Project FIRES. Volume 1: Program Overview and Summary, Phase 1B
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1980-01-01
Overall performance requirements and evaluation methods for firefighters protective equipment were established and published as the Protective Ensemble Performance Standards (PEPS). Current firefighters protective equipment was tested and evaluated against the PEPS requirements, and the preliminary design of a prototype protective ensemble was performed. In phase 1B, the design of the prototype ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.
Project fires. Volume 2: Protective ensemble performance standards, phase 1B
NASA Astrophysics Data System (ADS)
Abeles, F. J.
1980-05-01
The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1980-01-01
The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1980-01-01
Each of the subsystems comprising the protective ensemble for firefighters is described. These include: (1) the garment system which includes turnout gear, helmets, faceshields, coats, pants, gloves, and boots; (2) the self-contained breathing system; (3) the lighting system; and (4) the communication system. The design selection rationale is discussed and the drawings used to fabricate the prototype ensemble are provided. The specifications presented were developed using the requirements and test method of the protective ensemble standard. Approximate retail prices are listed.
Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Ananikian, N. S.; Campa, A.; Ruffo, S.
2017-12-01
We study inequivalence of canonical and microcanonical ensembles in the mean-field Blume-Emery-Griffiths model. This generalizes previous results obtained for the Blume-Capel model. The phase diagram strongly depends on the value of the biquadratic exchange interaction K , the additional feature present in the Blume-Emery-Griffiths model. At small values of K , as for the Blume-Capel model, lines of first- and second-order phase transitions between a ferromagnetic and a paramagnetic phase are present, separated by a tricritical point whose location is different in the two ensembles. At higher values of K the phase diagram changes substantially, with the appearance of a triple point in the canonical ensemble, which does not find any correspondence in the microcanonical ensemble. Moreover, one of the first-order lines that starts from the triple point ends in a critical point, whose position in the phase diagram is different in the two ensembles. This line separates two paramagnetic phases characterized by a different value of the quadrupole moment. These features were not previously studied for other models and substantially enrich the landscape of ensemble inequivalence, identifying new aspects that had been discussed in a classification of phase transitions based on singularity theory. Finally, we discuss ergodicity breaking, which is highlighted by the presence of gaps in the accessible values of magnetization at low energies: it also displays new interesting patterns that are not present in the Blume-Capel model.
Double-well chimeras in 2D lattice of chaotic bistable elements
NASA Astrophysics Data System (ADS)
Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.
2018-01-01
We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.
Phase-selective entrainment of nonlinear oscillator ensembles
Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.; ...
2016-03-18
The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less
Phase-selective entrainment of nonlinear oscillator ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.
The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less
Phase-selective entrainment of nonlinear oscillator ensembles
NASA Astrophysics Data System (ADS)
Zlotnik, Anatoly; Nagao, Raphael; Kiss, István Z.; Li-Shin, Jr.
2016-03-01
The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.
On the structure and phase transitions of power-law Poissonian ensembles
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Oshanin, Gleb
2012-10-01
Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.
Coordination Dynamics of the Horse~Rider System
Lagarde, J.; Peham, C.; Licka, T.; Kelso, J. A. S.
2007-01-01
The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice’s movements displayed transient departures from phase synchrony, the expert’s motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them. PMID:16280312
Design of an Evolutionary Approach for Intrusion Detection
2013-01-01
A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives, and a dataset can be represented in the form of labelled instances in terms of its features. PMID:24376390
Regge trajectories and Hagedorn behavior: Hadronic realizations of dynamical dark matter
NASA Astrophysics Data System (ADS)
Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks
2017-11-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. In this talk, we study the properties of a hitherto-unexplored class of DDM ensembles in which the ensemble constituents are the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector. Such ensembles exhibit masses lying along Regge trajectories and Hagedorn-like densities of states that grow exponentially with mass. We investigate the applicable constraints on such dark-"hadronic" DDM ensembles and find that these constraints permit a broad range of mass and confinement scales for these ensembles. We also find that the distribution of the total present-day abundance across the ensemble is highly correlated with the values of these scales. This talk reports on research originally presented in Ref. [1].
NASA Astrophysics Data System (ADS)
Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini
We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.
Project FIRES. Volume 4: Prototype Protective Ensemble Qualification Test Report, Phase 1B
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1980-01-01
The qualification testing of a prototype firefighter's protective ensemble is documented. Included are descriptions of the design requirements, the testing methods, and the test apparatus. The tests include measurements of individual subsystem characteristics in areas relating to both physical testing, such as heat, flame, impact penetration and human factors testing, such as dexterity, grip, and mobility. Also, measurements related to both physical and human factors testing of the complete ensemble, such as water protection, metabolic expenditures, and compatibility are considered.
Multiphysics superensemble forecast applied to Mediterranean heavy precipitation situations
NASA Astrophysics Data System (ADS)
Vich, M.; Romero, R.
2010-11-01
The high-impact precipitation events that regularly affect the western Mediterranean coastal regions are still difficult to predict with the current prediction systems. Bearing this in mind, this paper focuses on the superensemble technique applied to the precipitation field. Encouraged by the skill shown by a previous multiphysics ensemble prediction system applied to western Mediterranean precipitation events, the superensemble is fed with this ensemble. The training phase of the superensemble contributes to the actual forecast with weights obtained by comparing the past performance of the ensemble members and the corresponding observed states. The non-hydrostatic MM5 mesoscale model is used to run the multiphysics ensemble. Simulations are performed with a 22.5 km resolution domain (Domain 1 in http://mm5forecasts.uib.es) nested in the ECMWF forecast fields. The period between September and December 2001 is used to train the superensemble and a collection of 19~MEDEX cyclones is used to test it. The verification procedure involves testing the superensemble performance and comparing it with that of the poor-man and bias-corrected ensemble mean and the multiphysic EPS control member. The results emphasize the need of a well-behaved training phase to obtain good results with the superensemble technique. A strategy to obtain this improved training phase is already outlined.
Ensemble Sampling vs. Time Sampling in Molecular Dynamics Simulations of Thermal Conductivity
Gordiz, Kiarash; Singh, David J.; Henry, Asegun
2015-01-29
In this report we compare time sampling and ensemble averaging as two different methods available for phase space sampling. For the comparison, we calculate thermal conductivities of solid argon and silicon structures, using equilibrium molecular dynamics. We introduce two different schemes for the ensemble averaging approach, and show that both can reduce the total simulation time as compared to time averaging. It is also found that velocity rescaling is an efficient mechanism for phase space exploration. Although our methodology is tested using classical molecular dynamics, the ensemble generation approaches may find their greatest utility in computationally expensive simulations such asmore » first principles molecular dynamics. For such simulations, where each time step is costly, time sampling can require long simulation times because each time step must be evaluated sequentially and therefore phase space averaging is achieved through sequential operations. On the other hand, with ensemble averaging, phase space sampling can be achieved through parallel operations, since each ensemble is independent. For this reason, particularly when using massively parallel architectures, ensemble sampling can result in much shorter simulation times and exhibits similar overall computational effort.« less
To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?
NASA Astrophysics Data System (ADS)
Henneberg, O.; Lohmann, U.
2017-12-01
Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL
Self-organization and emergent behaviour: distributed decision making in sensor networks
NASA Astrophysics Data System (ADS)
van der Wal, Ariën J.
2013-01-01
One of the most challenging phenomena that can be observed in an ensemble of interacting agents is that of self-organization, viz. emergent, collective behaviour, also known as synergy. The concept of synergy is also the key idea behind sensor fusion. The idea often loosely phrased as '1+1>2', strongly suggests that it is possible to make up an ensemble of similar agents, assume some kind of interaction and that in such a system 'synergy' will automatically evolve. In a more rigorous approach, the paradigm may be expressed by identifying an ensemble performance measure that yields more than a superposition of the individual performance measures of the constituents. In this study, we demonstrate that distributed decision making in a sensor network can be described by a simple system consisting of phase oscillators. In the thermodynamic limit, this system shows spontaneous organization. Simulations indicate that also for finite populations, phase synchronization spontaneously emerges if the coupling strength is strong enough.
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Moreno-Hilario, Elizabeth; Sotelo-Serna, Maria Guadalupe; Gil-Villegas, Alejandro
2018-02-01
The microcanonical-ensemble computer simulation method (MCE) is used to evaluate the perturbation terms Ai of the Helmholtz free energy of a square-well (SW) fluid. The MCE method offers a very efficient and accurate procedure for the determination of perturbation terms of discrete-potential systems such as the SW fluid and surpass the standard NVT canonical ensemble Monte Carlo method, allowing the calculation of the first six expansion terms. Results are presented for the case of a SW potential with attractive ranges 1.1 ≤ λ ≤ 1.8. Using semi-empirical representation of the MCE values for Ai, we also discuss the accuracy in the determination of the phase diagram of this system.
Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity
NASA Astrophysics Data System (ADS)
Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.
2017-07-01
We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
Generalized ensemble method applied to study systems with strong first order transitions
NASA Astrophysics Data System (ADS)
Małolepsza, E.; Kim, J.; Keyes, T.
2015-09-01
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub [1], where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM). This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. The method is illustrated in a study of the very strong solid/liquid transition in water.
Canonical phase diagrams of the 1D Falicov-Kimball model at T = O
NASA Astrophysics Data System (ADS)
Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.
1996-02-01
The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.
Rethinking the Default Construction of Multimodel Climate Ensembles
Rauser, Florian; Gleckler, Peter; Marotzke, Jochem
2015-07-21
Here, we discuss the current code of practice in the climate sciences to routinely create climate model ensembles as ensembles of opportunity from the newest phase of the Coupled Model Intercomparison Project (CMIP). We give a two-step argument to rethink this process. First, the differences between generations of ensembles corresponding to different CMIP phases in key climate quantities are not large enough to warrant an automatic separation into generational ensembles for CMIP3 and CMIP5. Second, we suggest that climate model ensembles cannot continue to be mere ensembles of opportunity but should always be based on a transparent scientific decision process.more » If ensembles can be constrained by observation, then they should be constructed as target ensembles that are specifically tailored to a physical question. If model ensembles cannot be constrained by observation, then they should be constructed as cross-generational ensembles, including all available model data to enhance structural model diversity and to better sample the underlying uncertainties. To facilitate this, CMIP should guide the necessarily ongoing process of updating experimental protocols for the evaluation and documentation of coupled models. Finally, with an emphasis on easy access to model data and facilitating the filtering of climate model data across all CMIP generations and experiments, our community could return to the underlying idea of using model data ensembles to improve uncertainty quantification, evaluation, and cross-institutional exchange.« less
Indian summer monsoon variability forecasts in the North American multimodel ensemble
NASA Astrophysics Data System (ADS)
Singh, Bohar; Cash, Ben; Kinter, James L., III
2018-04-01
The representation of the seasonal mean and interannual variability of the Indian summer monsoon rainfall (ISMR) in nine global ocean-atmosphere coupled models that participated in the North American Multimodal Ensemble (NMME) phase 1 (NMME:1), and in nine global ocean-atmosphere coupled models participating in the NMME phase 2 (NMME:2) from 1982-2009, is evaluated over the Indo-Pacific domain with May initial conditions. The multi-model ensemble (MME) represents the Indian monsoon rainfall with modest skill and systematic biases. There is no significant improvement in the seasonal forecast skill or interannual variability of ISMR in NMME:2 as compared to NMME:1. The NMME skillfully predicts seasonal mean sea surface temperature (SST) and some of the teleconnections with seasonal mean rainfall. However, the SST-rainfall teleconnections are stronger in the NMME than observed. The NMME is not able to capture the extremes of seasonal mean rainfall and the simulated Indian Ocean-monsoon teleconnections are opposite to what are observed.
Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.
Hampson, R E; Deadwyler, S A
1996-11-26
Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.
Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators
NASA Astrophysics Data System (ADS)
Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.
2018-06-01
A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.
Walcott, Sam
2014-10-01
Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.
Nonuniform fluids in the grand canonical ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percus, J.K.
1982-01-01
Nonuniform simple classical fluids are considered quite generally. The grand canonical ensemble is particularly suitable, conceptually, in the leading approximation of local thermodynamics, which figuratively divides the system into approximately uniform spatial subsystems. The procedure is reviewed by which this approach is systematically corrected for slowly varying density profiles, and a model is suggested that carries the correction into the domain of local fluctuations. The latter is assessed for substrate bounded fluids, as well as for two-phase interfaces. The peculiarities of the grand ensemble in a two-phase region stem from the inherent very large number fluctuations. A primitive model showsmore » how these are quenched in the canonical ensemble. This is taken advantage of by applying the Kac-Siegert representation of the van der Waals decomposition with petit canonical corrections, to the two-phase regime.« less
The spectrotemporal filter mechanism of auditory selective attention
Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.
2013-01-01
SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126
Finite-size anomalies of the Drude weight: Role of symmetries and ensembles
NASA Astrophysics Data System (ADS)
Sánchez, R. J.; Varma, V. K.
2017-12-01
We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N
NASA Astrophysics Data System (ADS)
Vadivasova, T. E.; Strelkova, G. I.; Bogomolov, S. A.; Anishchenko, V. S.
2017-01-01
Correlation characteristics of chimera states have been calculated using the coefficient of mutual correlation of elements in a closed-ring ensemble of nonlocally coupled chaotic maps. Quantitative differences between the coefficients of mutual correlation for phase and amplitude chimeras are established for the first time.
Complete phase diagram of DNA unzipping: eye, Y fork, and triple point.
Kapri, Rajeev; Bhattacharjee, Somendra M; Seno, Flavio
2004-12-10
We study the unzipping of double stranded DNA by applying a pulling force at a fraction s (0< or =s < or =1) from the anchored end. From exact analytical and numerical results, the complete phase diagram is presented. The phase diagram shows a strong ensemble dependence for various values of s. In addition, we show the existence of an eye phase and a triple point.
I = 1 and I = 2 π-π scattering phase shifts from Nf = 2 + 1 lattice QCD
NASA Astrophysics Data System (ADS)
Bulava, John; Fahy, Brendan; Hörz, Ben; Juge, Keisuke J.; Morningstar, Colin; Wong, Chik Him
2016-09-01
The I = 1 p-wave and I = 2 s-wave elastic π-π scattering amplitudes are calculated from a first-principles lattice QCD simulation using a single ensemble of gauge field configurations with Nf = 2 + 1 dynamical flavors of anisotropic clover-improved Wilson fermions. This ensemble has a large spatial volume V =(3.7 fm)3, pion mass mπ = 230 MeV, and spatial lattice spacing as = 0.11 fm. Calculation of the necessary temporal correlation matrices is efficiently performed using the stochastic LapH method, while the large volume enables an improved energy resolution compared to previous work. For this single ensemble we obtain mρ /mπ = 3.350 (24), gρππ = 5.99 (26), and a clear signal for the I = 2 s-wave. The success of the stochastic LapH method in this proof-of-principle large-volume calculation paves the way for quantitative study of the lattice spacing effects and quark mass dependence of scattering amplitudes using state-of-the-art ensembles.
A target recognition method for maritime surveillance radars based on hybrid ensemble selection
NASA Astrophysics Data System (ADS)
Fan, Xueman; Hu, Shengliang; He, Jingbo
2017-11-01
In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
NASA Astrophysics Data System (ADS)
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
Multiple-instance ensemble learning for hyperspectral images
NASA Astrophysics Data System (ADS)
Ergul, Ugur; Bilgin, Gokhan
2017-10-01
An ensemble framework for multiple-instance (MI) learning (MIL) is introduced for use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap aggregation) method in ensemble learning. Ensemble-based bagging is performed by a small percentage of training samples, and MI bags are formed by a local windowing process with variable window sizes on selected instances. In addition to bootstrap aggregation, random subspace is another method used to diversify base classifiers. The proposed method is implemented using four MIL classification algorithms. The classifier model learning phase is carried out with MI bags, and the estimation phase is performed over single-test instances. In the experimental part of the study, two different HSIs that have ground-truth information are used, and comparative results are demonstrated with state-of-the-art classification methods. In general, the MI ensemble approach produces more compact results in terms of both diversity and error compared to equipollent non-MIL algorithms.
NASA Astrophysics Data System (ADS)
Csordás, A.; Graham, R.; Szépfalusy, P.; Vattay, G.
1994-01-01
One wall of an Artin's billiard on the Poincaré half-plane is replaced by a one-parameter (cp) family of nongeodetic walls. A brief description of the classical phase space of this system is given. In the quantum domain, the continuous and gradual transition from the Poisson-like to Gaussian-orthogonal-ensemble (GOE) level statistics due to the small perturbations breaking the symmetry responsible for the ``arithmetic chaos'' at cp=1 is studied. Another GOE-->Poisson transition due to the mixed phase space for large perturbations is also investigated. A satisfactory description of the intermediate level statistics by the Brody distribution was found in both cases. The study supports the existence of a scaling region around cp=1. A finite-size scaling relation for the Brody parameter as a function of 1-cp and the number of levels considered can be established.
Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt
2012-03-01
The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.
NASA Astrophysics Data System (ADS)
Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.
2017-02-01
We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Dunkel, Jörn
2006-07-01
We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.
NASA Astrophysics Data System (ADS)
Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou
2018-02-01
We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.
The Albedo of Kepler's Small Worlds
NASA Astrophysics Data System (ADS)
Jansen, Tiffany; Kipping, David
2018-01-01
The study of exoplanet phase curves has been established as a powerful tool for measuring the atmospheric properties of other worlds. To first order, phase curves have the same amplitude as occultations, yet far greater temporal baselines enabling substantial improvements in sensitivity. Even so, only a relatively small fraction of Kepler planets have detectable phase curves, leading to a population dominated by hot-Jupiters. One way to boost sensitivity further is to stack different planets of similar types together, giving rise to an average phase curve for a specific ensemble. In this work, we measure the average albedo, thermal redistribution efficiency, and greenhouse boosting factor from the average phase curves of 115 Neptunian and 50 Terran (solid) worlds. We construct ensemble phase curve models for both samples accounting for the reflection and thermal components and regress our models assuming a global albedo, redistribution factor and greenhouse factor in a Bayesian framework. We find modest evidence for a detected phase curve in the Neptunian sample, although the albedo and thermal properties are somewhat degenerate meaning we can only place an upper limit on the albedo of Ag < 0.23 and greenhouse factor of f < 1.40 to 95% confidence. As predicted theoretically, this confirms hot-Neptunes are darker than Neptune and Uranus. Additionally, we place a constraint on the albedo of solid, Terran worlds of Ag < 0.42 and f < 1.60 to 95% confidence, compatible with a dark Lunar-like surface.
Walewski, Łukasz; Waluk, Jacek; Lesyng, Bogdan
2010-02-18
Car-Parrinello molecular dynamics simulations were carried out to help interpret proton-transfer processes observed experimentally in porphycene under thermodynamic equilibrium conditions (NVT ensemble) as well as during selective, nonequilibrium vibrational excitations of the molecular scaffold (NVE ensemble). In the NVT ensemble, the population of the trans form in the gas phase at 300 K is 96.5%, and of the cis-1 form is 3.5%, in agreement with experimental data. Approximately 70% of the proton-transfer events are asynchronous double proton transfers. According to the high resolution simulation data they consist of two single transfer events that rapidly take place one after the other. The average time-period between the two consecutive jumps is 220 fs. The gas phase reaction rate estimate at 300 K is 3.6 ps, which is comparable to experimentally determined rates. The NVE ensemble nonequilibrium ab initio MD simulations, which correspond to selective vibrational excitations of the molecular scaffold generated with high resolution laser spectroscopy techniques, exhibit an enhancing property of the 182 cm(-1) vibrational mode and an inhibiting property of the 114 cm(-1) one. Both of them influence the proton-transfer rate, in qualitative agreement with experimental findings. Our ab initio simulations provide new predictions regarding the influence of double-mode vibrational excitations on proton-transfer processes. They can help in setting up future programmable spectroscopic experiments for the proton-transfer translocations.
NASA Astrophysics Data System (ADS)
Li, Gu-Qiang; Mo, Jie-Xiong
2016-06-01
The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 <Φ b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.
MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging
NASA Astrophysics Data System (ADS)
Chen, Lei; Kamel, Mohamed S.
2016-01-01
In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.
NASA Technical Reports Server (NTRS)
Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily;
2013-01-01
The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.
Dynamics of multi-frequency oscillator ensembles with resonant coupling
NASA Astrophysics Data System (ADS)
Lück, S.; Pikovsky, A.
2011-07-01
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
Order and disorder in coupled metronome systems
NASA Astrophysics Data System (ADS)
Boda, Sz.; Davidova, L.; Néda, Z.
2014-04-01
Metronomes placed on a smoothly rotating disk are used for exemplifying order-disorder type phase-transitions. The ordered phase corresponds to spontaneously synchronized beats, while the disordered state is when the metronomes swing in unsynchronized manner. Using a given metronome ensemble, we propose several methods for switching between ordered and disordered states. The system is studied by controlled experiments and a realistic model. The model reproduces the experimental results, and allows to study large ensembles with good statistics. Finite-size effects and the increased fluctuation in the vicinity of the phase-transition point are also successfully reproduced.
Coupling between strong warm ENSO events and the phase of the stratospheric QBO.
NASA Astrophysics Data System (ADS)
Christiansen, Bo
2017-04-01
Although there in general are no significant long-term correlations between the QBO and the ENSO in observations we find that the QBO and the ENSO were aligned in the 3 to 4 years after the three strong warm ENSO events in 1982, 1997, and 2015. We study this possible connection between the QBO and the ENSO with a new version of the EC-Earth model which includes non-orographic gravity waves and a well modeled QBO. We analyze the modeled QBO in ensembles consisting of 10 AMIP-type experiments with climatological SSTs and 10 experiments with observed daily SSTs. The model experiments cover the period 1982-2013. For the ENSO we use the multivariate index (MEI). As expected the coherence is strong and statistically significant in the equatorial troposphere in the ensemble with observed SSTs. Here the coherence is a measure of the alignment of the ensemble members. In the ensemble with observed SSTs we find a strong and significant alignment of the ensemble members in the equatorial stratospheric winds in the 2 to 4 years after the strong ENSO event in 1997. This alignment also includes the observed QBO. No such alignment is found in the ensemble with climatological SSTs. These results indicate that strong warm ENSO events can directly influence the phase of the QBO. An open and maybe related question is what caused the anomalous QBO in 2016. This behaviour, which is unprecedented in the 50-60 years with data, has been described as a hiccup or a death-spiral. At least it is clear that in the last 18 months the QBO has been stuck in the same corner of the phase-space spanned by its two leading principal components. The possible connection to the ENSO will be investigated.
Population interactions between parietal and primary motor cortices during reach
Rao, Naveen G.; Bondy, Adrian; Truccolo, Wilson; Donoghue, John P.
2014-01-01
Neural interactions between parietal area 2/5 and primary motor cortex (M1) were examined to determine the timing and behavioral correlates of cortico-cortical interactions. Neural activity in areas 2/5 and M1 was simultaneously recorded with 96-channel microelectrode arrays in three rhesus monkeys performing a center-out reach task. We introduce a new method to reveal parietal-motor interactions at a population level using partial spike-field coherence (PSFC) between ensembles of neurons in one area and a local field potential (LFP) in another. PSFC reflects the extent of phase locking between spike times and LFP, after removing the coherence between LFPs in the two areas. Spectral analysis of M1 LFP revealed three bands: low, medium, and high, differing in power between movement preparation and performance. We focus on PSFC in the 1–10 Hz band, in which coherence was strongest. PSFC was also present in the 10–40 Hz band during movement preparation in many channels but generally nonsignificant in the 60–200 Hz band. Ensemble PSFC revealed stronger interactions than single cell-LFP pairings. PSFC of area 2/5 ensembles with M1 LFP typically rose around movement onset and peaked ∼500 ms afterward. PSFC was typically stronger for subsets of area 2/5 neurons and M1 LFPs with similar directional bias than for those with opposite bias, indicating that area 2/5 contributes movement direction information. Together with linear prediction of M1 LFP by area 2/5 spiking, the ensemble-LFP pairing approach reveals interactions missed by single neuron-LFP pairing, demonstrating that cortico-cortical communication can be more readily observed at the ensemble level. PMID:25210154
NASA Astrophysics Data System (ADS)
Kim, Jungho
2014-02-01
The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.
NASA Astrophysics Data System (ADS)
Li, Liang-Sheng
2016-12-01
We explore the tricritical points and the critical lines of both Blume-Emery-Grifnths and Ising model within long-range interactions in the microcanonical ensemble. For K = K MTP , the tricritical exponents take the values β = 1/4, 1 = γ- ≠ γ+ = 1/2 and 0 = α- ≠ α+ = -1/2, which disagree with classical (mean held) values. When K > K MTP , the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters (K CTP ), where the values of the critical expoents become β = 1/2, 1 = γ- ≠ γ+ = 2 and 0 = α- ≠ α+ = 1. Supported by the National Natural Science Foundation of China under Grant No. 11104032
Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N
2017-11-14
Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.
Dynamics of heterogeneous oscillator ensembles in terms of collective variables
NASA Astrophysics Data System (ADS)
Pikovsky, Arkady; Rosenblum, Michael
2011-04-01
We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej
2016-04-01
The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.
NASA Astrophysics Data System (ADS)
Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.
2017-06-01
We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.
Robust electroencephalogram phase estimation with applications in brain-computer interface systems.
Seraj, Esmaeil; Sameni, Reza
2017-03-01
In this study, a robust method is developed for frequency-specific electroencephalogram (EEG) phase extraction using the analytic representation of the EEG. Based on recent theoretical findings in this area, it is shown that some of the phase variations-previously associated to the brain response-are systematic side-effects of the methods used for EEG phase calculation, especially during low analytical amplitude segments of the EEG. With this insight, the proposed method generates randomized ensembles of the EEG phase using minor perturbations in the zero-pole loci of narrow-band filters, followed by phase estimation using the signal's analytical form and ensemble averaging over the randomized ensembles to obtain a robust EEG phase and frequency. This Monte Carlo estimation method is shown to be very robust to noise and minor changes of the filter parameters and reduces the effect of fake EEG phase jumps, which do not have a cerebral origin. As proof of concept, the proposed method is used for extracting EEG phase features for a brain computer interface (BCI) application. The results show significant improvement in classification rates using rather simple phase-related features and a standard K-nearest neighbors and random forest classifiers, over a standard BCI dataset. The average performance was improved between 4-7% (in absence of additive noise) and 8-12% (in presence of additive noise). The significance of these improvements was statistically confirmed by a paired sample t-test, with 0.01 and 0.03 p-values, respectively. The proposed method for EEG phase calculation is very generic and may be applied to other EEG phase-based studies.
Linear Reconstruction of Non-Stationary Image Ensembles Incorporating Blur and Noise Models
1998-03-01
for phase distortions due to noise which leads to less deblurring as noise increases [41]. In contrast, the vector Wiener filter incorporates some a...AFIT/DS/ENG/98- 06 Linear Reconstruction of Non-Stationary Image Ensembles Incorporating Blur and Noise Models DISSERTATION Stephen D. Ford Captain...Dissertation 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS LINEAR RECONSTRUCTION OF NON-STATIONARY IMAGE ENSEMBLES INCORPORATING BLUR AND NOISE MODELS 6. AUTHOR(S
The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification
NASA Astrophysics Data System (ADS)
Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.
2017-12-01
Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat transport is decomposed into the Pacific and Atlantic contributions.
Lu, Yin; Porterfield, Robyn; Thunder, Terri; Paige, Matthew F
2011-01-01
Phase-separated Langmuir-Blodgett monolayer films prepared from mixtures of arachidic acid (C19H39COOH) and perfluorotetradecanoic acid (C13F27COOH) were stained via spin-casting with the polarity sensitive phenoxazine dye Nile Red, and characterized using a combination of ensemble and single-molecule fluorescence microscopy measurements. Ensemble fluorescence microscopy and spectromicroscopy showed that Nile Red preferentially associated with the hydrogenated domains of the phase-separated films, and was strongly fluorescent in these areas of the film. These measurements, in conjunction with single-molecule fluorescence imaging experiments, also indicated that a small sub-population of dye molecules localizes on the perfluorinated regions of the sample, but that this sub-population is spectroscopically indistinguishable from that associated with the hydrogenated domains. The relative importance of selective dye adsorption and local polarity sensitivity of Nile Red for staining applications in phase-separated LB films as well as in cellular environments is discussed in context of the experimental results. Copyright © 2010 Elsevier B.V. All rights reserved.
Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Gerhardt, Gregory A.; Shin, Dae C.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Samuel A.
2012-01-01
Collaborative investigations have characterized how multineuron hippocampal ensembles encode memory necessary for subsequent successful performance by rodents in a delayed nonmatch to sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded in the sample phase necessary for successful performance in the nonmatch phase of the task. The extension of this MIMO model to online delivery of electrical stimulation delivered to the same recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased utility of the MIMO model as a prosthesis device was exhibited by the demonstration of cumulative increases in DNMS task performance with repeated MIMO stimulation over many sessions on both stimulation and nonstimulation trials, suggesting overall system modification with continued exposure. Results reported here are compatible with and extend prior demonstrations and further support the candidacy of the MIMO model as an effective cortical prosthesis. PMID:22438334
Stability and Noise-induced Transitions in an Ensemble of Nonlocally Coupled Chaotic Maps
NASA Astrophysics Data System (ADS)
Bukh, Andrei V.; Slepnev, Andrei V.; Anishchenko, Vadim S.; Vadivasova, Tatiana E.
2018-05-01
The influence of noise on chimera states arising in ensembles of nonlocally coupled chaotic maps is studied. There are two types of chimera structures that can be obtained in such ensembles: phase and amplitude chimera states. In this work, a series of numerical experiments is carried out to uncover the impact of noise on both types of chimeras. The noise influence on a chimera state in the regime of periodic dynamics results in the transition to chaotic dynamics. At the same time, the transformation of incoherence clusters of the phase chimera to incoherence clusters of the amplitude chimera occurs. Moreover, it is established that the noise impact may result in the appearance of a cluster with incoherent behavior in the middle of a coherence cluster.
Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events
NASA Astrophysics Data System (ADS)
Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.
2017-12-01
The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.
Evaluation of Multi-Model Ensemble System for Seasonal and Monthly Prediction
NASA Astrophysics Data System (ADS)
Zhang, Q.; Van den Dool, H. M.
2013-12-01
Since August 2011, the realtime seasonal forecasts of U.S. National Multi-Model Ensemble (NMME) have been made on 8th of each month by NCEP Climate Prediction Center (CPC). During the first year, the participating models were NCEP/CFSv1&2, GFDL/CM2.2, NCAR/U.Miami/COLA/CCSM3, NASA/GEOS5, IRI/ ECHAM-a & ECHAM-f for the realtime NMME forecast. The Canadian Meteorological Center CanCM3 and CM4 replaced the CFSv1 and IRI's models in the second year. The NMME team at CPC collects three variables, including precipitation, 2-meter temperature and sea surface temperature from each modeling center on a 1x1 global grid, removes systematic errors, makes the grand ensemble mean with equal weight for each model and constructs a probability forecast with equal weight for each member. The team then provides the NMME forecast to the operational CPC forecaster responsible for the seasonal and monthly outlook each month. Verification of the seasonal and monthly prediction from NMME is conducted by calculating the anomaly correlation (AC) from the 30-year hindcasts (1982-2011) of individual model and NMME ensemble. The motivation of this study is to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system. The experimental (Phase I) stage of the project already supplies routine guidance to users of the NMME forecasts.
NASA Astrophysics Data System (ADS)
Gross, D. H. E.
1997-01-01
This review is addressed to colleagues working in different fields of physics who are interested in the concepts of microcanonical thermodynamics, its relation and contrast to ordinary, canonical or grandcanonical thermodynamics, and to get a first taste of the wide area of new applications of thermodynamical concepts like hot nuclei, hot atomic clusters and gravitating systems. Microcanonical thermodynamics describes how the volume of the N-body phase space depends on the globally conserved quantities like energy, angular momentum, mass, charge, etc. Due to these constraints the microcanonical ensemble can behave quite differently from the conventional, canonical or grandcanonical ensemble in many important physical systems. Microcanonical systems become inhomogeneous at first-order phase transitions, or with rising energy, or with external or internal long-range forces like Coulomb, centrifugal or gravitational forces. Thus, fragmentation of the system into a spatially inhomogeneous distribution of various regions of different densities and/or of different phases is a genuine characteristic of the microcanonical ensemble. In these cases which are realized by the majority of realistic systems in nature, the microcanonical approach is the natural statistical description. We investigate this most fundamental form of thermodynamics in four different nontrivial physical cases: (I) Microcanonical phase transitions of first and second order are studied within the Potts model. The total energy per particle is a nonfluctuating order parameter which controls the phase which the system is in. In contrast to the canonical form the microcanonical ensemble allows to tune the system continuously from one phase to the other through the region of coexisting phases by changing the energy smoothly. The configurations of coexisting phases carry important informations about the nature of the phase transition. This is more remarkable as the canonical ensemble is blind against these configurations. It is shown that the three basic quantities which specify a phase transition of first order - Transition temperature, latent heat, and interphase surface entropy - can be well determined for finite systems from the caloric equation of state T( E) in the coexistence region. Their values are already for a lattice of only ~ 30 ∗ 30 spins close to the ones of the corresponding infinite system. The significance of the backbending of the caloric equation of state T( E) is clarified. It is the signal for a phase transition of first order in a finite isolated system. (II) Fragmentation is shown to be a specific and generic phase transition of finite systems. The caloric equation of state T( E) for hot nuclei is calculated. The phase transition towards fragmentation can unambiguously be identified by the anomalies in T( E). As microcanonical thermodynamics is a full N-body theory it determines all many-body correlations as well. Consequently, various statistical multi-fragment correlations are investigated which give insight into the details of the equilibration mechanism. (III) Fragmentation of neutral and multiply charged atomic clusters is the next example of a realistic application of microcanonical thermodynamics. Our simulation method, microcanonical Metropolis Monte Carlo, combines the explicit microscopic treatment of the fragmentational degrees of freedom with the implicit treatment of the internal degrees of freedom of the fragments described by the experimental bulk specific heat. This micro-macro approach allows us to study the fragmentation of also larger fragments. Characteristic details of the fission of multiply charged metal clusters find their explanation by the different bulk properties. (IV) Finally, the fragmentation of strongly rotating nuclei is discussed as an example for a microcanonical ensemble under the action of a two-dimensional repulsive force.
Li, Wenjin
2018-02-28
Transition path ensemble consists of reactive trajectories and possesses all the information necessary for the understanding of the mechanism and dynamics of important condensed phase processes. However, quantitative description of the properties of the transition path ensemble is far from being established. Here, with numerical calculations on a model system, the equipartition terms defined in thermal equilibrium were for the first time estimated in the transition path ensemble. It was not surprising to observe that the energy was not equally distributed among all the coordinates. However, the energies distributed on a pair of conjugated coordinates remained equal. Higher energies were observed to be distributed on several coordinates, which are highly coupled to the reaction coordinate, while the rest were almost equally distributed. In addition, the ensemble-averaged energy on each coordinate as a function of time was also quantified. These quantitative analyses on energy distributions provided new insights into the transition path ensemble.
Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
NASA Astrophysics Data System (ADS)
Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank
2018-03-01
We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
Correlated Hopping in the 1D Falicov--Kimball Model
NASA Astrophysics Data System (ADS)
Gajek, Z.; Lemanski, R.
2001-10-01
Ground state phase diagrams in the canonical ensemble of the one-dimensional Falicov-Kimball Model (FKM) with the correlated hopping are presented for several values of the model parameters. As compare to the conventional FKM, the diagrams exhibit a loss of the particle--hole symmetry.
