
The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the South Central China (the Inner Mongolia), the North Eastern China (the South Central China), and the North Western China (the South Central China), under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.
NASA Astrophysics Data System (ADS)
Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.
2012-03-01
°For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.
Thermodynamic characterization of synchronization-optimized oscillator networks
NASA Astrophysics Data System (ADS)
Yanagita, Tatsuo; Ichinomiya, Takashi
2014-12-01
We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.
Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.
2007-01-01
Interpolating scattered data points is a problem of wide ranging interest. A number of approaches for interpolation have been proposed both from theoretical domains such as computational geometry and in applications' fields such as geostatistics. Our motivation arises from geological and mining applications. In many instances data can be costly to compute and are available only at nonuniformly scattered positions. Because of the high cost of collecting measurements, high accuracy is required in the interpolants. One of the most popular interpolation methods in this field is called ordinary kriging. It is popular because it is a best linear unbiased estimator. The price for its statistical optimality is that the estimator is computationally very expensive. This is because the value of each interpolant is given by the solution of a large dense linear system. In practice, kriging problems have been solved approximately by restricting the domain to a small local neighborhood of points that lie near the query point. Determining the proper size for this neighborhood is a solved by ad hoc methods, and it has been shown that this approach leads to undesirable discontinuities in the interpolant. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. This process achieves its efficiency by replacing the large dense kriging system with a much sparser linear system. This technique has been applied to a restriction of our problem, called simple kriging, which is not unbiased for general data sets. In this paper we generalize these results by showing how to apply covariance tapering to the more general problem of ordinary kriging. Through experimentation we demonstrate the space and time efficiency and accuracy of approximating ordinary kriging through the use of covariance tapering combined with iterative methods for solving large sparse systems. We demonstrate our approach on large data sizes arising both from synthetic sources and from real applications.
NASA Astrophysics Data System (ADS)
Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.
2016-12-01
The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In order to assess the value of different data sources, reforecasts will be produced for a historical period and performance measures will be computed to assess forecast skill. The existing CBRFC Ensemble Streamflow Prediction (ESP) reforecasts will provide a baseline for comparison to determine the added-value of the data assimilation process.
Optimal sixteenth order convergent method based on quasi-Hermite interpolation for computing roots.
Zafar, Fiza; Hussain, Nawab; Fatimah, Zirwah; Kharal, Athar
2014-01-01
We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with some other newly developed sixteenth-order methods. Interval Newton's method is also used for finding the enough accurate initial approximations. Some figures show the enclosure of finitely many zeroes of nonlinear equations in an interval. Basins of attractions show the effectiveness of the method.
[Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].
Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing
2003-12-01
Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.
NASA Astrophysics Data System (ADS)
Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen
2017-07-01
Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.
Identifying the optimal segmentors for mass classification in mammograms
NASA Astrophysics Data System (ADS)
Zhang, Yu; Tomuro, Noriko; Furst, Jacob; Raicu, Daniela S.
2015-03-01
In this paper, we present the results of our investigation on identifying the optimal segmentor(s) from an ensemble of weak segmentors, used in a Computer-Aided Diagnosis (CADx) system which classifies suspicious masses in mammograms as benign or malignant. This is an extension of our previous work, where we used various parameter settings of image enhancement techniques to each suspicious mass (region of interest (ROI)) to obtain several enhanced images, then applied segmentation to each image to obtain several contours of a given mass. Each segmentation in this ensemble is essentially a "weak segmentor" because no single segmentation can produce the optimal result for all images. Then after shape features are computed from the segmented contours, the final classification model was built using logistic regression. The work in this paper focuses on identifying the optimal segmentor(s) from an ensemble mix of weak segmentors. For our purpose, optimal segmentors are those in the ensemble mix which contribute the most to the overall classification rather than the ones that produced high precision segmentation. To measure the segmentors' contribution, we examined weights on the features in the derived logistic regression model and computed the average feature weight for each segmentor. The result showed that, while in general the segmentors with higher segmentation success rates had higher feature weights, some segmentors with lower segmentation rates had high classification feature weights as well.
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.
Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States
NASA Astrophysics Data System (ADS)
Yang, J.; Astitha, M.; Schwartz, C. S.
2017-12-01
Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.
Downscaling an Eddy-Resolving Global Model for the Continental Shelf off South Eastern Australia
NASA Astrophysics Data System (ADS)
Roughan, M.; Baird, M.; MacDonald, H.; Oke, P.
2008-12-01
The Australian Bluelink collaboration between CSIRO, the Bureau of Meteorology and the Royal Australian Navy has made available to the research community the output of BODAS (Bluelink ocean data assimilation system), an ensemble optimal interpolation reanalysis system with ~10 km resolution around Australia. Within the Bluelink project, BODAS fields are assimilated into a dynamic ocean model of the same resolution to produce BRAN (BlueLink ReANalysis, a hindcast of water properties around Australia from 1992 to 2004). In this study, BODAS hydrographic fields are assimilated into a ~ 3 km resolution Princeton Ocean Model (POM) configuration of the coastal ocean off SE Australia. Experiments were undertaken to establish the optimal strength and duration of the assimilation of BODAS fields into the 3 km resolution POM configuration for the purpose of producing hindcasts of ocean state. It is shown that the resultant downscaling of Bluelink products is better able to reproduce coastal features, particularly velocities and hydrography over the continental shelf off south eastern Australia. The BODAS-POM modelling system is used to provide a high-resolution simulation of the East Australian Current over the period 1992 to 2004. One of the applications that we will present is an investigation of the seasonal and inter-annual variability in the dispersion of passive particles in the East Australian Current. The practical outcome is an estimate of the connectivity of estuaries along the coast of southeast Australia, which is relevant for the dispersion of marine pests.
NASA Astrophysics Data System (ADS)
dos Santos, A. F.; Freitas, S. R.; de Mattos, J. G. Z.; de Campos Velho, H. F.; Gan, M. A.; da Luz, E. F. P.; Grell, G. A.
2013-09-01
In this paper we consider an optimization problem applying the metaheuristic Firefly algorithm (FY) to weight an ensemble of rainfall forecasts from daily precipitation simulations with the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) over South America during January 2006. The method is addressed as a parameter estimation problem to weight the ensemble of precipitation forecasts carried out using different options of the convective parameterization scheme. Ensemble simulations were performed using different choices of closures, representing different formulations of dynamic control (the modulation of convection by the environment) in a deep convection scheme. The optimization problem is solved as an inverse problem of parameter estimation. The application and validation of the methodology is carried out using daily precipitation fields, defined over South America and obtained by merging remote sensing estimations with rain gauge observations. The quadratic difference between the model and observed data was used as the objective function to determine the best combination of the ensemble members to reproduce the observations. To reduce the model rainfall biases, the set of weights determined by the algorithm is used to weight members of an ensemble of model simulations in order to compute a new precipitation field that represents the observed precipitation as closely as possible. The validation of the methodology is carried out using classical statistical scores. The algorithm has produced the best combination of the weights, resulting in a new precipitation field closest to the observations.
Interpolation of longitudinal shape and image data via optimal mass transport
NASA Astrophysics Data System (ADS)
Gao, Yi; Zhu, Liang-Jia; Bouix, Sylvain; Tannenbaum, Allen
2014-03-01
Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.
A panoramic imaging system based on fish-eye lens
NASA Astrophysics Data System (ADS)
Wang, Ye; Hao, Chenyang
2017-10-01
Panoramic imaging has been closely watched as one of the major technologies of AR and VR. Mainstream panoramic imaging techniques lenses include fish-eye lenses, image splicing, and catadioptric imaging system. Meanwhile, fish-eyes are widely used in the big picture video surveillance. The advantage of fish-eye lenses is that they are easy to operate and cost less, but how to solve the image distortion of fish-eye lenses has always been a very important topic. In this paper, the image calibration algorithm of fish-eye lens is studied by comparing the method of interpolation, bilinear interpolation and double three interpolation, which are used to optimize the images.
NASA Astrophysics Data System (ADS)
Zhang, Hongqin; Tian, Xiangjun
2018-04-01
Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Small black holes in global AdS spacetime
NASA Astrophysics Data System (ADS)
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
1988-03-01
29 Statistical Machine Learning for the Cognitive Selection of Nonlinear Programming Algorithms in Engineering Design Optimization Toward...interpolation and Interpolation by Box Spline Surfaces Charles K. Chui, Harvey Diamond, Louise A. Raphael. 301 Knot Selection for Least Squares...West Virginia University, Morgantown, West Virginia; and Louise Raphael, National Science Foundation, Washington, DC Knot Selection for Least
2008-03-01
investigated, as well as the methodology used . Chapter IV presents the data collection and analysis procedures, and the resulting analysis and...interpolate the data, although a non-interpolating model is possible. For this research Design and Analysis of Computer Experiments (DACE) is used ...followed by the analysis . 4.1. Testing Approach The initial SMOMADS algorithm used for this research was acquired directly from Walston [70]. The
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
An Approach to Unbiased Subsample Interpolation for Motion Tracking
McCormick, Matthew M.; Varghese, Tomy
2013-01-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder–Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique. PMID:23493609
Ambient Ozone Exposure in Czech Forests: A GIS-Based Approach to Spatial Distribution Assessment
Hůnová, I.; Horálek, J.; Schreiberová, M.; Zapletal, M.
2012-01-01
Ambient ozone (O3) is an important phytotoxic pollutant, and detailed knowledge of its spatial distribution is becoming increasingly important. The aim of the paper is to compare different spatial interpolation techniques and to recommend the best approach for producing a reliable map for O3 with respect to its phytotoxic potential. For evaluation we used real-time ambient O3 concentrations measured by UV absorbance from 24 Czech rural sites in the 2007 and 2008 vegetation seasons. We considered eleven approaches for spatial interpolation used for the development of maps for mean vegetation season O3 concentrations and the AOT40F exposure index for forests. The uncertainty of maps was assessed by cross-validation analysis. The root mean square error (RMSE) of the map was used as a criterion. Our results indicate that the optimal interpolation approach is linear regression of O3 data and altitude with subsequent interpolation of its residuals by ordinary kriging. The relative uncertainty of the map of O3 mean for the vegetation season is less than 10%, using the optimal method as for both explored years, and this is a very acceptable value. In the case of AOT40F, however, the relative uncertainty of the map is notably worse, reaching nearly 20% in both examined years. PMID:22566757
Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.
Tria, Giancarlo; Mertens, Haydyn D T; Kachala, Michael; Svergun, Dmitri I
2015-03-01
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of 'unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Identifying Optimal Measurement Subspace for the Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Welch, Greg
2012-05-24
To reduce the computational load of the ensemble Kalman filter while maintaining its efficacy, an optimization algorithm based on the generalized eigenvalue decomposition method is proposed for identifying the most informative measurement subspace. When the number of measurements is large, the proposed algorithm can be used to make an effective tradeoff between computational complexity and estimation accuracy. This algorithm also can be extended to other Kalman filters for measurement subspace selection.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
NASA Astrophysics Data System (ADS)
Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk
2006-12-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.
A new method for determining the optimal lagged ensemble
DelSole, T.; Tippett, M. K.; Pegion, K.
2017-01-01
Abstract We propose a general methodology for determining the lagged ensemble that minimizes the mean square forecast error. The MSE of a lagged ensemble is shown to depend only on a quantity called the cross‐lead error covariance matrix, which can be estimated from a short hindcast data set and parameterized in terms of analytic functions of time. The resulting parameterization allows the skill of forecasts to be evaluated for an arbitrary ensemble size and initialization frequency. Remarkably, the parameterization also can estimate the MSE of a burst ensemble simply by taking the limit of an infinitely small interval between initialization times. This methodology is applied to forecasts of the Madden Julian Oscillation (MJO) from version 2 of the Climate Forecast System version 2 (CFSv2). For leads greater than a week, little improvement is found in the MJO forecast skill when ensembles larger than 5 days are used or initializations greater than 4 times per day. We find that if the initialization frequency is too infrequent, important structures of the lagged error covariance matrix are lost. Lastly, we demonstrate that the forecast error at leads ≥10 days can be reduced by optimally weighting the lagged ensemble members. The weights are shown to depend only on the cross‐lead error covariance matrix. While the methodology developed here is applied to CFSv2, the technique can be easily adapted to other forecast systems. PMID:28580050
NASA Astrophysics Data System (ADS)
Schmitz, Gunnar; Christiansen, Ove
2018-06-01
We study how with means of Gaussian Process Regression (GPR) geometry optimizations, which rely on numerical gradients, can be accelerated. The GPR interpolates a local potential energy surface on which the structure is optimized. It is found to be efficient to combine results on a low computational level (HF or MP2) with the GPR-calculated gradient of the difference between the low level method and the target method, which is a variant of explicitly correlated Coupled Cluster Singles and Doubles with perturbative Triples correction CCSD(F12*)(T) in this study. Overall convergence is achieved if both the potential and the geometry are converged. Compared to numerical gradient-based algorithms, the number of required single point calculations is reduced. Although introducing an error due to the interpolation, the optimized structures are sufficiently close to the minimum of the target level of theory meaning that the reference and predicted minimum only vary energetically in the μEh regime.
Insights about data assimilation frameworks for integrating GRACE with hydrological models
NASA Astrophysics Data System (ADS)
Schumacher, Maike; Kusche, Jürgen; Van Dijk, Albert I. J. M.; Döll, Petra; Schuh, Wolf-Dieter
2016-04-01
Improving the understanding of changes in the water cycle represents a challenging objective that requires merging information from various disciplines. Debates exist on selecting an appropriate assimilation technique to integrate GRACE-derived terrestrial water storage changes (TWSC) into hydrological models in order to downscale and disaggregate GRACE TWSC, overcome model limitations, and improve monitoring and forecast skills. Yet, the effect of the specific data assimilation technique in conjunction with ill-conditioning, colored noise, resolution mismatch between GRACE and model, and other complications is still unclear. Due to its simplicity, ensemble Kalman filters or smoothers (EnKF/S) are often applied. In this study, we show that modification of the filter approach might open new avenues to improve the integration process. Particularly, we discuss an improved calibration and data assimilation (C/DA) framework (Schumacher et al., 2016), which is based on the EnKF and was extended by the square root analysis scheme (SQRA) and the singular evolutive interpolated Kalman (SEIK) filter. In addition, we discuss an off-line data blending approach (Van Dijk et al., 2014) that offers the chance to merge multi-model ensembles with GRACE observations. The investigations include: (i) a theoretical comparison, focusing on similarities and differences of the conceptual formulation of the filter algorithms, (ii) a practical comparison, for which the approaches were applied to an ensemble of runs of the WaterGAP Global Hydrology Model (WGHM), as well as (iii) an impact assessment of the GRACE error structure on C/DA results. First, a synthetic experiment over the Mississippi River Basin (USA) was used to gain insights about the C/DA set-up before applying it to real data. The results indicated promising performances when considering alternative methods, e.g. applying the SEIK algorithm improved the correlation coefficient and root mean square error (RMSE) of TWSC by 0.1 and 6 mm, with respect to the EnKF. We successfully transferred our framework to the Murray-Darling Basin (Australia), one of the largest and driest river basins over the world. Finally, we provide recommendations on an optimal C/DA strategy for real GRACE data integrations. Schumacher M, Kusche J, Döll P (2016): A Systematic Impact Assessment of GRACE Error Correlation on Data Assimilation in Hydrological Models. J Geod Van Dijk AIJM, Renzullo LJ, Wada Y, Tregoning P (2014): A global water cycle reanalysis (2003-2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol Earth Syst Sci
A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.; Watson, Layne T.
1998-01-01
Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.
Sequence Based Prediction of Antioxidant Proteins Using a Classifier Selection Strategy
Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao; Song, Qing
2016-01-01
Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation balance and have potential therapies for some diseases. Accurate identification of antioxidant proteins could contribute to revealing physiological processes of oxidation/antioxidation balance and developing novel antioxidation-based drugs. In this study, an ensemble method is presented to predict antioxidant proteins with hybrid features, incorporating SSI (Secondary Structure Information), PSSM (Position Specific Scoring Matrix), RSA (Relative Solvent Accessibility), and CTD (Composition, Transition, Distribution). The prediction results of the ensemble predictor are determined by an average of prediction results of multiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensemble classifier composed of RF (Random Forest), SMO (Sequential Minimal Optimization), NNA (Nearest Neighbor Algorithm), and J48 with an accuracy of 0.925. A Relief combined with IFS (Incremental Feature Selection) method is adopted to obtain optimal features from hybrid features. With the optimal features, the ensemble method achieves improved performance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC (Matthew’s Correlation Coefficient) of 0.880, far better than the existing method. To evaluate the prediction performance objectively, the proposed method is compared with existing methods on the same independent testing dataset. Encouragingly, our method performs better than previous studies. In addition, our method achieves more balanced performance with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the proposed ensemble method can be a potential candidate for antioxidant protein prediction. For public access, we develop a user-friendly web server for antioxidant protein identification that is freely accessible at http://antioxidant.weka.cc. PMID:27662651
Liu, Derek; Sloboda, Ron S
2014-05-01
Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.
NASA Astrophysics Data System (ADS)
Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.
2015-09-01
The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.
Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann
2012-09-24
Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.
Understanding London's Water Supply Tradeoffs When Scheduling Interventions Under Deep Uncertainty
NASA Astrophysics Data System (ADS)
Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.
2015-12-01
Water supply planning in many major world cities faces several challenges associated with but not limited to climate change, population growth and insufficient land availability for infrastructure development. Long-term plans to maintain supply-demand balance and ecosystem services require careful consideration of uncertainties associated with future conditions. The current approach for London's water supply planning utilizes least cost optimization of future intervention schedules with limited uncertainty consideration. Recently, the focus of the long-term plans has shifted from solely least cost performance to robustness and resilience of the system. Identifying robust scheduling of interventions requires optimizing over a statistically representative sample of stochastic inputs which may be computationally difficult to achieve. In this study we optimize schedules using an ensemble of plausible scenarios and assess how manipulating that ensemble influences the different Pareto-approximate intervention schedules. We investigate how a major stress event's location in time as well as the optimization problem formulation influence the Pareto-approximate schedules. A bootstrapping method that respects the non-stationary trend of climate change scenarios and ensures the even distribution of the major stress event in the scenario ensemble is proposed. Different bootstrapped hydrological scenario ensembles are assessed using many-objective scenario optimization of London's future water supply and demand intervention scheduling. However, such a "fixed" scheduling of interventions approach does not aim to embed flexibility or adapt effectively as the future unfolds. Alternatively, making decisions based on the observations of occurred conditions could help planners who prefer adaptive planning. We will show how rules to guide the implementation of interventions based on observations may result in more flexible strategies.
The Structure of Optimum Interpolation Functions.
1983-02-01
Daniel F. Merriam, ed., Plenum Press, 1970. 2. Hiroshi Akima, "Comments on ’Optimal Contour Mapping Using Universal Kriging’ by Ricardo 0. Olea ," (with...Kriging," Mathematical Geology 14 (1982), 249-257. 21 27. Ricardo 0. Olea , "Optimal Contour Mapping Using Universal Kriging," J. of Geophysical Res. 79
Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles
Leavitt, Matthew L.; Pieper, Florian; Sachs, Adam J.; Martinez-Trujillo, Julio C.
2017-01-01
Neurons in the primate lateral prefrontal cortex (LPFC) encode working memory (WM) representations via sustained firing, a phenomenon hypothesized to arise from recurrent dynamics within ensembles of interconnected neurons. Here, we tested this hypothesis by using microelectrode arrays to examine spike count correlations (rsc) in LPFC neuronal ensembles during a spatial WM task. We found a pattern of pairwise rsc during WM maintenance indicative of stronger coupling between similarly tuned neurons and increased inhibition between dissimilarly tuned neurons. We then used a linear decoder to quantify the effects of the high-dimensional rsc structure on information coding in the neuronal ensembles. We found that the rsc structure could facilitate or impair coding, depending on the size of the ensemble and tuning properties of its constituent neurons. A simple optimization procedure demonstrated that near-maximum decoding performance could be achieved using a relatively small number of neurons. These WM-optimized subensembles were more signal correlation (rsignal)-diverse and anatomically dispersed than predicted by the statistics of the full recorded population of neurons, and they often contained neurons that were poorly WM-selective, yet enhanced coding fidelity by shaping the ensemble’s rsc structure. We observed a pattern of rsc between LPFC neurons indicative of recurrent dynamics as a mechanism for WM-related activity and that the rsc structure can increase the fidelity of WM representations. Thus, WM coding in LPFC neuronal ensembles arises from a complex synergy between single neuron coding properties and multidimensional, ensemble-level phenomena. PMID:28275096
Interpolation on the manifold of K component GMMs.
Kim, Hyunwoo J; Adluru, Nagesh; Banerjee, Monami; Vemuri, Baba C; Singh, Vikas
2015-12-01
Probability density functions (PDFs) are fundamental objects in mathematics with numerous applications in computer vision, machine learning and medical imaging. The feasibility of basic operations such as computing the distance between two PDFs and estimating a mean of a set of PDFs is a direct function of the representation we choose to work with. In this paper, we study the Gaussian mixture model (GMM) representation of the PDFs motivated by its numerous attractive features. (1) GMMs are arguably more interpretable than, say, square root parameterizations (2) the model complexity can be explicitly controlled by the number of components and (3) they are already widely used in many applications. The main contributions of this paper are numerical algorithms to enable basic operations on such objects that strictly respect their underlying geometry. For instance, when operating with a set of K component GMMs, a first order expectation is that the result of simple operations like interpolation and averaging should provide an object that is also a K component GMM. The literature provides very little guidance on enforcing such requirements systematically. It turns out that these tasks are important internal modules for analysis and processing of a field of ensemble average propagators (EAPs), common in diffusion weighted magnetic resonance imaging. We provide proof of principle experiments showing how the proposed algorithms for interpolation can facilitate statistical analysis of such data, essential to many neuroimaging studies. Separately, we also derive interesting connections of our algorithm with functional spaces of Gaussians, that may be of independent interest.
Optimal averaging of soil moisture predictions from ensemble land surface model simulations
USDA-ARS?s Scientific Manuscript database
The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble’s mutual error covariance. Here we propose a new technique for obtaining such information using an instrumental variabl...
2013-01-01
Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569
Space Weather Activities of IONOLAB Group: TEC Mapping
NASA Astrophysics Data System (ADS)
Arikan, F.; Yilmaz, A.; Arikan, O.; Sayin, I.; Gurun, M.; Akdogan, K. E.; Yildirim, S. A.
2009-04-01
Being a key player in Space Weather, ionospheric variability affects the performance of both communication and navigation systems. To improve the performance of these systems, ionosphere has to be monitored. Total Electron Content (TEC), line integral of the electron density along a ray path, is an important parameter to investigate the ionospheric variability. A cost-effective way of obtaining TEC is by using dual-frequency GPS receivers. Since these measurements are sparse in space, accurate and robust interpolation techniques are needed to interpolate (or map) the TEC distribution for a given region in space. However, the TEC data derived from GPS measurements contain measurement noise, model and computational errors. Thus, it is necessary to analyze the interpolation performance of the techniques on synthetic data sets that can represent various ionospheric states. By this way, interpolation performance of the techniques can be compared over many parameters that can be controlled to represent the desired ionospheric states. In this study, Multiquadrics, Inverse Distance Weighting (IDW), Cubic Splines, Ordinary and Universal Kriging, Random Field Priors (RFP), Multi-Layer Perceptron Neural Network (MLP-NN), and Radial Basis Function Neural Network (RBF-NN) are employed as the spatial interpolation algorithms. These mapping techniques are initially tried on synthetic TEC surfaces for parameter and coefficient optimization and determination of error bounds. Interpolation performance of these methods are compared on synthetic TEC surfaces over the parameters of sampling pattern, number of samples, the variability of the surface and the trend type in the TEC surfaces. By examining the performance of the interpolation methods, it is observed that both Kriging, RFP and NN have important advantages and possible disadvantages depending on the given constraints. It is also observed that the determining parameter in the error performance is the trend in the Ionosphere. Optimization of the algorithms in terms of their performance parameters (like the choice of the semivariogram function for Kriging algorithms and the hidden layer and neuron numbers for MLP-NN) mostly depend on the behavior of the ionosphere at that given time instant for the desired region. The sampling pattern and number of samples are the other important parameters that may contribute to the higher errors in reconstruction. For example, for all of the above listed algorithms, hexagonal regular sampling of the ionosphere provides the lowest reconstruction error and the performance significantly degrades as the samples in the region become sparse and clustered. The optimized models and coefficients are applied to regional GPS-TEC mapping using the IONOLAB-TEC data (www.ionolab.org). Both Kriging combined with Kalman Filter and dynamic modeling of NN are also implemented as first trials of TEC and space weather predictions.
Optimal averaging of soil moisture predictions from ensemble land surface model simulations
USDA-ARS?s Scientific Manuscript database
The correct interpretation of ensemble 3 soil moisture information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble’s mutual error covariance. Here we propose a new technique for obtaining such information using an inst...
Alves, Pedro; Liu, Shuang; Wang, Daifeng; Gerstein, Mark
2018-01-01
Machine learning is an integral part of computational biology, and has already shown its use in various applications, such as prognostic tests. In the last few years in the non-biological machine learning community, ensembling techniques have shown their power in data mining competitions such as the Netflix challenge; however, such methods have not found wide use in computational biology. In this work, we endeavor to show how ensembling techniques can be applied to practical problems, including problems in the field of bioinformatics, and how they often outperform other machine learning techniques in both predictive power and robustness. Furthermore, we develop a methodology of ensembling, Multi-Swarm Ensemble (MSWE) by using multiple particle swarm optimizations and demonstrate its ability to further enhance the performance of ensembles.
NASA Technical Reports Server (NTRS)
White, Warren B.; Tai, Chang-Kou; Holland, William R.
1990-01-01
The optimal interpolation method of Lorenc (1981) was used to conduct continuous assimilation of altimetric sea level differences from the simulated Geosat exact repeat mission (ERM) into a three-layer quasi-geostrophic eddy-resolving numerical ocean box model that simulates the statistics of mesoscale eddy activity in the western North Pacific. Assimilation was conducted continuously as the Geosat tracks appeared in simulated real time/space, with each track repeating every 17 days, but occurring at different times and locations within the 17-day period, as would have occurred in a realistic nowcast situation. This interpolation method was also used to conduct the assimilation of referenced altimetric sea level differences into the same model, performing the referencing of altimetric sea sevel differences by using the simulated sea level. The results of this dynamical interpolation procedure are compared with those of a statistical (i.e., optimum) interpolation procedure.