NASA Astrophysics Data System (ADS)
Kumar, Sujay V.; Wang, Shugong; Mocko, David M.; Peters-Lidard, Christa D.; Xia, Youlong
2017-11-01
Multimodel ensembles are often used to produce ensemble mean estimates that tend to have increased simulation skill over any individual model output. If multimodel outputs are too similar, an individual LSM would add little additional information to the multimodel ensemble, whereas if the models are too dissimilar, it may be indicative of systematic errors in their formulations or configurations. The article presents a formal similarity assessment of the North American Land Data Assimilation System (NLDAS) multimodel ensemble outputs to assess their utility to the ensemble, using a confirmatory factor analysis. Outputs from four NLDAS Phase 2 models currently running in operations at NOAA/NCEP and four new/upgraded models that are under consideration for the next phase of NLDAS are employed in this study. The results show that the runoff estimates from the LSMs were most dissimilar whereas the models showed greater similarity for root zone soil moisture, snow water equivalent, and terrestrial water storage. Generally, the NLDAS operational models showed weaker association with the common factor of the ensemble and the newer versions of the LSMs showed stronger association with the common factor, with the model similarity increasing at longer time scales. Trade-offs between the similarity metrics and accuracy measures indicated that the NLDAS operational models demonstrate a larger span in the similarity-accuracy space compared to the new LSMs. The results of the article indicate that simultaneous consideration of model similarity and accuracy at the relevant time scales is necessary in the development of multimodel ensemble.
NASA Astrophysics Data System (ADS)
Lewis, Jared; Bodeker, Greg E.; Kremser, Stefanie; Tait, Andrew
2017-12-01
A method, based on climate pattern scaling, has been developed to expand a small number of projections of fields of a selected climate variable (X) into an ensemble that encapsulates a wide range of indicative model structural uncertainties. The method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC) method. Each ensemble member is constructed by adding contributions from (1) a climatology derived from observations that represents the time-invariant part of the signal; (2) a contribution from forced changes in X, where those changes can be statistically related to changes in global mean surface temperature (Tglobal); and (3) a contribution from unforced variability that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes in Tglobal. The statistical relationships between changes in X (and its patterns of variability) and Tglobal are obtained in a training
phase. Then, in an implementation
phase, 190 simulations of Tglobal are generated using a simple climate model tuned to emulate 19 different global climate models (GCMs) and 10 different carbon cycle models. Using the generated Tglobal time series and the correlation between the forced changes in X and Tglobal, obtained in the training
phase, the forced change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator is used to generate realistic representations of weather which include spatial coherence. Because GCMs and regional climate models (RCMs) are less likely to correctly represent unforced variability compared to observations, the stochastic weather generator takes as input measures of variability derived from observations, but also responds to forced changes in climate in a way that is consistent with the RCM projections. This approach to generating a large ensemble of projections is many orders of magnitude more computationally efficient than running multiple GCM or RCM simulations. Such a large ensemble of projections permits a description of a probability density function (PDF) of future climate states rather than a small number of individual story lines within that PDF, which may not be representative of the PDF as a whole; the EPIC method largely corrects for such potential sampling biases. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts and implications of climate change in a probabilistic way. A web-based tool, using the EPIC method to provide probabilistic projections of changes in daily maximum and minimum temperatures for New Zealand, has been developed and is described in this paper.
Learning disordered topological phases by statistical recovery of symmetry
NASA Astrophysics Data System (ADS)
Yoshioka, Nobuyuki; Akagi, Yutaka; Katsura, Hosho
2018-05-01
We apply the artificial neural network in a supervised manner to map out the quantum phase diagram of disordered topological superconductors in class DIII. Given the disorder that keeps the discrete symmetries of the ensemble as a whole, translational symmetry which is broken in the quasiparticle distribution individually is recovered statistically by taking an ensemble average. By using this, we classify the phases by the artificial neural network that learned the quasiparticle distribution in the clean limit and show that the result is totally consistent with the calculation by the transfer matrix method or noncommutative geometry approach. If all three phases, namely the Z2, trivial, and thermal metal phases, appear in the clean limit, the machine can classify them with high confidence over the entire phase diagram. If only the former two phases are present, we find that the machine remains confused in a certain region, leading us to conclude the detection of the unknown phase which is eventually identified as the thermal metal phase.
NASA Astrophysics Data System (ADS)
Post, Evert Jan
1999-05-01
This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction between ensemble disorder as in the normal Hall effect versus ensemble order in the plateau states. Since the order of the latter permits a view of the plateau states as a macro- or meso-scopic single system, the period integral description applies, yielding a straightforward unified description of integer and fractional quantum Hall effects.
Malolepsza, Edyta; Secor, Maxim; Keyes, Tom
2015-09-23
A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.
NASA Astrophysics Data System (ADS)
Motzoi, F.; Mølmer, K.
2018-05-01
We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.
Wang, Qi; Xie, Zhiyi; Li, Fangbai
2015-11-01
This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.
The interplay of biomolecules and water at the origin of the active behavior of living organisms
NASA Astrophysics Data System (ADS)
Del Giudice, E.; Stefanini, P.; Tedeschi, A.; Vitiello, G.
2011-12-01
It is shown that the main component of living matter, namely liquid water, is not an ensemble of independent molecules but an ensemble of phase correlated molecules kept in tune by an electromagnetic (e.m) field trapped in the ensemble. This field and the correlated potential govern the interaction among biomolecules suspended in water and are in turn affected by the chemical interactions of molecules. In particular, the phase of the coherent fields appears to play an important role in this dynamics. Recent experiments reported by the Montagnier group seem to corroborate this theory. Some features of the dynamics of human organisms, as reported by psychotherapy, holistic medicine and Eastern traditions, are analyzed in this frame and could find a rationale in this context.
Generalized ensemble method applied to study systems with strong first order transitions
Malolepsza, E.; Kim, J.; Keyes, T.
2015-09-28
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub, where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM).more » This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. Lastly, the method is illustrated in a study of the very strong solid/liquid transition in water.« less
Equilibrium energy spectrum of point vortex motion with remarks on ensemble choice and ergodicity
NASA Astrophysics Data System (ADS)
Esler, J. G.
2017-01-01
The dynamics and statistical mechanics of N chaotically evolving point vortices in the doubly periodic domain are revisited. The selection of the correct microcanonical ensemble for the system is first investigated. The numerical results of Weiss and McWilliams [Phys. Fluids A 3, 835 (1991), 10.1063/1.858014], who argued that the point vortex system with N =6 is nonergodic because of an apparent discrepancy between ensemble averages and dynamical time averages, are shown to be due to an incorrect ensemble definition. When the correct microcanonical ensemble is sampled, accounting for the vortex momentum constraint, time averages obtained from direct numerical simulation agree with ensemble averages within the sampling error of each calculation, i.e., there is no numerical evidence for nonergodicity. Further, in the N →∞ limit it is shown that the vortex momentum no longer constrains the long-time dynamics and therefore that the correct microcanonical ensemble for statistical mechanics is that associated with the entire constant energy hypersurface in phase space. Next, a recently developed technique is used to generate an explicit formula for the density of states function for the system, including for arbitrary distributions of vortex circulations. Exact formulas for the equilibrium energy spectrum, and for the probability density function of the energy in each Fourier mode, are then obtained. Results are compared with a series of direct numerical simulations with N =50 and excellent agreement is found, confirming the relevance of the results for interpretation of quantum and classical two-dimensional turbulence.
A brief history of the introduction of generalized ensembles to Markov chain Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Berg, Bernd A.
2017-03-01
The most efficient weights for Markov chain Monte Carlo calculations of physical observables are not necessarily those of the canonical ensemble. Generalized ensembles, which do not exist in nature but can be simulated on computers, lead often to a much faster convergence. In particular, they have been used for simulations of first order phase transitions and for simulations of complex systems in which conflicting constraints lead to a rugged free energy landscape. Starting off with the Metropolis algorithm and Hastings' extension, I present a minireview which focuses on the explosive use of generalized ensembles in the early 1990s. Illustrations are given, which range from spin models to peptides.
Single Aerosol Particle Studies Using Optical Trapping Raman And Cavity Ringdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.
2017-12-01
Due to the physical and chemical complexity of aerosol particles and the interdisciplinary nature of aerosol science that involves physics, chemistry, and biology, our knowledge of aerosol particles is rather incomplete; our current understanding of aerosol particles is limited by averaged (over size, composition, shape, and orientation) and/or ensemble (over time, size, and multi-particles) measurements. Physically, single aerosol particles are the fundamental units of any large aerosol ensembles. Chemically, single aerosol particles carry individual chemical components (properties and constituents) in particle ensemble processes. Therefore, the study of single aerosol particles can bridge the gap between aerosol ensembles and bulk/surface properties and provide a hierarchical progression from a simple benchmark single-component system to a mixed-phase multicomponent system. A single aerosol particle can be an effective reactor to study heterogeneous surface chemistry in multiple phases. Latest technological advances provide exciting new opportunities to study single aerosol particles and to further develop single aerosol particle instrumentation. We present updates on our recent studies of single aerosol particles optically trapped in air using the optical-trapping Raman and cavity ringdown spectroscopy.
A new transform for the analysis of complex fractionated atrial electrograms
2011-01-01
Background Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction. Method A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE. Results The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%. Conclusions The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively robust to jitter in periodic events. Thus the ensemble method can provide a useful alternative for quantitative characterization of CFAE during clinical study. PMID:21569421
Maxwell's equal area law for black holes in power Maxwell invariant
NASA Astrophysics Data System (ADS)
Li, Huai-Fan; Guo, Xiong-ying; Zhao, Hui-Hua; Zhao, Ren
2017-08-01
In this paper, we consider the phase transition of black hole in power Maxwell invariant by means of Maxwell's equal area law. First, we review and study the analogy of nonlinear charged black hole solutions with the Van der Waals gas-liquid system in the extended phase space, and obtain isothermal P- v diagram. Then, using the Maxwell's equal area law we study the phase transition of AdS black hole with different temperatures. Finally, we extend the method to the black hole in the canonical (grand canonical) ensemble in which charge (potential) is fixed at infinity. Interestingly, we find the phase transition occurs in the both ensembles. We also study the effect of the parameters of the black hole on the two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okunev, V. D.; Samoilenko, Z. A.; Burkhovetski, V. V.
The growth of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films in magnetron plasma, in special conditions, leads to the appearance of ensembles of micron-sized spherical crystalline clusters with fractal structure, which we consider to be a new form of self-organization in solids. Each ensemble contains 10{sup 5}-10{sup 6} elementary clusters, 100-250 A in diameter. Interaction of the clusters in the ensemble is realized through the interatomic chemical bonds, intrinsic to the manganites. Integration of peripheral areas of interacting clusters results in the formation of common intercluster medium in the ensemble. We argue that the ensembles with fractal structure built into paramagnetic disorderedmore » matrix have ferromagnetic properties. Absence of sharp borders between elementary clusters and the presence of common intercluster medium inside each ensemble permits to rearrange magnetic order and to change the volume of the ferromagnetic phase, providing automatically a high sensitivity of the material to the external field.« less
Exactly solvable random graph ensemble with extensively many short cycles
NASA Astrophysics Data System (ADS)
Aguirre López, Fabián; Barucca, Paolo; Fekom, Mathilde; Coolen, Anthony C. C.
2018-02-01
We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles’ control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the size is sampled from a discrete distribution, and show their equivalence in the thermodynamical limit. We also compute analytically the spectral density, which consists of a discrete set of isolated eigenvalues, representing short cycles, and a continuous part, representing cycles of diverging size.
Critical mingling and universal correlations in model binary active liquids
NASA Astrophysics Data System (ADS)
Bain, Nicolas; Bartolo, Denis
2017-06-01
Ensembles of driven or motile bodies moving along opposite directions are generically reported to self-organize into strongly anisotropic lanes. Here, building on a minimal model of self-propelled bodies targeting opposite directions, we first evidence a critical phase transition between a mingled state and a phase-separated lane state specific to active particles. We then demonstrate that the mingled state displays algebraic structural correlations also found in driven binary mixtures. Finally, constructing a hydrodynamic theory, we single out the physical mechanisms responsible for these universal long-range correlations typical of ensembles of oppositely moving bodies.
Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume
2013-01-01
Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.
Erdmann, Thorsten; Bartelheimer, Kathrin; Schwarz, Ulrich S
2016-11-01
Based on a detailed crossbridge model for individual myosin II motors, we systematically study the influence of mechanical load and adenosine triphosphate (ATP) concentration on small myosin II ensembles made from different isoforms. For skeletal and smooth muscle myosin II, which are often used in actomyosin gels that reconstitute cell contractility, fast forward movement is restricted to a small region of phase space with low mechanical load and high ATP concentration, which is also characterized by frequent ensemble detachment. At high load, these ensembles are stalled or move backwards, but forward motion can be restored by decreasing ATP concentration. In contrast, small ensembles of nonmuscle myosin II isoforms, which are found in the cytoskeleton of nonmuscle cells, are hardly affected by ATP concentration due to the slow kinetics of the bound states. For all isoforms, the thermodynamic efficiency of ensemble movement increases with decreasing ATP concentration, but this effect is weaker for the nonmuscle myosin II isoforms.
ADVANCED WORKER PROTECTION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judson Hedgehock
2001-03-16
From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long asmore » workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.« less
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Quevillon, Michael J; Whitmer, Jonathan K
2018-01-02
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.
USDA-ARS?s Scientific Manuscript database
Potential impacts of climate change on hydrologic components of Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation an...
Fluctuating observation time ensembles in the thermodynamics of trajectories
NASA Astrophysics Data System (ADS)
Budini, Adrián A.; Turner, Robert M.; Garrahan, Juan P.
2014-03-01
The dynamics of stochastic systems, both classical and quantum, can be studied by analysing the statistical properties of dynamical trajectories. The properties of ensembles of such trajectories for long, but fixed, times are described by large-deviation (LD) rate functions. These LD functions play the role of dynamical free energies: they are cumulant generating functions for time-integrated observables, and their analytic structure encodes dynamical phase behaviour. This ‘thermodynamics of trajectories’ approach is to trajectories and dynamics what the equilibrium ensemble method of statistical mechanics is to configurations and statics. Here we show that, just like in the static case, there are a variety of alternative ensembles of trajectories, each defined by their global constraints, with that of trajectories of fixed total time being just one of these. We show how the LD functions that describe an ensemble of trajectories where some time-extensive quantity is constant (and large) but where total observation time fluctuates can be mapped to those of the fixed-time ensemble. We discuss how the correspondence between generalized ensembles can be exploited in path sampling schemes for generating rare dynamical trajectories.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
NASA Astrophysics Data System (ADS)
Skaltsas, T.; Pispas, S.; Tagmatarchis, N.
2015-11-01
Nanodiamonds (NDs) lack efficient dispersion, not only in solvents but also in aqueous media. The latter is of great importance, considering the inherent biocompatibility of NDs and the plethora of suitable strategies for immobilizing functional biomolecules. In this work, a series of polymers was non-covalently interacted with NDs, forming ND-polymer ensembles, and their dispersibility and stability was examined. Dynamic light scattering gave valuable information regarding the size of the ensembles in liquid phase, while their morphology was further examined by high-resolution transmission electron microscopy imaging. In addition, thermal analysis measurements were applied to collect information on the thermal behavior of NDs and their ensembles and to calculate the amount of polymer interacting with the NDs, as well as the dispersibility values of the ND-polymer ensembles. Finally, the bovine serum albumin protein was electrostatically bound to a ND-polymer ensemble in which the polymeric moiety was carrying quaternized pyridine units.
NASA Astrophysics Data System (ADS)
Ouyang, Qi; Lu, Wenxi; Lin, Jin; Deng, Wenbing; Cheng, Weiguo
2017-08-01
The surrogate-based simulation-optimization techniques are frequently used for optimal groundwater remediation design. When this technique is used, surrogate errors caused by surrogate-modeling uncertainty may lead to generation of infeasible designs. In this paper, a conservative strategy that pushes the optimal design into the feasible region was used to address surrogate-modeling uncertainty. In addition, chance-constrained programming (CCP) was adopted to compare with the conservative strategy in addressing this uncertainty. Three methods, multi-gene genetic programming (MGGP), Kriging (KRG) and support vector regression (SVR), were used to construct surrogate models for a time-consuming multi-phase flow model. To improve the performance of the surrogate model, ensemble surrogates were constructed based on combinations of different stand-alone surrogate models. The results show that: (1) the surrogate-modeling uncertainty was successfully addressed by the conservative strategy, which means that this method is promising for addressing surrogate-modeling uncertainty. (2) The ensemble surrogate model that combines MGGP with KRG showed the most favorable performance, which indicates that this ensemble surrogate can utilize both stand-alone surrogate models to improve the performance of the surrogate model.
NASA Astrophysics Data System (ADS)
Ament, F.; Weusthoff, T.; Arpagaus, M.; Rotach, M.
2009-04-01
The main aim of the WWRP Forecast Demonstration Project MAP D-PHASE is to demonstrate the performance of today's models to forecast heavy precipitation and flood events in the Alpine region. Therefore an end-to-end, real-time forecasting system was installed and operated during the D PHASE Operations Period from June to November 2007. Part of this system are 30 numerical weather prediction models (deterministic as well as ensemble systems) operated by weather services and research institutes, which issue alerts if predicted precipitation accumulations exceed critical thresholds. Additionally to the real-time alerts, all relevant model fields of these simulations are stored in a central data archive. This comprehensive data set allows a detailed assessment of today's quantitative precipitation forecast (QPF) performance in the Alpine region. We will present results of QPF verifications against Swiss radar and rain gauge data both from a qualitative point of view, in terms of alerts, as well as from a quantitative perspective, in terms of precipitation rate. Various influencing factors like lead time, accumulation time, selection of warning thresholds, or bias corrections will be discussed. Additional to traditional verifications of area average precipitation amounts, the performance of the models to predict the correct precipitation statistics without requiring a point-to-point match will be described by using modern Fuzzy verification techniques. Both analyses reveal significant advantages of deep convection resolving models compared to coarser models with parameterized convection. An intercomparison of the model forecasts themselves reveals a remarkably high variability between different models, and makes it worthwhile to evaluate the potential of a multi-model ensemble. Various multi-model ensemble strategies will be tested by combining D-PHASE models to virtual ensemble systems.
Molecular Dynamics Simulation of Membranes and a Transmembrane Helix
NASA Astrophysics Data System (ADS)
Duong, Tap Ha; Mehler, Ernest L.; Weinstein, Harel
1999-05-01
Three molecular dynamics (MD) simulations of 1.5-ns length were carried out on fully hydrated patches of dimyristoyl phosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. The simulations were performed using different ensembles and electrostatic conditions: a microcanonical ensemble or constant pressure-temperature ensemble, with or without truncated electrostatic interactions. Calculated properties of the membrane patches from the three different protocols were compared to available data from experiments. These data include the resulting overall geometrical dimensions, the order characteristics of the lipid hydrocarbon chains, as well as various measures of the conformations of the polar head groups. The comparisons indicate that the simulation carried out within the microcanonical ensemble with truncated electrostatic interactions yielded results closest to the experimental data, provided that the initial equilibration phase preceding the production run was sufficiently long. The effects of embedding a non-ideal helical protein domain in the membrane patch were studied with the same MD protocols. This simulation was carried out for 2.5 ns. The protein domain corresponds to the seventh transmembrane segment (TMS7) of the human serotonin 5HT 2Areceptor. The peptide is composed of two α-helical segments linked by a hinge domain around a perturbing Asn-Pro motif that produces at the end of the simulation a kink angle of nearly 80° between the two helices. Several aspects of the TMS7 structure, such as the bending angle, backbone Φ and Ψ torsion angles, the intramolecular hydrogen bonds, and the overall conformation, were found to be very similar to those determined by NMR for the corresponding transmembrane segment of the tachykinin NK-1 receptor. In general, the simulations were found to yield structural and dynamic characteristics that are in good agreement with experiment. These findings support the application of simulation methods to the study of the complex biomolecular systems at the membrane interface of cells.
Nayak, Chetan S; Mariyappa, N; Majumdar, Kaushik K; Prasad, Pradeep D; Ravi, G S; Nagappa, M; Kandavel, Thennarasu; Taly, Arun B; Sinha, Sanjib
2018-05-01
Excessive cortical synchrony within neural ensembles has been implicated as an important mechanism driving epileptiform activity. The current study measures and compares background electroencephalographic (EEG) phase synchronization in patients having various types of epilepsies and healthy controls during awake and sleep stages. A total of 120 patients with epilepsy (PWE) subdivided into 3 groups (juvenile myoclonic epilepsy [JME], temporal lobe epilepsy [TLE], and extra-temporal lobe epilepsy [Ex-TLE]; n = 40 in each group) and 40 healthy controls were subjected to overnight polysomnography. EEG phase synchronization (SI) between the 8 EEG channels was assessed for delta, theta, alpha, sigma, and high beta frequency bands using ensemble measure on 10-second representative time windows and compared between patients and controls and also between awake and sleep stages. Mean ± SD of SI was compared using 2-way analysis of variance followed by pairwise comparison ( P ≤ .05). In both delta and theta bands, the SI was significantly higher in patients with JME, TLE, and Ex-TLE compared with controls, whereas in alpha, sigma, and high beta bands, SI was comparable between the groups. On comparison of SI between sleep stages, delta band: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3, whereas REM (rapid eye movement) was comparable to wake; theta band: decreased SI during N2 and increase during N3; alpha band: SI was highest in wake and lower in N1, N2, N3, and REM; and sigma and high beta bands: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3; however, sigma band showed lower SI during REM. This study found an increased background cortical synchronization in PWE compared with healthy controls in delta and theta bands during wake and sleep. This background hypersynchrony may be an important property of epileptogenic brain circuitry in PWE, which enables them to effortlessly generate a paroxysmal EEG depolarization shift.
Reichardt, J; Hess, M; Macke, A
2000-04-20
Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.
NASA Astrophysics Data System (ADS)
Semenova, Nadezhda I.; Rybalova, Elena V.; Strelkova, Galina I.; Anishchenko, Vadim S.
2017-03-01
We consider in detail similarities and differences of the "coherence-incoherence" transition in ensembles of nonlocally coupled chaotic discrete-time systems with nonhyperbolic and hyperbolic attractors. As basic models we employ the Hénon map and the Lozi map. We show that phase and amplitude chimera states appear in a ring of coupled Hénon maps, while no chimeras are observed in an ensemble of coupled Lozi maps. In the latter, the transition to spatio-temporal chaos occurs via solitary states. We present numerical results for the coupling function which describes the impact of neighboring oscillators on each partial element of an ensemble with nonlocal coupling. Varying the coupling strength we analyze the evolution of the coupling function and discuss in detail its role in the "coherence-incoherence" transition in the ensembles of Hénon and Lozi maps.
NASA Astrophysics Data System (ADS)
Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.
2015-11-01
Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.
NASA Astrophysics Data System (ADS)
Natalello, Antonino; Santambrogio, Carlo; Grandori, Rita
2017-01-01
Native mass spectrometry (MS) has become a central tool of structural proteomics, but its applicability to the peculiar class of intrinsically disordered proteins (IDPs) is still object of debate. IDPs lack an ordered tridimensional structure and are characterized by high conformational plasticity. Since they represent valuable targets for cancer and neurodegeneration research, there is an urgent need of methodological advances for description of the conformational ensembles populated by these proteins in solution. However, structural rearrangements during electrospray-ionization (ESI) or after the transfer to the gas phase could affect data obtained by native ESI-MS. In particular, charge-state distributions (CSDs) are affected by protein conformation inside ESI droplets, while ion mobility (IM) reflects protein conformation in the gas phase. This review focuses on the available evidence relating IDP solution ensembles with CSDs, trying to summarize cases of apparent consistency or discrepancy. The protein-specificity of ionization patterns and their responses to ligands and buffer conditions suggests that CSDs are imprinted to protein structural features also in the case of IDPs. Nevertheless, it seems that these proteins are more easily affected by electrospray conditions, leading in some cases to rearrangements of the conformational ensembles.
Natalello, Antonino; Santambrogio, Carlo; Grandori, Rita
2017-01-01
Native mass spectrometry (MS) has become a central tool of structural proteomics, but its applicability to the peculiar class of intrinsically disordered proteins (IDPs) is still object of debate. IDPs lack an ordered tridimensional structure and are characterized by high conformational plasticity. Since they represent valuable targets for cancer and neurodegeneration research, there is an urgent need of methodological advances for description of the conformational ensembles populated by these proteins in solution. However, structural rearrangements during electrospray-ionization (ESI) or after the transfer to the gas phase could affect data obtained by native ESI-MS. In particular, charge-state distributions (CSDs) are affected by protein conformation inside ESI droplets, while ion mobility (IM) reflects protein conformation in the gas phase. This review focuses on the available evidence relating IDP solution ensembles with CSDs, trying to summarize cases of apparent consistency or discrepancy. The protein-specificity of ionization patterns and their responses to ligands and buffer conditions suggests that CSDs are imprinted to protein structural features also in the case of IDPs. Nevertheless, it seems that these proteins are more easily affected by electrospray conditions, leading in some cases to rearrangements of the conformational ensembles. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.
2015-09-01
Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles.Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles. Electronic supplementary information (ESI) available: NMR, MS, ATR-IR, UV-Vis spectra, CV graphs, femto- and nano-second transient absorption spectra of oligothiophenes and their ensembles with exfoliated graphene. See DOI: 10.1039/c5nr04875c
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Enhanced Sampling in the Well-Tempered Ensemble
NASA Astrophysics Data System (ADS)
Bonomi, M.; Parrinello, M.
2010-05-01
We introduce the well-tempered ensemble (WTE) which is the biased ensemble sampled by well-tempered metadynamics when the energy is used as collective variable. WTE can be designed so as to have approximately the same average energy as the canonical ensemble but much larger fluctuations. These two properties lead to an extremely fast exploration of phase space. An even greater efficiency is obtained when WTE is combined with parallel tempering. Unbiased Boltzmann averages are computed on the fly by a recently developed reweighting method [M. Bonomi , J. Comput. Chem. 30, 1615 (2009)JCCHDD0192-865110.1002/jcc.21305]. We apply WTE and its parallel tempering variant to the 2d Ising model and to a Gō model of HIV protease, demonstrating in these two representative cases that convergence is accelerated by orders of magnitude.
Enhanced sampling in the well-tempered ensemble.
Bonomi, M; Parrinello, M
2010-05-14
We introduce the well-tempered ensemble (WTE) which is the biased ensemble sampled by well-tempered metadynamics when the energy is used as collective variable. WTE can be designed so as to have approximately the same average energy as the canonical ensemble but much larger fluctuations. These two properties lead to an extremely fast exploration of phase space. An even greater efficiency is obtained when WTE is combined with parallel tempering. Unbiased Boltzmann averages are computed on the fly by a recently developed reweighting method [M. Bonomi, J. Comput. Chem. 30, 1615 (2009)]. We apply WTE and its parallel tempering variant to the 2d Ising model and to a Gō model of HIV protease, demonstrating in these two representative cases that convergence is accelerated by orders of magnitude.
NASA Astrophysics Data System (ADS)
McCaffery, Anthony J.
2018-03-01
This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.
Collective phase response curves for heterogeneous coupled oscillators
NASA Astrophysics Data System (ADS)
Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.
2015-08-01
Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.
Penke, Zsuzsa; Chagneau, Carine; Laroche, Serge
2011-01-01
Egr1, a member of the Egr family of transcription factors, and Arc are immediate early genes known to play major roles in synaptic plasticity and memory. Despite evidence that Egr family members can control Arc transcriptional regulation, demonstration of a selective role of Egr1 alone is lacking. We investigated the extent to which activity-dependent Arc expression is dependent on Egr1 by analyzing Arc mRNA expression using fluorescence in situ hybridization in the dorsal dentate gyrus and CA1 of wild-type (WT) and Egr1 knockout mice. Following electroconvulsive shock, we found biphasic expression of Arc in area CA1 in mice, consisting in a rapid (30 min) and transient wave followed by a second late-phase of expression (8 h), and a single but prolonged wave of expression in the dentate gyrus. Egr1 deficiency abolished the latest, but not the early wave of Arc expression in CA1, and curtailed that of the dentate gyrus. Since the early wave of Arc expression was not affected in Egr1 mutant mice, we next analyzed behaviorally induced Arc expression patterns as an index of neural ensemble activation in the dentate gyrus and area CA1 of WT and Egr1 mutant mice. Spatial exploration of novel or familiar environments induced in mice a single early and transient wave of Arc expression in the dentate gyrus and area CA1, which were not affected in Egr1 mutant mice. Analyses of Arc-expressing cells revealed that exploration recruits similar size dentate gyrus and CA1 neural ensembles in WT and Egr1 knockout mice. These findings suggest that hippocampal neural ensembles are normally activated immediately following spatial exploration in Egr1 knockout mice, indicating normal hippocampal encoding of information. They also provide evidence that in condition of strong activation Egr1 alone can control late-phases of activity-dependent Arc transcription in the dentate gyrus and area CA1 of the hippocampus. PMID:21887136
NASA Astrophysics Data System (ADS)
Dale, Amy; Fant, Charles; Strzepek, Kenneth; Lickley, Megan; Solomon, Susan
2017-03-01
We present maize production in sub-Saharan Africa as a case study in the exploration of how uncertainties in global climate change, as reflected in projections from a range of climate model ensembles, influence climate impact assessments for agriculture. The crop model AquaCrop-OS (Food and Agriculture Organization of the United Nations) was modified to run on a 2° × 2° grid and coupled to 122 climate model projections from multi-model ensembles for three emission scenarios (Coupled Model Intercomparison Project Phase 3 [CMIP3] SRES A1B and CMIP5 Representative Concentration Pathway [RCP] scenarios 4.5 and 8.5) as well as two "within-model" ensembles (NCAR CCSM3 and ECHAM5/MPI-OM) designed to capture internal variability (i.e., uncertainty due to chaos in the climate system). In spite of high uncertainty, most notably in the high-producing semi-arid zones, we observed robust regional and sub-regional trends across all ensembles. In agreement with previous work, we project widespread yield losses in the Sahel region and Southern Africa, resilience in Central Africa, and sub-regional increases in East Africa and at the southern tip of the continent. Spatial patterns of yield losses corresponded with spatial patterns of aridity increases, which were explicitly evaluated. Internal variability was a major source of uncertainty in both within-model and between-model ensembles and explained the majority of the spatial distribution of uncertainty in yield projections. Projected climate change impacts on maize production in different regions and nations ranged from near-zero or positive (upper quartile estimates) to substantially negative (lower quartile estimates), highlighting a need for risk management strategies that are adaptive and robust to uncertainty.
NASA Astrophysics Data System (ADS)
Grabsch, Aurélien; Majumdar, Satya N.; Texier, Christophe
2017-06-01
Invariant ensembles of random matrices are characterized by the distribution of their eigenvalues \\{λ _1,\\ldots ,λ _N\\}. We study the distribution of truncated linear statistics of the form \\tilde{L}=\\sum _{i=1}^p f(λ _i) with p
Instanton-dyon ensembles reproduce deconfinement and chiral restoration phase transitions
NASA Astrophysics Data System (ADS)
Shuryak, Edward
2018-03-01
Paradigm shift in gauge topology at finite temperatures, from the instantons to their constituents - instanton-dyons - has recently lead to studies of their ensembles and very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at suffciently high density explains the chiral symmetry breaking transition. Unlike instantons, these objects have electric and magnetic charges. Simulations of the instanton-dyon ensembles have demonstrated that their back reaction on the Polyakov line modifies its potential and generates the deconfinement phase transition. For the Nc = 2 gauge theory the transition is second order, for QCD-like theory with Nc = 2 and two light quark flavors Nf = 2 both transitions are weak crossovers at happening at about the same condition. Introduction of quark-flavor-dependent periodicity phases (imaginary chemical potentials) leads to drastic changes in both transitions. In particulaly, in the so called Z(Nc) - QCD model the deconfinement transforms to strong first order transition, while the chiral condensate does not disappear at all. The talk will also cover more detailed studies of correlations between the dyons, effective eta' mass and other screening masses.
2018-01-01
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305
Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari
2016-01-01
Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we showed that the developed ensembles of texture descriptors are able to classify the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based decomposition improves many descriptors’ accuracy in biological dataset classification. Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies. The proposed tool is available at https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f. PMID:26895509
ERIC Educational Resources Information Center
Kinney, Daryl W.
2004-01-01
This study compared collegiate subjects who had participated in high school performing ensembles (participants) with subjects who had not (non-participants) on their ability to perform expressively and to perceive expression in music. In Phase I, subjects (N = 56) were asked to perform three song selections, expressively and unexpressively, using…
Sonne, Jacob; Jensen, Morten Ø.; Hansen, Flemming Y.; Hemmingsen, Lars; Peters, Günther H.
2007-01-01
Molecular dynamics simulations of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers using the CHARMM27 force field in the tensionless isothermal-isobaric (NPT) ensemble give highly ordered, gel-like bilayers with an area per lipid of ∼48 Å2. To obtain fluid (Lα) phase properties of DPPC bilayers represented by the CHARMM energy function in this ensemble, we reparameterized the atomic partial charges in the lipid headgroup and upper parts of the acyl chains. The new charges were determined from the electron structure using both the Mulliken method and the restricted electrostatic potential fitting method. We tested the derived charges in molecular dynamics simulations of a fully hydrated DPPC bilayer. Only the simulation with the new restricted electrostatic potential charges shows significant improvements compared with simulations using the original CHARMM27 force field resulting in an area per lipid of 60.4 ± 0.1 Å2. Compared to the 48 Å2, the new value of 60.4 Å2 is in fair agreement with the experimental value of 64 Å2. In addition, the simulated order parameter profile and electron density profile are in satisfactory agreement with experimental data. Thus, the biologically more interesting fluid phase of DPPC bilayers can now be simulated in all-atom simulations in the NPT ensemble by employing our modified CHARMM27 force field. PMID:17400696
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perevalova, Olga; Konovalova, Elena, E-mail: knv123@yandex.ru; Koneva, Nina
2016-01-15
The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determinedmore » by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.« less
The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Init...
NASA Astrophysics Data System (ADS)
Waldman, Robin; Somot, Samuel; Herrmann, Marine; Bosse, Anthony; Caniaux, Guy; Estournel, Claude; Houpert, Loic; Prieur, Louis; Sevault, Florence; Testor, Pierre
2017-02-01
The northwestern Mediterranean Sea is a well-observed ocean deep convection site. Winter 2012-2013 was an intense and intensely documented dense water formation (DWF) event. We evaluate this DWF event in an ensemble configuration of the regional ocean model NEMOMED12. We then assess for the first time the impact of ocean intrinsic variability on DWF with a novel perturbed initial state ensemble method. Finally, we identify the main physical mechanisms driving water mass transformations. NEMOMED12 reproduces accurately the deep convection chronology between late January and March, its location off the Gulf of Lions although with a southward shift and its magnitude. It fails to reproduce the Western Mediterranean Deep Waters salinification and warming, consistently with too strong a surface heat loss. The Ocean Intrinsic Variability modulates half of the DWF area, especially in the open-sea where the bathymetry slope is low. It modulates marginally (3-5%) the integrated DWF rate, but its increase with time suggests its impact could be larger at interannual timescales. We conclude that ensemble frameworks are necessary to evaluate accurately numerical simulations of DWF. Each phase of DWF has distinct diapycnal and thermohaline regimes: during preconditioning, the Mediterranean thermohaline circulation is driven by exchanges with the Algerian basin. During the intense mixing phase, surface heat fluxes trigger deep convection and internal mixing largely determines the resulting deep water properties. During restratification, lateral exchanges and internal mixing are enhanced. Finally, isopycnal mixing was shown to play a large role in water mass transformations during the preconditioning and restratification phases.
Scalable hydrothermal synthesis of free-standing VO₂ nanowires in the M1 phase.