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe
2016-11-01
Given the ever increasing number of climate change simulations being carried out, it has become impractical to use all of them to cover the uncertainty of climate change impacts. Various methods have been proposed to optimally select subsets of a large ensemble of climate simulations for impact studies. However, the behaviour of optimally-selected subsets of climate simulations for climate change impacts is unknown, since the transfer process from climate projections to the impact study world is usually highly non-linear. Consequently, this study investigates the transferability of optimally-selected subsets of climate simulations in the case of hydrological impacts. Two different methods were used for the optimal selection of subsets of climate scenarios, and both were found to be capable of adequately representing the spread of selected climate model variables contained in the original large ensemble. However, in both cases, the optimal subsets had limited transferability to hydrological impacts. To capture a similar variability in the impact model world, many more simulations have to be used than those that are needed to simply cover variability from the climate model variables' perspective. Overall, both optimal subset selection methods were better than random selection when small subsets were selected from a large ensemble for impact studies. However, as the number of selected simulations increased, random selection often performed better than the two optimal methods. To ensure adequate uncertainty coverage, the results of this study imply that selecting as many climate change simulations as possible is the best avenue. Where this was not possible, the two optimal methods were found to perform adequately.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
Meshless Modeling of Deformable Shapes and their Motion
Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.
2010-01-01
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614
NASA Astrophysics Data System (ADS)
Greenway, D. P.; Hackett, E.
2017-12-01
Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.
Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses
NASA Astrophysics Data System (ADS)
Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong
2017-04-01
Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums shows a mean improvement of more than 40% in CRPS when compared to bilinearly interpolated uncalibrated ensemble forecasts. The validation on randomly selected grid points, representing the true height distribution over Austria, still indicates a mean improvement of 35%. The applied statistical model is currently set up for 6-hourly and daily accumulation periods, but will be extended to a temporal resolution of 1-3 hours within a new probabilistic nowcasting system operated by ZAMG.
Decadal Prediction Skill in the GEOS-5 Forecast System
NASA Technical Reports Server (NTRS)
Ham, Yoo-Geun; Rienecker, Michele M.; Suarez, Max J.; Vikhliaev, Yury; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.
2013-01-01
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office's (GMAO's) GEOS-5 Atmosphere-Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multivariate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO's atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean Atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 percent improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the sub-polar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.
Regional climate models downscaling in the Alpine area with multimodel superensemble
NASA Astrophysics Data System (ADS)
Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.
2013-05-01
The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs), are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs) runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project), which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present) were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to reproduce well the monthly behaviour of precipitation in the control period.
3-D ultrasound volume reconstruction using the direct frame interpolation method.
Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin
2010-11-01
A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.
Ensemble Kalman filter inference of spatially-varying Manning's n coefficients in the coastal ocean
NASA Astrophysics Data System (ADS)
Siripatana, Adil; Mayo, Talea; Knio, Omar; Dawson, Clint; Maître, Olivier Le; Hoteit, Ibrahim
2018-07-01
Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called "Joint-EnKF" approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning's n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model. Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning's n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O (10)) , the filter's estimate converges to the reference Manning's field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.
Nanni, Loris; Lumini, Alessandra
2009-01-01
The focuses of this work are: to propose a novel method for building an ensemble of classifiers for peptide classification based on substitution matrices; to show the importance to select a proper set of the parameters of the classifiers that build the ensemble of learning systems. The HIV-1 protease cleavage site prediction problem is here studied. The results obtained by a blind testing protocol are reported, the comparison with other state-of-the-art approaches, based on ensemble of classifiers, allows to quantify the performance improvement obtained by the systems proposed in this paper. The simulation based on experimentally determined protease cleavage data has demonstrated the success of these new ensemble algorithms. Particularly interesting it is to note that also if the HIV-1 protease cleavage site prediction problem is considered linearly separable we obtain the best performance using an ensemble of non-linear classifiers.
Entanglement distillation for quantum communication network with atomic-ensemble memories.
Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo
2014-10-06
Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.
Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, Christopher M.
2012-08-13
How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less
NASA Astrophysics Data System (ADS)
Reinhardt, Katja; Samimi, Cyrus
2018-01-01
While climatological data of high spatial resolution are largely available in most developed countries, the network of climatological stations in many other regions of the world still constitutes large gaps. Especially for those regions, interpolation methods are important tools to fill these gaps and to improve the data base indispensible for climatological research. Over the last years, new hybrid methods of machine learning and geostatistics have been developed which provide innovative prospects in spatial predictive modelling. This study will focus on evaluating the performance of 12 different interpolation methods for the wind components \\overrightarrow{u} and \\overrightarrow{v} in a mountainous region of Central Asia. Thereby, a special focus will be on applying new hybrid methods on spatial interpolation of wind data. This study is the first evaluating and comparing the performance of several of these hybrid methods. The overall aim of this study is to determine whether an optimal interpolation method exists, which can equally be applied for all pressure levels, or whether different interpolation methods have to be used for the different pressure levels. Deterministic (inverse distance weighting) and geostatistical interpolation methods (ordinary kriging) were explored, which take into account only the initial values of \\overrightarrow{u} and \\overrightarrow{v} . In addition, more complex methods (generalized additive model, support vector machine and neural networks as single methods and as hybrid methods as well as regression-kriging) that consider additional variables were applied. The analysis of the error indices revealed that regression-kriging provided the most accurate interpolation results for both wind components and all pressure heights. At 200 and 500 hPa, regression-kriging is followed by the different kinds of neural networks and support vector machines and for 850 hPa it is followed by the different types of support vector machine and ordinary kriging. Overall, explanatory variables improve the interpolation results.
NASA Astrophysics Data System (ADS)
Mahmoudabadi, H.; Briggs, G.
2016-12-01
Gridded data sets, such as geoid models or datum shift grids, are commonly used in coordinate transformation algorithms. Grid files typically contain known or measured values at regular fixed intervals. The process of computing a value at an unknown location from the values in the grid data set is called "interpolation". Generally, interpolation methods predict a value at a given point by computing a weighted average of the known values in the neighborhood of the point. Geostatistical Kriging is a widely used interpolation method for irregular networks. Kriging interpolation first analyzes the spatial structure of the input data, then generates a general model to describe spatial dependencies. This model is used to calculate values at unsampled locations by finding direction, shape, size, and weight of neighborhood points. Because it is based on a linear formulation for the best estimation, Kriging it the optimal interpolation method in statistical terms. The Kriging interpolation algorithm produces an unbiased prediction, as well as the ability to calculate the spatial distribution of uncertainty, allowing you to estimate the errors in an interpolation for any particular point. Kriging is not widely used in geospatial applications today, especially applications that run on low power devices or deal with large data files. This is due to the computational power and memory requirements of standard Kriging techniques. In this paper, improvements are introduced in directional kriging implementation by taking advantage of the structure of the grid files. The regular spacing of points simplifies finding the neighborhood points and computing their pairwise distances, reducing the the complexity and improving the execution time of the Kriging algorithm. Also, the proposed method iteratively loads small portion of interest areas in different directions to reduce the amount of required memory. This makes the technique feasible on almost any computer processor. Comparison between kriging and other standard interpolation methods demonstrated more accurate estimations in less denser data files.
NASA Astrophysics Data System (ADS)
Cecinati, Francesca; Rico-Ramirez, Miguel Angel; Heuvelink, Gerard B. M.; Han, Dawei
2017-05-01
The application of radar quantitative precipitation estimation (QPE) to hydrology and water quality models can be preferred to interpolated rainfall point measurements because of the wide coverage that radars can provide, together with a good spatio-temporal resolutions. Nonetheless, it is often limited by the proneness of radar QPE to a multitude of errors. Although radar errors have been widely studied and techniques have been developed to correct most of them, residual errors are still intrinsic in radar QPE. An estimation of uncertainty of radar QPE and an assessment of uncertainty propagation in modelling applications is important to quantify the relative importance of the uncertainty associated to radar rainfall input in the overall modelling uncertainty. A suitable tool for this purpose is the generation of radar rainfall ensembles. An ensemble is the representation of the rainfall field and its uncertainty through a collection of possible alternative rainfall fields, produced according to the observed errors, their spatial characteristics, and their probability distribution. The errors are derived from a comparison between radar QPE and ground point measurements. The novelty of the proposed ensemble generator is that it is based on a geostatistical approach that assures a fast and robust generation of synthetic error fields, based on the time-variant characteristics of errors. The method is developed to meet the requirement of operational applications to large datasets. The method is applied to a case study in Northern England, using the UK Met Office NIMROD radar composites at 1 km resolution and at 1 h accumulation on an area of 180 km by 180 km. The errors are estimated using a network of 199 tipping bucket rain gauges from the Environment Agency. 183 of the rain gauges are used for the error modelling, while 16 are kept apart for validation. The validation is done by comparing the radar rainfall ensemble with the values recorded by the validation rain gauges. The validated ensemble is then tested on a hydrological case study, to show the advantage of probabilistic rainfall for uncertainty propagation. The ensemble spread only partially captures the mismatch between the modelled and the observed flow. The residual uncertainty can be attributed to other sources of uncertainty, in particular to model structural uncertainty, parameter identification uncertainty, uncertainty in other inputs, and uncertainty in the observed flow.
Climate Change Toolkit-Case study: Switzerland
NASA Astrophysics Data System (ADS)
Ashraf Vaghefi, Saeid
2017-04-01
This paper describes the development of a Climate Change Toolkit (CCT) to rapidly perform tasks needed in a climate change study. CCT consists of five modules: data extraction, global climate data management, bias correction, spatial interpolation, and critical consecutive day analyzer to calculate extreme events. CCT is linked to an archive of big dataset consisting of daily global historic (CRU, 1970-2005), and global GCM data (1960-2099) from 5 models and 4 carbon scenarios. Application of CCT in Switzerland using ensemble results of scenario RCP8.5 showed an increase in Max temperature, and a wide change in precipitation. Frequency of dry periods will likely increase. The frequency of wet periods suggests higher risk of flooding in the country.
NASA Astrophysics Data System (ADS)
Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge
2017-09-01
Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.
Hansen, Halvor S; Daura, Xavier; Hünenberger, Philippe H
2010-09-14
A new method, fragment-based local elevation umbrella sampling (FB-LEUS), is proposed to enhance the conformational sampling in explicit-solvent molecular dynamics (MD) simulations of solvated polymers. The method is derived from the local elevation umbrella sampling (LEUS) method [ Hansen and Hünenberger , J. Comput. Chem. 2010 , 31 , 1 - 23 ], which combines the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single scheme. In LEUS, an initial (relatively short) LE build-up (searching) phase is used to construct an optimized (grid-based) biasing potential within a subspace of conformationally relevant degrees of freedom, which is then frozen and used in a (comparatively longer) US sampling phase. This combination dramatically enhances the sampling power of MD simulations but, due to computational and memory costs, is only applicable to relevant subspaces of low dimensionalities. As an attempt to expand the scope of the LEUS approach to solvated polymers with more than a few relevant degrees of freedom, the FB-LEUS scheme involves an US sampling phase that relies on a superposition of low-dimensionality biasing potentials optimized using LEUS at the fragment level. The feasibility of this approach is tested using polyalanine (poly-Ala) and polyvaline (poly-Val) oligopeptides. Two-dimensional biasing potentials are preoptimized at the monopeptide level, and subsequently applied to all dihedral-angle pairs within oligopeptides of 4, 6, 8, or 10 residues. Two types of fragment-based biasing potentials are distinguished: (i) the basin-filling (BF) potentials act so as to "fill" free-energy basins up to a prescribed free-energy level above the global minimum; (ii) the valley-digging (VD) potentials act so as to "dig" valleys between the (four) free-energy minima of the two-dimensional maps, preserving barriers (relative to linearly interpolated free-energy changes) of a prescribed magnitude. The application of these biasing potentials may lead to an impressive enhancement of the searching power (volume of conformational space visited in a given amount of simulation time). However, this increase is largely offset by a deterioration of the statistical efficiency (representativeness of the biased ensemble in terms of the conformational distribution appropriate for the physical ensemble). As a result, it appears difficult to engineer FB-LEUS schemes representing a significant improvement over plain MD, at least for the systems considered here.
GENIE - Generation of computational geometry-grids for internal-external flow configurations
NASA Technical Reports Server (NTRS)
Soni, B. K.
1988-01-01
Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.
Optimization of Coronal Mass Ejection Ensemble Forecasting Using WSA-ENLIL with Coned Model
2013-03-01
previous versions by a large margin. The mean absolute forecast error of the median ensemble results was improved by over 43% over the original Coned...for reference for the six extra CMEs. .............................................................................................54 Figure 19...single-shot runs) with the flare location noted for reference for the six extra CMEs
Generalized ensemble method applied to study systems with strong first order transitions
Malolepsza, E.; Kim, J.; Keyes, T.
2015-09-28
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub, where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM).more » This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. Lastly, the method is illustrated in a study of the very strong solid/liquid transition in water.« less
Village Building Identification Based on Ensemble Convolutional Neural Networks
Guo, Zhiling; Chen, Qi; Xu, Yongwei; Shibasaki, Ryosuke; Shao, Xiaowei
2017-01-01
In this study, we present the Ensemble Convolutional Neural Network (ECNN), an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify village buildings from open high-resolution remote sensing (HRRS) images. First, to optimize and mine the capability of CNN for village mapping and to ensure compatibility with our classification targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of rigorous analyses and evaluations. Second, rather than directly implementing building identification by using these models, we exploited most of their advantages by ensembling their feature extractor parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-level classification frame to implement object identification. The proposed method can serve as a viable tool for village building identification with high accuracy and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos, prove that the proposed ECNN model significantly outperforms existing methods, improving overall accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86. PMID:29084154
Ensemble-based data assimilation and optimal sensor placement for scalar source reconstruction
NASA Astrophysics Data System (ADS)
Mons, Vincent; Wang, Qi; Zaki, Tamer
2017-11-01
Reconstructing the characteristics of a scalar source from limited remote measurements in a turbulent flow is a problem of great interest for environmental monitoring, and is challenging due to several aspects. Firstly, the numerical estimation of the scalar dispersion in a turbulent flow requires significant computational resources. Secondly, in actual practice, only a limited number of observations are available, which generally makes the corresponding inverse problem ill-posed. Ensemble-based variational data assimilation techniques are adopted to solve the problem of scalar source localization in a turbulent channel flow at Reτ = 180 . This approach combines the components of variational data assimilation and ensemble Kalman filtering, and inherits the robustness from the former and the ease of implementation from the latter. An ensemble-based methodology for optimal sensor placement is also proposed in order to improve the condition of the inverse problem, which enhances the performances of the data assimilation scheme. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542) and by the National Science Foundation (Grant 1461870).
Generalized ensemble method applied to study systems with strong first order transitions
NASA Astrophysics Data System (ADS)
Małolepsza, E.; Kim, J.; Keyes, T.
2015-09-01
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub [1], where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM). This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. The method is illustrated in a study of the very strong solid/liquid transition in water.
Abuassba, Adnan O M; Zhang, Dezheng; Luo, Xiong; Shaheryar, Ahmad; Ali, Hazrat
2017-01-01
Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L 2 -norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets.
Abuassba, Adnan O. M.; Ali, Hazrat
2017-01-01
Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L2-norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets. PMID:28546808
NASA Technical Reports Server (NTRS)
Freedman, A. P.; Steppe, J. A.
1995-01-01
The Jet Propulsion Laboratory Kalman Earth Orientation Filter (KEOF) uses several of the Earth rotation data sets available to generate optimally interpolated UT1 and LOD series to support spacecraft navigation. This paper compares use of various data sets within KEOF.
A general-purpose optimization program for engineering design
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Sugimoto, H.
1986-01-01
A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) is a FORTRAN program for nonlinear constrained (or unconstrained) function minimization. The optimization process is segmented into three levels: Strategy, Optimizer, and One-dimensional search. At each level, several options are available so that a total of nearly 100 possible combinations can be created. An example of available combinations is the Augmented Lagrange Multiplier method, using the BFGS variable metric unconstrained minimization together with polynomial interpolation for the one-dimensional search.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Cai, X. M.; Ancell, B. C.; Fan, Y. R.
2017-11-01
The ensemble Kalman filter (EnKF) is recognized as a powerful data assimilation technique that generates an ensemble of model variables through stochastic perturbations of forcing data and observations. However, relatively little guidance exists with regard to the proper specification of the magnitude of the perturbation and the ensemble size, posing a significant challenge in optimally implementing the EnKF. This paper presents a robust data assimilation system (RDAS), in which a multi-factorial design of the EnKF experiments is first proposed for hydrologic ensemble predictions. A multi-way analysis of variance is then used to examine potential interactions among factors affecting the EnKF experiments, achieving optimality of the RDAS with maximized performance of hydrologic predictions. The RDAS is applied to the Xiangxi River watershed which is the most representative watershed in China's Three Gorges Reservoir region to demonstrate its validity and applicability. Results reveal that the pairwise interaction between perturbed precipitation and streamflow observations has the most significant impact on the performance of the EnKF system, and their interactions vary dynamically across different settings of the ensemble size and the evapotranspiration perturbation. In addition, the interactions among experimental factors vary greatly in magnitude and direction depending on different statistical metrics for model evaluation including the Nash-Sutcliffe efficiency and the Box-Cox transformed root-mean-square error. It is thus necessary to test various evaluation metrics in order to enhance the robustness of hydrologic prediction systems.
Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts
NASA Astrophysics Data System (ADS)
Mohammadi, Seyedeh Atefeh; Rahmani, Morteza; Azadi, Majid
2016-08-01
This paper deals with the probabilistic short-range temperature forecasts over synoptic meteorological stations across Iran using non-homogeneous Gaussian regression (NGR). NGR creates a Gaussian forecast probability density function (PDF) from the ensemble output. The mean of the normal predictive PDF is a bias-corrected weighted average of the ensemble members and its variance is a linear function of the raw ensemble variance. The coefficients for the mean and variance are estimated by minimizing the continuous ranked probability score (CRPS) during a training period. CRPS is a scoring rule for distributional forecasts. In the paper of Gneiting et al. (Mon Weather Rev 133:1098-1118, 2005), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimize the CRPS. Since BFGS is a conventional optimization method with its own limitations, we suggest using the particle swarm optimization (PSO), a robust meta-heuristic method, to minimize the CRPS. The ensemble prediction system used in this study consists of nine different configurations of the weather research and forecasting model for 48-h forecasts of temperature during autumn and winter 2011 and 2012. The probabilistic forecasts were evaluated using several common verification scores including Brier score, attribute diagram and rank histogram. Results show that both BFGS and PSO find the optimal solution and show the same evaluation scores, but PSO can do this with a feasible random first guess and much less computational complexity.
How do I know if I’ve improved my continental scale flood early warning system?
NASA Astrophysics Data System (ADS)
Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik
2017-04-01
Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.
Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps
2011-01-01
Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources. PMID:21569575
Emulation for probabilistic weather forecasting
NASA Astrophysics Data System (ADS)
Cornford, Dan; Barillec, Remi
2010-05-01
Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather forecasting, where the construction of the emulator training set replaces the traditional ensemble model runs. Thus the actual forecast distributions are computed using the emulator conditioned on the ‘ensemble runs' which are chosen to explore the plausible input space using relatively crude experimental design methods. One benefit here is that the ensemble does not need to be a sample from the true distribution of the input space, rather it should cover that input space in some sense. The probabilistic forecasts are computed using Monte Carlo methods sampling from the input distribution and using the emulator to produce the output distribution. Finally we discuss the limitations of this approach and briefly mention how we might use similar methods to learn the model error within a framework that incorporates a data assimilation like aspect, using emulators and learning complex model error representations. We suggest future directions for research in the area that will be necessary to apply the method to more realistic numerical weather prediction models.
Interpolated memory tests reduce mind wandering and improve learning of online lectures.
Szpunar, Karl K; Khan, Novall Y; Schacter, Daniel L
2013-04-16
The recent emergence and popularity of online educational resources brings with it challenges for educators to optimize the dissemination of online content. Here we provide evidence that points toward a solution for the difficulty that students frequently report in sustaining attention to online lectures over extended periods. In two experiments, we demonstrate that the simple act of interpolating online lectures with memory tests can help students sustain attention to lecture content in a manner that discourages task-irrelevant mind wandering activities, encourages task-relevant note-taking activities, and improves learning. Importantly, frequent testing was associated with reduced anxiety toward a final cumulative test and also with reductions in subjective estimates of cognitive demand. Our findings suggest a potentially key role for interpolated testing in the development and dissemination of online educational content.
Interpolated memory tests reduce mind wandering and improve learning of online lectures
Szpunar, Karl K.; Khan, Novall Y.; Schacter, Daniel L.
2013-01-01
The recent emergence and popularity of online educational resources brings with it challenges for educators to optimize the dissemination of online content. Here we provide evidence that points toward a solution for the difficulty that students frequently report in sustaining attention to online lectures over extended periods. In two experiments, we demonstrate that the simple act of interpolating online lectures with memory tests can help students sustain attention to lecture content in a manner that discourages task-irrelevant mind wandering activities, encourages task-relevant note-taking activities, and improves learning. Importantly, frequent testing was associated with reduced anxiety toward a final cumulative test and also with reductions in subjective estimates of cognitive demand. Our findings suggest a potentially key role for interpolated testing in the development and dissemination of online educational content. PMID:23576743
The Grand Tour via Geodesic Interpolation of 2-frames
NASA Technical Reports Server (NTRS)
Asimov, Daniel; Buja, Andreas
1994-01-01
Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to walk around the sculpture, viewing it from many different angles. A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian geometry.
Spatial interpolation of solar global radiation
NASA Astrophysics Data System (ADS)
Lussana, C.; Uboldi, F.; Antoniazzi, C.
2010-09-01
Solar global radiation is defined as the radiant flux incident onto an area element of the terrestrial surface. Its direct knowledge plays a crucial role in many applications, from agrometeorology to environmental meteorology. The ARPA Lombardia's meteorological network includes about one hundred of pyranometers, mostly distributed in the southern part of the Alps and in the centre of the Po Plain. A statistical interpolation method based on an implementation of the Optimal Interpolation is applied to the hourly average of the solar global radiation observations measured by the ARPA Lombardia's network. The background field is obtained using SMARTS (The Simple Model of the Atmospheric Radiative Transfer of Sunshine, Gueymard, 2001). The model is initialised by assuming clear sky conditions and it takes into account the solar position and orography related effects (shade and reflection). The interpolation of pyranometric observations introduces in the analysis fields information about cloud presence and influence. A particular effort is devoted to prevent observations affected by large errors of different kinds (representativity errors, systematic errors, gross errors) from entering the analysis procedure. The inclusion of direct cloud information from satellite observations is also planned.
Evaluation of TIGGE Ensemble Forecasts of Precipitation in Distinct Climate Regions in Iran
NASA Astrophysics Data System (ADS)
Aminyavari, Saleh; Saghafian, Bahram; Delavar, Majid
2018-04-01
The application of numerical weather prediction (NWP) products is increasing dramatically. Existing reports indicate that ensemble predictions have better skill than deterministic forecasts. In this study, numerical ensemble precipitation forecasts in the TIGGE database were evaluated using deterministic, dichotomous (yes/no), and probabilistic techniques over Iran for the period 2008-16. Thirteen rain gauges spread over eight homogeneous precipitation regimes were selected for evaluation. The Inverse Distance Weighting and Kriging methods were adopted for interpolation of the prediction values, downscaled to the stations at lead times of one to three days. To enhance the forecast quality, NWP values were post-processed via Bayesian Model Averaging. The results showed that ECMWF had better scores than other products. However, products of all centers underestimated precipitation in high precipitation regions while overestimating precipitation in other regions. This points to a systematic bias in forecasts and demands application of bias correction techniques. Based on dichotomous evaluation, NCEP did better at most stations, although all centers overpredicted the number of precipitation events. Compared to those of ECMWF and NCEP, UKMO yielded higher scores in mountainous regions, but performed poorly at other selected stations. Furthermore, the evaluations showed that all centers had better skill in wet than in dry seasons. The quality of post-processed predictions was better than those of the raw predictions. In conclusion, the accuracy of the NWP predictions made by the selected centers could be classified as medium over Iran, while post-processing of predictions is recommended to improve the quality.
Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki
2015-11-09
Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less
5-D interpolation with wave-front attributes
NASA Astrophysics Data System (ADS)
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method.
Ideas for a pattern-oriented approach towards a VERA analysis ensemble
NASA Astrophysics Data System (ADS)
Gorgas, T.; Dorninger, M.
2010-09-01
Ideas for a pattern-oriented approach towards a VERA analysis ensemble For many applications in meteorology and especially for verification purposes it is important to have some information about the uncertainties of observation and analysis data. A high quality of these "reference data" is an absolute necessity as the uncertainties are reflected in verification measures. The VERA (Vienna Enhanced Resolution Analysis) scheme includes a sophisticated quality control tool which accounts for the correction of observational data and provides an estimation of the observation uncertainty. It is crucial for meteorologically and physically reliable analysis fields. VERA is based on a variational principle and does not need any first guess fields. It is therefore NWP model independent and can also be used as an unbiased reference for real time model verification. For downscaling purposes VERA uses an a priori knowledge on small-scale physical processes over complex terrain, the so called "fingerprint technique", which transfers information from rich to data sparse regions. The enhanced Joint D-PHASE and COPS data set forms the data base for the analysis ensemble study. For the WWRP projects D-PHASE and COPS a joint activity has been started to collect GTS and non-GTS data from the national and regional meteorological services in Central Europe for 2007. Data from more than 11.000 stations are available for high resolution analyses. The usage of random numbers as perturbations for ensemble experiments is a common approach in meteorology. In most implementations, like for NWP-model ensemble systems, the focus lies on error growth and propagation on the spatial and temporal scale. When defining errors in analysis fields we have to consider the fact that analyses are not time dependent and that no perturbation method aimed at temporal evolution is possible. Further, the method applied should respect two major sources of analysis errors: Observation errors AND analysis or interpolation errors. With the concept of an analysis ensemble we hope to get a more detailed sight on both sources of analysis errors. For the computation of the VERA ensemble members a sample of Gaussian random perturbations is produced for each station and parameter. The deviation of perturbations is based on the correction proposals by the VERA QC scheme to provide some "natural" limits for the ensemble. In order to put more emphasis on the weather situation we aim to integrate the main synoptic field structures as weighting factors for the perturbations. Two widely approved approaches are used for the definition of these main field structures: The Principal Component Analysis and a 2D-Discrete Wavelet Transform. The results of tests concerning the implementation of this pattern-supported analysis ensemble system and a comparison of the different approaches are given in the presentation.
NASA Astrophysics Data System (ADS)
Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua
2018-01-01
Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.
Multiscale combination of climate model simulations and proxy records over the last millennium
NASA Astrophysics Data System (ADS)
Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Tian, Qinhua
2018-05-01
To highlight the compatibility of climate model simulation and proxy reconstruction at different timescales, a timescale separation merging method combining proxy records and climate model simulations is presented. Annual mean surface temperature anomalies for the last millennium (851-2005 AD) at various scales over the land of the Northern Hemisphere were reconstructed with 2° × 2° spatial resolution, using an optimal interpolation (OI) algorithm. All target series were decomposed using an ensemble empirical mode decomposition method followed by power spectral analysis. Four typical components were obtained at inter-annual, decadal, multidecadal, and centennial timescales. A total of 323 temperature-sensitive proxy chronologies were incorporated after screening for each component. By scaling the proxy components using variance matching and applying a localized OI algorithm to all four components point by point, we obtained merged surface temperatures. Independent validation indicates that the most significant improvement was for components at the inter-annual scale, but this became less evident with increasing timescales. In mid-latitude land areas, 10-30% of grids were significantly corrected at the inter-annual scale. By assimilating the proxy records, the merged results reduced the gap in response to volcanic forcing between a pure reconstruction and simulation. Difficulty remained in verifying the centennial information and quantifying corresponding uncertainties, so additional effort should be devoted to this aspect in future research.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.
2017-12-01
The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.
Carter, Michael J; Ste-Marie, Diane M
2017-03-01
The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.
Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.
Cheng, Jian; Jiang, Tianzi; Deriche, Rachid; Shen, Dinggang; Yap, Pew-Thian
2013-01-01
Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI (L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed by Bilgic et al. The experiment results on synthetic and real data indicate that the learned dictionary produces sparser coefficients than the original SPF basis and results in significantly lower reconstruction error than Bilgic et al.'s method.
NASA Astrophysics Data System (ADS)
Huang, Zhijiong; Hu, Yongtao; Zheng, Junyu; Zhai, Xinxin; Huang, Ran
2018-05-01
Lateral boundary conditions (LBCs) are essential for chemical transport models to simulate regional transport; however they often contain large uncertainties. This study proposes an optimized data fusion approach to reduce the bias of LBCs by fusing gridded model outputs, from which the daughter domain's LBCs are derived, with ground-level measurements. The optimized data fusion approach follows the framework of a previous interpolation-based fusion method but improves it by using a bias kriging method to correct the spatial bias in gridded model outputs. Cross-validation shows that the optimized approach better estimates fused fields in areas with a large number of observations compared to the previous interpolation-based method. The optimized approach was applied to correct LBCs of PM2.5 concentrations for simulations in the Pearl River Delta (PRD) region as a case study. Evaluations show that the LBCs corrected by data fusion improve in-domain PM2.5 simulations in terms of the magnitude and temporal variance. Correlation increases by 0.13-0.18 and fractional bias (FB) decreases by approximately 3%-15%. This study demonstrates the feasibility of applying data fusion to improve regional air quality modeling.
Time optimal control of a jet engine using a quasi-Hermite interpolation model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Comiskey, J. G.
1979-01-01
This work made preliminary efforts to generate nonlinear numerical models of a two-spooled turbofan jet engine, and subject these models to a known method of generating global, nonlinear, time optimal control laws. The models were derived numerically, directly from empirical data, as a first step in developing an automatic modelling procedure.
NASA Astrophysics Data System (ADS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required.
NASA Technical Reports Server (NTRS)
Tapiador, Francisco; Tao, Wei-Kuo; Angelis, Carlos F.; Martinez, Miguel A.; Cecilia Marcos; Antonio Rodriguez; Hou, Arthur; Jong Shi, Jain
2012-01-01
Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while the other follows a perturbed initial conditions approach. The results show that, depending on the parameterizations, large differences can be expected in terms of storm location, spatial structure of the precipitation field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller than the dispersion due to physical parameterizations. This confirms that in severe weather situations operational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble approach, in addition to optimizing initial conditions. The results also provide insights into differences in simulations arising from ensembles of weather models using several combinations of different physical parameterizations.
NASA Astrophysics Data System (ADS)
Hut, Rolf; Amisigo, Barnabas A.; Steele-Dunne, Susan; van de Giesen, Nick
2015-12-01
Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF) is introduced as a variant on the Ensemble Kalman Filter (EnKF). RumEnKF differs from EnKF in that it does not store the entire ensemble, but rather only saves the first two moments of the ensemble distribution. In this way, the number of ensemble members that can be calculated is less dependent on available memory, and mainly on available computing power (CPU). RumEnKF is developed to make optimal use of current generation super computer architecture, where the number of available floating point operations (flops) increases more rapidly than the available memory and where inter-node communication can quickly become a bottleneck. RumEnKF reduces the used memory compared to the EnKF when the number of ensemble members is greater than half the number of state variables. In this paper, three simple models are used (auto-regressive, low dimensional Lorenz and high dimensional Lorenz) to show that RumEnKF performs similarly to the EnKF. Furthermore, it is also shown that increasing the ensemble size has a similar impact on the estimation error from the three algorithms.
Optimal Interpolation scheme to generate reference crop evapotranspiration
NASA Astrophysics Data System (ADS)
Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco
2018-05-01
We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.
A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.
Yang, Wei; Ai, Tinghua; Lu, Wei
2018-04-19
Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.
A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories
Yang, Wei
2018-01-01
Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792
Development of adaptive observation strategy using retrospective optimal interpolation
NASA Astrophysics Data System (ADS)
Noh, N.; Kim, S.; Song, H.; Lim, G.
2011-12-01
Retrospective optimal interpolation (ROI) is a method that is used to minimize cost functions with multiple minima without using adjoint models. Song and Lim (2011) perform the experiments to reduce the computational costs for implementing ROI by transforming the control variables into eigenvectors of background error covariance. We adapt the ROI algorithm to compute sensitivity estimates of severe weather events over the Korean peninsula. The eigenvectors of the ROI algorithm is modified every time the observations are assimilated. This implies that the modified eigenvectors shows the error distribution of control variables which are updated by assimilating observations. So, We can estimate the effects of the specific observations. In order to verify the adaptive observation strategy, High-impact weather over the Korean peninsula is simulated and interpreted using WRF modeling system and sensitive regions for each high-impact weather is calculated. The effects of assimilation for each observation type is discussed.
Ocean data assimilation using optimal interpolation with a quasi-geostrophic model
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Miller, Robert N.
1991-01-01
A quasi-geostrophic (QG) stream function is analyzed by optimal interpolation (OI) over a 59-day period in a 150-km-square domain off northern California. Hydrographic observations acquired over five surveys were assimilated into a QG open boundary ocean model. Assimilation experiments were conducted separately for individual surveys to investigate the sensitivity of the OI analyses to parameters defining the decorrelation scale of an assumed error covariance function. The analyses were intercompared through dynamical hindcasts between surveys. The best hindcast was obtained using the smooth analyses produced with assumed error decorrelation scales identical to those of the observed stream function. The rms difference between the hindcast stream function and the final analysis was only 23 percent of the observation standard deviation. The two sets of OI analyses were temporally smoother than the fields from statistical objective analysis and in good agreement with the only independent data available for comparison.
An ensemble of SVM classifiers based on gene pairs.
Tong, Muchenxuan; Liu, Kun-Hong; Xu, Chungui; Ju, Wenbin
2013-07-01
In this paper, a genetic algorithm (GA) based ensemble support vector machine (SVM) classifier built on gene pairs (GA-ESP) is proposed. The SVMs (base classifiers of the ensemble system) are trained on different informative gene pairs. These gene pairs are selected by the top scoring pair (TSP) criterion. Each of these pairs projects the original microarray expression onto a 2-D space. Extensive permutation of gene pairs may reveal more useful information and potentially lead to an ensemble classifier with satisfactory accuracy and interpretability. GA is further applied to select an optimized combination of base classifiers. The effectiveness of the GA-ESP classifier is evaluated on both binary-class and multi-class datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Randomized interpolative decomposition of separated representations
NASA Astrophysics Data System (ADS)
Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory
2015-01-01
We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2017-04-01
Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes distance, stream-connectivity and size of the catchment areas into account. This can in some cases have a slight negative impact on the calibration error, but avoids large differences between parameters of nearby locations, whether stream connected or not. The spatial calibration also makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
NASA Astrophysics Data System (ADS)
Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich
2015-01-01
Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.
The Impact of AMSR-E Soil Moisture Assimilation on Evapotranspiration Estimation
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Kumar, Sujay; Mocko, David; Tian, Yudong
2012-01-01
An assessment ofETestimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 CNLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
Optimal design of compact spur gear reductions
NASA Technical Reports Server (NTRS)
Savage, M.; Lattime, S. B.; Kimmel, J. A.; Coe, H. H.
1992-01-01
The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition to gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life, system volume, and system weight including gears, support shafts, and the four bearings. The overall optimization allows component properties to interact, yielding the best composite design. A modified feasible directions search algorithm directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on the optimal configurations.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Kessler, K. M.
1975-01-01
The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.
Majid, Abdul; Ali, Safdar
2015-01-01
We developed genetic programming (GP)-based evolutionary ensemble system for the early diagnosis, prognosis and prediction of human breast cancer. This system has effectively exploited the diversity in feature and decision spaces. First, individual learners are trained in different feature spaces using physicochemical properties of protein amino acids. Their predictions are then stacked to develop the best solution during GP evolution process. Finally, results for HBC-Evo system are obtained with optimal threshold, which is computed using particle swarm optimization. Our novel approach has demonstrated promising results compared to state of the art approaches.
Real-Time Control of an Ensemble of Heterogeneous Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Bouman, Niek J.; Le Boudec, Jean-Yves
This paper focuses on the problem of controlling an ensemble of heterogeneous resources connected to an electrical grid at the same point of common coupling (PCC). The controller receives an aggregate power setpoint for the ensemble in real time and tracks this setpoint by issuing individual optimal setpoints to the resources. The resources can have continuous or discrete nature (e.g., heating systems consisting of a finite number of heaters that each can be either switched on or off) and/or can be highly uncertain (e.g., photovoltaic (PV) systems or residential loads). A naive approach would lead to a stochastic mixed-integer optimizationmore » problem to be solved at the controller at each time step, which might be infeasible in real time. Instead, we allow the controller to solve a continuous convex optimization problem and compensate for the errors at the resource level by using a variant of the well-known error diffusion algorithm. We give conditions guaranteeing that our algorithm tracks the power setpoint at the PCC on average while issuing optimal setpoints to individual resources. We illustrate the approach numerically by controlling a collection of batteries, PV systems, and discrete loads.« less
Gaussian process regression for geometry optimization
NASA Astrophysics Data System (ADS)
Denzel, Alexander; Kästner, Johannes
2018-03-01
We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.
NASA Astrophysics Data System (ADS)
Meier, Walter Neil
This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an innovative method of combining a new data set of SSM/I-derived ice motions with three different sea ice models via two data assimilation methods. The work described here is the first example of assimilating remotely-sensed data within high-resolution and detailed dynamic-thermodynamic sea ice models. The results demonstrate that assimilation is a valuable resource for determining accurate ice motion in the Arctic.
Ensemble Learning Method for Hidden Markov Models
2014-12-01
Ensemble HMM landmine detector Mine signatures vary according to the mine type, mine size , and burial depth. Similarly, clutter signatures vary with soil ...approaches for the di erent K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum...propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we
Improving database enrichment through ensemble docking
NASA Astrophysics Data System (ADS)
Rao, Shashidhar; Sanschagrin, Paul C.; Greenwood, Jeremy R.; Repasky, Matthew P.; Sherman, Woody; Farid, Ramy
2008-09-01
While it may seem intuitive that using an ensemble of multiple conformations of a receptor in structure-based virtual screening experiments would necessarily yield improved enrichment of actives relative to using just a single receptor, it turns out that at least in the p38 MAP kinase model system studied here, a very large majority of all possible ensembles do not yield improved enrichment of actives. However, there are combinations of receptor structures that do lead to improved enrichment results. We present here a method to select the ensembles that produce the best enrichments that does not rely on knowledge of active compounds or sophisticated analyses of the 3D receptor structures. In the system studied here, the small fraction of ensembles of up to 3 receptors that do yield good enrichments of actives were identified by selecting ensembles that have the best mean GlideScore for the top 1% of the docked ligands in a database screen of actives and drug-like "decoy" ligands. Ensembles of two receptors identified using this mean GlideScore metric generally outperform single receptors, while ensembles of three receptors identified using this metric consistently give optimal enrichment factors in which, for example, 40% of the known actives outrank all the other ligands in the database.
Mixture EMOS model for calibrating ensemble forecasts of wind speed.
Baran, S; Lerch, S
2016-03-01
Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.
Research on connection structure of aluminumbody bus using multi-objective topology optimization
NASA Astrophysics Data System (ADS)
Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.
2018-01-01
For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.
SQUEEZE-E: The Optimal Solution for Molecular Simulations with Periodic Boundary Conditions.
Wassenaar, Tsjerk A; de Vries, Sjoerd; Bonvin, Alexandre M J J; Bekker, Henk
2012-10-09
In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid spending computational resources on uninteresting solvent-solvent interactions. As a consequence, periodic boundary conditions are commonly used, with a simulation box chosen as small as possible, for a given minimal distance between images. Here, we describe how such a simulation cell can be set up for ensembles, taking into account a priori available or estimable information regarding conformational flexibility. Doing so ensures that any conformation present in the input ensemble will satisfy the distance criterion during the simulation. This helps avoid periodicity artifacts due to conformational changes. The method introduces three new approaches in computational geometry: (1) The first is the derivation of an optimal packing of ensembles, for which the mathematical framework is described. (2) A new method for approximating the α-hull and the contact body for single bodies and ensembles is presented, which is orders of magnitude faster than existing routines, allowing the calculation of packings of large ensembles and/or large bodies. 3. A routine is described for searching a combination of three vectors on a discretized contact body forming a reduced base for a lattice with minimal cell volume. The new algorithms reduce the time required to calculate packings of single bodies from minutes or hours to seconds. The use and efficacy of the method is demonstrated for ensembles obtained from NMR, MD simulations, and elastic network modeling. An implementation of the method has been made available online at http://haddock.chem.uu.nl/services/SQUEEZE/ and has been made available as an option for running simulations through the weNMR GRID MD server at http://haddock.science.uu.nl/enmr/services/GROMACS/main.php .
NWP model forecast skill optimization via closure parameter variations
NASA Astrophysics Data System (ADS)
Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.
2012-04-01
We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2016-04-01
Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative impact on the calibration error, but makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system
NASA Astrophysics Data System (ADS)
Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU
2018-03-01
The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.
NASA Astrophysics Data System (ADS)
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas
2014-09-01
Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Akmaev, R. a.
1999-04-01
In Part 1 of this work ([Akmaev, 1999]), an overview of the theory of optimal interpolation (OI) ([Gandin, 1963]) and related techniques of data assimilation based on linear optimal estimation ([Liebelt, 1967]; [Catlin, 1989]; [Mendel, 1995]) is presented. The approach implies the use in data analysis of additional statistical information in the form of statistical moments, e.g., the mean and covariance (correlation). The a priori statistical characteristics, if available, make it possible to constrain expected errors and obtain optimal in some sense estimates of the true state from a set of observations in a given domain in space and/or time. The primary objective of OI is to provide estimates away from the observations, i.e., to fill in data voids in the domain under consideration. Additionally, OI performs smoothing suppressing the noise, i.e., the spectral components that are presumably not present in the true signal. Usually, the criterion of optimality is minimum variance of the expected errors and the whole approach may be considered constrained least squares or least squares with a priori information. Obviously, data assimilation techniques capable of incorporating any additional information are potentially superior to techniques that have no access to such information as, for example, the conventional least squares (e.g., [Liebelt, 1967]; [Weisberg, 1985]; [Press et al., 1992]; [Mendel, 1995]).
Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions
NASA Astrophysics Data System (ADS)
Güler, Marifi
2017-10-01
Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
NASA Astrophysics Data System (ADS)
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
Prediction of conformationally dependent atomic multipole moments in carbohydrates
Cardamone, Salvatore
2015-01-01
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an “atom in a molecule,” thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol−1 for open chains and just over 90% an error of maximum 4 kJ mol−1 for rings. © 2015 Wiley Periodicals, Inc. PMID:26547500
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
Cardamone, Salvatore; Popelier, Paul L A
2015-12-15
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.
An Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles
2012-06-01
Armament Data Line DOF Degree of Freedom PS Pseudospectral LGL Legendre -Gauss-Lobatto quadrature nodes ODE Ordinary Differential Equation xiv...low order polynomials patched together in such away so that the resulting trajectory has several continuous derivatives at all points. In [7], Murray...claims that splines are ideal for optimal control problems because each segment of the spline’s piecewise polynomials approximate the trajectory
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Use of combined radar and radiometer systems in space for precipitation measurement: Some ideas
NASA Technical Reports Server (NTRS)
Moore, R. K.
1981-01-01
A brief survey is given of some fundamental physical concepts of optimal polarization characteristics of a transmission path or scatter ensemble of hydrometers. It is argued that, based on this optimization concept, definite advances in remote atmospheric sensing are to be expected. Basic properties of Kennaugh's optimal polarization theory are identified.
NASA Astrophysics Data System (ADS)
Beckman, Robert A.; Moreland, David; Louise-May, Shirley; Humblet, Christine
2006-05-01
Nuclear magnetic resonance (NMR) provides structural and dynamic information reflecting an average, often non-linear, of multiple solution-state conformations. Therefore, a single optimized structure derived from NMR refinement may be misleading if the NMR data actually result from averaging of distinct conformers. It is hypothesized that a conformational ensemble generated by a valid molecular dynamics (MD) simulation should be able to improve agreement with the NMR data set compared with the single optimized starting structure. Using a model system consisting of two sequence-related self-complementary ribonucleotide octamers for which NMR data was available, 0.3 ns particle mesh Ewald MD simulations were performed in the AMBER force field in the presence of explicit water and counterions. Agreement of the averaged properties of the molecular dynamics ensembles with NMR data such as homonuclear proton nuclear Overhauser effect (NOE)-based distance constraints, homonuclear proton and heteronuclear 1H-31P coupling constant ( J) data, and qualitative NMR information on hydrogen bond occupancy, was systematically assessed. Despite the short length of the simulation, the ensemble generated from it agreed with the NMR experimental constraints more completely than the single optimized NMR structure. This suggests that short unrestrained MD simulations may be of utility in interpreting NMR results. As expected, a 0.5 ns simulation utilizing a distance dependent dielectric did not improve agreement with the NMR data, consistent with its inferior exploration of conformational space as assessed by 2-D RMSD plots. Thus, ability to rapidly improve agreement with NMR constraints may be a sensitive diagnostic of the MD methods themselves.
The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.
Muller, A; Pontonnier, C; Dumont, G
2018-02-01
The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Rahman, Rosnani
2016-02-01
Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.
Optimal estimation of suspended-sediment concentrations in streams
Holtschlag, D.J.
2001-01-01
Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.
Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min
2017-05-01
This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.
Tang, Youhua; Chai, Tianfeng; Pan, Li; Lee, Pius; Tong, Daniel; Kim, Hyun-Cheol; Chen, Weiwei
2015-10-01
We employed an optimal interpolation (OI) method to assimilate AIRNow ozone/PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) data into the Community Multi-scale Air Quality (CMAQ) model to improve the ozone and total aerosol concentration for the CMAQ simulation over the contiguous United States (CONUS). AIRNow data assimilation was applied to the boundary layer, and MODIS AOD data were used to adjust total column aerosol. Four OI cases were designed to examine the effects of uncertainty setting and assimilation time; two of these cases used uncertainties that varied in time and location, or "dynamic uncertainties." More frequent assimilation and higher model uncertainties pushed the modeled results closer to the observation. Our comparison over a 24-hr period showed that ozone and PM2.5 mean biases could be reduced from 2.54 ppbV to 1.06 ppbV and from -7.14 µg/m³ to -0.11 µg/m³, respectively, over CONUS, while their correlations were also improved. Comparison to DISCOVER-AQ 2011 aircraft measurement showed that surface ozone assimilation applied to the CMAQ simulation improves regional low-altitude (below 2 km) ozone simulation. This paper described an application of using optimal interpolation method to improve the model's ozone and PM2.5 estimation using surface measurement and satellite AOD. It highlights the usage of the operational AIRNow data set, which is available in near real time, and the MODIS AOD. With a similar method, we can also use other satellite products, such as the latest VIIRS products, to improve PM2.5 prediction.
A Neural Network Aero Design System for Advanced Turbo-Engines
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1999-01-01
An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.
Inhomogeneous ensembles of radical pairs in chemical compasses
Procopio, Maria; Ritz, Thorsten
2016-01-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity. PMID:27804956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, Andrey V.; Egorov, Dmitry V.
This paper presents new results concerning selection of an optimal information fusion formula for an ensemble of Lipschitz classifiers. The goal of information fusion is to create an integral classificatory which could provide better generalization ability of the ensemble while achieving a practically acceptable level of effectiveness. The problem of information fusion is very relevant for data processing in multi-channel C-OTDR-monitoring systems. In this case we have to effectively classify targeted events which appear in the vicinity of the monitored object. Solution of this problem is based on usage of an ensemble of Lipschitz classifiers each of which corresponds tomore » a respective channel. We suggest a brand new method for information fusion in case of ensemble of Lipschitz classifiers. This method is called “The Weighing of Inversely as Lipschitz Constants” (WILC). Results of WILC-method practical usage in multichannel C-OTDR monitoring systems are presented.« less
Inhomogeneous ensembles of radical pairs in chemical compasses
NASA Astrophysics Data System (ADS)
Procopio, Maria; Ritz, Thorsten
2016-11-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.
Inner Radiation Belt Dynamics and Climatology
NASA Astrophysics Data System (ADS)
Guild, T. B.; O'Brien, P. P.; Looper, M. D.
2012-12-01
We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.
2002-01-01
The variable-resolution stretched-grid (SG) GEOS (Goddard Earth Observing System) GCM has been used for limited ensemble integrations with a relatively coarse, 60 to 100 km, regional resolution over the U.S. The experiments have been run for the 12-year period, 1987-1998, that includes the recent ENSO cycles. Initial conditions 1-2 days apart are used for ensemble members. The goal of the experiments is analyzing the long-term SG-GCM ensemble integrations in terms of their potential in reducing the uncertainties of regional climate simulation while producing realistic mesoscales. The ensemble integration results are analyzed for both prognostic and diagnostic fields. A special attention is devoted to analyzing the variability of precipitation over the U.S. The internal variability of the SG-GCM has been assessed. The ensemble means appear to be closer to the verifying analyses than the individual ensemble members. The ensemble means capture realistic mesoscale patterns, especially those of induced by orography. Two ENSO cycles have been analyzed in terms their impact on the U.S. climate, especially on precipitation. The ability of the SG-GCM simulations to produce regional climate anomalies has been confirmed. However, the optimal size of the ensembles depending on fine regional resolution used, is still to be determined. The SG-GCM ensemble simulations are performed as a preparation or a preliminary stage for the international SGMIP (Stretched-Grid Model Intercomparison Project) that is under way with participation of the major centers and groups employing the SG-approach for regional climate modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahunbay, Ergun E., E-mail: eahunbay@mcw.edu; Ates,
Purpose: In a situation where a couch shift for patient positioning is not preferred or prohibited (e.g., MR-linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening-filter-free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here the authors propose a new two-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online step. The offline step is to create a series of preshifted-plans (PSPs) obtained by a so-called “warm start”more » optimization (starting optimization from the original plan, rather than from scratch) at a series of isocenter shifts. The PSPs all have the same number of segments with very similar shapes, since the warm start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by picking the closest PSP or linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated and almost instantaneous (no optimization or dose calculation needed). The previously developed SAM algorithm is then applied for daily deformation. The authors tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. Plan interpolation method is effective in diminishing the unflat beam effect and may allow reducing the required number of PSPs. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusions: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation except the delineation of target contour required by the SAM process.« less
Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-03-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.
Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-01-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179
Spatial interpolation of pesticide drift from hand-held knapsack sprayers used in potato production
NASA Astrophysics Data System (ADS)
Garcia-Santos, Glenda; Pleschberger, Martin; Scheiber, Michael; Pilz, Jürgen
2017-04-01
Tropical mountainous regions in developing countries are often neglected in research and policy but represent key areas to be considered if sustainable agricultural and rural development is to be promoted. One example is the lack of information of pesticide drift soil deposition, which can support pesticide risk assessment for soil, surface water, bystanders and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, were obtained within one of the highest potato producing regions in Colombia. Based on the empirical data, different spatial interpolation techniques i.e. Thiessen, inverse distance squared weighting, co-kriging, pair-copulas and drift curves depending on distance and wind speed were tested and optimized. Results of the best performing spatial interpolation methods, suitable curves to assess mean relative drift and implications on risk assessment studies will be presented.
NASA Astrophysics Data System (ADS)
Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min
2018-04-01
Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André
2017-09-01
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
An experimental investigation of gas fuel injection with X-ray radiography
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.; ...
2017-04-21
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
An experimental investigation of gas fuel injection with X-ray radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
Interpolation of Superconducting Gravity Observations Using Least-Squares Collocation Method
NASA Astrophysics Data System (ADS)
Habel, Branislav; Janak, Juraj
2014-05-01
A pre-processing of the gravity data measured by superconducting gravimeter involves removing of spikes, offsets and gaps. Their presence in observations can limit the data analysis and degrades the quality of obtained results. Short data gaps are filling by theoretical signal in order to get continuous records of gravity. It requires the accurate tidal model and eventually atmospheric pressure at the observed site. The poster presents a design of algorithm for interpolation of gravity observations with a sampling rate of 1 min. Novel approach is based on least-squares collocation which combines adjustment of trend parameters, filtering of noise and prediction. It allows the interpolation of missing data up to a few hours without necessity of any other information. Appropriate parameters for covariance function are found using a Bayes' theorem by modified optimization process. Accuracy of method is improved by the rejection of outliers before interpolation. For filling of longer gaps the collocation model is combined with theoretical tidal signal for the rigid Earth. Finally, the proposed method was tested on the superconducting gravity observations at several selected stations of Global Geodynamics Project. Testing demonstrates its reliability and offers results comparable with the standard approach implemented in ETERNA software package without necessity of an accurate tidal model.
NASA Astrophysics Data System (ADS)
Kasiviswanathan, K.; Sudheer, K.
2013-05-01
Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived prediction interval for a selected hydrograph in the validation data set is presented in Fig 1. It is noted that most of the observed flows lie within the constructed prediction interval, and therefore provides information about the uncertainty of the prediction. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs. Fig. 1 Prediction Interval for selected hydrograph
Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions.