Horrocks, Gregory A; Singh, Sujay; Likely, Maliek F; Sambandamurthy, G; Banerjee, Sarbajit
2014-09-24
VO2 nanostructures derived from solution-phase methods are often plagued by broadened and relatively diminished metal-insulator transitions and adventitious doping due to imperfect control of stoichiometry. Here, we demonstrate a stepwise scalable hydrothermal and annealing route for obtaining VO2 nanowires exhibiting almost 4 orders of magnitude abrupt (within 1 °C) metal-insulator transitions. The prepared nanowires have been characterized across their structural and electronic phase transitions using single-nanowire Raman microprobe analysis, ensemble differential scanning calorimetry, and single-nanowire electrical transport measurements. The electrical band gap is determined to be 600 meV and is consistent with the optical band gap of VO2, and the narrowness of differential scanning calorimetry profiles indicates homogeneity of stoichiometry. The preparation of high-quality free-standing nanowires exhibiting pronounced metal-insulator transitions by a solution-phase process allows for scalability, further solution-phase processing, incorporation within nanocomposites, and integration onto arbitrary substrates.
Boreal Summer ISO hindcast experiment: preliminary results from SNU
NASA Astrophysics Data System (ADS)
Heo, S.; Kang, I.; Kim, D.; Ham, Y.
2010-12-01
As a part of internationally coordinated research program, hindcast experiments with focus on boreal summer intraseasonal oscillation (ISO) have been done in Seoul National University (SNU). This study aims to show preliminary results from SNU’s efforts. The ISO prediction system used in the hindcast experiment consists of SNU coupled model and SNU initialization method. The SNU coupled model is an ocean-atmosphere coupled model which couples the SNU Atmospheric GCM (SNU AGCM) to the Modular Ocean Model ver.2.2 (MOM2.2) Ocean GCM developed at Geophysical Fluid Dynamics Laboratory (GFDL). In the SNU initialization method, both atmospheric and oceanic states are nudged toward reanalysis data (ERAinterim and GODAS) before prediction starting date. For the results here, 2 ensemble members are generated by using different nudging period, 8 and 9 days, respectively. The initial dates of 45-day predictions are the 1st, 11th, 21st of months during boreal summer season (May to October). Prediction skills and its dependency on the initial amplitude, the initial phase, and the number of ensemble members are investigated using the Real-time Multivariate MJO (RMM) index suggested by Wheeler and Hendon (2004). It is shown in our hindcast experiment that, after 13 forecast lead days (the forecast skill is about 0.7), the prediction skill does not depend on the strength of the initial state. Also, we found that the prediction skill has a phase dependency. The prediction skill is particularly low when the convective center related to the MJO is over the Indian Ocean (phase 2). The ensemble prediction has more improved correlation skill than each member. To better understand the phase dependency, we compared the observed and predicted behavior of the MJO that propagates from different starting phases. The phase speed of the prediction is slower than the observation. The MJO in the hindcast experiment propagates with weaker amplitudes than observed except for initial phase 3. Also investigated is the climatology and anomalies of precipitable water to understand the difference of the propagation. The difference between observed and predicted climatology shows strong dry bias over the eastern Indian Ocean, in where convective anomalies are not properly developed in hindcast data, especially those from initial phase 2. Our results suggest possible impacts of mean bias on prediction skills of the MJO.
NASA Astrophysics Data System (ADS)
Kim, Jungho; Yu, Bong-Ahn
2015-03-01
We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases.
Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
NASA Astrophysics Data System (ADS)
Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse
2018-05-01
The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.
NASA Astrophysics Data System (ADS)
Gaspari, M.; McDonald, M.; Hamer, S. L.; Brighenti, F.; Temi, P.; Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; Edge, A. C.; Werner, N.; Tozzi, P.; Sun, M.; Stone, J. M.; Tremblay, G. R.; Hogan, M. T.; Eckert, D.; Ettori, S.; Yu, H.; Biffi, V.; Planelles, S.
2018-02-01
We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (∼107 K) are perturbed by subsonic turbulence, warm (∼104 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (<100 K) raining in the core via chaotic cold accretion (CCA). We show that all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100–200 {km} {{{s}}}-1) with a mild line shift. On the other hand, pencil-beam detections (as H I absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 {km} {{{s}}}-1 (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm Hα+[N II] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C ≡ t cool/t eddy ≈ 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.
Control Mechanisms of Photoisomerization in Protonated Schiff Bases.
Vuković, Lela; Burmeister, Carl F; Král, Petr; Groenhof, Gerrit
2013-03-21
We performed ab initio excited-state molecular dynamics simulations of a gas-phase photoexcited protonated Schiff base (C1-N2═C3-C4═C5-C6) to search for control mechanisms of its photoisomerization. The excited molecule twists by ∼90° around either the N2C3 bond or the C4C5 bond and relaxes to the ground electronic state through a conical intersection with either a trans or cis outcome. We show that a large initial distortion of several dihedral angles and a specific normal vibrational mode combining pyramidalization and double-bond twisting can lead to a preferential rotation of atoms around the C4C5 bond. We also show that selective pretwisting of several dihedral angles in the initial ground state thermal ensemble (by analogy to a protein pocket) can significantly increase the fraction of photoreactive (cis → trans) trajectories. We demonstrate that new ensembles with higher degrees of control over the photoisomerization reaction can be obtained by a computational directed evolution approach on the ensembles of molecules with the pretwisted geometries.
Random center vortex lines in continuous 3D space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höllwieser, Roman; Institute of Atomic and Subatomic Physics, Vienna University of Technology, Operngasse 9, 1040 Vienna; Altarawneh, Derar
2016-01-22
We present a model of center vortices, represented by closed random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation andmore » the potential V(R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the qualitative features of confinement physics seen in SU(2) Yang-Mills theory.« less
Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
NASA Astrophysics Data System (ADS)
Potoff, Jeffrey J.; Panagiotopoulos, Athanassios Z.
1998-12-01
Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as Tc*=1.3120±0.0007, ρc*=0.316±0.001 and pc*=0.1279±0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were ɛ1=2ɛ2 and σ1=σ2, with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations.
Action-FRET of a Gaseous Protein
NASA Astrophysics Data System (ADS)
Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe
2017-01-01
Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.
Task-phase-specific dynamics of basal forebrain neuronal ensembles
Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.
2014-01-01
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.
1999-01-01
Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.
A Novel Multi-Class Ensemble Model for Classifying Imbalanced Biomedical Datasets
NASA Astrophysics Data System (ADS)
Bikku, Thulasi; Sambasiva Rao, N., Dr; Rao, Akepogu Ananda, Dr
2017-08-01
This paper mainly focuseson developing aHadoop based framework for feature selection and classification models to classify high dimensionality data in heterogeneous biomedical databases. Wide research has been performing in the fields of Machine learning, Big data and Data mining for identifying patterns. The main challenge is extracting useful features generated from diverse biological systems. The proposed model can be used for predicting diseases in various applications and identifying the features relevant to particular diseases. There is an exponential growth of biomedical repositories such as PubMed and Medline, an accurate predictive model is essential for knowledge discovery in Hadoop environment. Extracting key features from unstructured documents often lead to uncertain results due to outliers and missing values. In this paper, we proposed a two phase map-reduce framework with text preprocessor and classification model. In the first phase, mapper based preprocessing method was designed to eliminate irrelevant features, missing values and outliers from the biomedical data. In the second phase, a Map-Reduce based multi-class ensemble decision tree model was designed and implemented in the preprocessed mapper data to improve the true positive rate and computational time. The experimental results on the complex biomedical datasets show that the performance of our proposed Hadoop based multi-class ensemble model significantly outperforms state-of-the-art baselines.
Evaluation of the North American Multi-Model Ensemble System for Monthly and Seasonal Prediction
NASA Astrophysics Data System (ADS)
Zhang, Q.
2014-12-01
Since August 2011, the real time seasonal forecasts of the U.S. National Multi-Model Ensemble (NMME) have been made on 8th of each month by NCEP Climate Prediction Center (CPC). The participating models were NCEP/CFSv1&2, GFDL/CM2.2, NCAR/U.Miami/COLA/CCSM3, NASA/GEOS5, IRI/ ECHAM-a & ECHAM-f in the first year of the real time NMME forecast. Two Canadian coupled models CMC/CanCM3 and CM4 joined in and CFSv1 and IRI's models dropped out in the second year. The NMME team at CPC collects monthly means of three variables, precipitation, temperature at 2m and sea surface temperature from each modeling center on a 1x1 global grid, removes systematic errors, makes the grand ensemble mean in equal weight for each model mean and probability forecast with equal weight for each member of each model. This provides the NMME forecast locked in schedule for the CPC operational seasonal and monthly outlook. The basic verification metrics of seasonal and monthly prediction of NMME are calculated as an evaluation of skill, including both deterministic and probabilistic forecasts for the 3-year real time (August, 2011- July 2014) period and the 30-year retrospective forecast (1982-2011) of the individual models as well as the NMME ensemble. The motivation of this study is to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system. We also want to establish whether the real time and hindcast periods (used for bias correction in real time) are consistent. The experimental phase I of the project already supplies routine guidance to users of the NMME forecasts.
Quantum Synchronization of Two Ensembles of Atoms
NASA Astrophysics Data System (ADS)
Xu, Minghui; Tieri, David; Fine, Effie; Thompson, James; Holland, Murray
2014-05-01
We present a system that exhibits quantum synchronization as a modern analogue of the Huygens experiment which is implemented using state-of-the-art neutral atom lattice clocks of the highest precision. In particular, we study the correlated phase dynamics of two mesoscopic ensembles of atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two disparate oscillators to the phase-locking that is the signature of quantum synchronization. Besides being of fundamental importance in nonequilibrium quantum many-body physics, this work could have broad implications for many practical applications of ultrastable lasers and precision measurements. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Ranganathan, Meghana; L'Heureux, Michelle; Barnston, Anthony G.; DelSole, Timothy
2017-05-01
Here we examine the skill of three, five, and seven-category monthly ENSO probability forecasts (1982-2015) from single and multi-model ensemble integrations of the North American Multimodel Ensemble (NMME) project. Three-category forecasts are typical and provide probabilities for the ENSO phase (El Niño, La Niña or neutral). Additional forecast categories indicate the likelihood of ENSO conditions being weak, moderate or strong. The level of skill observed for differing numbers of forecast categories can help to determine the appropriate degree of forecast precision. However, the dependence of the skill score itself on the number of forecast categories must be taken into account. For reliable forecasts with same quality, the ranked probability skill score (RPSS) is fairly insensitive to the number of categories, while the logarithmic skill score (LSS) is an information measure and increases as categories are added. The ignorance skill score decreases to zero as forecast categories are added, regardless of skill level. For all models, forecast formats and skill scores, the northern spring predictability barrier explains much of the dependence of skill on target month and forecast lead. RPSS values for monthly ENSO forecasts show little dependence on the number of categories. However, the LSS of multimodel ensemble forecasts with five and seven categories show statistically significant advantages over the three-category forecasts for the targets and leads that are least affected by the spring predictability barrier. These findings indicate that current prediction systems are capable of providing more detailed probabilistic forecasts of ENSO phase and amplitude than are typically provided.
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Teramura, T.; Ruiz, J.; Kondo, K.; Lien, G. Y.
2016-12-01
Convective weather is known to be highly nonlinear and chaotic, and it is hard to predict their location and timing precisely. Our Big Data Assimilation (BDA) effort has been exploring to use dense and frequent observations to avoid non-Gaussian probability density function (PDF) and to apply an ensemble Kalman filter under the Gaussian error assumption. The phased array weather radar (PAWR) can observe a dense three-dimensional volume scan with 100-m range resolution and 100 elevation angles in only 30 seconds. The BDA system assimilates the PAWR reflectivity and Doppler velocity observations every 30 seconds into 100 ensemble members of storm-scale numerical weather prediction (NWP) model at 100-m grid spacing. The 30-second-update, 100-m-mesh BDA system has been quite successful in multiple case studies of local severe rainfall events. However, with 1000 ensemble members, the reduced-resolution BDA system at 1-km grid spacing showed significant non-Gaussian PDF with every-30-second updates. With a 10240-member ensemble Kalman filter with a global NWP model at 112-km grid spacing, we found roughly 1000 members satisfactory to capture the non-Gaussian error structures. With these in mind, we explore how the density of observations in space and time affects the non-Gaussianity in an ensemble Kalman filter with a simple toy model. In this presentation, we will present the most up-to-date results of the BDA research, as well as the investigation with the toy model on the non-Gaussianity with dense and frequent observations.
NASA Astrophysics Data System (ADS)
Xia, Keyu; Twamley, Jason
2016-11-01
Quantum squeezing and entanglement of spins can be used to improve the sensitivity in quantum metrology. Here we propose a scheme to create collective coupling of an ensemble of spins to a mechanical vibrational mode actuated by an external magnetic field. We find an evolution time where the mechanical motion decouples from the spins, and the accumulated geometric phase yields a squeezing of 5.9 dB for 20 spins. We also show the creation of a Greenberger-Horne-Zeilinger spin state for 20 spins with a fidelity of ˜0.62 at cryogenic temperature. The numerical simulations show that the geometric-phase-based scheme is mostly immune to thermal mechanical noise.
Uncertainty in modeled upper ocean heat content change
NASA Astrophysics Data System (ADS)
Tokmakian, Robin; Challenor, Peter
2014-02-01
This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM's heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.
Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.
Sullivan, David C; Lim, Carmay
2006-08-24
Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.
Adhesive loose packings of small dry particles.
Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A
2015-08-28
We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes the correlation between bulk and contact spheres. Our theoretical and numerical results predict: (i) an equation of state for adhesive loose packings that appear as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram and (ii) the existence of an asymptotic adhesive loose packing point at a coordination number Z = 2 and a packing fraction ϕ = 1/2(3). Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing (RLP), which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.
Generalized thermalization for integrable system under quantum quench.
Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S
2018-01-01
We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.
Visualizing projected Climate Changes - the CMIP5 Multi-Model Ensemble
NASA Astrophysics Data System (ADS)
Böttinger, Michael; Eyring, Veronika; Lauer, Axel; Meier-Fleischer, Karin
2017-04-01
Large ensembles add an additional dimension to climate model simulations. Internal variability of the climate system can be assessed for example by multiple climate model simulations with small variations in the initial conditions or by analyzing the spread in large ensembles made by multiple climate models under common protocols. This spread is often used as a measure of uncertainty in climate projections. In the context of the fifth phase of the WCRP's Coupled Model Intercomparison Project (CMIP5), more than 40 different coupled climate models were employed to carry out a coordinated set of experiments. Time series of the development of integral quantities such as the global mean temperature change for all models visualize the spread in the multi-model ensemble. A similar approach can be applied to 2D-visualizations of projected climate changes such as latitude-longitude maps showing the multi-model mean of the ensemble by adding a graphical representation of the uncertainty information. This has been demonstrated for example with static figures in chapter 12 of the last IPCC report (AR5) using different so-called stippling and hatching techniques. In this work, we focus on animated visualizations of multi-model ensemble climate projections carried out within CMIP5 as a way of communicating climate change results to the scientific community as well as to the public. We take a closer look at measures of robustness or uncertainty used in recent publications suitable for animated visualizations. Specifically, we use the ESMValTool [1] to process and prepare the CMIP5 multi-model data in combination with standard visualization tools such as NCL and the commercial 3D visualization software Avizo to create the animations. We compare different visualization techniques such as height fields or shading with transparency for creating animated visualization of ensemble mean changes in temperature and precipitation including corresponding robustness measures. [1] Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747-1802, doi:10.5194/gmd-9-1747-2016, 2016.
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach.
Chertkov, Michael; Chernyak, Vladimir
2017-08-17
Thermostatically controlled loads, e.g., air conditioners and heaters, are by far the most widespread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control - changing from on to off, and vice versa, depending on temperature. We considered aggregation of a large group of similar devices into a statistical ensemble, where the devices operate following the same dynamics, subject to stochastic perturbations and randomized, Poisson on/off switching policy. Using theoretical and computational tools of statistical physics, we analyzed how the ensemble relaxes to a stationary distribution and established a relationship between the relaxation and the statistics of the probability flux associated with devices' cycling in the mixed (discrete, switch on/off, and continuous temperature) phase space. This allowed us to derive the spectrum of the non-equilibrium (detailed balance broken) statistical system and uncover how switching policy affects oscillatory trends and the speed of the relaxation. Relaxation of the ensemble is of practical interest because it describes how the ensemble recovers from significant perturbations, e.g., forced temporary switching off aimed at utilizing the flexibility of the ensemble to provide "demand response" services to change consumption temporarily to balance a larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach
Chertkov, Michael; Chernyak, Vladimir
2017-01-17
Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxationmore » and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.« less
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Chernyak, Vladimir
Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxationmore » and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.« less
Insights into the deterministic skill of air quality ensembles ...
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each stati
NASA Astrophysics Data System (ADS)
Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.
2018-02-01
The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest eastern and central equatorial Pacific sea surface temperature (SST) anomalies during boreal winter and weakest SST anomalies during boreal spring. In this study, key feedbacks controlling seasonal ENSO phase locking in the Kiel Climate Model (KCM) are identified by employing Bjerknes index stability analysis. A large ensemble of simulations with the KCM is analyzed, where the individual runs differ in either the number of vertical atmospheric levels or coefficients used in selected atmospheric parameterizations. All integrations use the identical ocean model. The ensemble-mean features realistic seasonal ENSO phase locking. ENSO phase locking is very sensitive to changes in the mean-state realized by the modifications described above. An excessive equatorial cold tongue leads to weak phase locking by reducing the Ekman feedback and thermocline feedback in late boreal fall and early boreal winter. Seasonal ENSO phase locking also is sensitive to the shortwave feedback as part of the thermal damping in early boreal spring, which strongly depends on eastern and central equatorial Pacific SST. The results obtained from the KCM are consistent with those from models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).
Entanglement-Enhanced Phase Estimation without Prior Phase Information
NASA Astrophysics Data System (ADS)
Colangelo, G.; Martin Ciurana, F.; Puentes, G.; Mitchell, M. W.; Sewell, R. J.
2017-06-01
We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of
NASA Astrophysics Data System (ADS)
Saito, K.; Sueyoshi, T.; Marchenko, S.; Romanovsky, V.; Otto-Bliesner, B.; Walsh, J.; Bigelow, N.; Hendricks, A.; Yoshikawa, K.
2013-08-01
Here, global-scale frozen ground distribution from the Last Glacial Maximum (LGM) has been reconstructed using multi-model ensembles of global climate models, and then compared with evidence-based knowledge and earlier numerical results. Modeled soil temperatures, taken from Paleoclimate Modelling Intercomparison Project phase III (PMIP3) simulations, were used to diagnose the subsurface thermal regime and determine underlying frozen ground types for the present day (pre-industrial; 0 kya) and the LGM (21 kya). This direct method was then compared to an earlier indirect method, which categorizes underlying frozen ground type from surface air temperature, applying to both the PMIP2 (phase II) and PMIP3 products. Both direct and indirect diagnoses for 0 kya showed strong agreement with the present-day observation-based map. The soil temperature ensemble showed a higher diversity around the border between permafrost and seasonally frozen ground among the models, partly due to varying subsurface processes, implementation, and settings. The area of continuous permafrost estimated by the PMIP3 multi-model analysis through the direct (indirect) method was 26.0 (17.7) million km2 for LGM, in contrast to 15.1 (11.2) million km2 for the pre-industrial control, whereas seasonally frozen ground decreased from 34.5 (26.6) million km2 to 18.1 (16.0) million km2. These changes in area resulted mainly from a cooler climate at LGM, but from other factors as well, such as the presence of huge land ice sheets and the consequent expansion of total land area due to sea-level change. LGM permafrost boundaries modeled by the PMIP3 ensemble - improved over those of the PMIP2 due to higher spatial resolutions and improved climatology - also compared better to previous knowledge derived from geomorphological and geocryological evidence. Combinatorial applications of coupled climate models and detailed stand-alone physical-ecological models for the cold-region terrestrial, paleo-, and modern climates will advance our understanding of the functionality and variability of the frozen ground subsystem in the global eco-climate system.
Lu, Qing; Kim, Jaegil; Straub, John E
2013-03-14
The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.
Santander, Julian E; Tsapatsis, Michael; Auerbach, Scott M
2013-04-16
We have constructed and applied an algorithm to simulate the behavior of zeolite frameworks during liquid adsorption. We applied this approach to compute the adsorption isotherms of furfural-water and hydroxymethyl furfural (HMF)-water mixtures adsorbing in silicalite zeolite at 300 K for comparison with experimental data. We modeled these adsorption processes under two different statistical mechanical ensembles: the grand canonical (V-Nz-μg-T or GC) ensemble keeping volume fixed, and the P-Nz-μg-T (osmotic) ensemble allowing volume to fluctuate. To optimize accuracy and efficiency, we compared pure Monte Carlo (MC) sampling to hybrid MC-molecular dynamics (MD) simulations. For the external furfural-water and HMF-water phases, we assumed the ideal solution approximation and employed a combination of tabulated data and extended ensemble simulations for computing solvation free energies. We found that MC sampling in the V-Nz-μg-T ensemble (i.e., standard GCMC) does a poor job of reproducing both the Henry's law regime and the saturation loadings of these systems. Hybrid MC-MD sampling of the V-Nz-μg-T ensemble, which includes framework vibrations at fixed total volume, provides better results in the Henry's law region, but this approach still does not reproduce experimental saturation loadings. Pure MC sampling of the osmotic ensemble was found to approach experimental saturation loadings more closely, whereas hybrid MC-MD sampling of the osmotic ensemble quantitatively reproduces such loadings because the MC-MD approach naturally allows for locally anisotropic volume changes wherein some pores expand whereas others contract.
Landsgesell, Jonas; Holm, Christian; Smiatek, Jens
2017-02-14
We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.
Klement, William; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken J; Osmond, Martin H; Verter, Vedat
2012-03-01
Using an automatic data-driven approach, this paper develops a prediction model that achieves more balanced performance (in terms of sensitivity and specificity) than the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) rule, when predicting the need for computed tomography (CT) imaging of children after a minor head injury. CT is widely considered an effective tool for evaluating patients with minor head trauma who have potentially suffered serious intracranial injury. However, its use poses possible harmful effects, particularly for children, due to exposure to radiation. Safety concerns, along with issues of cost and practice variability, have led to calls for the development of effective methods to decide when CT imaging is needed. Clinical decision rules represent such methods and are normally derived from the analysis of large prospectively collected patient data sets. The CATCH rule was created by a group of Canadian pediatric emergency physicians to support the decision of referring children with minor head injury to CT imaging. The goal of the CATCH rule was to maximize the sensitivity of predictions of potential intracranial lesion while keeping specificity at a reasonable level. After extensive analysis of the CATCH data set, characterized by severe class imbalance, and after a thorough evaluation of several data mining methods, we derived an ensemble of multiple Naive Bayes classifiers as the prediction model for CT imaging decisions. In the first phase of the experiment we compared the proposed ensemble model to other ensemble models employing rule-, tree- and instance-based member classifiers. Our prediction model demonstrated the best performance in terms of AUC, G-mean and sensitivity measures. In the second phase, using a bootstrapping experiment similar to that reported by the CATCH investigators, we showed that the proposed ensemble model achieved a more balanced predictive performance than the CATCH rule with an average sensitivity of 82.8% and an average specificity of 74.4% (vs. 98.1% and 50.0% for the CATCH rule respectively). Automatically derived prediction models cannot replace a physician's acumen. However, they help establish reference performance indicators for the purpose of developing clinical decision rules so the trade-off between prediction sensitivity and specificity is better understood. Copyright © 2011 Elsevier B.V. All rights reserved.
Ideas for a pattern-oriented approach towards a VERA analysis ensemble
NASA Astrophysics Data System (ADS)
Gorgas, T.; Dorninger, M.
2010-09-01
Ideas for a pattern-oriented approach towards a VERA analysis ensemble For many applications in meteorology and especially for verification purposes it is important to have some information about the uncertainties of observation and analysis data. A high quality of these "reference data" is an absolute necessity as the uncertainties are reflected in verification measures. The VERA (Vienna Enhanced Resolution Analysis) scheme includes a sophisticated quality control tool which accounts for the correction of observational data and provides an estimation of the observation uncertainty. It is crucial for meteorologically and physically reliable analysis fields. VERA is based on a variational principle and does not need any first guess fields. It is therefore NWP model independent and can also be used as an unbiased reference for real time model verification. For downscaling purposes VERA uses an a priori knowledge on small-scale physical processes over complex terrain, the so called "fingerprint technique", which transfers information from rich to data sparse regions. The enhanced Joint D-PHASE and COPS data set forms the data base for the analysis ensemble study. For the WWRP projects D-PHASE and COPS a joint activity has been started to collect GTS and non-GTS data from the national and regional meteorological services in Central Europe for 2007. Data from more than 11.000 stations are available for high resolution analyses. The usage of random numbers as perturbations for ensemble experiments is a common approach in meteorology. In most implementations, like for NWP-model ensemble systems, the focus lies on error growth and propagation on the spatial and temporal scale. When defining errors in analysis fields we have to consider the fact that analyses are not time dependent and that no perturbation method aimed at temporal evolution is possible. Further, the method applied should respect two major sources of analysis errors: Observation errors AND analysis or interpolation errors. With the concept of an analysis ensemble we hope to get a more detailed sight on both sources of analysis errors. For the computation of the VERA ensemble members a sample of Gaussian random perturbations is produced for each station and parameter. The deviation of perturbations is based on the correction proposals by the VERA QC scheme to provide some "natural" limits for the ensemble. In order to put more emphasis on the weather situation we aim to integrate the main synoptic field structures as weighting factors for the perturbations. Two widely approved approaches are used for the definition of these main field structures: The Principal Component Analysis and a 2D-Discrete Wavelet Transform. The results of tests concerning the implementation of this pattern-supported analysis ensemble system and a comparison of the different approaches are given in the presentation.
Raman scattering in HfxZr1-xO2 nanoparticles
NASA Astrophysics Data System (ADS)
Robinson, Richard D.; Tang, Jing; Steigerwald, Michael L.; Brus, Louis E.; Herman, Irving P.
2005-03-01
Raman spectroscopy demonstrates that ˜5nm dimension HfxZr1-xO2 nanocrystals prepared by a nonhydrolytic sol-gel synthesis method are solid solutions of hafnia and zirconia, with no discernable segregation within the individual nanoparticles. Zirconia-rich particles are tetragonal and ensembles of hafnia-rich particles show mixed tetragonal/monoclinic phases. Sintering at 1200 °C produces larger particles (20-30 nm) that are monoclinic. A simple lattice dynamics model with composition-averaged cation mass and scaled force constants is used to understand how the Raman mode frequencies vary with composition in the tetragonal HfxZr1-xO2 nanoparticles. Background luminescence from these particles is minimized after oxygen treatment, suggesting possible oxygen defects in the as-prepared particles. Raman scattering is also used to estimate composition and the relative fractions of tetragonal and monoclinic phases. In some regimes there are mixed phases, and Raman analysis suggests that in these regimes the tetragonal phase particles are relatively rich in zirconium and the monoclinic phase particles are relatively rich in hafnium.
Kerr-AdS analogue of triple point and solid/liquid/gas phase transition
NASA Astrophysics Data System (ADS)
Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab
2014-02-01
We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.
2017-06-01
11 Table 1 Notation for fabric and ensemble resistances . .......................................... 13 Thermal manikin...Table 1 Notation for fabric and ensemble resistances .................................................. 13 Table 2 Weight reduction of CB garment...samples were tested on a Sweating Guarded Hot Plate (SGHP) to measure fabric thermal and evaporative resistance , respectively. The ensembles were tested
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook
2018-06-01
El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
Neuronal Ensemble Synchrony during Human Focal Seizures
Ahmed, Omar J.; Harrison, Matthew T.; Eskandar, Emad N.; Cosgrove, G. Rees; Madsen, Joseph R.; Blum, Andrew S.; Potter, N. Stevenson; Hochberg, Leigh R.; Cash, Sydney S.
2014-01-01
Seizures are classically characterized as the expression of hypersynchronous neural activity, yet the true degree of synchrony in neuronal spiking (action potentials) during human seizures remains a fundamental question. We quantified the temporal precision of spike synchrony in ensembles of neocortical neurons during seizures in people with pharmacologically intractable epilepsy. Two seizure types were analyzed: those characterized by sustained gamma (∼40–60 Hz) local field potential (LFP) oscillations or by spike-wave complexes (SWCs; ∼3 Hz). Fine (<10 ms) temporal synchrony was rarely present during gamma-band seizures, where neuronal spiking remained highly irregular and asynchronous. In SWC seizures, phase locking of neuronal spiking to the SWC spike phase induced synchrony at a coarse 50–100 ms level. In addition, transient fine synchrony occurred primarily during the initial ∼20 ms period of the SWC spike phase and varied across subjects and seizures. Sporadic coherence events between neuronal population spike counts and LFPs were observed during SWC seizures in high (∼80 Hz) gamma-band and during high-frequency oscillations (∼130 Hz). Maximum entropy models of the joint neuronal spiking probability, constrained only on single neurons' nonstationary coarse spiking rates and local network activation, explained most of the fine synchrony in both seizure types. Our findings indicate that fine neuronal ensemble synchrony occurs mostly during SWC, not gamma-band, seizures, and primarily during the initial phase of SWC spikes. Furthermore, these fine synchrony events result mostly from transient increases in overall neuronal network spiking rates, rather than changes in precise spiking correlations between specific pairs of neurons. PMID:25057195
Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons.
Maurer, Andrew P; McNaughton, Bruce L
2007-07-01
Hippocampal 'place cells' systematically shift their phase of firing in relation to the theta rhythm as an animal traverses the 'place field'. These dynamics imply that the neural ensemble begins each theta cycle at a point in its state-space that might 'represent' the current location of the rat, but that the ensemble 'looks ahead' during the rest of the cycle. Phase precession could result from intrinsic cellular dynamics involving interference of two oscillators of different frequencies, or from network interactions, similar to Hebb's 'phase sequence' concept, involving asymmetric synaptic connections. Both models have difficulties accounting for all of the available experimental data, however. A hybrid model, in which the look-ahead phenomenon implied by phase precession originates in superficial entorhinal cortex by some form of interference mechanism and is enhanced in the hippocampus proper by asymmetric synaptic plasticity during sequence encoding, seems to be consistent with available data, but as yet there is no fully satisfactory theoretical account of this phenomenon. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).
An iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring
NASA Astrophysics Data System (ADS)
Li, J. Y.; Kitanidis, P. K.
2013-12-01
Reservoir forecasting and management are increasingly relying on an integrated reservoir monitoring approach, which involves data assimilation to calibrate the complex process of multi-phase flow and transport in the porous medium. The numbers of unknowns and measurements arising in such joint inversion problems are usually very large. The ensemble Kalman filter and other ensemble-based techniques are popular because they circumvent the computational barriers of computing Jacobian matrices and covariance matrices explicitly and allow nonlinear error propagation. These algorithms are very useful but their performance is not well understood and it is not clear how many realizations are needed for satisfactory results. In this presentation we introduce an iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring. It is intended for problems for which the posterior or conditional probability density function is not too different from a Gaussian, despite nonlinearity in the state transition and observation equations. The algorithm generates realizations that have the potential to adequately represent the conditional probability density function (pdf). Theoretical analysis sheds light on the conditions under which this algorithm should work well and explains why some applications require very few realizations while others require many. This algorithm is compared with the classical ensemble Kalman filter (Evensen, 2003) and with Gu and Oliver's (2007) iterative ensemble Kalman filter on a synthetic problem of monitoring a reservoir using wellbore pressure and flux data.
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.
1994-07-01
In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.
Revealing the distinct folding phases of an RNA three-helix junction.
Plumridge, Alex; Katz, Andrea M; Calvey, George D; Elber, Ron; Kirmizialtin, Serdal; Pollack, Lois
2018-05-14
Remarkable new insight has emerged into the biological role of RNA in cells. RNA folding and dynamics enable many of these newly discovered functions, calling for an understanding of RNA self-assembly and conformational dynamics. Because RNAs pass through multiple structures as they fold, an ensemble perspective is required to visualize the flow through fleetingly populated sets of states. Here, we combine microfluidic mixing technology and small angle X-ray scattering (SAXS) to measure the Mg-induced folding of a small RNA domain, the tP5abc three helix junction. Our measurements are interpreted using ensemble optimization to select atomically detailed structures that recapitulate each experimental curve. Structural ensembles, derived at key stages in both time-resolved studies and equilibrium titrations, reproduce the features of known intermediates, and more importantly, offer a powerful new structural perspective on the time-progression of folding. Distinct collapse phases along the pathway appear to be orchestrated by specific interactions with Mg ions. These key interactions subsequently direct motions of the backbone that position the partners of tertiary contacts for later bonding, and demonstrate a remarkable synergy between Mg and RNA across numerous time-scales.
Hyper-Parallel Tempering Monte Carlo Method and It's Applications
NASA Astrophysics Data System (ADS)
Yan, Qiliang; de Pablo, Juan
2000-03-01
A new generalized hyper-parallel tempering Monte Carlo molecular simulation method is presented for study of complex fluids. The method is particularly useful for simulation of many-molecule complex systems, where rough energy landscapes and inherently long characteristic relaxation times can pose formidable obstacles to effective sampling of relevant regions of configuration space. The method combines several key elements from expanded ensemble formalisms, parallel-tempering, open ensemble simulations, configurational bias techniques, and histogram reweighting analysis of results. It is found to accelerate significantly the diffusion of a complex system through phase-space. In this presentation, we demonstrate the effectiveness of the new method by implementing it in grand canonical ensembles for a Lennard-Jones fluid, for the restricted primitive model of electrolyte solutions (RPM), and for polymer solutions and blends. Our results indicate that the new algorithm is capable of overcoming the large free energy barriers associated with phase transitions, thereby greatly facilitating the simulation of coexistence properties. It is also shown that the method can be orders of magnitude more efficient than previously available techniques. More importantly, the method is relatively simple and can be incorporated into existing simulation codes with minor efforts.
Model of random center vortex lines in continuous 2 +1 -dimensional spacetime
NASA Astrophysics Data System (ADS)
Altarawneh, Derar; Engelhardt, Michael; Höllwieser, Roman
2016-12-01
A picture of confinement in QCD based on a condensate of thick vortices with fluxes in the center of the gauge group (center vortices) is studied. Previous concrete model realizations of this picture utilized a hypercubic space-time scaffolding, which, together with many advantages, also has some disadvantages, e.g., in the treatment of vortex topological charge. In the present work, we explore a center vortex model which does not rely on such a scaffolding. Vortices are represented by closed random lines in continuous 2 +1 -dimensional space-time. These random lines are modeled as being piecewise linear, and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a torus with periodic boundary conditions. Besides moving, growing, and shrinking of the vortex configurations, also reconnections are allowed. Our ensemble therefore contains not a fixed but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. We study both vortex percolation and the potential V (R ) between the quark and antiquark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions, and at different temperatures. We find three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature.
Attractors, universality, and inflation
NASA Astrophysics Data System (ADS)
Downes, Sean; Dutta, Bhaskar; Sinha, Kuver
2012-11-01
Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao
2018-01-01
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.
The forces on a single interacting Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Thu, Nguyen Van
2018-04-01
Using double parabola approximation for a single Bose-Einstein condensate confined between double slabs we proved that in grand canonical ensemble (GCE) the ground state with Robin boundary condition (BC) is favored, whereas in canonical ensemble (CE) our system undergoes from ground state with Robin BC to the one with Dirichlet BC in small-L region and vice versa for large-L region and phase transition in space of the ground state is the first order. The surface tension force and Casimir force are also considered in both CE and GCE in detail.
Decadal climate predictions improved by ocean ensemble dispersion filtering
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-06-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.
Ustinov, E A; Do, D D
2012-08-21
We present for the first time in the literature a new scheme of kinetic Monte Carlo method applied on a grand canonical ensemble, which we call hereafter GC-kMC. It was shown recently that the kinetic Monte Carlo (kMC) scheme is a very effective tool for the analysis of equilibrium systems. It had been applied in a canonical ensemble to describe vapor-liquid equilibrium of argon over a wide range of temperatures, gas adsorption on a graphite open surface and in graphitic slit pores. However, in spite of the conformity of canonical and grand canonical ensembles, the latter is more relevant in the correct description of open systems; for example, the hysteresis loop observed in adsorption of gases in pores under sub-critical conditions can only be described with a grand canonical ensemble. Therefore, the present paper is aimed at an extension of the kMC to open systems. The developed GC-kMC was proved to be consistent with the results obtained with the canonical kMC (C-kMC) for argon adsorption on a graphite surface at 77 K and in graphitic slit pores at 87.3 K. We showed that in slit micropores the hexagonal packing in the layers adjacent to the pore walls is observed at high loadings even at temperatures above the triple point of the bulk phase. The potential and applicability of the GC-kMC are further shown with the correct description of the heat of adsorption and the pressure tensor of the adsorbed phase.