Brooks, Logan C; Farrow, David C; Hyun, Sangwon; Tibshirani, Ryan J; Rosenfeld, Roni
2018-06-15
Accurate and reliable forecasts of seasonal epidemics of infectious disease can assist in the design of countermeasures and increase public awareness and preparedness. This article describes two main contributions we made recently toward this goal: a novel approach to probabilistic modeling of surveillance time series based on "delta densities", and an optimization scheme for combining output from multiple forecasting methods into an adaptively weighted ensemble. Delta densities describe the probability distribution of the change between one observation and the next, conditioned on available data; chaining together nonparametric estimates of these distributions yields a model for an entire trajectory. Corresponding distributional forecasts cover more observed events than alternatives that treat the whole season as a unit, and improve upon multiple evaluation metrics when extracting key targets of interest to public health officials. Adaptively weighted ensembles integrate the results of multiple forecasting methods, such as delta density, using weights that can change from situation to situation. We treat selection of optimal weightings across forecasting methods as a separate estimation task, and describe an estimation procedure based on optimizing cross-validation performance. We consider some details of the data generation process, including data revisions and holiday effects, both in the construction of these forecasting methods and when performing retrospective evaluation. The delta density method and an adaptively weighted ensemble of other forecasting methods each improve significantly on the next best ensemble component when applied separately, and achieve even better cross-validated performance when used in conjunction. We submitted real-time forecasts based on these contributions as part of CDC's 2015/2016 FluSight Collaborative Comparison. Among the fourteen submissions that season, this system was ranked by CDC as the most accurate.
NASA Astrophysics Data System (ADS)
Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui
2016-04-01
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Qin, E-mail: qqiao@ust.hk; Zhang, Hou-Dao; Huang, Xuhui, E-mail: xuhuihuang@ust.hk
2016-04-21
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kineticsmore » are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.« less
A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.
Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig
2017-01-01
The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.
Generalized Pauli constraints in reduced density matrix functional theory.
Theophilou, Iris; Lathiotakis, Nektarios N; Marques, Miguel A L; Helbig, Nicole
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
Bayesian Ensemble Trees (BET) for Clustering and Prediction in Heterogeneous Data
Duan, Leo L.; Clancy, John P.; Szczesniak, Rhonda D.
2016-01-01
We propose a novel “tree-averaging” model that utilizes the ensemble of classification and regression trees (CART). Each constituent tree is estimated with a subset of similar data. We treat this grouping of subsets as Bayesian Ensemble Trees (BET) and model them as a Dirichlet process. We show that BET determines the optimal number of trees by adapting to the data heterogeneity. Compared with the other ensemble methods, BET requires much fewer trees and shows equivalent prediction accuracy using weighted averaging. Moreover, each tree in BET provides variable selection criterion and interpretation for each subset. We developed an efficient estimating procedure with improved estimation strategies in both CART and mixture models. We demonstrate these advantages of BET with simulations and illustrate the approach with a real-world data example involving regression of lung function measurements obtained from patients with cystic fibrosis. Supplemental materials are available online. PMID:27524872
Song, Wan-lu; Yang, Wan-li; Yin, Zhang-qi; Chen, Chang-yong; Feng, Mang
2016-01-01
We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violatesmore » the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.« less
An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases
NASA Astrophysics Data System (ADS)
Ramaswamy, V.; Saleh, F.
2017-12-01
Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.
An n -material thresholding method for improving integerness of solutions in topology optimization
Watts, Seth; Tortorelli, Daniel A.
2016-04-10
It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, themore » canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.« less
Strecker, Claas; Meyer, Bernd
2018-05-29
Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.
A Simple Approach to Account for Climate Model Interdependence in Multi-Model Ensembles
NASA Astrophysics Data System (ADS)
Herger, N.; Abramowitz, G.; Angelil, O. M.; Knutti, R.; Sanderson, B.
2016-12-01
Multi-model ensembles are an indispensable tool for future climate projection and its uncertainty quantification. Ensembles containing multiple climate models generally have increased skill, consistency and reliability. Due to the lack of agreed-on alternatives, most scientists use the equally-weighted multi-model mean as they subscribe to model democracy ("one model, one vote").Different research groups are known to share sections of code, parameterizations in their model, literature, or even whole model components. Therefore, individual model runs do not represent truly independent estimates. Ignoring this dependence structure might lead to a false model consensus, wrong estimation of uncertainty and effective number of independent models.Here, we present a way to partially address this problem by selecting a subset of CMIP5 model runs so that its climatological mean minimizes the RMSE compared to a given observation product. Due to the cancelling out of errors, regional biases in the ensemble mean are reduced significantly.Using a model-as-truth experiment we demonstrate that those regional biases persist into the future and we are not fitting noise, thus providing improved observationally-constrained projections of the 21st century. The optimally selected ensemble shows significantly higher global mean surface temperature projections than the original ensemble, where all the model runs are considered. Moreover, the spread is decreased well beyond that expected from the decreased ensemble size.Several previous studies have recommended an ensemble selection approach based on performance ranking of the model runs. Here, we show that this approach can perform even worse than randomly selecting ensemble members and can thus be harmful. We suggest that accounting for interdependence in the ensemble selection process is a necessary step for robust projections for use in impact assessments, adaptation and mitigation of climate change.
NASA Astrophysics Data System (ADS)
Wetterhall, F.; He, Y.; Cloke, H.; Pappenberger, F.; Freer, J.; Wilson, M.; McGregor, G.
2009-04-01
Local flooding events are often triggered by high-intensity rain-fall events, and it is important that these can be correctly modelled by Regional Climate Models (RCMs) if the results are to be used in climate impact assessment. In this study, daily precipitation from 16 RCMs was compared with observations over a meso-scale catchment in the Midlands Region of England. The RCM data was provided from the European research project ENSEMBLES and the precipitation data from the UK MetOffice. The RCMs were all driven by reanalysis data from the ERA40 dataset over the time period 1961-2000. The ENSEMBLES data is on the spatial scale of 25 x 25 km and it was disaggregated onto a 5 x 5 km grid over the catchment and compared with interpolated observational data with the same resolution. The mean precipitation was generally underestimated by the ENSEMBLES data, and the maximum and persistence of high intensity rainfall was even more underestimated. The inter-annual variability was not fully captured by the RCMs, and there was a systematic underestimation of precipitation during the autumn months. The spatial pattern in the modelled precipitation data was too smooth in comparison with the observed data, especially in the high altitudes in the western part of the catchment where the high precipitation usually occurs. The RCM outputs cannot reproduce the current high intensity precipitation events that are needed to sufficiently model extreme flood events. The results point out the discrepancy between climate model output and the high intensity precipitation input needs for hydrological impact modelling.
Ng, Yee-Hong; Bettens, Ryan P A
2016-03-03
Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.
Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
NASA Technical Reports Server (NTRS)
Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Selecting a Classification Ensemble and Detecting Process Drift in an Evolving Data Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heredia-Langner, Alejandro; Rodriguez, Luke R.; Lin, Andy
2015-09-30
We characterize the commercial behavior of a group of companies in a common line of business using a small ensemble of classifiers on a stream of records containing commercial activity information. This approach is able to effectively find a subset of classifiers that can be used to predict company labels with reasonable accuracy. Performance of the ensemble, its error rate under stable conditions, can be characterized using an exponentially weighted moving average (EWMA) statistic. The behavior of the EWMA statistic can be used to monitor a record stream from the commercial network and determine when significant changes have occurred. Resultsmore » indicate that larger classification ensembles may not necessarily be optimal, pointing to the need to search the combinatorial classifier space in a systematic way. Results also show that current and past performance of an ensemble can be used to detect when statistically significant changes in the activity of the network have occurred. The dataset used in this work contains tens of thousands of high level commercial activity records with continuous and categorical variables and hundreds of labels, making classification challenging.« less
NASA Astrophysics Data System (ADS)
Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.
2018-02-01
The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.
Optimizing Reservoir Operation to Adapt to the Climate Change
NASA Astrophysics Data System (ADS)
Madadgar, S.; Jung, I.; Moradkhani, H.
2010-12-01
Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.
Multi-model ensembles for assessment of flood losses and associated uncertainty
NASA Astrophysics Data System (ADS)
Figueiredo, Rui; Schröter, Kai; Weiss-Motz, Alexander; Martina, Mario L. V.; Kreibich, Heidi
2018-05-01
Flood loss modelling is a crucial part of risk assessments. However, it is subject to large uncertainty that is often neglected. Most models available in the literature are deterministic, providing only single point estimates of flood loss, and large disparities tend to exist among them. Adopting any one such model in a risk assessment context is likely to lead to inaccurate loss estimates and sub-optimal decision-making. In this paper, we propose the use of multi-model ensembles to address these issues. This approach, which has been applied successfully in other scientific fields, is based on the combination of different model outputs with the aim of improving the skill and usefulness of predictions. We first propose a model rating framework to support ensemble construction, based on a probability tree of model properties, which establishes relative degrees of belief between candidate models. Using 20 flood loss models in two test cases, we then construct numerous multi-model ensembles, based both on the rating framework and on a stochastic method, differing in terms of participating members, ensemble size and model weights. We evaluate the performance of ensemble means, as well as their probabilistic skill and reliability. Our results demonstrate that well-designed multi-model ensembles represent a pragmatic approach to consistently obtain more accurate flood loss estimates and reliable probability distributions of model uncertainty.
Local activation time sampling density for atrial tachycardia contact mapping: how much is enough?
Williams, Steven E; Harrison, James L; Chubb, Henry; Whitaker, John; Kiedrowicz, Radek; Rinaldi, Christopher A; Cooklin, Michael; Wright, Matthew; Niederer, Steven; O'Neill, Mark D
2018-02-01
Local activation time (LAT) mapping forms the cornerstone of atrial tachycardia diagnosis. Although anatomic and positional accuracy of electroanatomic mapping (EAM) systems have been validated, the effect of electrode sampling density on LAT map reconstruction is not known. Here, we study the effect of chamber geometry and activation complexity on optimal LAT sampling density using a combined in silico and in vivo approach. In vivo 21 atrial tachycardia maps were studied in three groups: (1) focal activation, (2) macro-re-entry, and (3) localized re-entry. In silico activation was simulated on a 4×4cm atrial monolayer, sampled randomly at 0.25-10 points/cm2 and used to re-interpolate LAT maps. Activation patterns were studied in the geometrically simple porcine right atrium (RA) and complex human left atrium (LA). Activation complexity was introduced into the porcine RA by incomplete inter-caval linear ablation. In all cases, optimal sampling density was defined as the highest density resulting in minimal further error reduction in the re-interpolated maps. Optimal sampling densities for LA tachycardias were 0.67 ± 0.17 points/cm2 (focal activation), 1.05 ± 0.32 points/cm2 (macro-re-entry) and 1.23 ± 0.26 points/cm2 (localized re-entry), P = 0.0031. Increasing activation complexity was associated with increased optimal sampling density both in silico (focal activation 1.09 ± 0.14 points/cm2; re-entry 1.44 ± 0.49 points/cm2; spiral-wave 1.50 ± 0.34 points/cm2, P < 0.0001) and in vivo (porcine RA pre-ablation 0.45 ± 0.13 vs. post-ablation 0.78 ± 0.17 points/cm2, P = 0.0008). Increasing chamber geometry was also associated with increased optimal sampling density (0.61 ± 0.22 points/cm2 vs. 1.0 ± 0.34 points/cm2, P = 0.0015). Optimal sampling densities can be identified to maximize diagnostic yield of LAT maps. Greater sampling density is required to correctly reveal complex activation and represent activation across complex geometries. Overall, the optimal sampling density for LAT map interpolation defined in this study was ∼1.0-1.5 points/cm2. Published on behalf of the European Society of Cardiology
NASA Astrophysics Data System (ADS)
Fefer, M.; Dogan, M. S.; Herman, J. D.
2017-12-01
Long-term shifts in the timing and magnitude of reservoir inflows will potentially have significant impacts on water supply reliability in California, though projections remain uncertain. Here we assess the vulnerability of the statewide system to changes in total annual runoff (a function of precipitation) and the fraction of runoff occurring during the winter months (primarily a function of temperature). An ensemble of scenarios is sampled using a bottom-up approach and compared to the most recent available streamflow projections from the state's 4th Climate Assessment. We evaluate these scenarios using a new open-source version of the CALVIN model, a network flow optimization model encompassing roughly 90% of the urban and agricultural water demands in California, which is capable of running scenario ensembles on a high-performance computing cluster. The economic representation of water demand in the model yields several advantages for this type of analysis: optimized reservoir operating policies to minimize shortage cost and the marginal value of adaptation opportunities, defined by shadow prices on infrastructure and regulatory constraints. Results indicate a shift in optimal reservoir operations and high marginal value of additional reservoir storage in the winter months. The collaborative management of reservoirs in CALVIN yields increased storage in downstream reservoirs to store the increased winter runoff. This study contributes an ensemble evaluation of a large-scale network model to investigate uncertain climate projections, and an approach to interpret the results of economic optimization through the lens of long-term adaptation strategies.
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Shin, Eun Seok; Kim, Sung Min
2018-01-01
The purpose of this study was to propose a hybrid ensemble classifier to characterize coronary plaque regions in intravascular ultrasound (IVUS) images. Pixels were allocated to one of four tissues (fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), and dense calcium (DC)) through processes of border segmentation, feature extraction, feature selection, and classification. Grayscale IVUS images and their corresponding virtual histology images were acquired from 11 patients with known or suspected coronary artery disease using 20 MHz catheter. A total of 102 hybrid textural features including first order statistics (FOS), gray level co-occurrence matrix (GLCM), extended gray level run-length matrix (GLRLM), Laws, local binary pattern (LBP), intensity, and discrete wavelet features (DWF) were extracted from IVUS images. To select optimal feature sets, genetic algorithm was implemented. A hybrid ensemble classifier based on histogram and texture information was then used for plaque characterization in this study. The optimal feature set was used as input of this ensemble classifier. After tissue characterization, parameters including sensitivity, specificity, and accuracy were calculated to validate the proposed approach. A ten-fold cross validation approach was used to determine the statistical significance of the proposed method. Our experimental results showed that the proposed method had reliable performance for tissue characterization in IVUS images. The hybrid ensemble classification method outperformed other existing methods by achieving characterization accuracy of 81% for FFT and 75% for NC. In addition, this study showed that Laws features (SSV and SAV) were key indicators for coronary tissue characterization. The proposed method had high clinical applicability for image-based tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng
Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less
Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang
2016-11-16
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; ...
2017-09-25
Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Nishigaki, Shinsuke M.
2018-02-01
We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.
NASA Technical Reports Server (NTRS)
Chang, Ching L.; Jiang, Bo-Nan
1990-01-01
A theoretical proof of the optimal rate of convergence for the least-squares method is developed for the Stokes problem based on the velocity-pressure-vorticity formula. The 2D Stokes problem is analyzed to define the product space and its inner product, and the a priori estimates are derived to give the finite-element approximation. The least-squares method is found to converge at the optimal rate for equal-order interpolation.
Direct and Remote Effects of Topography and Orientation, and the Dynamics of Mesoscale Eddies
2017-09-01
Diagram for Visual Reference .............36 Figure 20. GRB with 3-D 3300-meter and Quasi -Geostrophic Comparison ..............36 THIS PAGE INTENTIONALLY...circulation model NS Navier-Stokes equations Sopt Calculated Optimal Slope Sint Interpolated Optimal Slope Qf Thermal Heat Flux QG Quasi ...surveys such as MODE1 and POLYMODE, which was the largest joint U.S.–U.S.S.R. experiment of its time (Robinson 1983). Now, with the use of
NASA Astrophysics Data System (ADS)
Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping
2017-11-01
Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For peak values taking flood forecasts from each individual member into account is more appropriate.
NASA Astrophysics Data System (ADS)
Brown, James; Seo, Dong-Jun
2010-05-01
Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.
The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates
NASA Technical Reports Server (NTRS)
Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2008-01-01
We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.
Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Soumya; Hansen, Jacob; Lian, Jianming
2018-04-19
Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected errormore » in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.« less
Lambert, Nathaniel D.; Pankratz, V. Shane; Larrabee, Beth R.; Ogee-Nwankwo, Adaeze; Chen, Min-hsin; Icenogle, Joseph P.
2014-01-01
Rubella remains a social and economic burden due to the high incidence of congenital rubella syndrome (CRS) in some countries. For this reason, an accurate and efficient high-throughput measure of antibody response to vaccination is an important tool. In order to measure rubella-specific neutralizing antibodies in a large cohort of vaccinated individuals, a high-throughput immunocolorimetric system was developed. Statistical interpolation models were applied to the resulting titers to refine quantitative estimates of neutralizing antibody titers relative to the assayed neutralizing antibody dilutions. This assay, including the statistical methods developed, can be used to assess the neutralizing humoral immune response to rubella virus and may be adaptable for assessing the response to other viral vaccines and infectious agents. PMID:24391140
A comparison of different interpolation methods for wind data in Central Asia
NASA Astrophysics Data System (ADS)
Reinhardt, Katja; Samimi, Cyrus
2017-04-01
For the assessment of the global climate change and its consequences, the results of computer based climate models are of central importance. The quality of these results and the validity of the derived forecasts are strongly determined by the quality of the underlying climate data. However, in many parts of the world high resolution data are not available. This is particularly true for many regions in Central Asia, where the density of climatological stations has often to be described as thinned out. Due to this insufficient data base the use of statistical methods to improve the resolution of existing climate data is of crucial importance. Only this can provide a substantial data base for a well-founded analysis of past climate changes as well as for a reliable forecast of future climate developments for the particular region. The study presented here shows a comparison of different interpolation methods for the wind components u and v for a region in Central Asia with a pronounced topography. The aim of the study is to find out whether there is an optimal interpolation method which can equally be applied for all pressure levels or if different interpolation methods have to be applied for each pressure level. The European reanalysis data Era-Interim for the years 1989 - 2015 are used as input data for the pressure levels of 850 hPa, 500 hPa and 200 hPa. In order to improve the input data, two different interpolation procedures were applied: On the one hand pure interpolation methods were used, such as inverse distance weighting and ordinary kriging. On the other hand machine learning algorithms, generalized additive models and regression kriging were applied, considering additional influencing factors, e.g. geopotential and topography. As a result it can be concluded that regression kriging provides the best results for all pressure levels, followed by support vector machine, neural networks and ordinary kriging. Inverse distance weighting showed the worst results.
A new approach to human microRNA target prediction using ensemble pruning and rotation forest.
Mousavi, Reza; Eftekhari, Mahdi; Haghighi, Mehdi Ghezelbash
2015-12-01
MicroRNAs (miRNAs) are small non-coding RNAs that have important functions in gene regulation. Since finding miRNA target experimentally is costly and needs spending much time, the use of machine learning methods is a growing research area for miRNA target prediction. In this paper, a new approach is proposed by using two popular ensemble strategies, i.e. Ensemble Pruning and Rotation Forest (EP-RTF), to predict human miRNA target. For EP, the approach utilizes Genetic Algorithm (GA). In other words, a subset of classifiers from the heterogeneous ensemble is first selected by GA. Next, the selected classifiers are trained based on the RTF method and then are combined using weighted majority voting. In addition to seeking a better subset of classifiers, the parameter of RTF is also optimized by GA. Findings of the present study confirm that the newly developed EP-RTF outperforms (in terms of classification accuracy, sensitivity, and specificity) the previously applied methods over four datasets in the field of human miRNA target. Diversity-error diagrams reveal that the proposed ensemble approach constructs individual classifiers which are more accurate and usually diverse than the other ensemble approaches. Given these experimental results, we highly recommend EP-RTF for improving the performance of miRNA target prediction.
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
A wavelet-based adaptive fusion algorithm of infrared polarization imaging
NASA Astrophysics Data System (ADS)
Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang
2011-08-01
The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.
Jing, Helen G; Szpunar, Karl K; Schacter, Daniel L
2016-09-01
Although learning through a computer interface has become increasingly common, little is known about how to best structure video-recorded lectures to optimize learning. In 2 experiments, we examine changes in focused attention and the ability for students to integrate knowledge learned during a 40-min video-recorded lecture. In Experiment 1, we demonstrate that interpolating a lecture with memory tests (tested group), compared to studying the lecture material for the same amount of time (restudy group), improves overall learning and boosts integration of related information learned both within individual lecture segments and across the entire lecture. Although mind wandering rates between the tested and restudy groups did not differ, mind wandering was more detrimental for final test performance in the restudy group than in the tested group. In Experiment 2, we replicate the findings of Experiment 1, and additionally show that interpolated tests influence the types of thoughts that participants report during the lecture. While the tested group reported more lecture-related thoughts, the restudy group reported more lecture-unrelated thoughts; furthermore, lecture-related thoughts were positively related to final test performance, whereas lecture-unrelated thoughts were negatively related to final test performance. Implications for the use of interpolated testing in video-recorded lectures are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Boston, A. J.; Nolan, P. J.; Peyton, A. J.; Hawkes, N. P.
2009-01-01
A unique, digital time pick-off method, known as sample-interpolation timing (SIT) is described. This method demonstrates the possibility of improved timing resolution for the digital measurement of time of flight compared with digital replica-analogue time pick-off methods for signals sampled at relatively low rates. Three analogue timing methods have been replicated in the digital domain (leading-edge, crossover and constant-fraction timing) for pulse data sampled at 8 GSa s-1. Events arising from the 7Li(p, n)7Be reaction have been detected with an EJ-301 organic liquid scintillator and recorded with a fast digital sampling oscilloscope. Sample-interpolation timing was developed solely for the digital domain and thus performs more efficiently on digital signals compared with analogue time pick-off methods replicated digitally, especially for fast signals that are sampled at rates that current affordable and portable devices can achieve. Sample interpolation can be applied to any analogue timing method replicated digitally and thus also has the potential to exploit the generic capabilities of analogue techniques with the benefits of operating in the digital domain. A threshold in sampling rate with respect to the signal pulse width is observed beyond which further improvements in timing resolution are not attained. This advance is relevant to many applications in which time-of-flight measurement is essential.
Hierarchial parallel computer architecture defined by computational multidisciplinary mechanics
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug; Johnson, Keith
1989-01-01
The goal is to develop an architecture for parallel processors enabling optimal handling of multi-disciplinary computation of fluid-solid simulations employing finite element and difference schemes. The goals, philosphical and modeling directions, static and dynamic poly trees, example problems, interpolative reduction, the impact on solvers are shown in viewgraph form.
Nonlinear feedback control for high alpha flight
NASA Technical Reports Server (NTRS)
Stalford, Harold
1990-01-01
Analytical aerodynamic models are derived from a high alpha 6 DOF wind tunnel model. One detail model requires some interpolation between nonlinear functions of alpha. One analytical model requires no interpolation and as such is a completely continuous model. Flight path optimization is conducted on the basic maneuvers: half-loop, 90 degree pitch-up, and level turn. The optimal control analysis uses the derived analytical model in the equations of motion and is based on both moment and force equations. The maximum principle solution for the half-loop is poststall trajectory performing the half-loop in 13.6 seconds. The agility induced by thrust vectoring capability provided a minimum effect on reducing the maneuver time. By means of thrust vectoring control the 90 degrees pitch-up maneuver can be executed in a small place over a short time interval. The agility capability of thrust vectoring is quite beneficial for pitch-up maneuvers. The level turn results are based currently on only outer layer solutions of singular perturbation. Poststall solutions provide high turn rates but generate higher losses of energy than that of classical sustained solutions.
Solutions to inverse plume in a crosswind problem using a predictor - corrector method
NASA Astrophysics Data System (ADS)
Vanderveer, Joseph; Jaluria, Yogesh
2013-11-01
Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.
Santander, Julian E; Tsapatsis, Michael; Auerbach, Scott M
2013-04-16
We have constructed and applied an algorithm to simulate the behavior of zeolite frameworks during liquid adsorption. We applied this approach to compute the adsorption isotherms of furfural-water and hydroxymethyl furfural (HMF)-water mixtures adsorbing in silicalite zeolite at 300 K for comparison with experimental data. We modeled these adsorption processes under two different statistical mechanical ensembles: the grand canonical (V-Nz-μg-T or GC) ensemble keeping volume fixed, and the P-Nz-μg-T (osmotic) ensemble allowing volume to fluctuate. To optimize accuracy and efficiency, we compared pure Monte Carlo (MC) sampling to hybrid MC-molecular dynamics (MD) simulations. For the external furfural-water and HMF-water phases, we assumed the ideal solution approximation and employed a combination of tabulated data and extended ensemble simulations for computing solvation free energies. We found that MC sampling in the V-Nz-μg-T ensemble (i.e., standard GCMC) does a poor job of reproducing both the Henry's law regime and the saturation loadings of these systems. Hybrid MC-MD sampling of the V-Nz-μg-T ensemble, which includes framework vibrations at fixed total volume, provides better results in the Henry's law region, but this approach still does not reproduce experimental saturation loadings. Pure MC sampling of the osmotic ensemble was found to approach experimental saturation loadings more closely, whereas hybrid MC-MD sampling of the osmotic ensemble quantitatively reproduces such loadings because the MC-MD approach naturally allows for locally anisotropic volume changes wherein some pores expand whereas others contract.
The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
NASA Technical Reports Server (NTRS)
Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Reconstruction of reflectance data using an interpolation technique.
Abed, Farhad Moghareh; Amirshahi, Seyed Hossein; Abed, Mohammad Reza Moghareh
2009-03-01
A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.
Experimenting with the GMAO 4D Data Assimilation
NASA Technical Reports Server (NTRS)
Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick;
2012-01-01
The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing GMAO to now evaluate the performance and benefit of various ensemble and variational assimilation strategies. This presentation will cover the most recent developments taking place at GMAO and show results from various comparisons from traditional techniques to more recent ensemble-based ones.
NASA Astrophysics Data System (ADS)
Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte
2017-04-01
Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.
OSPREY: protein design with ensembles, flexibility, and provable algorithms.
Gainza, Pablo; Roberts, Kyle E; Georgiev, Ivelin; Lilien, Ryan H; Keedy, Daniel A; Chen, Cheng-Yu; Reza, Faisal; Anderson, Amy C; Richardson, David C; Richardson, Jane S; Donald, Bruce R
2013-01-01
We have developed a suite of protein redesign algorithms that improves realistic in silico modeling of proteins. These algorithms are based on three characteristics that make them unique: (1) improved flexibility of the protein backbone, protein side-chains, and ligand to accurately capture the conformational changes that are induced by mutations to the protein sequence; (2) modeling of proteins and ligands as ensembles of low-energy structures to better approximate binding affinity; and (3) a globally optimal protein design search, guaranteeing that the computational predictions are optimal with respect to the input model. Here, we illustrate the importance of these three characteristics. We then describe OSPREY, a protein redesign suite that implements our protein design algorithms. OSPREY has been used prospectively, with experimental validation, in several biomedically relevant settings. We show in detail how OSPREY has been used to predict resistance mutations and explain why improved flexibility, ensembles, and provability are essential for this application. OSPREY is free and open source under a Lesser GPL license. The latest version is OSPREY 2.0. The program, user manual, and source code are available at www.cs.duke.edu/donaldlab/software.php. osprey@cs.duke.edu. Copyright © 2013 Elsevier Inc. All rights reserved.
Arshad, Sannia; Rho, Seungmin
2014-01-01
We have presented a classification framework that combines multiple heterogeneous classifiers in the presence of class label noise. An extension of m-Mediods based modeling is presented that generates model of various classes whilst identifying and filtering noisy training data. This noise free data is further used to learn model for other classifiers such as GMM and SVM. A weight learning method is then introduced to learn weights on each class for different classifiers to construct an ensemble. For this purpose, we applied genetic algorithm to search for an optimal weight vector on which classifier ensemble is expected to give the best accuracy. The proposed approach is evaluated on variety of real life datasets. It is also compared with existing standard ensemble techniques such as Adaboost, Bagging, and Random Subspace Methods. Experimental results show the superiority of proposed ensemble method as compared to its competitors, especially in the presence of class label noise and imbalance classes. PMID:25295302
Khalid, Shehzad; Arshad, Sannia; Jabbar, Sohail; Rho, Seungmin
2014-01-01
We have presented a classification framework that combines multiple heterogeneous classifiers in the presence of class label noise. An extension of m-Mediods based modeling is presented that generates model of various classes whilst identifying and filtering noisy training data. This noise free data is further used to learn model for other classifiers such as GMM and SVM. A weight learning method is then introduced to learn weights on each class for different classifiers to construct an ensemble. For this purpose, we applied genetic algorithm to search for an optimal weight vector on which classifier ensemble is expected to give the best accuracy. The proposed approach is evaluated on variety of real life datasets. It is also compared with existing standard ensemble techniques such as Adaboost, Bagging, and Random Subspace Methods. Experimental results show the superiority of proposed ensemble method as compared to its competitors, especially in the presence of class label noise and imbalance classes.
A robust activity marking system for exploring active neuronal ensembles
Sørensen, Andreas T; Cooper, Yonatan A; Baratta, Michael V; Weng, Feng-Ju; Zhang, Yuxiang; Ramamoorthi, Kartik; Fropf, Robin; LaVerriere, Emily; Xue, Jian; Young, Andrew; Schneider, Colleen; Gøtzsche, Casper René; Hemberg, Martin; Yin, Jerry CP; Maier, Steven F; Lin, Yingxi
2016-01-01
Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system’s versatility. DOI: http://dx.doi.org/10.7554/eLife.13918.001 PMID:27661450
Zhu, Guanhua; Liu, Wei; Bao, Chenglong; Tong, Dudu; Ji, Hui; Shen, Zuowei; Yang, Daiwen; Lu, Lanyuan
2018-05-01
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates. © 2018 Wiley Periodicals, Inc.
Supporting Operational Data Assimilation Capabilities to the Research Community
NASA Astrophysics Data System (ADS)
Shao, H.; Hu, M.; Stark, D. R.; Zhou, C.; Beck, J.; Ge, G.
2017-12-01
The Developmental Testbed Center (DTC), in partnership with the National Centers for Environmental Prediction (NCEP) and other operational and research institutions, provides operational data assimilation capabilities to the research community and helps transition research advances to operations. The primary data assimilation system supported currently by the DTC is the Gridpoint Statistical Interpolation (GSI) system and the National Oceanic and Atmospheric Administration (NOAA) Ensemble Kalman Filter (EnKF) system. GSI is a variational based system being used for daily operations at NOAA, NCEP, the National Aeronautics and Space Administration, and other operational agencies. Recently, GSI has evolved into a four-dimensional EnVar system. Since 2009, the DTC has been releasing the GSI code to the research community annually and providing user support. In addition to GSI, the DTC, in 2015, began supporting the ensemble based EnKF data assimilation system. EnKF shares the observation operator with GSI and therefore, just as GSI, can assimilate both conventional and non-conventional data (e.g., satellite radiance). Currently, EnKF is being implemented as part of the GSI based hybrid EnVar system for NCEP Global Forecast System operations. This paper will summarize the current code management and support framework for these two systems. Following that is a description of available community services and facilities. Also presented is the pathway for researchers to contribute their development to the daily operations of these data assimilation systems.
NASA Astrophysics Data System (ADS)
Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter
2016-04-01
Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.
Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM
NASA Astrophysics Data System (ADS)
Luo, Hao; Zheng, Fei; Zhu, Jiang
2017-12-01
Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.
NASA Astrophysics Data System (ADS)
Wada, Akiyoshi; Kunii, Masaru
2017-05-01
For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.
NASA Astrophysics Data System (ADS)
Brochero, Darwin; Hajji, Islem; Pina, Jasson; Plana, Queralt; Sylvain, Jean-Daniel; Vergeynst, Jenna; Anctil, Francois
2015-04-01
Theories about generalization error with ensembles are mainly based on the diversity concept, which promotes resorting to many members of different properties to support mutually agreeable decisions. Kuncheva (2004) proposed the Multi Level Diversity Model (MLDM) to promote diversity in model ensembles, combining different data subsets, input subsets, models, parameters, and including a combiner level in order to optimize the final ensemble. This work tests the hypothesis about the minimisation of the generalization error with ensembles of Neural Network (NN) structures. We used the MLDM to evaluate two different scenarios: (i) ensembles from a same NN architecture, and (ii) a super-ensemble built by a combination of sub-ensembles of many NN architectures. The time series used correspond to the 12 basins of the MOdel Parameter Estimation eXperiment (MOPEX) project that were used by Duan et al. (2006) and Vos (2013) as benchmark. Six architectures are evaluated: FeedForward NN (FFNN) trained with the Levenberg Marquardt algorithm (Hagan et al., 1996), FFNN trained with SCE (Duan et al., 1993), Recurrent NN trained with a complex method (Weins et al., 2008), Dynamic NARX NN (Leontaritis and Billings, 1985), Echo State Network (ESN), and leak integrator neuron (L-ESN) (Lukosevicius and Jaeger, 2009). Each architecture performs separately an Input Variable Selection (IVS) according to a forward stepwise selection (Anctil et al., 2009) using mean square error as objective function. Post-processing by Predictor Stepwise Selection (PSS) of the super-ensemble has been done following the method proposed by Brochero et al. (2011). IVS results showed that the lagged stream flow, lagged precipitation, and Standardized Precipitation Index (SPI) (McKee et al., 1993) were the most relevant variables. They were respectively selected as one of the firsts three selected variables in 66, 45, and 28 of the 72 scenarios. A relationship between aridity index (Arora, 2002) and NN performance showed that wet basins are more easily modelled than dry basins. Nash-Sutcliffe (NS) Efficiency criterion was used to evaluate the performance of the models. Test results showed that in 9 of the 12 basins, the mean sub-ensembles performance was better than the one presented by Vos (2013). Furthermore, in 55 of 72 cases (6 NN structures x 12 basins) the mean sub-ensemble performance was better than the best individual performance, and in 10 basins the performance of the mean super-ensemble was better than the best individual super-ensemble member. As well, it was identified that members of ESN and L-ESN sub-ensembles have very similar and good performance values. Regarding the mean super-ensemble performance, we obtained an average gain in performance of 17%, and found that PSS preserves sub-ensemble members from different NN structures, indicating the pertinence of diversity in the super-ensemble. Moreover, it was demonstrated that around 100 predictors from the different structures are enough to optimize the super-ensemble. Although sub-ensembles of FFNN-SCE showed unstable performances, FFNN-SCE members were picked-up several times in the final predictor selection. References Anctil, F., M. Filion, and J. Tournebize (2009). "A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment". In: Ecol. Model. 220.6, pp. 879-887. Arora, V. K. (2002). "The use of the aridity index to assess climate change effect on annual runoff". In: J. Hydrol. 265.164, pp. 164 -177 . Brochero, D., F. Anctil, and C. Gagn'e (2011). "Simplifying a hydrological ensemble prediction system with a backward greedy selection of members Part 1: Optimization criteria". In: Hydrol. Earth Syst. Sci. 15.11, pp. 3307-3325. Duan, Q., J. Schaake, V. Andr'eassian, S. Franks, G. Goteti, H. Gupta, Y. Gusev, F. Habets, A. Hall, L. Hay, T. Hogue, M. Huang, G. Leavesley, X. Liang, O. Nasonova, J. Noilhan, L. Oudin, S. Sorooshian, T. Wagener, and E. Wood (2006). "Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops". In: J. Hydrol. 320.12, pp. 3-17. Duan, Q., V. Gupta, and S. Sorooshian (1993). "Shuffled complex evolution approach for effective and efficient global minimization". In: J. Optimiz. Theory App. 76.3, pp. 501-521. Hagan, M. T., H. B. Demuth, and M. Beale (1996). Neural network design . 1st ed. PWS Publishing Co., p. 730. Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms . Wiley-Interscience, p. 350. Leontaritis, I. and S. Billings (1985). "Input-output parametric models for non-linear systems Part I: deterministic non-linear systems". In: International Journal of Control 41.2, pp. 303-328. Lukosevicius, M. and H. Jaeger (2009). "Reservoir computing approaches to recurrent neural network training". In: Computer Science Review 3.3, pp. 127-149. McKee, T., N. Doesken, and J. Kleist (1993). The Relationship of Drought Frequency and Duration to Time Scales . In: Eighth Conference on Applied Climatology. Vos, N. J. de (2013). "Echo state networks as an alternative to traditional artificial neural networks in rainfall-runoff modelling". In: Hydrol. Earth Syst. Sci. 17.1, pp. 253-267. Weins, T., R. Burton, G. Schoenau, and D. Bitner (2008). Recursive Generalized Neural Networks (RGNN) for the Modeling of a Load Sensing Pump. In: ASME Joint Conference on Fluid Power, Transmission and Control.
An image morphing technique based on optimal mass preserving mapping.
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2007-06-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.
An Image Morphing Technique Based on Optimal Mass Preserving Mapping
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2013-01-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128
Zhao, Huawei
2009-01-01
A ZEMAX model was constructed to simulate a clinical trial of intraocular lenses (IOLs) based on a clinically oriented Monte Carlo ensemble analysis using postoperative ocular parameters. The purpose of this model is to test the feasibility of streamlining and optimizing both the design process and the clinical testing of IOLs. This optical ensemble analysis (OEA) is also validated. Simulated pseudophakic eyes were generated by using the tolerancing and programming features of ZEMAX optical design software. OEA methodology was verified by demonstrating that the results of clinical performance simulations were consistent with previously published clinical performance data using the same types of IOLs. From these results we conclude that the OEA method can objectively simulate the potential clinical trial performance of IOLs.
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
Bootstrapping on Undirected Binary Networks Via Statistical Mechanics
NASA Astrophysics Data System (ADS)
Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice
2014-09-01
We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.
Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy
NASA Astrophysics Data System (ADS)
Minh, David D. L.; Adib, Artur B.
2008-05-01
An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.
Review of image processing fundamentals
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1985-01-01
Image processing through convolution, transform coding, spatial frequency alterations, sampling, and interpolation are considered. It is postulated that convolution in one domain (real or frequency) is equivalent to multiplication in the other (frequency or real), and that the relative amplitudes of the Fourier components must be retained to reproduce any waveshape. It is suggested that all digital systems may be considered equivalent, with a frequency content approximately at the Nyquist limit, and with a Gaussian frequency response. An optimized cubic version of the interpolation continuum image is derived as a set of cubic spines. Pixel replication has been employed to enlarge the visable area of digital samples, however, suitable elimination of the extraneous high frequencies involved in the visable edges, by defocusing, is necessary to allow the underlying object represented by the data values to be seen.
Application of cokriging techniques for the estimation of hail size
NASA Astrophysics Data System (ADS)
Farnell, Carme; Rigo, Tomeu; Martin-Vide, Javier
2018-01-01
There are primarily two ways of estimating hail size: the first is the direct interpolation of point observations, and the second is the transformation of remote sensing fields into measurements of hail properties. Both techniques have advantages and limitations as regards generating the resultant map of hail damage. This paper presents a new methodology that combines the above mentioned techniques in an attempt to minimise the limitations and take advantage of the benefits of interpolation and the use of remote sensing data. The methodology was tested for several episodes with good results being obtained for the estimation of hail size at practically all the points analysed. The study area presents a large database of hail episodes, and for this reason, it constitutes an optimal test bench.
Research on interpolation methods in medical image processing.
Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian
2012-04-01
Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.
von Lilienfeld, O. Anatole
2013-02-26
A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less
Charmonium resonances on the lattice
NASA Astrophysics Data System (ADS)
Bali, Gunnar; Collins, Sara; Mohler, Daniel; Padmanath, M.; Piemonte, Stefano; Prelovsek, Sasa; Weishäupl, Simon
2018-03-01
The nature of resonances and excited states near decay thresholds is encoded in scattering amplitudes, which can be extracted from single-particle and multiparticle correlators in finite volumes. Lattice calculations have only recently reached the precision required for a reliable study of such correlators. The distillation method represents a significant improvement insofar as it simplifies quark contractions and allows one to easily extend the operator basis used to construct interpolators. We present preliminary results on charmonium bound states and resonances on the Nf = 2+1 CLS ensembles. The long term goal of our investigation is to understand the properties of the X resonances that do not fit into conventional models of quark-antiquark mesons. We tune various parameters of the distillation method and the charm quark mass. As a first result, we present the masses of the ground and excited states in the 0++ and 1- channels
Wright, Tod M; Rigol, Marcos; Davis, Matthew J; Kheruntsyan, Karén V
2014-08-01
We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions. We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and, therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This demonstrates that, in the presence of interactions, correlations between particles in the many-body wave function provide the effective dissipation required to drive the relaxation of all one-body observables to the GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of the system.
Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan
2016-02-01
Accuracy plays a vital role in the medical field as it concerns with the life of an individual. Extensive research has been conducted on disease classification and prediction using machine learning techniques. However, there is no agreement on which classifier produces the best results. A specific classifier may be better than others for a specific dataset, but another classifier could perform better for some other dataset. Ensemble of classifiers has been proved to be an effective way to improve classification accuracy. In this research we present an ensemble framework with multi-layer classification using enhanced bagging and optimized weighting. The proposed model called "HM-BagMoov" overcomes the limitations of conventional performance bottlenecks by utilizing an ensemble of seven heterogeneous classifiers. The framework is evaluated on five different heart disease datasets, four breast cancer datasets, two diabetes datasets, two liver disease datasets and one hepatitis dataset obtained from public repositories. The analysis of the results show that ensemble framework achieved the highest accuracy, sensitivity and F-Measure when compared with individual classifiers for all the diseases. In addition to this, the ensemble framework also achieved the highest accuracy when compared with the state of the art techniques. An application named "IntelliHealth" is also developed based on proposed model that may be used by hospitals/doctors for diagnostic advice. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tito Arandia Martinez, Fabian
2014-05-01
Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and combined to form a grand ensemble. Results show that the hydrological forecasts derived from the grand ensemble perform better than the pseudo ensemble forecasts actually used operationally at Hydro-Québec. References: [1] M. Verbunt, A. Walser, J. Gurtz et al., "Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies," Journal of Hydrometeorology, vol. 8, no. 4, pp. 897-909, Aug, 2007. [2] N. Evora, Valorisation des prévisions météorologiques d'ensemble, Institu de recherceh d'Hydro-Québec 2005. [3] V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, Institut de recherche d'Hydro-Québec, 2000.
Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R
1996-01-01
It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
Numerical weather prediction model tuning via ensemble prediction system
NASA Astrophysics Data System (ADS)
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
A Data Assimilation System For Operational Weather Forecast In Galicia Region (nw Spain)
NASA Astrophysics Data System (ADS)
Balseiro, C. F.; Souto, M. J.; Pérez-Muñuzuri, V.; Brewster, K.; Xue, M.
Regional weather forecast models, such as the Advanced Regional Prediction System (ARPS), over complex environments with varying local influences require an accurate meteorological analysis that should include all local meteorological measurements available. In this work, the ARPS Data Analysis System (ADAS) (Xue et al. 2001) is applied as a three-dimensional weather analysis tool to include surface station and rawinsonde data with the NCEP AVN forecasts as the analysis background. Currently in ADAS, a set of five meteorological variables are considered during the analysis: horizontal grid-relative wind components, pressure, potential temperature and spe- cific humidity. The analysis is used for high resolution numerical weather prediction for the Galicia region. The analysis method used in ADAS is based on the successive corrective scheme of Bratseth (1986), which asymptotically approaches the result of a statistical (optimal) interpolation, but at lower computational cost. As in the optimal interpolation scheme, the Bratseth interpolation method can take into account the rel- ative error between background and observational data, therefore they are relatively insensitive to large variations in data density and can integrate data of mixed accuracy. This method can be applied economically in an operational setting, providing signifi- cant improvement over the background model forecast as well as any analysis without high-resolution local observations. A one-way nesting is applied for weather forecast in Galicia region, and the use of this assimilation system in both domains shows better results not only in initial conditions but also in all forecast periods. Bratseth, A.M. (1986): "Statistical interpolation by means of successive corrections." Tellus, 38A, 439-447. Souto, M. J., Balseiro, C. F., Pérez-Muñuzuri, V., Xue, M. Brewster, K., (2001): "Im- pact of cloud analysis on numerical weather prediction in the galician region of Spain". Submitted to Journal of Applied Meteorology. Xue, M., Wang. D., Gao, J., Brewster, K, Droegemeier, K. K., (2001): "The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation". Meteor. Atmos Physics. Accepted
Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory
NASA Astrophysics Data System (ADS)
Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei
2015-09-01
Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.
Efficient model reduction of parametrized systems by matrix discrete empirical interpolation
NASA Astrophysics Data System (ADS)
Negri, Federico; Manzoni, Andrea; Amsallem, David
2015-12-01
In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.
Mapping Error in Southern Ocean Transport Computed from Satellite Altimetry and Argo
NASA Astrophysics Data System (ADS)
Kosempa, M.; Chambers, D. P.
2016-02-01
Argo profiling floats afford basin-scale coverage of the Southern Ocean since 2005. When density estimates from Argo are combined with surface geostrophic currents derived from satellite altimetry, one can estimate integrated geostrophic transport above 2000 dbar [e.g., Kosempa and Chambers, JGR, 2014]. However, the interpolation techniques relied upon to generate mapped data from Argo and altimetry will impart a mapping error. We quantify this mapping error by sampling the high-resolution Southern Ocean State Estimate (SOSE) at the locations of Argo floats and Jason-1, and -2 altimeter ground tracks, then create gridded products using the same optimal interpolation algorithms used for the Argo/altimetry gridded products. We combine these surface and subsurface grids to compare the sampled-then-interpolated transport grids to those from the original SOSE data in an effort to quantify the uncertainty in volume transport integrated across the Antarctic Circumpolar Current (ACC). This uncertainty is then used to answer two fundamental questions: 1) What is the minimum linear trend that can be observed in ACC transport given the present length of the instrument record? 2) How long must the instrument record be to observe a trend with an accuracy of 0.1 Sv/year?
On NUFFT-based gridding for non-Cartesian MRI
NASA Astrophysics Data System (ADS)
Fessler, Jeffrey A.
2007-10-01
For MRI with non-Cartesian sampling, the conventional approach to reconstructing images is to use the gridding method with a Kaiser-Bessel (KB) interpolation kernel. Recently, Sha et al. [L. Sha, H. Guo, A.W. Song, An improved gridding method for spiral MRI using nonuniform fast Fourier transform, J. Magn. Reson. 162(2) (2003) 250-258] proposed an alternative method based on a nonuniform FFT (NUFFT) with least-squares (LS) design of the interpolation coefficients. They described this LS_NUFFT method as shift variant and reported that it yielded smaller reconstruction approximation errors than the conventional shift-invariant KB approach. This paper analyzes the LS_NUFFT approach in detail. We show that when one accounts for a certain linear phase factor, the core of the LS_NUFFT interpolator is in fact real and shift invariant. Furthermore, we find that the KB approach yields smaller errors than the original LS_NUFFT approach. We show that optimizing certain scaling factors can lead to a somewhat improved LS_NUFFT approach, but the high computation cost seems to outweigh the modest reduction in reconstruction error. We conclude that the standard KB approach, with appropriate parameters as described in the literature, remains the practical method of choice for gridding reconstruction in MRI.
NASA Astrophysics Data System (ADS)
Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha
2010-11-01
Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.
Joint seismic data denoising and interpolation with double-sparsity dictionary learning
NASA Astrophysics Data System (ADS)
Zhu, Lingchen; Liu, Entao; McClellan, James H.
2017-08-01
Seismic data quality is vital to geophysical applications, so that methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double-sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data, while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the data set without introducing pseudo-Gibbs artifacts when compared to other directional multi-scale transform methods such as curvelets.
Design of an Evolutionary Approach for Intrusion Detection
2013-01-01
A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives, and a dataset can be represented in the form of labelled instances in terms of its features. PMID:24376390
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfurnik, D.; Jarmola, A.; Pham, L. M.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T 1 effects and DD microwave pulses are used to increase the transverse coherence time T 2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that themore » optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Optimal control theory with continuously distributed target states: An application to NaK
NASA Astrophysics Data System (ADS)
Kaiser, Andreas; May, Volkhard
2006-01-01
Laser pulse control of molecular dynamics is studied theoretically by using optimal control theory. The control theory is extended to target states which are distributed in time as well as in a space of parameters which are responsible for a change of individual molecular properties. This generalized treatment of a control task is first applied to wave packet formation in randomly oriented diatomic systems. Concentrating on an ensemble of NaK molecules which are not aligned the control yield decreases drastically when compared with an aligned ensemble. Second, we demonstrate for NaK the maximization of the probe pulse transient absorption in a pump-probe scheme with an optimized pump pulse. These computations suggest an overall optical control scheme, whereby a flexible technique is suggested to form particular wave packets in the excited state potential energy surface. In particular, it is shown that considerable wave packet localization at the turning points of the first-excited Σ-state potential energy surfaces of NaK may be achieved. The dependency of the control yield on the probe pulse parameters is also discussed.
NASA Astrophysics Data System (ADS)
Yaremchuk, Max; Martin, Paul; Beattie, Christopher
2017-09-01
Development and maintenance of the linearized and adjoint code for advanced circulation models is a challenging issue, requiring a significant proportion of total effort in operational data assimilation (DA). The ensemble-based DA techniques provide a derivative-free alternative, which appears to be competitive with variational methods in many practical applications. This article proposes a hybrid scheme for generating the search subspaces in the adjoint-free 4-dimensional DA method (a4dVar) that does not use a predefined ensemble. The method resembles 4dVar in that the optimal solution is strongly constrained by model dynamics and search directions are supplied iteratively using information from the current and previous model trajectories generated in the process of optimization. In contrast to 4dVar, which produces a single search direction from exact gradient information, a4dVar employs an ensemble of directions to form a subspace in order to proceed. In the earlier versions of a4dVar, search subspaces were built using the leading EOFs of either the model trajectory or the projections of the model-data misfits onto the range of the background error covariance (BEC) matrix at the current iteration. In the present study, we blend both approaches and explore a hybrid scheme of ensemble generation in order to improve the performance and flexibility of the algorithm. In addition, we introduce balance constraints into the BEC structure and periodically augment the search ensemble with BEC eigenvectors to avoid repeating minimization over already explored subspaces. Performance of the proposed hybrid a4dVar (ha4dVar) method is compared with that of standard 4dVar in a realistic regional configuration assimilating real data into the Navy Coastal Ocean Model (NCOM). It is shown that the ha4dVar converges faster than a4dVar and can be potentially competitive with 4dvar both in terms of the required computational time and the forecast skill.
NASA Astrophysics Data System (ADS)
Sofiev, Mikhail; Ritenberga, Olga; Albertini, Roberto; Arteta, Joaquim; Belmonte, Jordina; Geller Bernstein, Carmi; Bonini, Maira; Celenk, Sevcan; Damialis, Athanasios; Douros, John; Elbern, Hendrik; Friese, Elmar; Galan, Carmen; Oliver, Gilles; Hrga, Ivana; Kouznetsov, Rostislav; Krajsek, Kai; Magyar, Donat; Parmentier, Jonathan; Plu, Matthieu; Prank, Marje; Robertson, Lennart; Steensen, Birthe Marie; Thibaudon, Michel; Segers, Arjo; Stepanovich, Barbara; Valdebenito, Alvaro M.; Vira, Julius; Vokou, Despoina
2017-10-01
The paper presents the first modelling experiment of the European-scale olive pollen dispersion, analyses the quality of the predictions, and outlines the research needs. A 6-model strong ensemble of Copernicus Atmospheric Monitoring Service (CAMS) was run throughout the olive season of 2014, computing the olive pollen distribution. The simulations have been compared with observations in eight countries, which are members of the European Aeroallergen Network (EAN). Analysis was performed for individual models, the ensemble mean and median, and for a dynamically optimised combination of the ensemble members obtained via fusion of the model predictions with observations. The models, generally reproducing the olive season of 2014, showed noticeable deviations from both observations and each other. In particular, the season was reported to start too early by 8 days, but for some models the error mounted to almost 2 weeks. For the end of the season, the disagreement between the models and the observations varied from a nearly perfect match up to 2 weeks too late. A series of sensitivity studies carried out to understand the origin of the disagreements revealed the crucial role of ambient temperature and consistency of its representation by the meteorological models and heat-sum-based phenological model. In particular, a simple correction to the heat-sum threshold eliminated the shift of the start of the season but its validity in other years remains to be checked. The short-term features of the concentration time series were reproduced better, suggesting that the precipitation events and cold/warm spells, as well as the large-scale transport, were represented rather well. Ensemble averaging led to more robust results. The best skill scores were obtained with data fusion, which used the previous days' observations to identify the optimal weighting coefficients of the individual model forecasts. Such combinations were tested for the forecasting period up to 4 days and shown to remain nearly optimal throughout the whole period.
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.
2004-01-01
One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.
Near-optimal protocols in complex nonequilibrium transformations
Gingrich, Todd R.; Rotskoff, Grant M.; Crooks, Gavin E.; ...
2016-08-29
The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols that minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. In this paper, we describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased toward a low average dissipation. In addition, we show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of themore » protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.« less
Statistics of optimal information flow in ensembles of regulatory motifs
NASA Astrophysics Data System (ADS)
Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan
2018-02-01
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
Pareto-Optimal Estimates of California Precipitation Change
NASA Astrophysics Data System (ADS)
Langenbrunner, Baird; Neelin, J. David
2017-12-01
In seeking constraints on global climate model projections under global warming, one commonly finds that different subsets of models perform well under different objective functions, and these trade-offs are difficult to weigh. Here a multiobjective approach is applied to a large set of subensembles generated from the Climate Model Intercomparison Project phase 5 ensemble. We use observations and reanalyses to constrain tropical Pacific sea surface temperatures, upper level zonal winds in the midlatitude Pacific, and California precipitation. An evolutionary algorithm identifies the set of Pareto-optimal subensembles across these three measures, and these subensembles are used to constrain end-of-century California wet season precipitation change. This methodology narrows the range of projections throughout California, increasing confidence in estimates of positive mean precipitation change. Finally, we show how this technique complements and generalizes emergent constraint approaches for restricting uncertainty in end-of-century projections within multimodel ensembles using multiple criteria for observational constraints.