Summary statistics in the attentional blink.
McNair, Nicolas A; Goodbourn, Patrick T; Shone, Lauren T; Harris, Irina M
2017-01-01
We used the attentional blink (AB) paradigm to investigate the processing stage at which extraction of summary statistics from visual stimuli ("ensemble coding") occurs. Experiment 1 examined whether ensemble coding requires attentional engagement with the items in the ensemble. Participants performed two sequential tasks on each trial: gender discrimination of a single face (T1) and estimating the average emotional expression of an ensemble of four faces (or of a single face, as a control condition) as T2. Ensemble coding was affected by the AB when the tasks were separated by a short temporal lag. In Experiment 2, the order of the tasks was reversed to test whether ensemble coding requires more working-memory resources, and therefore induces a larger AB, than estimating the expression of a single face. Each condition produced a similar magnitude AB in the subsequent gender-discrimination T2 task. Experiment 3 additionally investigated whether the previous results were due to participants adopting a subsampling strategy during the ensemble-coding task. Contrary to this explanation, we found different patterns of performance in the ensemble-coding condition and a condition in which participants were instructed to focus on only a single face within an ensemble. Taken together, these findings suggest that ensemble coding emerges automatically as a result of the deployment of attentional resources across the ensemble of stimuli, prior to information being consolidated in working memory.
Photoinduced discommensuration of the commensurate charge-density wave phase in 1 T -Ta S2
NASA Astrophysics Data System (ADS)
Tanimura, Katsumi
2018-06-01
The dynamics induced by femtosecond-laser excitation of the commensurate phase of the charge-density wave (CDW) in 1 T -Ta S2 have been studied using both time-resolved electron diffraction and the time-resolved spectroscopy of coherent-phonon dynamics. Electron diffraction results show that the commensurate CDW phase is transformed into a new phase with CDW order that is similar to the nearly commensurate phase with threshold-type transition rates; the threshold excitation density of 0.2 per 13 Ta atoms is evaluated. Coherent-phonon spectroscopy results show that, together with the amplitude mode of CDW with a frequency of 2.41 THz, two other modes with frequencies of 2.34 and 2.07 THz are excited in the photoexcited commensurate CDW phase over a timescale of several tens of picoseconds after excitation. Spectroscopic, temporal, and excitation-intensity dependent characteristics of the three coherent phonons reveal that a photoinduced decomposition of the commensurate CDW order into an ensemble of domains with different CDW orders is induced before the CDW-phase transition occurs. The physics underlying the photoinduced decomposition and evolution into discommensurations responsible for the CDW-order transformation are discussed.
NASA Astrophysics Data System (ADS)
Peng, Yan; Wang, Bin; Liu, Yunqi
2018-03-01
We study the asymptotically flat quasi-local black hole/hairy black hole model with nonzero mass of the scalar field. We disclose effects of the scalar mass on transitions in a grand canonical ensemble with condensation behaviors of the parameter ψ 2, which is similar to approaches in holographic theories. We find that a more negative scalar mass makes the phase transition easier. We also obtain the analytical relation ψ 2∝ (Tc-T)^{1/2} around the critical phase transition points, implying a second order phase transition. Besides the parameter ψ 2, we show that metric solutions can be used to disclose properties of the transitions. In this work, we observe that phase transitions in a box are strikingly similar to holographic transitions in AdS gravity and the similarity provides insights into holographic theories.
Single-bubble sonoluminescence as Dicke superradiance at finite temperature
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Quevedo, H.; Svaiter, N. F.
2014-12-01
Sonoluminescence is a process in which a strong sound field is used to produce light in liquids. We explain sonoluminescence as a phase transition from ordinary fluorescence to a superradiant phase. We consider a spin-boson model composed of a single bosonic mode and an ensemble of N identical two-level atoms. We assume that the whole system is in thermal equilibrium with a reservoir at temperature β-1. We show that, in a ultrastrong-coupling regime, between the two-level atoms and the electromagnetic field it is possible to have a cooperative interaction of the molecules of the gas in the interior of the bubble with the field, generating sonoluminescence.
Classification of Odours for Mobile Robots Using an Ensemble of Linear Classifiers
NASA Astrophysics Data System (ADS)
Trincavelli, Marco; Coradeschi, Silvia; Loutfi, Amy
2009-05-01
This paper investigates the classification of odours using an electronic nose mounted on a mobile robot. The samples are collected as the robot explores the environment. Under such conditions, the sensor response differs from typical three phase sampling processes. In this paper, we focus particularly on the classification problem and how it is influenced by the movement of the robot. To cope with these influences, an algorithm consisting of an ensemble of classifiers is presented. Experimental results show that this algorithm increases classification performance compared to other traditional classification methods.
Phase-insensitive storage of coherences by reversible mapping onto long-lived populations
NASA Astrophysics Data System (ADS)
Mieth, Simon; Genov, Genko T.; Yatsenko, Leonid P.; Vitanov, Nikolay V.; Halfmann, Thomas
2016-01-01
We theoretically develop and experimentally demonstrate a coherence population mapping (CPM) protocol to store atomic coherences in long-lived populations, enabling storage times far beyond the typically very short decoherence times of quantum systems. The amplitude and phase of an atomic coherence is written onto the populations of a three-state system by specifically designed sequences of radiation pulses from two coupling fields. As an important feature, the CPM sequences enable a retrieval efficiency, which is insensitive to the phase of the initial coherence. The information is preserved in every individual atom of the medium, enabling applications in purely homogeneously or inhomogeneously broadened ensembles even when stochastic phase jumps are the main source of decoherence. We experimentally confirm the theoretical predictions by applying CPM for storage of atomic coherences in a doped solid, reaching storage times in the regime of 1 min.
Timelike pion form factor in lattice QCD
NASA Astrophysics Data System (ADS)
Feng, Xu; Aoki, Sinya; Hashimoto, Shoji; Kaneko, Takashi
2015-03-01
We perform a nonperturbative lattice calculation of the complex phase and modulus of the pion form factor in the timelike momentum region using the finite-volume technique. We use two ensembles of 2 +1 -flavor overlap fermions at pion masses mπ=380 and 290 MeV. By calculating the I =1 correlators in the center-of-mass and three moving frames, we obtain the form factor at ten different values of the timelike momentum transfer around the vector resonance. We compare the results with the phenomenological model of Gounaris-Sakurai and its variant.
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
Exploring first-order phase transitions with population annealing
NASA Astrophysics Data System (ADS)
Barash, Lev Yu.; Weigel, Martin; Shchur, Lev N.; Janke, Wolfhard
2017-03-01
Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition.
The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)
Elliott, J.; Müller, C.; Deryng, D.; ...
2015-02-11
We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less
Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.
2008-01-01
Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Bučko, Tomáš; Šimko, František
2016-02-01
Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F- ions observed in X-ray diffraction experiments. The isolated AlF63-, AlF52-, AlF4-, as well as the bridged Al 2 Fm 6 - m ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5 2 - has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn 3 - n species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment.
El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L
2017-06-26
Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.
Barvinsky, A O
2007-08-17
The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.
NASA Astrophysics Data System (ADS)
Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-06-01
We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.
Perez Beltran, Saul; Balbuena, Perla B
2018-02-12
A newly designed sulfur/graphene computational model emulates the electrochemical behavior of a Li-S battery cathode, promoting the S-C interaction through the edges of graphene sheets. A random mixture of eight-membered sulfur rings mixed with small graphene sheets is simulated at 64 wt %sulfur loading. Structural stabilization and sulfur reduction calculations are performed with classical reactive molecular dynamics. This methodology allowed the collective behavior of the sulfur and graphene structures to be accounted for. The sulfur encapsulation induces ring opening and the sulfur phase evolves into a distribution of small chain-like structures interacting with C through the graphene edges. This new arrangement of the sulfur phase not only leads to a less pronounced volume expansion during sulfur reduction but also to a different discharge voltage profile, in qualitative agreement with earlier reports on sulfur encapsulation in microporous carbon structures. The Li 2 S phase grows around ensembles of parallel graphene nanosheets during sulfur reduction. No diffusion of sulfur or lithium between graphene nanosheets is observed, and extended Li 2 S domains bridging the space between carbon ensembles are suppressed. The results emphasize the importance of morphology on the electrochemical performance of the composite material. The sulfur/graphene model outlined here provides new understanding of the graphene effects on the sulfur reduction behavior and the role that van der Waals interactions may play in promoting formation of multilayer graphene ensembles and small Li 2 S domains during sulfur reduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Can decadal climate predictions be improved by ocean ensemble dispersion filtering?
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-12-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http://www.fona-miklip.de/decadal-forecast-2017-2026/decadal-forecast-for-2017-2026/ More informations about this study in JAMES:DOI: 10.1002/2016MS000787
On the predictability of outliers in ensemble forecasts
NASA Astrophysics Data System (ADS)
Siegert, S.; Bröcker, J.; Kantz, H.
2012-03-01
In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.
Topography and refractometry of sperm cells using spatial light interference microscopy
NASA Astrophysics Data System (ADS)
Liu, Lina; Kandel, Mikhail E.; Rubessa, Marcello; Schreiber, Sierra; Wheeler, Mathew B.; Popescu, Gabriel
2018-02-01
Characterization of spermatozoon viability is a common test in treating infertility. Recently, it has been shown that label-free, phase-sensitive imaging can provide a valuable alternative for this type of assay. We employ spatial light interference microscopy (SLIM) to perform high-accuracy single-cell phase imaging and decouple the average thickness and refractive index information for the population. This procedure was enabled by quantitative-phase imaging cells on media of two different refractive indices and using a numerical tool to remove the curvature from the cell tails. This way, we achieved ensemble averaging of topography and refractometry of 100 cells in each of the two groups. The results show that the thickness profile of the cell tail goes down to 150 nm and the refractive index can reach values of 1.6 close to the head.
Spin-glass phase in a neutral network with asymmetric couplings
NASA Astrophysics Data System (ADS)
Kree, R.; Widmaier, D.; Zippelius, A.
1988-12-01
The author studies the phase diagram of a neural network model which has learnt with the ADALINE algorithm, starting from tabula non rasa conditions. The resulting synaptic efficacies are not symmetric under an exchange of the pre- and post-synaptic neuron. In contrast to several other models which have been discussed in the literature, he finds a spin-glass phase in the asymmetrically coupled network. The main difference compared with the other models consists of long-ranged Gaussian correlations in the ensemble of couplings.
Residue-level global and local ensemble-ensemble comparisons of protein domains.
Clark, Sarah A; Tronrud, Dale E; Karplus, P Andrew
2015-09-01
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. © 2015 The Protein Society.
Residue-level global and local ensemble-ensemble comparisons of protein domains
Clark, Sarah A; Tronrud, Dale E; Andrew Karplus, P
2015-01-01
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a “consistency check” of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. PMID:26032515
Thermal characterization of QSH crashes in RFX-mod
NASA Astrophysics Data System (ADS)
Fassina, Alessandro; Gobbin, Marco; Franz, Paolo; Marrelli, Lionello; Ruzzon, Alberto
2012-10-01
QSH (Quasi Single Helicity) states have gained a growing interest in RFP research since they show improved confinement and transport features with respect to standard discharges. However, ITBs associated with QSH states can be obtained only in a transient way, and in general with a shorter lifetime with respect to that of the QSH phase [1]. In this work the analysis has essentially the purpose of confirming, with TS data, the Te dynamics seen with the double filter, multichord SXR spectrometer in [1]: TS data allow a better spatial definition of temperature profile and a more reliable description of plasma edge. Te profile features in rising and crashing phases are determined via ensemble averaging, possible precursors of thermal crashes are identified, while q(r) behavior is studied identifying the thermal structures associated with rational surfaces. [4pt] [1] Ruzzon et al, 39th EPS Conference, P2.023
High-lying single-particle modes, chaos, correlational entropy, and doubling phase transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoyanov, Chavdar; Zelevinsky, Vladimir
Highly excited single-particle states in nuclei are coupled with the excitations of a more complex character, first of all with collective phononlike modes of the core. In the framework of the quasiparticle-phonon model, we consider the structure of resulting complex configurations, using the 1k{sub 17/2} orbital in {sup 209}Pb as an example. Although, on the level of one- and two-phonon admixtures, the fully chaotic Gaussian orthogonal ensemble regime is not reached, the eigenstates of the model carry a significant degree of complexity that can be quantified with the aid of correlational invariant entropy. With artificially enhanced particle-core coupling, the systemmore » undergoes the doubling phase transition with the quasiparticle strength concentrated in two repelling peaks. This phase transition is clearly detected by correlational entropy.« less
Phases of global AdS black holes
NASA Astrophysics Data System (ADS)
Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala
2016-06-01
We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.
Ergodicity of a singly-thermostated harmonic oscillator
NASA Astrophysics Data System (ADS)
Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold
2016-03-01
Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
Reliable probabilities through statistical post-processing of ensemble predictions
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2013-04-01
We develop post-processing or calibration approaches based on linear regression that make ensemble forecasts more reliable. We enforce climatological reliability in the sense that the total variability of the prediction is equal to the variability of the observations. Second, we impose ensemble reliability such that the spread around the ensemble mean of the observation coincides with the one of the ensemble members. In general the attractors of the model and reality are inhomogeneous. Therefore ensemble spread displays a variability not taken into account in standard post-processing methods. We overcome this by weighting the ensemble by a variable error. The approaches are tested in the context of the Lorenz 96 model (Lorenz 1996). The forecasts become more reliable at short lead times as reflected by a flatter rank histogram. Our best method turns out to be superior to well-established methods like EVMOS (Van Schaeybroeck and Vannitsem, 2011) and Nonhomogeneous Gaussian Regression (Gneiting et al., 2005). References [1] Gneiting, T., Raftery, A. E., Westveld, A., Goldman, T., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133, 1098-1118. [2] Lorenz, E. N., 1996: Predictability - a problem partly solved. Proceedings, Seminar on Predictability ECMWF. 1, 1-18. [3] Van Schaeybroeck, B., and S. Vannitsem, 2011: Post-processing through linear regression, Nonlin. Processes Geophys., 18, 147.
Nanni, Loris; Lumini, Alessandra
2009-01-01
The focuses of this work are: to propose a novel method for building an ensemble of classifiers for peptide classification based on substitution matrices; to show the importance to select a proper set of the parameters of the classifiers that build the ensemble of learning systems. The HIV-1 protease cleavage site prediction problem is here studied. The results obtained by a blind testing protocol are reported, the comparison with other state-of-the-art approaches, based on ensemble of classifiers, allows to quantify the performance improvement obtained by the systems proposed in this paper. The simulation based on experimentally determined protease cleavage data has demonstrated the success of these new ensemble algorithms. Particularly interesting it is to note that also if the HIV-1 protease cleavage site prediction problem is considered linearly separable we obtain the best performance using an ensemble of non-linear classifiers.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)
2001-01-01
A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.
Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R
2009-03-20
Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.
Yang, Shan; Al-Hashimi, Hashim M.
2016-01-01
A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693
Unexpected manifestation of quark condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch; Molodtsov, S. V.
A comparative analysis of some quark ensembles governed by a four-fermion interaction is performed. Arguments in support of the statement that the presence of a gas-liquid phase transition is a feature peculiar to them are adduced. The instability of small quark droplets is discussed and is attributed to the formation of a chiral soliton. The stability of baryon matter is due to a mixed phase of the vacuum and baryon matter.
NASA Astrophysics Data System (ADS)
Gelb, Lev D.; Chakraborty, Somendra Nath
2011-12-01
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.
Phase Transitions in a Model of Y-Molecules Abstract
NASA Astrophysics Data System (ADS)
Holz, Danielle; Ruth, Donovan; Toral, Raul; Gunton, James
Immunoglobulin is a Y-shaped molecule that functions as an antibody to neutralize pathogens. In special cases where there is a high concentration of immunoglobulin molecules, self-aggregation can occur and the molecules undergo phase transitions. This prevents the molecules from completing their function. We used a simplified model of 2-Dimensional Y-molecules with three identical arms on a triangular lattice with 2-dimensional Grand Canonical Ensemble. The molecules were permitted to be placed, removed, rotated or moved on the lattice. Once phase coexistence was found, we used histogram reweighting and multicanonical sampling to calculate our phase diagram.
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.
van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian
2017-01-01
The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127
Invariant measures in brain dynamics
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł
2006-10-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao
2017-01-01
In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.
NASA Astrophysics Data System (ADS)
Sharma, Sanjib; Siddique, Ridwan; Reed, Seann; Ahnert, Peter; Mendoza, Pablo; Mejia, Alfonso
2018-03-01
The relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1-7) are investigated. For this purpose, a regional hydrologic ensemble prediction system (RHEPS) is developed and implemented. The RHEPS is comprised of the following components: (i) hydrometeorological observations (multisensor precipitation estimates, gridded surface temperature, and gauged streamflow); (ii) weather ensemble forecasts (precipitation and near-surface temperature) from the National Centers for Environmental Prediction 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2); (iii) NOAA's Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM); (iv) heteroscedastic censored logistic regression (HCLR) as the statistical preprocessor; (v) two statistical postprocessors, an autoregressive model with a single exogenous variable (ARX(1,1)) and quantile regression (QR); and (vi) a comprehensive verification strategy. To implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM and generate raw ensemble streamflow forecasts. Forecasting experiments are conducted in four nested basins in the US Middle Atlantic region, ranging in size from 381 to 12 362 km2. Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill than the raw forecasts. These improvements are more noticeable in the warm season at the longer lead times (> 3 days). Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble streamflow forecasts, particularly in the cool season, but QR outperforms ARX(1,1). The scenarios that implement preprocessing and postprocessing separately tend to perform similarly, although the postprocessing-alone scenario is often more effective. The scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. In some cases, however, the differences between this scenario and the scenario with postprocessing alone are not as significant. We conclude that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
A shared neural ensemble links distinct contextual memories encoded close in time
NASA Astrophysics Data System (ADS)
Cai, Denise J.; Aharoni, Daniel; Shuman, Tristan; Shobe, Justin; Biane, Jeremy; Song, Weilin; Wei, Brandon; Veshkini, Michael; La-Vu, Mimi; Lou, Jerry; Flores, Sergio E.; Kim, Isaac; Sano, Yoshitake; Zhou, Miou; Baumgaertel, Karsten; Lavi, Ayal; Kamata, Masakazu; Tuszynski, Mark; Mayford, Mark; Golshani, Peyman; Silva, Alcino J.
2016-06-01
Recent studies suggest that a shared neural ensemble may link distinct memories encoded close in time. According to the memory allocation hypothesis, learning triggers a temporary increase in neuronal excitability that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Here we show in mice that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Several findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two contexts are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged mice, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by ageing could affect the temporal structure of memories, thus impairing efficient recall of related information.
NASA Astrophysics Data System (ADS)
Martel, J. L.; Brissette, F.; Mailhot, A.; Wood, R. R.; Ludwig, R.; Frigon, A.; Leduc, M.; Turcotte, R.
2017-12-01
Recent studies indicate that the frequency and intensity of extreme precipitation will increase in future climate due to global warming. In this study, we compare annual maxima precipitation series from three large ensembles of climate simulations at various spatial and temporal resolutions. The first two are at the global scale: the Canadian Earth System Model (CanESM2) 50-member large ensemble (CanESM2-LE) at a 2.8° resolution and the Community Earth System Model (CESM1) 40-member large ensemble (CESM1-LE) at a 1° resolution. The third ensemble is at the regional scale over both Eastern North America and Europe: the Canadian Regional Climate Model (CRCM5) 50-member large ensemble (CRCM5-LE) at a 0.11° resolution, driven at its boundaries by the CanESM-LE. The CRCM5-LE is a new ensemble issued from the ClimEx project (http://www.climex-project.org), a Québec-Bavaria collaboration. Using these three large ensembles, change in extreme precipitations over the historical (1980-2010) and future (2070-2100) periods are investigated. This results in 1 500 (30 years x 50 members for CanESM2-LE and CRCM5-LE) and 1200 (30 years x 40 members for CESM1-LE) simulated years over both the historical and future periods. Using these large datasets, the empirical daily (and sub-daily for CRCM5-LE) extreme precipitation quantiles for large return periods ranging from 2 to 100 years are computed. Results indicate that daily extreme precipitations generally will increase over most land grid points of both domains according to the three large ensembles. Regarding the CRCM5-LE, the increase in sub-daily extreme precipitations will be even more important than the one observed for daily extreme precipitations. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety.
Computer simulation of liquid-vapor coexistence of confined quantum fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trejos, Víctor M.; Gil-Villegas, Alejandro, E-mail: gil@fisica.ugto.mx; Martinez, Alejandro
2013-11-14
The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential V{sub eff}(r) = V{sub LJ} + V{sub Q}, where V{sub LJ} is the Lennard-Jones 12-6 potential (LJ) and V{sub Q} is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ=h/σ√(mε), where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ε are the LJ potential parameters. The non-conformalmore » properties of the system of particles interacting via the effective pair potential V{sub eff}(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance L{sub p}, within the range 2σ ⩽ L{sub p} ⩽ 6σ. The critical temperature of the system is reduced by decreasing L{sub p} and increasing Λ, and the liquid-vapor transition is not longer observed for L{sub p}/σ < 2, in contrast to what has been observed for the classical system.« less
NASA Astrophysics Data System (ADS)
Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto
Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.
Arbitrary Dicke-State Control of Symmetric Rydberg Ensembles
NASA Astrophysics Data System (ADS)
Deutsch, Ivan
2017-04-01
We study the production of arbitrary superpositions of Dicke states via optimal control. We show that N atomic hyperfine qubits, interacting symmetrically via the Rydberg blockade, are well described by the Jaynes-Cummings Model (JCM), familiar in cavity QED. In this isomorphism, the presence or absence of a collective Rydberg excitation plays the role of the two-level system and the number of symmetric excitations of the hyperfine qubits plays the role of the bosonic excitations of the JCM. This system is fully controllable through the addition of phase-modulated microwaves that drive transitions between the Rydberg-dressed states. In the weak dressing regime, this results in a single-axis twisting Hamiltonian, plus time-dependent rotations of the collective spin. For strong dressing we control the entire Jaynes-Cummings ladder. Using optimal control, we design microwave waveforms that can generate arbitrary states in the symmetric subspace. This includes cat states, Dicke states, and spin squeezed states. With currently feasible parameters, it is possible to generate arbitrary symmetric states of _10 hyperfine qubits in 1 microsec, assuming a fast microwave phase switching time. The same control can be achieved with a ``dressed-ground control'' scheme, which reduces the demands for fast phase switching at the expense of increased total control time. More generally, we can achieve control on larger ensembles of qubits by designing waveforms that are bandwidth limited within the coherence time of the system. We use this to study general questions of the ``quantum speed limit'' and information content in a waveform that is needed to generate arbitrary quantum states.
NASA Astrophysics Data System (ADS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
Minimalist ensemble algorithms for genome-wide protein localization prediction.
Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun
2012-07-03
Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.
Minimalist ensemble algorithms for genome-wide protein localization prediction
2012-01-01
Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391
NASA Astrophysics Data System (ADS)
de Vega, H. J.; Sánchez, N.; Combes, F.
2000-09-01
Fractal structures are observed in the universe in two very different ways. Firstly, in the gas forming the cold interstellar medium in scales from 10-4pc till l00pc. Secondly, the galaxy distribution has been observed to be fractal in scales up to hundreds of Mpc. We give here a short review of the statistical mechanical (and field theoretical) approach developed by us for the cold interstellar medium (ISM) and large structure of the universe. We consider a non-relativistic self-gravitating gas in thermal equilibrium at temperature T inside a volume V. The statistical mechanics of such system has special features and, as is known, the thermodynamical limit does not exist in its customary form. Moreover, the treatments through microcanonical, canonical and grand canonical ensembles yield different results. We present here for the first time the equation of state for the self-gravitating gas in the canonical ensemble. We find that it has the form p = [NT/V]f(η), where p is the pressure, N is the number of particles and η ≡ (Gm2 N)/(V1/3 T) The N → ∞ and V → ∞ limit exists keeping η fixed. We compute the function f(η) using Monte Carlo simulations and for small η, analytically. We compute the thermodynamic quantities of the system as free energy, entropy, chemical potential, specific heat, compressibility and speed of sound. We reproduce the well-known gravitational phase transition associated to the Jeans' instability. Namely, a gaseous phase for η < ηc and a condensed phase for η > ηc. Moreover, we derive the precise behaviour of the physical quantities near the transition. In particular, the pressure vanishes as p (ηc - η)B with B 0.2 and ηc 1.6 and the energy fluctuations diverge as (ηc - η)B-1. The speed of sound decreases monotonically with η and approaches the value √ {T/6} at the transition.
The Influence of Internal Model Variability in GEOS-5 on Interhemispheric CO2 Exchange
NASA Technical Reports Server (NTRS)
Allen, Melissa; Erickson, David; Kendall, Wesley; Fu, Joshua; Ott, Leslie; Pawson, Steven
2012-01-01
An ensemble of eight atmospheric CO2 simulations was completed employing the National Aeronautics and Space Administration (NASA) Goddard Earth Observation System, Version 5 (GEOS-5) for the years 2000-2001, each with initial meteorological conditions corresponding to different days in January 2000 to examine internal model variability. Globally, the model runs show similar concentrations of CO2 for the two years, but in regions of high CO2 concentrations due to fossil fuel emissions, large differences among different model simulations appear. The phasing and amplitude of the CO2 cycle at Northern Hemisphere locations in all of the ensemble members is similar to that of surface observations. In several southern hemisphere locations, however, some of the GEOS-5 model CO2 cycles are out of phase by as much as four months, and large variations occur between the ensemble members. This result indicates that there is large sensitivity to transport in these regions. The differences vary by latitude-the most extreme differences in the Tropics and the least at the South Pole. Examples of these differences among the ensemble members with regard to CO2 uptake and respiration of the terrestrial biosphere and CO2 emissions due to fossil fuel emissions are shown at Cape Grim, Tasmania. Integration-based flow analysis of the atmospheric circulation in the model runs shows widely varying paths of flow into the Tasmania region among the models including sources from North America, South America, South Africa, South Asia and Indonesia. These results suggest that interhemispheric transport can be strongly influenced by internal model variability.
Topography and refractometry of sperm cells using spatial light interference microscopy.
Liu, Lina; Kandel, Mikhail E; Rubessa, Marcello; Schreiber, Sierra; Wheeler, Mathew B; Popescu, Gabriel
2018-02-01
Characterization of spermatozoon viability is a common test in treating infertility. Recently, it has been shown that label-free, phase-sensitive imaging can provide a valuable alternative for this type of assay. We employ spatial light interference microscopy (SLIM) to perform high-accuracy single-cell phase imaging and decouple the average thickness and refractive index information for the population. This procedure was enabled by quantitative-phase imaging cells on media of two different refractive indices and using a numerical tool to remove the curvature from the cell tails. This way, we achieved ensemble averaging of topography and refractometry of 100 cells in each of the two groups. The results show that the thickness profile of the cell tail goes down to 150 nm and the refractive index can reach values of 1.6 close to the head. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi
Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.
Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race
Rousanoglou, Elissavet N.; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A.; Boudolos, Konstantinos D.
2016-01-01
The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key points The 4.1% reduction of jump height immediately after the race is not statistically significant The eccentric phase alterations of jump mechanics precede those of the concentric ones. Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude. PMID:27274665
Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.
Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D
2016-06-01
The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede those of the concentric ones.Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude.
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.
2017-12-01
The northeastern coast of the United States is particularly vulnerable to impacts from extratropical cyclones during winter months, which produce heavy precipitation, high winds, and coastal flooding. These impacts are amplified by the proximity of major population centers to common storm tracks and include risks to health and welfare, massive transportation disruption, lost spending productivity, power outages, and structural damage. Historically, understanding regional snowfall in climate models has generally centered around seasonal mean climatologies even though major impacts typically occur at the scales of hours to days. To quantify discrete snowstorms at the event level, we describe a new objective detection algorithm for gridded data based on the Regional Snowfall Index (RSI) produced by NOAA's National Centers for Environmental Information. The algorithm uses 6-hourly precipitation to collocate storm-integrated snowfall with population density to produce a distribution of snowstorms with societally relevant impacts. The algorithm is tested on the Community Earth System Model (CESM) Large Ensemble Project (LENS) data. Present day distributions of snowfall events is well-replicated within the ensemble. We discuss classification sensitivities to assumptions made in determining precipitation phase and snow water equivalent. We also explore projected reductions in mid-century and end-of-century snowstorms due to changes in snowfall rates and precipitation phase, as well as highlight potential improvements in storm representation from refined horizontal resolution in model simulations.
Probing the Topology of Density Matrices
NASA Astrophysics Data System (ADS)
Bardyn, Charles-Edouard; Wawer, Lukas; Altland, Alexander; Fleischhauer, Michael; Diehl, Sebastian
2018-01-01
The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the "ensemble geometric phase" (EGP)—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities ("purity-gap" closing points) of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.
Resonance controlled transport in phase space
NASA Astrophysics Data System (ADS)
Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton
2018-02-01
We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.
kepler's dark worlds: A low albedo for an ensemble of Neptunian and Terran exoplanets
NASA Astrophysics Data System (ADS)
Jansen, Tiffany; Kipping, David
2018-05-01
Photometric phase curves provide an important window onto exoplanetary atmospheres and potentially even their surfaces. With similar amplitudes to occultations but far longer baselines, they have a higher sensitivity to planetary photons at the expense of a more challenging data reduction in terms of long-term stability. In this work, we introduce a novel non-parametric algorithm dubbed phasma to produce clean, robust exoplanet phase curves and apply it to 115 Neptunian and 50 Terran exoplanets observed by kepler. We stack the signals to further improve signal-to-noise, and measure an average Neptunian albedo of Ag < 0.23 to 95% confidence, indicating a lack of bright clouds consistent with theoretical models. Our Terran sample provides the first constraint on the ensemble albedo of exoplanets which are most likely solid, constraining Ag < 0.42 to 95% confidence. In agreement with our constraint on the greenhouse effect, our work implies that kepler's solid planets are unlikely to resemble cloudy Venusian analogs, but rather dark Mercurian rocks.
Communication and the emergence of collective behavior in living organisms: a quantum approach.
Bischof, Marco; Del Giudice, Emilio
2013-01-01
Intermolecular interactions within living organisms have been found to occur not as individual independent events but as a part of a collective array of interconnected events. The problem of the emergence of this collective dynamics and of the correlated biocommunication therefore arises. In the present paper we review the proposals given within the paradigm of modern molecular biology and those given by some holistic approaches to biology. In recent times, the collective behavior of ensembles of microscopic units (atoms/molecules) has been addressed in the conceptual framework of Quantum Field Theory. The possibility of producing physical states where all the components of the ensemble move in unison has been recognized. In such cases, electromagnetic fields trapped within the ensemble appear. In the present paper we present a scheme based on Quantum Field Theory where molecules are able to move in phase-correlated unison among them and with a self-produced electromagnetic field. Experimental corroboration of this scheme is presented. Some consequences for future biological developments are discussed.
Communication and the Emergence of Collective Behavior in Living Organisms: A Quantum Approach
Bischof, Marco; Del Giudice, Emilio
2013-01-01
Intermolecular interactions within living organisms have been found to occur not as individual independent events but as a part of a collective array of interconnected events. The problem of the emergence of this collective dynamics and of the correlated biocommunication therefore arises. In the present paper we review the proposals given within the paradigm of modern molecular biology and those given by some holistic approaches to biology. In recent times, the collective behavior of ensembles of microscopic units (atoms/molecules) has been addressed in the conceptual framework of Quantum Field Theory. The possibility of producing physical states where all the components of the ensemble move in unison has been recognized. In such cases, electromagnetic fields trapped within the ensemble appear. In the present paper we present a scheme based on Quantum Field Theory where molecules are able to move in phase-correlated unison among them and with a self-produced electromagnetic field. Experimental corroboration of this scheme is presented. Some consequences for future biological developments are discussed. PMID:24288611
Benefits of an ultra large and multiresolution ensemble for estimating available wind power
NASA Astrophysics Data System (ADS)
Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik
2016-04-01
In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.
Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W
2010-12-01
In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.
A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.
Cavrini, Francesco; Bianchi, Luigi; Quitadamo, Lucia Rita; Saggio, Giovanni
2016-01-01
We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.
NASA Astrophysics Data System (ADS)
Challis, R. E.; Tebbutt, J. S.; Holmes, A. K.
1998-12-01
The aim of this paper is to present a unified approach to the calculation of the complex wavenumber for a randomly distributed ensemble of homogeneous isotropic spheres suspended in a homogeneous isotropic continuum. Three classical formulations of the diffraction problem for a compression wave incident on a single particle are reviewed; the first is for liquid particles in a liquid continuum (Epstein and Carhart), the second for solid or liquid particles in a liquid continuum (Allegra and Hawley), and the third for solid particles in a solid continuum (Ying and Truell). Equivalences between these formulations are demonstrated and it is shown that the Allegra and Hawley formulation can be adapted to provide a basis for calculation in all three regimes. The complex wavenumber that results from an ensemble of such scatterers is treated using the formulations of Foldy (simple forward scattering), Waterman and Truell, and Lloyd and Berry (multiple scattering). The analysis is extended to provide an approximation for the case of a distribution of particle sizes in the mixture. A number of experimental measurements using a broadband spectrometric technique (reported elsewhere) to obtain the attenuation coefficient and phase velocity as functions of frequency are presented for various mixtures of differing contrasts in physical properties between phases in order to provide a comparison with theory. The materials used were aqueous suspensions of polystyrene spheres, silica spheres, iron spheres, 0022-3727/31/24/012/img1 pigment (AHR), droplets of 1-bromohexadecane, and a suspension of talc particles in a cured epoxy resin.
Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-10-01
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Pan, Shu-Ting; Xue, Danfeng; Li, Zhi-Ling; Zhou, Zhi-Wei; He, Zhi-Xu; Yang, Yinxue; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng
2016-01-01
The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA (“Orthologous MAtrix”) Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery. PMID:27367670
Special Issue on Time Scale Algorithms
2008-01-01
are currently Two Way Satellite Time and Frequency Transfer ( TWSTFT ) and GPS carrier phase time transfer. The interest in time scale algorithms and...laboratory-specific innovations and practices, GNSS applications, UTC generation, TWSTFT applications, GPS applications, small-ensemble applications
Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)
NASA Astrophysics Data System (ADS)
Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.
2016-12-01
On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krock, L.P.; Navalta, R.; Myhre, L.G.
An open bilayer ground-crew chemical defense ensemble (CDE) was proposed to reduce the thermal burden during vapor-only exposure periods. This study compared the thermal-stress profile of the proposed ensemble to that produced by the currently employed closed CDE. Four subjects, alternating ensembles on separate days, walked on a treadmill in an environmental chamber at 5.3 km/h (3.3 mph) and 2% grade (an energy expenditure of 350 kcal/h) for alternating work/rest to achieve significant recovery. Mean total sweat production was lower (1.38 vs. 2.50 liters) and percent sweat evaporation greater (65.7% vs. 30.0%) in the prototype ensemble than in the CDE.more » The prototype ensemble provided greater heat dissipation and allowed more-efficient sweat evaporation which had the double benefit of reducing heat storage and limiting dehydration.« less
Zhang, Li; Ai, Haixin; Chen, Wen; Yin, Zimo; Hu, Huan; Zhu, Junfeng; Zhao, Jian; Zhao, Qi; Liu, Hongsheng
2017-05-18
Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 ± 2.9%, sensitivity of 67.0 ± 5.0%, and specificity of 73.1 ± 4.4% in five-fold cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with some recent methods, the ensemble models outperform some machine learning-based approaches and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. It is also found that the ensemble models could be further improved if more data were available. As an application, the ensemble models are employed to discover potential carcinogens in the DrugBank database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of chemicals. A web server called CarcinoPred-EL has been built for these models ( http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/ ).
Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations
NASA Technical Reports Server (NTRS)
Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John;
2018-01-01
Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.
Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations
NASA Astrophysics Data System (ADS)
Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; Oman, Luke D.; Manyin, Michael E.; Zeng, Guang; Rozanov, Eugene; Stenke, Andrea; Revell, Laura E.; Pitari, Giovanni; Mancini, Eva; Di Genova, Glauco; Visioni, Daniele; Dhomse, Sandip S.; Chipperfield, Martyn P.
2018-01-01
Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.
Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)
2001-01-01
This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a predominately zonal wave number one pattern, and has propagation speeds (10 - 15 m/s) that are more typical of observed MJO behavior away from the convectively active regions. The free variability appears to be synchronized with the forced response, at least, during the strong event examined here. The results of this study support the idea that coupling with SSTs plays an important, though probably not dominant, role in the MJO. The magnitude of the atmospheric response to the SST appears to be in the range of 15% - 30% of the 20-70 day variability over much of the tropical eastern Indian and western Pacific Oceans. The results also highlight the need to use caution when interpreting atmospheric model simulations in which the prescribed SST resolve MJO time scales.
Partial information, market efficiency, and anomalous continuous phase transition
NASA Astrophysics Data System (ADS)
Yang, Guang; Zheng, Wenzhi; Huang, Jiping
2014-04-01
It is a common belief in economics and social science that if there is more information available for agents to gather in a human system, the system can become more efficient. The belief can be easily understood according to the well-known efficient market hypothesis. In this work, we attempt to challenge this belief by investigating a complex adaptive system, which is modeled by a market-directed resource-allocation game with a directed random network. We conduct a series of controlled human experiments in the laboratory to show the reliability of the model design. As a result, we find that even under a small information concentration, the system can still almost reach the optimal (balanced) state. Furthermore, the ensemble average of the system’s fluctuation level goes through a continuous phase transition. This behavior means that in the second phase if too much information is shared among agents, the system’s stability will be harmed instead, which differs from the belief mentioned above. Also, at the transition point, the ensemble fluctuations of the fluctuation level remain at a low value. This phenomenon is in contrast to the textbook knowledge about continuous phase transitions in traditional physical systems, namely, fluctuations will rise abnormally around a transition point since the correlation length becomes infinite. Thus, this work is of potential value to a variety of fields, such as physics, economics, complexity science, and artificial intelligence.
NASA Astrophysics Data System (ADS)
Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei
2016-08-01
The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.
Understanding genetic regulatory networks
NASA Astrophysics Data System (ADS)
Kauffman, Stuart
2003-04-01
Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more about the wiring diagram and constraints on rules controlling real genes, we can build refined ensembles reflecting these properties, study the generic properties of the refined ensembles, and hope to gain insight into the dynamics of real cells.
Not only Chauvet: dating Aurignacian rock art in Altxerri B Cave (northern Spain).
González-Sainz, C; Ruiz-Redondo, A; Garate-Maidagan, D; Iriarte-Avilés, E
2013-10-01
The discovery and first dates of the paintings in Grotte Chauvet provoked a new debate on the origin and characteristics of the first figurative Palaeolithic art. Since then, other art ensembles in France and Italy (Aldène, Fumane, Arcy-sur-Cure and Castanet) have enlarged our knowledge of graphic activity in the early Upper Palaeolithic. This paper presents a chronological assessment of the Palaeolithic parietal ensemble in Altxerri B (northern Spain). When the study began in 2011, one of our main objectives was to determine the age of this pictorial phase in the cave. Archaeological, geological and stylistic evidence, together with radiometric dates, suggest an Aurignacian chronology for this art. The ensemble in Altxerri B can therefore be added to the small but growing number of sites dated in this period, corroborating the hypothesis of more complex and varied figurative art than had been supposed in the early Upper Palaeolithic. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gelb, Lev D; Chakraborty, Somendra Nath
2011-12-14
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase. © 2011 American Institute of Physics
Energy production advantage of independent subcell connection for multijunction photovoltaics
Warmann, Emily C.; Atwater, Harry A.
2016-07-07
Increasing the number of subcells in a multijunction or "spectrum splitting" photovoltaic improves efficiency under the standard AM1.5D design spectrum, but it can lower efficiency under spectra that differ from the standard if the subcells are connected electrically in series. Using atmospheric data and the SMARTS multiple scattering and absorption model, we simulated sunny day spectra over 1 year for five locations in the United States and determined the annual energy production of spectrum splitting ensembles with 2-20 subcells connected electrically in series or independently. While electrically independent subcells have a small efficiency advantage over series-connected ensembles under the AM1.5Dmore » design spectrum, they have a pronounced energy production advantage under realistic spectra over 1 year. Simulated energy production increased with subcell number for the electrically independent ensembles, but it peaked at 8-10 subcells for those connected in series. As a result, electrically independent ensembles with 20 subcells produce up to 27% more energy annually than the series-connected 20-subcell ensemble. This energy production advantage persists when clouds are accounted for.« less
Energy production advantage of independent subcell connection for multijunction photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warmann, Emily C.; Atwater, Harry A.
Increasing the number of subcells in a multijunction or "spectrum splitting" photovoltaic improves efficiency under the standard AM1.5D design spectrum, but it can lower efficiency under spectra that differ from the standard if the subcells are connected electrically in series. Using atmospheric data and the SMARTS multiple scattering and absorption model, we simulated sunny day spectra over 1 year for five locations in the United States and determined the annual energy production of spectrum splitting ensembles with 2-20 subcells connected electrically in series or independently. While electrically independent subcells have a small efficiency advantage over series-connected ensembles under the AM1.5Dmore » design spectrum, they have a pronounced energy production advantage under realistic spectra over 1 year. Simulated energy production increased with subcell number for the electrically independent ensembles, but it peaked at 8-10 subcells for those connected in series. As a result, electrically independent ensembles with 20 subcells produce up to 27% more energy annually than the series-connected 20-subcell ensemble. This energy production advantage persists when clouds are accounted for.« less
NASA Astrophysics Data System (ADS)
Clark, E.; Wood, A.; Nijssen, B.; Newman, A. J.; Mendoza, P. A.
2016-12-01
The System for Hydrometeorological Applications, Research and Prediction (SHARP), developed at the National Center for Atmospheric Research (NCAR), University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation, is a fully automated ensemble prediction system for short-term to seasonal applications. It incorporates uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 plausible temperature and precipitation time series through the Sacramento/Snow-17 model. The forcing ensemble explicitly accounts for measurement and interpolation uncertainties in the development of gridded meteorological forcing time series. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. To select the IHCs that are most consistent with the observations, we employ a particle filter (PF) that weights IHC ensemble members based on observations of streamflow and SWE. These particles are then used to initialize ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS), generating a streamflow forecast ensemble. We test this method in two basins in the Pacific Northwest that are important for water resources management: 1) the Green River upstream of Howard Hanson Dam, and 2) the South Fork Flathead River upstream of Hungry Horse Dam. The first of these is characterized by mixed snow and rain, while the second is snow-dominated. The PF-based forecasts are compared to forecasts based on a single IHC (corresponding to median streamflow) paired with the full GEFS ensemble, and 2) the full IHC ensemble, without filtering, paired with the full GEFS ensemble. In addition to assessing improvements in the spread of IHCs, we perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts at 1- to 7-day lead times.
Rule-based programming paradigm: a formal basis for biological, chemical and physical computation.
Krishnamurthy, V; Krishnamurthy, E V
1999-03-01
A rule-based programming paradigm is described as a formal basis for biological, chemical and physical computations. In this paradigm, the computations are interpreted as the outcome arising out of interaction of elements in an object space. The interactions can create new elements (or same elements with modified attributes) or annihilate old elements according to specific rules. Since the interaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward an equilibrium or unstable or chaotic state. Such an evolution may retain certain invariant properties of the attributes of the elements. The object space resembles Gibbsian ensemble that corresponds to a distribution of points in the space of positions and momenta (called phase space). It permits the introduction of probabilities in rule applications. As each element of the ensemble changes over time, its phase point is carried into a new phase point. The evolution of this probability cloud in phase space corresponds to a distributed probabilistic computation. Thus, this paradigm can handle tor deterministic exact computation when the initial conditions are exactly specified and the trajectory of evolution is deterministic. Also, it can handle probabilistic mode of computation if we want to derive macroscopic or bulk properties of matter. We also explain how to support this rule-based paradigm using relational-database like query processing and transactions.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
NASA Astrophysics Data System (ADS)
Fayaz, S. M.; Rajanikant, G. K.
2014-07-01
Programmed cell death has been a fascinating area of research since it throws new challenges and questions in spite of the tremendous ongoing research in this field. Recently, necroptosis, a programmed form of necrotic cell death, has been implicated in many diseases including neurological disorders. Receptor interacting serine/threonine protein kinase 1 (RIPK1) is an important regulatory protein involved in the necroptosis and inhibition of this protein is essential to stop necroptotic process and eventually cell death. Current structure-based virtual screening methods involve a wide range of strategies and recently, considering the multiple protein structures for pharmacophore extraction has been emphasized as a way to improve the outcome. However, using the pharmacophoric information completely during docking is very important. Further, in such methods, using the appropriate protein structures for docking is desirable. If not, potential compound hits, obtained through pharmacophore-based screening, may not have correct ranks and scores after docking. Therefore, a comprehensive integration of different ensemble methods is essential, which may provide better virtual screening results. In this study, dual ensemble screening, a novel computational strategy was used to identify diverse and potent inhibitors against RIPK1. All the pharmacophore features present in the binding site were captured using both the apo and holo protein structures and an ensemble pharmacophore was built by combining these features. This ensemble pharmacophore was employed in pharmacophore-based screening of ZINC database. The compound hits, thus obtained, were subjected to ensemble docking. The leads acquired through docking were further validated through feature evaluation and molecular dynamics simulation.
Improving precision of glomerular filtration rate estimating model by ensemble learning.
Liu, Xun; Li, Ningshan; Lv, Linsheng; Fu, Yongmei; Cheng, Cailian; Wang, Caixia; Ye, Yuqiu; Li, Shaomin; Lou, Tanqi
2017-11-09
Accurate assessment of kidney function is clinically important, but estimates of glomerular filtration rate (GFR) by regression are imprecise. We hypothesized that ensemble learning could improve precision. A total of 1419 participants were enrolled, with 1002 in the development dataset and 417 in the external validation dataset. GFR was independently estimated from age, sex and serum creatinine using an artificial neural network (ANN), support vector machine (SVM), regression, and ensemble learning. GFR was measured by 99mTc-DTPA renal dynamic imaging calibrated with dual plasma sample 99mTc-DTPA GFR. Mean measured GFRs were 70.0 ml/min/1.73 m 2 in the developmental and 53.4 ml/min/1.73 m 2 in the external validation cohorts. In the external validation cohort, precision was better in the ensemble model of the ANN, SVM and regression equation (IQR = 13.5 ml/min/1.73 m 2 ) than in the new regression model (IQR = 14.0 ml/min/1.73 m 2 , P < 0.001). The precision of ensemble learning was the best of the three models, but the models had similar bias and accuracy. The median difference ranged from 2.3 to 3.7 ml/min/1.73 m 2 , 30% accuracy ranged from 73.1 to 76.0%, and P was > 0.05 for all comparisons of the new regression equation and the other new models. An ensemble learning model including three variables, the average ANN, SVM, and regression equation values, was more precise than the new regression model. A more complex ensemble learning strategy may further improve GFR estimates.
NASA Astrophysics Data System (ADS)
Akibue, Seiseki; Kato, Go
2018-04-01
For distinguishing quantum states sampled from a fixed ensemble, the gap in bipartite and single-party distinguishability can be interpreted as a nonlocality of the ensemble. In this paper, we consider bipartite state discrimination in a composite system consisting of N subsystems, where each subsystem is shared between two parties and the state of each subsystem is randomly sampled from a particular ensemble comprising the Bell states. We show that the success probability of perfectly identifying the state converges to 1 as N →∞ if the entropy of the probability distribution associated with the ensemble is less than 1, even if the success probability is less than 1 for any finite N . In other words, the nonlocality of the N -fold ensemble asymptotically disappears if the probability distribution associated with each ensemble is concentrated. Furthermore, we show that the disappearance of the nonlocality can be regarded as a remarkable counterexample of a fundamental open question in theoretical computer science, called a parallel repetition conjecture of interactive games with two classically communicating players. Measurements for the discrimination task include a projective measurement of one party represented by stabilizer states, which enable the other party to perfectly distinguish states that are sampled with high probability.
Assimilation of water temperature and discharge data for ensemble water temperature forecasting
NASA Astrophysics Data System (ADS)
Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André
2017-11-01
Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.
NASA Astrophysics Data System (ADS)
Tito Arandia Martinez, Fabian
2014-05-01
Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and combined to form a grand ensemble. Results show that the hydrological forecasts derived from the grand ensemble perform better than the pseudo ensemble forecasts actually used operationally at Hydro-Québec. References: [1] M. Verbunt, A. Walser, J. Gurtz et al., "Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies," Journal of Hydrometeorology, vol. 8, no. 4, pp. 897-909, Aug, 2007. [2] N. Evora, Valorisation des prévisions météorologiques d'ensemble, Institu de recherceh d'Hydro-Québec 2005. [3] V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, Institut de recherche d'Hydro-Québec, 2000.
NASA Astrophysics Data System (ADS)
Liu, Li; Xu, Yue-Ping
2017-04-01
Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.
A Maximum Likelihood Ensemble Data Assimilation Method Tailored to the Inner Radiation Belt
NASA Astrophysics Data System (ADS)
Guild, T. B.; O'Brien, T. P., III; Mazur, J. E.
2014-12-01
The Earth's radiation belts are composed of energetic protons and electrons whose fluxes span many orders of magnitude, whose distributions are log-normal, and where data-model differences can be large and also log-normal. This physical system thus challenges standard data assimilation methods relying on underlying assumptions of Gaussian distributions of measurements and data-model differences, where innovations to the model are small. We have therefore developed a data assimilation method tailored to these properties of the inner radiation belt, analogous to the ensemble Kalman filter but for the unique cases of non-Gaussian model and measurement errors, and non-linear model and measurement distributions. We apply this method to the inner radiation belt proton populations, using the SIZM inner belt model [Selesnick et al., 2007] and SAMPEX/PET and HEO proton observations to select the most likely ensemble members contributing to the state of the inner belt. We will describe the algorithm, the method of generating ensemble members, our choice of minimizing the difference between instrument counts not phase space densities, and demonstrate the method with our reanalysis of the inner radiation belt throughout solar cycle 23. We will report on progress to continue our assimilation into solar cycle 24 using the Van Allen Probes/RPS observations.
On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
NASA Astrophysics Data System (ADS)
Amadori, Debora; Ha, Seung-Yeal; Park, Jinyeong
2017-01-01
The Kuramoto model is a prototype phase model describing the synchronous behavior of weakly coupled limit-cycle oscillators. When the number of oscillators is sufficiently large, the dynamics of Kuramoto ensemble can be effectively approximated by the corresponding mean-field equation, namely "the Kuramoto-Sakaguchi (KS) equation". This KS equation is a kind of scalar conservation law with a nonlocal flux function due to the mean-field interactions among oscillators. In this paper, we provide a unique global solvability of bounded variation (BV) weak solutions to the kinetic KS equation for identical oscillators using the method of front-tracking in hyperbolic conservation laws. Moreover, we also show that our BV weak solutions satisfy local-in-time L1-stability with respect to BV-initial data. For the ensemble of identical Kuramoto oscillators, we explicitly construct an exponentially growing BV weak solution generated from BV perturbation of incoherent state for any positive coupling strength. This implies the nonlinear instability of incoherent state in a positive coupling strength regime. We provide several numerical examples and compare them with our analytical results.
NASA Astrophysics Data System (ADS)
Bañados, Máximo; Düring, Gustavo; Faraggi, Alberto; Reyes, Ignacio A.
2017-08-01
We study the thermodynamic phase diagram of three-dimensional s l (N ;R ) higher spin black holes. By analyzing the semiclassical partition function we uncover a rich structure that includes Hawking-Page transitions to the AdS3 vacuum, first order phase transitions among black hole states, and a second order critical point. Our analysis is explicit for N =4 but we extrapolate some of our conclusions to arbitrary N . In particular, we argue that even N is stable in the ensemble under consideration but odd N is not.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry
Walker, Peter
2017-01-01
Abstract The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. PMID:28108663
The total probabilities from high-resolution ensemble forecasting of floods
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2015-04-01
Ensemble forecasting has for a long time been used in meteorological modelling, to give an indication of the uncertainty of the forecasts. As meteorological ensemble forecasts often show some bias and dispersion errors, there is a need for calibration and post-processing of the ensembles. Typical methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). To make optimal predictions of floods along the stream network in hydrology, we can easily use the ensemble members as input to the hydrological models. However, some of the post-processing methods will need modifications when regionalizing the forecasts outside the calibration locations, as done by Hemri et al. (2013). We present a method for spatial regionalization of the post-processed forecasts based on EMOS and top-kriging (Skøien et al., 2006). We will also look into different methods for handling the non-normality of runoff and the effect on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005. Skøien, J. O., Merz, R. and Blöschl, G.: Top-kriging - Geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10(2), 277-287, 2006.
Ensemble sea ice forecast for predicting compressive situations in the Baltic Sea
NASA Astrophysics Data System (ADS)
Lehtiranta, Jonni; Lensu, Mikko; Kokkonen, Iiro; Haapala, Jari
2017-04-01
Forecasting of sea ice hazards is important for winter shipping in the Baltic Sea. In current numerical models the ice thickness distribution and drift are captured well, but compressive situations are often missing from forecast products. Its inclusion is requested by the shipping community, as compression poses a threat to ship operations. As compressing ice is capable of stopping ships for days and even damaging them, its inclusion in ice forecasts is vital. However, we have found that compression can not be predicted well in a deterministic forecast, since it can be a local and a quickly changing phenomenon. It is also very sensitive to small changes in the wind speed and direction, the prevailing ice conditions, and the model parameters. Thus, a probabilistic ensemble simulation is needed to produce a meaningful compression forecast. An ensemble model setup was developed in the SafeWIN project for this purpose. It uses the HELMI multicategory ice model, which was amended for making simulations in parallel. The ensemble was built by perturbing the atmospheric forcing and the physical parameters of the ice pack. The model setup will provide probabilistic forecasts for the compression in the Baltic sea ice. Additionally the model setup provides insight into the uncertainties related to different model parameters and their impact on the model results. We have completed several hindcast simulations for the Baltic Sea for verification purposes. These results are shown to match compression reports gathered from ships. In addition, an ensemble forecast is in preoperational testing phase and its first evaluation will be presented in this work.
NASA Astrophysics Data System (ADS)
Kjellström, Erik; Nikulin, Grigory; Strandberg, Gustav; Bøssing Christensen, Ole; Jacob, Daniela; Keuler, Klaus; Lenderink, Geert; van Meijgaard, Erik; Schär, Christoph; Somot, Samuel; Sørland, Silje Lund; Teichmann, Claas; Vautard, Robert
2018-05-01
We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to attenuation or amplification of the climate change signal in the underlying GCMs. We find that the RCMs tend to produce less warming and more precipitation (or less drying) in many areas in both winter and summer.
Effects of the interaction range on structural phases of flexible polymers.
Gross, J; Neuhaus, T; Vogel, T; Bachmann, M
2013-02-21
We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Ben, Mauro, E-mail: mauro.delben@chem.uzh.ch; Hutter, Jürg, E-mail: hutter@chem.uzh.ch; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles.more » Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH{sub 3}, CO{sub 2}, formic acid, and benzene.« less
A variational ensemble scheme for noisy image data assimilation
NASA Astrophysics Data System (ADS)
Yang, Yin; Robinson, Cordelia; Heitz, Dominique; Mémin, Etienne
2014-05-01
Data assimilation techniques aim at recovering a system state variables trajectory denoted as X, along time from partially observed noisy measurements of the system denoted as Y. These procedures, which couple dynamics and noisy measurements of the system, fulfill indeed a twofold objective. On one hand, they provide a denoising - or reconstruction - procedure of the data through a given model framework and on the other hand, they provide estimation procedures for unknown parameters of the dynamics. A standard variational data assimilation problem can be formulated as the minimization of the following objective function with respect to the initial discrepancy, η, from the background initial guess: δ« J(η(x)) = 1∥Xb (x) - X (t ,x)∥2 + 1 tf∥H(X (t,x ))- Y (t,x)∥2dt. 2 0 0 B 2 t0 R (1) where the observation operator H links the state variable and the measurements. The cost function can be interpreted as the log likelihood function associated to the a posteriori distribution of the state given the past history of measurements and the background. In this work, we aim at studying ensemble based optimal control strategies for data assimilation. Such formulation nicely combines the ingredients of ensemble Kalman filters and variational data assimilation (4DVar). It is also formulated as the minimization of the objective function (1), but similarly to ensemble filter, it introduces in its objective function an empirical ensemble-based background-error covariance defined as: B ≡ <(Xb -
Superradiant phase transition in a model of three-level-Λ systems interacting with two bosonic modes
NASA Astrophysics Data System (ADS)
Hayn, Mathias; Emary, Clive; Brandes, Tobias
2012-12-01
We consider an ensemble of three-level particles in Lambda configuration interacting with two bosonic modes. The Hamiltonian has the form of a generalized Dicke model. We show that in the thermodynamic limit this model supports a superradiant quantum phase transition. Remarkably, this can be both a first- and a second-order phase transition. A connection of the phase diagram to the symmetries of the Hamiltonian is also given. In addition, we show that this model can describe atoms interacting with an electromagnetic field in which the microscopic Hamiltonian includes a diamagnetic contribution. Even though the parameters of the atomic system respect the Thomas-Reiche-Kuhn sum rule, the system still shows a superradiant phase transition.
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
Social Behaviour Shapes Hypothalamic Neural Ensemble Representations Of Conspecific Sex
Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.
2017-01-01
Summary All animals possess a repertoire of innate (or instinctive1,2) behaviors, which can be performed without training. Whether such behaviors are mediated by anatomically distinct and/or genetically specified neural pathways remains a matter of debate3-5. Here we report that hypothalamic neural ensemble representations underlying innate social behaviors are shaped by social experience. Estrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents6-8. We used microendoscopy9 to image VMHvl Esr1+ neuronal activity in male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male vs. female conspecifics. But surprisingly, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not mount or attack conspecifics, ensemble divergence did not occur. However, 30 min of sexual experience with a female was sufficient to promote both male vs. female ensemble separation and attack, measured 24 hr later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviors. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a “hard-wired” system. PMID:29052632
2011-04-01
a ‘strategy as process’ manner to develop capabilities that are flexible, adaptable and robust. 3.4 Future structures The need for agile...to develop models of the future security environment 3.4.10 Planning Under Deep Uncertainty Future structures The need for agile, flexible and... Organisation NEC Network Enabled Capability NGO Non Government Organisation NII Networking and Information Infrastructure PVO Private Voluntary
A GLM Post-processor to Adjust Ensemble Forecast Traces
NASA Astrophysics Data System (ADS)
Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.
2011-12-01
The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.
Numerical approach on dynamic self-assembly of colloidal particles
NASA Astrophysics Data System (ADS)
Ibrahimi, Muhamet; Ilday, Serim; Makey, Ghaith; Pavlov, Ihor; Yavuz, Özgàn; Gulseren, Oguz; Ilday, Fatih Omer
Far from equilibrium systems of artificial ensembles are crucial for understanding many intelligent features in self-organized natural systems. However, the lack of established theory underlies a need for numerical implementations. Inspired by a novel work, we simulate a solution-suspended colloidal system that dynamically self assembles due to convective forces generated in the solvent when heated by a laser. In order to incorporate with random fluctuations of particles and continuously changing flow, we exploit a random-walk based Brownian motion model and a fluid dynamics solver prepared for games, respectively. Simulation results manage to fit to experiments and show many quantitative features of a non equilibrium dynamic self assembly, including phase space compression and an ensemble-energy input feedback loop.
Regional contribution to variability and trends of global gross primary productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min; Rafique, Rashid; Asrar, Ghassem R.
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117±13 Pg C yr-1 (mean ± 1 standard deviation), whichmore » was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.« less
Regional contribution to variability and trends of global gross primary productivity
NASA Astrophysics Data System (ADS)
Chen, Min; Rafique, Rashid; Asrar, Ghassem R.; Bond-Lamberty, Ben; Ciais, Philippe; Zhao, Fang; Reyer, Christopher P. O.; Ostberg, Sebastian; Chang, Jinfeng; Ito, Akihiko; Yang, Jia; Zeng, Ning; Kalnay, Eugenia; West, Tristram; Leng, Guoyong; Francois, Louis; Munhoven, Guy; Henrot, Alexandra; Tian, Hanqin; Pan, Shufen; Nishina, Kazuya; Viovy, Nicolas; Morfopoulos, Catherine; Betts, Richard; Schaphoff, Sibyll; Steinkamp, Jörg; Hickler, Thomas
2017-10-01
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr-1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.
NASA Astrophysics Data System (ADS)
Sokol, Zbyněk; Mejsnar, Jan; Pop, Lukáš; Bližňák, Vojtěch
2017-09-01
A new method for the probabilistic nowcasting of instantaneous rain rates (ENS) based on the ensemble technique and extrapolation along Lagrangian trajectories of current radar reflectivity is presented. Assuming inaccurate forecasts of the trajectories, an ensemble of precipitation forecasts is calculated and used to estimate the probability that rain rates will exceed a given threshold in a given grid point. Although the extrapolation neglects the growth and decay of precipitation, their impact on the probability forecast is taken into account by the calibration of forecasts using the reliability component of the Brier score (BS). ENS forecasts the probability that the rain rates will exceed thresholds of 0.1, 1.0 and 3.0 mm/h in squares of 3 km by 3 km. The lead times were up to 60 min, and the forecast accuracy was measured by the BS. The ENS forecasts were compared with two other methods: combined method (COM) and neighbourhood method (NEI). NEI considered the extrapolated values in the square neighbourhood of 5 by 5 grid points of the point of interest as ensemble members, and the COM ensemble was comprised of united ensemble members of ENS and NEI. The results showed that the calibration technique significantly improves bias of the probability forecasts by including additional uncertainties that correspond to neglected processes during the extrapolation. In addition, the calibration can also be used for finding the limits of maximum lead times for which the forecasting method is useful. We found that ENS is useful for lead times up to 60 min for thresholds of 0.1 and 1 mm/h and approximately 30 to 40 min for a threshold of 3 mm/h. We also found that a reasonable size of the ensemble is 100 members, which provided better scores than ensembles with 10, 25 and 50 members. In terms of the BS, the best results were obtained by ENS and COM, which are comparable. However, ENS is better calibrated and thus preferable.
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-01-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K
2015-06-04
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
NASA Astrophysics Data System (ADS)
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-06-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
Radiation of quantum black holes and modified uncertainty relation
NASA Astrophysics Data System (ADS)
Kamali, A. D.; Pedram, P.
In this paper, using a deformed algebra [X,P] = iℏ/(1 ‑ λ2P2) which is originated from various theories of gravity, we study thermodynamical properties of quantum black holes (BHs) in canonical ensembles. We exactly calculate the modified internal energy, entropy and heat capacity. Moreover, we investigate a tunneling mechanism of massless particle in phase space. In this regard, the tunneling radiation of BH receives new corrections and the exact radiant spectrum is no longer precisely thermal. In addition, we show that our results are compatible with other quantum gravity (QG) approaches.
Statistical thermodynamics of clustered populations.
Matsoukas, Themis
2014-08-01
We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.
Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maerzke, K A; McGrath, M J; Kuo, I W
2009-03-16
Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and over-estimated, respectively.« less
NASA Astrophysics Data System (ADS)
Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens
2017-04-01
Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.
Green-Kubo relations for the viscosity of biaxial nematic liquid crystals
NASA Astrophysics Data System (ADS)
Sarman, Sten
1996-09-01
We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.
Mitosis detection using generic features and an ensemble of cascade adaboosts.
Tek, F Boray
2013-01-01
Mitosis count is one of the factors that pathologists use to assess the risk of metastasis and survival of the patients, which are affected by the breast cancer. We investigate an application of a set of generic features and an ensemble of cascade adaboosts to the automated mitosis detection. Calculation of the features rely minimally on object-level descriptions and thus require minimal segmentation. The proposed work was developed and tested on International Conference on Pattern Recognition (ICPR) 2012 mitosis detection contest data. We plotted receiver operating characteristics curves of true positive versus false positive rates; calculated recall, precision, F-measure, and region overlap ratio measures. WE TESTED OUR FEATURES WITH TWO DIFFERENT CLASSIFIER CONFIGURATIONS: 1) An ensemble of single adaboosts, 2) an ensemble of cascade adaboosts. On the ICPR 2012 mitosis detection contest evaluation, the cascade ensemble scored 54, 62.7, and 58, whereas the non-cascade version scored 68, 28.1, and 39.7 for the recall, precision, and F-measure measures, respectively. Mostly used features in the adaboost classifier rules were a shape-based feature, which counted granularity and a color-based feature, which relied on Red, Green, and Blue channel statistics. The features, which express the granular structure and color variations, are found useful for mitosis detection. The ensemble of adaboosts performs better than the individual adaboost classifiers. Moreover, the ensemble of cascaded adaboosts was better than the ensemble of single adaboosts for mitosis detection.
Systematic land climate and evapotranspiration biases in CMIP5 simulations.
Mueller, B; Seneviratne, S I
2014-01-16
[1] Land climate is important for human population since it affects inhabited areas. Here we evaluate the realism of simulated evapotranspiration (ET), precipitation, and temperature in the CMIP5 multimodel ensemble on continental areas. For ET, a newly compiled synthesis data set prepared within the Global Energy and Water Cycle Experiment-sponsored LandFlux-EVAL project is used. The results reveal systematic ET biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations, with an overestimation in most regions, especially in Europe, Africa, China, Australia, Western North America, and part of the Amazon region. The global average overestimation amounts to 0.17 mm/d. This bias is more pronounced than in the previous CMIP3 ensemble (overestimation of 0.09 mm/d). Consistent with the ET overestimation, precipitation is also overestimated relative to existing reference data sets. We suggest that the identified biases in ET can explain respective systematic biases in temperature in many of the considered regions. The biases additionally display a seasonal dependence and are generally of opposite sign (ET underestimation and temperature overestimation) in boreal summer (June-August).
Modelling dynamics in protein crystal structures by ensemble refinement
Burnley, B Tom; Afonine, Pavel V; Adams, Paul D; Gros, Piet
2012-01-01
Single-structure models derived from X-ray data do not adequately account for the inherent, functionally important dynamics of protein molecules. We generated ensembles of structures by time-averaged refinement, where local molecular vibrations were sampled by molecular-dynamics (MD) simulation whilst global disorder was partitioned into an underlying overall translation–libration–screw (TLS) model. Modeling of 20 protein datasets at 1.1–3.1 Å resolution reduced cross-validated Rfree values by 0.3–4.9%, indicating that ensemble models fit the X-ray data better than single structures. The ensembles revealed that, while most proteins display a well-ordered core, some proteins exhibit a ‘molten core’ likely supporting functionally important dynamics in ligand binding, enzyme activity and protomer assembly. Order–disorder changes in HIV protease indicate a mechanism of entropy compensation for ordering the catalytic residues upon ligand binding by disordering specific core residues. Thus, ensemble refinement extracts dynamical details from the X-ray data that allow a more comprehensive understanding of structure–dynamics–function relationships. DOI: http://dx.doi.org/10.7554/eLife.00311.001 PMID:23251785
Ramsey interferometry of Rydberg ensembles inside microwave cavities
NASA Astrophysics Data System (ADS)
Sommer, Christian; Genes, Claudiu
2018-06-01
We study ensembles of Rydberg atoms in a confined electromagnetic environment such as is provided by a microwave cavity. The competition between standard free space Ising type and cavity-mediated interactions leads to the emergence of different regimes where the particle‑particle couplings range from the typical van der Waals r ‑6 behavior to r ‑3 and to r-independence. We apply a Ramsey spectroscopic technique to map the two-body interactions into a characteristic signal such as intensity and contrast decay curves. As opposed to previous treatments requiring high-densities for considerable contrast and phase decay (Takei et al 2016 Nat. Comms. 7 13449; Sommer et al 2016 Phys. Rev. A 94 053607), the cavity scenario can exhibit similar behavior at much lower densities.
Hot string soup: Thermodynamics of strings near the Hagedorn transition
NASA Astrophysics Data System (ADS)
Lowe, David A.; Thorlacius, Lárus
1995-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.
Monte Carlo replica-exchange based ensemble docking of protein conformations.
Zhang, Zhe; Ehmann, Uwe; Zacharias, Martin
2017-05-01
A replica-exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein-protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1-2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924-937. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
NASA Astrophysics Data System (ADS)
Peng, Yan
2017-07-01
We study a general flat space/boson star transition model in quasi-local ensemble through approaches familiar from holographic superconductor theories. We manage to find a parameter ψ 2, which is proved to be useful in disclosing properties of phase transitions. In this work, we explore effects of the scalar mass, scalar charge and Stückelberg mechanism on the critical phase transition points and the order of transitions mainly from behaviors of the parameter ψ 2. We mention that properties of transitions in quasi-local gravity are strikingly similar to those in holographic superconductor models. We also obtain an analytical relation ψ 2 ∝ ( μ - μ c )1/2, which also holds for the condensed scalar operator in the holographic insulator/superconductor system in accordance with mean field theories.
Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms
NASA Astrophysics Data System (ADS)
Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.
2018-04-01
Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.
Critical behavior of the XY-rotor model on regular and small-world networks
NASA Astrophysics Data System (ADS)
De Nigris, Sarah; Leoncini, Xavier
2013-07-01
We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ<1.5 the model behaves like a short-range one and no phase transition occurs. For γ>1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.
Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M
2017-10-12
Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.
Collective effects in force generation by multiple cytoskeletal filaments pushing an obstacle
NASA Astrophysics Data System (ADS)
Aparna, J. S.; Das, Dipjyoti; Padinhateeri, Ranjith; Das, Dibyendu
2015-09-01
We report here recent findings that multiple cytoskeletal filaments (assumed rigid) pushing an obstacle typically generate more force than just the sum of the forces due to individual ones. This interesting phenomenon, due to the hydrolysis process being out of equilibrium, escaped attention in previous experimental and theoretical literature. We first demonstrate this numerically within a constant force ensemble, for a well known model of cytoskeletal filament dynamics with random mechanism of hydrolysis. Two methods of detecting the departure from additivity of the collective stall force, namely from the force-velocity curve in the growing phase, and from the average collapse time versus force curve in the bounded phase, is discussed. Since experiments have already been done for a similar system of multiple microtubules in a harmonic optical trap, we study the problem theoretically under harmonic force. We show that within the varying harmonic force ensemble too, the mean collective stall force of N filaments is greater than N times the mean stall force due to a single filament; the actual extent of departure is a function of the monomer concentration.
Cavity electromagnetically induced transparency with Rydberg atoms
NASA Astrophysics Data System (ADS)
Bakar Ali, Abu; Ziauddin
2018-02-01
Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
NASA Astrophysics Data System (ADS)
Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.
2013-09-01
Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles reconstruct?
NASA Astrophysics Data System (ADS)
Saito, K.; Sueyoshi, T.; Marchenko, S.; Romanovsky, V.; Otto-Bliesner, B.; Walsh, J.; Bigelow, N.; Hendricks, A.; Yoshikawa, K.