Toward “optimal” integration of terrestrial biosphere models
Schwalm, Christopher R.; Huntzinger, Deborah N.; Fisher, Joshua B.; ...
2015-06-10
Multimodel ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multiscale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill based for present-day carbon cycling) versus naive (one model-one vote) integration. MsTMIP optimal and naive mean land sink strength estimates (-1.16 versus -1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materially changemore » MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Finally, resolving this issue requires addressing specific uncertainty types (initial conditions, structure, and references) and a change in model development paradigms currently dominant in the TBM community.« less
Nakrani, Sunil; Tovey, Craig
2007-12-01
An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-06-01
In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.
Structural Optimization of a Knuckle with Consideration of Stiffness and Durability Requirements
Kim, Geun-Yeon
2014-01-01
The automobile's knuckle is connected to the parts of the steering system and the suspension system and it is used for adjusting the direction of a rotation through its attachment to the wheel. This study changes the existing material made of GCD45 to Al6082M and recommends the lightweight design of the knuckle as the optimal design technique to be installed in small cars. Six shape design variables were selected for the optimization of the knuckle and the criteria relevant to stiffness and durability were considered as the design requirements during the optimization process. The metamodel-based optimization method that uses the kriging interpolation method as the optimization technique was applied. The result shows that all constraints for stiffness and durability are satisfied using A16082M, while reducing the weight of the knuckle by 60% compared to that of the existing GCD450. PMID:24995359
A trust region approach with multivariate Padé model for optimal circuit design
NASA Astrophysics Data System (ADS)
Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.
2017-11-01
Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
The role of ensemble post-processing for modeling the ensemble tail
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert; Vannitsem, Stéphane
2016-04-01
The past decades the numerical weather prediction community has witnessed a paradigm shift from deterministic to probabilistic forecast and state estimation (Buizza and Leutbecher, 2015; Buizza et al., 2008), in an attempt to quantify the uncertainties associated with initial-condition and model errors. An important benefit of a probabilistic framework is the improved prediction of extreme events. However, one may ask to what extent such model estimates contain information on the occurrence probability of extreme events and how this information can be optimally extracted. Different approaches have been proposed and applied on real-world systems which, based on extreme value theory, allow the estimation of extreme-event probabilities conditional on forecasts and state estimates (Ferro, 2007; Friederichs, 2010). Using ensemble predictions generated with a model of low dimensionality, a thorough investigation is presented quantifying the change of predictability of extreme events associated with ensemble post-processing and other influencing factors including the finite ensemble size, lead time and model assumption and the use of different covariates (ensemble mean, maximum, spread...) for modeling the tail distribution. Tail modeling is performed by deriving extreme-quantile estimates using peak-over-threshold representation (generalized Pareto distribution) or quantile regression. Common ensemble post-processing methods aim to improve mostly the ensemble mean and spread of a raw forecast (Van Schaeybroeck and Vannitsem, 2015). Conditional tail modeling, on the other hand, is a post-processing in itself, focusing on the tails only. Therefore, it is unclear how applying ensemble post-processing prior to conditional tail modeling impacts the skill of extreme-event predictions. This work is investigating this question in details. Buizza, Leutbecher, and Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System, Q. J. R. Meteorol. Soc. 134: 2051-2066.Buizza and Leutbecher, 2015: The forecast skill horizon, Q. J. R. Meteorol. Soc. 141: 3366-3382.Ferro, 2007: A probability model for verifying deterministic forecasts of extreme events. Weather and Forecasting 22 (5), 1089-1100.Friederichs, 2010: Statistical downscaling of extreme precipitation events using extreme value theory. Extremes 13, 109-132.Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.
Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1985-01-01
Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.
NASA Technical Reports Server (NTRS)
Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn
2010-01-01
Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.
Data-driven in computational plasticity
NASA Astrophysics Data System (ADS)
Ibáñez, R.; Abisset-Chavanne, E.; Cueto, E.; Chinesta, F.
2018-05-01
Computational mechanics is taking an enormous importance in industry nowadays. On one hand, numerical simulations can be seen as a tool that allows the industry to perform fewer experiments, reducing costs. On the other hand, the physical processes that are intended to be simulated are becoming more complex, requiring new constitutive relationships to capture such behaviors. Therefore, when a new material is intended to be classified, an open question still remains: which constitutive equation should be calibrated. In the present work, the use of model order reduction techniques are exploited to identify the plastic behavior of a material, opening an alternative route with respect to traditional calibration methods. Indeed, the main objective is to provide a plastic yield function such that the mismatch between experiments and simulations is minimized. Therefore, once the experimental results just like the parameterization of the plastic yield function are provided, finding the optimal plastic yield function can be seen either as a traditional optimization or interpolation problem. It is important to highlight that the dimensionality of the problem is equal to the number of dimensions related to the parameterization of the yield function. Thus, the use of sparse interpolation techniques seems almost compulsory.
Calibration of DEM parameters on shear test experiments using Kriging method
NASA Astrophysics Data System (ADS)
Bednarek, Xavier; Martin, Sylvain; Ndiaye, Abibatou; Peres, Véronique; Bonnefoy, Olivier
2017-06-01
Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.
Class-specific Error Bounds for Ensemble Classifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prenger, R; Lemmond, T; Varshney, K
2009-10-06
The generalization error, or probability of misclassification, of ensemble classifiers has been shown to be bounded above by a function of the mean correlation between the constituent (i.e., base) classifiers and their average strength. This bound suggests that increasing the strength and/or decreasing the correlation of an ensemble's base classifiers may yield improved performance under the assumption of equal error costs. However, this and other existing bounds do not directly address application spaces in which error costs are inherently unequal. For applications involving binary classification, Receiver Operating Characteristic (ROC) curves, performance curves that explicitly trade off false alarms and missedmore » detections, are often utilized to support decision making. To address performance optimization in this context, we have developed a lower bound for the entire ROC curve that can be expressed in terms of the class-specific strength and correlation of the base classifiers. We present empirical analyses demonstrating the efficacy of these bounds in predicting relative classifier performance. In addition, we specify performance regions of the ROC curve that are naturally delineated by the class-specific strengths of the base classifiers and show that each of these regions can be associated with a unique set of guidelines for performance optimization of binary classifiers within unequal error cost regimes.« less
Efficient cost-sensitive human-machine collaboration for offline signature verification
NASA Astrophysics Data System (ADS)
Coetzer, Johannes; Swanepoel, Jacques; Sabourin, Robert
2012-01-01
We propose a novel strategy for the optimal combination of human and machine decisions in a cost-sensitive environment. The proposed algorithm should be especially beneficial to financial institutions where off-line signatures, each associated with a specific transaction value, require authentication. When presented with a collection of genuine and fraudulent training signatures, produced by so-called guinea pig writers, the proficiency of a workforce of human employees and a score-generating machine can be estimated and represented in receiver operating characteristic (ROC) space. Using a set of Boolean fusion functions, the majority vote decision of the human workforce is combined with each threshold-specific machine-generated decision. The performance of the candidate ensembles is estimated and represented in ROC space, after which only the optimal ensembles and associated decision trees are retained. When presented with a questioned signature linked to an arbitrary writer, the system first uses the ROC-based cost gradient associated with the transaction value to select the ensemble that minimises the expected cost, and then uses the corresponding decision tree to authenticate the signature in question. We show that, when utilising the entire human workforce, the incorporation of a machine streamlines the authentication process and decreases the expected cost for all operating conditions.
Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan
2015-06-01
Conventional clinical decision support systems are based on individual classifiers or simple combination of these classifiers which tend to show moderate performance. This research paper presents a novel classifier ensemble framework based on enhanced bagging approach with multi-objective weighted voting scheme for prediction and analysis of heart disease. The proposed model overcomes the limitations of conventional performance by utilizing an ensemble of five heterogeneous classifiers: Naïve Bayes, linear regression, quadratic discriminant analysis, instance based learner and support vector machines. Five different datasets are used for experimentation, evaluation and validation. The datasets are obtained from publicly available data repositories. Effectiveness of the proposed ensemble is investigated by comparison of results with several classifiers. Prediction results of the proposed ensemble model are assessed by ten fold cross validation and ANOVA statistics. The experimental evaluation shows that the proposed framework deals with all type of attributes and achieved high diagnosis accuracy of 84.16 %, 93.29 % sensitivity, 96.70 % specificity, and 82.15 % f-measure. The f-ratio higher than f-critical and p value less than 0.05 for 95 % confidence interval indicate that the results are extremely statistically significant for most of the datasets.
Rixen, M.; Ferreira-Coelho, E.; Signell, R.
2008-01-01
Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).
Improved Weather and Power Forecasts for Energy Operations - the German Research Project EWeLiNE
NASA Astrophysics Data System (ADS)
Lundgren, Kristina; Siefert, Malte; Hagedorn, Renate; Majewski, Detlev
2014-05-01
The German energy system is going through a fundamental change. Based on the energy plans of the German federal government, the share of electrical power production from renewables should increase to 35% by 2020. This means that, in the near future at certain times renewable energies will provide a major part of Germany's power production. Operating a power supply system with a large share of weather-dependent power sources in a secure way requires improved power forecasts. One of the most promising strategies to improve the existing wind power and PV power forecasts is to optimize the underlying weather forecasts and to enhance the collaboration between the meteorology and energy sectors. Deutscher Wetterdienst addresses these challenges in collaboration with Fraunhofer IWES within the research project EWeLiNE. The overarching goal of the project is to improve the wind and PV power forecasts by combining improved power forecast models and optimized weather forecasts. During the project, the numerical weather prediction models COSMO-DE and COSMO-DE-EPS (Ensemble Prediction System) by Deutscher Wetterdienst will be generally optimized towards improved wind power and PV forecasts. For instance, it will be investigated whether the assimilation of new types of data, e.g. power production data, can lead to improved weather forecasts. With regard to the probabilistic forecasts, the focus is on the generation of ensembles and ensemble calibration. One important aspect of the project is to integrate the probabilistic information into decision making processes by developing user-specified products. In this paper we give an overview of the project and present first results.
NASA Astrophysics Data System (ADS)
Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao
2015-03-01
Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.
Evaluation of an ensemble of genetic models for prediction of a quantitative trait.
Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola
2014-01-01
Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.
Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Weihong; Sun, Kai; Qi, Junjian
2015-01-01
Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-busmore » system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.« less
The total probabilities from high-resolution ensemble forecasting of floods
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2015-04-01
Ensemble forecasting has for a long time been used in meteorological modelling, to give an indication of the uncertainty of the forecasts. As meteorological ensemble forecasts often show some bias and dispersion errors, there is a need for calibration and post-processing of the ensembles. Typical methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). To make optimal predictions of floods along the stream network in hydrology, we can easily use the ensemble members as input to the hydrological models. However, some of the post-processing methods will need modifications when regionalizing the forecasts outside the calibration locations, as done by Hemri et al. (2013). We present a method for spatial regionalization of the post-processed forecasts based on EMOS and top-kriging (Skøien et al., 2006). We will also look into different methods for handling the non-normality of runoff and the effect on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005. Skøien, J. O., Merz, R. and Blöschl, G.: Top-kriging - Geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10(2), 277-287, 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn; Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn; Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate newmore » cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required. - Highlights: • Higher-order cubature points for degrees 7 to 9 are developed. • The effects of quadrature rule on the mass and stiffness matrices has been conducted. • The cubature points have always positive integration weights. • Freeing from the inversion of a wide bandwidth mass matrix. • The accuracy of the TSEM has been improved in about one order of magnitude.« less
NASA Astrophysics Data System (ADS)
Micheletty, P. D.; Perrot, D.; Day, G. N.; Lhotak, J.; Quebbeman, J.; Park, G. H.; Carney, S.
2017-12-01
Water supply forecasting in the western United States is inextricably linked to snowmelt processes, as approximately 70-85% of total annual runoff comes from water stored in seasonal mountain snowpacks. Snowmelt-generated streamflow is vital to a variety of downstream uses; the Upper Colorado River Basin (UCRB) alone provides water supply for 25 million people, irrigation water for 3.5 million acres, and drives hydropower generation at Lake Powell. April-July water supply forecasts produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC) are critical to basin water management. The primary objective of this project as part of the NASA Water Resources Applied Science Program, is to improve water supply forecasting for the UCRB by assimilating satellite and ground snowpack observations into a distributed hydrologic model at various times during the snow accumulation and melt seasons. To do this, we have built a framework that uses an Ensemble Kalman Filter (EnKF) to update modeled snow water equivalent (SWE) states in the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) with spatially interpolated SNOTEL snow water equivalent (SWE) observations and products from the MODIS Snow Covered-Area and Grain size retrieval algorithm (when available). We have generated April-July water supply reforecasts for a 20-year period (1991-2010) for several headwater catchments in the UCRB using HL-RDHM and snow data assimilation in the Ensemble Streamflow Prediction (ESP) framework. The existing CBRFC ESP reforecasts will provide a baseline for comparison to determine whether the data assimilation process adds skill to the water supply forecasts. Preliminary results from one headwater basin show improved skill in water supply forecasting when HL-RDHM is run with the data assimilation step compared to HL-RDHM run without the data assimilation step, particularly in years when MODSCAG data were available (2000-2010). The final forecasting framework developed during this project will be delivered to CBRFC and run operationally for a set of pilot basins.
Hou, Zeyu; Lu, Wenxi; Xue, Haibo; Lin, Jin
2017-08-01
Surrogate-based simulation-optimization technique is an effective approach for optimizing the surfactant enhanced aquifer remediation (SEAR) strategy for clearing DNAPLs. The performance of the surrogate model, which is used to replace the simulation model for the aim of reducing computation burden, is the key of corresponding researches. However, previous researches are generally based on a stand-alone surrogate model, and rarely make efforts to improve the approximation accuracy of the surrogate model to the simulation model sufficiently by combining various methods. In this regard, we present set pair analysis (SPA) as a new method to build ensemble surrogate (ES) model, and conducted a comparative research to select a better ES modeling pattern for the SEAR strategy optimization problems. Surrogate models were developed using radial basis function artificial neural network (RBFANN), support vector regression (SVR), and Kriging. One ES model is assembling RBFANN model, SVR model, and Kriging model using set pair weights according their performance, and the other is assembling several Kriging (the best surrogate modeling method of three) models built with different training sample datasets. Finally, an optimization model, in which the ES model was embedded, was established to obtain the optimal remediation strategy. The results showed the residuals of the outputs between the best ES model and simulation model for 100 testing samples were lower than 1.5%. Using an ES model instead of the simulation model was critical for considerably reducing the computation time of simulation-optimization process and maintaining high computation accuracy simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Shailesh Kumar
2014-05-01
Streamflow forecasts are essential for making critical decision for optimal allocation of water supplies for various demands that include irrigation for agriculture, habitat for fisheries, hydropower production and flood warning. The major objective of this study is to explore the Ensemble Streamflow Prediction (ESP) based forecast in New Zealand catchments and to highlights the present capability of seasonal flow forecasting of National Institute of Water and Atmospheric Research (NIWA). In this study a probabilistic forecast framework for ESP is presented. The basic assumption in ESP is that future weather pattern were experienced historically. Hence, past forcing data can be used with current initial condition to generate an ensemble of prediction. Small differences in initial conditions can result in large difference in the forecast. The initial state of catchment can be obtained by continuously running the model till current time and use this initial state with past forcing data to generate ensemble of flow for future. The approach taken here is to run TopNet hydrological models with a range of past forcing data (precipitation, temperature etc.) with current initial conditions. The collection of runs is called the ensemble. ESP give probabilistic forecasts for flow. From ensemble members the probability distributions can be derived. The probability distributions capture part of the intrinsic uncertainty in weather or climate. An ensemble stream flow prediction which provide probabilistic hydrological forecast with lead time up to 3 months is presented for Rangitata, Ahuriri, and Hooker and Jollie rivers in South Island of New Zealand. ESP based seasonal forecast have better skill than climatology. This system can provide better over all information for holistic water resource management.
Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma
2010-01-01
In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.
NASA Astrophysics Data System (ADS)
Dairaku, K.
2017-12-01
The Asia-Pacific regions are increasingly threatened by large scale natural disasters. Growing concerns that loss and damages of natural disasters are projected to further exacerbate by climate change and socio-economic change. Climate information and services for risk assessments are of great concern. Fundamental regional climate information is indispensable for understanding changing climate and making decisions on when and how to act. To meet with the needs of stakeholders such as National/local governments, spatio-temporal comprehensive and consistent information is necessary and useful for decision making. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 37 GCMs (RCP8.5) and a statistical downscaling (Bias Corrected Spatial Disaggregation (BCSD)) to investigate uncertainty of projected change associated with structural differences of the GCMs for the periods of historical climate (1950-2005) and near future climate (2026-2050). Statistical downscaling regional climate scenarios show good performance for annual and seasonal averages for precipitation and temperature. The regional climate scenarios show systematic underestimate of extreme events such as hot days of over 35 Celsius and annual maximum daily precipitation because of the interpolation processes in the BCSD method. Each model projected different responses in near future climate because of structural differences. The most of CMIP5 37 models show qualitatively consistent increase of average and extreme temperature and precipitation. The added values of statistical/dynamical downscaling methods are also investigated for locally forced nonlinear phenomena, extreme events.
Filatov, Michael; Liu, Fang; Kim, Kwang S.; ...
2016-12-22
Here, the spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociationmore » of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.« less
Using synchronization in multi-model ensembles to improve prediction
NASA Astrophysics Data System (ADS)
Hiemstra, P.; Selten, F.
2012-04-01
In recent decades, many climate models have been developed to understand and predict the behavior of the Earth's climate system. Although these models are all based on the same basic physical principles, they still show different behavior. This is for example caused by the choice of how to parametrize sub-grid scale processes. One method to combine these imperfect models, is to run a multi-model ensemble. The models are given identical initial conditions and are integrated forward in time. A multi-model estimate can for example be a weighted mean of the ensemble members. We propose to go a step further, and try to obtain synchronization between the imperfect models by connecting the multi-model ensemble, and exchanging information. The combined multi-model ensemble is also known as a supermodel. The supermodel has learned from observations how to optimally exchange information between the ensemble members. In this study we focused on the density and formulation of the onnections within the supermodel. The main question was whether we could obtain syn-chronization between two climate models when connecting only a subset of their state spaces. Limiting the connected subspace has two advantages: 1) it limits the transfer of data (bytes) between the ensemble, which can be a limiting factor in large scale climate models, and 2) learning the optimal connection strategy from observations is easier. To answer the research question, we connected two identical quasi-geostrohic (QG) atmospheric models to each other, where the model have different initial conditions. The QG model is a qualitatively realistic simulation of the winter flow on the Northern hemisphere, has three layers and uses a spectral imple-mentation. We connected the models in the original spherical harmonical state space, and in linear combinations of these spherical harmonics, i.e. Empirical Orthogonal Functions (EOFs). We show that when connecting through spherical harmonics, we only need to connect 28% of the state variables to obtain synchronization. In addition, when connecting through EOFs, we can reduce this percentage even more to 12%. This reduction is caused by the more efficient description of the model state variables when using EOFs. The connected state variables center around the medium scale structures in the model. Small and large scale structures need not be connected in order to obtain synchronization. This could be related to the baroclinic instabilities in the QG model which are located in the medium scale structures of the model. The baroclinic instabilities are the main source of divergence between the two connected models.
NASA Astrophysics Data System (ADS)
Hoerning, Sebastian; Bardossy, Andras; du Plessis, Jaco
2017-04-01
Most geostatistical inverse groundwater flow and transport modelling approaches utilize a numerical solver to minimize the discrepancy between observed and simulated hydraulic heads and/or hydraulic concentration values. The optimization procedure often requires many model runs, which for complex models lead to long run times. Random Mixing is a promising new geostatistical technique for inverse modelling. The method is an extension of the gradual deformation approach. It works by finding a field which preserves the covariance structure and maintains observed hydraulic conductivities. This field is perturbed by mixing it with new fields that fulfill the homogeneous conditions. This mixing is expressed as an optimization problem which aims to minimize the difference between the observed and simulated hydraulic heads and/or concentration values. To preserve the spatial structure, the mixing weights must lie on the unit hyper-sphere. We present a modification to the Random Mixing algorithm which significantly reduces the number of model runs required. The approach involves taking n equally spaced points on the unit circle as weights for mixing conditional random fields. Each of these mixtures provides a solution to the forward model at the conditioning locations. For each of the locations the solutions are then interpolated around the circle to provide solutions for additional mixing weights at very low computational cost. The interpolated solutions are used to search for a mixture which maximally reduces the objective function. This is in contrast to other approaches which evaluate the objective function for the n mixtures and then interpolate the obtained values. Keeping the mixture on the unit circle makes it easy to generate equidistant sampling points in the space; however, this means that only two fields are mixed at a time. Once the optimal mixture for two fields has been found, they are combined to form the input to the next iteration of the algorithm. This process is repeated until a threshold in the objective function is met or insufficient changes are produced in successive iterations.
NASA Astrophysics Data System (ADS)
Kim, Shin-Woo; Noh, Nam-Kyu; Lim, Gyu-Ho
2013-04-01
This study presents the introduction of retrospective optimal interpolation (ROI) and its application with Weather Research and Forecasting model (WRF). Song et al. (2009) suggested ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. The assimilation window of ROI algorithm is gradually increased, similar with that of the quasi-static variational assimilation (QSVA; Pires et al., 1996). Unlike QSVA method, however, ROI method assimilates the data at post analysis time using perturbation method (Verlaan and Heemink, 1997) without adjoint model. Song and Lim (2011) improved this method by incorporating eigen-decomposition and covariance inflation. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance which can concentrate ROI analyses on the error variances of governing eigenmodes by transforming the control variables into eigenspace. A total energy norm is used for the normalization of each control variables. In this study, ROI method is applied to WRF model with Observing System Simulation Experiment (OSSE) to validate the algorithm and to investigate the capability. Horizontal wind, pressure, potential temperature, and water vapor mixing ratio are used for control variables and observations. Firstly, 1-profile assimilation experiment is performed. Subsequently, OSSE's are performed using the virtual observing system which consists of synop, ship, and sonde data. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error with the assimilation by ROI. The characteristics and strength/weakness of ROI method are also investigated by conducting the experiments with 3D-Var (3-dimensional variational) method and 4D-Var (4-dimensional variational) method. In the initial time, ROI produces a larger forecast error than that of 4D-Var. However, the difference between the two experimental results is decreased gradually with time, and the ROI shows apparently better result (i.e., smaller forecast error) than that of 4D-Var after 9-hour forecast.
Nutrient transports in the Baltic Sea - results from a 30-year physical-biogeochemical reanalysis
NASA Astrophysics Data System (ADS)
Liu, Ye; Meier, H. E. Markus; Eilola, Kari
2017-04-01
Long-term oxygen and nutrient transports in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations with and without data assimilation covering the period 1970-1999 are carried out. Here, the weakly coupled
scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate observed profiles in the reanalysis system. The reanalysis shows considerable improvement in the simulation of both oxygen and nutrient concentrations relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen-dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net transport (export minus import) of nutrients from the Baltic proper into the surrounding sub-basins (except the net phosphorus import from the Gulf of Riga and the net nitrogen import from the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are retained in this sub-basin. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.
NASA Astrophysics Data System (ADS)
Wilkin, J.; Hunter, E. J.
2016-12-01
An extensive CODAR HF-radar network has been acquiring observations of surface currents in the Mid Atlantic Bight (MAB) continental shelf ocean for several years. The fundamental CODAR observation is the component of velocity in the radial direction of view from a single antenna, geo-located by range and azimuth. Surface velocity vectors can be computed by combining radials observed by multiple sites. We exploit the concave geometry of the MAB coastline and the many possible radial views from numerous antennae to select transects that are substantially along or across isobaths, and compute wavenumber spectra for both along-shelf and across-shelf components of velocity. Comparing spectra computed from radial velocities to spectra for the same vector component extracted from the total vectors we find that the optimal interpolation combiner significantly damps energy for wavenumbers exceeding 0.03 km-1. This has ramifications for our error model in 4DVAR assimilation of CODAR total velocity. We further computed wavenumber spectra for altimeter SSHA from CryoSat-2 for ensembles of tracks in the same region of the MAB that were predominantly across- or along-shelf. Velocity spectra exhibit power law dependence close to k-5/3 down to the limit of resolution, while SSHA spectra are somewhat steeper. The constraint that bathymetry exerts on circulation on this broad, shallow shelf could influence the spectral characteristics of variability, as could winter well mixed versus summer strongly stratified conditions. Velocity and SSHA spectra are being compared to similar spectral estimates from model simulations as an assessment of convergence of the model resolution, and to explore theories of surface quasi-geostrophic turbulence that might explain the observed spectral characteristics.
Minimum Total-Squared-Correlation Quaternary Signature Sets: New Bounds and Optimal Designs
2009-12-01
50, pp. 2433-2440, Oct. 2004. [11] G. S. Rajappan and M. L. Honig, “Signature sequence adaptation for DS - CDMA with multipath," IEEE J. Sel. Areas...OPTIMAL DESIGNS 3671 [14] C. Ding, M. Golin, and T. Kløve, “Meeting the Welch and Karystinos- Pados bounds on DS - CDMA binary signature sets," Des., Codes...Cryp- togr., vol. 30, pp. 73-84, Aug. 2003. [15] V. P. Ipatov, “On the Karystinos-Pados bounds and optimal binary DS - CDMA signature ensembles," IEEE
Creating "Intelligent" Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, Noel; Taylor, Patrick
2014-05-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.
Optimal design of geodesically stiffened composite cylindrical shells
NASA Technical Reports Server (NTRS)
Gendron, G.; Guerdal, Z.
1992-01-01
An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.
Spatiotemporal Interpolation Methods for Solar Event Trajectories
NASA Astrophysics Data System (ADS)
Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe
2018-05-01
This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.
An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements
NASA Astrophysics Data System (ADS)
Kang, D.
2015-12-01
In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.
A bivariate rational interpolation with a bi-quadratic denominator
NASA Astrophysics Data System (ADS)
Duan, Qi; Zhang, Huanling; Liu, Aikui; Li, Huaigu
2006-10-01
In this paper a new rational interpolation with a bi-quadratic denominator is developed to create a space surface using only values of the function being interpolated. The interpolation function has a simple and explicit rational mathematical representation. When the knots are equally spaced, the interpolating function can be expressed in matrix form, and this form has a symmetric property. The concept of integral weights coefficients of the interpolation is given, which describes the "weight" of the interpolation points in the local interpolating region.
Quantitative Tomography for Continuous Variable Quantum Systems
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
2018-03-01
We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state-independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.
An improved local radial point interpolation method for transient heat conduction analysis
NASA Astrophysics Data System (ADS)
Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang
2013-06-01
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.
Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C
2016-01-01
We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Technical Note: spektr 3.0-A computational tool for x-ray spectrum modeling and analysis.