2013-03-01
Global-scale frozen ground distribution during the Last Glacial Maximum (LGM) was reconstructed using multi-model ensembles of global climate models, and then compared with evidence-based knowledge and earlier numerical results. Modeled soil temperatures, taken from Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations, were used to diagnose the subsurface thermal regime and determine underlying frozen ground types for the present-day (pre-industrial; 0 k) and the LGM (21 k). This direct method was then compared to the earlier indirect method, which categorizes the underlying frozen ground type from surface air temperature, applied to both the PMIP2 (phase II) and PMIP3 products. Both direct and indirect diagnoses for 0 k showed strong agreement with the present-day observation-based map, although the soil temperature ensemble showed a higher diversity among the models partly due to varying complexity of the implemented subsurface processes. The area of continuous permafrost estimated by the multi-model analysis was 25.6 million km2 for LGM, in contrast to 12.7 million km2 for the pre-industrial control, whereas seasonally, frozen ground increased from 22.5 million km2 to 32.6 million km2. These changes in area resulted mainly from a cooler climate at LGM, but other factors as well, such as the presence of huge land ice sheets and the consequent expansion of total land area due to sea-level change. LGM permafrost boundaries modeled by the PMIP3 ensemble-improved over those of the PMIP2 due to higher spatial resolutions and improved climatology-also compared better to previous knowledge derived from the geomorphological and geocryological evidences. Combinatorial applications of coupled climate models and detailed stand-alone physical-ecological models for the cold-region terrestrial, paleo-, and modern climates will advance our understanding of the functionality and variability of the frozen ground subsystem in the global eco-climate system.
NASA Astrophysics Data System (ADS)
Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen
2017-07-01
Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Prairie, J.; Pruitt, T.; Rajagopalan, B.; Woodhouse, C.
2008-12-01
Water resources adaptation planning under climate change involves making assumptions about probabilistic water supply conditions, which are linked to a given climate context (e.g., instrument records, paleoclimate indicators, projected climate data, or blend of these). Methods have been demonstrated to associate water supply assumptions with any of these climate information types. Additionally, demonstrations have been offered that represent these information types in a scenario-rich (ensemble) planning framework, either via ensembles (e.g., survey of many climate projections) or stochastic modeling (e.g., based on instrument records or paleoclimate indicators). If the planning goal involves using a hydrologic ensemble that jointly reflects paleoclimate (e.g., lower- frequency variations) and projected climate information (e.g., monthly to annual trends), methods are required to guide how these information types might be translated into water supply assumptions. However, even if such a method exists, there is lack of understanding on how such a hydrologic ensemble might differ from ensembles developed relative to paleoclimate or projected climate information alone. This research explores two questions: (1) how might paleoclimate and projected climate information be blended into an planning hydrologic ensemble, and (2) how does a planning hydrologic ensemble differ when associated with the individual climate information types (i.e. instrumental records, paleoclimate, projected climate, or blend of the latter two). Case study basins include the Gunnison River Basin in Colorado and the Missouri River Basin above Toston in Montana. Presentation will highlight ensemble development methods by information type, and comparison of ensemble results.
Statistical mechanics of the vertex-cover problem
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2003-10-01
We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
Cant, Jonathan S.; Xu, Yaoda
2015-01-01
Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency. PMID:24964917
Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa
NASA Astrophysics Data System (ADS)
Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann
2018-04-01
Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry.
Shi, Xuesong; Walker, Peter; Harbury, Pehr B; Herschlag, Daniel
2017-05-05
The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing
2018-02-01
Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N 2 O emissions at field scale is discussed. © 2017 John Wiley & Sons Ltd.
Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.
2012-01-01
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276
Kim, Jung-Hyun; Powell, Jeffery B; Roberge, Raymond J; Shepherd, Angie; Coca, Aitor
2014-01-01
The purpose of this study was to evaluate the predictive capability of fabric Total Heat Loss (THL) values on thermal stress that Personal Protective Equipment (PPE) ensemble wearers may encounter while performing work. A series of three tests, consisting of the Sweating Hot Plate (SHP) test on two sample fabrics and the Sweating Thermal Manikin (STM) and human performance tests on two single-layer encapsulating ensembles (fabric/ensemble A = low THL and B = high THL), was conducted to compare THL values between SHP and STM methods along with human thermophysiological responses to wearing the ensembles. In human testing, ten male subjects performed a treadmill exercise at 4.8 km and 3% incline for 60 min in two environmental conditions (mild = 22°C, 50% relative humidity (RH) and hot/humid = 35°C, 65% RH). The thermal and evaporative resistances were significantly higher on a fabric level as measured in the SHP test than on the ensemble level as measured in the STM test. Consequently the THL values were also significantly different for both fabric types (SHP vs. STM: 191.3 vs. 81.5 W/m(2) in fabric/ensemble A, and 909.3 vs. 149.9 W/m(2) in fabric/ensemble B (p < 0.001). Body temperature and heart rate response between ensembles A and B were consistently different in both environmental conditions (p < 0.001), which is attributed to significantly higher sweat evaporation in ensemble B than in A (p < 0.05), despite a greater sweat production in ensemble A (p < 0.001) in both environmental conditions. Further, elevation of microclimate temperature (p < 0.001) and humidity (p < 0.01) was significantly greater in ensemble A than in B. It was concluded that: (1) SHP test determined THL values are significantly different from the actual THL potential of the PPE ensemble tested on STM, (2) physiological benefits from wearing a more breathable PPE ensemble may not be feasible with incremental THL values (SHP test) less than approximately 150-200 W·m(2), and (3) the effects of thermal environments on a level of heat stress in PPE ensemble wearers are greater than ensemble thermal characteristics.
Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method
NASA Astrophysics Data System (ADS)
Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.
2016-02-01
In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).
Non-stationary and relaxation phenomena in cavity-assisted quantum memories
NASA Astrophysics Data System (ADS)
Veselkova, N. G.; Sokolov, I. V.
2017-12-01
We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.
NASA Astrophysics Data System (ADS)
Kim, Minkyu; Chang, Jaeeon; Sandler, Stanley I.
2014-02-01
Accurate values of the free energies of C60 and C70 fullerene crystals are obtained using expanded ensemble method and acceptance ratio method combined with the Einstein-molecule approach. Both simulation methods, when tested for Lennard-Jones crystals, give accurate results of the free energy differing from each other in the fifth significant digit. The solid-solid phase transition temperature of C60 crystal is determined from free energy profiles, and found to be 260 K, which is in good agreement with experiment. For C70 crystal, using the potential model of Sprik et al. [Phys. Rev. Lett. 69, 1660 (1992)], low-temperature solid-solid phase transition temperature is found to be 160 K determined from the free energy profiles. Whereas this is somewhat lower than the experimental value, it is in agreement with conventional molecular simulations, which validates the methodological consistency of the present simulation method. From the calculations of the free energies of C60 and C70 crystals, we note the significance of symmetry number for crystal phase needed to properly account for the indistinguishability of orientationally disordered states.
NASA Technical Reports Server (NTRS)
Sippel, Jason A.; Zhang, Fuqing
2009-01-01
This study uses short-range ensemble forecasts initialized with an Ensemble-Kalman filter to study the dynamics and predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. It is found that deep moisture and high convective available potential energy (CAPE) are two of the most important factors for the genesis of Humberto. Variations in CAPE result in as much difference (ensemble spread) in the final hurricane intensity as do variations in deep moisture. CAPE differences here are related to the interaction between the cyclone and a nearby front, which tends to stabilize the lower troposphere in the vicinity of the circulation center. This subsequently weakens convection and slows genesis. Eventually the wind-induced surface heat exchange mechanism and differences in landfall time result in even larger ensemble spread. 1
Mixed-order phase transition in a minimal, diffusion-based spin model.
Fronczak, Agata; Fronczak, Piotr
2016-07-01
In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.
Voloh, Benjamin; Womelsdorf, Thilo
2016-01-01
Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a “neural context” in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
Spectral statistics of the uni-modular ensemble
NASA Astrophysics Data System (ADS)
Joyner, Christopher H.; Smilansky, Uzy; Weidenmüller, Hans A.
2017-09-01
We investigate the spectral statistics of Hermitian matrices in which the elements are chosen uniformly from U(1) , called the uni-modular ensemble (UME), in the limit of large matrix size. Using three complimentary methods; a supersymmetric integration method, a combinatorial graph-theoretical analysis and a Brownian motion approach, we are able to derive expressions for 1 / N corrections to the mean spectral moments and also analyse the fluctuations about this mean. By addressing the same ensemble from three different point of view, we can critically compare their relative advantages and derive some new results.
NASA Astrophysics Data System (ADS)
Izvekov, Sergei; Rice, Betsy M.
2012-09-01
We present new numerical pair-additive Al, Ni, and Al-Ni potentials by force-matching (FM) ionic force and virial data from single (bulk liquid) phase ab initio molecular dynamics (MD) simulations using the Born-Oppenheimer method. The potentials are represented by piece-wise functions (splines) and, therefore, are not constrained to a particular choice of analytical functional form. The FM method with virial constraint naturally yields a potential which maps out the ionic free-energy surface of the reference ensemble. To further improve the free energetics of the FM ensemble, the FM procedure is modified to bias the potentials to reproduce the experimental melting temperatures of the reference (FCC-Al, FCC-Ni, B2-NiAl) phases, the only macroscopic data included in the fitting set. The performance of the resultant potentials in simulating bulk metallic phases is then evaluated. The new model is applied to perform MD simulations of self-propagating exothermic reaction in Ni-Al bilayers at P = 0-5 GPa initiated at T = 1300 K. Consistent with experimental observations, the new model describes realistically a sequence of peritectic phase transformations throughout the reaction and at a realistic rate. The reaction proceeds through interlayer diffusion of Al and Ni atoms at the interface with formation of B2-NiAl in the Al melt. Such material responses have, in the past, been proven to be difficult to observe with then-existing potentials.
Three-model ensemble wind prediction in southern Italy
NASA Astrophysics Data System (ADS)
Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo
2016-03-01
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.
Ensemble streamflow assimilation with the National Water Model.
NASA Astrophysics Data System (ADS)
Rafieeinasab, A.; McCreight, J. L.; Noh, S.; Seo, D. J.; Gochis, D.
2017-12-01
Through case studies of flooding across the US, we compare the performance of the National Water Model (NWM) data assimilation (DA) scheme to that of a newly implemented ensemble Kalman filter approach. The NOAA National Water Model (NWM) is an operational implementation of the community WRF-Hydro modeling system. As of August 2016, the NWM forecasts of distributed hydrologic states and fluxes (including soil moisture, snowpack, ET, and ponded water) over the contiguous United States have been publicly disseminated by the National Center for Environmental Prediction (NCEP) . It also provides streamflow forecasts at more than 2.7 million river reaches up to 30 days in advance. The NWM employs a nudging scheme to assimilate more than 6,000 USGS streamflow observations and provide initial conditions for its forecasts. A problem with nudging is how the forecasts relax quickly to open-loop bias in the forecast. This has been partially addressed by an experimental bias correction approach which was found to have issues with phase errors during flooding events. In this work, we present an ensemble streamflow data assimilation approach combining new channel-only capabilities of the NWM and HydroDART (a coupling of the offline WRF-Hydro model and NCAR's Data Assimilation Research Testbed; DART). Our approach focuses on the single model state of discharge and incorporates error distributions on channel-influxes (overland and groundwater) in the assimilation via an ensemble Kalman filter (EnKF). In order to avoid filter degeneracy associated with a limited number of ensemble at large scale, DART's covariance inflation (Anderson, 2009) and localization capabilities are implemented and evaluated. The current NWM data assimilation scheme is compared to preliminary results from the EnKF application for several flooding case studies across the US.
NASA Astrophysics Data System (ADS)
Zaherpour, Jamal; Gosling, Simon N.; Mount, Nick; Müller Schmied, Hannes; Veldkamp, Ted I. E.; Dankers, Rutger; Eisner, Stephanie; Gerten, Dieter; Gudmundsson, Lukas; Haddeland, Ingjerd; Hanasaki, Naota; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Masaki, Yoshimitsu; Oki, Taikan; Pokhrel, Yadu; Satoh, Yusuke; Schewe, Jacob; Wada, Yoshihide
2018-06-01
Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models’ ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.
Barzegar, Rahim; Moghaddam, Asghar Asghari; Deo, Ravinesh; Fijani, Elham; Tziritis, Evangelos
2018-04-15
Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO 3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO 3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model. Copyright © 2017 Elsevier B.V. All rights reserved.
Symmetry, Statistics and Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.
Improving database enrichment through ensemble docking
NASA Astrophysics Data System (ADS)
Rao, Shashidhar; Sanschagrin, Paul C.; Greenwood, Jeremy R.; Repasky, Matthew P.; Sherman, Woody; Farid, Ramy
2008-09-01
While it may seem intuitive that using an ensemble of multiple conformations of a receptor in structure-based virtual screening experiments would necessarily yield improved enrichment of actives relative to using just a single receptor, it turns out that at least in the p38 MAP kinase model system studied here, a very large majority of all possible ensembles do not yield improved enrichment of actives. However, there are combinations of receptor structures that do lead to improved enrichment results. We present here a method to select the ensembles that produce the best enrichments that does not rely on knowledge of active compounds or sophisticated analyses of the 3D receptor structures. In the system studied here, the small fraction of ensembles of up to 3 receptors that do yield good enrichments of actives were identified by selecting ensembles that have the best mean GlideScore for the top 1% of the docked ligands in a database screen of actives and drug-like "decoy" ligands. Ensembles of two receptors identified using this mean GlideScore metric generally outperform single receptors, while ensembles of three receptors identified using this metric consistently give optimal enrichment factors in which, for example, 40% of the known actives outrank all the other ligands in the database.
Cross-sectional fluctuation scaling in the high-frequency illiquidity of Chinese stocks
NASA Astrophysics Data System (ADS)
Cai, Qing; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
2018-03-01
Taylor's law of temporal and ensemble fluctuation scaling has been ubiquitously observed in diverse complex systems including financial markets. Stock illiquidity is an important nonadditive financial quantity, which is found to comply with Taylor's temporal fluctuation scaling law. In this paper, we perform the cross-sectional analysis of the 1 min high-frequency illiquidity time series of Chinese stocks and unveil the presence of Taylor's law of ensemble fluctuation scaling. The estimated daily Taylor scaling exponent fluctuates around 1.442. We find that Taylor's scaling exponents of stock illiquidity do not relate to the ensemble mean and ensemble variety of returns. Our analysis uncovers a new scaling law of financial markets and might stimulate further investigations for a better understanding of financial markets' dynamics.
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.
2002-01-01
The variable-resolution stretched-grid (SG) GEOS (Goddard Earth Observing System) GCM has been used for limited ensemble integrations with a relatively coarse, 60 to 100 km, regional resolution over the U.S. The experiments have been run for the 12-year period, 1987-1998, that includes the recent ENSO cycles. Initial conditions 1-2 days apart are used for ensemble members. The goal of the experiments is analyzing the long-term SG-GCM ensemble integrations in terms of their potential in reducing the uncertainties of regional climate simulation while producing realistic mesoscales. The ensemble integration results are analyzed for both prognostic and diagnostic fields. A special attention is devoted to analyzing the variability of precipitation over the U.S. The internal variability of the SG-GCM has been assessed. The ensemble means appear to be closer to the verifying analyses than the individual ensemble members. The ensemble means capture realistic mesoscale patterns, especially those of induced by orography. Two ENSO cycles have been analyzed in terms their impact on the U.S. climate, especially on precipitation. The ability of the SG-GCM simulations to produce regional climate anomalies has been confirmed. However, the optimal size of the ensembles depending on fine regional resolution used, is still to be determined. The SG-GCM ensemble simulations are performed as a preparation or a preliminary stage for the international SGMIP (Stretched-Grid Model Intercomparison Project) that is under way with participation of the major centers and groups employing the SG-approach for regional climate modeling.
Extreme Value Analysis of hydro meteorological extremes in the ClimEx Large-Ensemble
NASA Astrophysics Data System (ADS)
Wood, R. R.; Martel, J. L.; Willkofer, F.; von Trentini, F.; Schmid, F. J.; Leduc, M.; Frigon, A.; Ludwig, R.
2017-12-01
Many studies show an increase in the magnitude and frequency of hydrological extreme events in the course of climate change. However the contribution of natural variability to the magnitude and frequency of hydrological extreme events is not yet settled. A reliable estimate of extreme events is from great interest for water management and public safety. In the course of the ClimEx Project (www.climex-project.org) a new single-model large-ensemble was created by dynamically downscaling the CanESM2 large-ensemble with the Canadian Regional Climate Model version 5 (CRCM5) for an European Domain and a Northeastern North-American domain. By utilizing the ClimEx 50-Member Large-Ensemble (CRCM5 driven by CanESM2 Large-Ensemble) a thorough analysis of natural variability in extreme events is possible. Are the current extreme value statistical methods able to account for natural variability? How large is the natural variability for e.g. a 1/100 year return period derived from a 50-Member Large-Ensemble for Europe and Northeastern North-America? These questions should be answered by applying various generalized extreme value distributions (GEV) to the ClimEx Large-Ensemble. Hereby various return levels (5-, 10-, 20-, 30-, 60- and 100-years) based on various lengths of time series (20-, 30-, 50-, 100- and 1500-years) should be analyzed for the maximum one day precipitation (RX1d), the maximum three hourly precipitation (RX3h) and the streamflow for selected catchments in Europe. The long time series of the ClimEx Ensemble (7500 years) allows us to give a first reliable estimate of the magnitude and frequency of certain extreme events.
NASA Astrophysics Data System (ADS)
Weber, Steven; Murch, K. W.; Chantasri, A.; Dressel, J.; Jordan, A. N.; Siddiqi, I.
2014-03-01
We use weak measurements to track individual quantum trajectories of a superconducting qubit embedded in a microwave cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We analyze ensembles of trajectories to determine statistical properties such as the most likely path and most likely time connecting pre and post-selected quantum states. We compare our results with theoretical predictions derived from an action principle for continuous quantum measurement. Furthermore, by introducing a qubit drive, we investigate the interplay between unitary state evolution and non-unitary measurement dynamics. This work was supported by the IARPA CSQ program and the ONR.
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.
2017-12-01
Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies in groundwater resources management.
Stump, Matthew R.; Gloss, Lisa M.
2010-01-01
The folding pathway of the histone H2A-H2B heterodimer minimally includes an on-pathway, dimeric, burst-phase intermediate, I2. The partially folded H2A and H2B monomers populated at equilibrium were characterized as potential monomeric kinetic intermediates. Folding kinetics were compared for initiation from isolated, folded monomers and the heterodimer unfolded in 4 M urea. The observed rates were virtually identical above 0.4 M urea, exhibiting a log-linear relationship on the final denaturant concentration. Below ~0.4 M urea (concentrations inaccessible from the 4 M urea unfolded state), a roll-over in the rates was observed; this suggests that a component of the I2 ensemble contains non-native structure that rearranges/isomerizes to a more native-like species. The contribution of helix propensity to the stability of the I2 ensemble was assessed with a set of H2A-H2B mutants containing Ala and Gly replacements at nine sites, focusing mainly on the long, central α2 helix. Equilibrium and kinetic folding/unfolding data were collected to determine the effects of the mutations on the stability of I2 and the transition state between I2 and N2. This limited mutational study indicated that residues in the α2 helices of H2A and H2B, as well as α1 of H2B and both the C-terminus of α3 and the short αC helix of H2A contribute to the stability of the I2 burst phase species. Interestingly, at least eight of the nine targeted residues stabilize I2 by interactions that are non-native to some extent. Given that destabilizing I2 and these non-native interactions does not accelerate folding, it is concluded that the native and non-native structure present in the I2 ensemble enables efficient folding of H2A-H2B. PMID:20600120
Fluctuation effects in blends of A + B homopolymers with AB diblock copolymer
NASA Astrophysics Data System (ADS)
Spencer, Russell K. W.; Matsen, Mark W.
2018-05-01
Field-theoretic simulations (FTSs) are performed on ternary blends of A- and B-type homopolymers of polymerization Nh and symmetric AB diblock copolymers of polymerization Nc. Unlike previous studies, our FTSs are conducted in three-dimensional space, with the help of two new semi-grand canonical ensembles. Motivated by the first experiment to discover bicontinuous microemulsion (BμE) in the polyethylene-polyethylene propylene system, we consider molecules of high molecular weight with size ratios of α ≡ Nh/Nc = 0.1, 0.2, and 0.4. Our focus is on the A + B coexistence between the two homopolymer-rich phases in the low-copolymer region of the phase diagram. The Scott line, at which the A + B phases mix to form a disordered melt with increasing temperature (or decreasing χ), is accurately determined using finite-size scaling techniques. We also examine how the copolymer affects the interface between the A + B phases, reducing the interfacial tension toward zero. Although comparisons with self-consistent field theory (SCFT) illustrate that fluctuation effects are relatively small, fluctuations do nevertheless produce the observed BμE that is absent in the SCFT phase diagram. Furthermore, we find evidence of three-phase A + B + BμE coexistence, which may have been missed in the original as well as subsequent experiments.
Hall, Michelle G; Mattingley, Jason B; Dux, Paul E
2015-08-01
The brain exploits redundancies in the environment to efficiently represent the complexity of the visual world. One example of this is ensemble processing, which provides a statistical summary of elements within a set (e.g., mean size). Another is statistical learning, which involves the encoding of stable spatial or temporal relationships between objects. It has been suggested that ensemble processing over arrays of oriented lines disrupts statistical learning of structure within the arrays (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). Here we asked whether ensemble processing and statistical learning are mutually incompatible, or whether this disruption might occur because ensemble processing encourages participants to process the stimulus arrays in a way that impedes statistical learning. In Experiment 1, we replicated Zhao and colleagues' finding that ensemble processing disrupts statistical learning. In Experiments 2 and 3, we found that statistical learning was unimpaired by ensemble processing when task demands necessitated (a) focal attention to individual items within the stimulus arrays and (b) the retention of individual items in working memory. Together, these results are consistent with an account suggesting that ensemble processing and statistical learning can operate over the same stimuli given appropriate stimulus processing demands during exposure to regularities. (c) 2015 APA, all rights reserved).
An ensemble approach to simulate CO2 emissions from natural fires
NASA Astrophysics Data System (ADS)
Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.
2014-01-01
This paper presents ensemble simulations with the global climate model developed at the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). These simulations were forced by historical reconstruction of external forcings for 850-2005 AD and by the Representative Concentration Pathways (RCP) scenarios till year 2300. Different ensemble members were constructed by varying the governing parameters of the IAP RAS CM module to simulate natural fires. These members are constrained by the GFED-3.1 observational data set and further subjected to Bayesian averaging. This approach allows to select only changes in fire characteristics which are robust within the constrained ensemble. In our simulations, the present-day (1998-2011 AD) global area burnt due to natural fires is (2.1 ± 0.4) × 106 km2 yr-1 (ensemble means and intra-ensemble standard deviations are presented), and the respective CO2 emissions in the atmosphere are (1.4 ± 0.2) PgC yr-1. The latter value is in agreement with the corresponding observational estimates. Regionally, the model underestimates CO2 emissions in the tropics; in the extra-tropics, it underestimates these emissions in north-east Eurasia and overestimates them in Europe. In the 21st century, the ensemble mean global burnt area is increased by 13% (28%, 36%, 51%) under scenario RCP 2.6 (RCP 4.5, RCP 6.0, RCP 8.5). The corresponding global emissions increase is 14% (29%, 37%, 42%). In the 22nd-23rd centuries, under the mitigation scenario RCP 2.6 the ensemble mean global burnt area and respective CO2 emissions slightly decrease, both by 5% relative to their values in year 2100. Under other RCP scenarios, these variables continue to increase. Under scenario RCP 8.5 (RCP 6.0, RCP 4.5) the ensemble mean burnt area in year 2300 is higher by 83% (44%, 15%) than its value in year 2100, and the ensemble mean CO2 emissions are correspondingly higher by 31% (19%, 9%). All changes of natural fire characteristics in the 21st-23rd centuries are associated mostly with the corresponding changes in boreal regions of Eurasia and North America. However, under the RCP 8.5 scenario, increase of the burnt area and CO2 emissions in boreal regions during the 22nd-23rd centuries are accompanied by the respective decreases in the tropics and subtropics.
Hamiltonian mean-field model: effect of temporal perturbation in coupling matrix
NASA Astrophysics Data System (ADS)
Bhadra, Nivedita; Patra, Soumen K.
2018-05-01
The Hamiltonian mean-field (HMF) model is a system of fully coupled rotators which exhibits a second-order phase transition at some critical energy in its canonical ensemble. We investigate the case where the interaction between the rotors is governed by a time-dependent coupling matrix. Our numerical study reveals a shift in the critical point due to the temporal modulation. The shift in the critical point is shown to be independent of the modulation frequency above some threshold value, whereas the impact of the amplitude of modulation is dominant. In the microcanonical ensemble, the system with constant coupling reaches a quasi-stationary state (QSS) at an energy near the critical point. Our result indicates that the QSS subsists in presence of such temporal modulation of the coupling parameter.
NASA Astrophysics Data System (ADS)
Achutarao, K. M.; Singh, R.
2017-12-01
There are various sources of uncertainty in model projections of future climate change. These include differences in the formulation of climate models, internal variability, and differences in scenarios. Internal variability in a climate system represents the unforced change due to the chaotic nature of the climate system and is considered irreducible (Deser et al., 2012). Internal variability becomes important at regional scales where it can dominate forced changes. Therefore it needs to be carefully assessed in future projections. In this study we segregate the role of internal variability in the future temperature and precipitation projections over the Indian region. We make use of the Coupled Model Inter-comparison Project - phase 5 (CMIP5; Taylor et al., 2012) database containing climate model simulations carried out by various modeling centers around the world. While the CMIP5 experimental protocol recommended producing numerous ensemble members, only a handful of the modeling groups provided multiple realizations. Having a small number of realizations is a limitation in producing a quantification of internal variability. We therefore exploit the Community Earth System Model Large Ensemble (CESM-LE; Kay et al., 2014) dataset which contains a 40 member ensemble of a single model- CESM1 (CAM5) to explore the role of internal variability in Future Projections. Surface air temperature and precipitation change projections over regional and sub-regional scale are analyzed under the IPCC emission scenario (RCP8.5) for different seasons and homogeneous climatic zones over India. We analyze the spread in projections due to internal variability in the CESM-LE and CMIP5 datasets over these regions.
NASA Astrophysics Data System (ADS)
Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-05-01
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized N P T ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-04-28
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara
2016-06-01
Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.
Stanescu, Ana; Caragea, Doina
2015-01-01
Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.
2015-01-01
Background Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Results Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. Conclusions In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework. PMID:26356316
Davey, James A; Chica, Roberto A
2014-05-01
Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Copyright © 2013 Wiley Periodicals, Inc.
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2017-04-01
Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes distance, stream-connectivity and size of the catchment areas into account. This can in some cases have a slight negative impact on the calibration error, but avoids large differences between parameters of nearby locations, whether stream connected or not. The spatial calibration also makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
Rectification of Spatial Disorder
NASA Astrophysics Data System (ADS)
Um, Jaegon; Hong, Hyunsuk; Marchesoni, Fabio; Park, Hyunggyu
2012-02-01
We demonstrate that a large ensemble of noiseless globally coupled-pinned oscillators is capable of rectifying spatial disorder with spontaneous current activated through a dynamical phase transition mechanism, either of first or second order, depending on the profile of the pinning potential. In the presence of an external weak drive, the same collective mechanism can result in an absolute negative mobility, which, though not immediately related to symmetry breaking, is most prominent at the phase transition. Our results apply to a tug-of-war by competing molecular motors for bidirectional cargo transport.
Evaluation of an Ensemble Dispersion Calculation.
NASA Astrophysics Data System (ADS)
Draxler, Roland R.
2003-02-01
A Lagrangian transport and dispersion model was modified to generate multiple simulations from a single meteorological dataset. Each member of the simulation was computed by assuming a ±1-gridpoint shift in the horizontal direction and a ±250-m shift in the vertical direction of the particle position, with respect to the meteorological data. The configuration resulted in 27 ensemble members. Each member was assumed to have an equal probability. The model was tested by creating an ensemble of daily average air concentrations for 3 months at 75 measurement locations over the eastern half of the United States during the Across North America Tracer Experiment (ANATEX). Two generic graphical displays were developed to summarize the ensemble prediction and the resulting concentration probabilities for a specific event: a probability-exceed plot and a concentration-probability plot. Although a cumulative distribution of the ensemble probabilities compared favorably with the measurement data, the resulting distribution was not uniform. This result was attributed to release height sensitivity. The trajectory ensemble approach accounts for about 41%-47% of the variance in the measurement data. This residual uncertainty is caused by other model and data errors that are not included in the ensemble design.
Baryons in the plasma: In-medium effects and parity doubling
NASA Astrophysics Data System (ADS)
Aarts, Gert; Allton, Chris; de Boni, Davide; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar
2018-02-01
We investigate the fate of baryons made out of u, d and s quarks in the hadronic gas and the quark-gluon plasma, using nonperturbative lattice simulations, employing the FASTSUManisotropic Nf = 2+1 ensembles. In the confined phase a strong temperature dependence is seen in the masses of the negative-parity groundstates, while the positiveparity groundstate masses are approximately temperature independent, within the error. At high temperature parity doubling emerges. A noticeable effect of the heavier s quark is seen. We give a simple description of the medium-dependent masses for the negativeparity states and speculate on the relevance for heavy-ion phenomenology via the hadron resonance gas.
A comparison of resampling schemes for estimating model observer performance with small ensembles
NASA Astrophysics Data System (ADS)
Elshahaby, Fatma E. A.; Jha, Abhinav K.; Ghaly, Michael; Frey, Eric C.
2017-09-01
In objective assessment of image quality, an ensemble of images is used to compute the 1st and 2nd order statistics of the data. Often, only a finite number of images is available, leading to the issue of statistical variability in numerical observer performance. Resampling-based strategies can help overcome this issue. In this paper, we compared different combinations of resampling schemes (the leave-one-out (LOO) and the half-train/half-test (HT/HT)) and model observers (the conventional channelized Hotelling observer (CHO), channelized linear discriminant (CLD) and channelized quadratic discriminant). Observer performance was quantified by the area under the ROC curve (AUC). For a binary classification task and for each observer, the AUC value for an ensemble size of 2000 samples per class served as a gold standard for that observer. Results indicated that each observer yielded a different performance depending on the ensemble size and the resampling scheme. For a small ensemble size, the combination [CHO, HT/HT] had more accurate rankings than the combination [CHO, LOO]. Using the LOO scheme, the CLD and CHO had similar performance for large ensembles. However, the CLD outperformed the CHO and gave more accurate rankings for smaller ensembles. As the ensemble size decreased, the performance of the [CHO, LOO] combination seriously deteriorated as opposed to the [CLD, LOO] combination. Thus, it might be desirable to use the CLD with the LOO scheme when smaller ensemble size is available.
The photospheric magnetic flux budget
NASA Technical Reports Server (NTRS)
Schrijver, C. J.; Harvey, K. L.
1994-01-01
The ensemble of bipolar regions and the magnetic network both contain a substantial and strongly variable part of the photospheric magnetic flux at any phase in the solar cycle. The time-dependent distribution of the magnetic flux over and within these components reflects the action of the dynamo operating in the solar interior. We perform a quantitative comparison of the flux emerging in the ensemble of magnetic bipoles with the observed flux content of the solar photosphere. We discuss the photospheric flux budget in terms of flux appearance and disappearance, and argue that a nonlinear dependence exists between the flux present in the photosphere and the rate of flux appearance and disappearance. In this context, we discuss the problem of making quantitative statements about dynamos in cool stars other than the Sun.
NASA Astrophysics Data System (ADS)
Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc
2018-05-01
Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole RO retrieval chain for the benefit of climate monitoring and other applications.
Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability
NASA Astrophysics Data System (ADS)
Hui, Chang; Zheng, Xiao-Tong
2018-01-01
The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.
Phase dependence of the unnormalized second-order photon correlation function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciornea, V.; Bardetski, P.; Macovei, M. A., E-mail: macovei@phys.asm.md
2016-10-15
We investigate the resonant quantum dynamics of a multi-qubit ensemble in a microcavity. Both the quantum-dot subsystem and the microcavity mode are pumped coherently. We find that the microcavity photon statistics depends on the phase difference of the driving lasers, which is not the case for the photon intensity at resonant driving. This way, one can manipulate the two-photon correlations. In particular, higher degrees of photon correlations and, eventually, stronger intensities are obtained. Furthermore, the microcavity photon statistics exhibits steady-state oscillatory behaviors as well as asymmetries.
QUEST1 Variability Survey. II. Variability Determination Criteria and 200k Light Curve Catalog
NASA Astrophysics Data System (ADS)
Rengstorf, A. W.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.
2004-12-01
The QUEST (QUasar Equatorial Survey Team) Phase 1 camera has collected multibandpass photometry on a large strip of high Galactic latitude sky over a period of 26 months. This robust data set has been reduced and nightly catalogs compared to determine the photometric variability of the ensemble objects. Subsequent spectroscopic observations have confirmed a subset of the photometric variables as quasars, as previously reported. This paper reports on the details of the data reduction and analysis pipeline and presents multiple bandpass light curves for 198,213 QUEST1 objects, along with global variability information and matched Sloan photometry. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.
NASA Astrophysics Data System (ADS)
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase uncertainties. The results are encouraging and this uncertainty propagation approach combined with BLB correction enables a robust reduction and quantification of the uncertainties of excess phases and bending angles in the lower troposphere.
NASA Astrophysics Data System (ADS)
Seko, Hiromu; Kunii, Masaru; Yokota, Sho; Tsuyuki, Tadashi; Miyoshi, Takemasa
2015-12-01
Experiments simulating intense vortices associated with tornadoes that occurred on 6 May 2012 on the Kanto Plain, Japan, were performed with a nested local ensemble transform Kalman filter (LETKF) system. Intense vortices were reproduced by downscale experiments with a 12-member ensemble in which the initial conditions were obtained from the nested LETKF system analyses. The downscale experiments successfully generated intense vortices in three regions similar to the observed vortices, whereas only one tornado was reproduced by a deterministic forecast. The intense vorticity of the strongest tornado, which was observed in the southernmost region, was successfully reproduced by 10 of the 12 ensemble members. An examination of the results of the ensemble downscale experiments showed that the duration of intense vorticities tended to be longer when the vertical shear of the horizontal wind was larger and the lower airflow was more humid. Overall, the study results show that ensemble forecasts have the following merits: (1) probabilistic forecasts of the outbreak of intense vortices associated with tornadoes are possible; (2) the miss rate of outbreaks should decrease; and (3) environmental factors favoring outbreaks can be obtained by comparing the multiple possible scenarios of the ensemble forecasts.
Effects of ensembles on methane hydrate nucleation kinetics.
Zhang, Zhengcai; Liu, Chan-Juan; Walsh, Matthew R; Guo, Guang-Jun
2016-06-21
By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus.
Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.
Kuzmanic, Antonija; Zagrovic, Bojan
2010-03-03
Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
Polymer-induced phase separation and crystallization in immunoglobulin G solutions.
Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen
2008-05-28
We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.
Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors
Kuzmanic, Antonija; Zagrovic, Bojan
2010-01-01
Abstract Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
Torso undergarments: their merit for clothed and armored individuals in hot-dry conditions.
Van den Heuvel, Anne M J; Kerry, Pete; Van der Velde, Jeroen H P M; Patterson, Mark J; Taylor, Nigel A S
2010-12-01
The aim of this study was to evaluate how the textile composition of torso undergarment fabrics may impact upon thermal strain, moisture transfer, and the thermal and clothing comfort of fully clothed, armored individuals working in a hot-dry environment (41.2 degrees C and 29.8% relative humidity). Five undergarment configurations were assessed using eight men who walked for 120 min (4 km x h(-1)), then alternated running (2 min at 10 km x h(-1)) and walking (2 min at 4 km x h(-1)) for 20 min. Trials differed only in the torso undergarments worn: no t-shirt (Ensemble A); 100% cotton t-shirt (Ensemble B); 100% woolen t-shirt (Ensemble C); synthetic t-shirt (Ensemble D: nylon, polyethylene, elastane); hybrid shirt (Ensemble E). Thermal and cardiovascular strain progressively increased throughout each trial, with the average terminal core temperature being 38.5 degrees C and heart rate peaking at 170 bpm across all trials. However, no significant between-trial separations were evident for core or mean skin temperatures, or for heart rate, sweat production, evaporation, the within-ensemble water vapor pressures, or for thermal or clothing discomfort. Thus, under these conditions, neither the t-shirt textile compositions, nor the presence or absence of an undergarment, offered any significant thermal, central cardiac, or comfort advantages. Furthermore, there was no evidence that any of these fabrics created a significantly drier microclimate next to the skin.