Punnoose, J; Xu, J; Sisniega, A; Zbijewski, W; Siewerdsen, J H
2016-08-01
A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. The spektr code generates x-ray spectra (photons/mm(2)/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20-150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30-140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available.
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-01-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819
Papanikolaou, Yannis; Tsoumakas, Grigorios; Laliotis, Manos; Markantonatos, Nikos; Vlahavas, Ioannis
2017-09-22
In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K
2015-06-04
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
Wind power application research on the fusion of the determination and ensemble prediction
NASA Astrophysics Data System (ADS)
Lan, Shi; Lina, Xu; Yuzhu, Hao
2017-07-01
The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.
NASA Astrophysics Data System (ADS)
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-06-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
Huang, Chao-Tsung; Wang, Yu-Wen; Huang, Li-Ren; Chin, Jui; Chen, Liang-Gee
2017-02-01
Digital refocusing has a tradeoff between complexity and quality when using sparsely sampled light fields for low-storage applications. In this paper, we propose a fast physically correct refocusing algorithm to address this issue in a twofold way. First, view interpolation is adopted to provide photorealistic quality at infocus-defocus hybrid boundaries. Regarding its conventional high complexity, we devised a fast line-scan method specifically for refocusing, and its 1D kernel can be 30× faster than the benchmark View Synthesis Reference Software (VSRS)-1D-Fast. Second, we propose a block-based multi-rate processing flow for accelerating purely infocused or defocused regions, and a further 3- 34× speedup can be achieved for high-resolution images. All candidate blocks of variable sizes can interpolate different numbers of rendered views and perform refocusing in different subsampled layers. To avoid visible aliasing and block artifacts, we determine these parameters and the simulated aperture filter through a localized filter response analysis using defocus blur statistics. The final quadtree block partitions are then optimized in terms of computation time. Extensive experimental results are provided to show superior refocusing quality and fast computation speed. In particular, the run time is comparable with the conventional single-image blurring, which causes serious boundary artifacts.
Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment
NASA Astrophysics Data System (ADS)
Bernauer, J. C.; Diefenbach, J.; Elbakian, G.; Gavrilov, G.; Goerrissen, N.; Hasell, D. K.; Henderson, B. S.; Holler, Y.; Karyan, G.; Ludwig, J.; Marukyan, H.; Naryshkin, Y.; O'Connor, C.; Russell, R. L.; Schmidt, A.; Schneekloth, U.; Suvorov, K.; Veretennikov, D.
2016-07-01
The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, Niels; Verhoest, Niko E. C.; Gobeyn, Sacha; De Baets, Bernard; Verwaeren, Jan; Pauwels, Valentijn R. N.
2015-04-01
The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological modeling. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the smaller temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typically small integration volume of in situ measurements, and the often large spacing between monitoring locations. This causes only a small part of the modeling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically non-dynamic in time. Generally, e.g. when applying data assimilation, maximizing the observed information under given circumstances will lead to a better qualitative and quantitative insight of the hydrological system. It is therefore advisable to perform a prior analysis in order to select those monitoring locations which are most predictive for the unobserved modeling domain. This research focuses on optimizing the configuration of a soil moisture monitoring network in the catchment of the Bellebeek, situated in Belgium. A recursive algorithm, strongly linked to the equations of the Ensemble Kalman Filter, has been developed to select the most predictive locations in the catchment. The basic idea behind the algorithm is twofold. On the one hand a minimization of the modeled soil moisture ensemble error covariance between the different monitoring locations is intended. This causes the monitoring locations to be as independent as possible regarding the modeled soil moisture dynamics. On the other hand, the modeled soil moisture ensemble error covariance between the monitoring locations and the unobserved modeling domain is maximized. The latter causes a selection of monitoring locations which are more predictive towards unobserved locations. The main factors that will influence the outcome of the algorithm are the following: the choice of the hydrological model, the uncertainty model applied for ensemble generation, the general wetness of the catchment during which the error covariance is computed, etc. In this research the influence of the latter two is examined more in-depth. Furthermore, the optimal network configuration resulting from the newly developed algorithm is compared to network configurations obtained by two other algorithms. The first algorithm is based on a temporal stability analysis of the modeled soil moisture in order to identify catchment representative monitoring locations with regard to average conditions. The second algorithm involves the clustering of available spatially distributed data (e.g. land cover and soil maps) that is not obtained by hydrological modeling.
Smith, Morgan E; Singh, Brajendra K; Irvine, Michael A; Stolk, Wilma A; Subramanian, Swaminathan; Hollingsworth, T Déirdre; Michael, Edwin
2017-03-01
Mathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to help overcome biases of single models. We report on the development of a first multi-model ensemble of three lymphatic filariasis (LF) models (EPIFIL, LYMFASIM, and TRANSFIL), and evaluate its predictive performance in comparison with that of the constituents using calibration and validation data from three case study sites, one each from the three major LF endemic regions: Africa, Southeast Asia and Papua New Guinea (PNG). We assessed the performance of the respective models for predicting the outcomes of annual MDA strategies for various baseline scenarios thought to exemplify the current endemic conditions in the three regions. The results show that the constructed multi-model ensemble outperformed the single models when evaluated across all sites. Single models that best fitted calibration data tended to do less well in simulating the out-of-sample, or validation, intervention data. Scenario modelling results demonstrate that the multi-model ensemble is able to compensate for variance between single models in order to produce more plausible predictions of intervention impacts. Our results highlight the value of an ensemble approach to modelling parasite control dynamics. However, its optimal use will require further methodological improvements as well as consideration of the organizational mechanisms required to ensure that modelling results and data are shared effectively between all stakeholders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Online probabilistic learning with an ensemble of forecasts
NASA Astrophysics Data System (ADS)
Thorey, Jean; Mallet, Vivien; Chaussin, Christophe
2016-04-01
Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).
NASA Astrophysics Data System (ADS)
Wu, Xiongwu; Brooks, Bernard R.
2011-11-01
The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching. This method is unique in the way that it selectively enhances and suppresses molecular motions based on their frequency to accelerate conformational searching without modifying energy surfaces or raising temperatures. It has been applied to studies of many long time scale events, such as protein folding. Recent progress in the understanding of the conformational distribution in SGLD simulations makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to calculate ensemble average properties through reweighting. Based on the SGLD partition function, this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation method to directly sample the canonical ensemble. This method includes interaction forces in its guiding force to compensate the perturbation caused by the momentum-based guiding force so that it can approximately sample the canonical ensemble. Using several example systems, we demonstrate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD simulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well for large systems. For studies where preserving accessible conformational space is critical, such as free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and sample the conformational space.
NASA Astrophysics Data System (ADS)
Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen
2016-07-01
The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases that should be statistically consistent with the ensemble and those that should not, as well as providing a simple, subjective and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality assurance for the CESM-POP code.
Creating "Intelligent" Climate Model Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, N. C.; Taylor, P. C.
2014-12-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is often used to add value to model projections: consensus projections have been shown to consistently outperform individual models. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, certain models reproduce climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument and surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing weighted and unweighted model ensembles. For example, one tested metric weights the ensemble by how well models reproduce the time-series probability distribution of the cloud forcing component of reflected shortwave radiation. The weighted ensemble for this metric indicates lower simulated precipitation (up to .7 mm/day) in tropical regions than the unweighted ensemble: since CMIP5 models have been shown to overproduce precipitation, this result could indicate that the metric is effective in identifying models which simulate more realistic precipitation. Ultimately, the goal of the framework is to identify performance metrics for advising better methods for ensemble averaging models and create better climate predictions.
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2017-10-01
We extend the recent bounds of Sason and Verdú relating Rényi entropy and Bayesian hypothesis testing (arXiv:1701.01974.) to the quantum domain and show that they have a number of different applications. First, we obtain a sharper bound relating the optimal probability of correctly distinguishing elements of an ensemble of states to that of the pretty good measurement, and an analogous bound for optimal and pretty good entanglement recovery. Second, we obtain bounds relating optimal guessing and entanglement recovery to the fidelity of the state with a product state, which then leads to tight tripartite uncertainty and monogamy relations.
NASA Astrophysics Data System (ADS)
Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo
2018-04-01
In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.
Optimal Superpositioning of Flexible Molecule Ensembles
Gapsys, Vytautas; de Groot, Bert L.
2013-01-01
Analysis of the internal dynamics of a biological molecule requires the successful removal of overall translation and rotation. Particularly for flexible or intrinsically disordered peptides, this is a challenging task due to the absence of a well-defined reference structure that could be used for superpositioning. In this work, we started the analysis with a widely known formulation of an objective for the problem of superimposing a set of multiple molecules as variance minimization over an ensemble. A negative effect of this superpositioning method is the introduction of ambiguous rotations, where different rotation matrices may be applied to structurally similar molecules. We developed two algorithms to resolve the suboptimal rotations. The first approach minimizes the variance together with the distance of a structure to a preceding molecule in the ensemble. The second algorithm seeks for minimal variance together with the distance to the nearest neighbors of each structure. The newly developed methods were applied to molecular-dynamics trajectories and normal-mode ensembles of the Aβ peptide, RS peptide, and lysozyme. These new (to our knowledge) superpositioning methods combine the benefits of variance and distance between nearest-neighbor(s) minimization, providing a solution for the analysis of intrinsic motions of flexible molecules and resolving ambiguous rotations. PMID:23332072
Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms. PMID:24795876
Ensemble Clustering using Semidefinite Programming with Applications
Singh, Vikas; Mukherjee, Lopamudra; Peng, Jiming; Xu, Jinhui
2011-01-01
In this paper, we study the ensemble clustering problem, where the input is in the form of multiple clustering solutions. The goal of ensemble clustering algorithms is to aggregate the solutions into one solution that maximizes the agreement in the input ensemble. We obtain several new results for this problem. Specifically, we show that the notion of agreement under such circumstances can be better captured using a 2D string encoding rather than a voting strategy, which is common among existing approaches. Our optimization proceeds by first constructing a non-linear objective function which is then transformed into a 0–1 Semidefinite program (SDP) using novel convexification techniques. This model can be subsequently relaxed to a polynomial time solvable SDP. In addition to the theoretical contributions, our experimental results on standard machine learning and synthetic datasets show that this approach leads to improvements not only in terms of the proposed agreement measure but also the existing agreement measures based on voting strategies. In addition, we identify several new application scenarios for this problem. These include combining multiple image segmentations and generating tissue maps from multiple-channel Diffusion Tensor brain images to identify the underlying structure of the brain. PMID:21927539
Ensemble Clustering using Semidefinite Programming with Applications.
Singh, Vikas; Mukherjee, Lopamudra; Peng, Jiming; Xu, Jinhui
2010-05-01
In this paper, we study the ensemble clustering problem, where the input is in the form of multiple clustering solutions. The goal of ensemble clustering algorithms is to aggregate the solutions into one solution that maximizes the agreement in the input ensemble. We obtain several new results for this problem. Specifically, we show that the notion of agreement under such circumstances can be better captured using a 2D string encoding rather than a voting strategy, which is common among existing approaches. Our optimization proceeds by first constructing a non-linear objective function which is then transformed into a 0-1 Semidefinite program (SDP) using novel convexification techniques. This model can be subsequently relaxed to a polynomial time solvable SDP. In addition to the theoretical contributions, our experimental results on standard machine learning and synthetic datasets show that this approach leads to improvements not only in terms of the proposed agreement measure but also the existing agreement measures based on voting strategies. In addition, we identify several new application scenarios for this problem. These include combining multiple image segmentations and generating tissue maps from multiple-channel Diffusion Tensor brain images to identify the underlying structure of the brain.
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
NASA Astrophysics Data System (ADS)
Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei
2018-04-01
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Hemri, S.; Klein, B.
2017-11-01
Inland waterway transport benefits from probabilistic forecasts of water levels as they allow to optimize the ship load and, hence, to minimize the transport costs. Probabilistic state-of-the-art hydrologic ensemble forecasts inherit biases and dispersion errors from the atmospheric ensemble forecasts they are driven with. The use of statistical postprocessing techniques like ensemble model output statistics (EMOS) allows for a reduction of these systematic errors by fitting a statistical model based on training data. In this study, training periods for EMOS are selected based on forecast analogs, i.e., historical forecasts that are similar to the forecast to be verified. Due to the strong autocorrelation of water levels, forecast analogs have to be selected based on entire forecast hydrographs in order to guarantee similar hydrograph shapes. Custom-tailored measures of similarity for forecast hydrographs comprise hydrological series distance (SD), the hydrological matching algorithm (HMA), and dynamic time warping (DTW). Verification against observations reveals that EMOS forecasts for water level at three gauges along the river Rhine with training periods selected based on SD, HMA, and DTW compare favorably with reference EMOS forecasts, which are based on either seasonal training periods or on training periods obtained by dividing the hydrological forecast trajectories into runoff regimes.
Lee, Kuo Hao; Chen, Jianhan
2017-06-15
Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tornadogenesis in Simulated Supercells from VORTEX2 Environments
NASA Astrophysics Data System (ADS)
Coffer, Brice Evan
Despite an increased understanding of the environments that favor tornado formation, a high false-alarmrate for tornado warnings still exists. The composite near-stormenvironments of nontornadic and tornadic supercells sampled during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) both appear to be generally favorable for supercells and tornadoes. It has not been clear whether small differences between the two environments (e.g., more streamwise horizontal vorticity in the lowest few hundred meters above the ground in the tornadic composite) are actually determinative of storms' tornadic potential. From the VORTEX2 composite environments, simulations of a nontornadic and a tornadic supercell are used to investigate storm-scale differences that ultimately favor tornadogenesis or tornadogenesis failure. Both environments produce strong supercells with robust mid-level mesocyclones and hook echoes, though the tornadic supercell has a more intense low-level updraft and develops a tornado-like vortex exceeding the EF3 wind speed threshold. In contrast, the nontornadic supercell only produces shallow vortices, which never reach the EF0 wind speed threshold. Even though the nontornadic supercell readily produces subtornadic surface vortices, these vortices fail to be stretched by the low-level updraft. This is due to a disorganized low-level mesocyclone caused by predominately crosswise vorticity in the lowest few hundred meters above ground level within the nontornadic environment. In contrast, the tornadic supercell ingests predominately streamwise horizontal vorticity, which promotes a strong low-level mesocyclone with enhanced dynamic lifting and stretching of surface vertical vorticity. These results support the idea that larger streamwise vorticity leads to a more intense low-level mesocyclone, whereas predominately crosswise vorticity yields a less favorable configuration of the low-level mesocyclone for tornadogenesis. Since it is known that not every stormin seemingly favorable environments is tornadic, either our knowledge of environmental controls on tornadoes is incomplete, or there are factors beyond the environment that determine whether a supercell produces a tornado or not. In other words, tornado formation could be a volatile process that is largely internal to each storm. To assess this, an ensemble of thirty supercell simulations was constructed based on small variations to the nontornadic and tornadic environmental profiles composited from VORTEX2. All simulations produce distinct supercells despite occurring in similar environments. Both the tornadic and nontornadic ensemble members possess ample subtornadic surface vertical vorticity; the determinative factor is whether this vorticity can be converged and stretched by the low-level updraft. Each of the fifteen members in the tornadic VORTEX2 ensemble produces a long-track, intense tornado. Although there are notable differences in the precipitation and near-surface buoyancy fields, each stormfeatures strong dynamic lifting of surface air with vertical vorticity. This lifting is due to a steady low-level mesocyclone, which is linked to the ingestion of predominately streamwise environmental vorticity. In contrast, each nontornadic VORTEX2 simulation features a supercell with a disorganized low-level mesocyclone, due to crosswise vorticity in the lowest few hundred meters in the nontornadic environment. This generally leads to insufficient dynamic lifting and stretching to accomplish tornadogenesis. Even so, forty percent of the nontornadic VORTEX2 ensemble members becomeweakly tornadic. This implies that chaotic within-stormdetails can still play a role, and occasionally lead to marginally tornadic vortices in suboptimal storms. It is also unclear whether systematically varying the lower-tropospheric horizontal vorticity will yield a "tipping point" between nontornadic and tornadic supercells. Additional simulations have been conducted where the environment is systematically varied between the nontornadic and tornadic VORTEX2 composite profiles. The low-level wind profiles are linearly interpolated between the two composites (20/40/60/80%). The interpolated VORTEX2 simulations show that increasing lower tropospheric SRH leads to progressively more organized low-level mesocyclones and a higher probability of tornadic supercells, regardless of the upper-level winds or thermodynamic profile. The mean 0 - 500mSRH value where supercells are consistently tornadic for all the VORTEX2 interpolated simulations is 110m2 s-2. Supercells transitioned from nontornadic to tornadic when at least 40% of the tornadic low-level wind profile was introduced. This transition could not be attributed to warmer outflow temperatures nor the availability of subtornadic vertical vorticity within the hook echo. Instead, the low-level updraft was once again the discriminating factor, as a robust updraft is present directly overtop of the hook echo in each of the tornadic supercells. The fundamental feature of the nontornadic supercells is the low-level updrafts are generally disorganized, with pockets of descent present in the weak echo region. (Abstract shortened by ProQuest.).
Toward “optimal” integration of terrestrial biosphere models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwalm, Christopher R.; Huntingzger, Deborah; Fisher, Joshua B.
2015-06-10
Multi-model ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill-based for present-day carbon cycling) versus naïve (“one model – one vote”) integration. MsTMIP optimal and naïve mean land sink strength estimates (–1.16 vs. –1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materiallymore » change MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Resolving this issue requires addressing specific uncertainty types (initial conditions, structure, references) and a change in model development paradigms currently dominant in the TBM community.« less
Active relearning for robust supervised classification of pulmonary emphysema
NASA Astrophysics Data System (ADS)
Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.
2012-03-01
Radiologists are adept at recognizing the appearance of lung parenchymal abnormalities in CT scans. However, the inconsistent differential diagnosis, due to subjective aggregation, mandates supervised classification. Towards optimizing Emphysema classification, we introduce a physician-in-the-loop feedback approach in order to minimize uncertainty in the selected training samples. Using multi-view inductive learning with the training samples, an ensemble of Support Vector Machine (SVM) models, each based on a specific pair-wise dissimilarity metric, was constructed in less than six seconds. In the active relearning phase, the ensemble-expert label conflicts were resolved by an expert. This just-in-time feedback with unoptimized SVMs yielded 15% increase in classification accuracy and 25% reduction in the number of support vectors. The generality of relearning was assessed in the optimized parameter space of six different classifiers across seven dissimilarity metrics. The resultant average accuracy improved to 21%. The co-operative feedback method proposed here could enhance both diagnostic and staging throughput efficiency in chest radiology practice.
Zhang, Jianhua; Li, Sunan; Wang, Rubin
2017-01-01
In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.
Many-body kinetics of dynamic nuclear polarization by the cross effect
NASA Astrophysics Data System (ADS)
Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.
2018-03-01
Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.
Multi-Parameter Scattering Sensor and Methods
NASA Technical Reports Server (NTRS)
Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)
2016-01-01
Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.
Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)
2010-06-01
the Nth-order derivative of the Legendre Polynomial ( )NL t . Using this method, the range of integration is transformed universally to [-1,+1...which is the interval for Legendre Polynomials . Although the LGL interpolation points are not evenly spaced, they are symmetric about the midpoint 0...the vehicle’s kinematic constraints are parameterized in terms of polynomials of sufficient order, (2) A collision-free criterion is developed and
High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.
Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong
2018-08-01
This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
Optimization of pressure probe placement and data analysis of engine-inlet distortion
NASA Astrophysics Data System (ADS)
Walter, S. F.
The purpose of this research is to examine methods by which quantification of inlet flow distortion may be improved upon. Specifically, this research investigates how data interpolation effects results, optimizing sampling locations of the flow, and determining the sensitivity related to how many sample locations there are. The main parameters that are indicative of a "good" design are total pressure recovery, mass flow capture, and distortion. This work focuses on the total pressure distortion, which describes the amount of non-uniformity that exists in the flow as it enters the engine. All engines must tolerate some level of distortion, however too much distortion can cause the engine to stall or the inlet to unstart. Flow distortion is measured at the interface between the inlet and the engine. To determine inlet flow distortion, a combination of computational and experimental pressure data is generated and then collapsed into an index that indicates the amount of distortion. Computational simulations generate continuous contour maps, but experimental data is discrete. Researchers require continuous contour maps to evaluate the overall distortion pattern. There is no guidance on how to best manipulate discrete points into a continuous pattern. Using one experimental, 320 probe data set and one, 320 point computational data set with three test runs each, this work compares the pressure results obtained using all 320 points of data from the original sets, both quantitatively and qualitatively, with results derived from selecting 40 grid point subsets and interpolating to 320 grid points. Each of the two, 40 point sets were interpolated to 320 grid points using four different interpolation methods in an attempt to establish the best method for interpolating small sets of data into an accurate, continuous contour map. Interpolation methods investigated are bilinear, spline, and Kriging in Cartesian space, as well as angular in polar space. Spline interpolation methods should be used as they result in the most accurate, precise, and visually correct predictions when compared results achieved from the full data sets. Researchers were interested if fewer than the recommended 40 probes could be used - especially when placed in areas of high interest - but still obtain equivalent or better results. For this investigation, the computational results from a two-dimensional inlet and experimental results of an axisymmetric inlet were used. To find the areas of interest, a uniform sampling of all possible locations was run through a Monte Carlo simulation with a varying number of probes. A probability density function of the resultant distortion index was plotted. Certain probes are required to come within the desired accuracy level of the distortion index based on the full data set. For the experimental results, all three test cases could be characterized with 20 probes. For the axisymmetric inlet, placing 40 probes in select locations could get the results for parameters of interest within less than 10% of the exact solution for almost all cases. For the two dimensional inlet, the results were not as clear. 80 probes were required to get within 10% of the exact solution for all run numbers, although this is largely due to the small value of the exact result. The sensitivity of each probe added to the experiment was analyzed. Instead of looking at the overall pattern established by optimizing probe placements, the focus is on varying the number of sampled probes from 20 to 40. The number of points falling within a 1% tolerance band of the exact solution were counted as good points. The results were normalized for each data set and a general sensitivity function was found to determine the sensitivity of the results. A linear regression was used to generalize the results for all data sets used in this work. However, they can be used by directly comparing the number of good points obtained with various numbers of probes as well. The sensitivity in the results is higher when fewer probes are used and gradually tapers off near 40 probes. There is a bigger gain in good points when the number of probes is increased from 20 to 21 probes than from 39 to 40 probes.
NASA Astrophysics Data System (ADS)
Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan
2013-04-01
Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation-quality-index. Subsequently the probability and quality information of the forecast ensemble is available and flexible blending to numerical prediction model for each subarea is possible. Simultaneously with automatic processing the ensemble nowcasting product is visualized in a new innovative way which combines the intensity, probability and quality information for different subareas in one forecast image.
Estimating uncertainty of Full Waveform Inversion with Ensemble-based methods
NASA Astrophysics Data System (ADS)
Thurin, J.; Brossier, R.; Métivier, L.
2017-12-01
Uncertainty estimation is one key feature of tomographic applications for robust interpretation. However, this information is often missing in the frame of large scale linearized inversions, and only the results at convergence are shown, despite the ill-posed nature of the problem. This issue is common in the Full Waveform Inversion community.While few methodologies have already been proposed in the literature, standard FWI workflows do not include any systematic uncertainty quantifications methods yet, but often try to assess the result's quality through cross-comparison with other results from seismic or comparison with other geophysical data. With the development of large seismic networks/surveys, the increase in computational power and the more and more systematic application of FWI, it is crucial to tackle this problem and to propose robust and affordable workflows, in order to address the uncertainty quantification problem faced for near surface targets, crustal exploration, as well as regional and global scales.In this work (Thurin et al., 2017a,b), we propose an approach which takes advantage of the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al., (2001), in order to estimate a low-rank approximation of the posterior covariance matrix of the FWI problem, allowing us to evaluate some uncertainty information of the solution. Instead of solving the FWI problem through a Bayesian inversion with the ETKF, we chose to combine a conventional FWI, based on local optimization, and the ETKF strategies. This scheme allows combining the efficiency of local optimization for solving large scale inverse problems and make the sampling of the local solution space possible thanks to its embarrassingly parallel property. References:Bishop, C. H., Etherton, B. J. and Majumdar, S. J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review, 129(3), 420-436.Thurin, J., Brossier, R. and Métivier, L. 2017,a.: Ensemble-Based Uncertainty Estimation in Full Waveform Inversion. 79th EAGE Conference and Exhibition 2017, (12 - 15 June, 2017)Thurin, J., Brossier, R. and Métivier, L. 2017,b.: An Ensemble-Transform Kalman Filter - Full Waveform Inversion scheme for Uncertainty estimation; SEG Technical Program Expanded Abstracts 2012
Universal patterns of inequality
NASA Astrophysics Data System (ADS)
Banerjee, Anand; Yakovenko, Victor M.
2010-07-01
Probability distributions of money, income and energy consumption per capita are studied for ensembles of economic agents. The principle of entropy maximization for partitioning of a limited resource gives exponential distributions for the investigated variables. A non-equilibrium difference of money temperatures between different systems generates net fluxes of money and population. To describe income distribution, a stochastic process with additive and multiplicative components is introduced. The resultant distribution interpolates between exponential at the low end and power law at the high end, in agreement with the empirical data for the USA. We show that the increase in income inequality in the USA originates primarily from the increase in the income fraction going to the upper tail, which now exceeds 20% of the total income. Analyzing the data from the World Resources Institute, we find that the distribution of energy consumption per capita around the world can be approximately described by the exponential function. Comparing the data for 1990, 2000 and 2005, we discuss the effect of globalization on the inequality of energy consumption.
Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph
2014-04-01
Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.
Exploration of Objective Functions for Optimal Placement of Weather Stations
NASA Astrophysics Data System (ADS)
Snyder, A.; Dietterich, T.; Selker, J. S.
2016-12-01
Many regions of Earth lack ground-based sensing of weather variables. For example, most countries in Sub-Saharan Africa do not have reliable weather station networks. This absence of sensor data has many consequences ranging from public safety (poor prediction and detection of severe weather events), to agriculture (lack of crop insurance), to science (reduced quality of world-wide weather forecasts, climate change measurement, etc.). The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to locate each weather station. We can formulate this as the following optimization problem: Determine a set of N sites that jointly optimize the value of an objective function. The purpose of this poster is to propose and assess several objective functions. In addition to standard objectives (e.g., minimizing the summed squared error of interpolated values over the entire region), we consider objectives that minimize the maximum error over the region and objectives that optimize the detection of extreme events. An additional issue is that each station measures more than 10 variables—how should we balance the accuracy of our interpolated maps for each variable? Weather sensors inevitably drift out of calibration or fail altogether. How can we incorporate robustness to failed sensors into our network design? Another important requirement is that the network should make it possible to detect failed sensors by comparing their readings with those of other stations. How can this requirement be met? Finally, we provide an initial assessment of the computational cost of optimizing these various objective functions. We invite everyone to join the discussion at our poster by proposing additional objectives, identifying additional issues to consider, and expanding our bibliography of relevant papers. A prize (derived from grapes grown in Oregon) will be awarded for the most insightful contribution to the discussion!