Algorithms that Defy the Gravity of Learning Curve
2017-04-28
three nearest neighbour-based anomaly detectors, i.e., an ensemble of nearest neigh- bours, a recent nearest neighbour-based ensemble method called iNNE...streams. Note that the change in sample size does not alter the geometrical data characteristics discussed here. 3.1 Experimental Methodology ...need to be answered. 3.6 Comparison with conventional ensemble methods Given the theoretical results, the third aim of this project (i.e., identify the
A low noise synthesizer for autotuning and performance testing of hydrogen masers
NASA Technical Reports Server (NTRS)
Cloeren, J. M.; Ingold, J. S.
1984-01-01
A low noise synthesizer has been developed for use in hydrogen maser autotuning and performance evaluation. This synthesizer replaces the frequency offset maser normally used for this purpose and allows the user to maintain all masers in the ensemble at the same frequency. The synthesizer design utilizes a quartz oscillator with a BVA resonator. The oscillator has a frequency offset of 5 X 10 to the minus 8 power. The BVA oscillator is phase-locked to a hydrogen maser by means of a high gain, high stability phase-locked loop, employing low noise multipliers as phase error amplifiers. A functional block diagram of the synthesizer and performance data will be presented.
A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset
NASA Astrophysics Data System (ADS)
Schellekens, Jaap; Dutra, Emanuel; Martínez-de la Torre, Alberto; Balsamo, Gianpaolo; van Dijk, Albert; Sperna Weiland, Frederiek; Minvielle, Marie; Calvet, Jean-Christophe; Decharme, Bertrand; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Peßenteiner, Stefanie; van Beek, Rens; Polcher, Jan; Beck, Hylke; Orth, René; Calton, Ben; Burke, Sophia; Dorigo, Wouter; Weedon, Graham P.
2017-07-01
The dataset presented here consists of an ensemble of 10 global hydrological and land surface models for the period 1979-2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution). The current dataset serves as a state of the art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominated regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3 yr-1 (334 kg m-2 yr-1), while the ensemble mean of total evaporation was 537 kg m-2 yr-1. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The DOI for the data is https://doi.org/10.1016/10.5281/zenodo.167070.
Medium effects and parity doubling of hyperons across the deconfinement phase transition
NASA Astrophysics Data System (ADS)
Aarts, Gert; Allton, Chris; Boni, Davide De; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar
2018-03-01
We analyse the behaviour of hyperons with strangeness S = -1,-2,-3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons. Presented at 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain
Lien, Mei-Ching; Ruthruff, Eric
2004-05-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Technical Reports Server (NTRS)
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
Cant, Jonathan S; Xu, Yaoda
2015-11-01
Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Evolutionary Ensemble for In Silico Prediction of Ames Test Mutagenicity
NASA Astrophysics Data System (ADS)
Chen, Huanhuan; Yao, Xin
Driven by new regulations and animal welfare, the need to develop in silico models has increased recently as alternative approaches to safety assessment of chemicals without animal testing. This paper describes a novel machine learning ensemble approach to building an in silico model for the prediction of the Ames test mutagenicity, one of a battery of the most commonly used experimental in vitro and in vivo genotoxicity tests for safety evaluation of chemicals. Evolutionary random neural ensemble with negative correlation learning (ERNE) [1] was developed based on neural networks and evolutionary algorithms. ERNE combines the method of bootstrap sampling on training data with the method of random subspace feature selection to ensure diversity in creating individuals within an initial ensemble. Furthermore, while evolving individuals within the ensemble, it makes use of the negative correlation learning, enabling individual NNs to be trained as accurate as possible while still manage to maintain them as diverse as possible. Therefore, the resulting individuals in the final ensemble are capable of cooperating collectively to achieve better generalization of prediction. The empirical experiment suggest that ERNE is an effective ensemble approach for predicting the Ames test mutagenicity of chemicals.
Self-synchronization in an ensemble of nonlinear oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovsky, L. A., E-mail: lev.ostrovsky@gmail.com; Galperin, Y. V.; Skirta, E. A.
2016-06-15
The paper describes the results of study of a system of coupled nonlinear, Duffing-type oscillators, from the viewpoint of their self-synchronization, i.e., generation of a coherent field (order parameter) via instability of an incoherent (random-phase) initial state. We consider both the cases of dissipative coupling (e.g., via the joint radiation) and reactive coupling in a Hamiltonian system.
Statistical characterization of planar two-dimensional Rayleigh-Taylor mixing layers
NASA Astrophysics Data System (ADS)
Sendersky, Dmitry
2000-10-01
The statistical evolution of a planar, randomly perturbed fluid interface subject to Rayleigh-Taylor instability is explored through numerical simulation in two space dimensions. The data set, generated by the front-tracking code FronTier, is highly resolved and covers a large ensemble of initial perturbations, allowing a more refined analysis of closure issues pertinent to the stochastic modeling of chaotic fluid mixing. We closely approach a two-fold convergence of the mean two-phase flow: convergence of the numerical solution under computational mesh refinement, and statistical convergence under increasing ensemble size. Quantities that appear in the two-phase averaged Euler equations are computed directly and analyzed for numerical and statistical convergence. Bulk averages show a high degree of convergence, while interfacial averages are convergent only in the outer portions of the mixing zone, where there is a coherent array of bubble and spike tips. Comparison with the familiar bubble/spike penetration law h = alphaAgt 2 is complicated by the lack of scale invariance, inability to carry the simulations to late time, the increasing Mach numbers of the bubble/spike tips, and sensitivity to the method of data analysis. Finally, we use the simulation data to analyze some constitutive properties of the mixing process.
A Simplified Theory of Coupled Oscillator Array Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R. J.; York, R. A.
1997-01-01
Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
Quantum trajectory phase transitions in the micromaser.
Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor
2011-08-01
We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.
Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley
2016-04-21
This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2016-04-01
Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative impact on the calibration error, but makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.
2018-04-01
A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.
Tatinati, Sivanagaraja; Nazarpour, Kianoush; Tech Ang, Wei; Veluvolu, Kalyana C
2016-08-01
Successful treatment of tumors with motion-adaptive radiotherapy requires accurate prediction of respiratory motion, ideally with a prediction horizon larger than the latency in radiotherapy system. Accurate prediction of respiratory motion is however a non-trivial task due to the presence of irregularities and intra-trace variabilities, such as baseline drift and temporal changes in fundamental frequency pattern. In this paper, to enhance the accuracy of the respiratory motion prediction, we propose a stacked regression ensemble framework that integrates heterogeneous respiratory motion prediction algorithms. We further address two crucial issues for developing a successful ensemble framework: (1) selection of appropriate prediction methods to ensemble (level-0 methods) among the best existing prediction methods; and (2) finding a suitable generalization approach that can successfully exploit the relative advantages of the chosen level-0 methods. The efficacy of the developed ensemble framework is assessed with real respiratory motion traces acquired from 31 patients undergoing treatment. Results show that the developed ensemble framework improves the prediction performance significantly compared to the best existing methods. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Kim, Minseung; Zorraquino, Violeta; Tagkopoulos, Ilias
2015-03-01
A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications.
On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs
McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...
2016-05-06
In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less
Edwards statistical mechanics for jammed granular matter
NASA Astrophysics Data System (ADS)
Baule, Adrian; Morone, Flaviano; Herrmann, Hans J.; Makse, Hernán A.
2018-01-01
In 1989, Sir Sam Edwards made the visionary proposition to treat jammed granular materials using a volume ensemble of equiprobable jammed states in analogy to thermal equilibrium statistical mechanics, despite their inherent athermal features. Since then, the statistical mechanics approach for jammed matter—one of the very few generalizations of Gibbs-Boltzmann statistical mechanics to out-of-equilibrium matter—has garnered an extraordinary amount of attention by both theorists and experimentalists. Its importance stems from the fact that jammed states of matter are ubiquitous in nature appearing in a broad range of granular and soft materials such as colloids, emulsions, glasses, and biomatter. Indeed, despite being one of the simplest states of matter—primarily governed by the steric interactions between the constitutive particles—a theoretical understanding based on first principles has proved exceedingly challenging. Here a systematic approach to jammed matter based on the Edwards statistical mechanical ensemble is reviewed. The construction of microcanonical and canonical ensembles based on the volume function, which replaces the Hamiltonian in jammed systems, is discussed. The importance of approximation schemes at various levels is emphasized leading to quantitative predictions for ensemble averaged quantities such as packing fractions and contact force distributions. An overview of the phenomenology of jammed states and experiments, simulations, and theoretical models scrutinizing the strong assumptions underlying Edwards approach is given including recent results suggesting the validity of Edwards ergodic hypothesis for jammed states. A theoretical framework for packings whose constitutive particles range from spherical to nonspherical shapes such as dimers, polymers, ellipsoids, spherocylinders or tetrahedra, hard and soft, frictional, frictionless and adhesive, monodisperse, and polydisperse particles in any dimensions is discussed providing insight into a unifying phase diagram for all jammed matter. Furthermore, the connection between the Edwards ensemble of metastable jammed states and metastability in spin glasses is established. This highlights the fact that the packing problem can be understood as a constraint satisfaction problem for excluded volume and force and torque balance leading to a unifying framework between the Edwards ensemble of equiprobable jammed states and out-of-equilibrium spin glasses.
The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh
2016-01-01
We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.
NASA Astrophysics Data System (ADS)
Fernández, J.; Primo, C.; Cofiño, A. S.; Gutiérrez, J. M.; Rodríguez, M. A.
2009-08-01
In a recent paper, Gutiérrez et al. (Nonlinear Process Geophys 15(1):109-114, 2008) introduced a new characterization of spatiotemporal error growth—the so called mean-variance logarithmic (MVL) diagram—and applied it to study ensemble prediction systems (EPS); in particular, they analyzed single-model ensembles obtained by perturbing the initial conditions. In the present work, the MVL diagram is applied to multi-model ensembles analyzing also the effect of model formulation differences. To this aim, the MVL diagram is systematically applied to the multi-model ensemble produced in the EU-funded DEMETER project. It is shown that the shared building blocks (atmospheric and ocean components) impose similar dynamics among different models and, thus, contribute to poorly sampling the model formulation uncertainty. This dynamical similarity should be taken into account, at least as a pre-screening process, before applying any objective weighting method.
Characterizing RNA ensembles from NMR data with kinematic models
Fonseca, Rasmus; Pachov, Dimitar V.; Bernauer, Julie; van den Bedem, Henry
2014-01-01
Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention. PMID:25114056
Experimental Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team
An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.
Multi-model analysis in hydrological prediction
NASA Astrophysics Data System (ADS)
Lanthier, M.; Arsenault, R.; Brissette, F.
2017-12-01
Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been largely corrected on short-term predictions. For the longer term, the addition of the multi-model member has been beneficial to the quality of the predictions, although it is too early to determine whether the gain is related to the addition of a member or if multi-model member has plus-value itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.
2015-12-11
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less
NASA Astrophysics Data System (ADS)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-12-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-01-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832
2015-09-30
1 Approved for public release; distribution is unlimited. Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman Filter and Adjoint...system at NCAR. (2) Compare the performance of the Ensemble Kalman Filter (EnKF) using the Data Assimilation Research Testbed (DART) and 4...undercurrent is clearly visible. Figure 2 shows the horizontal temperature structure and circulation at a depth of 50 m within the surface mixed layer
NASA Astrophysics Data System (ADS)
Tasaki, Hal
2018-06-01
We study a quantum spin system on the d-dimensional hypercubic lattice Λ with N=L^d sites with periodic boundary conditions. We take an arbitrary translation invariant short-ranged Hamiltonian. For this system, we consider both the canonical ensemble with inverse temperature β _0 and the microcanonical ensemble with the corresponding energy U_N(β _0) . For an arbitrary self-adjoint operator \\hat{A} whose support is contained in a hypercubic block B inside Λ , we prove that the expectation values of \\hat{A} with respect to these two ensembles are close to each other for large N provided that β _0 is sufficiently small and the number of sites in B is o(N^{1/2}) . This establishes the equivalence of ensembles on the level of local states in a large but finite system. The result is essentially that of Brandao and Cramer (here restricted to the case of the canonical and the microcanonical ensembles), but we prove improved estimates in an elementary manner. We also review and prove standard results on the thermodynamic limits of thermodynamic functions and the equivalence of ensembles in terms of thermodynamic functions. The present paper assumes only elementary knowledge on quantum statistical mechanics and quantum spin systems.
FLETCHER, Oclla Michele; GUERRINA, Ryan; ASHLEY, Candi D.; BERNARD, Thomas E.
2014-01-01
The purpose of this study was to examine the heat stress effects of three protective clothing ensembles: (1) protective apron over cloth coveralls including full face negative pressure respirator (APRON); (2) the apron over cloth coveralls with respirator plus protective pants (APRON+PANTS); and (3) protective coveralls over cloth coveralls with respirator (PROTECTIVE COVERALLS). In addition, there was a no-respirator ensemble (PROTECTIVE COVERALLS-noR), and WORK CLOTHES as a reference ensemble. Four acclimatized male participants completed a full set of five trials, and two of the participants repeated the full set. The progressive heat stress protocol was used to find the critical WBGT (WBGTcrit) and apparent total evaporative resistance (Re,T,a) at the upper limit of thermal equilibrium. The results (WBGTcrit [°C-WBGT] and Re,T,a [kPa m2 W−1]) were WORK CLOTHES (35.5, 0.0115), APRON (31.6, 0.0179), APRON+PANTS (27.7, 0.0244), PROTECTIVE COVERALLS (25.9, 0.0290), and PROTECTIVE COVERALLS-noR (26.2, 0.0296). There were significant differences among the ensembles. Supporting previous studies, there was little evidence to suggest that the respirator contributed to heat stress. PMID:24705801
NASA Astrophysics Data System (ADS)
Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.
2017-09-01
We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which may be an artifact, though, caused by the use of the same tabulated electron capture rates for heavy nuclei ignoring differences in the nuclear composition between the two EOSs in these computations.
A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario
NASA Astrophysics Data System (ADS)
Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.
2014-12-01
It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.
Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.; ...
2016-05-26
By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) andmore » CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogama, Hideo; Imada, Yukiko; Mori, Masato
Here, we describe two unprecedented large (100-member), longterm (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the "Database for Policy Decision making for Future climate change (d4PDF)". We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicatemore » that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001- 2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.« less
Avoiding the ensemble decorrelation problem using member-by-member post-processing
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2014-05-01
Forecast calibration or post-processing has become a standard tool in atmospheric and climatological science due to the presence of systematic initial condition and model errors. For ensemble forecasts the most competitive methods derive from the assumption of a fixed ensemble distribution. However, when independently applying such 'statistical' methods at different locations, lead times or for multiple variables the correlation structure for individual ensemble members is destroyed. Instead of reastablishing the correlation structure as in Schefzik et al. (2013) we instead propose a calibration method that avoids such problem by correcting each ensemble member individually. Moreover, we analyse the fundamental mechanisms by which the probabilistic ensemble skill can be enhanced. In terms of continuous ranked probability score, our member-by-member approach amounts to skill gain that extends for lead times far beyond the error doubling time and which is as good as the one of the most competitive statistical approach, non-homogeneous Gaussian regression (Gneiting et al. 2005). Besides the conservation of correlation structure, additional benefits arise including the fact that higher-order ensemble moments like kurtosis and skewness are inherited from the uncorrected forecasts. Our detailed analysis is performed in the context of the Kuramoto-Sivashinsky equation and different simple models but the results extent succesfully to the ensemble forecast of the European Centre for Medium-Range Weather Forecasts (Van Schaeybroeck and Vannitsem, 2013, 2014) . References [1] Gneiting, T., Raftery, A. E., Westveld, A., Goldman, T., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133, 1098-1118. [2] Schefzik, R., T.L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling. To appear in Statistical Science 28. [3] Van Schaeybroeck, B., and S. Vannitsem, 2013: Reliable probabilities through statistical post-processing of ensemble forecasts. Proceedings of the European Conference on Complex Systems 2012, Springer proceedings on complexity, XVI, p. 347-352. [4] Van Schaeybroeck, B., and S. Vannitsem, 2014: Ensemble post-processing using member-by-member approaches: theoretical aspects, under review.
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
NASA Astrophysics Data System (ADS)
Feng, Tao
2013-04-01
Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. Changes in the timing of seasons, especially the wind season, have gained much attention worldwide in recent decade or so. We introduce long-range correlated surrogate data to Ensemble Empirical Mode Decomposition method, which represent the statistic characteristics of data better than white noise. The new method we named Ensemble Empirical Mode Decomposition with Long-range Correlated noise (EEMD-LRC) and applied to 600 station wind speed records. This new method is applied to investigate the trend in the amplitude of the annual cycle of China's daily mean surface wind speed for the period 1971-2005. The amplitude of seasonal variation decrease significantly in the past half century over China, which can be well explained by Annual Cycle component from EEMD-LRC. Furthermore, the phase change of annual cycle lead to strongly shorten of wind season in spring, and corresponding with strong windy day frequency change over Northern China.
Observation of discrete time-crystalline order in a disordered dipolar many-body system
Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman Y.; Demler, Eugene; Lukin, Mikhail D.
2017-01-01
Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to dynamical phase transitions1,2. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter3–6. As a particularly striking example, the interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic “time-crystalline” phases7, which spontaneously break the discrete time-translation symmetry of the underlying drive8–11. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of ~ 106 dipolar spin impurities in diamond at room-temperature12–14. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization15,16. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems17–19. PMID:28277511
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S; Zhu, X; Zhang, M
Purpose: Randomness in patient internal organ motion phase at the beginning of non-gated radiotherapy delivery may introduce uncertainty to dose received by the patient. Concerns of this dose deviation from the planned one has motivated many researchers to study this phenomenon although unified theoretical framework for computing it is still missing. This study was conducted to develop such framework for analyzing the effect. Methods: Two reasonable assumptions were made: a) patient internal organ motion is stationary and periodic; b) no special arrangement is made to start a non -gated radiotherapy delivery at any specific phase of patient internal organ motion.more » A statistical ensemble was formed consisting of patient’s non-gated radiotherapy deliveries at all equally possible initial organ motion phases. To characterize the patient received dose, statistical ensemble average method is employed to derive formulae for two variables: expected value and variance of dose received by a patient internal point from a non-gated radiotherapy delivery. Fourier Series was utilized to facilitate our analysis. Results: According to our formulae, the two variables can be computed from non-gated radiotherapy generated dose rate time sequences at the point’s corresponding locations on fixed phase 3D CT images sampled evenly in time over one patient internal organ motion period. The expected value of point dose is simply the average of the doses to the point’s corresponding locations on the fixed phase CT images. The variance can be determined by time integration in terms of Fourier Series coefficients of the dose rate time sequences on the same fixed phase 3D CT images. Conclusion: Given a non-gated radiotherapy delivery plan and patient’s 4D CT study, our novel approach can predict the expected value and variance of patient radiation dose. We expect it to play a significant role in determining both quality and robustness of patient non-gated radiotherapy plan.« less
Comparing generalized ensemble methods for sampling of systems with many degrees of freedom
Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa
2016-11-03
Here, we compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchangemore » (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-β peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium.« less
Comparing generalized ensemble methods for sampling of systems with many degrees of freedom.
Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa
2016-11-07
We compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchange (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-β peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium (http://www.omnia.md/).
2012-01-01
Background Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case study, we address the following question in this paper: Can acute rejection classification performance be improved by combining individual genomic and proteomic classifiers in an ensemble? Results The first part of the paper presents a computational biomarker development pipeline for genomic and proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA genomic and five proteomic classifiers were developed independently using single time-point blood samples from 11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area under the curve (AUC), sensitivity, and specificity, as derived from the probability of acute rejection for individual classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2) Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5 ensembles, but typically at the cost of decreased specificity. Conclusion Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers alone. Validation of our results in an international multicenter study is currently underway. PMID:23216969
Günther, Oliver P; Chen, Virginia; Freue, Gabriela Cohen; Balshaw, Robert F; Tebbutt, Scott J; Hollander, Zsuzsanna; Takhar, Mandeep; McMaster, W Robert; McManus, Bruce M; Keown, Paul A; Ng, Raymond T
2012-12-08
Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case study, we address the following question in this paper: Can acute rejection classification performance be improved by combining individual genomic and proteomic classifiers in an ensemble? The first part of the paper presents a computational biomarker development pipeline for genomic and proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA genomic and five proteomic classifiers were developed independently using single time-point blood samples from 11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area under the curve (AUC), sensitivity, and specificity, as derived from the probability of acute rejection for individual classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2) Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5 ensembles, but typically at the cost of decreased specificity. Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers alone. Validation of our results in an international multicenter study is currently underway.
Warren, Brandon L.; Mendoza, Michael P.; Cruz, Fabio C.; Leao, Rodrigo M.; Caprioli, Daniele; Rubio, F. Javier; Whitaker, Leslie R.; McPherson, Kylie B.; Bossert, Jennifer M.; Shaham, Yavin
2016-01-01
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in “neuronal ensembles.” Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. SIGNIFICANCE STATEMENT A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area. PMID:27335401
Warren, Brandon L; Mendoza, Michael P; Cruz, Fabio C; Leao, Rodrigo M; Caprioli, Daniele; Rubio, F Javier; Whitaker, Leslie R; McPherson, Kylie B; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T
2016-06-22
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area. Copyright © 2016 the authors 0270-6474/16/366691-13$15.00/0.
How Accurate Are Transition States from Simulations of Enzymatic Reactions?
2015-01-01
The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275
Liquid Water from First Principles: Validation of Different Sampling Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundy, C J; Kuo, W; Siepmann, J
2004-05-20
A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is foundmore » that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.« less
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Analyzing the impact of changing size and composition of a crop model ensemble
NASA Astrophysics Data System (ADS)
Rodríguez, Alfredo
2017-04-01
The use of an ensemble of crop growth simulation models is a practice recently adopted in order to quantify aspects of uncertainties in model simulations. Yet, while the climate modelling community has extensively investigated the properties of model ensembles and their implications, this has hardly been investigated for crop model ensembles (Wallach et al., 2016). In their ensemble of 27 wheat models, Martre et al. (2015) found that the accuracy of the multi-model ensemble-average only increases up to an ensemble size of ca. 10, but does not improve when including more models in the analysis. However, even when this number of members is reached, questions about the impact of the addition or removal of a member to/from the ensemble arise. When selecting ensemble members, identifying members with poor performance or giving implausible results can make a large difference on the outcome. The objective of this study is to set up a methodology that defines indicators to show the effects of changing the ensemble composition and size on simulation results, when a selection procedure of ensemble members is applied. Ensemble mean or median, and variance are measures used to depict ensemble results among other indicators. We are utilizing simulations from an ensemble of wheat models that have been used to construct impact response surfaces (Pirttioja et al., 2015) (IRSs). These show the response of an impact variable (e.g., crop yield) to systematic changes in two explanatory variables (e.g., precipitation and temperature). Using these, we compare different sub-ensembles in terms of the mean, median and spread, and also by comparing IRSs. The methodology developed here allows comparing an ensemble before and after applying any procedure that changes the ensemble composition and size by measuring the impact of this decision on the ensemble central tendency measures. The methodology could also be further developed to compare the effect of changing ensemble composition and size on IRS features. References Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Muller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stockle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F.L., Travasso, M., Waha, K., White, J.W., Wolf, J., 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911-925. Pirttioja N., Carter T., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos, M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Doro L., Dumont B., Ewert F., Ferrise R., Francois L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.-C., Kollas C., Krzyszczak J., Lorite I. J., Minet J., Minguez M. I., Montesion M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodriguez, A., Ruane A.C., Ruget F., Sanna M., Semenov M., Slawinski C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., Rötter R.P, 2015. A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65:87-105, doi:10.3354/cr01322 Wallach, D., Mearns, L.O. Ruane, A.C., Rötter, R.P., Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climate Change (in press) doi:10.1007/s10584-016-1803-1.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.
2018-02-01
We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.
Thermodynamics and glassy phase transition of regular black holes
NASA Astrophysics Data System (ADS)
Javed, Wajiha; Yousaf, Z.; Akhtar, Zunaira
2018-05-01
This paper is aimed to study thermodynamical properties of phase transition for regular charged black holes (BHs). In this context, we have considered two different forms of BH metrics supplemented with exponential and logistic distribution functions and investigated the recent expansion of phase transition through grand canonical ensemble. After exploring the corresponding Ehrenfest’s equation, we found the second-order background of phase transition at critical points. In order to check the critical behavior of regular BHs, we have evaluated some corresponding explicit relations for the critical temperature, pressure and volume and draw certain graphs with constant values of Smarr’s mass. We found that for the BH metric with exponential configuration function, the phase transition curves are divergent near the critical points, while glassy phase transition has been observed for the Ayón-Beato-García-Bronnikov (ABGB) BH in n = 5 dimensions.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
Ensemble method for dengue prediction.
Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan
2018-01-01
In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.
Ensemble method for dengue prediction
Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan
2018-01-01
Background In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Methods Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Principal findings Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. Conclusions The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru. PMID:29298320
Comparing ensemble learning methods based on decision tree classifiers for protein fold recognition.
Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi
2014-01-01
In this paper, some methods for ensemble learning of protein fold recognition based on a decision tree (DT) are compared and contrasted against each other over three datasets taken from the literature. According to previously reported studies, the features of the datasets are divided into some groups. Then, for each of these groups, three ensemble classifiers, namely, random forest, rotation forest and AdaBoost.M1 are employed. Also, some fusion methods are introduced for combining the ensemble classifiers obtained in the previous step. After this step, three classifiers are produced based on the combination of classifiers of types random forest, rotation forest and AdaBoost.M1. Finally, the three different classifiers achieved are combined to make an overall classifier. Experimental results show that the overall classifier obtained by the genetic algorithm (GA) weighting fusion method, is the best one in comparison to previously applied methods in terms of classification accuracy.
Generalized Pauli constraints in reduced density matrix functional theory.
Theophilou, Iris; Lathiotakis, Nektarios N; Marques, Miguel A L; Helbig, Nicole
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violatesmore » the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.« less
Phase-noise influence on coherent transients and hole burning
NASA Astrophysics Data System (ADS)
Shakhmuratov, R. N.; Szabo, Alex
1998-10-01
Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms (TLA) by a stochastic field with phase noise is theoretically investigated. Free-induction decay (FID), hole burning (HB), and transient nutation (TN) are studied. We consider two kinds of driving fields, one with a free walking phase and another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing time, T2, of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the latter case, it is shown that even when the central part of the driving field spectrum is narrower than homogeneous absorption line of the TLA, the wide, low intensity wings of the spectrum (sidebands produced by the locked phase noise), have a strong effect on the FID, TN, and HB induced by the central, narrow part of the spectrum. The influence of sidebands on photon echoes is also discussed.
Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.
Siders, Paul D
2017-12-08
In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Forecasting European Wildfires Today and in the Future
NASA Astrophysics Data System (ADS)
Navarro Abellan, Maria; Porras Alegre, Ignasi; María Sole, Josep; Gálvez, Pedro; Bielski, Conrad; Nurmi, Pertti
2017-04-01
Society as a whole is increasingly exposed and vulnerable to natural disasters due to extreme weather events exacerbated by climate change. The increased frequency of wildfires is not only a result of a changing climate, but wildfires themselves also produce a significant amount of greenhouse gases that, in-turn, further contribute to global warming. I-REACT (Improving Resilience to Emergencies through Advanced Cyber Technologies) is an innovation project funded by the European Commission , which aims to use social media, smartphones and wearables to improve natural disaster management by integrating existing services, both local and European, into a platform that supports the entire emergency management cycle. In order to assess the impact of climate change on wildfire hazards, METEOSIM designed two different System Processes (SP) that will be integrated into the I-REACT service that can provide information on a variety of time scales. SP1 - Climate Change Impact The climate change impact on climate variables related to fires is calculated by building an ensemble based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) and CORDEX data. A validation and an Empirical-Statistical Downscaling (ESD) calibration are done to assess the changes in the past of the climatic variables related to wildfires (temperature, precipitation, wind, relative humidity and Fire Weather Index). Calculations in the trend and the frequency of extreme events of those variables are done for three time scales: near-term (2011-2040), mid-term (2041-2070) and long term (2071-2100). SP2 - Operational daily forecast of the Canadian Forest Fire Weather Index (FWI) Using ensemble data from the ECMWF and from the GLAMEPS (multi-model ensemble) models, both supplied by the Finnish Meteorological Institute (FMI), the Fire Weather Index (FWI) and its index components are produced for each ensemble member within a wide forecast time range, from a few hours up to 10 days resulting in a probabilistic output of the FWI for different regions in Europe. This work will improve the currently available information to various wildfire information users such as fire departments, the civil protection, local authorities, etc., where accurate and reliable information in extreme weather situations are vital for improving planning and risk management.
Moučka, Filip; Lísal, Martin; Škvor, Jiří; Jirsák, Jan; Nezbeda, Ivo; Smith, William R
2011-06-23
We present a new and computationally efficient methodology using osmotic ensemble Monte Carlo (OEMC) simulation to calculate chemical potential-concentration curves and the solubility of aqueous electrolytes. The method avoids calculations for the solid phase, incorporating readily available data from thermochemical tables that are based on well-defined reference states. It performs simulations of the aqueous solution at a fixed number of water molecules, pressure, temperature, and specified overall electrolyte chemical potential. Insertion/deletion of ions to/from the system is implemented using fractional ions, which are coupled to the system via a coupling parameter λ that varies between 0 (no interaction between the fractional ions and the other particles in the system) and 1 (full interaction between the fractional ions and the other particles of the system). Transitions between λ-states are accepted with a probability following from the osmotic ensemble partition function. Biasing weights associated with the λ-states are used in order to efficiently realize transitions between them; these are determined by means of the Wang-Landau method. We also propose a novel scaling procedure for λ, which can be used for both nonpolarizable and polarizable models of aqueous electrolyte systems. The approach is readily extended to involve other solvents, multiple electrolytes, and species complexation reactions. The method is illustrated for NaCl, using SPC/E water and several force field models for NaCl from the literature, and the results are compared with experiment at ambient conditions. Good agreement is obtained for the chemical potential-concentration curve and the solubility prediction is reasonable. Future improvements to the predictions will require improved force field models.
Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André
2017-09-01
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
A comparison of breeding and ensemble transform vectors for global ensemble generation
NASA Astrophysics Data System (ADS)
Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan
2012-02-01
To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.
Decoherence-induced conductivity in the one-dimensional Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegmann, Thomas; Wolf, Dietrich E.; Ujsághy, Orsolya
We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determinedmore » by the second-order generalized Lyapunov exponent (GLE) [4].« less
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Ensembl BioMarts: a hub for data retrieval across taxonomic space.
Kinsella, Rhoda J; Kähäri, Andreas; Haider, Syed; Zamora, Jorge; Proctor, Glenn; Spudich, Giulietta; Almeida-King, Jeff; Staines, Daniel; Derwent, Paul; Kerhornou, Arnaud; Kersey, Paul; Flicek, Paul
2011-01-01
For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/.
Jung, Kwan Ho; Lee, Keun-Hyeung
2015-09-15
A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.
Salmon, Loïc; Giambaşu, George M; Nikolova, Evgenia N; Petzold, Katja; Bhattacharya, Akash; Case, David A; Al-Hashimi, Hashim M
2015-10-14
Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.
Synchrony and entrainment properties of robust circadian oscillators
Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.
2008-01-01
Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
NASA Astrophysics Data System (ADS)
Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert
2017-11-01
Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias-correction method should be further investigated to remedy this weakness and take more advantage of the ensemble forecasts produced by the climate model. Overall, in this study, bias-corrected ensemble meteorological forecasts appear to be an interesting source of information for hydrological forecasting for lead times up to 1 month. They could also complement ESP for longer lead times.
Impact of the Montreal Protocol on Antarctic Surface Mass Balance
NASA Astrophysics Data System (ADS)
Previdi, M. J.; Polvani, L. M.
2016-12-01
We investigate the impact of the Montreal Protocol, and associated phase-out of ozone-depleting substances (ODSs), on the surface mass balance (SMB) of Antarctica, using simulations from the Community Earth System Model-Whole Atmosphere Community Climate Model (CESM-WACCM). The effect of ODSs on Antarctic SMB is first established by contrasting two sets of WACCM integrations (each with 6 ensemble members) for the period 1956-2005: one set that includes the full suite of natural and anthropogenic forcings, and a second set identical to the first but with atmospheric concentrations of ODSs held fixed at year 1955 levels. We find that holding ODSs fixed reduces the simulated increase in Antarctic SMB by nearly 60% in the ensemble mean, due to a suppression of Antarctic-mean warming. Having established this SMB impact of ODSs, we next examine three sets of future WACCM integrations (each with 3 ensemble members) for the period 2006-2065. The first two of these are the CMIP5 RCP4.5 and RCP8.5 integrations that include decreases in ODSs due to the implementation of the Montreal Protocol, and increases in other well-mixed greenhouse gases such as CO2. The third set of future integrations represents a hypothetical "world avoided" scenario in which the Montreal Protocol is assumed to have never been implemented, resulting in drastic increases in ODSs during the next several decades. In the world avoided, the simulated increase in Antarctic SMB is substantially larger than the other two scenarios, exceeding the SMB increases occurring under RCP4.5 and RCP8.5 by a factor of 3.7 and 1.9, respectively. The implications of this for future global sea-level rise will be discussed.
Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses
NASA Astrophysics Data System (ADS)
Storto, Andrea; Masina, Simona; Balmaseda, Magdalena; Guinehut, Stéphanie; Xue, Yan; Szekely, Tanguy; Fukumori, Ichiro; Forget, Gael; Chang, You-Soon; Good, Simon A.; Köhl, Armin; Vernieres, Guillaume; Ferry, Nicolas; Peterson, K. Andrew; Behringer, David; Ishii, Masayoshi; Masuda, Shuhei; Fujii, Yosuke; Toyoda, Takahiro; Yin, Yonghong; Valdivieso, Maria; Barnier, Bernard; Boyer, Tim; Lee, Tony; Gourrion, Jérome; Wang, Ou; Heimback, Patrick; Rosati, Anthony; Kovach, Robin; Hernandez, Fabrice; Martin, Matthew J.; Kamachi, Masafumi; Kuragano, Tsurane; Mogensen, Kristian; Alves, Oscar; Haines, Keith; Wang, Xiaochun
2017-08-01
Quantifying the effect of the seawater density changes on sea level variability is of crucial importance for climate change studies, as the sea level cumulative rise can be regarded as both an important climate change indicator and a possible danger for human activities in coastal areas. In this work, as part of the Ocean Reanalysis Intercomparison Project, the global and regional steric sea level changes are estimated and compared from an ensemble of 16 ocean reanalyses and 4 objective analyses. These estimates are initially compared with a satellite-derived (altimetry minus gravimetry) dataset for a short period (2003-2010). The ensemble mean exhibits a significant high correlation at both global and regional scale, and the ensemble of ocean reanalyses outperforms that of objective analyses, in particular in the Southern Ocean. The reanalysis ensemble mean thus represents a valuable tool for further analyses, although large uncertainties remain for the inter-annual trends. Within the extended intercomparison period that spans the altimetry era (1993-2010), we find that the ensemble of reanalyses and objective analyses are in good agreement, and both detect a trend of the global steric sea level of 1.0 and 1.1 ± 0.05 mm/year, respectively. However, the spread among the products of the halosteric component trend exceeds the mean trend itself, questioning the reliability of its estimate. This is related to the scarcity of salinity observations before the Argo era. Furthermore, the impact of deep ocean layers is non-negligible on the steric sea level variability (22 and 12 % for the layers below 700 and 1500 m of depth, respectively), although the small deep ocean trends are not significant with respect to the products spread.
NASA Astrophysics Data System (ADS)
Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.
2017-12-01
Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.
NASA Astrophysics Data System (ADS)
Hussain, Mubasher; Yusof, Khamaruzaman Wan; Mustafa, Muhammad Raza Ul; Mahmood, Rashid; Jia, Shaofeng
2017-10-01
We present the climate change impact on the annual and seasonal precipitation over Rajang River Basin (RRB) in Sarawak by employing a set of models from Coupled Model Intercomparison Project Phase 5 (CMIP5). Based on the capability to simulate the historical precipitation, we selected the three most suitable GCMs (i.e. ACCESS1.0, ACCESS1.3, and GFDL-ESM2M) and their mean ensemble (B3MMM) was used to project the future precipitation over the RRB. Historical (1976-2005) and future (2011-2100) precipitation ensembles of B3MMM were used to perturb the stochastically generated future precipitation over 25 rainfall stations in the river basin. The B3MMM exhibited a significant increase in precipitation during 2080s, up to 12 and 8% increase in annual precipitation over upper and lower RRB, respectively, under RCP8.5, and up to 7% increase in annual precipitation under RCP4.5. On the seasonal scale, Mann-Kendal trend test estimated statistically significant positive trend in the future precipitation during all seasons; except September to November when we only noted significant positive trend for the lower RRB under RCP4.5. Overall, at the end of the twenty-first century, an increase in annual precipitation is noteworthy in the whole RRB, with 7 and 10% increase in annual precipitation under the RCP4.5 and the RCP8.5, respectively.
Sensitivity to perturbations and quantum phase transitions.
Wisniacki, D A; Roncaglia, A J
2013-05-01
The local density of states or its Fourier transform, usually called fidelity amplitude, are important measures of quantum irreversibility due to imperfect evolution. In this Rapid Communication we study both quantities in a paradigmatic many body system, the Dicke Hamiltonian, where a single-mode bosonic field interacts with an ensemble of N two-level atoms. This model exhibits a quantum phase transition in the thermodynamic limit, while for finite instances the system undergoes a transition from quasi-integrability to quantum chaotic. We show that the width of the local density of states clearly points out the imprints of the transition from integrability to chaos but no trace remains of the quantum phase transition. The connection with the decay of the fidelity amplitude is also established.
Onset of phase separation in the double perovskite oxide La2MnNiO6
NASA Astrophysics Data System (ADS)
Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun; Du, Yingge; Droubay, Timothy; Chambers, Scott A.
2018-04-01
Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1-5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.
Fixed points, stable manifolds, weather regimes, and their predictability.
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-12-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex
NASA Astrophysics Data System (ADS)
Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.
2017-10-01
All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.
Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex.
Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F; Schnitzer, Mark J; Anderson, David J
2017-10-18
All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1 + ) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1 + neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a 'hard-wired' system.
NASA Astrophysics Data System (ADS)
Wood, A. W.; Clark, E.; Newman, A. J.; Nijssen, B.; Clark, M. P.; Gangopadhyay, S.; Arnold, J. R.
2015-12-01
The US National Weather Service River Forecasting Centers are beginning to operationalize short range to medium range ensemble predictions that have been in development for several years. This practice contrasts with the traditional single-value forecast practice at these lead times not only because the ensemble forecasts offer a basis for quantifying forecast uncertainty, but also because the use of ensembles requires a greater degree of automation in the forecast workflow than is currently used. For instance, individual ensemble member forcings cannot (practically) be manually adjusted, a step not uncommon with the current single-value paradigm, thus the forecaster is required to adopt a more 'over-the-loop' role than before. The relative lack of experience among operational forecasters and forecast users (eg, water managers) in the US with over-the-loop approaches motivates the creation of a real-time demonstration and evaluation platform for exploring the potential of over-the-loop workflows to produce usable ensemble short-to-medium range forecasts, as well as long range predictions. We describe the development and early results of such an effort by a collaboration between NCAR and the two water agencies, the US Army Corps of Engineers and the US Bureau of Reclamation. Focusing on small to medium sized headwater basins around the US, and using multi-decade series of ensemble streamflow hindcasts, we also describe early results, assessing the skill of daily-updating, over-the-loop forecasts driven by a set of ensemble atmospheric outputs from the NCEP GEFS for lead times from 1-15 days.
Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong
2016-01-01
Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.
An extensive study of Bose-Einstein condensation in liquid helium using Tsallis statistics
NASA Astrophysics Data System (ADS)
Guha, Atanu; Das, Prasanta Kumar
2018-05-01
Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼ 1 . 4) , the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc = 2 . 17 K), although they differs from each other for q = 1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.
Exploring Model Error through Post-processing and an Ensemble Kalman Filter on Fire Weather Days
NASA Astrophysics Data System (ADS)
Erickson, Michael J.
The proliferation of coupling atmospheric ensemble data to models in other related fields requires a priori knowledge of atmospheric ensemble biases specific to the desired application. In that spirit, this dissertation focuses on elucidating atmospheric ensemble model bias and error through a variety of different methods specific to fire weather days (FWDs) over the Northeast United States (NEUS). Other than a handful of studies that use models to predict fire indices for single fire seasons (Molders 2008, Simpson et al. 2014), an extensive exploration of model performance specific to FWDs has not been attempted. Two unique definitions for FWDs are proposed; one that uses pre-existing fire indices (FWD1) and another from a new statistical fire weather index (FWD2) relating fire occurrence and near-surface meteorological observations. Ensemble model verification reveals FWDs to have warmer (> 1 K), moister (~ 0.4 g kg-1) and less windy (~ 1 m s-1) biases than the climatological average for both FWD1 and FWD2. These biases are not restricted to the near surface but exist through the entirety of the planetary boundary layer (PBL). Furthermore, post-processing methods are more effective when previous FWDs are incorporated into the statistical training, suggesting that model bias could be related to the synoptic flow pattern. An Ensemble Kalman Filter (EnKF) is used to explore the effectiveness of data assimilation during a period of extensive FWDs in April 2012. Model biases develop rapidly on FWDs, consistent with the FWD1 and FWD2 verification. However, the EnKF is effective at removing most biases for temperature, wind speed and specific humidity. Potential sources of error in the parameterized physics of the PBL are explored by rerunning the EnKF with simultaneous state and parameter estimation (SSPE) for two relevant parameters within the ACM2 PBL scheme. SSPE helps to reduce the cool temperature bias near the surface on FWDs, with the variability in parameter estimates exhibiting some relationship to model bias for temperature. This suggests the potential for structural model error within the ACM2 PBL scheme and could lead toward the future development of improved PBL parameterizations.
A model ensemble for projecting multi‐decadal coastal cliff retreat during the 21st century
Limber, Patrick; Barnard, Patrick; Vitousek, Sean; Erikson, Li
2018-01-01
Sea cliff retreat rates are expected to accelerate with rising sea levels during the 21st century. Here we develop an approach for a multi‐model ensemble that efficiently projects time‐averaged sea cliff retreat over multi‐decadal time scales and large (>50 km) spatial scales. The ensemble consists of five simple 1‐D models adapted from the literature that relate sea cliff retreat to wave impacts, sea level rise (SLR), historical cliff behavior, and cross‐shore profile geometry. Ensemble predictions are based on Monte Carlo simulations of each individual model, which account for the uncertainty of model parameters. The consensus of the individual models also weights uncertainty, such that uncertainty is greater when predictions from different models do not agree. A calibrated, but unvalidated, ensemble was applied to the 475 km‐long coastline of Southern California (USA), with 4 SLR scenarios of 0.5, 0.93, 1.5, and 2 m by 2100. Results suggest that future retreat rates could increase relative to mean historical rates by more than two‐fold for the higher SLR scenarios, causing an average total land loss of 19 – 41 m by 2100. However, model uncertainty ranges from +/‐ 5 – 15 m, reflecting the inherent difficulties of projecting cliff retreat over multiple decades. To enhance ensemble performance, future work could include weighting each model by its skill in matching observations in different morphological settings
NASA Astrophysics Data System (ADS)
Werhahn, Johannes; Balzarini, Allessandra; Baró, Roccio; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Langer, Matthias; Lorenz, Christof; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Žabkar, Rahela
2014-05-01
Simulated feedback effects between aerosol concentrations and meteorological variables and on pollutant distributions are expected to depend on model configuration and the meteorological situation. In order to quantity these effects the second phase of the AQMEII (Air Quality Model Evaluation International Initiative; http://aqmeii.jrc.ec.europa.eu/) model inter-comparison exercise focused on online coupled meteorology-chemistry models. Among others, seven of the participating groups contributed simulations with WRF-Chem (Grell et al., 2005) for Europe. According to the common simulation strategy for AQMEII phase 2, the entire year 2010 was simulated as a sequence of 2-day time slices. For better comparability, the seven groups using WRF-Chem applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. The simulations differ by the chosen chemistry option, aerosol module, cloud microphysics, and by the degree of aerosol-meteorology feedback that was considered. Results from this small ensemble are analyzed with respect to the effect of the different degrees of aerosol-meteorology feedback, i.e. no aerosol feedback, direct aerosol effect, and direct plus indirect aerosol effect, on large scale precipitation. Simulated precipitation fields were compared against daily precipitation observations as given by E-OBS 25 km resolution gridded dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). As expected, a first analysis confirms that the average impact of aerosol feedback is only very small on the considered spatial and temporal scale, i.e. due to the fact that initial meteorological conditions were taken every 3rd day from a one day non-feedback spin-up run. However, the analysis of the correlations between simulation and observations for the first and the second day indicates for some particular situations and regions a slightly better correlation when the aerosol indirect effect is accounted for.
Sampling-based ensemble segmentation against inter-operator variability
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Pope, Whitney; Brown, Matthew
2011-03-01
Inconsistency and a lack of reproducibility are commonly associated with semi-automated segmentation methods. In this study, we developed an ensemble approach to improve reproducibility and applied it to glioblastoma multiforme (GBM) brain tumor segmentation on T1-weigted contrast enhanced MR volumes. The proposed approach combines samplingbased simulations and ensemble segmentation into a single framework; it generates a set of segmentations by perturbing user initialization and user-specified internal parameters, then fuses the set of segmentations into a single consensus result. Three combination algorithms were applied: majority voting, averaging and expectation-maximization (EM). The reproducibility of the proposed framework was evaluated by a controlled experiment on 16 tumor cases from a multicenter drug trial. The ensemble framework had significantly better reproducibility than the individual base Otsu thresholding method (p<.001).
Gloss, L M; Simler, B R; Matthews, C R
2001-10-05
The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady
2016-08-01
As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.
Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.
Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A
2018-02-15
We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
An Agile Beam Transmit Array Using Coupled Oscillator Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme
1993-01-01
A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its neighbors. Using this array, we have been able to verify the theoretical predictions concerning the effect of this phase on both the locking range and ensemble frequency of the array. However, the scan range achieved fell somewhat short of the theoretical value because of the amplitude variation of the oscillator outputs with tuning.
The Ensembl REST API: Ensembl Data for Any Language.
Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul
2015-01-01
We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Oh, Seok-Geun; Suh, Myoung-Seok
2017-07-01
The projection skills of five ensemble methods were analyzed according to simulation skills, training period, and ensemble members, using 198 sets of pseudo-simulation data (PSD) produced by random number generation assuming the simulated temperature of regional climate models. The PSD sets were classified into 18 categories according to the relative magnitude of bias, variance ratio, and correlation coefficient, where each category had 11 sets (including 1 truth set) with 50 samples. The ensemble methods used were as follows: equal weighted averaging without bias correction (EWA_NBC), EWA with bias correction (EWA_WBC), weighted ensemble averaging based on root mean square errors and correlation (WEA_RAC), WEA based on the Taylor score (WEA_Tay), and multivariate linear regression (Mul_Reg). The projection skills of the ensemble methods improved generally as compared with the best member for each category. However, their projection skills are significantly affected by the simulation skills of the ensemble member. The weighted ensemble methods showed better projection skills than non-weighted methods, in particular, for the PSD categories having systematic biases and various correlation coefficients. The EWA_NBC showed considerably lower projection skills than the other methods, in particular, for the PSD categories with systematic biases. Although Mul_Reg showed relatively good skills, it showed strong sensitivity to the PSD categories, training periods, and number of members. On the other hand, the WEA_Tay and WEA_RAC showed relatively superior skills in both the accuracy and reliability for all the sensitivity experiments. This indicates that WEA_Tay and WEA_RAC are applicable even for simulation data with systematic biases, a short training period, and a small number of ensemble members.
NASA Astrophysics Data System (ADS)
Ford, T.; Dirmeyer, P.
2016-12-01
The influence of antecedent drought conditions on the onset of heat waves in North America is important as the establishment of past heat wave events has been connected to both advection of warm, dry air and limitation of local moisture recycling due to dry soils. The strong connection between the land surface and subsequent extreme heat offers promise that realistic soil moisture initialization could improve model forecast skill. However, there is still a lack of consensus about the (1) the role of antecedent drought conditions in forcing heat waves over North America and (2) the ability of numerical forecast models to predict extreme heat events at sub-seasonal to seasonal time scales. For this project, we use atmospheric reanalysis datasets to establish the connection between drought and subsequent extreme heat events. The Standardized Precipitation Index (SPI), computed over 30-, 60-, and 90-day intervals, is used to identify drought events, while the excess heat factor defines subsequent heat wave events. We focus on heat waves immediately following drought periods, including events coinciding with but not beginning prior to the start of drought, as well as heat wave events beginning no more than 3 days after the demise of a drought event. Hindcasts from individual model ensemble members of the Sub-seasonal to Seasonal Prediction (S2S) Project and the Phase II of the North American Multi-Model Ensemble (NMME) are assessed with regard to heat wave prediction. Each individual S2S and NMME ensemble member is evaluated to determine if their respective hindcasts are able to capture/predict heat wave events identified in the reanalysis products.
NASA Technical Reports Server (NTRS)
Achuthavarier, Deepthi; Koster, Randal; Marshak, Jelena; Schubert, Siegfried; Molod, Andrea
2018-01-01
In this study, we examine the prediction skill and predictability of the Madden Julian Oscillation (MJO) in a recent version of the NASA GEOS-5 atmosphere-ocean coupled model run at at 1/2 degree horizontal resolution. The results are based on a suite of hindcasts produced as part of the NOAA SubX project, consisting of seven ensemble members initialized every 5 days for the period 1999-2015. The atmospheric initial conditions were taken from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the ocean and the sea ice were taken from a GMAO ocean analysis. The land states were initialized from the MERRA-2 land output, which is based on observation-corrected precipitation fields. We investigated the MJO prediction skill in terms of the bivariate correlation coefficient for the real-time multivariate MJO (RMM) indices. The correlation coefficient stays at or above 0.5 out to forecast lead times of 26-36 days, with a pronounced increase in skill for forecasts initialized from phase 3, when the MJO convective anomaly is located in the central tropical Indian Ocean. A corresponding estimate of the upper limit of the predictability is calculated by considering a single ensemble member as the truth and verifying the ensemble mean of the remaining members against that. The predictability estimates fall between 35-37 days (taken as forecast lead when the correlation reaches 0.5) and are rather insensitive to the initial MJO phase. The model shows slightly higher skill when the initial conditions contain strong MJO events compared to weak events, although the difference in skill is evident only from lead 1 to 20. Similar to other models, the RMM-index-based skill arises mostly from the circulation components of the index. The skill of the convective component of the index drops to 0.5 by day 20 as opposed to day 30 for circulation fields. The propagation of the MJO anomalies over the Maritime Continent does not appear problematic in the GEOS-5 hindcasts implying that the Maritime Continent predictability barrier may not be a major concern in this model. Finally, the MJO prediction skill in this version of GEOS-5 is superior to that of the current seasonal prediction system at the GMAO; this could be partly attributed to a slightly better representation of the MJO in the free running version of this model and partly to the improved atmospheric initialization from MERRA-2.
Shiogama, Hideo; Imada, Yukiko; Mori, Masato; ...
2016-08-07
Here, we describe two unprecedented large (100-member), longterm (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the "Database for Policy Decision making for Future climate change (d4PDF)". We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicatemore » that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001- 2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.« less
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.
Cooke, Ben; Schmidler, Scott C
2008-10-28
We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.
Phase Behavior of Patchy Spheroidal Fluids.
NASA Astrophysics Data System (ADS)
Carpency, Thienbao
We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukamel, Shaul
Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xu, Shun; Tu, Yu-Song; Zhou, Xin
2017-06-01
Not Available Project supported by the National Natural Science Foundation for Outstanding Young Scholars, China (Grant No. 11422542), the National Natural Science Foundation of China (Grant Nos. 11605151 and 11675138), and the Shanghai Supercomputer Center of China and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).
Numerical modelling of multiphase multicomponent reactive transport in the Earth's interior
NASA Astrophysics Data System (ADS)
Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio; Diez, Pedro
2018-01-01
We present a conceptual and numerical approach to model processes in the Earth's interior that involve multiple phases that simultaneously interact thermally, mechanically and chemically. The approach is truly multiphase in the sense that each dynamic phase is explicitly modelled with an individual set of mass, momentum, energy and chemical mass balance equations coupled via interfacial interaction terms. It is also truly multicomponent in the sense that the compositions of the system and its constituent phases are expressed by a full set of fundamental chemical components (e.g. SiO2, Al2O3, MgO, etc.) rather than proxies. These chemical components evolve, react with and partition into different phases according to an internally consistent thermodynamic model. We combine concepts from Ensemble Averaging and Classical Irreversible Thermodynamics to obtain sets of macroscopic balance equations that describe the evolution of systems governed by multiphase multicomponent reactive transport (MPMCRT). Equilibrium mineral assemblages, their compositions and physical properties, and closure relations for the balance equations are obtained via a `dynamic' Gibbs free-energy minimization procedure (i.e. minimizations are performed on-the-fly as needed by the simulation). Surface tension and surface energy contributions to the dynamics and energetics of the system are taken into account. We show how complex rheologies, that is, visco-elasto-plastic, and/or different interfacial models can be incorporated into our MPMCRT ensemble-averaged formulation. The resulting model provides a reliable platform to study the dynamics and nonlinear feedbacks of MPMCRT systems of different nature and scales, as well as to make realistic comparisons with both geophysical and geochemical data sets. Several numerical examples are presented to illustrate the benefits and limitations of the model.
Self-narrowing of size distributions of nanostructures by nucleation antibunching
NASA Astrophysics Data System (ADS)
Glas, Frank; Dubrovskii, Vladimir G.
2017-08-01
We study theoretically the size distributions of ensembles of nanostructures fed from a nanosize mother phase or a nanocatalyst that contains a limited number of the growth species that form each nanostructure. In such systems, the nucleation probability decreases exponentially after each nucleation event, leading to the so-called nucleation antibunching. Specifically, this effect has been observed in individual nanowires grown in the vapor-liquid-solid mode and greatly affects their properties. By performing numerical simulations over large ensembles of nanostructures as well as developing two different analytical schemes (a discrete and a continuum approach), we show that nucleation antibunching completely suppresses fluctuation-induced broadening of the size distribution. As a result, the variance of the distribution saturates to a time-independent value instead of growing infinitely with time. The size distribution widths and shapes primarily depend on the two parameters describing the degree of antibunching and the nucleation delay required to initiate the growth. The resulting sub-Poissonian distributions are highly desirable for improving size homogeneity of nanowires. On a more general level, this unique self-narrowing effect is expected whenever the growth rate is regulated by a nanophase which is able to nucleate an island much faster than it is refilled from a surrounding macroscopic phase.
NASA Astrophysics Data System (ADS)
Mei, W.; Kamae, Y.; Xie, S. P.
2017-12-01
Forced and internal variability of North Atlantic hurricane frequency during 1951-2010 is studied using a large ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The simulations well capture the interannual-to-decadal variability of hurricane frequency in best track data, and further suggest a possible underestimate of hurricane counts in the current best track data prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the Main Development Region (MDR) accounts for more than 80% of the forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a simple but useful predictor; a one-degree increase in this SST difference produces 7.1±1.4 more hurricanes. The hurricane frequency also exhibits internal variability that is comparable in magnitude to the interannual variability. The 100-member ensemble allows us to address the following important questions: (1) Are the observations equivalent to one realization of such a large ensemble? (2) How many ensemble members are needed to reproduce the variability in observations and in the forced component of the simulations? The sources of the internal variability in hurricane frequency will be identified and discussed. The results provide an explanation for the relatively week correlation ( 0.6) between MDR GPI and hurricane frequency on interannual timescales in observations.
Generation of entanglement and its decay in a noisy environment
NASA Astrophysics Data System (ADS)
Huang, Jiehui
Entanglement plays a central role in distinguishing quantum mechanics from classical physics. Due to its fantastic properties and many potential applications in quantum information science, entanglement is attracting more and more attention. This thesis focuses on the generation of entanglement and its decay in a noisy environment. In the first experimental scheme to entangle two thermal fields, an atomic ensemble, composed of many identical four-level atoms, is employed. In the first Raman scattering, this atomic ensemble emits write signal photons after the pumping by a weak write pulse, accompanied by the transfer from one lower level to the other for some atoms. Similarly, the atomic ensemble emits read signal photons after the driving by a strong read pulse, and the ensemble turns back to its ground state after the second Raman scattering. The coherence between the two lower atomic levels plays a key role in establishing the quantum correlation between two emission fields, which is verified through the violation of Cauchy-Schwarz inequality. In particular, the controllable time delay between the two emission fields actually means the storage time of photonic information in this system, which sheds light on some potential applications, such as quantum memory. In the second experimental scheme for the generation of spatially separated multiphoton entanglement, two or more identical optical cavities are aligned along a bee-line, and a four-level atom runs through these cavities sequentially. By appropriately adjusting the passage time of the atom in each cavity or the Rabi frequency of the classical pumping laser, a photon can be generated via the interaction between the excited atom and the cavity modes. This adiabatic passage model is an effective method to map atomic coherence to photonic state in cavity QED, thus all photons in different cavities quantum-mechanically correlate with the moving atom. When a final detection is made on this atom, a generalized n-photon GHZ entangled state will be generated with certainty. Environment-induced disentanglement is another important topic in quantum optics. Based on the Peres-Horodecki criterion for separability of bipartite states, we develop the principal minor method for the verification of two-qubit entanglement. Among the fifteen principal minors (seven effective ones) of a given two-qubit state's partial transpose, if the minimum one is negative, the two-qubit state is entangled, otherwise it is separable. By applying this method to a two-qubit system under amplitude and phase dampings, we have derived the necessary and sufficient conditions for the entanglement sudden death of an initially entangled two-qubit state. Keywords: entanglement generation, atomic ensemble, two-qubit, multiphoton entanglement, cavity QED, entanglement sudden death (ESD), amplitude damping, phase damping, principal minor.
Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y
2014-09-15
Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.
Stabilizing IkappaBalpha by "consensus" design.
Ferreiro, Diego U; Cervantes, Carla F; Truhlar, Stephanie M E; Cho, Samuel S; Wolynes, Peter G; Komives, Elizabeth A
2007-01-26
IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.
Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng
Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less
Smith-Hicks, Constance L.; Cai, Peiling; Savonenko, Alena V.; Reeves, Roger H.; Worley, Paul F.
2017-01-01
Down syndrome (DS) is the leading chromosomal cause of intellectual disability, yet the neural substrates of learning and memory deficits remain poorly understood. Here, we interrogate neural networks linked to learning and memory in a well-characterized model of DS, the Ts65Dn mouse. We report that Ts65Dn mice exhibit exploratory behavior that is not different from littermate wild-type (WT) controls yet behavioral activation of Arc mRNA transcription in pyramidal neurons of the CA1 region of the hippocampus is altered in Ts65Dn mice. In WT mice, a 5 min period of exploration of a novel environment resulted in Arc mRNA transcription in 39% of CA1 neurons. By contrast, the same period of exploration resulted in only ~20% of CA1 neurons transcribing Arc mRNA in Ts65Dn mice indicating increased sparsity of the behaviorally induced ensemble. Like WT mice the CA1 pyramidal neurons of Ts65Dn mice reactivated Arc transcription during a second exposure to the same environment 20 min after the first experience, but the size of the reactivated ensemble was only ~60% of that in WT mice. After repeated daily exposures there was a further decline in the size of the reactivated ensemble in Ts65Dn and a disruption of reactivation. Together these data demonstrate reduction in the size of the behaviorally induced network that expresses Arc in Ts65Dn mice and disruption of the long-term stability of the ensemble. We propose that these deficits in network formation and stability contribute to cognitive symptoms in DS. PMID:28217086
Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; ...
2017-09-25
Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less
Zhu, Guanhua; Liu, Wei; Bao, Chenglong; Tong, Dudu; Ji, Hui; Shen, Zuowei; Yang, Daiwen; Lu, Lanyuan
2018-05-01
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates. © 2018 Wiley Periodicals, Inc.
Pareto-Optimal Estimates of California Precipitation Change
NASA Astrophysics Data System (ADS)
Langenbrunner, Baird; Neelin, J. David
2017-12-01
In seeking constraints on global climate model projections under global warming, one commonly finds that different subsets of models perform well under different objective functions, and these trade-offs are difficult to weigh. Here a multiobjective approach is applied to a large set of subensembles generated from the Climate Model Intercomparison Project phase 5 ensemble. We use observations and reanalyses to constrain tropical Pacific sea surface temperatures, upper level zonal winds in the midlatitude Pacific, and California precipitation. An evolutionary algorithm identifies the set of Pareto-optimal subensembles across these three measures, and these subensembles are used to constrain end-of-century California wet season precipitation change. This methodology narrows the range of projections throughout California, increasing confidence in estimates of positive mean precipitation change. Finally, we show how this technique complements and generalizes emergent constraint approaches for restricting uncertainty in end-of-century projections within multimodel ensembles using multiple criteria for observational constraints.
ERIC Educational Resources Information Center
Berndt, Arnold, Comp.
This catalogue lists phonograph records which feature solo and ensemble music by wind and percussion instruments. It supplements the "1978 Catalogue of Wind and Percussion Solos and Ensembles" (ED 171 614). Instruments played on the records include oboe/English horn, flute, clarinet, bassoon, saxophone, trumpet/cornet, French horn, woodwind…
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-12-08
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-01-01
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system. PMID:25494350
NASA Astrophysics Data System (ADS)
Bring, Arvid; Asokan, Shilpa M.; Jaramillo, Fernando; Jarsjö, Jerker; Levi, Lea; Pietroń, Jan; Prieto, Carmen; Rogberg, Peter; Destouni, Georgia
2015-06-01
The multimodel ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) synthesizes the latest research in global climate modeling. The freshwater system on land, particularly runoff, has so far been of relatively low priority in global climate models, despite the societal and ecosystem importance of freshwater changes, and the science and policy needs for such model output on drainage basin scales. Here we investigate the implications of CMIP5 multimodel ensemble output data for the freshwater system across a set of drainage basins in the Northern Hemisphere. Results of individual models vary widely, with even ensemble mean results differing greatly from observations and implying unrealistic long-term systematic changes in water storage and level within entire basins. The CMIP5 projections of basin-scale freshwater fluxes differ considerably more from observations and among models for the warm temperate study basins than for the Arctic and cold temperate study basins. In general, the results call for concerted research efforts and model developments for improving the understanding and modeling of the freshwater system and its change drivers. Specifically, more attention to basin-scale water flux analyses should be a priority for climate model development, and an important focus for relevant model-based advice for adaptation to climate change.
Scattering and extinction by spherical particles immersed in an absorbing host medium
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Dlugach, Janna M.
2018-05-01
Many applications of electromagnetic scattering involve particles immersed in an absorbing rather than lossless medium, thereby making the conventional scattering theory potentially inapplicable. To analyze this issue quantitatively, we employ the FORTRAN program developed recently on the basis of the first-principles electromagnetic theory to study far-field scattering by spherical particles embedded in an absorbing infinite host medium. We further examine the phenomenon of negative extinction identified recently for monodisperse spheres and uncover additional evidence in favor of its interference origin. We identify the main effects of increasing the width of the size distribution on the ensemble-averaged extinction efficiency factor and show that negative extinction can be eradicated by averaging over a very narrow size distribution. We also analyze, for the first time, the effects of absorption inside the host medium and ensemble averaging on the phase function and other elements of the Stokes scattering matrix. It is shown in particular that increasing absorption significantly suppresses the interference structure and can result in a dramatic expansion of the areas of positive polarization. Furthermore, the phase functions computed for larger effective size parameters can develop a very deep minimum at side-scattering angles bracketed by a strong diffraction peak in the forward direction and a pronounced backscattering maximum.
Desynchronizing electrical and sensory coordinated reset neuromodulation
Popovych, Oleksandr V.; Tass, Peter A.
2012-01-01
Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders. PMID:22454622
Desynchronizing electrical and sensory coordinated reset neuromodulation.
Popovych, Oleksandr V; Tass, Peter A
2012-01-01
Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.
The Effect of Conductor Expressivity on Ensemble Performance Evaluation
ERIC Educational Resources Information Center
Morrison, Steven J.; Price, Harry E.; Geiger, Carla G.; Cornacchio, Rachel A.
2009-01-01
In this study, the authors examined whether a conductor's use of high-expressivity or low-expressivity techniques affected evaluations of ensemble performances that were identical across conducting conditions. Two conductors each conducted two 1-minute parallel excerpts from Percy Grainger's "Walking Tune." Each directed one excerpt…
Discrete time-crystalline order in black diamond
NASA Astrophysics Data System (ADS)
Zhou, Hengyun; Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail D.
2017-04-01
The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.
NASA Astrophysics Data System (ADS)
Roberge, S.; Chokmani, K.; De Sève, D.
2012-04-01
The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.
NMR, symmetry elements, structure and phase transitions in the argyrodite family
NASA Astrophysics Data System (ADS)
Gaudin, E.; Taulelle, F.; Boucher, F.; Evain, M.
1998-02-01
Cu7PSe6 belongs to a family of structures known as the argyrodites. It undergoes two phases transitions. The high temperature phase has been determined by X-ray diffraction. It has a Foverline{4}3m space group. Medium temperature phases have been refined using a non-harmonic technique and the space group proposed is P213. The low temperature phase had an apparent space group of Foverline{4}3m also. Use of X-ray diffraction and NMR together has allowed to determine the space groups of all phases as being respectively Foverline{4}3m, P213 and Pmn21. Positioning of disordered coppers in the structure is therefore possible and the structure can be described by connex polyhedra of PSe3-4 and SeCux-2_x. The phase transitions can be understood by an ordered motion of SeCux-2x polyhedra. If these polyhedra set in motion independently two transitions are to be observed, if they are coupled only one is observed. Cu7PSe6 appartient à une famille de composés connus sous le nom d'argyrodites. Cu7PSe6 possède deux transitions de phase. La structure de haute température a été déterminée par diffraction des rayons X. Elle se décrit par le groupe d'espace Foverline{4}3m. La phase de moyenne température a été raffinée en utilisant une technique non-harmonique et le groupe d'espace proposé est P213. La phase de basse température possède également un groupe d'espace apparent Foverline{4}3m. En utilisant ensemble la diffraction des rayons X et la RMN, il a été possible de déterminer les groupes d'espace de toutes les phases comme étant respectivement Foverline{4}3m, P213 et Pmn21. Placer les atomes de cuivre, désordonnés, dans la structure devient alors possible et la structure peut se décrire comme un ensemble de polyèdres connexes de PSe3-4 et SeCux-2_x. Les transitions de phases se décrivent alors comme des mouvements ordonnés des polyèdres SeCux-2_x. Si ces polyèdres se mettent en mouvement indépendamment, deux transitions de phases sont attendues, si leur mise en mouvement est couplée, une seule est observée.
Confidence-based ensemble for GBM brain tumor segmentation
NASA Astrophysics Data System (ADS)
Huo, Jing; van Rikxoort, Eva M.; Okada, Kazunori; Kim, Hyun J.; Pope, Whitney; Goldin, Jonathan; Brown, Matthew
2011-03-01
It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensemble one. The method is evaluated on a dataset of 20 cases from a multi-center pharmaceutical drug trial and compared to the fuzzy connectedness method. Three individual methods were used in the framework: fuzzy connectedness, GrowCut, and voxel classification. The combination method is a confidence map averaging (CMA) method. The CMA method shows an improved ROC curve compared to the fuzzy connectedness method (p < 0.001). The CMA ensemble result is more robust compared to the three individual methods.
The Ensembl REST API: Ensembl Data for Any Language
Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R. S.; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul
2015-01-01
Motivation: We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. Availability and implementation: The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. Contact: ayates@ebi.ac.uk or flicek@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25236461
Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Goonawardena, Anushka V.; Marmarelis, Vasilis Z.; Gerhardt, Greg A.; Berger, Theodore W.; Deadwyler, Sam A.
2012-01-01
A major factor involved in providing closed loop feedback for control of neural function is to understand how neural ensembles encode online information critical to the final behavioral endpoint. This issue was directly assessed in rats performing a short-term delay memory task in which successful encoding of task information is dependent upon specific spatiotemporal firing patterns recorded from ensembles of CA3 and CA1 hippocampal neurons. Such patterns, extracted by a specially designed nonlinear multi-input multi-output (MIMO) nonlinear mathematical model, were used to predict successful performance online via a closed loop paradigm which regulated trial difficulty (time of retention) as a function of the “strength” of stimulus encoding. The significance of the MIMO model as a neural prosthesis has been demonstrated by substituting trains of electrical stimulation pulses to mimic these same ensemble firing patterns. This feature was used repeatedly to vary “normal” encoding as a means of understanding how neural ensembles can be “tuned” to mimic the inherent process of selecting codes of different strength and functional specificity. The capacity to enhance and tune hippocampal encoding via MIMO model detection and insertion of critical ensemble firing patterns shown here provides the basis for possible extension to other disrupted brain circuitry. PMID:22498704
Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*
Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.
2013-01-01
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628
Chodera, John D; Shirts, Michael R
2011-11-21
The widespread popularity of replica exchange and expanded ensemble algorithms for simulating complex molecular systems in chemistry and biophysics has generated much interest in discovering new ways to enhance the phase space mixing of these protocols in order to improve sampling of uncorrelated configurations. Here, we demonstrate how both of these classes of algorithms can be considered as special cases of Gibbs sampling within a Markov chain Monte Carlo framework. Gibbs sampling is a well-studied scheme in the field of statistical inference in which different random variables are alternately updated from conditional distributions. While the update of the conformational degrees of freedom by Metropolis Monte Carlo or molecular dynamics unavoidably generates correlated samples, we show how judicious updating of the thermodynamic state indices--corresponding to thermodynamic parameters such as temperature or alchemical coupling variables--can substantially increase mixing while still sampling from the desired distributions. We show how state update methods in common use can lead to suboptimal mixing, and present some simple, inexpensive alternatives that can increase mixing of the overall Markov chain, reducing simulation times necessary to obtain estimates of the desired precision. These improved schemes are demonstrated for several common applications, including an alchemical expanded ensemble simulation, parallel tempering, and multidimensional replica exchange umbrella sampling.
Adapting wheat to uncertain future
NASA Astrophysics Data System (ADS)
Semenov, Mikhail; Stratonovitch, Pierre
2015-04-01
This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.
Butlitsky, M A; Zelener, B B; Zelener, B V
2014-07-14
A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).
Mazurowski, Maciej A; Zurada, Jacek M; Tourassi, Georgia D
2009-07-01
Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC = 0.905 +/- 0.024) in performance as compared to the original IT-CAD system (AUC = 0.865 +/- 0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters.
NASA Astrophysics Data System (ADS)
Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.
2017-12-01
There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.
NASA Astrophysics Data System (ADS)
Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin
2015-11-01
The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.
NASA Astrophysics Data System (ADS)
Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.
2015-12-01
The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.