NASA Astrophysics Data System (ADS)
Kim, Juhye; Nam, Haewon; Lee, Rena
2015-07-01
CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Lionello, Piero
2014-05-01
Advantages of an ensemble prediction forecast (EPF) technique that has been used for sea level (SL) prediction at the Northern Adriatic coast are investigated. The aims is to explore whether EPF is more precise than the traditional Deterministic Forecast (DF) and the value of the added information, mainly on forecast uncertainty. Improving the SL forecast for the city of Venice is of paramount importance for the management and maintenance of this historical city and for operating the movable barriers that are presently being built for its protection. The operational practice is simulated for three months from 1st October to 31st December 2010. The EPF is based on the HYPSE model, which is a standard single-layer nonlinear shallow water model, whose equations are derived from the depth averaged momentum equations and predicts the SL. A description of the model is available in the scientific literature. Forcing of HYPSE are provided by three different sets of 3-hourly ECMWF 10m-wind and MSLP fields: the high resolution meteorological forecast (which is used for the deterministic SL forecast, DF), the control run forecast (CRF, that differs from the DF forecast only for it lower meteorological fields resolution) and the 50 ensemble members of the ECMWF EPS (which are used for the SL-EPS. The resolution of DF fields is T1279 and resolution of both CRF and ECMWF EPS fields is T639 resolution. The 10m wind and MSLP fields have been downloaded at 0.125degs (DF) and 0.25degs(CRF and EPS) and linearly interpolated to the HYPSE grid (which is the same for all simulations). The version of HYPSE used in the SR EPS uses a rectangular mesh grid of variable size, which has the minimum grid step (0.03 degrees) in the northern part of the Adriatic Sea, from where grid step increases with a 1.01 factor in both latitude and longitude (In practice, resolution varies in the range from 3.3 to 7km). Results are analyzed considering the EPS spread, the rms of the simulations, the Brier Skill Score and are compared to observations at tide gauges distributed along the Croatian and Italian coast of the Adriatic Sea. It is shown that the ensemble spread is indeed a reliable indicator of the uncertainty of the storm surge prediction. Further, results show how uncertainty depends on the predicted value of sea level and how it increases with the forecast time range. The accuracy of the ensemble mean forecast is actually larger than that of the deterministic forecast, though the latter is produced by meteorological forcings at higher resolution
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-01-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing “bad” triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
ADS: A FORTRAN program for automated design synthesis: Version 1.10
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1985-01-01
A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis - Version 1.10) is a FORTRAN program for solution of nonlinear constrained optimization problems. The program is segmented into three levels: strategy, optimizer, and one-dimensional search. At each level, several options are available so that a total of over 100 possible combinations can be created. Examples of available strategies are sequential unconstrained minimization, the Augmented Lagrange Multiplier method, and Sequential Linear Programming. Available optimizers include variable metric methods and the Method of Feasible Directions as examples, and one-dimensional search options include polynomial interpolation and the Golden Section method as examples. Emphasis is placed on ease of use of the program. All information is transferred via a single parameter list. Default values are provided for all internal program parameters such as convergence criteria, and the user is given a simple means to over-ride these, if desired.
NASA Astrophysics Data System (ADS)
Liu, Yuefeng; Duan, Zhuoyi; Chen, Song
2017-10-01
Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.
Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*
Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.
2013-01-01
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628
A Technical Analysis Information Fusion Approach for Stock Price Analysis and Modeling
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
In this paper, we address the problem of technical analysis information fusion in improving stock market index-level prediction. We present an approach for analyzing stock market price behavior based on different categories of technical analysis metrics and a multiple predictive system. Each category of technical analysis measures is used to characterize stock market price movements. The presented predictive system is based on an ensemble of neural networks (NN) coupled with particle swarm intelligence for parameter optimization where each single neural network is trained with a specific category of technical analysis measures. The experimental evaluation on three international stock market indices and three individual stocks show that the presented ensemble-based technical indicators fusion system significantly improves forecasting accuracy in comparison with single NN. Also, it outperforms the classical neural network trained with index-level lagged values and NN trained with stationary wavelet transform details and approximation coefficients. As a result, technical information fusion in NN ensemble architecture helps improving prediction accuracy.
Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae
2017-02-08
A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.
2010-05-01
We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.
NASA Astrophysics Data System (ADS)
Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.
2010-01-01
We study the evolution of finite perturbations in the Lorenz `96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.
NASA Astrophysics Data System (ADS)
Luo, Hongyuan; Wang, Deyun; Yue, Chenqiang; Liu, Yanling; Guo, Haixiang
2018-03-01
In this paper, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10 concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real-world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.
Research on optimal DEM cell size for 3D visualization of loess terraces
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Tang, Guo'an; Ji, Bin; Ma, Lei
2009-10-01
In order to represent the complex artificial terrains like loess terraces in Shanxi Province in northwest China, a new 3D visual method namely Terraces Elevation Incremental Visual Method (TEIVM) is put forth by the authors. 406 elevation points and 14 enclosed constrained lines are sampled according to the TIN-based Sampling Method (TSM) and DEM Elevation Points and Lines Classification (DEPLC). The elevation points and constrained lines are used to construct Constrained Delaunay Triangulated Irregular Networks (CD-TINs) of the loess terraces. In order to visualize the loess terraces well by use of optimal combination of cell size and Elevation Increment Value (EIV), the CD-TINs is converted to Grid-based DEM (G-DEM) by use of different combination of cell size and EIV with linear interpolating method called Bilinear Interpolation Method (BIM). Our case study shows that the new visual method can visualize the loess terraces steps very well when the combination of cell size and EIV is reasonable. The optimal combination is that the cell size is 1 m and the EIV is 6 m. Results of case study also show that the cell size should be at least smaller than half of both the terraces average width and the average vertical offset of terraces steps for representing the planar shapes of the terraces surfaces and steps well, while the EIV also should be larger than 4.6 times of the terraces average height. The TEIVM and results above is of great significance to the highly refined visualization of artificial terrains like loess terraces.
NASA Astrophysics Data System (ADS)
Ali, Mumtaz; Deo, Ravinesh C.; Downs, Nathan J.; Maraseni, Tek
2018-07-01
Forecasting drought by means of the World Meteorological Organization-approved Standardized Precipitation Index (SPI) is considered to be a fundamental task to support socio-economic initiatives and effectively mitigating the climate-risk. This study aims to develop a robust drought modelling strategy to forecast multi-scalar SPI in drought-rich regions of Pakistan where statistically significant lagged combinations of antecedent SPI are used to forecast future SPI. With ensemble-Adaptive Neuro Fuzzy Inference System ('ensemble-ANFIS') executed via a 10-fold cross-validation procedure, a model is constructed by randomly partitioned input-target data. Resulting in 10-member ensemble-ANFIS outputs, judged by mean square error and correlation coefficient in the training period, the optimal forecasts are attained by the averaged simulations, and the model is benchmarked with M5 Model Tree and Minimax Probability Machine Regression (MPMR). The results show the proposed ensemble-ANFIS model's preciseness was notably better (in terms of the root mean square and mean absolute error including the Willmott's, Nash-Sutcliffe and Legates McCabe's index) for the 6- and 12- month compared to the 3-month forecasts as verified by the largest error proportions that registered in smallest error band. Applying 10-member simulations, ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D) and intensity (I) of drought (including the error bound). This enabled uncertainty between multi-models to be rationalized more efficiently, leading to a reduction in forecast error caused by stochasticity in drought behaviours. Through cross-validations at diverse sites, a geographic signature in modelled uncertainties was also calculated. Considering the superiority of ensemble-ANFIS approach and its ability to generate uncertainty-based information, the study advocates the versatility of a multi-model approach for drought-risk forecasting and its prime importance for estimating drought properties over confidence intervals to generate better information for strategic decision-making.
Deep biomarkers of human aging: Application of deep neural networks to biomarker development
Putin, Evgeny; Mamoshina, Polina; Aliper, Alexander; Korzinkin, Mikhail; Moskalev, Alexey; Kolosov, Alexey; Ostrovskiy, Alexander; Cantor, Charles; Vijg, Jan; Zhavoronkov, Alex
2016-01-01
One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R2 = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R2 = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis. PMID:27191382
Deep biomarkers of human aging: Application of deep neural networks to biomarker development.
Putin, Evgeny; Mamoshina, Polina; Aliper, Alexander; Korzinkin, Mikhail; Moskalev, Alexey; Kolosov, Alexey; Ostrovskiy, Alexander; Cantor, Charles; Vijg, Jan; Zhavoronkov, Alex
2016-05-01
One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R(2) = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R(2) = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis.
NASA Astrophysics Data System (ADS)
Seiller, G.; Anctil, F.; Roy, R.
2017-09-01
This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.
Path planning in uncertain flow fields using ensemble method
NASA Astrophysics Data System (ADS)
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
NASA Astrophysics Data System (ADS)
Yoon, Ilsang; Weinberg, Martin D.; Katz, Neal
2011-06-01
We introduce a new galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes), which is a front-end application of the Bayesian Inference Engine (BIE), a parallel Markov chain Monte Carlo package, to provide full posterior probability distributions and reliable confidence intervals for all model parameters. The BIE relies on GALPHAT to compute the likelihood function. GALPHAT generates scale-free cumulative image tables for the desired model family with precise error control. Interpolation of this table yields accurate pixellated images with any centre, scale and inclination angle. GALPHAT then rotates the image by position angle using a Fourier shift theorem, yielding high-speed, accurate likelihood computation. We benchmark this approach using an ensemble of simulated Sérsic model galaxies over a wide range of observational conditions: the signal-to-noise ratio S/N, the ratio of galaxy size to the point spread function (PSF) and the image size, and errors in the assumed PSF; and a range of structural parameters: the half-light radius re and the Sérsic index n. We characterize the strength of parameter covariance in the Sérsic model, which increases with S/N and n, and the results strongly motivate the need for the full posterior probability distribution in galaxy morphology analyses and later inferences. The test results for simulated galaxies successfully demonstrate that, with a careful choice of Markov chain Monte Carlo algorithms and fast model image generation, GALPHAT is a powerful analysis tool for reliably inferring morphological parameters from a large ensemble of galaxies over a wide range of different observational conditions.
NASA Astrophysics Data System (ADS)
Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim
2017-07-01
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.
Optimal Mass Transport for Statistical Estimation, Image Analysis, Information Geometry, and Control
2017-01-10
Metric Uncertainty for Spectral Estimation based on Nevanlinna-Pick Interpolation, (with J. Karlsson) Intern. Symp. on the Math . Theory of Networks and...Systems, Melbourne 2012. 22. Geometric tools for the estimation of structured covariances, (with L. Ning, X. Jiang) Intern. Symposium on the Math . Theory...estimation and the reversibility of stochastic processes, (with Y. Chen, J. Karlsson) Proc. Int. Symp. on Math . Theory of Networks and Syst., July
3-D Characterization of Seismic Properties at the Smart Weapons Test Range, YPG
2001-10-01
confidence limits around each interpolated value. Ground truth was accomplished through cross-hole seismic measurements and borehole logs. Surface wave... seismic method, as well as estimating the optimal orientation and spacing of the seismic array . A variety of sources and receivers was evaluated...location within the array is partially related to at least two seismic lines. Either through good fortune or foresight by the designers of the SWTR site
2015-08-01
optimized space-time interpolation method. Tangible geospatial modeling system was further developed to support the analysis of changing elevation surfaces...Evolution Mapped by Terrestrial Laser Scanning, talk, AGU Fall 2012 *Hardin E, Mitas L, Mitasova H., Simulation of Wind -Blown Sand for...Geomorphological Applications: A Smoothed Particle Hydrodynamics Approach, GSA 2012 *Russ, E. Mitasova, H., Time series and space-time cube analyses on
Morsbach, Fabian; Bickelhaupt, Sebastian; Wanner, Guido A; Krauss, Andreas; Schmidt, Bernhard; Alkadhi, Hatem
2013-07-01
To assess the value of iterative frequency split-normalized (IFS) metal artifact reduction (MAR) for computed tomography (CT) of hip prostheses. This study had institutional review board and local ethics committee approval. First, a hip phantom with steel and titanium prostheses that had inlays of water, fat, and contrast media in the pelvis was used to optimize the IFS algorithm. Second, 41 consecutive patients with hip prostheses who were undergoing CT were included. Data sets were reconstructed with filtered back projection, the IFS algorithm, and a linear interpolation MAR algorithm. Two blinded, independent readers evaluated axial, coronal, and sagittal CT reformations for overall image quality, image quality of pelvic organs, and assessment of pelvic abnormalities. CT attenuation and image noise were measured. Statistical analysis included the Friedman test, Wilcoxon signed-rank test, and Levene test. Ex vivo experiments demonstrated an optimized IFS algorithm by using a threshold of 2200 HU with four iterations for both steel and titanium prostheses. Measurements of CT attenuation of the inlays were significantly (P < .001) more accurate for IFS when compared with filtered back projection. In patients, best overall and pelvic organ image quality was found in all reformations with IFS (P < .001). Pelvic abnormalities in 11 of 41 patients (27%) were diagnosed with significantly (P = .002) higher confidence on the basis of IFS images. CT attenuation of bladder (P < .001) and muscle (P = .043) was significantly less variable with IFS compared with filtered back projection and linear interpolation MAR. In comparison with that of FBP and linear interpolation MAR, noise with IFS was similar close to and far from the prosthesis (P = .295). The IFS algorithm for CT image reconstruction significantly reduces metal artifacts from hip prostheses, improves the reliability of CT number measurements, and improves the confidence for depicting pelvic abnormalities.
NASA Astrophysics Data System (ADS)
Tang, Youhua; Pagowski, Mariusz; Chai, Tianfeng; Pan, Li; Lee, Pius; Baker, Barry; Kumar, Rajesh; Delle Monache, Luca; Tong, Daniel; Kim, Hyun-Cheol
2017-12-01
This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool originally developed by the National Centers for Environmental Prediction (NCEP), to improve surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality (CMAQ) modeling system. An optimal interpolation (OI) method implemented earlier (Tang et al., 2015) for the CMAQ modeling system is also tested for the same period (July 2011) over the same CONUS. Both GSI and OI methods assimilate surface PM2.5 observations at 00:00, 06:00, 12:00 and 18:00 UTC, and MODIS AOD at 18:00 UTC. The assimilations of observations using both GSI and OI generally help reduce the prediction biases and improve correlation between model predictions and observations. In the GSI experiments, assimilation of surface PM2.5 (particle matter with diameter < 2.5 µm) leads to stronger increments in surface PM2.5 compared to its MODIS AOD assimilation at the 550 nm wavelength. In contrast, we find a stronger OI impact of the MODIS AOD on surface aerosols at 18:00 UTC compared to the surface PM2.5 OI method. GSI produces smoother result and yields overall better correlation coefficient and root mean squared error (RMSE). It should be noted that the 3D-Var and OI methods used here have several big differences besides the data assimilation schemes. For instance, the OI uses relatively big model uncertainties, which helps yield smaller mean biases, but sometimes causes the RMSE to increase. We also examine and discuss the sensitivity of the assimilation experiments' results to the AOD forward operators.
2014-09-01
optimal diagonal loading which minimizes the MSE. The be- havior of optimal diagonal loading when the arrival process is composed of plane waves embedded...observation vectors. The examples of the ensemble correlation matrix corresponding to the input process consisting of a single or multiple plane waves...Y ∗ij is a complex-conjugate of Yij. This result is used in order to evaluate the expectations of different quadratic forms. The Poincare -Nash
NASA Astrophysics Data System (ADS)
Sanderson, B. M.
2017-12-01
The CMIP ensembles represent the most comprehensive source of information available to decision-makers for climate adaptation, yet it is clear that there are fundamental limitations in our ability to treat the ensemble as an unbiased sample of possible future climate trajectories. There is considerable evidence that models are not independent, and increasing complexity and resolution combined with computational constraints prevent a thorough exploration of parametric uncertainty or internal variability. Although more data than ever is available for calibration, the optimization of each model is influenced by institutional priorities, historical precedent and available resources. The resulting ensemble thus represents a miscellany of climate simulators which defy traditional statistical interpretation. Models are in some cases interdependent, but are sufficiently complex that the degree of interdependency is conditional on the application. Configurations have been updated using available observations to some degree, but not in a consistent or easily identifiable fashion. This means that the ensemble cannot be viewed as a true posterior distribution updated by available data, but nor can observational data alone be used to assess individual model likelihood. We assess recent literature for combining projections from an imperfect ensemble of climate simulators. Beginning with our published methodology for addressing model interdependency and skill in the weighting scheme for the 4th US National Climate Assessment, we consider strategies for incorporating process-based constraints on future response, perturbed parameter experiments and multi-model output into an integrated framework. We focus on a number of guiding questions: Is the traditional framework of confidence in projections inferred from model agreement leading to biased or misleading conclusions? Can the benefits of upweighting skillful models be reconciled with the increased risk of truth lying outside the weighted ensemble distribution? If CMIP is an ensemble of partially informed best-guesses, can we infer anything about the parent distribution of all possible models of the climate system (and if not, are we implicitly under-representing the risk of a climate catastrophe outside of the envelope of CMIP simulations)?
EOS Interpolation and Thermodynamic Consistency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammel, J. Tinka
2015-11-16
As discussed in LA-UR-08-05451, the current interpolator used by Grizzly, OpenSesame, EOSPAC, and similar routines is the rational function interpolator from Kerley. While the rational function interpolator is well-suited for interpolation on sparse grids with logarithmic spacing and it preserves monotonicity in 1-d, it has some known problems.
Effect of interpolation on parameters extracted from seating interface pressure arrays.
Wininger, Michael; Crane, Barbara
2014-01-01
Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.
Fitting Nonlinear Curves by use of Optimization Techniques
NASA Technical Reports Server (NTRS)
Hill, Scott A.
2005-01-01
MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.
Franco, Ademir; Thevissen, Patrick; Coudyzer, Walter; Develter, Wim; Van de Voorde, Wim; Oyen, Raymond; Vandermeulen, Dirk; Jacobs, Reinhilde; Willems, Guy
2013-05-01
Virtual autopsy is a medical imaging technique, using full body computed tomography (CT), allowing for a noninvasive and permanent observation of all body parts. For dental identification clinically and radiologically observed ante-mortem (AM) and post-mortem (PM) oral identifiers are compared. The study aimed to verify if a PM dental charting can be performed on virtual reconstructions of full-body CT's using the Interpol dental codes. A sample of 103 PM full-body CT's was collected from the forensic autopsy files of the Department of Forensic Medicine University Hospitals, KU Leuven, Belgium. For validation purposes, 3 of these bodies underwent a complete dental autopsy, a dental radiological and a full-body CT examination. The bodies were scanned in a Siemens Definition Flash CT Scanner (Siemens Medical Solutions, Germany). The images were examined on 8- and 12-bit screen resolution as three-dimensional (3D) reconstructions and as axial, coronal and sagittal slices. InSpace(®) (Siemens Medical Solutions, Germany) software was used for 3D reconstruction. The dental identifiers were charted on pink PM Interpol forms (F1, F2), using the related dental codes. Optimal dental charting was obtained by combining observations on 3D reconstructions and CT slices. It was not feasible to differentiate between different kinds of dental restoration materials. The 12-bit resolution enabled to collect more detailed evidences, mainly related to positions within a tooth. Oral identifiers, not implemented in the Interpol dental coding were observed. Amongst these, the observed (3D) morphological features of dental and maxillofacial structures are important identifiers. The latter can become particularly more relevant towards the future, not only because of the inherent spatial features, yet also because of the increasing preventive dental treatment, and the decreasing application of dental restorations. In conclusion, PM full-body CT examinations need to be implemented in the PM dental charting protocols and the Interpol dental codes should be adapted accordingly. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Conformational Heterogeneity of Unbound Proteins Enhances Recognition in Protein-Protein Encounters.
Pallara, Chiara; Rueda, Manuel; Abagyan, Ruben; Fernández-Recio, Juan
2016-07-12
To understand cellular processes at the molecular level we need to improve our knowledge of protein-protein interactions, from a structural, mechanistic, and energetic point of view. Current theoretical studies and computational docking simulations show that protein dynamics plays a key role in protein association and support the need for including protein flexibility in modeling protein interactions. Assuming the conformational selection binding mechanism, in which the unbound state can sample bound conformers, one possible strategy to include flexibility in docking predictions would be the use of conformational ensembles originated from unbound protein structures. Here we present an exhaustive computational study about the use of precomputed unbound ensembles in the context of protein docking, performed on a set of 124 cases of the Protein-Protein Docking Benchmark 3.0. Conformational ensembles were generated by conformational optimization and refinement with MODELLER and by short molecular dynamics trajectories with AMBER. We identified those conformers providing optimal binding and investigated the role of protein conformational heterogeneity in protein-protein recognition. Our results show that a restricted conformational refinement can generate conformers with better binding properties and improve docking encounters in medium-flexible cases. For more flexible cases, a more extended conformational sampling based on Normal Mode Analysis was proven helpful. We found that successful conformers provide better energetic complementarity to the docking partners, which is compatible with recent views of binding association. In addition to the mechanistic considerations, these findings could be exploited for practical docking predictions of improved efficiency.
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
NASA Astrophysics Data System (ADS)
Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard
2013-04-01
Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.
Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)
2002-01-01
The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.
Pion-nucleon scattering in the Roper channel from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Christian B.; Leskovec, L.; Padmanath, M.
We present a lattice QCD study ofmore » $$N\\pi$$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $$N_f=2+1$$ Wilson-clover dynamical fermions, $$m_\\pi \\simeq 156~$$MeV and $$L\\simeq 2.9~$$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $$N\\pi$$ in $p$-wave and $$N\\sigma$$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $$N(0)\\pi(0)\\pi(0)$$ (mixed with $$N(0)\\sigma(0)$$) and $$N(p)\\pi(-p)$$ with $$p\\simeq 2\\pi/L$$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $$N\\pi$$ phase-shift would -- in the approximation of purely elastic $$N\\pi$$ scattering -- imply an additional eigenstate near the Roper mass $$m_R\\simeq 1.43~$$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $$N\\pi$$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $$N\\pi\\pi$$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. As a result, the study of the coupled-channel scattering including a three-particle decay $$N\\pi\\pi$$ remains a challenge.« less
Pion-nucleon scattering in the Roper channel from lattice QCD
Lang, Christian B.; Leskovec, L.; Padmanath, M.; ...
2017-01-31
We present a lattice QCD study ofmore » $$N\\pi$$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $$N_f=2+1$$ Wilson-clover dynamical fermions, $$m_\\pi \\simeq 156~$$MeV and $$L\\simeq 2.9~$$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $$N\\pi$$ in $p$-wave and $$N\\sigma$$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $$N(0)\\pi(0)\\pi(0)$$ (mixed with $$N(0)\\sigma(0)$$) and $$N(p)\\pi(-p)$$ with $$p\\simeq 2\\pi/L$$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $$N\\pi$$ phase-shift would -- in the approximation of purely elastic $$N\\pi$$ scattering -- imply an additional eigenstate near the Roper mass $$m_R\\simeq 1.43~$$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $$N\\pi$$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $$N\\pi\\pi$$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. As a result, the study of the coupled-channel scattering including a three-particle decay $$N\\pi\\pi$$ remains a challenge.« less
Assignment of boundary conditions in embedded ground water flow models
Leake, S.A.
1998-01-01
Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.
Creasy, Arch; Barker, Gregory; Carta, Giorgio
2017-03-01
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.
Nascimento, Daniel R; DePrince, A Eugene
2018-05-08
The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
NASA Astrophysics Data System (ADS)
Kollat, J. B.; Reed, P. M.
2009-12-01
This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman filtering (EnKF) and many-objective evolutionary optimization. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were optimized to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem formulation provides a tremendous amount of information for decision makers. Specifically our many-objective analysis highlights the limitations and potentially negative design consequences of traditional single and two-objective problem formulations. These consequences become apparent through visual exploration of high-dimensional tradeoffs and the identification of regions with interesting compromise solutions. The prediction characteristics of these compromise designs are explored in detail, as well as their implications for subsequent design decisions in both space and time.
Simplification of the Kalman filter for meteorological data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1991-01-01
The paper proposes a new statistical method of data assimilation that is based on a simplification of the Kalman filter equations. The forecast error covariance evolution is approximated simply by advecting the mass-error covariance field, deriving the remaining covariances geostrophically, and accounting for external model-error forcing only at the end of each forecast cycle. This greatly reduces the cost of computation of the forecast error covariance. In simulations with a linear, one-dimensional shallow-water model and data generated artificially, the performance of the simplified filter is compared with that of the Kalman filter and the optimal interpolation (OI) method. The simplified filter produces analyses that are nearly optimal, and represents a significant improvement over OI.
Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.
Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong
2017-11-01
Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.
Numerical Uncertainty Quantification for Radiation Analysis Tools
NASA Technical Reports Server (NTRS)
Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha
2007-01-01
Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.
Combining the Hanning windowed interpolated FFT in both directions
NASA Astrophysics Data System (ADS)
Chen, Kui Fu; Li, Yan Feng
2008-06-01
The interpolated fast Fourier transform (IFFT) has been proposed as a way to eliminate the picket fence effect (PFE) of the fast Fourier transform. The modulus based IFFT, cited in most relevant references, makes use of only the 1st and 2nd highest spectral lines. An approach using three principal spectral lines is proposed. This new approach combines both directions of the complex spectrum based IFFT with the Hanning window. The optimal weight to minimize the estimation variance is established on the first order Taylor series expansion of noise interference. A numerical simulation is carried out, and the results are compared with the Cramer-Rao bound. It is demonstrated that the proposed approach has a lower estimation variance than the two-spectral-line approach. The improvement depends on the extent of sampling deviating from the coherent condition, and the best is decreasing variance by 2/7. However, it is also shown that the estimation variance of the windowed IFFT with the Hanning is significantly higher than that of without windowing.
Landmark-based elastic registration using approximating thin-plate splines.
Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H
2001-06-01
We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.
Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators
NASA Technical Reports Server (NTRS)
Fantini, Jay A.
1998-01-01
Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.
An Image Morphing Technique Based on Optimal Mass Preserving Mapping
2007-06-01
Yan Yang, Steven Haker , and Allen Tannenbaum Abstract—Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one...of Technology, Atlanta, GA 30332 USA (e-mail: zlzl@ece.gatech.edu; zhulei1976@hotmail.com; yan.yang@gatech.edu; tannenba@ece.gatech.edu). S. Haker is...with the Surgical Planning Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA (e-mail: haker @bwh.harvard.edu